Nitrous oxide emissions following dairy shed effluent application beneath Kunzea robusta (Myrtaceae) trees

Hannah M. Franklin¹³, Roshean R. Woods², Brett Robinson², Nicholas Dickinson¹

¹ Department of Ecology, Lincoln University, PO Box 85084, Lincoln 7647, Canterbury, New Zealand
² Department of Soil and Physical Sciences, Lincoln University, PO Box 85084, Lincoln 7647, Canterbury, New Zealand
³ Australian Rivers Institute, Nathan Campus, Griffith University, 170 Kessels Road Nathan, Queensland, 4111, Australia

Note on authorship: The first two authors contributed equally to practical work and to preparation of this manuscript.

Details of corresponding Author:
Hannah Franklin
Address: Australian Rivers Institute, Nathan Campus, Griffith University, 170 Kessels Road Nathan, Queensland, 4111, Australia
Email: h.franklin@griffith.edu.au
Telephone: +61 7 3735 4370
Fax: +61 7 3735 7615
Mobile: +61 415 031 384
Abstract. Agriculture contributes more than a third of anthropogenic nitrous oxide (N₂O) emissions globally. In New Zealand, land application of dairy shed effluent contributes to the 90% of N₂O emitted from agricultural soils. Novel strategies are urgently required to mitigate N₂O production to ensure New Zealand’s dairy-based economy is environmentally sustainable. Species of Myrtaceae, including Kunzea spp. (kānuka, white tea-tree) have previously been shown to produce antimicrobial compounds which extend to the soil. It is possible that these may inhibit the microbes involved in biological nitrification and denitrification which could thereby suppress N₂O production. Therefore, in this work we aimed to test whether irrigation of effluents to stands of Kunzea spp. could minimize resulting N₂O emissions. This study investigated soil inorganic N and N₂O emissions following the application of dairy shed effluent to soil beneath 5-yr-old K. robusta compared with bare soil. Following effluent application, N₂O emissions beneath K. robusta were reduced by 80% relative to bare soil, but nitrate-N was five-fold higher than bare soil, sufficiently available for denitrification. The drier, more aerated soil associated with K. robusta may have constrained denitrification. Application of DSE (50 kg N ha⁻¹) to K. robusta produced 0.133 kg N₂O-N ha⁻¹ during the experimental period; equivalent to the lower range of emissions measured following comparable applications to grazed dairy pastures in New Zealand (0.13-1.08 kg N ha⁻¹). The environmental benefits of reduced N₂O emissions warrant further investigation on the effect of Myrtaceae on the soil N cycle worldwide.

Keywords Greenhouse gas; Dairy farming; Nitrogen; Kānuka; Tea tree; sustainable agriculture
1. Introduction

Nitrous oxide (N$_2$O) is a potent greenhouse gas with a global warming potential 298 times that of carbon dioxide (Myhre et al. 2013). New Zealand has a unique greenhouse gas profile where 93.4% of N$_2$O emissions are from agricultural soils (Ministry for the Environment 2015). Land irrigation of dairy shed effluent (DSE) to pastures contributes to these N$_2$O emissions and is commonplace in New Zealand. Dairy shed effluent is typically a high-nitrogen (N) mixture of urine, dung, and wash-down water containing 44-628 mg N L$^{-1}$; mostly in the form of organic N (Saggar et al. 2004).

Findings of a recent study suggest New Zealand members of the Myrtaceae family could mitigate the threat of microbial contamination of soil following the application of organic wastes (Prosser et al. 2016). The antimicrobial properties of *Leptospermum* (mānuka, tea-tree) and *Kunzea* (kānuka, white tea-tree) species were found to extend to the soil. However, this study did not consider soil N processes. Biological nitrification converts ammonium-N (NH$_4^+$) in DSE to nitrate-N (NO$_3^-$) in soil, which is the substrate for N$_2$O production via the nitrifier-denitrification and denitrification of anaerobic bacteria (Bolan et al. 2004). The antimicrobial properties of Myrtaceae could potentially influence these microbially driven soil N cycling processes and alter nitrate (NO$_3^-$) production, denitrification and N$_2$O emissions. In this study, we investigated the suitability of *Kunzea robusta* for the disposal of DSE in terms of N$_2$O production. We hypothesized that application of DSE to *K. robusta* trees could reduce N$_2$O emissions compared with application to bare soil. The aim of the present study was to compare changes in N$_2$O emissions and soil inorganic N concentrations from soil underneath *Kunzea* trees with bare soil areas following DSE application. We also
compared N2O emissions from Kunzea with emissions data from previous studies of DSE application to grazed pastures in New Zealand.

2. Materials and methods

2.1. Site description

Kunzea robusta is one of 10 species previously described as Kunzea ericoides (de Lange 2014). The experimental site was a fenced, planted corner of the Lincoln University Dairy Farm, Canterbury, New Zealand that was retired from grazing in 2008 (1800 m², 43°38'38.07" S, 172°26'1.96" E, described in Franklin et al. 2015). The soil type was a Templeton silt loam (Immature Pallic, Hewitt 1998; Udic Haplustept, Soil Survey Staff 2014). Kunzea robusta trees were around 2 m tall and 5 years old, with a 5-10 mm litter layer.

2.2. Treatment and experimental design

On 26 July 2012, headspace chamber bases (0.48 m diam., 0.18 m², stainless steel) with an annular water trough were inserted 0.1 m into the soil (gas sampling plots, Fig. 1). During gas sampling events, insulated, stainless steel headspace covers created a gas-tight seal (~0.14 m above the soil surface). Adjacent to each gas sampling chamber a metal ring (0.48 m diam., 0.18 m²) was inserted 0.1 m into the soil for destructive soil sampling (soil sampling plots, Fig. 1).

Five replicate K. robusta and bare soil locations (bare soil >1 m from the drip line of trees) were randomly selected. Each location consisted of two subplots to which DSE or control was applied (Fig.1). Each subplot consisted of a pair of gas sampling/soil sampling plots (Fig. 1). Dairy shed effluent (450 mg N L⁻¹) was applied at 50 kg N ha⁻¹ to DSE subplots and an equal volume of untreated tap water (1.5 mg NO₃⁻N L⁻¹ and 0.05 mg NH₄⁺-N L⁻¹) to the control subplots. Plots were established radially around...
K. robusta stems (0.2 m from the stem) and centers of bare soil locations, separated by >0.2 m, to avoid seepage between plots (Fig. 1). Treatments were applied to subplots (gas sampling/soil sampling pairs) randomly on the morning of 7 Aug. 2012. Dairy shed effluent was collected from the Lincoln University Dairy Farm storage pond on 9 Sept. 2011, homogenized, and stored at 5°C prior to use.

2.3. Field sampling, analysis, and meteorological measurements

Gas samples were taken the day prior to treatment application (Day 0), approximately 4 hours after DSE application (Day 1), and on following Days: 2, 3, 9, 16 and 23. Sampling was conducted between 12:30 and 15:30 h. Headspace samples (10 mL) were taken manually 0, 20, and 40 min after positioning the cover and compressed into 6 mL Exetainer tubes (Labco Ltd., High Wycombe, UK). The headspace temperature was recorded in a representative chamber after initial checks found similarity between locations. Immediately prior to analysis, gas samples were brought to ambient pressure and N2O concentrations were determined using a gas chromatograph (GC, SRI 8610; SRI Instruments, CA, USA) fitted with a 63Ni electron capture detector (Gilson 222 XL; Gilson Inc., WI, USA) and calibrated using BOC α standards (BOC Scientific, New Zealand). Nitrous oxide fluxes were calculated following Hutchinson and Mosier (1981) after checking for linearity in N2O concentration over time. Cumulative N2O emissions were determined by integration.

Soil core samples (2.5 cm diam. × 7.5 cm depth) were taken to monitor soil gravimetric moisture content (θ_g), pH, and inorganic-N concentrations. On Days: 0, 2, 3, 9, 16, and 23 three soil cores were taken at random, homogenized and sieved (≤4 mm). A subsample was dried at 105°C for 24 h to determine θ_g. Soil pH was measured on field moist soil (10:25 soil:water). Another 4 g subsample of field moist soil was shaken with
40 mL of 2 M KCl for 1 h, centrifuged (10 min at 2000 rpm) and then filtered (Whatman No. 41) (Blakemore et al. 1987). Extracts were analyzed for NH$_4^+$-N and NO$_3$-N by flow injection analysis (FOSS FIAstar 5000 triple channel with SoFIA software version 1.30; Foss Tecator, Hoganas, Sweden). Total C and N were measured on air-dried (35°C for 48 h), ground, and sieved (2 mm) soil using an Elementar Vario-Max CN Elemental Analyzer (Elementar GmbH, Hanau, Germany). Total organic C was measured using the loss on ignition method (Blakemore et al. 1987). Samples were also analyzed for Olsen P following Olsen et al. (1954).

Soil bulk density was measured in _K. robusta_ and bare soil locations in August 2015, after the experimental period. There had been no stock access since the trial. Cores (5.4 cm diam. × 5 cm depth) were carefully pressed into the soil. These were oven-dried (>48 h at 105°C) to give θ_g which was used to calculate bulk density (g cm$^{-3}$). Soil particle density was assumed to be 2.65 g cm$^{-3}$. Water filled pore space (WFPS) was calculated from these and θ_g from the experimental period (Linn and Doran 1984).

2.4. Statistical analysis

Tests for normality showed the N$_2$O flux data were skewed so these were log transformed (Ln[flux]). Daily and cumulative N$_2$O flux data were analyzed using analysis of variance (ANOVA), with a split-split plot design, effectively a special case of repeated measures ANOVA. Within whole plots (the 10 sampling locations), treatments (DSE and control) were randomly assigned to split-plots (subplots each consisting of a pair of gas/soil sampling plots). Within split-plots, sampling occurred on multiple dates (split-split plots). Plot type (_K. robusta_ and bare soil), treatment (DSE and control) and time (Day) were factors. Three-way interactions were removed as the interpretation of such effects is complex. Soil WFPS, pH, NO$_3$-N, and NH$_4^+$-N were
analyzed in the same manner. Daily data were compared using ANOVA ($p<0.05$) when significant interactions with time occurred. Two-sample t tests compared background soil conditions between bare soil and *K. robusta*. Statistics were performed in R version 3.0.1 (R Development Core Team, 2010, Vienna, Austria, http://www.r-project.org/).

3. Results

3.1. Nitrous oxide fluxes

Prior to treatment application (Day 0) N$_2$O flux was similar between locations (Fig. 2a). *K. robusta* had significantly lower N$_2$O fluxes compared with bare soil following DSE application until after Day 9 (Fig. 2a). Plot type, treatment ($p<0.01$) and sampling date ($p<0.05$) significantly affected daily N$_2$O flux, with the treatment effect changing temporally (treatment x time, $p<0.05$). Nitrous oxide flux from *K. robusta*-DSE plots rose significantly only on Day 1 ($p<0.001$).

Cumulative N$_2$O fluxes were higher ($p<0.001$) from the bare soil-DSE plots (676 g N$_2$O-N ha$^{-1}$ or 1.35% of applied N) compared with the bare soil-control (152 g N$_2$O-N ha$^{-1}$), *K. robusta*-DSE (133 g N$_2$O-N ha$^{-1}$ or 0.27% of applied N) and *K. robusta*-control plots (95 g N$_2$O-N ha$^{-1}$), which were similar. Plot type ($p<0.01$), treatment ($p<0.05$), time ($p<0.001$), and the plot type x treatment interaction ($p<0.01$) were significant.

3.2. Soil and meteorological conditions

Background soil pH, total N, θ_g and WFPS were higher in bare soil locations, while total organic C and NO$_3^-$-N were more concentrated beneath *K. robusta* (Table 1). Soil bulk density, total C, Olsen-P and NH$_4^+$-N did not differ between *K. robusta* and bare soil (Table 1).
$K. \text{ robusta}$ plots had significantly lower ($p<0.001$) WFPS than the bare soil plots (Fig. 2b), however, WFPS did not vary due to treatment (DSE or control) or time. Mean daily θ_g ranged from 27-32% for $K. \text{ robusta}$ and 31-35% for bare soil plots. A total of 104 mm of rain fell during the experiment, consisting of one substantial event (75 mm, Day 8-10, Fig. 2b). The mean daily air temperature ranged from 6.7 to 14.9°C (Fig. 2b) and a spike later in the experiment corresponded to a decrease in soil moisture. Throughout the experiment soil pH was higher ($p<0.05$) in the bare soil (mean of 5.8 ± 0.02) than $K. \text{ robusta}$ plots (5.5 ± 0.03), while treatment (DSE or control) and time did not affect pH.

Soil NO$_3$-N concentrations were higher ($p<0.01$) in the $K. \text{ robusta}$ plots than bare soil (Fig. 3a) and were not affected by treatment or time. Ammonium-N concentrations were significantly higher ($p<0.05$) in DSE than control plots, but did not differ between $K. \text{ robusta}$ and bare soil (Fig. 3b). Ammonium-N was similar in all plots at the start of the experiment (Fig. 3b) and increased following treatment application ($p<0.001$), but more so in DSE plots (treatment x time, $p<0.01$). Ammonium-N spiked in control plots on Day 16 to match levels in DSE plots.

4. Discussion

4.1. Low nitrous oxide emissions under $K. \text{ robusta}$

Cumulative N$_2$O emissions following effluent application were 80% lower beneath $K. \text{ robusta}$ relative to the bare soil. No other studies have investigated N$_2$O emissions from soil planted with $K. \text{ robusta}$ receiving DSE. Mean N$_2$O emissions from $K. \text{ robusta}$ locations (0.095 and 0.133 kg N ha$^{-1}$ for control and DSE respectively) during the experimental period were close to background rates reported under Kunzea spp. elsewhere (below detection limits, Price et al. 2010, and 0.30 kg N ha$^{-1}$ yr$^{-1}$, Hedley et
Nitrous oxide emissions following DSE application to *K. robusta* during the 24-day experimental period (0.133 kg N₂O-N ha⁻¹, 0.27% of N applied) were at the low end of those found in the literature for similar DSE applications to grazed pastures in New Zealand (0.13-1.08 kg N ha⁻¹). Following applications of 50-60 kg N ha⁻¹ DSE N₂O was emitted at rates of 0.13-0.48 (0.25-0.8% of N applied, Li et al. 2015) and 0.15-0.45 kg N ha⁻¹ (0.31-0.73% of N applied, Bhandral et al. 2007) during approximately 20 and 2 week experimental periods, respectively. While consecutive annual DSE applications of 56 and 43 kg N ha⁻¹ in the Canterbury region produced 0.665 and 1.08 kg N₂O-N ha⁻¹ yr⁻¹ (1.2 and 2.5% of N applied, van der Weerden et al. 2016). Consistent with the current study, others also report N₂O emissions returning to background levels rapidly (<3 weeks) following effluent application (Barton and Schipper 2001; Bhandral et al. 2010).

4.2. Soil conditions and nitrous oxide emissions

Water filled pore space was around 10% higher in bare soil than beneath *K. robusta*, likely due to transpiration by *K. robusta* and canopy rainfall interception. This was within the range suitable for denitrification (60-65%, Linn and Doran 1984), however, WFPS in *K. robusta* plots were below this range. The corresponding aerobic conditions may have decreased N₂O-reductase activity in denitrification (Bakken and Dörsch 2007) and potentially contributed to reduced emissions. Soil moisture has previously been associated with variation in N₂O emissions from *Kunzea* forests (Hedley et al. 2013). The dry sites which *Kunzea* spp. often dominate may explain the low reported background N₂O production rates (Hedley et al. 2013; Price et al. 2010). The control treatment effectively accounted for increased soil moisture resulting from the DSE addition. However, WFPS did not increase in response to an event totaling 10% annual
rainfall, it is possible that surface cracks channeled rainfall to groundwater or sampling dates missed a peak.

Soil pH was around 0.3 units lower beneath *K. robusta*, potentially through exudation of organic acids by *K. robusta* roots or breakdown of leaf litter. Denitrification rates are reduced in acidic conditions (van der Weerden et al. 1999), providing another possible explanation for reduced emissions. *Kunzea robusta* leaf litter at this site had a C:N ratio of 26 (Zhong et al. 2014) so some mineralization was likely, as reflected in the elevated soil organic C (Table 1).

Ammonium-N increased 10-fold immediately following DSE application likely due to the high NH₄⁺ concentrations in the DSE. Plant uptake, microbial immobilization, or oxidization to NO₃⁻ may have then reduced the NH₄⁺ pool over time. Loss of NH₄⁺ through volatilization, is unlikely due to the low soil pH (Bolan et al. 2004).

Ammonium-N also increased following water treatment possibly due to mineralization of soil organic matter, while rainfall may explain NH₄⁺-N variability during the experiment. The peak in soil NO₃⁻-N following treatment application to *K. robusta* may be a result of increased NO₃⁻ retention. The rainfall event reduced soil NO₃⁻-N concentrations beneath *K. robusta* to levels comparable to bare soil.

The comparatively higher NO₃⁻-N under *K. robusta* may mean that the reduced N₂O emissions were not the result of inhibition of nitrifying bacteria, but rather inhibition of denitrifying bacteria. Despite available NO₃⁻ and C substrate for denitrification, *K. robusta* soil emitted less N₂O than bare soil. It seems likely that the dry, aerated, and acidic soil under *K. robusta* was less suitable for N₂O production via denitrification.

Differences in WFPS between *K. robusta* and bare soil confound the interpretation,
meaning we cannot conclude whether inhibition of nitrification or denitrification occurred.

4.3. Implications for future Myrtaceae research

We identified a significant reduction in N$_2$O production from soil beneath *K. robusta* following application of DSE, compared with bare soil. Constraints on the denitrification process in the dry *K. robusta* soil are a possible cause of reduced emissions (Hedley et al. 2013; Price et al. 2010). Nitrous oxide emissions from *K. robusta* were low compared to those following similar applications to dairy pastures, which typically have higher WFPS than that measured beneath *K. robusta* (Bhandral et al. 2007, Li et al. 2015). Irrigation of DSE onto *K. robusta* plantations may offer a sustainable disposal option for this high N waste, resulting in low N$_2$O emissions, even in the winter when emissions are typically higher. This would require a closed canopy prior to DSE application to minimize exposed bare soil which is likely to emit more N$_2$O. *Kunzea* plantations may also provide additional income to farms through the production of high value tea-tree oils and honey (Stephens et al. 2010). Other Myrtaceae, *Eucalyptus* (Tzanakakis et al. 2009) and *Melaleuca* spp. (Bolton and Greenway 1999), have been successfully used in effluent land treatment systems to mitigate NO$_3^-$ leaching and produce harvestable biomass, but associated N$_2$O emissions have not been investigated. Although suppression of denitrification is desirable, pollution swapping may occur through increased NO$_3^-$ leaching. *Kunzea robusta* seedlings have demonstrated a capacity for luxury N uptake (Franklin et al. 2015). Nitrogen storage in *K. robusta* roots, wood and foliage may reduce the pool of soil nitrate available for both denitrification to N$_2$O, and NO$_3^-$ leaching. Further research should simultaneously measure N$_2$O emissions, NO$_3^-$ leaching and N uptake by *K.*
robusta, to determine the net environmental effect of DSE irrigation onto K. robusta. In addition, future work should incorporate comparisons to other tree and grassland species to determine if this effect is unique to K. robusta. The environmental benefits of reduced N$_2$O emissions warrant a closer look at the effect of Myrtaceae on the soil N cycle worldwide.

5. Acknowledgements

This research was funded by Lincoln University. The authors wish to thank Manjula Premaratne, Qian Liang, Roger Atkinson and Trevor Hendry (Faculty of Agriculture and Life Sciences, Lincoln University) for valuable technical assistance, as well as Professor Tim Clough and two anonymous reviewers for comments on the manuscript draft.

References

doi:10.1016/S0273-1223(99)00470-9

doi:10.1071/SR12248

doi:10.2136/sssaj1981.03615995004500020017x

Tables

Table 1

Chemical and physical properties for the Templeton silt loam soil at the study site under *Kunzea robusta* and bare soil locations and of the dairy shed effluent. Data are mean (±SE). Soil (0-7.5 cm depth) was collected from *K. robusta* and bare soil locations adjacent to sampling plots (n=5, except pH, NO$_3$-N, NH$_4$+-N and gravimetric moisture content where n=10). Significant differences between *K. robusta* and bare soil locations are indicated.

<table>
<thead>
<tr>
<th></th>
<th>Bare Soil</th>
<th>Kunzea robusta (kānuka)</th>
<th>Dairy shed effluent</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.5 (0.04) ***</td>
<td>5.3 (0.05)</td>
<td>7.5</td>
</tr>
<tr>
<td>C (mg g$^{-1}$)</td>
<td>29.9 (0.47) NS‡</td>
<td>28.5 (0.60)</td>
<td>1070 (95) †</td>
</tr>
<tr>
<td>N (mg g$^{-1}$)</td>
<td>2.94 (0.04) *</td>
<td>2.68 (0.09)</td>
<td>450 (45) †</td>
</tr>
<tr>
<td>Organic C (mg g$^{-1}$)</td>
<td>5.99 (0.85) *</td>
<td>7.78 (0.17)</td>
<td></td>
</tr>
<tr>
<td>C:N</td>
<td>10.2 (0.11) NS</td>
<td>10.7 (0.33)</td>
<td></td>
</tr>
<tr>
<td>NO$_3$-N (µg g$^{-1}$)</td>
<td>7.04 (3.28) *</td>
<td>17.4 (4.03)</td>
<td>0.25 (0.01)</td>
</tr>
<tr>
<td>NH$_4$+-N (µg g$^{-1}$)</td>
<td>0.70 (0.53) NS‡</td>
<td>1.32 (0.91)</td>
<td>244.9 (6.00)</td>
</tr>
<tr>
<td>Olsen P (mg L$^{-1}$)</td>
<td>19.0 (1.21) NS</td>
<td>17.8 (1.67)</td>
<td></td>
</tr>
<tr>
<td>Gravimetric moisture content (%)</td>
<td>31.4 (0.74) *</td>
<td>28.9 (0.64)</td>
<td></td>
</tr>
<tr>
<td>Bulk density (g cm$^{-3}$)</td>
<td>1.11 (0.03) NS</td>
<td>1.01 (0.04)</td>
<td></td>
</tr>
<tr>
<td>Water filled pore space (%)</td>
<td>59.6 (1.40) ***</td>
<td>46.9 (1.04)</td>
<td></td>
</tr>
</tbody>
</table>

* Significant at the 0.05 probability level.

*** Significant at the 0.001 probability level.

† Units are µg g$^{-1}$ for C and N of dairy shed effluent.

‡ NS, nonsignificant.
Figure Captions

Figure 1
The arrangement of dairy shed effluent (DSE) and control subplots in bare soil and *K. robusta* locations. Each subplot includes a paired gas sampling chamber and soil sampling plot (each 0.48 m diam.) to which DSE or control treatments were applied. Sampling plots were placed 0.2 m away from the stems of *K. robusta* (X) and centre of bare soil plots.

Figure 2
Mean (±SE) daily N$_2$O-N flux (a) and mean (±SE) water filled pore space and meteorological measurements (b) following the application of dairy shed effluent (DSE, 50 kg N ha$^{-1}$) and control treatments to *K. robusta* and bare soil plots (n=5). Meteorological data were obtained from the nearby NIWA Broadfield Climate Station (43°37’34.4” S, 172°28’13.4 E). Water filled pore space data are for control plots only, dairy shed effluent plots not shown (no effect of treatment type).

Figure 3
Mean (±SE) soil NO$_3$-N (a) and NH$_4$+ -N (b) concentration (µg g$^{-1}$ of soil, 0-7.5 cm depth) over time, following the application of dairy shed effluent (DSE, 50 kg N ha$^{-1}$) and control to bare soil and *K. robusta* plots (n=5).
Figure 1

Gas sampling plot (chamber + DSE)
Gas sampling plot (chamber + control)
Soil sampling plot (ring + DSE)
Soil sampling plot (ring + control)

Bare soil

Kunzea robusta
Figure 2

(a) N₂O - N flux (g N₂O-N ha⁻¹ day⁻¹)

(b) Temperature (°C), Rainfall (mm), Water Filled Pore Space %

Days since dairy shed effluent (DSE) application
Figure 3

(a) Nitrate-N (µg g⁻¹)
- Bare soil + Control
- Bare soil + DSE
- K. robusta + Control
- K. robusta + DSE

(b) Ammonium-N (µg g⁻¹)
- Bare soil + Control
- Bare soil + DSE
- K. robusta + Control
- K. robusta + DSE

Days since dairy shed effluent (DSE) application