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ANALYSIS OF RAIL FAILURE DATA FOR DEVELOPING PREDICTIVE MODELS AND 

ESTIMATION OF MODEL PARAMETERS 

Chattopadhyay G a and Rahman A b,  

a,b School of Engineering Systems, Queensland University of Technology, 2 George Street, P.O Box 2434, Brisbane, QLD 

4001, AUSTRALIA 

Servicing strategy of a rail network is developed by understanding reliability of rails used in the rail track 

system. Reliability analysis of rails can be carried out by understanding the failure mechanism of rail 

through modelling and analysis of failure data. These failure data are time or usage dependent for certain 

conditions. In a probabilistic sense, rail failure is a function of its usage in terms of Million Gross Tones 

(MGT) for certain conditions. This paper is to analyse real life rail industry data, deal with the limitations 

of available data and develop predictive models for maintenance and replacement decisions. Parameters 

of the model are estimated using real world data with an application of non-homogeneous Poisson process.  
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1 INTRODUCTION 

Rails play a significant role in transporting goods and passengers. In Australia, railway transport industry contributes 1.6% 

of GDP with goods and services worth $AUD 8 billion each year which includes $ AUD 0.5 billion per year in exports [1]. 

Maintenance or servicing of rail track plays an important role in the reliability and safety since failure of track in operation is 

costly due to loss of service, properties, and loss of lives. Current trend is to contract out the maintenance and servicing actions 

of rail track to outside agencies rather than performing in-house maintenance [2], [3]. Servicing of such complex system which 

includes inspection, planned or preventive maintenance (PM) and corrective maintenance actions incurs huge cost. Therefore, 

before signing in contracts the infrastructure providers need to estimate costs of such contracts and analyse benefits out of it.  

In a probabilistic sense, failure due to degradation Million Gross Tones (MGT) for certain conditions [4]. This paper 

analyses real life data for predictive models and replacement decisions. Parameters of the model are estimated. A decision 

model is proposed for developing service contracts useful for outsourcing.  

Outline of this paper is as follows: Section 1 provides the introduction with scope and outline of this paper. Section 2 

defines rail degradation process in brief. Probabilistic failure models are developed in Section 3. Overview of failure and costs 

models for service contract is described in Section 4. Section 5 analyses data to estimate parameters. In the final section 

contribution of this paper is discussed along with scope for future work. 

2 DEGRADATION OR FAILURE OF RAIL TRACK 

Degradation or failure of rail track is a complex process and it depends on the rail materials, traffic density, speed, curve 

radius, axle loads, Million Gross Tonnes (MGT), wheel rail contact, rail track geometries and importantly the servicing 

strategies. The rail profile and curves make large contributions to rail degradation. Rail tracks are designed to reduce the 

contact stresses and the twisting effect of the wheel load. Wheel loads produce bending moment and shear forces in the rail 

causing longitudinal compressive and tensile stresses concentrated mainly in the head and foot of the rail and shear stresses in 

the web.  

Corrosion and surface cracks have significant influence on the rail brakes. Traffic wear, rolling contact and plastic 

deformation are the growing problems (For details see [5]). To predict the rail failures and decide on maintenance strategies for 

rail track it is necessary to model the degradation/failures and associated costs related to maintenance actions of rail.  
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3      FAILURE MODELLING 

Ageing takes place in the line due to tonnage accumulation on track resulting from traffic movement leading to defect. It is 

realistic to assume that initiated defects left in the system will continue to grow with increase in cumulative MGT. Rail 

failures/breaks can be modelled as a point process with an intensity function (m) where m represents Millions of Gross 

Tonnes (MGT) and (m) is an increasing function of m indicating that the number of failures in a statistical sense increases 

with MGT. That means older rails with higher cumulative MGT passed through the section is expected to have more 

probability of initiating defects and if undetected then through further passing of traffic can lead to rail failures. As a result, the 

number of failures till an accumulated MGT is a function of usage MGT, m, and is a random variable and can be modelled 

using Weibull distribution [6]. Let cumulative MGT of rail, m, be known and F(m)  and f(m)denote the cumulative rail failure 

distribution and density function respectively,  

f(m) = dF(m)/dm.                                                                         (1) 

Here we have,  

   mmPmF  1  where m1 is the MGT to rail failure               (2) 

This can be modelled as Weibull distribution given by: 

))(exp(1)( mmF                               (3) 

And from equation 1 

  ))(exp()( 1   mmmf  
                 (4) 

with the parameters  (Known as shape parameter of the distribution) > 1 and  

 (Known as inverse of characteristic function for the distribution)> 0 

 greater than 1 indicates an increasing failure rate of the item under study and ageing is predominant in failure mechanism. 

Then failure intensity function (m) is derived from (1) and 2 is given by 
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Rail track is normally made operational through repair or rectification of the failed segment and no action is taken with 

regards to the remaining length of the rail in case of detected defects and rail breaks. Since the length of failed segment 

replaced at each failure is very small relative to the whole track, the rectification action having negligible impact on the failure 

rate of the track as a whole [7]. Based on these rail failure/break models, in the following sections we discuss the potential 

servicing strategies of outsourcing rail network and we also propose servicing strategies and cost models for those service 

contracts. 

4      MODELS FOR PREDICTED FAILURES AND COST OF SERVICE CONTRACT FOR RAIL 

Tables and illustrations should be arranged throughout the text and it is preferable to include them on the same page as they 

are first discussed. They should have a self-contained caption and be positioned in flush-left alignment with the text margin. 

For modelling purpose, we consider one segment in considered to be rail of 110 meter long. Here, we view planned grinding 

and lubrication activities as preventive maintenance for rail and repair and replacement of the cracked or broken portion/s of 

rail segment as minimal repair action since the repair replacement of such small part can not improve the overall reliability of 

the rail. The three defined policies of service contracts modelled by Rahman and Chattopadhyay [8] are used here to determine 

the costs of service contracts for rail. Policy S1: Short-term Service Contract: here the expected life of rail is longer than the 

contract period and the contract period L is prefixed. This policy assumes that no replacement is necessary during the contract 

period which implies that R > L.  
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where L and R are the contract period and the first replacement (renewal) of rail due to complete failure respectively (See 

figure 1). Rahman and Chattopadhyay [8] proposed a cost model for policy S1 which is expressed as follows 

Here, preventive maintenance actions are taken at constant interval x, which restores the reliability of the system to some 

extent and it is constant for each PM. In case of rail, preventive maintenance actions are mostly rail grindings and lubrications. 

In between two successive PM there may be a number of minimal repairs that can not improve the reliability significantly. 

Examples of minimal repair action are replacing a small damaged portion of rail segment or welding the cracks etc. The 

following notations were used in their model 

N:  number of times the planned grinding and lubrication are performed during the  contract period. 

k: number of times PM is carried up to an MGT m  

τ age restoration after each PM.  = x, where,   is the quality of the maintenance,  ranges from 0 to 1. 

When  = 1 signifies– „as good as new” and  = 0 is „as bad as old‟. 

Cmr  cost for each minimal repairs 

Cpm   cost for each PM 

Hazard rate hpm(m) can be expressed as 

hpm(m) = h(m - k)                                     (6) 

where,  

hpm(m):   hazard rate at accumulated MGT, m, with maintenance. 

h(m): original hazard rate at m when no maintenance is performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Graphical representation of the model S1 

Legends  

 reliability of restoration in MGT 

h(m)       failure rate distribution when there is no maintenance 

h1(m) failure rate distribution after 1st PM 

h2(m) failure rate distribution after 2nd PM 

                                                   h3(m) failure rate distribution after 3rd PM 
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For this type of service contract, the total expected cost per unit time C(L,x, Ni,) can therefore be expressed as 

Total expected cost of minimal repair + total expected cost of planned PM over the contract period. 

Expected total cost of all minimal repairs over the contract period can be given by   

  
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Now substituting equation 6 in equation 2, expected total cost of minimal repair can be given by 
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When failures are modelled as per Weibull distribution then, the failure rate is given by: 

  1   mmh                    (9)  

Therefore, from eqn.. 9 and eqn. 8,  

Expected cost of minimal repair  
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where, τ =α× x, where, α is the quality of PM . 

Expected cost of preventive maintenance during the contract 

    pmCN                                         (11) 

The total expected cost per unit time C(L,x, Ni,) can therefore be expressed as 

 

                                  (12) 

Where, λ and β are the Weibull parameters 

5      ANALYSIS OF RAIL DATA 

The table 1 represents 208 rail break data in Million gross tonnes (MGT)   obtained from the Sweden. The failure or 

breakage MGT in the analysis is generated as follows: Usage span is considered as 720 MGT. A plot of the accumulated 

number of rail break versus the accumulated breakage MGT is displayed in the figure 2. The plotted data indicates the usage 

dependent failure or breaks.  

 

       

















 




NCkkkkxC
L

NxLC pm

N

k

mr

1

0

1
1

,,
 



 

WCEAM 2006 Paper 057 Page 5 

Table 1 

Rail breaks in Million gross tonnes (MGT) 

     

46 92 115 115 161 161 161 184 184 184 184 

1

84 

184 184 184 184 207 207 207 207 207 207 230 

2

30 

230 230 230 230 230 230 253 253 253 253 253 

2

53 

253 253 253 253 253 253 253 253 253 253 253 

2

76 

276 276 276 276 276 276 276 276 276 276 276 

2

76 

276 276 276 276 276 276 276 276 276 276 276 

2

76 

276 299 299 299 299 299 299 299 299 299 299 

2

99 

299 299 299 299 299 299 299 299 299 299 299 

2

99 

299 299 299 299 299 299 299 299 299 299 299 

3

22 

322 322 322 322 322 322 322 322 322 322 322 

3

22 

322 322 322 322 322 322 322 322 322 322 322 

3

22 

322 322 345 345 345 345 345 345 345 345 345 

3

45 

345 345 345 345 345 345 368 368 368 368 368 

3

68 

368 368 368 368 368 391 437 460 460 483 483 

4

83 

506 506 506 506 506 506 529 529 529 529 529 

5

29 

529 529 529 552 552 552 552 575 575 575 575 

5

75 

575 575 575 575 575 575 575 598 667 667 667 

6

67 

667 690 690 713 - - - - - - - - 
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Figure 2: Cumulated Rail break vs accumulated MGT. 

 

 

 

5.1 Parameter estimation 

Some of the common methods used in estimating parameters are: method of Least square, method of Moments, and method 

of Maximum likelihood. However, non-parametric analysis is applied if the data requires.  Suzuki [9] proposed parametric and 

non parametric methods of estimating lifetime distribution from field failure data with supplementary information about 

censoring times.  

We apply the method of Maximum Likelihood (MLE) here to estimate the parameters λ and β. 

Let   

m   MGT of rail at its ith failure  

r  number of failures over contract period 

S observation period in terms of usage (MGT). 

and  

0< m1 < m2…….< S 

This implies that there is no failure in (0, m1] , one failure in (m1, m1 + m1], one failure in (m2, m2 + m2] for small time 

intervals of m1, m2. Suppose failures occur independently and according to a non-homogeneous Poisson process with 

intensity function (m). 

 Prob.{no failures in (0,  m1]} =  
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 Prob.{one of failures in (m1, m1 + m1]} =   mm 1  
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 Prob.{no failures in (m1 + m1, m2,,] } =  
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 Prob.{one of failures in (m2, m2 + m2]} =   mm 2  

The probabilities for other failures can be derived similarly. As a result, the likelihood function for failures the product to 

occur is (Crowder et al 1991)  
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Let l() be the log transformation of the likelihood function 
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Where  is the model parameter for set (, ).  

For Non-Homogeneous Poisson Process (Power Law Process) (m) is given by: 

1)(  m     Then,  
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The maximum likelihood estimates are the values of the parameters that maximise the log likelihood function. These are 

given by the solution to the following equations (obtained from the first order necessary condition for maximisation): 

 
0
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 and        
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From equation (11) and equation (12) we obtain the estimators ̂  and ̂  as follows 
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and,  

                               (17) 

 

 

Now the parameters λ and β of the given data can be estimated by using the expressions in MATLAB 7.0. From figure 3,  

we get  λ = 0.00259 per MGT and β = 2.789 at 95% confidence interval. 
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Figure 3: Analysis rail failure data 

 

5.2 Application of collected data in determining the service contract 

In this section estimated parameters are used in determining the cost of service contract for three different policies.  

Here  = 2.789 and  = .00259 per MGT.  

Let, 

Cost of minimal repair, Cmr = $1500 

Cost of each preventive maintenance (rail grinding and Lubrication), Cpm = $2000 

Cost of replacement, Cre = $10000 

Quality of each PM, α = .9 

Let Contracted usage in MGT , L = 600 MGT. 

This gives us the following results 

Optimal interval between preventive maintenance x* = 300 MGT 

Optimal number of PMs N* = 1 

Expected total cost of Service Contract C*(L,x,N)= $3706 per segment over the contract period.  

This implies that for short term contract with the presented rail failure distribution, each segment needs at least one 

preventive grinding and lubrication at maximum interval of 300 MGT but for long-term contract there may be a number of 

preventive maintenance (rail grinding and lubrication to get a reliable long service. However the actual total costs can be 

varied based on the grinding process and lubricants to be used during the contract period. 

6      CONCLUSIONS 

In this paper, cost model is developed for long-term service contracts. Here, real life failure data is collected and 

analysed.  Parameters were estimated and applied to analyse cost for developing the model. Total costs of servicing strategies 

and cost per unit of service provided can be considered for managerial decisions. This model is applicable to outsourcing rail 

maintenance.  There is huge scope for  

I) Developing integrated decision model for Longterm service contracts applicable to rail and other asset intensive 

industries. 

II) Development of penalty rates for train operators and infrastructure providers not complying with maintenance 

standards. 

Authors are currently working in those areas and results will be published in the future 

β = 2.789 

λ= .00259 

η = 389 

95% CI 
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