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by G.C. Hocking and H. Zhang.

Referee 1

The major comments of this referee have been addressed. The term “coning” is now used
throughout the paper (in conjunction with the term supercritical), and has been included in the title
to make it clearer to researchers in this area. The use of “layer” when referring to the two fluids has
been removed. The problem is now described in terms of a single homogeneous aquifer

containing two fluids with different properties.

The ambiguity in describing the length quantity H has been resolved as much as possible. In this
case it can be thought of as the initial level of the interface before the flow begins. This is
appropriate for the cases with entry angle a=0, where the interface levels off at y=0. A note to this
effect has been included in the paper. The alternative definition of a length scale is to let H=Q/K
but we have decided not to use this form since it gives G=1/1 for all cases and consequently it is

difficult to differentiate between the different cases for fixed a values.

Finally, the logarithmic divergence of the interface occurs for all flows even if there is an
impermeable boundary above or below the interface. If there are boundaries both above and
below, then the problem can be avoided (although only in the supercritical case) and is the subject
of future work, but we decided to consider this case to match with the single layer flows considered
e.g. by Bear and Dagan. In all single-fluid flows the problem occurs. However, we have added

some comments along these lines to the paper.

Referee 2

This referee was also generally favourable to the paper but had a number of comments. We have
implemented these as much as possible. In particular, all of the minor comments listed have been
addressed.

The use of the term flux has been corrected, and “intrinsic permeability” is now correctly defined.

Comments on the behaviour of the lower fluid in sub-critical (single fluid) flow have been clarified.

However, this assumption has no effect on the results in the two fluid flows considered in this paper.



The streamfunction is now defined earlier and the explanation of the method has been expanded

slightly.

The discussion of the length scale has been expanded slightly to clarify it.

Captions to Figures 5 and 6 have been improved to note that these correspond to the special case
with a=0.

H has been included in Figure 1, and a little further explanation for Figure 2 has been added in the

caption and text.

The conclusions have been re-worked slightly to hopefully clarify them.

Finally, this referee had a simple scaling argument that they thought might be useful for this work.
We have spent considerable time attempting to flesh this out, including a more detailed analysis.
Unfortunately, it really appears to show that given a value of G the entry angle can take on a range

of values (as we found) but it is by no means conclusive.

The scaling argument is interesting, but again | do not feel it is conclusive and am concerned by the
choice of & for the “conduit” width — perhaps this should be an arc width rd instead, since it is not
clear exactly where this value would be defined, and this changes the outcome enough to cause

some doubt about the conclusions.

Due to the slightly inconclusive nature of these results we have decided not to include the analysis.
| do appreciate the effort of the referee here, and it is possible that a similar analysis may appear in

a future paper, but would like to politely decline to use it in this work.

Thankyou to both referees for their insightful comments. We hope that they will now find the work

suitable for publication.
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Abstract. The steady response of the interface between two fluids with different
density in a porous medium is considered during extraction through a line sink.
Supercritical withdrawal, or coning as it is often called, in which both fluids are
being withdrawn, is investigated using a coupled integral equation formulation. It
is shown that for each entry angle of the interface into the sink there is a range
of supercritical solutions that depend on the flow rate, and that as the flow rate
decreases the cone narrows. As the magnitude of the entry angle increases this
range of flow-rate values decreases to a narrow range as the entry becomes vertical.
Only one branch of solutions (that with horizontal entry) has the property that the
interface levels off at a finite height, and this is investigated as a separate branch of
solution.

Keywords: critical withdrawal, porous media, supercritical withdrawal, boundary
integral method, line sink

1. Introduction

Extraction of fluids from within porous media is of importance in
groundwater aquifers and oil reservoirs among many other applications.
Usually, oil lies above water and below gas, and fresh water often lies
above salt water. When fluid is withdrawn in this situation, the fluid
will come from the fluid layer surrounding the point of removal unless
the pumping rate is high enough to pull the interface directly into
the outlet, a phenomenon known as coning. If the withdrawal rate is
constant below this critical rate and the pressure forces acting on the
fluid are in equilibrium with the gravity force, the interface will reach
a stable shape below the well. The critical flow rate is defined as the
maximum rate at which only the fluid adjacent to the sink is withdrawn.
At a higher supercritical rate, some of both fluids will be removed.

In mathematical analysis the interface between the two fluids is
often assumed to be a sharp interface where the two fluids do not mix.
The determination of the critical withdrawal rate is of great practical
interest. Intensive study has been carried out since the work of Muskat
and Wyckoff [1], and many scientists have studied critical withdrawal
by using analytical methods for various aquifer configurations; see for
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Figure 1. Schematic of the flow into a link sink from two layers of different density
- supercritical flow rate.

example [2, 3, 4, 5, 6]. In particular, Bear and Dagan [2] computed the
critical, single fluid flow in an unbounded medium.

The analogous problem of supercritical withdrawal in two-layer sur-
face water bodies was considered by [7, 8, 9] who used an integral
equation approach to compute accurate numerical solutions. However,
limited research has been done for supercritical coning flows in porous
media. Yu [10] and Henderson [11] used a finite difference method
to simulate an isothermal, monophasic, highly compressible flow in a
supercritical condition.

In the present study, two fluids of different density separated by an
interface of infinitesimal thickness within an homogeneous and isotropic
aquifer in two dimensions are considered. A line sink (a point in two-
dimensions) is located in the upper fluid and withdraws at some con-
stant rate (see Figure 1). We seek coning solutions in which both fluids
are flowing out through the sink. Integral equations to be satisfied in
both fluids and equations matching the pressure across the interface are
derived and solved numerically. A study of the effect of variations in
several parameters is conducted. It is found that for each value of entry
angle of the interface into the sink there are multiple solutions over a
range of flow values. In each case, as the flow rate decreases the interface
near to (but not at) the sink steepens until it becomes vertical, at which
point the method fails. This range of values narrows as the magnitude
of the entry angle increases. In all cases except that for which the entry
is horizontal, the interface levels off at infinite values of elevation due
to the logarithmic nature of the sink flow and the interface condition
(as it does for single fluid, subcritical flows). If the interface enters the
sink horizontally, there is a separate branch of solution in which the
surface levels off at a finite elevation.
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2. Formulation

2.1. EQUATIONS

Consider an homogeneous and isotropic porous medium with intrinsic
permeability «. Two fluids of different density and dynamic viscosity
are separated by an interface of infinitesimal thickness as seen in Fig-
ure 1. A line sink (5) is located at a distance, H, above the origin.
The sink extracts a total volume per unit time per unit width of Q.
The fluids located beneath and above the impermeable boundary are
defined as fluid 1 and fluid 2, respectively.

Using complex variables, let the physical plane correspond to the
z-plane shown in Figure 1 where z = = + ¢y. The origin is located a
distance H directly below the sink. If y = n(z) is the equation of the
interface, suppose the fluid below the interface to have density p; and
viscosity w1 and the fluid above the interface to have density po and
viscosity p2. We define a potential function in each of the fluids as

1 = E(p+pgy), y<n(=)
Dy = Z(p+p20y), y>n(x) (1)

where p is the pressure at elevation y, g is gravitational acceleration and
k is the intrinsic permeability of the medium. Therefore, the velocity
or specific discharge is given by

q;=-V&, j=1,2 (2)

Matching the pressure across the interface between the two im-
miscible fluid regions gives the condition on the interface, y = n(x),
that

&) —yPy = Ky, Whereyzﬂ andK:M. (3)

H1 H1

When the withdrawal rate is below critical, the lower fluid is assumed
to be motionless and hence to be at a constant potential. It is noted
that since the potential due to the sink is logarithmic, then if only one
fluid is flowing the condition on the interface (3) leads to an interface
of unbounded elevation as x approaches infinity. This situation carries
over into the supercritical case as well, and so in general the interface
does not level off at a finite elevation. It is tempting to think that this
may be due to the geometry chosen, e.g no impermeable base above (or
beneath) the sink, but this geometry still gives the same logarithmic
behaviour.

However, there is a special case in which the potentials in the two
regions can cancel each other exactly if the mass flux from each of the
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two fluids matches, i.e. if the interface enters the sink horizontally. In
that case, it is possible that the interface becomes horizontal at a finite
value of elevation as & becomes large.

2.2. BOUNDARY INTEGRAL METHOD FOR SUPERCRITICAL
WITHDRAWAL

The solutions we seek are those in which the interface is drawn up a
distance H to a point where it enters the sink with an angle a to the
horizontal, as shown in Figure 1. Since flux from each fluid (see below)
depends on the angle of entry, a, then from the right half-plane the flow
volume per time per unit width from the lower fluid is Q(§ — )/7
and from the upper fluid it is Q(§ + «)/7. Fluid is withdrawn from
both above and below the interface. The velocity potentials of the
separate flow fields below and above the interface must satisfy Laplace’s
equation,

V2<I>1($7y) =0,y< 77(:17)7
V2<I>2(a:,y) =0, y> 77(95) (4)

In addition, since we are dealing with potential theory, it is possible to
define a streamfunction, ¥;(z,y),j = 1,2 for each fluid such that

Vzllll(x,y) =0,y< 77(33)7
v2\1’2($7y) =0, y> 77(:17)7 (5)

and streamlines of the flow correspond to lines of constant value of
VU, 5 = 1,2. The condition that there be no flow across the interface can
then be satisfied by enforcing the condition that the stream functions
are constant along the interface, i.e.

Uy =Vy=0 on y=n(z). (6)

As the sink is approached, the velocity potentials must have the
correct behaviour, which is

O — 2o In(@? + (y — H))Y? as (z,y) — (0, H),y < (=)

2

@ — L n(@® + (y— H)A)' as (@) = (0,H),y > (@) (7)

where Q1 and ()9 are the respective total dimensional fluxes per unit
width (from the right half-plane) from within the two regions. There is
a relationship between these two values which must hold if the dynamic
condition on the interface is to be satisfied. Applying Darcy’s Law [12]
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to the streamline along the interface, and noting that for steady flow
there must be no pressure difference across the interface leads to

1
() = 2= [@1(z,y) =7 P2(2,y)] - (8)
Considering the behaviour of the flow near the sink (7) and differenti-
ating the interface condition (8) with respect to arclength, s, it follows
that
dn(x)

ql—’ngzK?:KSina 9)

where ¢; and g9 are Darcy velocities in the two fluids. If the flow into
the sink is radial, then

Q2 @
2rqg (5 4+a) 2rg(§—a)

= Ksina (10)

where r4 is the radius of the pump. As r4 — 0, it follows that

& _(31a) (1)
Q (5-0q)
The total flux per unit width is @ = @1 + @2 and the flux from the
two layers only matches if a = 0.
Defining the following dimensionless variables,

/}/Ql *
G- T

the non-dimensional form of the dynamic interface condition (8) be-
comes

vQ2

y =y/H 2" =x/H &7 = &/

2ym
" = G(®F — &%) where G =
T 5 7)1 201 =) (01— ®2) where &= g

n (12)

and

o — In(z + (y* — )HY2% as (2%, 4*) — (0,1), y* <n*(z")
O3 — In(z*? + (y* — 1)HY2 as (2%, y") — (0,1), y* >n*(z*) (13)

The asterisk denotes dimensionless variables and will be dropped for
simplicity. The choice of H as a length scale is slightly unusual since
in general there is no actual length scale in this steady problem except
that obtained as a combination of the other variables. However, in this
problem we can think of H as being the initial elevation of the sink
above the interface when it is at rest. This choice is consistent with the
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flows described at the end of section 3, where the interface enters the
sink horizontally and levels off at a finite distance beneath the sink.

The quantity G is a measure of the flow strength and perhaps the
most important parameter in the problem.

Using complex variable theory we construct a complex potential for
each fluid that consists of the potential and the streamfunction and
builds in the correct behaviour both near the sink and in the far field.
The goal is then to compute the corrections to these that satisfy the
equations. Options which satisfy these requirements are;

fi =1 +i0; =In(z —i) — ZIn(z —i%) +wi, y <n(z)
fo =@ +i¥=In(z =)+ 2z +iL) +wa, y>nlz) (14)

where « is the angle of the interface at the point of entry into the
sink and w; = ¢; +1);,j = 1,2, are the correction terms for the full
complex potentials. In each fluid, this form represents the line sink at
(z,y) = (0,1) and the addition of another singular point outside the
domain of interest; a line sink at z = 0,y = 5~ for the lower fluid and a
line source at x = 0,y = —4 for the upper fluid. These choices satisfy
the requirement that the line given by ¥; = 0,j = 1,2 enters the sink
at an angle a to the horizontal, provided
Y1(x,m) = — arctan (77(:”—92_1) 2o arctan (M) ,

s xT

Yo(x,m) = —arctan (%) + 22 arctan (W) . (15)
The choice of f; and f3 also ensures that w; — 0,j = 1,2 as |2] — oo
or as z — ¢. The functions

wy = ¢1 +iPr, y <n(x),
wy = Qg + ik, y > n(w), (16)

must be analytic in their respective domains. Following Forbes [13] and
Hocking [8], and applying Cauchy’s Theorem to wj, j = 1,2, on both
regions, we obtain

wi\z .
muple) = [ 2 g o (1)
J

where I';,j = 1,2 are the contours shown in Figure 2, and zg lies on
the boundary in each case at the point P. Now since, w; — 0,7 = 1,2
as |z| — oo, the contribution of that part of w;, j = 1,2 that consists of
the circular arc can be shown to be zero. Thus we only need to integrate
along the interface. Using an arclength variable, s, along the interface
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Figure 2. Contours used in formulation of the integral equation. The contours avoid
the sink S and the point zp, denoted P. The contribution to the integral from the
two radial arcs as r — oo is zero, leaving just the integral along the interface.

starting from the sink, then

(flﬁ)Q + (?)2 1, (18)

and using the chain rule we can write

m’w1<z<s>> - g, mGlz g

—miwg (2 =7 Ld(zgdt dt, (19)

where s and t are both arclengths, but s defines a particular location
and t is the variable of integration. These integrals must be interpreted
in the Cauchy-principal-value sense.

Since 11,19 are known along the interface from equation (15), the
equations (19) represent integral equations for ¢; and ¢9, respectively.
Taking the real parts and utilizing the symmetry of the situation about
the line £ =0, i.e.

o(—s) = —a(s), y(=s) =y(s), 2'(=s) = 2'(s), y'(~s) =~/ (5)
¢i(=s) = ¢;(s), hj(=s) = —1h(s), j=1,2

the integral equations become
) B y' () Az—z' (1) Ay y' () Axy —z' (t) Ay
¢ ( ) =+ f ¢J( ) ( Az2+Ay? + Amfir+Ay2 )

+up(e) (2O ¢ SO0 ) gr, 1,2
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(20)

where Az = z(t) — z(s), Axy = x(t) + z(s), Ay = y(t) — y(s), and

b

= 1,08y = —1.
The problem to be solved is the combination of the two integral

equations given by (20) and the interface condition (8). No analytic
solution exists for this highly nonlinear problem and therefore it must
be solved numerically. The logarithmic singularity near the sink has to
be treated carefully, but the following method was successful:

1.

For the nonlinear integral equations (20), the domain [0, c0) of the
independent variable s was truncated at a finite point, sp, and the
interval was discretized into the set of points s;,j = 1,2,3,...N,
where N is the number of points on the interface, and so = 0, sy =
st. The distribution of these points was usually uniform in ar-
clength s, but in some cases a quadratic distribution was used to
crowd many points close to the region of greatest change near to
the sink.

. An initial guess was made for the unknown values of the correction

terms of the velocity potentials, ¢1(s) and ¢2(s), and the derivative
of the interface location 7/(s). The entry angle of the interface into
the sink, «, and the non-dimensional flow rate, G, were assigned.
If either of these parameters was left as an unknown, the method
failed to converge.

. The other variables, z(s) and y(s), were then computed by finding

2'(s) from (18) and then using numerical integration. A trapezoidal
scheme was found to be adequate in all cases.

. Using x,n,2'(s),y'(s), #1(s) and ¢3(s) along the interface, the error

in (20) was computed and a damped Newton iteration scheme was
applied to update the original guess.

. Once ¢1, ¢o were obtained, a forward difference scheme was used to

calculate their derivatives and the error in the interface condition
(9) was evaluated. If the error was small at all points on the in-
terface, say less than 107, the algorithm was stopped. Otherwise,
Newton’s method was used to update n/(s), 1, 2, and repeat from
step 3.

The accuracy of the numerical integration is crucial to the solution

of the full problem. The singular part of the principal-value integral in
(20) was removed by noting that

/OZT wj—(z)dz:/OZT Mdz—kwj(m)ln (ZT_ZO> (21)

Z — 20 Z — 20 20
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where 2z = zr corresponds to the point at which the integral is trun-
cated. It is also essential to include an approximation to the portion of
the integral that is neglected. Both ¢ and 1 can be shown to behave
like O(s™1) as s — o0, so a simple correction term can be added to each
integral to account for the truncation. The iteration scheme converged
in only 4 or 5 iterations and solutions to graphical accuracy were found
with IV as small as N = 80, but most solutions were computed with
N = 200, i.e with 200 collocation points on the interface (which means
600 equations and unknowns).

3. Results and Discussion

A series of computations was performed using the boundary integral
method, and the interface locations at different non-dimensional su-
percritical withdrawal parameter, G, and interface entry angle «, were
obtained. It was found that there was a range of values of G for which
solutions existed for each entry angle a.

The value of the viscosity ratio was kept at v = 1 for all simulations,
but behaviour for other values can be inferred from equation (12). Some
solutions are shown in Figure 3(a). When the entry angle is not zero,
the interface levels off, but at an infinite elevation according to the
asymptote determined from equations (12) and (14), i.e.

—87Ga
7(1+7) +2a(l —7)

n— Ins (22)
where s is the arclength measured from the sink. This provides a good
test of the numerical scheme and this asymptote is seen as a dashed
line in Figure 3(a) which shows interface profiles for @ = —n/4 and
G =0.12,0.72 and 1.44. Clearly the numerical scheme is working well
and has the correct behaviour for large x.

The results show that for each entry angle of the interface into the
line sink there is a range of supercritical solutions that depend on the
flow rate. It is found that as the withdrawal rate decreases, the interface
near to (but not at) the sink steepens until it becomes vertical, at
which point the method fails. This is clear in Figure 3(b) which shows
a close-up of (a).

As the magnitude of the entry angle increased (see Figure 4) the
range of G values for which solutions exist decreased, and when «
began to approach —7/2 the numerical scheme struggled to converge,
leading to the somewhat jagged appearance of the left edge of the
domain in Figure 4. However, those cases which did converge are highly
accurate and repeatable, and were calculated with N = 600 points on
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Figure 3. (a) Interface shapes with « = —7 /4, for G = 0.12,0.72 and 1.44 compared
with the asymptotic solution given by (22). (b) close-up view of the same showing
behaviour near to the sink. Note the steepening of the surface as the nondimensional
flow rate, GG, decreases.

the interface using a quadratic distribution of points so that many
more were crowded near to the sink. As the entry angle approaches
vertical it is clear that the solution range narrows to a small region
about G = 0.3. It is worth noting that if & = 0 there exist solutions
for any value of G because an horizontal interface, n = 1 is an exact
solution. Unfortunately, it was not possible to compute solutions right
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-T2 —m/4 0
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Figure 4. Solution domain showing angle of entry against GG. Solutions exist every-
where to the right of the given curve. The lower limit is characterised by the interface
slope becoming very steep near to the sink, as in Figure 3(b), G = 0.12. The + is
the solution of [2] for critical single layer flow.

up to a = —3, and so we were unable to determine if this range narrows
to a single point.

There is a known limiting solution computed by Bear and Dagan [2]
using the Hodograph method for the single layer flow with o = —7/2,
and this is shown as a '+’ in Figure 4. Bear and Dagan [2] use the
distance from the sink to the cusp of the interface (which does not
exist in the current work) as the length scale, but a recalculation of
their G value for comparison gives the value G, = 771,

Finally, it is of interest to consider if there are any solutions where
the interface levels off at a finite elevation that is different from the sink
elevation. Such a branch of solutions was found and was investigated
separately. It was shown earlier that this can only happen if the fluxes
from within the two layers match. Figure 5 shows typical solutions and
it is clear that as G decreases, just as in the other cases, the interface
near the sink steepens until it becomes almost vertical at which point
the numerical method fails. The magnitude of the steepest angle of
the interface increases rapidly and gets very close to vertical when
G = 0.12. Solutions of this type, with @ = 0, exist for all values of
G greater than this minimum. Figure 6 shows the maximum value of
the interface slope, n/(z), just before it enters the sink for a series of
decreasing values of G. It is clear that the slope steepens dramatically
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Figure 5. Interface shapes for the special case with @ = 0 and G = 0.16,0.24 and
0.81 (from left to right respectively) for the unbounded two-layer flow where the
interface levels off at y = 0.

™
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case.

as G decreases. This provides the limiting solution for this

4. Conclusions

The supercritical withdrawal or coning flow of two fluids of different
density into a line sink in an homogeneous, isotropic two-dimensional
aquifer was investigated. A coupled boundary integral method was used
to compute the interface shapes for the supercritical, coning case in
which both fluids are drawn directly into the sink.

If we restrict attention to the case in which the interface levels off at
finite elevation, i.e. o = 0, we obtain solutions for all withdrawal rates
above some minimum G = 0.12. As the value of G decreases toward
this minimum the interface close to (but not at) the sink, steepens until
it becomes vertical. In this case there is no maximum withdrawal rate,
G, with the interface shape simply becoming flatter as GG increases.

Allowing a non-zero entry angle into the sink means that the surface
asymptotes to an infinite elevation, but the behaviour of the interacting
parameters is the same, i.e. at each value of entry angle there is a range
of solutions for differing values of GG, and there is a minimum G value at
which the interface near to the sink steepens to become close to vertical.
There is also a maximum G for each angle beyond which no solutions
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Figure 6. Maximum slope on the interface near to (but not at) the sink as a function
of flow rate for the special solution branch where entry angle into the line sink was
zero, a = 0. As G decreases the steepest angle approaches vertical as G approaches
0.12.

were found. Thus as the magnitude of the entry angle, «, increases, the
range of G values decreases, seeming to close in on a narrow range of
values close to G = 0.3.

In the analogous surface water withdrawal problem, [8], the conclu-
sions are clear. As the withdrawal rate decreases, the angle of entry
of the interface into the sink increases in magnitude until it reaches
vertical. This corresponds very closely to the limiting, steady, single-
layer flow. Unfortunately, the conclusions that one may draw from the
current work are not so clear.

The results from the two-fluid simulations show that for each value
of entry angle, «, there is a range of G values that admit a solution.
Therefore, Figure 4 represents perhaps the main result of this work.
As the entry angle approaches o = —7F the solutions fall within an
approximate range of 0.25 < G < 0.4. The critical value may lie within
this range or it may correspond to some other minimum value for a
different «, in which the transition might involve a slight jump from
two-fluid coning flow to a single-fluid flow as G decreases.

Whatever the situation, it seems almost certain that the critical
transition occurs somewhere between G = 0.25 and G = 0.4, since all
of the minimum G values for two-fluid flow fall within this range. This
range of values compares exceptionally well with the limiting single
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layer flow of Bear and Dagan [2] of G = 7! It is apparent that
further research is required, and it is likely that both the stability and
the evolution of the interface over time may be pivotal in determining
which of the above steady-state solutions, if any, will evolve.
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