Utilisation of a Whole-Genome Approach to Characterize a Novel Immunodeficiency Disorder and Implicate IL25

Author
Griffiths, Lyn, Green, Michael, Gandhi, Maher, Peake, Jane

Published
2009

Conference Title
59th Annual Meeting of The American Society of Human Genetics Program Guide / Abstracts

Copyright Statement
Copyright 2009 ASHG. The attached file is posted here in accordance with the copyright policy of the publisher, for your personal use only. No further distribution permitted. For information about this conference please refer to the conference's website or contact the authors.

Downloaded from
http://hdl.handle.net/10072/31627

Link to published version
http://www.ashg.org/2009meeting/abstracts/fulltext/
Utilisation of a Whole-Genome Approach to Characterize a Novel Immunodeficiency Disorder and Implicate IL25

Lyn R. Griffiths (PhD)1,2, Michael R. Green (PhD)1,2, Maher K. Gandhi (MBBS)2,3, Jane Peake (MBBS)4

1Genomics Research Centre, Griffith Institute for Health and Medical Research, Griffith University, Gold Coast, Queensland, Australia
2Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, Queensland, Australia
3Clinical Immunohaematology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
4Queensland Pediatric Immunology and Allergy Service, Royal Children’s Hospital, Herston, Queensland, Australia.

Primary immunodeficiency disorders (PIDs) affect ~2 people in 100,000 and predispose affected individuals to recurrent infections and the development of other disorders such as lymphoma. Diagnosis of PIDs uses case history information, immunological interrogation of cellular repertoires and immunoglobulin isotypes, as well as genetic tests to detect mutations. However, when an individual does not fit the immunological characteristics of defined disorders, and genetic tests for common immunodeficiency syndromes yield no diagnosis, there is no protocol for characterization of the disorder. In this study, we have used genome-wide SNP and gene expression microarrays to provide insight into the etiology of one such disorder. DNA copy number analysis using Affymetrix 250K Sty SNP arrays revealed quadraploidy of chromosome 14q11.2 mapping over an area of approximately 280Kbp. This amplification was confirmed by MassArray-based DNA copy number analysis of SNPs within the candidate region. The genetic locus harbouring the copy number alteration is rich in coding sequences but only two of these genes had a role in lymphocyte signalling - T-cell Receptor Delta-Alpa (TRD\(\alpha\)) and Interleukin-25 (IL25). From microarray data, TRD\(\alpha\) showed down-regulation, however IL25 showed increased expression. Using qPCR analysis, IL25 exhibited a 2.49 fold increased expression compared to control lymphocytes following anti-CD3 T-cell activation. Microarray data supported the hypothesis of an aberrant Th2 switch resulting from the IL25 over-expression, with down regulation of expression of TBX21 (0.24 fold) and IRF2 (0.28 fold) which induce the expression of Th1-associated genes. There was also significant up-regulation of genes associated with a Th2 phenotype, as well as down-regulation of genes associated with a Th1 phenotype. Overall our results thus identified hyperploidy of a genetic region centromeric to 14q11.2, which causes over-production of IL25 in response to T-cell stimulation, and is associated with a gene expression pattern indicative of a Th2 switch. Recurrent infections associated with this disorder may therefore be associated with the inadequate clearance of pathogens that are normally addressed with Th1 responses. This disorder may provide further insight into the function of IL25 and the regulation of Th1 and Th2 responses. In conclusion, we have used a whole-genome approach to characterize the molecular etiology of a novel immunodeficiency disorder.