Antibacterial And Antifungal Activity Of Buckinghamia Celsissima Leaf Extracts

I.E. Cock

aBiomolecular and Physical Sciences
Genomics Research Centre
Griffith University
Southport Queensland Australia

Citation: I. Cock : Antibacterial And Antifungal Activity Of Buckinghamia Celsissima Leaf Extracts. The Internet Journal of Microbiology. 2009 Volume 6 Number 2

Keywords: Buckinghamia celsissima | Australian plants | antibacterial activity | medicinal plants | methanol extracts

Abstract

The antimicrobial activity of a methanolic extract of Buckinghamia celsissima leaves was investigated by disc diffusion assay against a panel of bacteria and fungi. B. celsissima leaf extract inhibited the growth of 5 of the 14 bacteria tested (36%). Gram-positive and Gram-negative bacteria were both affected by B. celsissima extract although Gram-positive bacteria were more susceptible. 3 of 11 Gram-negative (27%) and 2 of the 3 Gram-positive bacteria tested (67%) had their growth inhibited by B. celsissima extract. B. celsissima leaf extract displayed antifungal activity towards Candida albicans when tested by disc diffusion assay and inhibited the growth of the
yeast Saccharomyces cerevisiae. The antibacterial activity of B. celsissima leaf extract was further investigated by growth time course assays which showed significant growth inhibition in cultures of Bacilluscereus, Bacillus subtilis, Pseudomonas fluorescens and Aeromonas hydrophilia within 1 h.

Introduction

Plants contain many biologically active compounds which have potential for development as medicinal agents. Herbal medicines already form the basis of therapeutic use in developing countries but recent years have also seen an increase in the use of herbal medications in the developed world as well. Some studies focusing on the investigation of traditional African (Kudi et al., 1999; Okeke et al., 2001), Caribbean (Chariandy et al., 1999) and Indian (Ahmad and Beg, 2001) medicinal plants have resulted in the identification of new sources of therapeutic agents. Antimicrobial multiple drug resistance toward commonly used commercial drugs has resulted in an increase in the search for antimicrobial agents from natural sources. Plant derived antimicrobial agents are a largely untapped resource with enormous medical potential and much more investigation is needed in this area.

As a result of its isolation, Australia has a variety of unique and distinctive flora not found elsewhere in the world. Australian Aborigines used a variety of plant medicines to help maintain their health prior to European settlement (Barr et al., 1993; Lassak and McCarthy, 1993). More than 150 plants from nearly 60 widely varied botanical families were used by Australian Aborigines as antiseptic agents (Lassak and McCarthy, 1993). Although there is enormous potential for the development of medicinal agents from Australian plants, much of our knowledge of the antimicrobial
activity of Australian plants is anecdotal. Recent studies (Palombo and Semple, 2001; Cock, 2008a) have demonstrated the antibacterial activity of extracts from a number of Australian plants.

Buckinghamia celsissima (ivory curl tree) is a flowering tree of the family Proteaceae. It is endemic to the rainforests of north-eastern Australia. A recent study (Cock, 2008a) has demonstrated the antibacterial activity of methanolic extracts of *B. celsissima* extracts against a limited panel of bacteria. The current study was undertaken to validate and extend these observations against a wider panel of bacteria and fungi.

Materials and Methods

Plant Collection and Extraction

The extracts investigated in this study have been described previously (Cock, 2008a,b). Briefly, *B. celsissima* leaves were collected from verified trees in the suburbs of Brisbane, Australia. *B. celsissima* leaves were dried in a Sunbeam food dehydrator and the dried material was ground to a coarse powder. 1 g of each of the powdered leaves was extracted extensively in 50 ml methanol (Ajax, AR grade) for 24 hours at 4 oC with gentle shaking. The extract was filtered through filter paper (Whatman No. 54) under vacuum followed by drying by rotary evaporation in an Eppendorf concentrator 5301. The resultant pellet was dissolved in 15 ml 20 % methanol. The extract was passed through 0.22 µm filter (Sarstedt) and stored at 4 oC.

Test Microorganisms

All media was supplied by Oxoid Ltd. All microbial strains were obtained from Tarita Morais, Griffith University. Stock cultures of *Aeromonas hydrophilia, Alcaligenes*
feacalis, Bacillus cereus, Bacillus subtilis, Citrobacter freundii, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella salford, Serratia marcescens, Staphylococcus aureus and Yersinia enterocolitica were subcultured and maintained in nutrient broth at 4 oC. Aspergillus niger, Candida albicans, and Saccharomyces cerevisiae were maintained in Sabouraud media at 4 oC.

Evaluation of Antimicrobial Activity

Antimicrobial activity of *B. celsissima* leaf extract and was determined using a modified Kirby-Bauer (Bauer et al., 1966) disc diffusion method. Briefly, 100 µl of the test bacteria/fungi were grown in 10 ml of fresh media until they reached a count of approximately 10^8 cells ml^-1 for bacteria, or 10^5 cells ml^-1 for fungi. 100 µl of microbial suspension was spread onto agar plates corresponding to the broth in which they were maintained.

The extract was tested using 6 mm sterilised filter paper discs. Discs were impregnated with 10 µl of the test sample, allowed to dry and placed onto inoculated plates. The plates were allowed to stand at 4 oC for 2 hours before incubation with the test microbial agents. Plates inoculated with *A. feacalis, A. hydrophila, B. cereus, B. subtilis, C. freundii, K. pneumoniae, P. aeruginosa, P. fluorescens, S. marcescens, Y. enterocolitica, C. albicans* and *S. cerevisiae* were incubated at 30 oC for 24 hours, then the diameters of the inhibition zones were measured in millimetres. Plates inoculated with *E. aerogenes, E. coli, S. Salford and S. aureus* were incubated at 37 oC for 24 hours, then the diameters of the inhibition zones were measured. *A. niger* inoculated plates were incubated at 25 oC for 48 hours then the zones of inhibition were measured. All measurements were to the closest whole millimetre. Each antimicrobial assay was performed in at least triplicate. Mean values are reported in this report.

Standard discs of ampicillin (2 µg), chloramphenicol (10 µg) or ciprafloxacin (2.5 µg) were obtained from Oxoid Ltd. and served as positive controls for antimicrobial
activity. For fungi, nystatin discs (100 µg, Oxoid Ltd.) were used as a positive control. Filter discs impregnated with 10 µl of distilled water were used as a negative control.

Bacterial Growth Time Course Assay

3 ml of bacterial cultures (*B. cereus*, *B. subtilis*, *A. hydrophilia*, *P. fluorescens*) in nutrient broth were 27 ml nutrient broth containing 0.5 ml *B. celsissima* extract (diluted 1 in 10 in sterile deionised water) were incubated at 30 oC with gentle shaking. The optical density was measured at 550 nm after 0, 1, 2, 4 and 6 h incubations. Control tubes were incubated under the same conditions but without the extract. All assays were performed in triplicate.

Results and Discussion

B. celsissima leaf extract was diluted to a 26.3 mg/ml concentration. 10 µl of the extract was tested in the disc diffusion assay against 17 microorganisms (table 1). The *B. celsissima* leaf extract inhibited the growth of 5 of the 14 bacteria tested (36%). The antibacterial activity was strongest against the Gram-positive bacteria *B. cereus* and *B. subtilise* (as determined by the diameter of the zone of inhibition).

Table 1: Antibacterial activity of *B. celsissima* extract. Numbers indicate the mean diameters of inhibition of triplicate experiments ± standard deviation. – indicates no growth inhibition. Chl indicates chloramphenicol (10 µg) was used as the positive control. Amp indicates ampicillin (2 µg) was used as the positive control. Cip indicates ciprafloxacin (2.5 µg) was used as the positive control. Nys indicates nystatin discs (100 µg) were used as the positive control.
Both Gram-positive and Gram-negative bacterial growth were inhibited by *B. celsissima* leaf extract although a greater susceptibility of Gram-positive bacteria was apparent. Of the 11 Gram-negative bacteria tested, 3 (27%) were inhibited by *B. celsissima* extract. The *B. celsissima* leaf extract inhibited the growth of 2 of the 3 Gram-positive bacteria tested (67%). A greater susceptibility of Gram-positive bacteria has been previously reported for South American (Paz *et al.*, 1995), African (Kudi *et al.*, 1999; Vlietinck *et al.*, 1995) and Australian (Palombo and Semple, 2001) plant extracts. Susceptibility differences between Gram-positive and Gram-negative bacteria may be due to cell wall structural differences between these classes of bacteria. The Gram-negative bacterial cell wall outer membrane appears to act as a barrier to many substances including antibiotics (Tortora *et al.*, 2001).

B. celsissima leaf extract also demonstrated limited antifungal activity. The extract inhibited the growth of *C. albicans*. However, the antifungal activity was not particularly strong (as determined by the zone of inhibition) compared to the nystatin control. *B. celsissima* leaf extract also inhibited the growth of the yeast *S. cerevisiae*.

The antibacterial activity of the *B. celsissima* leaf extract was further investigated by bacterial growth time course assays in the presence and absence of the extract. The concentration of the extract used in these assays was 43.8 µg/ml. *B. celsissima* leaf extract was able to significantly inhibit *B. cereus* (figure 1a), *B. subtilis* (figure 1b), *Pseudomonas fluorescens* (figure 1c) and *A. hydrophilia* (figure 1d) growth within 1 h indicating a rapid antimicrobial action.

Figure 1: Inhibition of bacterial growth by methanolic extract of *B. celsissima* leaves against (a) *B. cereus*, (b) *B. subtilis*, (c) *P. fluorescens*, (d) *A. hydrophilia*. Represent measured bacterial growth values for test cultures (with extract) and (no extract). Values are the mean of triplicate determinations.
Interestingly, growth of *P. fluorescens* was not seen to be inhibited in the disc diffusion assays (table 1). The extract may inhibit/slow bacterial growth without completely killing all bacteria in the culture. As shown in figure 1c, *P. fluorescens* growth has been partially inhibited by the *B. celsissima* extract. Although *P. fluorescens* growth did not attained the same level as the control by the end of the 6 h incubation, it is approaching this level and would be expected to increase to the control levels given further time. *P. fluorescens* growth may have been evident in the disc diffusion assays because of the longer incubation time (24 h) required for these assays. Therefore, disc diffusion assays alone may not detect some antimicrobial agents with lower efficiencies because of the incubation time required.

The findings of this study have established the susceptibilities of a range of microbes to *B. celsissima* leaf extract. Both Gram-positive and Gram-negative were susceptible to *B. celsissima* leaf extract. The range of microbial susceptibilities indicates the potential of *B. celsissima* leaf extract as a surface disinfectant as well as for medicinal purposes and as food additives to inhibit spoilage. However, further studies are needed before these extracts can be applied to these purposes. In particular, toxicity studies are needed to determine the suitability of these extracts for these use as antiseptic agents and as a food additive. One previous study (Setzer *et al.*, 2001) reported no toxicity of low concentrations of *B. celsissima* bark extract towards HepG2 and two carcinoma cell lines. Studies within this laboratory (Cock, 2008b) have shown *B. celsissima* leaf extracts to be non-toxic towards brine shrimp. No data was available for the toxicity of leaf extracts towards human cell lines. Further studies are needed to determine the toxicity of *B. celsissima* leaf components before their use as antimicrobial agents.

Acknowledgements

Financial support for this work was provided by the School of Biomolecular and Physical Sciences, Griffith University, Australia.
Correspondence to

Tel.: +61 7 37357637 ; fax: +61 7 37355282.
E-mail address: I.Cock@griffith.edu.au (I. E. Cock).

References

Ahmad, I and Beg, AZ, 2001. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens Journal of Ethnopharmacology, 74, 113-123. (s)

Chiariandy, CM, Seaforth, CE, Phelps, RH, Pollard, GV and Khambay, BP, 1999. Screening of medicinal plants from Trinidad and Tobago for antimicrobial and insecticidal properties. Journal of Ethnopharmacology, 64, 265-270. (s)

Cock, IE, 2008a, Antibacterial activity of selected Australian native plant extracts, The Internet Journal of Microbiology, 4, 2. (s)

Cock IE, 2008b, Assessment of the toxicity of selected Australian native plant extracts using the Artemia franciscana nauplii bioassay, The Internet Journal of Toxicology, Volume 5, Number 2. (s)

Lassak EV, McCarthy T, 2006, Australian Medicinal Plants, Reed publishers, Australia. (s)

This article was last modified on Tue, 28 Jul 09 19:49:24 -0500

This page was generated on Sun, 06 Sep 09 21:06:42 -0500, and may be cached.