Antimalarial Activity of Azafluorenone Alkaloids from the Australian Tree *Mitrephora diversifolia*

Daniela Mueller, Rohan A. Davis, Sandra Duffy, Vicky M. Avery, and Ronald J. Quinn*

Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia.
Mass-directed isolation of the CH$_2$Cl$_2$/MeOH extract from the roots of the Australian tree *Mitrephora diversifolia* resulted in the purification of the new azafluorenone alkaloid, 5,8-dihydroxy-6-methoxyonychine (1) together with the known natural product 5-hydroxy-6-methoxyonychine (2). The structures of 1 and 2 were determined by extensive 1D and 2D NMR, and MS data analyses. Both compounds were isolated during a drug discovery program aimed at the identification of new antimalarial leads from a prefractionated natural product library. When tested against two different strains of the parasite *Plasmodium falciparum* (3D7 and Dd2), 2 displayed IC$_{50}$ values of 9.9 and 11.4 µM, respectively, while 1 showed minimal activity.
Malaria, the major parasitic infection in many tropical and subtropical regions, is still one of the largest contributors to the burden on public health expenses in more than 90, mostly underdeveloped countries. Despite the presence of commercially available antimalarial drugs, the control of this ancient infection is increasingly limited by the emergence of drug-resistant strains of the malaria parasite *Plasmodium*. Annually 600 million new infections occur worldwide and at least 1 million of these infections are fatal. Malaria is in fact among the leading causes of death worldwide from a single infectious agent. Thus, new cost-effective strategies for treating malaria are urgently needed. The Eskitis Institute obtained funding from the public private partnership, Medicines for Malaria Venture (MMV) during 2007 and 2008, with the goal of discovering and developing new antimalarial agents from nature. The use of medicinal plants, like the South-American “quinine bark” *Cinchona succiruba* and the Chinese “sweet wormwood” *Artemisia annua*, has a long tradition in the treatment of malaria. Identification of the major active metabolites of these plants, quinine and artemisinin, gave rise to the development of numerous antimalarial drugs. Nowadays, 11 of the 15 drugs included in the WHO therapeutic schemes for malaria treatment, are natural products or natural product derivatives. Based on the developing resistance of the malaria parasite, most of these commercial drugs are rapidly losing their efficacy. The re-emergence of malaria as a public health problem demonstrates the urgent need for the discovery and development of new antimalarial drugs.

During high-throughput screening (HTS) of a prefractionated natural product library we discovered that two fractions derived from the roots of *Mitrephora diversifolia* (Annonaceae) showed activity in a malaria assay, with no cytotoxicity identified towards the human embryonal kidney cell line (HEK293). Chemical analysis of the active fractions from the prefractionated library identified ions in the (+)-LRESIMS at \(m/z \) 242 and 258 respectively, that were predicted to correspond to the bioactive natural products. Mass-directed isolation on the large-scale organic extract of *M. diversifolia* resulted in the purification of a new azafluorenone alkaloid, 5,8-dihydroxy-6-methoxyonychine (1), along with the previously isolated natural product 5-hydroxy-6-
methoxyonychine (2).6 Herein we report the isolation and structure elucidation for 5,8-dihydroxy-6-methoxyonychine (1), as well as the antimalarial activity of the two azafluorenone alkaloids.

The dried and ground roots of \textit{M. diversifolia} were sequentially extracted with \textit{n}-hexane, CH\textsubscript{2}Cl\textsubscript{2}, and MeOH. The CH\textsubscript{2}Cl\textsubscript{2}/MeOH extracts were combined and chromatographed using C\textsubscript{18} bonded silica HPLC (MeOH/H\textsubscript{2}O/0.1\% TFA) to yield two relatively pure alkaloid fractions. (+)-LRESIMS indicated that fractions 29-31 contained one of the ions of interest (m/z 258), while the second ion of interest (m/z 242) was observed in fractions 32-33. Further purification of the earlier eluting fractions using C\textsubscript{18} bonded silica HPLC (MeOH/H\textsubscript{2}O/0.1\% TFA) resulted in the isolation of 5,8-dihydroxy-6-methoxyonychine (1, 1.9 mg, 0.019\% dry wt). In a similar manner the less polar fractions were purified to yield 5-hydroxy-6-methoxyonychine (2, 2.1 mg, 0.021\% dry wt).

Compound 1 was isolated as an orange-brown amorphous solid. Based on 1H and 13C NMR data (Table 1) in combination with the HRESIMS measurement on the [M+H]+ ion (m/z 258.07548), the molecular formula was determined as C\textsubscript{14}H\textsubscript{11}NO\textsubscript{4} with 10 double bond equivalents. The 1H NMR spectrum (Table 1) of 1 displayed only six unique signals; one exchangeable resonance (δ\textsubscript{H} 10.13 s), three aromatic signals [δ\textsubscript{H} 6.40 s, 7.09 d (J = 5.4 Hz), 8.38 d (J = 5.4 Hz)], one methoxy resonance (δ\textsubscript{H} 3.83 s), and one C-methyl signal (δ\textsubscript{H} 2.53 s). All direct proton-carbon connectivities were assigned following gHSQC data analysis. Using COSY, 1H-1H coupling constants, and HMBC correlations, a trisubstituted pyridine moiety was readily established. HMBC correlations from protons of the methyl group at δ\textsubscript{H} 2.53 (1-Me) to three carbons of the pyridine unit [δ\textsubscript{C} 146.4 (C-1), 126.1 (C-9a), 124.9 (C-2)] indicated its para-position within the pyridine ring system (fragment a) (Figure 1). An additional weak HMBC correlation from this methyl group to a carbon at δ\textsubscript{C} 188.6 (C-9) suggested that a carbonyl functionality was attached \textit{ortho} to the methyl moiety.

The third aromatic proton at δ\textsubscript{H} 6.40 (H-7) exhibited HMBC correlations to four quaternary carbons [δ\textsubscript{C} 156.1 (C-6), 151.7 (C-8), 136.7 (C-5), 110.1 (C-8a)], three of which appeared to be attached to heteroatoms on account of their 13C chemical shifts. Based on HMBC correlations of
the methoxy protons at δ_H 3.83 (6-OMe) to carbons at δ_C 156.1 (δ_JCH) and 102.9 (δ_JCH), the methoxy group was attached to C-6. These correlations allowed the construction of fragment b (Figure 1). The 13C NMR spectrum of 1 showed a further quaternary carbon at δ_C 123.0 (C-4b), however no HMBC correlations were observed to this carbon. At this stage all atoms of 1 had been accounted for, except for one hydrogen, which was not observed in the 1H NMR spectrum, and was postulated to be exchangeable. Literature searching using partial structures of 1 (fragments a and b) readily identified 1 as an onychine analog. The remaining two exchangeable hydrogens were assigned to two hydroxyl groups, substituted at C-5 and C-8. These data correlated well with compound 2, whose structure was identified as 5-hydroxy-6-methoxyonychine following analysis of gCOSY, HSQC and HMBC data. Comparison of the spectroscopic data of 1 and 2 with literature values of other known azafluorenones provided further proof of the assigned structures.7-11 Hence, the structure of 1 was assigned as 5,8-dihydroxy-6-methoxyonychine. Since only the 1H NMR data of 5-hydroxy-6-methoxyonychine has previously been published,10, 11 we report here both the 1H and 13C NMR assignments for 2 (Table 1).

To date, less than 40 alkaloids possessing an azafluorenone skeleton have been isolated.12 Their occurrence is restricted to Annonaceae, a plant family well known as a source of various alkaloids belonging to different structural classes.12 The co-occurrence of azafluorenones with oxoaporphines, diazafluoranthenes, and azaanthraquinones gave rise to the proposal of a common oxoaporphine precursor for these alkaloid classes.13 To date, minimal bioactivity data has been provided for azafluorenone alkaloids. Onychine has been reported to possess anticandidal activity.14 When tested in cytotoxicity assays, darienne, polyfotine, and isocondine have been shown to be inactive,8 while cyathocaline has been found to be moderately active in a mechanism-based yeast bioassay for DNA-modifying agents.9

Compounds 1 and 2 were tested against both a chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strain. Preliminary toxicity towards human cells was investigated using a human embryonal kidney cell line (HEK293). 5,8-Dihydroxy-6-
methoxyonychine (1) was shown to display inhibition values of 87% and 80% at 120 µM against the 3D7 and Dd2 strains, respectively. Compound 1 was inactive against the HEK293 cell line at all concentrations tested up to and including 120 µM. In contrast, 5-hydroxy-6-methoxyonychine (2) was shown to be more active when tested against the *P. falciparum* strains (3D7 and Dd2), with IC₅₀ values of 9.9 and 11.4 µM, respectively. 5-Hydroxy-6-methoxyonychine displayed some cytotoxicity towards HEK293 cells with 96% growth inhibition observed at 120 µM.

Experimental Section

General Experimental Procedures. NMR spectra were recorded at 30 ºC on either a Varian 500 MHz or 600 MHz Unity INOVA spectrometer (Varian, Walnut Creek, CA, USA). The latter spectrometer was equipped with a triple resonance cold probe. The 1H and 13C NMR chemical shifts were referenced to the solvent peak for DMSO-d_6 at δ$_H$ 2.49 and δ$_C$ 39.5. LRESIMS were recorded on a Waters ZQ mass spectrometer (Waters, Milford, MA, USA). HRESIMS were recorded on a Bruker Daltronics Apex III 4.7e Fourier-transform mass spectrometer (Bruker, Karlsruhe, Germany). IR and UV spectra were recorded on a Bruker Tensor 27 spectrometer (Bruker, Karlsruhe, Germany) and a Jasco V650 UV/Vis spectrophotometer (Jasco, Tokyo, Japan), respectively. A BIOLINE orbital shaker (Edwards Instrument Company, Narellan, NSW, Australia) was used for the large-scale extraction of plant material. Machery Nagel Polyamide CC6 (0.05-0.016 mm) was used for tannin/polyphenolic removal (Machery Nagel, Düren, Germany). Alltech Davisil 40-60 µm 60 Å C₁₈ bonded silica was used for pre-adsorption work (Alltech, Deerfield, IL, USA). A Waters 600 pump equipped with a Waters 996 PDA detector and a Waters 717 autosampler (Waters, Milford, MA, USA) were used for HPLC. A ThermoElectron C₁₈ Betasil 5 µm 143 Å column (21.2 mm × 150 mm) (Thermo Scientific, Los Angeles, CA, USA) and a Phenomenex ONYX Monolithic C₁₈ column (10 mm × 100 mm) (Phenomenex, Torrance, CA, USA) were used for semi-preparative HPLC separations. All solvents used for chromatography, UV, and MS were Lab-Scan HPLC grade (RCI Lab-Scan, Bangkok,
Thailand), and the H₂O was Millipore Milli-Q PF filtered (Millipore, Billerica, MA, USA). Parasite strains 3D7 and Dd2 were from the Queensland Institute of Medical Research. O+ Erythrocytes were obtained from the Australian Red Cross Blood Service. Cell Carrier polylysine coated imaging plates were from PerkinElmer (PerkinElmer, Waltham, MA, USA). 4′,6-Diamidino-2-phenylindole (DAPI) stain and Alamar Blue were from Invitrogen (Invitrogen, Carlsbad, CA, USA). Triton-X, saponin, puromycin, and artemisinin were all from Sigma Aldrich (Sigma-Aldrich, St. Louis, MO, USA). HEK 293 cells were purchased from the American Tissue Culture Collection (ATCC, Manassa, VA, USA). The 384-well Falcon sterile tissue culture treated plates were from BD (BD, Franklin Lakes, NJ, USA).

Plant Material. The roots of *M. diversifolia* (Annonaceae) were collected at Leo Creek and Nesbit River confluence, Silver Plains, Queensland, Australia in July 1997. A voucher sample (AQ 604343) has been lodged at the Queensland Herbarium, Brisbane, Australia.

Extraction and Isolation. The dried and ground roots of *M. diversifolia* (10 g) were transferred to a conical flask (1L), *n*-hexane (250 mL) was added and the flask was shaken at 200 rpm for 2 h. The *n*-hexane extract was filtered under gravity, then discarded. CH₂Cl₂ (250 mL) was added to the de-fatted plant material in the conical flask and shaken at 200 rpm for 2 h. The resulting extract was filtered under gravity, and set aside. 100% MeOH (250 mL) was added and the MeOH/plant mixture was shaken for a further 2 h at 200 rpm. Following gravity filtration the plant material was extracted with another volume of 100% MeOH (250 mL), while being shaken at 200 rpm for 16 h. All CH₂Cl₂/MeOH extractions were combined and dried under reduced pressure to yield a dark brown solid (0.56 g). This material was re-suspended in MeOH (150 mL), loaded onto a MeOH conditioned polyamide gel (30 g) in a sintered glass column and washed with MeOH (300 mL). The resulting extract (0.49 g) was pre-adsorbed on C₁₈-bonded silica, then packed into a stainless steel cartridge (10 × 30 mm) that was subsequently attached to a C₁₈ Betasil HPLC column. Isocratic HPLC conditions of 90% H₂O (0.1% TFA)/10% MeOH (0.1% TFA) were initially employed for the first 10 min, then a linear gradient to 100% MeOH (0.1% TFA) was run
over 40 min, followed by isocratic conditions of 100% MeOH (0.1% TFA) for a further 10 min, all at a flow rate of 9 mL/min. Sixty fractions (60 × 1 min) were collected from time = 0 min then analysed by (+)-LRESIMS. Fractions 29-31 (16.55 mg) contained one of the ions of interest (m/z 258), while fractions 32-33 (13.77 mg) were shown to contain the other desired ion (m/z 242). Fractions 29-31 (16.55 mg) were further purified by HPLC using a C18 ONYX column. Initially isocratic conditions of 85% H2O (0.1% TFA)/15% MeOH (0.1% TFA) at 9 mL/min for the first 5 min were employed, then a linear gradient to 30% MeOH (0.1% TFA) was run over 45 min. For the next 5 min a steep linear gradient to 100% MeOH (0.1% TFA) was used to flush the column, followed by isocratic conditions of 100% MeOH (0.1% TFA) for a further 5 min, all at a flow rate of 9 mL/min. (+)-LRESIMS analysis of all resulting fractions and subsequent lyophilisation of the fraction containing the ion at m/z 258, yielded 5,8-dihydroxy-6-methoxyonychine (1, 1.9 mg, 0.019% dry wt). Further purification of fractions 32-33 (13.77 mg), from the first C18 fractionation step, was undertaken using the following HPLC conditions: C18 ONYX column, flow rate 9 mL/min, isocratic conditions of 80% H2O (0.1% TFA)/20% MeOH (0.1% TFA) for 5 min, then a linear gradient to 60% H2O (0.1% TFA)/40% MeOH (0.1% TFA) run over 40 min followed by a 5 min gradient to 100% MeOH (0.1 % TFA), isocratic conditions of 100% MeOH (0.1% TFA) for the last 10 min. (+)-LRESIMS analysis of all resulting fractions and subsequent lyophilisation of the fraction containing the ion at m/z 242 yielded pure 5-hydroxy-6-methoxyonychine (2, 2.1 mg, 0.021% dry wt).

5,8-Dihydroxy-6-methoxyonychine (1): orange-brown solid; UV (MeOH) λmax (log ε) 251 (5.36), 293 (4.90), 415 nm (4.67); IR νmax (KBr) 1690, 1680, 1650, 1205, 1138 cm⁻¹; ¹H and ¹³C NMR data (DMSO-d₆) see Table 1; (+)-LRESIMS (rel. int.) m/z 258 (100) [M+H]+, (+)-HRESIMS m/z 258.07548 (C₁₄H₁₂NO₄ [M+H]+ requires 258.07608).

Antimalarial Assays. Compounds were incubated in the presence of 2 or 3% parasitemia (3D7 or Dd2) and 0.3% hematocrit in a total assay volume of 50 µL, for 72 h at 37 °C and 5 % CO₂, in poly-D-lysine coated CellCarrier Imaging plates. After incubation plates were stained with
DAPI in the presence of saponin and Triton X-100 and incubated for a further 5 h at rt in the dark before imaging on the Evotec OPERA™ HCS confocal imaging system (PerkinElmer, Waltham, MA, USA). The digital images obtained were then analysed using the Perkin Elmer Acapella spot detection software where fluorescent spots which fulfill the criteria established for a stained parasite are counted. The % inhibition of parasite replication was calculated using DMSO and 2 µM artemisinin control data.

Cytotoxicity Assays. Compounds were added to Falcon 384-well black/clear tissue treated assay plates containing 3000 adherent cells/well (HEK 293) in an assay volume of 45 µL. The plates were incubated for 72 h at 37 °C and 5% CO₂. After incubation the supernatant was aspirated out of the wells and 40 µL of 10% Alamar Blue added per well. Plates were incubated for a further 5-6 h and measured for fluorescence at 535 nm excitation and 590 nm emission using a VICTOR II (PerkinElmer, Waltham, MA, USA). The % inhibition of parasite replication was calculated using DMSO and 10 µM puromycin control data. IC₅₀ values were obtained by plotting % inhibition against log dose using Prizm4 graphing package and non-linear regression with variable slope plot.

Acknowledgment. The authors thank Conway Lewis and David Camp from the Molecular Libraries group at the Eskitis Institute, for their assistance in facilitating the isolation of the natural products. We thank Hoan The Vu from Griffith University for acquiring the HRESIMS measurements. We are indebted to Paul Forster and Gordon Guymer of the Queensland Herbarium, Brisbane, Australia for collection and identification of the plant material. The authors would like to acknowledge MMV for financial support. We also acknowledge the Australian Red Cross Blood Service for the provision of Type O+ erythrocytes and Kathy Andrews QIMR for *P. falciparum* strains.

Supporting Information Available: NMR spectra for 5,8-dihydroxy-6-methoxyonychine (1) and 5-hydroxy-6-methoxyonychine (2). This material is available free of charge via the Internet at http://pubs.acs.org.
References and Notes

Table 1. NMR Data of 5,8-dihydroxy-6-methoxyonychine (1) and 5-hydroxy-6-methoxyonychine (2).\(^a\)

<table>
<thead>
<tr>
<th>position</th>
<th>(\delta_H) mult. ((J) in Hz)</th>
<th>(\delta_C)</th>
<th>HMBC</th>
<th>(\delta_H) mult. ((J) in Hz)</th>
<th>(\delta_C)</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>146.4</td>
<td></td>
<td></td>
<td>146.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Me</td>
<td>2.53 s</td>
<td>16.5</td>
<td>1, 2, 9, 9a</td>
<td>2.53 s</td>
<td>16.4</td>
<td>1, 2, 9, 9a</td>
</tr>
<tr>
<td>2</td>
<td>7.09 d (5.4)</td>
<td>124.9</td>
<td>1-Me, 3, 9, 9a</td>
<td>7.09 d (5.2)</td>
<td>124.6</td>
<td>1-Me, 3, 9, 9a</td>
</tr>
<tr>
<td>3</td>
<td>8.38 d (5.4)</td>
<td>151.1</td>
<td>1, 2, 4a</td>
<td>8.41 d (5.2)</td>
<td>151.8</td>
<td>1, 2, 4a</td>
</tr>
<tr>
<td>4a</td>
<td>163.1</td>
<td></td>
<td></td>
<td>164.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>123.0</td>
<td></td>
<td></td>
<td>125.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>136.7</td>
<td></td>
<td></td>
<td>142.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-OH (b,c)</td>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>156.1</td>
<td></td>
<td></td>
<td>154.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-OMe</td>
<td>3.83 s</td>
<td>55.9</td>
<td>6, 7</td>
<td>3.90 s</td>
<td>56.0</td>
<td>6, 7</td>
</tr>
<tr>
<td>7</td>
<td>6.40 s</td>
<td>102.9</td>
<td>5, 6, 8, 8a, 9</td>
<td>6.97 d (8.2)</td>
<td>112.4</td>
<td>5, 6, 8a, 9</td>
</tr>
<tr>
<td>8</td>
<td>151.7</td>
<td></td>
<td></td>
<td>7.20 d (8.2)</td>
<td>116.5</td>
<td>4b, 6, 7, 9</td>
</tr>
<tr>
<td>8-OH (10.13^c)</td>
<td></td>
<td></td>
<td></td>
<td>(c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a</td>
<td>110.1</td>
<td></td>
<td></td>
<td>127.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>188.6</td>
<td></td>
<td></td>
<td>190.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td>126.1</td>
<td></td>
<td></td>
<td>125.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Recorded in DMSO-\(d_6\) at 30 °C.

\(^b\) Signal not observed.

\(^c\) Interchangeable signals.
Figure 1. Partial structures of 1.
Antimalarial Activity of Azafluorenone Alkaloids from the Australian Tree *Mitrephora diversifolia*

Daniela Mueller, Rohan A. Davis, Sandra Duffy, Vicky M. Avery, and Ronald J. Quinn

Eskitis Institute, Griffith University, Brisbane, QLD 4111, Australia.

![Chemical Structure](image)

5,8-dihydroxy-6-methoxyonychine