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ABSTRACT4

This paper describes the development of an efficient scaled boundary finite-element model5

(SBFEM) for the simulation of short-crested wave interaction with a concentric porous cylindri-6

cal structure. By weakening the governing differential equation in the circumferential direction,7

the SBFEM is able to solve analytically the weakened equation in the radial direction. Only the8

cylinder boundary on the circumference of the exterior porous cylinder is discretized with curved9

surface finite-elements, while a complete analytical representation is obtained for the radial differ-10

ential equation. Comparisons of the numerical results on wave diffraction forces and surface wave11

elevations at the cylinder to available analytical solutions demonstrate that excellent accuracy can12

be achieved by the SBFEM with a very small number of surface finite-elements. The influence13

of varying the wave parameters as well as the system configuration on the system hydrodynamics,14

including the wave force, wave run-up and diffracted wave contour is examined and extensive re-15

sults on them are presented. This parametric study will help determine the various hydrodynamic16

effects of a concentric porous cylindrical structure.17

CE Database subject headings: FINITE ELEMENT METHOD; WAVE DIFFRACTION;18

POROUS MEDIA; CYLINDER19

INTRODUCTION20

Coastal and offshore structures are often constructed with one or more protective porous layers,21
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in order to reduce the direct wave impact on them. Examples are rock-filled porous breakwaters22

outside harbors, and concentric porous outer protective structure with the main structure in its23

interior. One example of this application is the successful Ekofisk gravity offshore structure in the24

North Sea (see Fig. 1). For these reasons, wave motion through a porous structure has attracted25

considerable attention among researchers in coastal and ocean engineering (e.g., Vijayalakshmi et26

al., 2007).27

Investigations on waves past a porous structure have primarily been concentrated on three en-28

gineering applications: 1) the hydrodynamic effect of a porous structure on incoming wave trains;29

2) the use of a porous structure as a wavemaker; and 3) the use of a porous structure as a breakwa-30

ter in a harbor (Chwang and Chan, 1998). In most cases, Darcy’s law for a homogeneous porous31

medium has been applied.32

A brief overview of the chronological development of research on porous structures is pre-33

sented below. Tuck (1971) and Porter (1972) derived formal solutions using potential theory for34

the transmission of water waves through a thin plate with a small gap in infinite water depth.35

Guiney et al. (1972) extended Tuck’s (1971) theory to incorporate a finite barrier thickness and ob-36

tained results, which were validated by a set of experiments. The thickness of the porous structure37

was found to have a pronounced effect on reducing energy transmission. Assuming normally inci-38

dent waves on a long homogeneous porous structure of rectangular cross section, Madsen (1974)39

presented a simple explicit solution for the transmission and reflection coefficients using a lin-40

earized theory. Nasser and McCorquodale (1975) studied unsteady non-Darcy flow in rectangular41

rock-filled embankments with impervious cores, in which the effect of nonlinear, shallow water42

waves were examined through wave tank experiments.43

Chwang (1983) proposed a linearized porous-wavemaker theory to analyze small-amplitude44

surface waves produced by horizontal oscillations of a porous vertical plate. The theory was later45

applied to analyze surface waves generated by a piston-type porous wavemaker near the end of a46

semi-infinitely long channel of constant depth (Chwang and Li, 1983). Several studies on the phys-47

ical phenomenon of wave-trapping due to a porous plate or a concentric porous cylinder system48
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using the porous-wavemaker theory were reported (e.g., Chwang and Dong, 1984; Faltas, 1996).49

Dalrymple et al. (1991) studied the reflection and transmission of a wave train at an oblique50

angle of incidence by an infinitely long porous breakwater. Huang and Chao (1992) studied the51

inertial effect of the porous breakwater based on Biot’s theory of poroelasticity. Yu and Chwang52

(1994a) investigated the resonance in a harbor with porous breakwaters with the wave entering53

at an arbitrary angle. Yu and Chwang (1994b) performed extensive study on the transmission54

characteristics of waves past a porous structure. The wave behavior within the porous medium55

was also investigated. It was found that there is an optimum thickness for a porous structure56

beyond which any further increase of the thickness may not lead to an appreciable improvement57

in reducing its transmission and reflection characteristics. Yu and Chwang (1994c) employed the58

boundary integral method to study wave diffraction by a horizontal porous plate submerged at a59

distance below the free surface in a fluid of constant depth. Chwang and Wu (1994) extended this60

study to wave diffraction by a porous disk. Wang and Ren (1993) also studied the performance61

of a flexible and porous breakwater. Additional related work can be found in the review article of62

Chwang and Chan (1998).63

Though considerable research efforts have been devoted to the wave interaction with porous64

structures, relatively limited attention has been focused on the wave diffraction by a concentric65

bottom-mounted porous cylindrical structure, where the interior cylinder is impermeable and the66

exterior cylinder is thin and porous. Wang and Ren (1994) investigated analytically the plane wave67

diffraction by the above-mentioned system. They found that hydrodynamic forces on the interior68

cylinder as well as wave amplitudes around the windward side of the interior cylinder are reduced69

when compared to the case of a direct wave impact on the interior cylinder. As the annular spacing70

increases, the hydrodynamic force on the interior cylinder decreases. It was further shown that,71

as the porosity of the exterior cylinder increases, the hydrodynamic force on the interior cylinder72

increases. Li et al. (2003) reported similar results from their experimental and numerical study73

with only partial porosity in the circumferential direction of the exterior cylinder. Darwiche et74

al. (1994) studied the wave diffraction by a two-cylinder system, with the exterior cylinder being75
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porous only in the vicinity of free surface. Williams and Li (1998) further extended the work by76

mounting the interior cylinder on a storage tank. Zhong and Wang (2006) obtained solitary wave77

solutions for a concentric porous cylinder system.78

The understanding of the problem, however, is still far from being complete. One of the most79

noticeable limitations in the previous studies is the two-dimensional plane wave assumption. It is80

noted that wind-generated waves in real oceans are much better represented by short-crested waves81

(3D) than by plane waves (2D) (Zhu, 1993; Zhu and Moule, 1994). Multi-directional waves may82

also arise, from the oblique interaction of two travelling plane waves or intersecting swell waves,83

from the reflection of waves at non-normal incidence off a vertical seawall or a breakwater, as84

well as from diffraction about the surface boundaries of a structure of finite length (Fuhrman and85

Madsen, 2006). Such waves are of paramount importance in an engineering design. Unlike the86

plane waves propagating in a single direction, and the standing waves fluctuating vertically in a87

confined region, short-crested waves can be doubly periodic in two horizontal directions, one in88

the direction of propagation and the other normal to it (Tsai et al., 1994).89

Zhu (1993) studied the diffraction problem for a circular cylinder in short-crested waves using90

linear potential wave theory and found that the pressure distribution and wave run-up on the cylin-91

der were quite different from those of plane incident waves. Their patterns become very complex92

aska (i.e., total incident wave numberk times cylinder radiusa.) becomes large. The hydrody-93

namic forces on the cylinder become smaller as the spreading of the incident short-crested waves94

increases. Subsequently, Zhu and Moule (1994) observed that the hydrodynamic force induced by95

short-crested waves varies with the phasing of the waves along the spreading angle.96

However, research on the short-crested wave interaction with a concentric porous cylindrical97

structure has been relatively few. Moreover, questions may arise whether the conclusions drawn98

by Zhu (1993) is still valid for a porous concentric cylindrical structure. Also, does the free surface99

in the annular space remain short-crested and what about the lee region?100

The present study aims at answering these questions in a quantitative manner by developing a101

new numerical model. Recently, a semi-analytical method, called scaled boundary finite-element102
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method (SBFEM) for solving linear partial differential equations has found successful applica-103

tion to soil-structure interaction problems. The SBFEM method was proposed by Song and Wolf104

(1997) and systematically described by Wolf (2003). Combining the distinct advantages of the105

finite-element and boundary-element methods (BEM), only the structure boundary is discretized106

with surface finite-elements. This, in turn, transforms the governing partial differential equations107

to a set of ordinary differential equations, and solves them analytically. The method represents108

singularities and unbounded domains accurately and efficiently when compared to the complete109

finite-element method and requires no fundamental solution as needed by the boundary-element110

method. Fewer elements are required to obtain very accurate results (Wolf, 2003).111

Deeks and Cheng (2003) developed a scaled boundary finite-element solution to the two-112

dimensional uniform potential flow around obstacles and revealed its inherent ability and advan-113

tages to model unbounded fluid problems, as well as, the singular points in the near field of bluff114

obstacles.115

Only recently has the SBFEM been applied to wave diffraction in which the radiation condi-116

tion at infinity is required to be satisfied by both the incident and scattered waves. Li et al. (2004)117

attempted to solve the problem of plane wave diffraction by a vertical cylinder using SBFEM with118

only limited success in obtaining semi-analytical solution for high frequency waves. Similar to119

the approach of Wolf (2003) in obtaining a solution for soil-structure interaction, Li et al. (2004)120

adopted a power series in the form (
+∞∑
m=0

Cmξ̄−m). Since the solution obtained as asymptotic ex-121

pansions involves sums to infinity, for large values ofξ̄ the series approaches the exact solution122

rapidly and only a few terms in the series need to be computed. However, this is only the case at123

the cylinder boundary (̄ξ = ka, wherek anda denote the wave number and the radius of the cylin-124

der respectively) for high frequency waves. For low frequency waves, the series converges very125

slowly, hardly approaching the exact solution . Therefore, additional numerical methods, such as,126

the Runge-Kutta scheme, were proposed to solve the radial differential equation for low frequency127

waves. Such compromised approach, however, significantly diminishes the advantages of SBFEM128

exhibited in dealing with bounded fluid domain problems.129
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Tao et al. (2007) applied the SBFEM to solve wave interaction with a single circular cylinder.130

Instead of using a power series, Tao et al. (2007) chose Hankel function to solve the Helmholtz131

equation in the unbounded domain. The radial differential equation is solved fully analytically in132

all frequency ranges. Without relying on any other numerical schemes, the semi-analytical model133

for the plane-wave diffraction by a single circular cylinder is shown to reproduce the analytical so-134

lution for all the physical properties including wave run-up, effective inertia and drag coefficients,135

and total force very accurately and at very low computational cost.136

This paper develops a SBFEM model for simulations of short-crested wave interaction with137

a concentric porous cylindrical structure. The presence of the wave-structure interaction in both138

the bounded and unbounded domains imposes particular challenges to the numerical model devel-139

opment. The following section provides description of the governing equations and summarizes140

it for the particular physical problem. Following this section, the transformation of the above141

governing scaled boundary finite-element equations and the corresponding boundary conditions142

are presented and the detailed solution techniques are discussed. Only a few finite elements dis-143

cretized on the circumference of the cylinders are shown to be sufficient to obtain accurate results.144

Finally, detailed numerical results on wave forces and surface elevations over a broad range of145

incident short-crested wave parameters as well as structure configurations including the porosity146

of the exterior cylinder and the annular gap between the two cylinders are presented.147

MATHEMATICAL FORMULATION148

Consider a monochromatic short-crested wave train propagating in the direction of the positive149

x axis. A structure consisting of two concentric fixed vertical cylinders extend from the sea bottom150

to above the free surface of the ocean alongz axis. The origin is placed at the center of the151

cylinders on the mean water surface (see Fig. 2). The exterior cylinder is made porous and the152

interior cylinder is impermeable. The fluid domain is divided into two regions, the annular region153

Ω1 and the region of the outside of the exterior cylinderΩ2. The following notation have been used154

in the paper:Φj = total velocity potential,ΦI = velocity potential of incident wave,ΦS = velocity155

potential of scattered wave,k = total wave number,kx = wave number inx direction,ky = wave156
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number iny direction,ω = wave frequency,h = water depth,A = amplitude of incident wave,157

a = interior cylinder radius,b = exterior cylinder radius,t = time,ρ = mass density of water, and158

g = gravitational acceleration. The subscriptsj(j = 1, 2) denote the physical parameters in the159

regionΩj(j = 1, 2).160

Assuming the fluid to be inviscid, incompressible and the flow to be irrotational, the fluid161

motion can be described by a velocity potentialΦj satisfying the Laplace equation162

∇2Φj(x, z) = 0 in Ωj, (1)

subject to the combined free surface boundary condition163

Φj,tt + gΦj,z = 0 at z = 0, (2)

and the bottom condition164

Φj,z = 0 at z = −h, (3)

where the comma in the subscript designates partial derivative with respect to the variable follow-165

ing the comma.166

The velocity potentials can be decomposed by separating the vertical variablez and the timet167

from each component as168

Φj(x, y, z, t) = φj(x, y)Z(z)e−iωt in Ωj, (4)

ΦI
2(x, y, z, t) = φI

2(x, y)Z(z)e−iωt in Ω2, (5)

ΦS
2 (x, y, z, t) = φS

2 (x, y)Z(z)e−iωt in Ω2, (6)

where169
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Z(z) =
cosh k(z + h)

cosh kh
. (7)

This procedure leads to the sea bottom condition being automatically satisfied, and the lin-170

earized free surface boundary condition is satisfied using the following dispersion relationship171

ω2 = gk tanh kh. (8)

The relationship between the total velocity potential, and the scattered, and incident wave ve-172

locity potentials is173

Φ2 = ΦI
2 + ΦS

2 , φ2 = φI
2 + φS

2 in Ω2. (9)

Taylor (1956) showed that the fluid flow passing through the porous boundary can be essentially174

assumed to obey Darcy’s law if the boundary is made of fine pores. Hence, the porous flow velocity175

is linearly proportional to the pressure difference between the two sides of the porous boundary,176

and the boundary condition on exterior porous cylinder can be expressed as177

φ1,n = −φ2,n = iG0k(φ1 − φ2) on r = b, (10)

whereG0 = ρωd
µk

(Chwang and Li, 1983), is a measure of the porous effect,µ is the coefficient178

of dynamic viscosity,d is a material constant having the dimension of a length, andn denotes the179

normal to the boundary. Such an approach was firstly applied to wave study by Chwang (1983)180

and subsequently by many other researchers.181

Thus, the problem becomes to two-dimensional at the free surface. The functionφS
2 (x, y) in182

Ω2 is governed by the Helmholtz equation with the boundary condition at the interface of fluid183

and porous cylinder, and the radiation condition at infinity, namely, the Sommerfeld condition as184

follows:185
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∇2φS
2 + k2φS

2 = 0 in Ω2, (11)

φS
2,n = −iG0k(φ1 − φS

2 − φI
2)− φI

2,n on r = b, (12)

lim
kr→∞

(kr)1/2
(
φS

2,r − ikφS
2

)
= 0 in Ω2, (13)

wherer is the radial axis, andi =
√−1.186

The functionφ1(x, y) in Ω1 is governed by the Helmholtz equation with the boundary condi-187

tions at the interface of fluid and interior solid cylinder atr = a and exterior porous cylinder at188

r = b:189

∇2φ1 + k2φ1 = 0 in Ω1, (14)

φ1,n = 0 on r = a, (15)

φ1,n = iG0k(φ1 − φS
2 − φI

2) on r = b. (16)

The velocity potential of the linear short-crested incident wave (Fuchs, 1952) travelling princi-190

pally in the positivex direction is given by the real part of191

ΦI = −igA

ω
Z(z)ei(kxx−ωt) cos(kyy) in Ω2. (17)

Eqs. (11)-(16) constitute two sets of the governing equation and boundary conditions for the192

diffraction of short-crested waves by concentric vertical porous cylindrical structure, correspond-193

ing to boundary value problems in a bounded domain and an unbounded domain respectively. After194

obtainingφS
2 , Φ2 andΦ1 by solving the above boundary-value problems, the velocity, free surface195
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elevation and the dynamic pressure can be calculated respectively from196

vj = ∇Φj, (18)

ηj =
iω

g
φj, (19)

pj = −ρΦj,t. (20)

SCALED BOUNDARY FINITE-ELEMENT TRANSFORMATION197

In this section,φ1 andφS
2 will both be denoted asφ for brevity, and the regionΩj will be198

denoted asΩ. If the velocity boundary is defined byΓv, we have199

φ,n = v̄n, on Γv, (21)

where the overbar denotes a prescribed value.200

The finite-element method requires the weighted residuals of the governing equation to be zero.201

Hence Eqs. (11), (14) and (21) are multiplied by a weighting functionw and integrated over the202

flow domain and the boundary. Performing integration by parts, the resulting equation becomes203

∫

Ω

∇T w∇φdΩ−
∫

Ω

wk2φdΩ−
∮

Γ

wv̄ndΓ = 0. (22)

SBFEM defines the domainΩ by scaling a single piecewise-smooth curveS relative to a scaling204

center(x0, y0), which is chosen at the cylinder center in this case (see Fig. 3). The circumferential205

coordinates is anticlockwise along the curveS and the normalized radial coordinateξ is a scaling206

factor, defined as 1 at curveS and 0 at the scaling center. The whole solution domainΩ is in the207

range ofξ0 ≤ ξ ≤ ξ1 ands0 ≤ s ≤ s1. The two straight sectionss = s0 ands = s1 are called208

side-faces. They coincide, if the curveS is closed. For bounded domain,ξ0 = 0 andξ1 = 1;209
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whereas, for unbounded domain,ξ0 = 1 andξ1 = ∞. Therefore the Cartesian coordinates are210

transformed to the scaled boundary coordinateξ ands with the scaling equations211

x = x0 + ξxs(s), y = y0 + ξys(s). (23)

By employing SBFEM, an approximate solution ofφ is sought as212

φA(ξ, s) = N(s)a(ξ), (24)

whereN(s) is the shape function, the vectora(ξ) is analogous to the nodal values same as in FEM.213

The radial functionaj(ξ) represents the variation of the scattered wave potential in the radial axis214

ξ at each nodej, and the shape functionN(s) interpolates between the nodal potential values in the215

circumferential axiss. The separation of variable technique has its limitation in terms of boundary216

surfaces (Morse and Feshbach, 1953), since a completely general boundary surface will have the217

value of A varying both as functions ofξ and s and these two variables may not be separated218

with independent functions. However, for many axisymmetric structures, e.g., which are indeed of219

interest for offshore applications, this technique will work well in which the two variablesξ ands220

may be separated as shown in Eq. (24).221

By performing scaled boundary transformation, the operator∇ can be expressed as (Wolf,222

2003):223

∇ = b1(s)
∂

∂ξ
+

1

ξ
b2(s)

∂

∂s
, (25)

whereb1(s) andb2(s) are dependent only on the boundary definition224

b1(s) =
1

|J |





ys(s),s

−xs(s),s





, b2(s) =
1

|J |




−ys(s)

xs(s)





, (26)

and|J | is the Jacobian at the boundary225
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|J | = xs(s)ys(s),s − ys(s)xs(s),s. (27)

From Eqs. (18) and (25), the approximate velocity can be expressed as226

vA(ξ, s) = B1(s)a(ξ),ξ +
1

ξ
B2(s)a(ξ), (28)

where227

B1(s) = b1(s)N(s), B2(s) = b2(s)N(s),s. (29)

Applying the Galerkin approach, the weighting functionw can be formulated using the same228

shape function as in Eq. (24)229

w(ξ, s) = N(s)w(ξ) = w(ξ)T N(s)T . (30)

Substituting Eqs. (24), (25), (29) and (30) into Eq. (22) results in230

∫

Ω

[
B1(s)w(ξ),ξ +

1

ξ
B2(s)w(ξ)

]T [
B1(s)a(ξ),ξ +

1

ξ
B2(s)a(ξ)

]
dΩ

−
∫

Ω

k2w(ξ)T N(s)T N(s)a(ξ)dΩ−
∮

Γ

w(ξ)T N(s)T v̄ndΓ = 0,

(31)

where the incremental volume (Wolf, 2003) is231

dΩ = |J |ξdξds. (32)

For convenience, coefficient matrices are introduced here as232

12



E0 =

∫

S

B1(s)
T B1(s)|J |ds, (33)

E1 =

∫

S

B2(s)
T B1(s)|J |ds, (34)

E2 =

∫

S

B2(s)
T B2(s)|J |ds, (35)

M 0 =

∫

S

N(s)T N(s)|J |ds, (36)

Fs(ξ) = N(s0)
T (−v̄n(ξ, s0))|J(s0)|+ N(s1)

T (−v̄n(ξ, s1))|J(s1)|. (37)

The above integrals Eqs. (33)-(36) can be computed element by element and assembled to-233

gether for the entire boundary. Expanding Eq. (31) and integrating the terms containingw(ξ),ξ by234

parts with respect toξ using Green’s theorem leads to235

w(ξ1)
T

[
E0ξ1a(ξ1),ξ + ET

1 a(ξ1)−
∫

S

N(s)T (v̄n(ξ1, s))ξ1ds

]

−w(ξ0)
T

[
E0ξ0a(ξ0),ξ + ET

1 a(ξ0) +

∫

S

N(s)T (v̄n(ξ0, s))ξ0ds

]

−
∫ ξ1

ξ0

w(ξ)T

[
E0ξa(ξ),ξξ + (E0 + ET

1 − E1)a(ξ),ξ − E2
1

ξ
a(ξ) + k2ξM 0a(ξ)− Fs(ξ)

]
dξ

= 0.

(38)

To satisfy all sets of weighting functionw(ξ), the following conditions must be satisfied:236

E0ξ1a(ξ1),ξ + ET
1 a(ξ1) =

∫

S

N(s)T (v̄n(ξ1, s))ξ1ds, (39)

E0ξ0a(ξ0),ξ + ET
1 a(ξ0) = −

∫

S

N(s)T (v̄n(ξ0, s))ξ0ds, (40)

E0ξ
2a(ξ),ξξ + (E0 + ET

1 − E1)ξa(ξ),ξ − E2a(ξ) + k2ξ2M 0a(ξ) = ξFs(ξ). (41)

Eq. (41) is the so-called scaled boundary finite-element equation. By introducing the shape237
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function, the Helmholtz equation has been weakened in the circumferential direction, so that the238

governing partial differential equation is transformed to an ordinary matrix differential equation239

in radial direction. The rank of matricesE0, E1, E2, M 0 and vectora(ξ) is m (wherem is the240

number of nodes in the curveS). In the present study, the side-faces coincide so that the flow241

across the side-faces is equal and opposite, leading to vanishing of the termFs(ξ). Therefore, the242

final governing equation, Eq. (41), is a homogeneous second-order ordinary matrix differential243

equation in terms of matrix of rankm.244

Boundary conditions, Eqs. (12) and (13) or Eqs. (15) and (16), are weakened in the form of245

Eqs. (40) and (39) respectively, indicating the relationship between the integrated nodal flow on246

the boundary and the velocity potentials of the nodes. For the wave diffraction problem in the247

unbounded regionΩ2, ξ0 = 1 on the boundary of exterior porous cylinder andξ1 = +∞ at infinity.248

For the boundary-value problem in the bounded annular regionΩ1, ξ0 = 0 andξ1 = 1.249

SOLUTION PROCEDURE250

For the exterior porous cylinder, we have251

xs(s) = b cos(s/b), ys(s) = b sin(s/b). (42)

From Eqs. (23), (26), (27), (29) and (33)-(36),xs(s),s, ys(s),s, b1(s), b2(s), |J |, B1(s), B2(s),252

E0, E1, E2, andM 0 can be calculated accordingly. The following relationships hold:253

E1 = 0 · I , E−1
0 M 0 = b2I , (43)

E0 =
1

b

∫

S

N(s)T N(s)ds, (44)

whereI is the identity matrix of rankm.254

Using Eq. (43), pre-multiplying both sides of Eq. (41) byE−1
0 and simplifying, we have255

ζ2a(ζ),ζζ + ζa(ζ),ζ − E−1
0 E2a(ζ) + ζ2a(ζ) = 0, (45)
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where256

ζ = kbξ. (46)

Solution for unbounded domainΩ2257

Eq. (45) is the matrix form of Bessel’s differential equation. Considering the Sommerfeld258

radiation condition Eq. (13), it is logical to selectHrj
(ζ)Tj as a base solution of Eq. (45) in region259

Ω2.260

The solution fora2(ζ) is then expressed in the series form:261

a2(ζ) =
m∑

j=1

cjHrj
(ζ)Tj = TH(ζ)C, (47)

whereTj are vectors of rankm, cj are coefficients,Hrj
(ζ) are the Hankel functions of the first262

kind, and263

T = [T1, T2, · · · , Tm], (48)

H(ζ) = diag[Hr1(kbξ), Hr2(kbξ), · · · , Hrm(kbξ)], (49)

C = [c1, c2, · · · , cm]T , (50)

where “diag” denotes a diagonal matrix with the elements in the square brackets on the main264

diagonal.265

Substituting Eq. (47) into Eq. (45), and using the following properties of Hankel function266

ζ2H ′′
rj

(ζ) = −ζ2Hrj
(ζ) + ζHrj+1(ζ)− rjHrj

(ζ) + r2
jHrj

(ζ), (51)

ζH ′
rj

(ζ) = −ζHrj+1(ζ) + rjHrj
(ζ), (52)
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where the prime and the double prime denote the first and second derivatives with respect to the267

argumentζ respectively, we have268

m∑
j=1

(E−1
0 E2 − r2

j I)Tj · cjHrj
(ζ) = 0. (53)

For anycjHrj
(ζ), Eq. (53) yields269

(E−1
0 E2 − r2

j I)Tj = 0. (54)

Let λj be the eigenvalues ofE−1
0 E2, thenrj =

√
λj, andTj are the eigenvectors ofE−1

0 E2.270

Since the Sommerfeld radiation condition (13) or (39) has been satisfied by the Hankel func-271

tions, we now only consider the body boundary condition (40) of the circular cylinder272

E0kb
m∑

j=1

cjH
′
rj

(kb)Tj = −
[∫

S

N(s)T N(s)ds

]
v̄S

2n, (55)

wherev̄S
2n is the vector of nodal normal velocity of scattered wave in regionΩ2 on the body bound-273

ary.274

Solution for bounded domainΩ1275

Similar approach is applied to the regionΩ1. Assume276

a1(ζ) =
m∑

j=1

[c1
jJrj

(ζ) + c2
jYrj

(ζ)]Tj = T[J(ζ)C1 + Y(ζ)C2], (56)

wherec1
j andc2

j are coefficients,Jrj
(ζ) are the Bessel functions of the first kind,Yrj

(ζ) are the277

Bessel functions of the second kind, and278
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C1 = [c1
1, c

1
2, · · · , c1

m]T , (57)

C2 = [c2
1, c

2
2, · · · , c2

m]T , (58)

J(ξ) = diag[Jr1(kbξ), Jr2(kbξ), · · · , Jrm(kbξ)], (59)

Y(ξ) = diag[Yr1(kbξ), Yr2(kbξ), · · · , Yrm(kbξ)]. (60)

Again if λj is the eigenvalues ofE−1
0 E2, thenrj =

√
λj, andT is the eigenvector ofE−1

0 E2.279

Applying boundary conditions on the interior cylinder Eq. (40) and the exterior porous cylinder280

Eq. (39), respectively, we have281

C2 = −Y′−1
a J′aC1, (61)

E0kbT(J′bC
1 + Y′

bC
2) =

[∫

S

N(s)T N(s)ds

]
v̄1n, (62)

wherev̄1n is the vector of nodal total normal velocity in regionΩ1 on the body boundary of exterior282

cylinder.283

Combining Eqs. (10), (21), (24), (44), (47), (55), (56) and (62), and noting284

v̄I
2n + v̄S

2n = v̄2n = −v̄1n, (63)

wherev̄I
2n is the vector of nodal normal velocity of incident wave in the regionΩ2 on the body285

boundary of the exterior cylinder,a1(ξ) anda2(ξ) are solved as286

a1(ξ) = T[J(ξ)Y′
a − Y(ξ)J′a]W

−1(T−1āI
2 + HbhT−1v̄I

2n/k), (64)

a2(ξ) = THh(ξ)W−1[(J′bY
′
a − Y′

bJ
′
a)T

−1āI
2 + VT−1v̄I

2n/k], (65)
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where287

V = − 1

iG
(J′bY

′
a − Y′

bJ
′
a) + (JbY′

a − YbJ′a), (66)

W = V − Hbh(J′bY
′
a − Y′

bJ
′
a), (67)

and288

J′a = diag[J ′r1
(ka), J ′r2

(ka), · · · , J ′rm
(ka)], (68)

Y′
a = diag[Y ′

r1
(ka), Y ′

r2
(ka), · · · , Y ′

rm
(ka)], (69)

Jb = diag[Jr1(kb), Jr2(kb), · · · , Jrm(kb)], (70)

Yb = diag[Yr1(kb), Yr2(kb), · · · , Yrm(kb)], (71)

J′b = diag[J ′r1
(kb), J ′r2

(kb), · · · , J ′rm
(kb)], (72)

Y′
b = diag[Y ′

r1
(kb), Y ′

r2
(kb), · · · , Y ′

rm
(kb)], (73)

Hh(ξ) = diag[Hr1(kbξ)/H ′
r1

(kb), Hr2(kbξ)/H ′
r2

(kb), · · · , Hrm(kbξ)/H ′
rm

(kb)], (74)

Hbh = diag[Hr1(kb)/H ′
r1

(kb), Hr2(kb)/H ′
r2

(kb), · · · , Hrm(kb)/H ′
rm

(kb)]. (75)

For the limiting case of short-crested wave interacting with a hollow porous cylinder, i.e.a = 0,289

a1(ξ) anda2(ξ) are290

a1(ξ) = TJ(ξ)W−1(T−1āI
2 + HbhT−1v̄I

2n/k), (76)

a2(ξ) = THh(ξ)W−1(J′bT
−1āI

2 + VT−1v̄I
2n/k), (77)
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where291

V = − 1

iG
J′b + Jb, (78)

W = V − HbhJ′b. (79)

Using Eqs. (4), (5), (17), (21) and (24),v̄I
2n and āI

2 can be easily determined on the exterior292

cylinder boundary. From Eqs. (6), (9), (24), (64) and (65), the approximation of velocity potential293

in both regionΩ1 and regionΩ2 can be obtained.294

All the other physical properties of engineering interest including velocity, surface elevation,295

and pressure can now be determined based on the velocity potentials by Eqs. (18)-(20). The296

total force per unit length on the cylinder in the principal direction of wave propagation is then297

calculated as:298

dFx

dz
= −R

∫ 2π

0

p · cos(θ)dθ = 2πRP (kx, ky, k, R) · ρgA · Z(z)e−iωt, (80)

where the functionP (kx, ky, k, R) is the dimensionless parameter ofdFx/dz without the term299

ρgA · Z(z)e−iωt andR is the radius of the cylinder (a or b).300

The functionP (kx, ky, k, R) determines the first-order total horizontal force inx direction on301

the cylinder,Fx, which can be obtained by integrating Eqs. (80) with respect toz,302

Fx =

∫ 0

−h

dFx

dz
dz = 2πRP (kx, ky, k, R) · ρgAe−iωt · tanh(kh)/k. (81)

The total moment about an axis parallel to they-axis passing through the bottom of the cylinder303

is304

My =

∫ 0

−h

(z + h)
dFx

dz
dz = 2πRPx(kx, ky, k, R) · ρgAe−iωt · f(kh)/k2, (82)

where305
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f(kh) = [kh tanh(kh) + sech(kh)− 1]. (83)

It can be concluded from Eqs. (81) and (82) that only the functionP (kx, ky, k, R) needs to be306

discussed. The effective inertia coefficientCM and linear drag coefficientCD per unit height are307

defined as308

Re

(
dFx

dz

)
= ρπR2

(
CM U̇ + ωCDU

)
, (84)

whereU is the velocity of the incident waves at the origin of the cylinders in their absence and the309

dot represents its time derivative.310

From Eqs. (17), (80) and (84), we have311

CM = − 2Pi

kxR
, CD =

2Pr

kxR
, (85)

wherePr andPi are the real and imaginary parts ofP (kx, ky, k, R) respectively.312

From Eq. (85), the total horizontal force without the constant terms can be expressed as313

|2πRP | = πkxR
2
√

C2
M + C2

D. (86)

NUMERICAL MODEL VALIDATION314

The principal steps taken to validate the present SBFEM scheme and solution procedure are (1)315

convergence tests using varying number of elements discretized on the surface of the cylinders; (2)316

comparison with the available analytical solutions (Wang and Ren, 1994) of plane-wave interaction317

with a concentric porous cylindrical structure; and (3) comparison with the available analytical318

solutions (Zhu, 1993) of short-crested waves interacting with a single circular cylinder. Taking319

into account the symmetry of the physical problem, only half the concentric porous structure is320

considered. The exterior cylinder surface is discretized with three-node quadratic elements (see321

Fig. 4).322
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Wave run-up: plane waves and short-crested waves323

Fig. 5 is a comparison of wave run-up around the interior cylinder and exterior porous cylinder,324

between the present SBFEM results and the analytical solutions of Wang and Ren (1994). Results325

shown in Fig. 5 used the same parameter values as in Wang and Ren (1994) (i.e.,h = 15 m, b = 10326

m, a/b = 0.2, G0 = 1.0 and the wave-effect parameterCw = g/(ω2h) = 1.0). As can be seen327

in the figure, only two elements discretized over the cylinder boundary are sufficient to yield good328

agreement between the present SBFEM results and the analytical solutions.329

The run-up on a single circular cylinder due to short-crested waves is shown as solid lines in330

Fig. 6 from the analytical solutions of Zhu (1993). In order to compare these results with the331

SBFEM calculation, the values ofG0 is chosen properly in its limits. The run-ups on the interior332

cylinder and exterior cylinder are calculated with two limiting values assigned to the porous effect333

G0 for the exterior cylinder, namely,0 and+∞, respectively. WhenG0 = 0, the exterior cylinder334

becomes solid, so the fluid regionΩ1 remains at rest, and only the exterior cylinder is exposed to335

incident waves. On the other hand, the interior cylinder will be a single cylinder exposed to the336

incident wave asG0 = +∞. Other values are chosen to match the example of Zhu (1993), i.e.,337

a = 1 m, b = 2 m, kx = 1 m−1 andky = 1 m−1. Again, excellent agreement with the solutions of338

Zhu (1993) is found where the SBFEM model with only 6 elements gave almost identical solutions339

to the analytical approach. Moreover, the convergence of the SBFEM scheme for wave run-up, as340

the number of elements discretized on the cylinder surface increases, is clearly shown in Fig. 6,341

and is shown to depend on the dimensionless parameterska andkb. The relationship between the342

wave run-up andka in the SBFEM model was examined in more detail in Tao et al. (2007).343

Wave forces344

The dimensionless wave forces on the interior cylinder and exterior porous cylinder due to a345

plane wavevs. a/b for G0 = 1.0 are plotted in Fig. 7. Again, in order to compare with the346

analytical solutions of Wang and Ren (1994), the SBFEM results shown in the figure are calculated347

using the same parameter values as in Wang and Ren (1994). It can be seen that the SBFEM348

results calculated with only 4 surface elements on the cylinder boundary are almost identical to349
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the analytical solutions. The essential feature that the wave force on the exterior porous cylinder350

reduces to zero neara/b = 0.2 for Cw = 0.4 is reproduced extremely well by the present SBFEM351

model. In contrast to the wave run-up calculations, where more surface elements are required as352

ka andkb increase, it is observed from Fig. 7, that the convergence of the SBFEM model for the353

wave force computation is at best weakly dependent on the dimensionless parameterka andkb.354

Fig. 8 shows the variation of the total force|2πRP | with the short-crestedness (i.e.,ky/kx)355

of the waves. The SBFEM results on wave forces shown in Fig. 8 were calculated either on the356

interior cylinder with the porosity of the exterior cylinderG0 = +∞ anda = 1 m, or on the357

exterior cylinder withG0 = 0 andb = 1 m. As can be seen in the figure, the SBFEM model gave358

almost identical solutions to the analytical solutions of Zhu (1993) with merely 6 surface elements359

discretized on the cylinder boundary. Note that the total force decreases rapidly as the incident360

wave becomes more and more short-crested (i.e., higherky/kx values).361

PARAMETRIC STUDY362

Wave forces363

Influence of wave parameters364

Zhu (1993) calculated the effective inertia coefficientCM and the linear drag coefficientCD per365

unit height of a single solid cylinder, and the results were plotted against the variation of the ratio366

ky/kx. Four cases were calculated coincidental with the samekxa to show thatCM andCD are367

invariants for a fixedka. In order to examine whether this characteristic is present in a concentric368

porous cylindrical structure as well, four cases similar to Zhu (1993) are chosen: 1)kx = 0.4 m−1,369

a = 2.5 m; 2) kx = 0.5 m−1, a = 2.0 m; 3) kx = 0.8 m−1, a = 1.25 m; and 4)kx = 1.0 m−1,370

a = 1.0 m. In the present calculation, the ratiob/a is fixed at2, thus givingkxb = 2 andkxa = 1371

for all the above four cases with porosityG0 = 1. Two extreme cases forG0 = +∞ (inner cylinder372

only) anda = 0 (outer cylinder only) are also chosen for comparison. From Figs. 9 and 10, it is373

clearly seen thatCM andCD are still invariants ofka andkb. Eq. (86) indicates that the total374

horizontal force is proportional tokx while k, a andb are fixed. Thus the largest wave induced375
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forces for short-crested waves are smaller than those induced by plane waves with the same total376

wave number because of the standing wave component.377

The variations of the total horizontal forces|2πRP | on the interior and exterior cylinders by378

plane incident wavesvs. ka are shown in Fig. 11 fora = 1 m, b/a = 2 andG0 = 1. It can379

be seen that the total horizontal forces fluctuate and peak attenuation is observed. It is interesting380

to note that as the horizontal force on the interior cylinder (solid line) reaches a peak, the force381

on the exterior cylinder (dashed line) reaches a trough. One the other hand, however, when the382

horizontal force on the interior cylinder reaches a trough, the force on the exterior cylinder does383

not correspondingly show a peak. The reduction in the amplitude of wave forces on the interior384

cylinder in the presence of the exterior porous cylinder is clearly evident when compared to the385

corresponding wave forces on the single impermeable cylinder (denoted by the dotted line in Fig.386

11).387

The variations of the total horizontal forces (|2πRP |) on the interior and exterior cylinders with388

G0 = 1 vs. the ratioky/kx for differentkxa values (kx from 0.2 to 1.2 m−1 ) with a = 1 m, b = 2a389

are shown in Figs. 12 and 13 respectively. They show similar trends of peaks and troughs found in390

Fig. 11. These variations of maximum wave forces on the interior and exterior cylinders provide a391

means of minimizing wave loads on both cylinders.392

Three types of variation patterns in wave forces are observed in Fig. 12. For smallkxa (kxa =393

0.2), the horizontal force increases gently to a peak and then decreases mildly. For moderate394

kxa (kxa = 0.4, 0.6), the curves are seen to slowly translate leftwards (starting with largerka).395

Initially, the horizontal force is seen descending slightly, followed by a sharp drop off and finally396

becoming nearly flat. For largekxa (kxa = 0.8, 1.0, 1.2), the curve translates further leftwards. All397

forces show a trend of dramatic dip to almost steady small values at large values ofky/kx. In Fig.398

13, there are troughs near zero at eachkxa indicating extremely low wave forces on the exterior399

cylinder. This important characteristic in the forces can be effectively applied in a design to reduce400

the wave impact on coastal and offshore porous structures.401
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Influence of system configuration402

The effect of the annular spacing between the cylinders is investigated and the results are pre-403

sented in terms of the total force variation on the ratioa/b in Figs. 14 and 15, whereb is fixed at404

b = 10 m. The wave number inx direction is taken askx = 0.1 m−1 and the ratioky/kx is ranged405

from 0 to 5.406

Fig. 14 shows lower wave force on the interior cylinder with smaller radiusa for a fixed ra-407

dius,b, of the exterior cylinder. Also, the total horizontal force on the interior cylinder increases408

monotonically as waves approach plane waves and fluctuates as the incident waves become more409

short-crested. The variations, shown in Fig. 15 of the total horizontal forces on the exterior cylin-410

der (|2πbP |) are quite different for differentky/kx values and no common trends can be found.411

Fig. 15 also shows that the total horizontal forces on the exterior cylinder resulted from short-412

crested waves fluctuate in values witha/b whereas a trend of monotonically decreasing witha/b is413

clearly observed for plane incident waves. Generally, less short-crestedness results in larger wave414

forces on external cylinder except in the neighborhood of troughs. These findings are considered415

important for the designer in order to minimize the hydrodynamic loads on practical structures.416

The influence of the porous-effect parameterG0 on wave forces is examined in Fig. 16 with417

diameter ratio ofb/a = 2 anda = 1 m. Three cases are presented in the figure: (1)kxa = kya = 1,418

ka =
√

2; (2) kxa =
√

2, kya = 0, ka =
√

2; and (3)kxa = 1, kya = 0, ka = 1, corresponding419

to a short-crested incident wave and two plane incident waves, respectively. It can be seen that the420

total horizontal force on the interior cylinder increases monotonically, while the total horizontal421

force of the exterior cylinder decreases monotonically asG0 increases. The variation in forces is422

slow at higherG0, approaching an asymptotic value in each case.423

Surface elevation424

It is interesting to study the changes in the wave surface elevation in the vicinity of the concen-425

tric porous cylindrical structure for varying incident wave parameters and structure configuration.426

Fig. 17 shows the resulting wave amplitude and corresponding phase contours resulting from427

plane, short-crested, and standing incident wave interaction with the structure for configuration428
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parameters:G0 = 1.0, a = 1 m andb = 2 m. The amplitudes shown in Fig. 17, are nondimen-429

sionalized as|η|/A (η andA represent free surface elevation and the amplitude of incident wave430

respectively), and the phase values plotted in Fig. 17 are in the range of [−π ∼ +π].431

It is clear that the diffracted wave patterns of short-crested waves are more complicated than432

those of plane waves. As one will expect, all the equi-amplitude plots are symmetric with respect to433

the longitudinal (x) axis leading to zero force in transverse (y) direction. Moreover, the diffracted434

wave pattern resulting from a standing wave shown in Fig. 17 is symmetric in bothx andy planes,435

generating zero horizontal force in both longitudinal and transverse directions. It is seen that the436

amplitude of the diffracted short-waves in the lee region is smaller than that of a plane wave, and the437

region for the large amplitude waves in front of the cylinders resulting from short-crested waves438

is also smaller than its plane wave counterpart. Further calculations on different wave number439

ratioky/kx revealed that such tendencies are more pronounced as the incident waves become more440

short-crested.441

The thick lines in phase contours represent changes fromπ to −π. The amphidromic points,442

where equi-phase lines converge and the wave amplitude vanishes, are seen clearly formed for443

short-crested incident waves (see Fig. 17). Similar to the feature observed by Zhu (1993) for444

short-crested wave diffraction by a single impermeable cylinder, the phases near two adjacent am-445

phidromic points rotate from−π to +π clockwise and counter-clockwise around the amphidromic446

points respectively in the region surrounding the structure. Further calculations on different wave447

number ratioky/kx revealed that the density of the amphidromic points increases as the wave448

crests become shorter. It is interesting to note that the equi-phase lines for the short-crested waves449

become almost parallel to each other in the region downstream, where no obvious amphidromic450

points formed, indicating that the waves in the lee side of the structure are no longer short-crested.451

As one would expect for the standing incident wave component, the amplitude and phase contours452

maintain symmetry in thex- andy-plane. The amplitudes in the transverse directions are small453

compared to their inline values, with a faster variation in the corresponding phase contours.454

It is worth stressing that all the numerical results presented in this paper are calculated using455
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the SBFEM model with no more than 8 surface elements discretized over the cylinder boundary.456

The only exceptions are the results in Figs. 12 and 13, where 16 surface elements are used due457

to larger values ofka andkb, so that the variation of the total horizontal force with varying wave458

number ratioky/kx becomes clear.459

The computational times (recorded on a 2GHz Pentium IV PC and MATLAB 7.1) of the460

SBFEM solutions for all the cases presented here are less than 3 sec. Thus, it clearly demonstrates461

the superiority of the present method in significantly outperforming its counterparts in currently462

available finite-element or boundary-element methods for similar problems. Such computational463

efficiency and accuracy ensure a great potential of direct application of the present method to many464

engineering problems, especially in ocean engineering.465

The present SBFEM approach shown in this paper is valid for wave diffraction by a porous466

circular cylinder system of bounded and unbounded domains. However, by means of domain467

decomposition, and choosing appropriate forms of the radial functiona(ξ) and scaling centers for468

different sub-domains, the authors have recently extended the SBFEM to solve other geometries469

while maintaining dominant features of the present SBFEM (Song and Tao, 2008).470

CONCLUSIONS471

The versatility of the newly developed semi-analytical scaled boundary finite-element method472

is demonstrated in this paper in considering the interaction of short-crested waves with a concen-473

tric porous cylindrical structure. In contrast to the conventional boundary-element method, which474

has been widely applied to wave-structure interaction problem in unbounded domain, the SBFEM475

model developed for concentric porous cylinders requires no assistance from any fundamental so-476

lutions. A unique advantage of this method is that a reduction of one in the spatial dimensions is477

achieved. Thus only the body boundary is discretized with surface finite-elements. Excellent com-478

putational efficiency and accuracy of the SBFEM model has been demonstrated, as the governing479

equations are solved analytically in the radial direction.480

Solutions for the interaction of plane and short-crested waves with a concentric porous cylin-481

drical structure are achieved. The present numerical method is shown to reproduce the results of482
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available analytical solutions for all the physical properties including wave run-up and wave forces483

very accurately and at very low computational cost. Detailed parametric study revealed that the484

trends of wave forces and surface elevation patterns for short-crested waves are much more com-485

plex than the ones for the plane incident waves. General trends of wave force on the ratioa/b are486

discussed with potential to minimize the wave impact in a particular design. The results presented487

here should be found useful in the design of coastal and ocean structures.488

The present SBFEM model is demonstrated to be very efficient yielding accurate results in the489

wave force and run-up calculations with no more than 8 elements for small and moderateka and490

kb values. Thus the model is believed to possess a significant advantage in its application to more491

complicated coastal and offshore structures geometry.492
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FIG. 1. Ekofisk Gravity Structure (Courtesy ConocoPhillps).
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FIG. 2. Definition sketch of wave interaction with a concentric porous cylindrical
structure.
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FIG. 3. The coordinate definition of SBFEM.
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FIG. 4. Scaled boundary finite element mesh for a concentric porous cylindrical
structure.
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dent plane, short-crested, and standing waves, respectively.
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