Vitamin E analogues as mitochondria-targeting compounds: From the bench to the bedside?

Author
Zhao, Yan, Neuzil, Jiri, Wu, Kun

Published
2009

Journal Title
Molecular Nutrition & Food Research

DOI
https://doi.org/10.1002/mnfr.200800045

Copyright Statement
Copyright 2009 Wiley-Blackwell Publishing. This is the author-manuscript version of the paper. Reproduced in accordance with the copyright policy of the publisher. The definitive version is available at www.interscience.wiley.com

Downloaded from
http://hdl.handle.net/10072/30907
Vitamin E analogues as mitochondria-targeting compounds: from the bench to the bedside?

Yan Zhao¹, Jiri Neuzil²ⁿ, Kun Wu¹,*

¹Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang Province, China
²Apoptosis Research Group, School of Medical Science, Griffith University, Southport, Qld, Australia
³Laboratory of Cell Signalling and Apoptosis, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Running title: Vitamin E analogues as mitocan

*Correspondence: Kun Wu, Department of Nutrition and Food, Harbin Medical University, Harbin, Heilongjiang Province, China; phone: +86-451-8750-2826; fax: +86-451-8750-2885; e-mail: wukun_15000@126.com
1 Introduction

In the past 20 years, deaths from chronic non-communicable diseases have surpassed those from acute infectious diseases in all regions of the world, except for Africa [1, 2]. Based on the GLOBOCAN database, there were 10.9 million new cases of cancer in the world in the year 2002. In the same year, 6.7 million cancer patients died and 24.6 million patients lived with the disease [3]. Despite a great advance in molecular medicine and understanding the intricate pathways that can be utilized in fight against cancer, the neoplastic disease remains a leading killer worldwide and continues to be the growing global burden [4]. Therefore, pursuing cancer control strategies is one of the major tasks for scientists these days. In the recent period, molecular genetic evidence in favor of a direct implication of mitochondria in oncogenesis and the use of these organelles to combat cancer has been accumulating [5-7].

Mitochondria are unique organelles essential for life and death of eukaryotic cells. Apart from their crucial role as a power-plant of bioenergetics, mitochondria participate in numerous metabolic reactions including growth, division and apoptosis [8-11]. Mitochondrial defects have long been speculated to play a central role in the development and progression of tumorigenesis [12-14]. More than 70 years ago, Warburg first hypothesized that cancer cells actively metabolize glucose via anaerobic glycolysis and produce excessive lactate, in concomitance with the impairment in mitochondrial respiration, which is referred to as the Warburg effect [14,15].

Although the exact mechanisms are not clear, an increasing number of anti-cancer drugs are
being discovered to induce the cell demise by targeting mitochondria [16,17]. These agents, referred to as ‘mitocans’, function as key regulators of apoptosis by destabilizing the mitochondrial outer membrane permeabilization (MOMP), consequently resulting in the release of soluble apoptosis modulators [6,10,17,18].

The redox-silent analogues of vitamin E belong to one of seven groups of mitocans [18-20]. \(\alpha\)-Tocopheryl succinate (\(\alpha\)-TOS), representative of these analogues, selectively induces apoptosis in a variety of types of malignant cells through mitochondria-dependent apoptotic signalling [21-24]. Mitochondrial DNA-deficient cells (\(p^0\) phenotype) are resistant to \(\alpha\)-TOS compared with their parental cells [22,23], indicating that mitochondria are key signaling transmitters of apoptosis induced by this ester analogue of vitamin E.

2 Pre-clinical anti-cancer activity of vitamin E analogues – relation to their pro-apoptotic activity

Vitamin E analogues have been extensively explored as potential anti-cancer drugs in the past decade. This is quite rational, since compounds of the vitamin E group, redox-active micronutrients, are consumed in the regular diet and also used as food additives. Importantly, they are of general benefit and, as a rule, do not exert secondary deleterious effects.

It is well established that \(\alpha\)-tocopherol (\(\alpha\)-TOH) exhibits the highest vitamin E bioactivity among the eight natural forms of the vitamin, as shown by the rat fetal resorption assay. \(\alpha\)-TOH is also the form of vitamin E present at the highest concentration in serum and in dietary
supplements. Although the best understood function of vitamin E is its anti-oxidant activity, cell culture, animal and epidemiological studies show that certain vitamin E-related compounds exhibit anti-tumour properties. In the Alpha-Tocopherol, Beta-Carotene Cancer Prevention trial, α-TOH supplements lowered the incidence and mortality of prostate cancer in male Finnish smokers [25], but had no significant effects on other types of tumours [26,27]. On the other hand, the epidemiological evidence supporting a link between α-TOH or other forms of vitamin E and cancer is limited and intervention studies are scarce. Numerous attempts to illustrate anti-tumorigenic activity of dietary vitamin E make no conclusive answer, since studies completed thus far have provided rather divergent results.

Certain structural modifications of the vitamin E molecule, however, may enhance the anti-tumour activity of the agents, especially in the case of those which exert apoptogenic effects. α-TOS, an efficient apoptogenic analogue of vitamin E, may be an optimal choice within such group of compounds. Experimental studies have clearly pointed to α-TOS as a promising anti-cancer agent. This paper reviews the anti-cancer potential of vitamin E analogues, in particular the prototypic α-TOS.

2.1 Selective anti-tumour activity of vitamin E analogues

Many of the established chemotherapeutic agents (eg doxorubicin and cisplatin) kill not only tumour cells but also normal cells, resulting in serious side-effects. α-TOS, however, shows unique selectivity in killing of tumour cells, while not harming normal cells and tissues [28,29]. α-TOS is derived from α-TOH via substitution of the hydroxyl group responsible for
the redox activity with succinic acid at position C6 of the chromanol ring in the Functional Domain. This relatively small change in the molecular structure greatly alters its biological activity. While, α-TOH is a major chain-breaking antioxidant in the lipid phase, α-TOS, as a redox-silent analogue, significantly inhibits tumour progression via inhibition of tumour cell proliferation, blockage of the cell cycle, arrest of DNA synthesis as well as by induction of differentiation and, in particular, apoptosis [30-35].

The molecular basis underlying the selectivity of α-TOS for malignant cells results from at least two mechanisms. One is related to the ester structure of α-TOS: due to the generally higher level of esterases in normal cells, such as hepatocytes, colonocytes, fibroblasts or cardiomyocytes, α-TOS is hydrolysed to produce vitamin E (α-TOH) [36]. The other reason for the cancer cell-specific toxicity of α-TOS is associated with the inherent property of some apoptosis inducers, including α-TOS, to trigger programmed cell death by initial induction of accumulation of reactive oxygen species (ROS), which in turn cause a cascade of subsequent reactions leading to transition into the apoptosis commitment phase [37].

2.2 Apoptogenic properties of α-tocopheryl succinate

α-TOS has been proven to possess high apoptogenic activity for a variety of cancer cell lines of different origin regarding the species (human, murine and avian) and tissue type (breast, prostate, lung, stomach, ovary, monocyte, colon, bone, mesothelium, etc) [29-31,34,35,38-47], whereas equivalent amounts of α-TOH or α-tocopheryl acetic acid (α-TOA) exert no such induction of apoptosis [39,48,49]. Different malignant cells also show diverse susceptibility to
α-TOS. Neuzil et al. [29] demonstrated that the level of apoptosis induced by α-TOS (50 µM, 12 h exposure) varied from 30-60% in different malignant cells. For example, ~50% apoptosis was induced in the MDA-MB-435 human breast cancer cells exposed to α-TOS at 20 µg/ml for 48 h [31], and α-TOS at 20 µg/ml for 48 h efficiently triggered ~90% apoptosis in the SGC-7901 human stomach cancer cells [35]. In summary, α-TOS is a potent apoptosis inducer selective for malignant cells, while inducing, in general, less than 5% apoptosis in normal cells.

Data have been published revealing that the non-antioxidant analogues of vitamin E strongly suppress cancer cell growth in vivo as well. Helson et al. [50] found for the first time that intraperitoneal (i.p.) administration of α-TOS (50 mg/kg body weight) markedly inhibited the growth of human neuroblastoma cells in athymic mice. Following studies demonstrate that exposure to α-TOS efficiently reduced the incidence of breast, colon, stomach and prostate cancer and melanomas. Intraperitoneal administration of α-TOS (150 mg/kg body weight) lowered the growth of human breast cancer, colon carcinoma and murine melanoma cells [29,51-53]. α-TOS (100 mg/kg body weight) caused a significant reduction in the volume of human colorectal cancer xenografts [54], reduced prostate tumor burden in BALB/c nude mice fed with soybean oil [55], and increased survival of immunocompromised mice with experimental human peritoneal mesotheliomas [56]. α-TOS (200 mg/kg body weight) also suppressed the number of tumours and their volume in the benzo(a)pyrene-induced forestomach carcinoma model in female thymus-bearing mice [57]. In addition, it has been reported that α-TOS suppressed colon cancer metastases into the liver and mammary tumour
metastases into the lungs in nude mice [51, 58], which further strengthens and extends the prospects for α-TOS as an anti-cancer drug. α-TOS may also exert its anti-cancer activity via down-regulation of vascular endothelial growth factor [51, 59] and sensitisation of resistant cells to other inducers of apoptosis, such as the immunological TNF-related apoptosis-inducing ligand (TRAIL) [54].

Modified analogues of vitamin E can be designed to target cancer cells over-expressing certain receptors. For example, the newly synthesized α-TOS-LTVSPWY conjugate efficiently killed breast cancer cells with high levels of the receptor tyrosine kinase erbB2 (HER2), such that the peptide conjugate at 5 µmol reduced the initial volume of breast carcinomas in the c-neu transgenic mouse (with spontaneous erbB2-high tumours) by ~70%, more effectively than α-TOS alone at 15 µmol which suppressed the tumor progression by ~50% [60,61]. The peptide conjugate induced higher level of apoptosis in erbB2-overexpressing cells than α-TOS, and the extent of apoptosis induced by free α-TOS was, more-or-less, independent of the level of erbB2 expression [60].

The results mentioned above imply that α-TOS is effective only when administered by an intraperitoneal injection, not by oral administration, since it is efficiently hydrolysed to α-TOH when applied using the latter mode. It is assumed that the ester link in α-TOS is hydrolysed by non-specific esterases in the intestinal tract before entering the bloodstream, ruling out oral administration for application of biologically active α-TOS [62].
2.3 Other pro-apoptotic analogues of vitamin E

A number of other vitamin E analogues in which modifications have been made to the functional domain also exhibit anti-proliferative and pro-apoptotic properties in tumour cells. For example, an analogue of α-TOH with ether-linked acetic acid (α-TEA) shows similar anti-cancer and apoptogenic properties as does α-TOS in human breast, prostate, colon, lung and endometrial cancer cells, as well as angiogenic endothelial cells, and in mice xenografted with mammary tumour cells [58,63]. α-TEA is more efficient than α-TOS in apoptosis induction in human ovarian and cervical cancer cells and in mouse mammary tumour cells in vivo, regardless of the administration method, i.e. whether the analogue is given by intraperitoneal injection, by oral gavage or incorporated in the diet [58,63,64]. Ether analogues of vitamin E analogues can be administered orally, since the ether bond is resistant to hydrolysis, endowing the analogue with stability superior to its ester counterparts.

The amide analogues, such as α-tocopheryl maleyl amide (α-TAM), are very potent inducers of apoptosis in a number of cancer cell lines, including the erbB2-over-expressing breast cancer cells [23], as well as lymphoma and neuroblastoma cells [65,66]. However, we found α-TAM extremely toxic in vivo, when injected into the peritoneum of mice as a free compound. On the other hand, when formulated into liposomes, α-TOM efficiently suppressed breast carcinomas while exerting no discernible general toxicity (Neuzil et al., submitted for publication). α-Tocopheryl oxalate and α-tocopheryl malonate are two strong apoptogens in vitro among α-tocopheryl esters with a terminal dicarboxylic moiety, but they were shown to induce non-selective cytotoxicity in mice inoculated with B16-F1 melanoma
cells [67,68]. α-Tocopheryloxybutyric acid (α-TOB), a non-hydrolyzable ether form of α-TOS, is also capable of suppressing proliferation and inducing apoptosis in breast and prostate cancer cells, however this occurs to a lower extent than with α-TOS on equimolar basis [69-71]. α-TOB has been demonstrated to efficiently reduce in mouse lung tumours via the suppression of the ERK cascade [72]. Besides analogues of α-TOH, tocotrienols display relatively strong pro-apoptotic and anti-cancer activity in vitro and in vivo, with δ-tocotrienol being the most robust apoptogen of this group of vitamin E analogues [73,74].

These vitamin E analogues, epitomised by the prototypic α-TOS, may provide new strategies to develop and establish novel anti-cancer agents. This is well exemplified by the anti-cancer effect of the compounds in pre-clinical cancer models, of which some recent ones are summarized in Table I.

Taken together, vitamin E analogues with potent apoptogenic activity show efficient anti-cancer activity in vitro and in vivo using experimental animal models. However, it is still unclear whether they are also effective in the case of human cancer patients and what the mechanisms under such setting would be. More data from experimental, epidemiological and finally clinical studies are necessary for further investigation of these intriguing and highly promising agents, so that they may be established as routine anti-cancer drugs.

3. Mitochondrial apoptogenic pathways targeted by vitamin E analogues

Mitochondria are membrane-enclosed organelles distributed through the cytosol of most
eukaryotic cells. They consist of the mitochondrial outer membrane (MOM) that defines the entire structure and the mitochondrial inner membrane (MIM) that envelopes the fluid-filled matrix. Mitocans trigger tumour cell apoptosis through the mitochondrial pathway as a consequence of cellular damage, also referred to as the intrinsic apoptotic pathway. The role of mitochondria has been well documented for induction of apoptosis by vitamin E analogues [18-22].

3.1 Initiation of mitochondrial membrane permeabilization: the central event of apoptosis

Various apoptotic stimuli may trigger formation of the mitochondrial outer membrane pore (MOMP). This is a complex process that involves numerous molecular players and may serve as a target for anti-cancer drugs. During this event, the MOM and MIM are, finally, both permeabilized, resulting in the ‘rupture’ of the MOM and the release of soluble proteins from the inter-membrane space into the cytosol. This process is accompanied by the loss of the mitochondrial inner trans-membrane potential ($\Delta \Psi_{\text{m,i}}$), depletion of the cellular ATP pool and increase in the ROS levels that, together, contribute to the cell demise. The fact that MOMP represents or is close to the commitment point in the process of cell death has prompted efforts to develop agents capable of efficiently eliciting the process [6,10,11,19].

It appears that the initiation of apoptotic pathways leading to mitochondria-dependent events might result from the direct actions of α-TOS and/or via ceramide formation, with both processes destabilizing the mitochondrial membrane. The earliest event observed in response
to α-TOS is the activation of neutral sphingomyelinase (SMase), an enzyme that converts sphingomyelin to the apoptogenic ceramide. The activation of SMase and the formation of the lipid second messenger ceramide occurred within 15-30 min after addition of α-TOS to Jurkat cells, and was not suppressed by a pan-caspase inhibitor, suggesting a caspase-independent process, possibly direct targeting of SMase by the vitamin E analogue [22]. Switching on SM metabolism can be caused by a change in the plasma membrane fluidity upon incorporation of the lipophilic α-TOS and might be consistent with a suggested mechanism for chemotherapy-induced cell death [75].

Generation of ROS is an early event occurring in response to vitamin E analogues. The mitochondrial respiratory chain within the MIM is a major intracellular source of ROS, which cause damage to lipids, proteins, and DNA, leading to alteration or loss of cellular function and, consequently, trigger or amplify the destabilization of mitochondrial membrane. α-TOS is able to induce ROS accumulation in many different cancer cell lines, most probably resulting in the generation of superoxide anion radicals [22,23,66,76,77]. Substantial accumulation of ROS in Jurkat T lymphoma cells was observed within 1 h, most likely as a result of disrupting the electron flow within the mitochondrial complex II in the respiratory chain when the cells were challenged with α-TOS [20,78].

3.2 Apoptotic signalling downstream of mitochondria

Although the initial apoptosis triggers have not been completely resolved, the events in apoptosis induced by vitamin E analogues downstream of mitochondria are relatively
understood.

During the apoptotic process induced by vitamin E analogues, down-stream events of mitochondrial destabilization comprise mobilization of apoptosis mediators, including cytochrome c, endonuclease G, the apoptosis-inducing factor (AIF), and Smac/Diablo. In turn, they set in motion a series of biochemical events that mediate the execution phase of the cell death programme resulting in the degradation of key proteins by caspases and of genomic DNA by endonucleases.

Cytochrome c is a key player in mitochondria-dependent apoptosis, leading to caspase activation. The soluble protein is anchored to the mitochondrial inner membrane via its affinity to the mitochondria-specific phospholipid cardiolipin (CL), and the binding is disrupted upon oxidation of CL by ROS derived from the oxidative phosphorylation complexes. Increasing evidence suggests that ROS play a key role in promoting cytochrome c release from the mitochondria upon exposure of cancer cells to α-TOS, and the protein in the cytoplasm triggers activation of the caspase cascade that ultimately leads to apoptosis [22,23,76,77]. ROS induce dissociation of cytochrome c from CL by way of causing CL hydroperoxidation, which lowers the affinity of the phospholipid for cytochrome c, and the protein may then be released via the mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. ROS also promote Ca\(^{2+}\)-dependent MPT, with swelling of the mitochondrial matrix and rupture of the MOM [7,8]. A recent report suggested MPT-independent mechanisms involving the voltage-dependent anion channel in the MOM or an
oligomeric form of Bax [79].

Upon cytosolic translocation, cytochrome c complexes with the adaptor protein Apaf-1 and pro-caspase-9 form the so-called apoptosome, triggering the activation of the initiator caspase-9 with ensuing activation of the effector caspase-3, -6 or -7. At this stage, the cell enters the commitment phase, an irreversible stage of the apoptotic signaling cascade [80]. Mitochondrial permeabilization is therefore recognized as a crucial checkpoint in the programmed cell death of both normal and cancer cells. It is now clear that this particular pathway is critically important in α-TOS-induced apoptosis in a variety of cancer cells [22,23,33,81].

Smac/Diablo is an important agonist of the caspase-dependent apoptotic signalling, since it antagonizes the caspase-inhibitory members of the family of inhibitors of apoptosis proteins (IAPs) [82]. The expression of IAPs is under the control of the transcriptional factor nuclear factor-κB (NF-κB), whose activity is depressed by α-TOS [83,84]. Thus, cytosolic relocalization of Smac/Diablo from mitochondria may promote inhibition of the survival pathways in apoptosis induced by α-TOS, which might maximize the apoptogenic potential in resistant cells [23].

Another mitochondrial apoptogenic protein is AIF. Exposure to α-TOS leads to the direct translocation of AIF from mitochondria into the nuclei, thereby bypassing the caspase cascade. Once in the nucleus, AIF triggers cleavage of chromatin in a caspase-independent manner.
In this way, AIF can avoid mutations in the caspase-dependent signalling or situations where IAPs are overexpressed, and may mediate \(\alpha \)-TOS-induced apoptosis in cells resistant to conventional anti-cancer drugs that rely solely on caspase activation [30].

The mitochondrial pro- and anti-apoptotic proteins, including Bax, Bak, Bcl-2, Mcl-1, and Bcl-x\(_L\), are important modulators related to apoptotic signalling pathway, regulating formation of a megachannel across the MOM [85]. Generation of the MPT pore and translocation of Bax from the cytosol to the mitochondria have also been suggested upon exposure of cancer cells to \(\alpha \)-TOS. This process is likely modulated by a balance between the Bcl-2 family pro- and anti-apoptotic proteins [22,86]. Overexpression of Bax results in sensitization of cells to \(\alpha \)-TOS-induced apoptosis, and Bcl-2 plays a crucial role in stabilizing mitochondria against such damage, whereas knocking down of Bax with antisense oligodeoxynucleotide (ODN) or siRNA or over-expression of Bcl-2 or Bcl-x\(_L\) protected the cells from \(\alpha \)-TOS-induced MPT and apoptosis [22,24,31,66]. Likewise, downregulation of Bcl-2 with antisense ODN rendered the cells more susceptible to the analogue [32]. Also, \(\alpha \)-TOS was able to disrupt the binding of Bak BH3 peptide to Bcl-x\(_L\) and Bcl-2 in line with its potential role in anti-proliferation, suggesting that the effects of \(\alpha \)-TOS on apoptosis were partially mediated through the inhibition of Bcl-x\(_L\) function by disrupting its heterodimerization with the MOM channel-forming protein Bak [24].

Convincing evidence for mitochondria as major conductors of apoptotic signalling by vitamin E analogues follows from experiments in which the \(\rho^0 \) cybrids deficient in mtDNA were
found resistant to α-TOS when compared to their wild-type and revertant counterparts [22,23].
Cancer cells devoid of mtDNA failed to translocate cytochrome c in response to α-TOS challenge, unlike the apoptosis-sensitive parental and revertant cells, and also showed decreased apoptotic effects [22]. Similar resistance of ρ^0 cells has been found for other inducers of apoptosis, including tumour necrosis factor-α (TNFα) [87].

Collectively, mitochondria are the critical intracellular organelles that relay the initial apoptotic signals downstream to the apoptosis commitment stage. It needs to be noted, though, that other organelles may also be involved in apoptosis induced by vitamin E analogues, such as lysosomes [33,88].

4 Non-mitochondrial signalling involved in apoptosis induced by vitamin E analogues

In addition to the major intrinsic pathways, extrinsic, non-mitochondrial or cytoplasmic signalling pathways have also been implicated to play a role in apoptosis induced by vitamin E analogues in many types of tumour cells. The extrinsic signalling pathways comprise a number of mediators, and it has been recently established that death receptor, mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and NF-κB signalling pathways are all related to α-TOS-triggered apoptosis [29,34,48,84].

4.1 Activation of death receptor by vitamin E analogues

Activation of the extrinsic cell death pathway is initiated by ligation of death receptors (DRs), which include Fas, the TNF receptor, and the TNF-related apoptosis-inducing ligand (TRAIL)
receptor 1 (DR4) and TRAIL receptor 2 (DR5). DRs are constitutively expressed on the surface of mammalian cells, and both the Fas and TRAIL systems are effective for cancer immune surveillance. Impaired apoptotic signalling pathways endow some types of malignant cells with resistance to DR-mediated apoptosis, and such tumours are difficult to treat [89]. It has been reported that α-TOS-mediated apoptosis involves DR signalling. For example, the Fas-resistant breast cancer cells were sensitized by α-TOS via mobilization of the cytosolic Fas protein to the cell surface [40,90]. In a separate study, expression of Fas, the Fas-associated death domain (FADD), and caspase-8 was enhanced after α-TOS treatment in gastric cancer cells, whereas Fas antisense ODN inhibited expression of FADD and caspase-8 activity [91].

TRAIL has attracted attention as a selective immunological apoptogen with anti-cancer activity. Tumour cells escape from TRAIL-modulated killing when the balance between DRs and the non-apoptogenic decoy receptors is altered, and expression of the latter predominates. Combination of TRAIL with chemotherapeutics or radiation resulted in a synergistic apoptotic response proceeding via caspase-activating signals. α-TOS showed a synergistic pro-apoptotic activity with TRAIL both in vitro and in experimental colon cancer [54]. α-TOS also sensitized to TRAIL the resistant malignant mesothelioma (MM) and osteosarcoma (OS) cells. Combination of α-TOS and TRAIL resulted in enhanced apoptosis in a caspase- and p53-dependent manner [22,92], and α-TOS elevated expression of DR4 and DR5 without modulation of expression of the decoy receptors in MM cells [55,92]. α-TOS also enhanced the sensitivity of Jurkat T lymphoma cells to apoptosis induced by TRAIL by suppression of
NF-κB activation [84]. Thus, VE analogues may play a role in adjuvant therapy of DR-resistant cancers. These analogues can also be used alone, because they are expected to sensitize cancer cells to endogenous immunological inducers of apoptosis by cells of the immune system, thereby potentiating the natural tumour surveillance.

4.2 Involvement of MAPK pathway in vitamin E analogues-modulated apoptosis

The importance of MAPKs in the control of cellular responses to the environment and in the regulation of gene expression, cell growth, and apoptosis has made them a priority for research related to many disorders [93]. The c-Jun N-terminal kinase (JNK) was originally identified as the major kinase responsible for the phosphorylation of c-jun, leading to increased activity of the AP-1 transcription factor. JNK-regulated transcription factors contribute to the modulation of gene expression in response to multiple cellular stimuli, including stress events, growth factors, and cytokines [94]. Kline's group first reported a role of JNK and c-jun in α-TOS-induced apoptosis. The vitamin E analogue up-regulated c-jun expression in different types of cancer cells [95-97]. α-TOS-triggered apoptosis induced a prolonged increase in c-jun expression, and AP-1 transactivation, and transfection of dominant-negative c-jun reduced α-TOS-mediated apoptosis. It was subsequently demonstrated that α-TOS enhanced ERK1/2 and JNK activity but not the p38 kinase activity [34,48].

Three upstream components of the JNK cascade, apoptosis signal-regulating kinase 1, growth arrest DNA damage-inducible 45β, and stress-activated protein kinase/ERK kinase-1 were all
induced, and the protein expression of phospho-JNK was also noticeably increased by α-TOS in prostate cancer cells [81]. In addition, JNK and c-jun were important in α-TOS-induced apoptosis in SGC-7901 gastric cancer cells. Dominant-negative JNK significantly reduced c-jun expression and apoptosis triggered by α-TOS [39,98]. On the other hand, α-TOS stimulated early activation of ERK1/2 and then reduced the ERK activity concomitant with the activation of PKC in HL60 cells. Blockage of ERK activity, however, showed no significant effects on α-TOS-triggered apoptosis [41]. Conversely, it was reported that α-TOS and α-TOB inhibited ERK phosphorylation and activated p38 in breast cancer cells [99]. The discrepancy in the role of ERK activity may result from differences in treatment time in that ERK can be rapidly and transiently induced by α-TOS, but longer exposures may lead to suppression of ERK activation. There is overwhelming evidence that the JNK cascade is an important modulator of apoptosis induced by α-TOS. However, it is not clear at this stage how this signalling pathway is linked to destabilization of mitochondria by the VE analog.

4.3 The role of protein kinase C in α-TOS-triggered apoptosis

PKC, a multigene family of phospholipid-dependent serine/threonine protein kinases, is involved in modulation of divergent biological functions. PKC is normally present in an inactive form. Binding of cofactors to the regulatory domain induces conformational changes that result in activation of the enzyme, which is usually associated with membrane translocation [100]. Treatment of Jurkat cells with α-TOS caused a decrease in PKC activity by activation of protein phosphatase 2A, leading to hypophosphorylation of PKCα and decreased phosphorylation of Bcl-2 on Ser70. Phorbol-12-myristate-13-acetate, a PKC
activator, efficiently protected the cells from apoptosis induced by α-TOS, indicating an inhibitory role of PKC in the regulation of apoptosis [29].

PKC isozymes can also be activated by proteolytic separation of the regulatory and the catalytic domain. Several members of the PKC family have now been identified as substrates for caspases. During apoptosis, activation of caspases results in the cleavage of PKC isozymes, followed by PKC activation [101]. It was shown that α-TOS induced apoptosis via activation of PKCβII and promoted PKCα membrane translocation, concomitant with a decline in the ERK activity [41]. The differences in the effects of α-TOS on PKC in relation to apoptosis might be due to the presence of specific PKC isozymes in cells of different origin, resulting in different or even opposing effects on the outcome of apoptosis.

4.4 Role of nuclear factor-κB in apoptosis induced by vitamin E analogues

Activation of the multi-complex transcription factor NF-κB is crucial for a wide variety of cellular responses. In non-stimulated cells, NF-κB is sequestered in the cytoplasm by the inhibitory κB (IκB). Upon activation by a number of stimuli, the IκB protein is rapidly degraded, allowing translocation of NF-κB into the nucleus and binding to cognate-response elements. In addition to its fundamental role in regulation of the immune and inflammatory responses, NF-κB also exerts anti-apoptotic activities. Thus, NF-κB activation stimulated by TNFα was inhibited by α-TOS in Jurkat and proliferating endothelial cells [32,83,102], possibly sensitizing them to apoptosis induction.
Because activation of NF-κB is negatively associated with apoptosis induced by TRAIL in multiple cancer cells, agents that inhibit NF-κB activation may convert TRAIL-resistant to sensitive cells. TRAIL may transiently activate NFκB, thereby delaying the onset of apoptosis. α-TOS has the capacity to overcome such resistance by suppressing TRAIL-stimulated NF-κB activation by modulating the degradation of IκB, sensitizing cells to TRAIL [84].

Although there are a number of signaling pathways involved in apoptosis induced by vitamin E analogues, mitochondria are the major target. The various pathways are probably triggered via the initial effect of vitamin E analogues on mitochondria and may contribute to the main, intrinsic apoptogenic pathway, thereby maximizing the outcome, which is efficient elimination of a malignant cell.

Current knowledge of complex signalling pathways that control apoptosis in the different tumour types will be helpful for further understanding the molecular mechanism by which compounds like α-TOS exert their anti-cancer activity, and will promote pre-clinical or clinical trials using different types of tumours, some being resistant to therapy due to known mutations in genes necessary for eliciting efficient killing of the malignant cells.

5 Conclusion

The above evidence suggests that vitamin E analogues, epitomised by α-TOS, as a novel group of mitocans, are efficient anti-cancer agents with great promise for future clinical
applications, and supports the intriguing idea of mitochondria as a potent target for cancer therapy.

The progress concerning our understanding of the central place of mitochondria as a regulator of cell death and of its role in the carcinogenesis has launched the search for new opportunities for therapeutic intervention. The compounds capable of inducing MOMP will withstand clinical evaluation in the future. Mitochondria will, if any, be expected to be used as biomarkers for early detection of cancer, or as unique cellular targets for novel and selective anti-cancer agents. Therefore, it can be envisaged that mitocans, anti-cancer agents that act by destabilising mitochondria, will become drugs of choice in our quest against, in some cases thus far untreatable, neoplastic pathologies.

References

[31] Yu, W., Sanders, B. G., Kline, K., RRR-α-Tocopheryl succinate-induced apoptosis of human breast cancer cells involves Bax translocation to mitochondria, *Cancer Res.* 2003,
63, 2483-2491.

[38] Wu, Y., Zu, K., Ni, J., Yeh, S., et al., Cellular and molecular effects of α-tocopheryl-
oxybutyrate: lessons for the design of vitamin E analog for cancer prevention,

angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress, Cancer Res. 2007, 67, 11906-11913.

[69] Wu, Y., Zu, K., Ni, J., Yeh, S., et al., Cellular and molecular effects of α-
Zhao et al.: Vitamin E analogues as mitocans

[77] Kogure, K., Hama, S., Manabe, S., Tokumura, A., Fukuzawa, K., High cytotoxicity of α-
tocopheryl hemisuccinate to cancer cells is due to failure of their antioxidative defense systems, *Cancer Lett.* 2002, 186, 151-156.

[101] Endo, K., Oki, E., Biedermann, V., Kojima, H., et al., Proteolytic cleavage and activation

<table>
<thead>
<tr>
<th>Animal</th>
<th>Inoculated cell line or tumour inducer</th>
<th>Applied dose</th>
<th>Duration of treatment and effect on tumour growth</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nude mouse</td>
<td>MDA-MB-231 human breast cancer cells</td>
<td>150 mg/kg/day in sesame oil</td>
<td>2 weeks; 80-90% tumour dormancy</td>
<td>[51]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>B16F10 murine melanoma cells</td>
<td>100 mg/kg/day in sesame oil</td>
<td>2 weeks; 80-90% tumour dormancy, inhibition of liver metastases</td>
<td>[59]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>CT-26 colon cancer cells</td>
<td>100 mg/kg/day in 20% DMSO</td>
<td>2 weeks; ~75% inhibition of liver metastasis</td>
<td>[53]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>B16F10 murine melanoma cells</td>
<td>150 mg/kg/day in sesame oil</td>
<td>2 weeks; ~70% tumour growth inhibition</td>
<td>[54]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>HCT116 human colon cancer cells</td>
<td>100 mg/kg in DMSO every third day</td>
<td>10 days; ~75% tumour growth inhibition</td>
<td>[29]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>HCT116 human colon cancer cells</td>
<td>50 mg/kg in DMSO every third day plus 20 µg/mouse of hrTRAIL</td>
<td>10 days; ~70% tumour growth inhibition</td>
<td>[54]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>Human mesothelioma Ist-Mes2 cells (peritoneal grafts)</td>
<td>100 mg/kg in DMSO every third day</td>
<td>21 weeks; >3-fold increase in survival</td>
<td>[56]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>Human mesothelioma Ist-Mes2 cells (s.c. xenografts)</td>
<td>100 mg/kg in DMSO every second day</td>
<td>16 days; >90% tumour growth inhibition</td>
<td>[103]</td>
</tr>
<tr>
<td>Model</td>
<td>Tumour Type</td>
<td>Dose/Application</td>
<td>Duration</td>
<td>Effect</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Female Kunming mouse</td>
<td>Benzo(a)pyrene-induced forestomach tumours</td>
<td>200 mg/kg in corn oil twice per week</td>
<td>4 weeks; ~85% tumour growth inhibition</td>
<td>[57]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>MDA-MB-435-FL-breast cancer cells</td>
<td>36 µg/mouse of α-TEA daily in aerosol</td>
<td>31 days; ~60% tumour growth inhibition</td>
<td>[104]</td>
</tr>
<tr>
<td>C57BL/6 mouse</td>
<td>3LLD122 murine Lewis lung carcinoma cell line</td>
<td>200 mg/kg α-TOS in ethanol or 200 mg/kg vesiculated α-TOS</td>
<td>20 days; >70% tumour growth inhibition</td>
<td>[104]</td>
</tr>
<tr>
<td>Transgenic c-neu mouse</td>
<td>Spontaneous breast carcinomas</td>
<td>15 µmol/mouse α-TOS or 5 µmol/mouse α-TOS-LTVSPWY in corn oil every 3-4 days</td>
<td>3 weeks; 50% reduction in tumour size by 15 µmol α-TOS or 70% by 5 µmol peptide conjugate</td>
<td>[60]</td>
</tr>
<tr>
<td>Transgenic c-neu mouse</td>
<td>Spontaneous breast carcinomas</td>
<td>15 µmol/mouse in corn oil every third day</td>
<td>3 weeks; 30% reduction in original tumour size</td>
<td>[61]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>MCF-7 human breast cancer cells</td>
<td>100 mg/kg in DMSO every third day</td>
<td>4 weeks; >30% reduction in original tumour size</td>
<td>Wang et al., unpublished</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>LNCaP human prostate cancer cells</td>
<td>100 mg/kg in sesame oil every day</td>
<td>2 weeks of 7 weeks in total; ~70% reduction in original tumour size</td>
<td>[55]</td>
</tr>
<tr>
<td>Nude mouse</td>
<td>4T1 murine breast cancer cells</td>
<td>4 mg/mouse α-TOS or α-TEA by ip every 4 days or daily oral gavage, or 5.5 mg/mouse α-TEA in diet</td>
<td>30 days; 60% reduction in tumour size by α-TOS by ip or α-TEA by both ip and orally; inhibition of lung metastasis by α-TEA</td>
<td>[64]</td>
</tr>
</tbody>
</table>