Problem-solving orientation and attributional style: Moderators of the impact of negative life events on the development of depressive symptoms in adolescence?

Author

H. Spence, Susan, Sheffield, Jeanie K., Donovan, Caroline

Published

2002

Journal Title

Journal of Clinical Child Psychology

DOI

https://doi.org/10.1207/S15374424JCCP3102_07

Copyright Statement

Copyright 2002 Taylor & Francis. This is an electronic version of an article published in the Journal of Clinical Child Psychology, Volume 31, Issue 2, 2002, Pages 219-229. Journal of Clinical Child Psychology is available online at: http://www.tandfonline.com with the open URL of your article.

Downloaded from

http://hdl.handle.net/10072/28006
Problem Solving Orientation and Attributional Style: Moderators of the Impact of Negative Life Events upon the Development of Depressive Symptoms in Adolescence?

Susan H Spence
Jeanie Sheffield
Caroline Donovan

School of Psychology
University of Queensland
Brisbane
Australia

Keywords: Depression, adolescence, life events, problem solving, attributional style, cognitive vulnerability, diathesis-stress

Suggested running head: Adolescent depression

Name and address for reprints: Professor Sue Spence, School of Psychology, University of Queensland, Brisbane, Australia 4072. Email: s.spence@psy.uq.edu.au
Followed-up seven hundred and thirty three adolescents, aged 12-14 years from a community sample over a 1-year period. Depressive symptoms at 1-year follow-up, controlling for baseline depression levels, were predicted by negative life events in the previous 12-months, attributional style, negative problem solving orientation and the interaction between negative life events and negative problem solving orientation. In the presence, but not absence of high negative life events, negative problem solving orientation predicted increases in depressive symptoms. In contrast, pessimistic attributional style predicted future increases in depression irrespective of the occurrence of negative life events. The findings supported a cognitive diathesis-stress model of the development of depression for negative problem solving orientation, but not attributional style.
A significant association between negative life events and the development of depression in young people is relatively well established. Environmental events such as parents’ marital conflict, separation, divorce, bereavements, poverty, abuse and high levels of daily hassles have been shown to increase the risk of adolescent depression (Goodyer & Altham, 1991a; Goodyer & Altham, 1991b). However, the impact of negative life events is not specific to depression and increases the risk of a wide range of emotional and behavioural difficulties (Goodyer, 1990). Furthermore, not all young people exposed to life stressors show elevated depression. One of the challenges for researchers is to identify those characteristics that influence the impact of negative life events upon the psychological adjustment of adolescents.

Cognitive diathesis-stress models of depression propose that depression is more likely to result from an interaction between adverse life events and intrinsic cognitive characteristics that increase negative affective states or reduce the person’s ability to cope with or remove the stressful events. (Abramson, Alloy, & Metalsky, 1988a). Such models propose that certain styles of thinking and information processing represent a diathesis, which in the presence but not absence of negative life stress, increases vulnerability to the development of
depression (Abramson, Metalsky, & Alloy, 1988b). Most research in this area has focused on attributional style as a cognitive diathesis, in keeping with the hopelessness theory of depression (Abramson, Metalsky, & Alloy, 1989). The hopelessness model proposed that the tendency to attribute negative events to stable and global causes and positive events to unstable and specific explanations is associated with increased risk for the development of depression, but only in the presence of negative life events. Hopelessness theory also proposed that increased feelings of hopelessness mediated the relationship between the cognitive diathesis-stress effect and increases in depression.

Studies examining this hypothesis have provided mixed support for the diathesis-stress model. Support for the diathesis-stress-hopelessness model of depression has been reported in several studies involving adults (Alloy, Reilly Harrington, Fresco, Whitehouse, & Zechmeister, 1999; Reilly Harrington, Alloy, Fresco, & Whitehouse, 1999; Vickers & Vogeltanz, 2000) and children and adolescents (Dixon & Ahrens, 1992). In these studies, negative attributional style, accompanied by a high level of intervening negative life events, has been shown to predict future increases in depressive symptoms. Furthermore, there is evidence that the impact of this interaction is mediated by hopelessness for adults and adolescents (Abramson et al., 1998; Joiner, 2000) and that the effect is specific to depression and not anxiety or other disorders (Alloy & Clements, 1998; Joiner, 2000). However, not all studies have provided evidence to support the
cognitive diathesis-stress component of hopelessness theory of depression. Hammen, Adrian, and Hiroto (1988) and Nolen Hoeksema, Girgus, and Seligman (1986) have found only partial support for the model.

Problem solving represents another cognitive process proposed to moderate the impact of negative life events upon the development of depression. Problem solving refers to the attitudes, skills and abilities that enable a person to find effective or adaptive solutions to specific, everyday problems (D'Zurilla, Chang, Nottingham, & Faccini, 1998). Similar to the research relating to attributional style, it appears that poor problem solving processes may represent a diathesis, interacting with negative life events in the development of depression (Adams & Adams, 1993; Cheng & Lam, 1997; Goodman, Gravitt, & Kaslow, 1995). For example, a problem solving orientation that proposes the use of self-destructive or passive/avoidant solutions to life problems was found to predict future depression in the presence of negative life events among adolescents (Adams & Adams, 1996). There is some evidence to suggest that it is not only specific problem solving skills (e.g., problem definition and formulation, generation of alternative solutions, prediction of consequences, solution monitoring and evaluation) that are associated with the development of depression, but also the cognitive orientation that the individual takes to the occurrence and management of problems (Haaga, Fine, Terrill, Stewart, & Beck, 1995). Problem orientation refers to the cognitive, emotional, and behavioural variables that reflect a person’s awareness of, beliefs
about, appraisals, and expectancies relating to both the occurrence of problems and his or her ability to solve them. A negative problem solving orientation relates to those cognitions and emotions that are proposed to inhibit adaptive problem solving. Several studies have demonstrated strong associations between a negative problem solving orientation and depression, hopelessness and/or suicidal ideation (D'Zurilla et al., 1998; Sadowski & Kelly, 1993).

The present study examined the role of adverse life events and cognitive variables of attributional style and negative problem solving orientation in the development of depression in adolescents. Specifically, it examined the cognitive diathesis stress model of depression to determine whether the development of depression is related to the interaction between life stressors and cognitive variables of attributional style and negative problem solving orientation.

Method

Participants

Participants were 994 (538 male and 456 female) Year 8 students, ranging in age from 12-14 years, from 10 high schools in the Brisbane region of Queensland, Australia. The students had an average age of 12.91-years (SD = 0.51). Socio-economic status was coded using the Australian Standard Classification of Occupations
Adolescent Depression (Australian Bureau of Statistics & Department of Education Training and Youth Affairs, 1997). The average SES rating for the participants was 3.89 (SD = 2.32), typical of the SES distribution of Australia in general. This value is indicative of a middle socioeconomic status on average (e.g., "paraprofessional" occupations are coded as 3; "trades" occupations as 4).

We were not permitted to collect information about ethnic background, and were restricted to information about country of birth. Around 90% of the students, 73% of their mothers, and 72% of their fathers were born in Australia. Approximately 23% of fathers and 22% mothers were born in European and North American countries. Around 3% of fathers and 4% of mothers were born in Asian or Oceania countries. Thus, the sample was primarily of Caucasian ethnic origin.

Of the original 994 participants, 733 (74%) completed the 12-mth follow-up. Reasons for non-participation at follow-up included movement of family from the area, change of school, and being absent from school due to illness at the time of follow-up. No students actively refused to take part in the follow-up.

Procedure

Written, informed consent to participate in a project to monitor the psychological development of young people was obtained from State Education and Catholic Education departments, and parents and
adolescents prior to participation. Informed consent forms were given out to teachers of all Year 8 classes in participating schools. We have no way of knowing how many students actually received these forms and took these forms home to their parents. Written, informed consent was obtained from a minimum of 59% of enrolments in participating classrooms. This is the lowest estimate of participation rate and may be an underestimate. Questionnaires were completed in class and were presented in one of three counterbalanced orders, with order being randomly distributed across schools. Each questionnaire was labeled with a student code and a school code to assist in the matching of questionnaires at different time points while simultaneously ensuring confidentiality. Teachers were instructed to read aloud a set text that explained the questionnaire procedure and confidentiality of the information. To ensure understanding by all students, completion of the questionnaire package was paced by reading each question aloud.

Measures

Depression. Depression was assessed using the Beck Depression Inventory (BDI; Beck, Rush, Shaw, & Emery, 1979), with minor modifications to suit the young Australian adolescent population. The BDI is a self-report inventory consisting of 21 items assessing depressive symptoms. Each item consists of 4 statements from which a subject must choose the one that best describes their feelings during the preceding week. Each item is scored from 0 to 3, with 3 indicating
the highest level of depressive symptoms. Item scores are then added to produce a total score. The BDI, rather than a child depression scale was selected as it is intended to follow-up the sample over a 5 year period and a measure was required that would be suitable for repeated measures across ages 12-18 years. Research involving the BDI with adolescents has shown internal consistency, factor structure, sensitivity and specificity for detecting depression to be comparable to results with adult samples (Bennett et al., 1997; Byrne, Baron, & Campbell, 1993; Roberts, Lewinsohn, & Seeley, 1991). Although most studies using the BDI with adolescents have focussed on the 15-18 year age range, studies have demonstrated strong psychometric properties of the BDI with adolescents aged 12 years and above (Barrera & Garrison-Jones, 1988; Bennett et al., 1997; Kauth & Zettle, 1990).

For the purposes of the present study, it was necessary to exclude the sexual activity item in order to gain ethics committee approval, due to the fear by some schools that the question would be regarded as inappropriate by parents. Second, the weight loss question was reworded and converted from pounds to kilograms for an Australian population. The internal consistency of the modified BDI was high (alpha=.88, N= 994).

Given that much of the research relating to cognitive diathesis-stress models has focussed on “hopelessness depression”, the results were analysed separately for the total BDI scores and the hopelessness depression items, as specified by Alloy and Clements (1998).
Problem Solving. The Social Problem-Solving Inventory-Revised Short Form (SPSI-R; D'Zurilla & Maydeu Olivares, 1995) was developed to assess both problem solving orientation and interpersonal problem solving skills. The SPSI-R short form is a 25-item self-report questionnaire on which participants are asked to rate how true each item is for them on a 5-point scale ranging from 0 (not at all true of me) to 4 (extremely true of me). Five sub-scales, each containing 5 items, are contained within the SPSI-R short form. These scales relate to positive problem solving orientation, negative problem solving orientation, and avoidant, impulsive and rationale problem solving styles. The variable of interest in the present study was negative problem solving orientation (NPSO), a factor that has been shown to be associated with depression and suicidal ideation in previous research (D'Zurilla et al., 1998; Sadowski & Kelly, 1993). A high score on the NPSO sub-scale indicates a dysfunctional or inhibitive cognitive-emotional set. Alpha internal consistency reliability estimates for the negative problem solving sub-scale has been found to be good (alpha = 0.83) and test-retest reliability to be good (.83) (D'Zurilla, Nezu, & Maydeu Olivares, in press). In the present study, coefficient alpha value for internal consistency of the NPSO sub-scale was .76.

Attributional Style. The Children's Attributional Style Questionnaire-Revised (CASQ-R; Seligman et al., 1984) was used to assess optimistic and pessimistic explanatory style at baseline and 12-month follow-up. The CASQ-R consists of 24 items with 6 sub-scales, allowing the determination of internal, stable and global scores for
both positive and negative events. Each item consists of a hypothetical event for which participants are required to choose the most likely explanation from a choice of two alternatives. Each sub-scale contains 4 items with scores ranging from 0 to 4. A composite positive event score (CP) is calculated by adding together the internal, stable, and global scores for positive events. Similarly, a composite negative event score (CN) is calculated by adding together the internal, stable, and global scores for negative events. An overall composite score for attributional style (AS) may also be calculated by subtracting the CN from the CP, with lower scores indicating a more depressive attributional style. The psychometric properties of the CASQ-R have been shown to be acceptable, but not strong, with moderate internal consistency and fair test-retest reliability (Thompson, Kaslow, Weiss, & Nolen Hoeksema, 1998). In the present study, scoring was based upon the composite score (AS). Scores on this scale range from -12 to +12. The lower the value of AS, the more depressogenic/pessimistic is the attributional style. The internal consistency of this measure was found be relatively weak (alpha coefficient .67, N=733), but consistent with the value reported by Thompson et al. (1998). Studies examining the moderating relationship of negative life events and attributional style in predicting depression have varied as to their use of the overall composite score of the CASQ or the negative generality score (stable and global scores for negative events) (e.g., Abramson et al., 1989 and Joiner, 2000). In the present study it was decided to use the overall
AS score as the internal consistency of the negative generality score was lower (.48, N=733) than that of the composite score.

Negative Life Events (Coddington, 1972). A modified version of the Life Events Record for junior high students was used at baseline and 12-month follow-up to assess the negative life events experienced by the young person during the preceding year. The scale examines the occurrence of 22 negative life events relating to family, school and relationship problems, major changes in life circumstances and self or other illness or injury, or bereavement. In addition, 2 blank spaces are available for students to record non-listed problem events that had occurred. Participants scored "1" if the event had occurred in the preceding year, and "0" if it had not. The present study scored only the 22 given events, with total negative life event (NLE) scores therefore ranging from 0 to 22.

Results

After conducting correlation analyses, the data were examined separately for cross-sectional and longitudinal sets, using linear hierarchical regression analyses.

Correlations Between Depression Scores and Predictor Variables

Table 1 shows the mean values, standard deviations and inter-correlations for depression scores and predictor variables. Baseline depression scores correlated significantly with NLE, AS and NPSO
(p<.001 in all instances). Thus, cross-sectionally, adolescents who reported higher levels of depressive symptoms were more likely to have experienced a greater number of negative life events over the previous year, to hold a pessimistic attributional style, and to have negative/unconstructive attitudes and beliefs relating to problem solving. Gender was also significantly associated with depression scores on both occasions, and with NPSO. Girls were more likely than boys to report higher depression and NPSO scores.

Insert Table 1 about here

Regression Analyses

Age was not included as a predictor variable as the sample was selected from a very restricted age range within one school grade level and SES was not included as a control variable as it was not significantly correlated with the dependent and independent variables. Gender was entered in the first step of each regression analysis, given that female gender has been shown to be a risk factor for depression in previous research (Lewinsohn, Hops, Roberts, Seeley, & Andrews, 1993). In addition, significant correlations were found in the present study between gender and both baseline and follow-up depression scores and negative problem solving orientation (see Table 1). Negative problem solving orientation (NPSO) was the component of problem solving of specific interest in the present study. Analyses involving the remaining problem solving subscales are not reported here and these
factors were not shown to be predictive of depression in the longitudinal analyses.

The data were analysed separately for “hopelessness” depression symptoms, non-hopelessness depression symptoms, and total depression scores. The results indicated minimal differences in findings across these subtypes of depression. Thus the results reported here use the total depression score. It is not surprising that minimal difference in outcome was found for these different indicators of depression, given the very high correlation between hopelessness, non-hopelessness and total depression scores. In the present study the correlation between hopelessness depression and total BDI score was .96, hopelessness depression and non-hopelessness items .74, and hopeless and non-hopelessness items .89 (N=733, p<.001 in all cases). The data were also examined using different methods of scoring the attributional style questionnaire. The findings did not differ according to the method of scoring (e.g., negative generality score vs. overall AS composite).

Cross-Sectional Regression Analyses

The results of the hierarchical regression analysis predicting baseline BDI scores are shown in Table 2. Gender was entered into the equation first. Subsequent steps entered the NLE score, followed by AS, NPSO and the interactions between NLE x AS, and NLE x NPSO. Interaction terms were calculated using the product of predictor variables centered around the mean (Aiken & West, 1991). The final equation explained 46% of variance in baseline BDI scores and was highly significant,
F(12,720) = 55.16, p<.001. Gender was a significant predictor at each step, with girls being more likely to report higher depression scores than boys. The NLE score in the past year was also a strong predictor of BDI scores. Attributional style had a significant direct relationship with depression scores, as did NPSO. The interaction between NLE x AS significantly predicted depression scores at Step 5. At Step 6, the interaction between NLE and NPSO also significantly predicted baseline depression symptoms. However when the interaction between NLE x NPSO was entered at Step 6, the interaction between NLE x AS ceased to be statistically significant. Beta values and significance levels are reported in Table 2.

Two and three way interaction terms involving gender were then examined. The two-way interactions between gender x NLE (beta=-.22, p<.01) and gender x AS (beta=.27, p<.01) were significant predictors of baseline depression. The interaction between gender x NPSO (beta=-.17, p=.07) and the three way interactions between gender x NLE x AS (beta=-.12, p=.19) and gender x NLE x NPSO (beta=-.02, p=.67) did not significantly predict depression scores.

Analyses were conducted separately for each gender to examine the nature of the significant interactions involving gender. The same variables significantly predicted depression scores for both boys and girls. The only differences between genders related to the percent of variance explained by these predictors. For girls, NLE scores were strongly associated with depression scores explaining 20% of the variance. For boys, NLE significantly predicted depression scores, but
the percent of variance explained was lower (10%). Similarly, for girls AS explained an additional 21% of the variance in depression scores, whereas for boys AS, although still a significant predictor, explained a lower percent of variance (12%). In other respects, the pattern of results was similar for males and females, although the total percentage of variance in depression scores explained by the combined predictor variables was higher for girls (55%) than for boys (39%).

Insert Table 2 about here

In order to interpret the significant interaction effects of NLE x AS and of NLE x NPSO in predicting baseline depression scores, these effects were examined graphically. First, depression scores were computed by inserting specific values of NLE and AS (1 SD above and 1 SD below the mean) into the regression equation as outlined by Cohen and Cohen (1983) and Aiken and West (1991). Figure 1 shows the interaction between AS and NLE in the prediction of depression scores. Cross-sectionally, high baseline levels of depressive symptoms were associated with a combination of high NLE and pessimistic AS. A high level of NLE was not associated with high depression if the young person showed optimistic AS. Similarly, a pessimistic AS, in the absence of high NLE, was not associated with high levels of depression. Second, this procedure was repeated for the interaction between NLE x NPSO, and revealed that high baseline levels of depressive symptoms were associated with a combination of high NLE and high NPSO, as shown
in Figure 2. A high level of NLE was not associated with high depression if the young person showed low NPSO. Similarly, high NPSO, in the absence of high NLE, was not associated with high levels of depression. This pattern of results is consistent with a cognitive diathesis-stress model, in which negative problem solving orientation and pessimistic attributional style are proposed to be diatheses in the presence of high negative life events in the development of depression.

Comparison of Retained versus Drop-outs from the Study at 1-year Follow-up

It was important to determine whether those individuals who participated in the study and completed the 1-year follow-up were representative of the original sample. Those who remained in the study (N=733) were compared on baseline variables with those who had dropped out of the study by 1-year follow-up (N=261). Multivariate analysis of variance revealed a significant difference between groups, Pillais $F(9,983) = 5.32, p<.001$. Those who dropped out of the study reported significantly higher baseline depression scores and more negative life events, compared to those who remained in the study. Groups did not differ statistically in terms of SES, attributional style or negative problem solving orientation.

Longitudinal Analyses
A true test of the cognitive-diathesis-stress model of depression must demonstrate that the interaction between negative life events and a cognitive diathesis predicts future changes in depressive symptoms. Longitudinal, hierarchical linear regression analyses were conducted using a residual change score method as outlined by Steketee and Chambless (1992). Depression scores at 1-year follow-up were predicted by gender at Step 1 and pre-test depression scores at Step 2, followed by predictor variables as outlined in Table 3.

The total equation was statistically significant, $F(8,720)=38.80$, $p<.001$, explaining 30% of variance in depression scores at 1-year follow-up. As can be seen from Table 3, baseline depression scores strongly predicted depression 1-year later, accounting for 16% of the variance in scores. Negative life events during the intervening year also significantly predicted depression scores at 1-year follow-up, explaining 8% of variance in depression scores at follow-up. Attributional style at baseline was found to show a direct effect upon depression scores 1-year later (controlling for baseline depression), accounting for around 1.3% of unique variance in future depression scores. Negative problem solving orientation at baseline also significantly predicted change in depression scores, explaining a further 1.4% of variance. The interaction between NLE and AS was not a significant predictor of future depression scores. In the final step, the interaction between NLE and NPSO was found to be a significant predictor of change in depression scores, but explained a very small fraction of variance as shown in Table 3.
Gender interaction effects were then examined. No significant effects were evident for the two-way interactions of NLE x gender (beta=-.04, p=.71), AS x gender (beta=-.00, p=.98), or NPO x gender (beta=-.03, p=.77) in the prediction of depression at follow-up (controlling for baseline depression). When three way interactions involving gender were examined, a significant effect was found for the interaction of NLE x AS x gender in predicting depression scores at 1-year follow-up (beta=.08, p<.05). The step examining three way interactions between NLE x NPSO x gender was not statistically significant (beta=-.18, p=.10). When the genders were examined separately, however, the interaction between NLE x AS did not significantly predict future depression for either boys or girls. Thus, this interaction was not examined further. The absence of a significant interaction between NLE and AS in the prediction of changes in depression scores for both boys and girls, and the combined samples, was not consistent with the cognitive-diathesis-stress model. Rather, the significant direct effect of AS showed that individuals who held a pessimistic attributional style at baseline were more likely to report increases in depression scores at 1-year follow-up, irrespective of the number of negative life events experienced by the young person.

Given that the interaction between NLE and NPSO did not interact with gender in the prediction of depression scores, the significant
interaction effect for NLE x NPSO was interpreted for boys and girls combined. Interpretation was conducted using residual change scores (see Cohen & Cohen, 1983; Steketee & Chambless, 1992). Pre-test depression scores were entered into the prediction equation before the predictors of interest, in the prediction of depression scores at 12-month follow-up. Residual change in depression scores were then computed by inserting specific values of negative life events over the 1-year follow-up and pre-test attributional style and negative problem solving orientation (i.e., 1SD above and 1 SD below the mean) into the regression equation predicting BDI changes. Further details regarding this procedure can be found in Joiner (2000) and Hilsman and Garber (1995).

Residual change in depression scores for high versus low levels of negative problem solving orientation and high versus low number of negative life events are shown in Figure 3. Consistent with a cognitive diathesis-stress model, a combination of high NLE and high NPSO was associated with strong increases in depression over the 1-year follow-up. High NPSO in the absence of high NLE was not associated with increases in depressive symptoms. Indeed, low NLE over the 1-year follow-up period predicted reductions in depression symptoms, irrespective of NPSO. Similarly, a high level of NLE accompanied by low NPSO was not associated with increases in depression over time.
Onset or Exacerbation of Depressive Symptoms?

In line with procedures recommended by Joiner (1994; 2000), the data were examined to determine whether the significant predictive relationships apply equally to the onset, exacerbation, or remission of depression. These relations were examined by determining whether baseline depression scores (the covariate) interacted with any predictor variables in the prediction of follow-up depression scores. If baseline depression scores interact significantly with other predictors to predict depression at follow-up, then this suggests that the predictors have their influence only at certain levels of initial depression. For example, if the predictors are only significant at low levels of depression, then this suggests that they only influence the initial development of depression, rather than symptom exacerbation or remission. Thus a regression analysis was conducted to predict depression scores at 12 months from baseline depression score, NLE, AS, NPSO and the interaction between these predictors and baseline depression scores. The interaction terms were not statistically significant in the prediction of follow-up depression scores (NLE x baseline depression, beta= .04, p=.28; AS x baseline depression, beta= -.05, p=.24; NPSO x baseline depression, beta =.001, p=.97). Thus, it can be concluded that the significant predictive effects have their influence upon changes in depression, irrespective of initial levels of depression and the effects are equally relevant to the onset, and change (exacerbation or remission) of depressive symptoms.
Discussion

This study examined the role of environmental stressors and individual characteristics of attributional style and life problem solving skills in the development of depressive symptoms among young adolescents. Specifically, the study examined a cognitive diathesis-stress model of the development of depression in which it was proposed that depressogenic attributional style and negative problem solving orientation (the cognitive diatheses) are variables that operate in the presence, but not absence, of negative life events (the stress) to influence the development of depressive symptoms (Abramson, Metalsky, & Alloy, 1989).

Both the cross-sectional and longitudinal results provided support for a cognitive-diathesis-stress model of depression involving negative problem solving orientation as a diathesis. A negative problem solving orientation in combination with a high number of negative life events was associated with higher levels of depression in the present and increases in depression in the future. Negative problem solving orientation on its own, in the absence of a high level of negative life events was not associated with elevated depression scores cross-sectionally, nor increases in depression longitudinally. Similarly, a high number of negative life events in the absence of a negative problem solving orientation was not associated with increasing levels of depression over time.
Although the interaction between attributional style and negative life events was found to predict current depression levels, contrary to predictions this interaction did not predict future change in depression scores. Rather, attributional style had a direct effect in predicting future increases in depression, explaining a small, but significant percent of variance in changes in depression scores. Adolescents who held a pessimistic attributional style were more likely to report higher levels of depression and were at greater risk of showing increases in depression over the 1-year follow-up, irrespective of level of negative life events. This finding is consistent with the conclusions of a meta-analytic review of the literature reported by Joiner & Wagner (1995).

It is interesting to discuss the present findings in relation to other research in this area. Joiner (2000) noted the conflicting results emerging from studies examining the cognitive-diathesis-stress model of depression with children and adolescents. The findings of the present study, with respect to attributional style, are inconsistent with the results of Joiner (2000), who found attributional style moderated the relationship between negative life events and future depression in a clinical sample. Similarly, Hilsman and Garber (1995) provided supportive evidence for the model in that depressive symptoms 5 days later were predicted by the interaction between negative attributional style and occurrence of an academic stressor, even after controlling for initial depression scores. As mentioned in the introduction, however, other studies have produced results that do not
support a cognitive-diathesis-stress model involving attributional style. Given the marked variation in methodology used across different studies, such as sample size, sample characteristics (age, clinical versus community samples), duration of follow-up, brief versus persistent stressors, and measures used to assess cognitive styles and life events, it is perhaps not surprising to find such variation in results. Alloy, Abramson, Metalsky, and Hartlage (1988) also noted that the relatively low base-rates of depression, negative attributional style and negative life events in the sample may make it difficult to examine cognitive-diathesis-stress effects in the development of depression. However, the finding of a significant effect for the interaction between negative problem solving orientation and negative life events mitigates against low base rates as a likely explanation for the failure to find a significant moderating effect for attributional style and negative life events in the prediction of depression. It must also be pointed out that failure to find support for the cognitive-diathesis-stress role of attributional style cannot be attributed to the focus on total depression scores, rather than the hopelessness depression cluster of symptoms. No differences in findings were evident if the hopelessness depression symptoms were examined separately.

There are several methodological issues that should be considered when interpreting the present findings. For example, the study relied upon self-reports of the young person, leaving open the possibilities of common method variance and reporter bias. It would be preferable in
future research to include information from parents or teachers in the assessment of depression.

The representativeness of the community sample should also be considered. As with any community study requiring written informed consent from adolescents and parents, those returning their consent forms may not be representative of the total school population. The ethics approval process did not permit collection of data regarding individuals who did not provide written, informed consent. Thus, it is not possible to determine whether participants were different from those who declined to participate, in terms of psychosocial variables. There is also an issue of drop-out over time. Comparison of drop-outs with those remaining in the study at 1-year follow-up indicated that drop-outs tended to have significantly higher depression scores, experienced more negative life events, had lower school performance and weaker relationships with family and peers. Clearly, these young people are at greater risk of developing depression over time and yet are no longer in the sample at follow-up. On a related point, it is not clear whether the results of the present study can be generalized to older adolescents. This is an important issue given that the rate of emergence of depression increases in later adolescence. Future research should focus on examining the cognitive-diathesis-stress model of depression in this older age group.

A further methodological issue concerns the measures used in the present study. In order to obtain ethical approval it was necessary to drop the loss of interest in sex question from the BDI and to make
minor wording changes for the Australian sample (pounds to kilograms). Although such changes may have produced minor variation in the psychometric properties of the measure in relation to other studies, the scale retained high internal consistency. A further limitation was the use of the 24-item version of the CASQ to assess attributional style, whereas Joiner (2000) and Hilsman and Garber (1995) used the 48-item form. Such differences in measurement could potentially explain the apparent variation in findings across studies. The internal consistency of the 24-item CASQ used in the present study, although in keeping with the findings of Thompson et al. (1998), was weak and may have limited the potential to find moderating effects of attributional style. Similarly, questions may be raised regarding the most appropriate method of assessing the occurrence of negative life events. The present study asked students to recall the occurrence of adverse life events over the previous year from a list of 22 events. This method does not allow determination of the exact timing of events in relation to the occurrence of changes in depressive symptoms. In order to provide a more rigorous examination of acute stressors and their impact upon depressive symptoms it would be valuable to examine more extensive time series data in future studies. This would clarify whether recent increases in depressive symptoms are truly a consequence of recent negative life events, in interaction with a cognitive-diathesis, or are simply an outcome of chronic social adversities.

Nevertheless, the finding that negative problem solving orientation may represent a cognitive diathesis, interacting with
negative life events to increase the risk of developing symptoms of depression is an interesting one. There are various theoretical interpretations that may explain this finding. d’Zurilla et al. (1998) stressed the importance of cognitive and emotional components of problem solving, particularly with regard to a person’s appraisals, beliefs and expectancies relating to the occurrence of problems and his/her ability to solve them. These authors also discuss the self-efficacy component of problem solving orientation and the association between hopelessness and low self-efficacy expectations for problem solving. A negative problem solving orientation could also be hypothesized to fit within the hopelessness theory of depression. In their early paper outlining the hopelessness theory of depression, Abramson et al. (1989) proposed a range of attributions, inferences and expectancies relating to the occurrence of a negative life event that are suggested to lead to hopelessness and thereby to hopelessness depression. These variables include inferences relating to negative consequences of the negative life event and negative characteristics about the self, given the negative life event. Variables such as low self-efficacy or low self-confidence expectations for problem solving could fit within this model. Unfortunately, the present study did not include a measure of hopelessness in order to examine the mediating role of hopelessness in the development of depressive symptoms. However, problem solving self-confidence was significantly related to hopelessness in a study reported by Dixon, Heppner, and Anderson (1991) with college students.
The construct of negative problem solving orientation also included items relating to negative emotions (feeling unsure, frustrated, and upset) in the presence of problems. It is not clear how this component of negative problem solving orientation might impact upon the development of depression. Given that baseline depression levels were controlled for in the regression analyses, it is unlikely that the effect of negative problem solving orientation is purely a reflection of negative affectivity in the presence of problems.

The present study was also limited in that it restricted the investigation to depressive symptoms. Therefore conclusions cannot be drawn as to the specificity of the findings in relation to depression versus other forms of psychopathology, such as anxiety. In line with Joiner (2000), it would be valuable in future studies to examine whether the cognitive-diathesis-stress effect of negative problem solving orientation is specific to depression or is also relevant in the development of anxiety and externalizing problems. In retrospect, it would have been preferable to obtain diagnostic information about different disorders, in order to address the issue of symptom specificity.

In summary, a pessimistic explanatory style that attributes negative events to internal, stable and global causes and positive events to external, unstable and specific causes, was found to predict future increases in depressive symptoms over a 1-year period, even after controlling for baseline levels of depression. This effect occurred irrespective of the level of negative life events and the
findings did not support the proposition that attributional style acts as a cognitive-diathesis in interaction with life stressors in the development of depression. In contrast, support was found for a cognitive-diathesis-stress role of negative problem solving orientation. In the presence, but not absence, of a high number of negative life events, negative problem solving orientation predicted high current levels of depression and future increases in depression by 1-year follow-up. The findings are consistent with a cognitive vulnerability model of depression in adolescence and have implications for preventive interventions. The results suggest that, in addition to enhancing attributional style, it is important that attention is paid to problem solving orientation as a component of programs designed to prevent depression in young people.
References

Adams, J., & Adams, M. (1996). The association among negative life events, perceived problem solving alternatives, depression, and

Figure Caption

Figure 1. Depression scores as a function of Attributional Style X Negative Life Events interaction.

Figure 2. Depression scores as a function of the Negative Problem Solving Orientation X Negative Life Events interaction.
Figure 3. Residual Change for Depression scores as a function of the Negative Problem Solving Orientation X Negative Life Events interaction.
Table 1.

Correlations between depression scores at baseline and 1-year follow-up and predictor variables.

<table>
<thead>
<tr>
<th></th>
<th>Gender</th>
<th>SES</th>
<th>BDI T1</th>
<th>BDI 1yr</th>
<th>NLE T1</th>
<th>NLE 1yr</th>
<th>AS T1</th>
<th>NPSO T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>.15***</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDI T1</td>
<td>.22***</td>
<td>.10</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDI 1yr</td>
<td>.17***</td>
<td>.09</td>
<td>.43***</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLE T1</td>
<td>.03</td>
<td>.03</td>
<td>.37***</td>
<td>.24***</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLE 1yr</td>
<td>.12</td>
<td>.12</td>
<td>.28***</td>
<td>.39***</td>
<td>.47***</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS T1</td>
<td>.02</td>
<td>-.10</td>
<td>-.46***</td>
<td>-.30***</td>
<td>-.17***</td>
<td>-.15***</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>NPSO T1</td>
<td>.18***</td>
<td>.09</td>
<td>.50***</td>
<td>.34***</td>
<td>.20***</td>
<td>.17***</td>
<td>.22***</td>
<td>1.00</td>
</tr>
<tr>
<td>Mean</td>
<td>3.89</td>
<td>7.07</td>
<td>7.31</td>
<td>3.97</td>
<td>3.43</td>
<td>1.97</td>
<td>6.38</td>
<td></td>
</tr>
<tr>
<td>(S.D.)</td>
<td>(2.32)</td>
<td>(7.22)</td>
<td>(8.15)</td>
<td>(2.97)</td>
<td>(3.01)</td>
<td>(1.47)</td>
<td>(3.75)</td>
<td></td>
</tr>
</tbody>
</table>

Note: SES= Socioeconomic Status; NLE= Negative Life Events; AS= Attributional Style; NPSO= Negative Problem Solving Orientation.

***p<.001, 2 tailed (733)
Table 2.

Standardized Beta Values for Cross-sectional Hierarchical Regression Analysis Examining Predictors of Depression

Symptoms at Baseline

<table>
<thead>
<tr>
<th>STEPS</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
<th>Step 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance of step</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>R² Change</td>
<td>.05</td>
<td>.13</td>
<td>.17</td>
<td>.09</td>
<td>.01</td>
<td>.02</td>
</tr>
<tr>
<td>Gender</td>
<td>.21***</td>
<td>.20***</td>
<td>.21***</td>
<td>.15***</td>
<td>.15***</td>
<td>.15***</td>
</tr>
<tr>
<td>NLE</td>
<td>.36***</td>
<td>.29***</td>
<td>.24***</td>
<td>.24***</td>
<td>.23***</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>-.41***</td>
<td>-.32***</td>
<td>-.32***</td>
<td>-.32***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPSO</td>
<td>.32***</td>
<td>.32***</td>
<td>.29***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLE x AS</td>
<td>-.08</td>
<td>-.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLE x NPSO</td>
<td></td>
<td>.15***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: SES= Socioeconomic Status; NLE= Negative Life Events; AS= Attributional Style; NPSO= Negative Problem Solving Orientation.

Cumulative $R^2 = .46$, $F(6, 726)=100.85$, $p<.001$

* $p<.05$; ** $p<.01$; *** $p<.001$
Table 3.

Standardized Beta Values for Longitudinal Hierarchical Regression Analysis Examining Predictors of Depression Symptoms at 1-year Follow-up.

<table>
<thead>
<tr>
<th></th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
<th>Step 6</th>
<th>Step 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance of step</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>R² Change</td>
<td>.03</td>
<td>.16</td>
<td>.08</td>
<td>.013</td>
<td>.014</td>
<td>.003</td>
<td>.004</td>
</tr>
<tr>
<td>Gender</td>
<td>.17***</td>
<td>.08*</td>
<td>.06</td>
<td>.08*</td>
<td>.06</td>
<td>.06</td>
<td>.07</td>
</tr>
<tr>
<td>Baseline (T1) BDI</td>
<td>.41***</td>
<td>.33***</td>
<td>.27***</td>
<td>.21***</td>
<td>.21***</td>
<td>.20***</td>
<td></td>
</tr>
<tr>
<td>NLE 1 year</td>
<td>.29***</td>
<td>.29***</td>
<td>.29***</td>
<td>.28***</td>
<td>.27***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS T1</td>
<td>-.13***</td>
<td>-.11**</td>
<td>-.11**</td>
<td>-.12***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPSO T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLE 1yr x AS T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLE 1yr x NPSO T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.07*</td>
</tr>
</tbody>
</table>

Note: SES= Socioeconomic Status; NLE= Negative Life Events; AS= Attributional Style; NPSO= Negative Problem Solving Orientation.

Cumulative $R^2 = .30$, $F (7,721)=44.40$, $p<.001$

* $p<.05$; ** $p<.01$; *** $p<.001$