Inhibition of carbonic anhydrase isozymes with benzene sulfonamides incorporating thio, sulfinyl and sulfonyl glycoside moieties

Author
Singer, Mathilde, Lopez, Marie, Bornaghi, Laurent, Innocenti, Alessio, Vullo, Daniela, T. Supuran, Claudiu, Poulsen, Sally-Ann

Published
2009

Journal Title
Bioorganic and Medicinal Chemistry Letters

DOI
https://doi.org/10.1016/j.bmcl.2009.02.086

Copyright Statement
Copyright 2009 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.

Downloaded from
http://hdl.handle.net/10072/29582

Link to published version
Abstract—A series of benzene sulfonamides incorporating thio, sulfinyl or sulfonyl glycoside moieties were synthesized. These glycoconjugates were investigated for their ability to inhibit the enzymatic activity of four human carbonic anhydrases (hCA): isozymes I, II and tumour-associated isozymes IX and XII. The oxidation state of the sulfur in the carbohydrate tail moiety did not influence either enzyme inhibition potency or isozyme selectivity even though presenting opportunities for differing interactions with the target isozymes.

Carbonic anhydrases (CA, EC 4.2.1.1) are ubiquitous zinc metalloenzymes spread across the phylogenetic tree. There are 16 different CA isozymes presently known in mammals. These enzymes catalyze a simple, yet critical, reaction: the reversible hydration of carbon dioxide to bicarbonate anion and a proton i.e. \(\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{HCO}_3^- + \text{H}^+ \). Hydration does not proceed appreciably under physiological conditions in the absence of CA. The \(\text{Zn}^{2+} \) core of CA serves an essential function: it is a strong Lewis acid that binds to and activates the hydrating water molecule. CA facilitates deprotonation of water to generate the strongly basic hydroxide anion (OH\(^-\)) under physiological conditions. Hydroxide anion is the reactive species in the hydration of \(\text{CO}_2 \) leading to formation and release of \(\text{HCO}_3^- \). The components of this reaction are known to regulate a broad range of physiological functions and clinical modulation of CA activity by inhibitors has proven a reliable treatment for a range of human disease states.¹

There are two known cancer-associated CA isozymes for which elevated gene expression levels are found in a broad spectrum of solid hypoxic tumour types, these are isozymes IX and XII.²⁻⁶ Aromatic sulfonamide compounds are the classical CA inhibitors and compounds with this structural motif have been shown to reverse or suppress the effects mediated by the cancer-associated CAs: namely tumour acidification, cancer cell growth and tumour invasion.¹⁻³ Isozymes CA IX and XII also share a spatial localization that distinguishes them from the physiologically dominant CA I and II. CA IX and XII are transmembrane proteins that orient their CA catalytic domain extracellularly, while isozymes I and II are soluble proteins located within the cytosol. The development of CA inhibitors with an impaired ability to diffuse through lipid membranes is one possible and attractive means by which to selectively target cancer associated CA isozymes.⁷ Recently our group has demonstrated that by “click-tailing” sugar moieties to the classic high-

¹Corresponding Authors. E-mail addresses: s.poulsen@griffith.edu.au (S.-A. Poulsen); claudiu.supuran@unifi.it (C.T. Supuran).
affinity aromatic sulfonamide pharmacophore (ArSO2NH2) - we were able to deliver glycoconjugate sulfonamide inhibitors that were potent and selective towards the CA isozyme IX in vitro.8-11 We have reported the synthesis and CA inhibition properties for a series of benzene sulfonamides containing triazole-O-glycoside tails.9 The replacement of the naturally occurring O-glycosidic linkages by S-glycosides is an approach practiced in the synthesis of carbohydrate containing compounds as an avenue to enhance the stability of the glycosidic linkage towards enzymatic hydrolysis whilst retaining vital molecular recognition interactions with biological targets.12-15 There is an increasing awareness of the biological importance of thioglycosides owing to these favourable attributes and several are in clinical use.12-15 Herein we explore further our very effective “click-tailing” strategy to synthesize a new class of glycoconjugate sulfonamides through appending S-propynyl glycosides of three different oxidation states onto the 4-azido benzenesulfonamide scaffold. This library was inspired by the therapeutic drugs brinzolamide (BRZ) and dorzolamide (DRZ), used clinically as topically acting CA inhibitors for the treatment of glaucoma. The sulfone moiety of BRZ and DRZ proved critical to the effective therapeutic properties of these CA inhibitors – assisting with water solubility yet retaining sufficient lipophilicity to penetrate the cornea.

A panel of acetylated S-propynyl, sulfinyl propynyl and sulfonyl glycosides (1-6) were synthesized from commercially available per-O-acetylated sugars – D-glucose (→ 1-3) and D-galactose (→ 4-6), Scheme 1. The per-O-acetylated β-S-propynyl glycosides 1 and 4 were generated by Lewis acid catalyzed (BF3·Et2O) glycosylation of the β-acetate precursors with thiourea to generate the S-glycosyl thiourea intermediates which were subsequently transformed into the S-propynyl glycosides by treatment with Et3N and propargyl bromide.16 Oxidation of 1 and 4 with excess mCPBA in CH2Cl2 gave per-O-acetylated β-sulfonyl propynyl glycosides 3 and 6. Oxidation was generally complete following 3.5 h of stirring at ambient temperature as evidenced by TLC. The per-O-acetylated β-sulfinyl propynyl glycosides 2 and 5 were prepared as a mixture of diastereomers (1:1) by mono-oxidation of 1 and 4 with 1.0 equiv. mCPBA in CH2Cl2 at 0 °C for 0.5 h. A number of eluents were tested to separate the diastereomers by chromatography including EtOAc/hexane, acetone/toluene and MeOH/CH2Cl2 albeit without success. Although recrystallization of the diastereomeric mixtures from MeOH could allow enrichment in one of the diastereomers (3:1), we elected to utilize compounds 2 and 5 as 1:1 diastereomeric mixtures in the subsequent synthesis of glycoconjugates. No over oxidation to the sulfone was observed using the conditions described.

Next the library of 12 benzenesulfonamides (compounds 8-19) containing triazole-tethered glycoside tails was constituted by Cu(I)-catalyzed 1,3-dipolar cycloaddition,17,18 of the azido scaffold 7 with our panel of per-O-acetylated thiosugar-connected propynyl derivatives (1-6), Scheme 2. Compound 7 was synthesized from commercially available sulfanilamide by diazo transfer under neutral conditions as described previously.9,19 Consistent with our earlier findings the triazole forming reaction proceeded smoothly when using a catalyst loading of 10 mol% of the Cu(I) source and 20 mol% of sodium ascorbate.8-11 Reactions were complete (as evidenced by TLC) after 2 h vigorous stirring. De-O-acetylation of 8-13 by methanolic sodium methoxide was employed to liberate the corresponding fully deprotected sugar analogues 14-19, Scheme 2.
galactoside analogues 20-23, reported recently by our
groups, are included for discussion purposes.3

Table 1. Inhibition and selectivity ratio data for 1, new glycoconjugate
sulfonamides 8-19, O-glycoside analogues 20-23 and standard inhibitors
against human isozymes hCA I, II, IX and XII.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>hCA I b</th>
<th>hCA II b</th>
<th>hCA IX c</th>
<th>hCA XII c</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZA</td>
<td>900</td>
<td>12</td>
<td>25</td>
<td>5.7</td>
</tr>
<tr>
<td>BRZ</td>
<td>450</td>
<td>3</td>
<td>47</td>
<td>3.0</td>
</tr>
<tr>
<td>DRZ</td>
<td>500</td>
<td>9</td>
<td>52</td>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
<td>3900</td>
<td>47</td>
<td>105</td>
<td>n.d.</td>
</tr>
<tr>
<td>8</td>
<td>91</td>
<td>5.3</td>
<td>8.6</td>
<td>9.5</td>
</tr>
<tr>
<td>9</td>
<td>103</td>
<td>5.4</td>
<td>9.9</td>
<td>8.4</td>
</tr>
<tr>
<td>10</td>
<td>97</td>
<td>6.9</td>
<td>9.3</td>
<td>9.1</td>
</tr>
<tr>
<td>11</td>
<td>117</td>
<td>9.9</td>
<td>8.6</td>
<td>9.2</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>6.8</td>
<td>7.7</td>
<td>9.5</td>
</tr>
<tr>
<td>13</td>
<td>79</td>
<td>5.3</td>
<td>7.5</td>
<td>10.9</td>
</tr>
<tr>
<td>14</td>
<td>114</td>
<td>5.6</td>
<td>257</td>
<td>9.5</td>
</tr>
<tr>
<td>15</td>
<td>102</td>
<td>7.8</td>
<td>9.8</td>
<td>10.2</td>
</tr>
<tr>
<td>16</td>
<td>101</td>
<td>7.6</td>
<td>9.5</td>
<td>10.3</td>
</tr>
<tr>
<td>17</td>
<td>60</td>
<td>6.2</td>
<td>6.1</td>
<td>10.3</td>
</tr>
<tr>
<td>18</td>
<td>62</td>
<td>2.9</td>
<td>8.0</td>
<td>11.9</td>
</tr>
<tr>
<td>19</td>
<td>60</td>
<td>7.8</td>
<td>8.1</td>
<td>9.4</td>
</tr>
<tr>
<td>20</td>
<td>1500</td>
<td>46</td>
<td>107</td>
<td>n.d.</td>
</tr>
<tr>
<td>21</td>
<td>6.9</td>
<td>6.8</td>
<td>9.7</td>
<td>n.d.</td>
</tr>
<tr>
<td>22</td>
<td>7.0</td>
<td>8.7</td>
<td>101</td>
<td>n.d.</td>
</tr>
<tr>
<td>23</td>
<td>7.0</td>
<td>8.7</td>
<td>101</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

*Errors in the range of ± 5-10 % of the reported value, from three
determinations. †Human (cloned) isozymes, by the CO2 hydration
method. ‡Catalytic domain of human (cloned) isozyme, by the CO2
hydration method. §n.d. – not determined.

The parent azido scaffold 7 had greatest efficacy against
hCA II (K_i of 47 nM), approximately 2-fold weaker
inhibition against the clinically used sulfonamide
hCA IX (105 nM) and 80-fold weaker inhibition against hCA I (3900
nM). The inhibition profile for 7 was weaker at all
isozymes compared to the clinically used sulfonamide
inhibitors AZA, BRZ and DRZ, however 7 did have a similar selectivity profile to AZA. The new
glycoconjugates were investigated both in the per-O-
acetylated form (compounds 8-13) and the free
hydroxyl form (compounds 14-19). All glycoconjugates
were stronger inhibitors than the parent azido compound
7 at the CA isozymes tested.

Glycosides were potent inhibitors of hCA II (K_is 2.9-9.9
nM), IX (K_is 6.1-9.9 nM) and XII (K_is 8.4-11.9 nM)
with K_i values narrowly distributed – and just one
outlier to this trend – compound 14 with a K_i of 257 nM
at hCA IX. The tight distribution of K_i values surprised
us as we had expected that the oxidation of the sulfur
would provide an increased opportunity for these small
molecule inhibitors to interact through hydrogen
bonding to amino acids within the various CA active
sites and that this would be observed indirectly by
modulating K_i values. In fact, the oxidation state of the
sulfur had virtually no impact on the CA inhibition
constants determined. At hCA I inhibition by 8-19 was
typically weaker (10-20 -fold) than for all other
isozymes with K_is in the mid-high nM range (60-117
nM). The oxidation state of the sulfur also did not effect
CA I enzyme inhibition, while galactose-OH
compounds (17-19, K_is 60-62 nM) were marginally
stronger inhibitors than glucose-OH compounds (14-16,
K_is 101-114 nM) at hCA I. Comparison of CA
inhibition of our recently reported O-glycosides 20-23
demonstrates that the replacement of O by S
(compounds 8, 11, 14, 17), SO (compounds 9, 12, 15,
18) and SO2 (compounds 10, 13, 16, 19) typically gives
weaker inhibitors at hCA I, while at CA II inhibition is
similar, and at CA IX inhibition is generally stronger.
This trend indicates that the sulfur analogues may prove
superior for selectively targeting tumour associated
hCA IX.

To deliver CA based cancer therapies or diagnostics
will benefit enormously from the development of
inhibitors that target the tumour-associated CA
isozymes. Selective inhibition among CA isozymes is
however challenging owing to conservation of active
topology within this enzyme class. Using our
“click-tailing” strategy we have appended thio, sulfanyl
and sulfonyl glycoside tail moieties onto the
benzenesulfonamide CA pharmacophore. This work
presents a new class of glycoconjugate CA inhibitors
comprising S-linked glycosides in three oxidation states.
The anticipated stability of these glycoside CA
inhibitors towards endogenous glycosidases combined
with the effective enzyme inhibition properties
demonstrated in this study towards CA IX and XII may
render these carbohydrate-based sulfonamides as
valuable candidates for future targeting of CAs for
therapeutic applications in hypoxic tumours. Current
research in our laboratory is targeted towards
identifying the structural features within the CA active
site that explain the tight distribution of inhibition
constants observed for this new class of inhibitors so as
to support future rationale design approach for the
synthesis of CA inhibitors. The minimal impact of the
oxidation state at the sulfur atom on CA enzyme
inhibition may appear a profitable finding in future CA
drug development strategies where it is necessary to
modify physicochemical properties of inhibitors without
impacting on drug-enzyme molecular recognition
interactions. This study is therefore a valuable step in
the ongoing research to improve the characteristics of
CA inhibitors.
Acknowledgment: This work was financed in part by the Australian Research Council (Grant number DP0877554 to S.-A.P.); the Eskitis Institute for Cell and Molecular Therapies and an EU grant of the 6th framework programme (DeZnIT project to C.T.S.). We thank Hoan The Vu for undertaking accurate mass measurements.

Supplementary Material Available: Synthetic procedures, compound characterization data and 1H NMR spectra for new compounds.

References
17. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed. 2002, 41, 2596.