An efficient 8-step enantioselective total synthesis of (+)-angelmarin, starting from commercially available umbelliferone, has been achieved. Key reactions include olefin cross-metathesis and a Shi epoxidation–cyclization sequence.

Cancer cells within rapidly growing tumours are often subject to low oxygen and nutrient supply, and show remarkable tolerance to such starvation conditions. Pancreatic cancer is the most deadly of human malignancies, with the lowest 5-year survival rates of all cancers (generally <5%). It is unresponsive to most current chemotherapeutic agents and displays an astonishing tolerance to extreme nutrient-deprivation over prolonged periods of time.

An “anti-austerity” therapeutic strategy, targeting this metabolic adaptation of cancer cells, was proposed in 2000 by Esumi and coworkers. Through the development of an assay method for anti-austerity activity, several natural products have been identified with preferential cytotoxicity to PANC-1 cells in nutrient-deprived medium while showing no activity in nutrient-sufficient medium. Two of these compounds, kigamicin D and arctigenin, were further demonstrated to suppress tumour growth of pancreatic cancer cell lines in nude mice.

In an effort to identify new anti-austerity natural products, Kadota and coworkers reported the structure of (+)-angelmarin, isolated by bioassay-guided fractionation of the CH$_2$Cl$_2$-extract of *Angelica pubescens*. Angelmarin (1) shows 100% preferential cytotoxicity (PC$_{100}$) against PANC-1 cells at 0.01 µg/mL. The absolute configuration of this new natural product was assigned through analysis of its circular dichroism spectrum and comparison of specific rotation values for its saponification product to that reported for columbianetin (2), a compound identified in 1964 from hydrolysis of two related natural products from *Lomatium columbianum*.

The potent bioactivity of 1 in this unique therapeutic area motivated us to develop an efficient and scalable total synthesis that would allow ready access to structural analogues for biological evaluation and the elucidation of structure–activity relationships (SAR). Our retrosynthetic approach relies on initial disconnection of 1 across the ester to give columbianetin (2) and p-hydroxycinnamic acid (Scheme 1). In turn, 2 would be derived from epoxide 3, via base-mediated 5-exo-tet cyclization, and the latter compound would be obtained by asymmetric epoxidation of ostheno (4), using the Shi protocol.

Racemic columbianetin has previously been prepared by Shipchandler (1970), Steck (1971), and Franke (1971). The syntheses of Steck and Franke utilized a base-mediated 5-exo-tet cyclization of a phenolic epoxide (3) to achieve the dihydrobenzofuran framework. Franke’s synthesis of rac-columbianetin was the most efficient to date, providing 2 in 5 steps from commercially available substrates, cf. Shipchandler (ca. 2% over 10 steps) and Steck (ca. 1% over 4 steps). As illustrated in Scheme 2, Franke converted commercially

![Scheme 1. Retrosynthetic analysis for (+)-angelmarin.](image-url)
available umbelliferone (5) to osthenuol (4), via phenol alkylation with 3-chloro-3-methyl-1-butyne (6), alkyn reduction using Lindlar’s catalyst, and a notably regioselective Claisen rearrangement of 7, according to a three step procedure previously developed by Taylor. Epoxidation of osthenuol (4), followed by cyclization in the presence of sodium carbonate, provided rac-columbianetin (2) in ca. 46% yield over the two steps.

We noted an opportunity to modify the Franke-Taylor strategy by avoiding the use of relatively expensive 3-chloro-3-methyl-1-butyne (6), in favour of a simpler allyl ether Claisen rearrangement, followed by olefin cross-metathesis to convert the allyl substituent to the desired isoprenyl moiety. This approach is cost effective, highly scalable and has the advantage that analogues of the natural product may be readily accessed through the use of different cross-metathesis partners, greatly facilitating the future extension of this work to explore structure-activity relationships for 1. Furthermore, compared to previous work, our approach to the key intermediate, columbianetin, via Shi epoxidation allows enantiodivergent access through the use of either enantiomer of the chiral ketone catalyst.

Scheme 3. Synthesis of osthenuol via cross metathesis.

Our synthetic sequence began with alkylation of umbelliferone, followed by Claisen rearrangement of allyl ether 8 in refluxing N,N-diethylaniline to yield 9 (Scheme 3). These steps utilized precedent, highly scalable procedures, requiring no chromatographic purification steps. Cross metathesis of terminal alkene 9 with 2-methyl-2-buten-1-yne, in the presence of Grubbs’ second generation catalyst was successful on small scales (~200 mg of substrate) under typical reaction conditions (15 mol% catalyst, 0.015 M in 1:1 v/v 2-methyl-2-buten–CH2Cl2). Upon scaling up (>1 g), where the use of large quantities of 2-methyl-2-buten became uneconomical, we observed the formation of significant quantities of the insoluble homodimerization product 10 when the reaction was performed at higher concentration and/or with lower quantities of 2-methyl-2-buten, with concomitant low yields of 4. The formation of 10 was circumvented, and the quantity of 2-methyl-2-buten minimized, by slow addition of a dilute solution of 9 (0.02 M in CH2Cl2) to a refluxing solution of Grubbs II (5 mol%) in 1:1 v/v 2-methyl-2-buten–CH2Cl2 (see the Experimental Section for details).

We next sought to exploit the Shi asymmetric epoxidation procedure for the enantioselective conversion of osthenuol (4) to (+)-columbianetin, via epoxide 3. Applying the model offered by Shi to our system (Figure 1), we anticipated approach of the dioxirane catalyst from the bottom face of osthenuol (as shown). Following olefin epoxidation, 5-exo-tet cyclization of the corresponding epoxide onto the resulting epoxide was thought likely to occur in situ under the basic conditions, to yield (S)-columbianetin, corresponding to the natural (+)-enantiomer.

Figure 1. Anticipated selectivity for the Shi epoxidation.

Epoxidation of osthenuol with m-CPBA in the presence of K2CO3 readily yielded rac-columbianetin (2) in 82% yield (Table 1, entry 1). Application of commonly-used Shi epoxidation conditions, which involve simultaneous syringe pump addition of aqueous K2CO3 and Oxone solutions to a buffered, biphasic reaction mixture of substrate and D-fructose-derived catalyst (11) in DMM–CH3CN–H2O, resulted in very slow epoxidation of osthenuol (4) providing low yields of 2, with negligible enantioselectivity (Table 1, entries 2 and 3). Attempts to optimize this reaction by varying concentrations and ratios of reagents were not successful. Similarly, little improvement in ee was observed when Oxone was replaced with H2O2 as described in an alternative procedure published by Shu and Shi (Table 1, entry 4). We reasoned that the observed lack of enantioselectivity in these epoxidations is due to the presence of the free phenol functionality in the substrate. To the best of our knowledge, there are no reported examples of Shi epoxidations in the presence of a phenol. Low enantioselectivities have previously been reported for some aliphatic alcohol substrates (at pH < 10), with epoxidation by Oxone itself being implicated. However, unlike these reported examples, careful control of pH did not improve selectivity in our system. We propose that the low enantioselectivities we observed are due to significant water solubility of the phenol substrate at the high pH (ca. 10) required for efficient oxidation of 11 by Oxone, resulting in direct epoxidation by Oxone representing the major oxidation pathway.

In an effort to improve the enantioselectivity of the above procedure, we next sought to mask the phenol of osthenuol, prior to epoxidation. Our choice of protecting group was restricted by both the alkaline epoxidation conditions and the knowledge that subsequent deprotection conditions would need to be non-acidic, in order to avoid an undesired, acid-promoted, 6-endo-tet cyclization of the phenol onto the epoxide 3. With this in mind, we prepared tert-butyldimethylsilyl (TBS) ether derivative 12a. Gratifyingly, Shi epoxidation of 12a using standard conditions, followed by
treatment of the crude product with TBAF in THF, yielded (+)-columbianetin (2) in 49 % yield and 70% ee (Table 1, entry 5).

Table 1. Shi epoxidation study: synthesis of (+)-columbianetin.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Method and conditions</th>
<th>Yielda</th>
<th>eeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>m-CPBA, K₂CO₃, CH₂Cl₂, RT</td>
<td>82%</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>A (0.2 eq. II, RT)</td>
<td>35%</td>
<td>5%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>A (1 eq. II, RT)</td>
<td>39%</td>
<td>5%</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>A (1 eq. 11, 0 °C)</td>
<td>42%</td>
<td>9%</td>
</tr>
<tr>
<td>5</td>
<td>12a</td>
<td>A (0.2 eq. II, RT), then TBAF, THF, RT, 2 h</td>
<td>49%</td>
<td>70%</td>
</tr>
<tr>
<td>6</td>
<td>12b</td>
<td>A (0.2 eq. II, RT), then TBAF, THF, RT, 2 h</td>
<td>65%</td>
<td>68%</td>
</tr>
<tr>
<td>7</td>
<td>12b</td>
<td>A (1 eq. II, RT), then TBAF, THF, RT, 2 h</td>
<td>66%</td>
<td>70%</td>
</tr>
<tr>
<td>8</td>
<td>12b</td>
<td>A (0.2 eq. II, 0 °C), then TBAF, THF, RT, 2 h</td>
<td>68%</td>
<td>71%</td>
</tr>
<tr>
<td>9</td>
<td>12b</td>
<td>B (1 eq. II, RT), then TBAF, THF, RT, 2 h</td>
<td>31%</td>
<td>59%</td>
</tr>
<tr>
<td>10</td>
<td>12c</td>
<td>A (1 eq. II, RT), then TBAF, THF, 50 °C, 16 h</td>
<td>71%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Method A: Ketone 11 (0.2-1 eq.), TBAS (0.2 eq.), Oxone (1.8 eq.), K₂CO₃ (7.2 eq.), MeCN-DMM-0.05 M Na₂B₄O₇ in 0.004 M eq. Na₂EDTA (1:2:2 v/v).

Method B: Ketone 11 (1 eq.), and H₂O₂ (4.0 eq.) in CH₂CN-20 M K₂CO₃ in 0.0040 M Na₂EDTA (1:1 v/v), 0 °C.

* Isolated yields

Approximate ee values were determined by polarimetric analysis in comparison to literature specific rotation values for (+)-2. The correlation between optical purity and ee for 2 was validated with material of 75% ee, see below and ref. 25.

Scheme 4. Completion of the total synthesis.

We noted the TBS ether was somewhat labile under the basic epoxidation conditions, as a small amount of columbianetin was observable by ¹H NMR prior to TBAF treatment. Thus, the significantly more base-stable triisopropylsilyl (TIPS) ether 12b was prepared. Shi epoxidation of 12b, followed by fluoride treatment, resulted in considerably improved yields but similar ee’s (Table 1, entries 6-8). Unfortunately, although columbianetin (2) could be recrystallized from EtOAc/hexane, this process yielded no improvement in ee beyond 75%. Application of the alternative, H₂O₂-mediated, Shi epoxidation conditions led to decreased yield and ee (Table 1, entry 9). Based on the transition state model illustrated in Figure 1, we considered the possibility that the silyl protection of the phenol led to unfavourable steric interaction between this bulky group and the upper acetonide. With this in mind, we prepared a more flexible, and potentially less sterically demanding, derivative 12c bearing a 2-(tert-butylidinephosphoryl)ethyl (TBDPSE) protecting group. Epoxidation of 12c and deprotection/cyclization of the crude product yielded (+)-columbianetin with a slight improvement in yield and enantioselectivity (Table 1, entry 10).

To complete the total synthesis of angelmarin, we sought to esterify the tertiary alcohol of (+)-columbianetin (2) directly with coumeric acid (13, Scheme 4). Unsurprisingly, the presence of the nucleophilic phenol of coumeric acid made standard esterification procedures untenable. Furthermore, our efforts to achieve acid promoted esterification of columbianetin, via a tertiary carbocation, were hampered by lack of reactivity under mild conditions, while more forceful acidic conditions, eg. p-toluene sulfonic acid (TsOH) in refluxing toluene, resulted in elimination/isomerization to give the corresponding benzoferan. A more lucrative, and ultimately successful, approach involved treatment of (+)-columbianetin with Meldrum’s acid (14) to afford carboxylic acid 15. Crude 15, when heated with 4-hydroxybenzaldehyde (16) in pyridine in the presence of piperidine, underwent a Doebner–Knoevenagel condensation to yield (+)-angelmarin (1) in 82% over the 2 steps. Synthetic 1 provided spectroscopic data in full accordance with that reported for the natural product. The measured specific rotation [α]D²⁵ +163 (c 0.2, CHCl₃), cf. +218.7 (c 0.025, CHCl₃), matched well in both sign and magnitude, validating the absolute configuration assigned for the natural product.

Experimental Section

Osthollen (4). A solution of 2-methyl-2-buten (50 mL) and dichloromethane (50 mL) was briefly deoxygenated by purging with argon, before Grubbs’ 2nd generation catalyst (0.367 g, 0.433 mmol) was added. The reaction mixture was
heated to reflux (oil bath temperature of 45 °C) and a warm (40 °C) solution of 9 (1.75 g, 8.66 mmol) in deoxygenated CH2Cl2 (400 mL) was added via cannula over 2 hours. The reaction was heated for an additional 2 hours, then cooled to room temperature, absorbed onto silica, and purified via column chromatography (gradient elution with ethyl acetate in petroleum spirits) to yield (+)-2 (1.79 g, 7.80 mmol, 90%) as a pale green solid. m.p. = 89-91 °C; Rp = 0.57 (50% ethyl acetate in petroleum spirits); IR (neat) ν = 3270, 1694, 1573, 1511, 1437, 1373, 1337, 1289, 1256, 1189, 1169, 1137, 1107, 1084, 1051, 883 cm⁻¹; 1H NMR (500 MHz, CDCl3) δ 7.62 (d, J = 9.5 Hz, 1H), 7.22 (d, J = 8.5 Hz, 1H), 6.81 (d, J = 8.5 Hz, 1H), 6.30 (s, 1H), 6.42 (d, J = 9.5 Hz, 1H), 5.27 (t, J = 7.0 Hz, 2H), 3.62 (d, J = 7.0 Hz, 2H), 1.86 (s, 3H), 1.75 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 166.5, 164.1, 161.6, 158.4, 151.2, 144.6, 144.3, 129.9, 128.9, 126.6, 116.1, 115.9, 113.6, 113.1, 112.0, 106.9, 89.2, 82.2, 7.25, 22.1, 21.2; HRMS (ESI-TOF) calculated for C14H14O3Na [M+Na⁺] = 253.0835, found 253.0830.

References
14. 3-Chloro-3-methyl-1-butyne (6) is available for $96.20 for 5 g.
18. Olefin 10 precipitated from the reaction mixture, was isolated by filtration, and identified by NMR analysis in d6-DMSO.
20. The enantiomeric excess of 2 could not be determined using chiral HPLC under standard conditions, however, polarimetry proved satisfactory, due to the large specific rotation reported for (+)-columbianetin, see ref. 5b.
25. Synthetic 1 was obtained from 2 of 75% ee by polarimetry (Table 1, entry 8). The specific rotation for synthetic 1 is consistent with 75% ee and this value was confirmed by chiral HPLC (see the Supporting Information).

Acknowledgment. We thank Professor Shigetoshi Kadota and Dr Suresh Awale (University of Toyama) for copies of authentic spectra for 1, the Australian Research Council (ARC) for funding (DP0986795) and a fellowship to M.J.C., and Drs Joshua Fischer and Hoan Vu (Griffith University) for preparation of t-BuPh2Si(Ch2)2OH and mass spectrometry, respectively.

Supporting Information Available: General experimental, experimental procedures, characterization data for compounds 8, 9, 12, 13, 14, (+)-2, rac-2 and H and 13C NMR spectra for all new compounds is available free of charge via the Internet at http://pubs.acs.org.