Effects of hip joint centre mislocation on gait kinematics of children with cerebral palsy calculated using patient-specific direct and inverse kinematic models

Hans Kainz, Christopher P. Carty, Sheanna Mainé, Henry P.J. Walsh, David G. Lloyd, Luca Modenese

ABSTRACT

Joint kinematics can be calculated by Direct Kinematics (DK), which is used in most clinical gait laboratories, or Inverse Kinematics (IK), which is mainly used for musculoskeletal research. In both approaches, joint centre locations are required to compute joint angles. The hip joint centre (HJC) in DK models can be estimated using predictive or functional methods, while in IK models can be obtained by scaling generic models. The aim of the current study was to systematically investigate the impact of HJC location errors on lower limb joint kinematics of a clinical population using DK and IK approaches. Subject-specific kinematic models of eight children with cerebral palsy were built from magnetic resonance images and used as reference models. HJC was then perturbed in 6 mm steps within a 60 mm cubic grid, and kinematic waveforms were calculated for the reference and perturbed models. HJC perturbations affected only hip and knee joint kinematics in a DK framework, but all joint angles were affected when using IK. In the DK model, joint constraints increased the sensitivity of joint range-of-motion to HJC location errors. Mean joint angle offsets larger than 5° were observed for both approaches (DK and IK), which were larger than previously reported for healthy adults. In the absence of medical images to identify the HJC, predictive or functional methods with small errors in anterior-posterior and medial-lateral directions and scaling procedures minimizing HJC location errors in the anterior-posterior direction should be chosen to minimize the impact on joint kinematics.

1. Introduction

In children with cerebral palsy (CP), three-dimensional gait analysis is used for treatment planning and evaluating the outcome of an intervention [1]. Most clinical gait laboratories use variants of the conventional gait model [2,3], included in most commercially available motion capture systems. Joint kinematics are calculated by the conventional gait model as Cardan angles describing the relative pose of adjacent anatomical segment reference systems, which are defined from the experimental markers’ positions and a minimum set of anatomical measurements (Direct Kinematics, DK) [4,5]. Conversely, musculoskeletal software such as AnyBody [6] and OpenSim [7] use an Inverse Kinematics (IK) approach to compute joint angles from marker trajectories. In the IK framework, also known as “global optimization” or “multi-body optimization”, joint angles are calculated by adjusting the pose of a scaled musculoskeletal model to best match the model markers’ position with the experimental surface markers at each frame of their trajectory [8,9]. Musculoskeletal software may provide valuable additional information on the causes of gait abnormalities and therefore improve clinical-decision making because it allows additional analyses such as musculotendon length estimation [10,11], joint contact force calculations [12,13] and induced acceleration analysis [14].

Kinematic models usually differ between DK and IK approaches. Most currently available lower body IK models use constrained joints,
i.e. 3 degrees of freedom (DoF) joint (ball-and-socket joint) at the hip and a 1 DoF joint at the knee and talocrural joint [15–17]. Alternatively, DK approaches can have constrained and unconstrained, i.e. 6 DoF, joint models [2,18,19]. Both DK and IK approaches, however, require joint centre locations for kinematic and kinetic analyses. The hip joint centre (HJC) is difficult to estimate because it is not a palpable bony landmark, so in conventional gait models predictive or functional methods are used to estimate its location in the pelvis reference system [20], whereas in musculoskeletal models its location is defined by scaling the pelvis segment [7].

When using a DK approach, HJC location errors can lead to an offset (change in mean angle) and, depending on the direction of the mislocation, to a distortion (change in ranges of motion, ROM) of the estimated lower limb joint kinematics [19,21]. To the authors’ knowledge, no studies have evaluated the impact of HJC location errors on joint kinematics using an IK approach. However, using unconstrained DK models for healthy adults HJC location errors had negligible effect on mean and ROM of estimated hip and knee angles, i.e. < 1.5°, [21], while in constrained DK models HJC errors had large effects on hip joint ROM; up to 6.7° [19], which could be indicative of HJC location errors on IK estimated lower limb joint kinematics. Furthermore, the DK results were obtained for healthy adults, and the results may be different for paediatric patient populations, for which there are no studies yet.

Therefore, this study aimed to investigate the propagation of HJC location errors to mean and ROM in the lower limb joint kinematics of children with CP using DK and IK models with different joint constraints. It was hypothesised that HJC location errors affect mean and ROM of all joint angles in IK models, whereas only hip and knee kinematics will be affected in the DK models.

2. Methods

2.1. Participants

Three children with hemiplegic and five children with diplegic CP (four males, four females; age: 10 ± 3 years, height: 1.30 ± 0.15 m, mass: 27 ± 6 kg, body mass index: 16 ± 1 kg/m², GMFCS level 1–3) were recruited and presented for motion capture and magnetic resonance imaging (MRI) data collection sessions. None of the participants required an assistive device for walking. Ethics approval was obtained from the Queensland Children’s Health Services Human Research Ethics Committee, and parents gave their informed and written consent for their children to participate in the study.

2.2. Motion capture and MRI imaging

Motion capture data was collected at the Queensland Children’s Motion Analysis Service (Brisbane, Australia). A physiotherapist, experienced in clinical gait analysis, placed retro-reflective MRI-visible surface markers (Table 1) on each participant. An 8-camera, 3-dimensional motion capture system (Vicon Motion Systems, Oxford, UK) was used to collect one static calibration and at least six walking trials for each participant. To identify initial contact and foot-off gait events, ground reaction forces were simultaneously acquired using three force platforms (AMTI OR6-7-1000, Watertown, MA, USA). Vicon Nexus 1.8.5 (Vicon Motion Systems, Oxford, UK) was used to label and filter marker trajectories using a 4th order forward-reverse-pass zero-lag Butterworth low pass filter with cut-off frequency of 6 Hz. At the end of the motion data collection a waterproof pen was used to mark the position of the surface markers on the anatomical landmarks. In the same week of the gait analysis session, full lower-body MRI scans were collected from each participant in a supine position at the Royal Children’s Hospital (Brisbane, Australia) or the Lady Cilento Children’s Hospital (Brisbane, Australia). Prior to the MRI scans the same MRI-visible surface markers were placed on the marked positions on the pelvis, knee, ankle and foot of each participant. Images were collected with 1.5T magnetic resonance scanners (MAGNETOM Avanto, Siemens, Berlin/Munich, Germany) using a modified 3D Proton Density SPACE sequence (slice thickness 1.1 mm, slice increments 1.1 mm, voxel size 0.83 × 0.83 × 1.0 mm).

2.3. Kinematic models

Following the session in the gait lab and MRI data collection, lower limb kinematic waveforms were computed for both investigated methodologies using patient-specific models created from the MRIs.

2.3.1. IK models

The patient specific “reference models” were created by processing the collected MRI and motion capture data via four steps as reported in detail in our previous study [22]:

1. The skin, bones and MRI-visible surface markers of the right lower limb for each participant were segmented using Mimas (Materialise, Belgium).
2. The bone geometries were imported into 3-matics (Materialise, Belgium) and subject-specific joint parameters were calculated by fitting spheres to joint contact surfaces.
3. Bone geometries, marker centroids, and the joint centres and axes, were imported into NMSBuilder [23] from which subject-specific unilateral OpenSim models were created for all participants. These models included four segments (pelvis, thigh, shank, and foot) connected by three joints, with centers and axes described in [22]. Virtual markers, placed in the same position as the MRI visible markers, were also included in the model. Anatomical segment reference systems (ASRS) consistent with the recommendation of the International Society of Biomechanics [24] were defined (Supplementary Table S1). Two IK models were created for each participant, the 3-1-1-DoF-IK and 3-3-3-DoF-IK model. In the 3-1-1-DoF-IK model, the hip joint had 3 DoF (flexion-extension, abduction-adduction, and internal-external rotation), the knee 1 flexion-extension DoF, and ankle 1 planter-dorsiflexion DoF, while the pelvis had a 6 DoF free joint with ground. In the 3-3-3-DoF-IK model the hip, knee and ankle joints had 3 rotational DoF.
4. After creating the IK models, the marker placement tool available in OpenSim was used for registering the cluster markers (not available during the MRI scans) onto the model segments using the markers visible in the MRI as a reference.

Joint angles were calculated through the weighted least squares optimization available in OpenSim [7] assigning an equal weight to all tracking markers (Table 1).

2.3.2. DK models

DK models were generated from the finalised IK models. From the static pose data of the participants their model ASRSs were defined and stored into technical segment frames (TSF) defined by surface markers (Fig. 1). Subsequently, their pose matrix with respect to the proximal segment could be reconstructed in each frame and decomposed into Cardan angles (flexion-extension, abduction-adduction, and internal-external rotation sequence). Two DK models were created for each subject. The 6-DoF-DK model, similar to [25], had no joint constraints between segments, whereas the 3-DoF-DK model only allowed joint rotations, similar to the conventional gait model [2,3]. Calculations were performed using a custom Matlab script (R2013a, The Math Works, Natick, USA).

2.4. Hip joint centre perturbation

For each trial, joint kinematics were first calculated using the reference models, i.e. with the HJC location defined from the MRIs, and then using modified models with altered HJC. The HJC coordinates
were perturbed using a cubical grid centred in the nominal HJC whose axes were aligned to the anterior-posterior (x-axis), superior-inferior (y-axis) and medial-lateral (z-axis) anatomical axes of the pelvis (supplementary Fig. S1). The cubic grid included all possible combinations of Δx, Δy and Δz errors, in the range of ± 30 mm\cite{21,26} with 6 mm steps. A total of 1330 perturbed models for each DK and IK model were generated.

2.5. Data analysis

Similar to Stagni et al.\cite{21}, the offset, i.e. propagated error in the mean joint angles Δq, was calculated by subtracting the mean value of a gait cycle of the reference model’s kinematic waveforms from the mean value of the perturbed waveform. The change in joint ROM, i.e. propagated error of the peak-to-peak Δq_{pp}, was similarly calculated by subtracting the peak-to-peak of the reference model’s waveform from the peak-to-peak of the perturbed waveform. Both values, Δq and Δq_{pp}, were correlated with the HJC perturbations (Δx, Δy, Δz). Results were presented non-normalised ($A_{peak} = 1$) and normalised to the absolute value of the maximum perturbation ($A_{peak} = 30$ mm).

$$\Delta q = m_x \left(\frac{\Delta x}{A_{peak}} \right) + m_y \left(\frac{\Delta y}{A_{peak}} \right) + m_z \left(\frac{\Delta z}{A_{peak}} \right)$$

$$\Delta q_{pp} = p_x \left(\frac{\Delta x}{A_{peak}} \right) + p_y \left(\frac{\Delta y}{A_{peak}} \right) + p_z \left(\frac{\Delta z}{A_{peak}} \right)$$

In these equations m_x, m_y, m_z, p_x, p_y and p_z are the regression coefficients from the multiple regression analyses, which represent the sensitivities of mean and ROM joint angles to HJC location errors. The offset, Δq, and change in ROM, Δq_{pp}, of joint angles were calculated for every trial and the average values were used in the described regression analyses. Due to the large variability in CP gait kinematics (supplementary Fig. S2) regression coefficients were first calculated for each participant and then averaged over all participants to account for inter-subject variability. Differences in the regression coefficients between the 3-DoF-DK and 3-3-3-DoF-IK models were used to evaluate the impact of the computational method (DK vs. IK) on the HJC sensitivity. Differences in the regression coefficients between the 3-1-1-DoF-IK and

Table 1

<table>
<thead>
<tr>
<th>Segment</th>
<th>Marker name</th>
<th>Anatomical description</th>
<th>Markers usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td>MOCAP</td>
<td>Kinematic analysis</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td>RASI/LASI</td>
<td>Right/left anterior superior iliac spine</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RPSI/LPSI</td>
<td>Right/left posterior superior iliac spine</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RIC/LIC</td>
<td>Right/left iliac crest</td>
<td>Yes</td>
</tr>
<tr>
<td>Thigh</td>
<td>RTH1/LTH1</td>
<td>Right/left thigh cluster marker 1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RTH2/LTH2</td>
<td>Right/left thigh cluster marker 2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RTH3/LTH3</td>
<td>Right/left thigh cluster marker 3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RKNE/LKNE</td>
<td>Right/left lateral femoral epicondyly</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RMNE/LMKNE</td>
<td>Right/left medial femoral epicondyly</td>
<td>Yes</td>
</tr>
<tr>
<td>Shank</td>
<td>RTB1/LTB1</td>
<td>Right/left shank cluster marker 1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RTB2/LTB2</td>
<td>Right/left shank cluster marker 2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RTB3/LTB3</td>
<td>Right/left shank cluster marker 3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RANK/LANK</td>
<td>Right/left lateral malleolus</td>
<td>Yes</td>
</tr>
<tr>
<td>Foot</td>
<td>RTOE/LTOE</td>
<td>Top of the second metatarsal head</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RDSM/LDSM</td>
<td>Lateral aspect of the 5th metatarsal head</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>RHEE/LHHE</td>
<td>Posterior aspect of the heel at the same height as the RTOE/LTOE marker</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Fig. 1. Definitions of the technical segment frames (TSF). Definition of the anatomical segment frames can be found in the electronic Appendix Table S1.
3-3-3-DoF-IK models, and between the 3-DoF-DK and 6-DoF-DK were used to analyse the impact of joint constraints on HJC sensitivity in IK and DK models, respectively. A repeated measures general linear model was used for each comparison and joint angle. In the case of significant interactions, post-hoc comparisons were performed using Bonferroni corrections. The significance level was $p < 0.05$ and IBM SPSS Statistics 21 (IBM Corporation, New York, USA) was used for all statistical analyses.

3. Results

HJC perturbations affected the DK and IK models in different ways (Fig. 2-4). For the DK models, HJC perturbations changed hip and knee kinematic waveforms but, as expected, did not alter pelvis or ankle kinematics. In DK models (6-DoF-DK and 3-DoF-DK), anterior-posterior HJC perturbations mainly affected mean hip and knee flexion-extension angles (ranging from 4° to 6.4° of variation for both models), whereas errors in the medial-lateral direction primarily influenced mean hip and knee ab-adduction angles (median variations larger than 5° for both joints) (Fig. 2). Changes in hip and knee flexion/extension joint ROMs were significantly larger ($p < 0.05$) in the 3-DoF-DK than in the 6-DoF-DK model, with variations exceeding 5° in the former model while never exceeding 2° in the latter. Superior/inferior and anterior/posterior HJC perturbations were causing the largest ROM variations.

For the IK models, HJC perturbations had an impact on all analysed joint angles with hip and knee angles being most sensitive to errors in the anterior-posterior direction and ankle angles being the least affected. Angle variations were up to 8.3° for the hip angles and up to 5.9° for knee flexion/extension. Overall all joint angles, the changes in joint ROM and mean joint angles caused by HJC location errors were slightly smaller in the 3-1-1-DoF-IK than in the 3-3-3-DoF-IK models (Fig. 3). However, the differences at the hip joint were statistically significant only for flexion/extension, ab-/adduction and internal/external rotation angle variations caused by superior/inferior, anterior/posterior and medial/lateral perturbation respectively. Significant differences due to medial/lateral perturbation were also found for pelvis obliquity and knee flexion/extension angles.

The comparison between the 3-DoF-DK and 3-3-3-DoF-IK models identified significantly different sensitivities of mean joint angles to HJC perturbations for hip and knee joints (Fig. 4). In particular, HJC location errors in the medial/lateral direction caused significant differences in the hip and knee ab/adduction and knee internal/external rotation angles, while anterior-posterior and superior/inferior perturbations led to changes in the hip and knee flexion/extension. Finally, HJC perturbations in anterior-posterior and superior-inferior directions were responsible for significant differences between the ROM of hip flexion/extension and ab-adduction angles and all three rotations of the knee joint (Fig. 4).
4. Discussion

This is the first study to evaluate the impact of HJC location errors on lower limb joint kinematics in children with CP when using DK and IK approaches. Using DK anterior-posterior and medial/lateral HJC location errors had the largest impact on joint kinematics leading to large and consistent offsets of hip and knee flexion-extension and abduction angles. Contrastingly, using the IK approach HJC location errors impacted all joint angles, but the propagated errors were generally more variable and dispersed across all joints.

Due to their computational dissimilarities the DK and IK approaches produced large differences in their mean offset and ROM joint angles sensitivities. DK calculations only involve adjacent ASRS, so HJC perturbations only affected the femur ASRS thereby altering hip and knee joint kinematics alone, while IK’s global optimization affected all joint angles, confirming our hypothesis. Researchers and clinicians using IK modelling on similar populations should be aware that errors in locating the HJC will impact the kinematics of the entire lower limb kinematic chain, especially when the HJC location is not identified from medical images. Moreover, it is worth noting that the effect of HJC errors can combine with other methodological issues, making kinematic results challenging to interpret; in DK-models, for instance, medial/lateral perturbations cause changes in knee axial rotation that are not matched by a corresponding hip joint axial rotation, due to the effect of order of rotation in pose decomposition.

We found that HJC location errors in DK models mainly affected hip flexion-extension and abduction rotations with small influences on hip internal-external rotations. Furthermore, hip ROM errors in our 6-DoF-DK model (maximal error of 2.7°) were smaller than in our 3-DoF-DK model (maximal error of 5.1°). This is similar to Cereatti et al. [19] who found ROM errors up to 0.8° and 6.7° for an unconstrained (6-DoF) and constrained (3-DoF) DK model, respectively. The present study’s IK models had ROM errors, i.e. waveform distortions, up to 12.9°, which were substantially larger than the maximum ROM errors in the DK models of 5.3°. Our IK and 3-DoF-DK models included joint constraints, similar to the constrained DK model in [19], and led to a shift and distortion of kinematic waveforms, whereas HJC perturbations in our unconstrained 6-DoF-DK model only offset the waveforms without distortion.

In contrast to our results, Stagni et al. [21] found that HJC location errors had negligible impact on mean hip and knee angles using DK methods. However, their study collected data from healthy adult participants, and in contrast, our children with CP had different hip and knee joint ROM (see kinematic waveforms in supplementary Fig. S3 and S4), and shorter femur lengths, which led to larger impact of HJC errors on joint kinematics. Furthermore, the ASRS in [21] were derived from
the location of surface markers from a static standing trial whereas in our study the ASRS were created from MRIs in a supine position, which could cause different offsets between the ASRS and TSF. Comparing the angular offset between ASRS and TSF from the MRI models with the angular offset from models created using only the marker locations from a static trial showed a mean difference of 3.2°, which is insufficient to account for differences between our results and those presented in [21].

This study presents potential limitations that must be considered when interpreting our findings. MRIs were collected in a supine position, which moved the posterior superior iliac spine markers more superior in three participants due to a body pose adjustment after the participant laid down. However, having the additional iliac crest markers together with the anterior superior iliac crest markers in the static trial and during MRI collection enabled adjustment of the PSIS markers to match the upright standing position. This approach was feasible because of the low mean BMI of the participants (< 17 kg/m²), but it would have not been acceptable for children with larger BMI or adults, due to the effect of skin artefacts. Another limitation of the study is the small population of CP children involved in the study. Although a larger clinical population would be necessary to generalize our findings, the heterogeneous diagnoses presented by the participants seem to suggest that our results are valid for all CP children that can walk without assistive device.

In conclusion, the present study has shown that HJC location errors propagate to all lower limb joint angles when using an IK approach, whereas using DK only hip and knee joint kinematics are affected. For the DK models, joint constraints increased the sensitivity of joint ROM to HJC location errors, whereas for the IK models changes in joint ROM and mean joint angles were similar between the 3-3-3-DoF-IK and 3-1-1-DoF-IK models. In both approaches (DK and IK) offsets in joint angles above 5° were observed which have the potential to mislead clinical interpretation [27,28]. In the absence of medical images to identify the HJC, predictive or functional methods with small errors in anterior-posterior and medial-lateral directions and scaling procedures minimizing HJC location errors in the anterior-posterior direction should be chosen to minimize the impact on joint kinematics.
Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank Julie Edwards for performing marker placement, Chris Stockton for collecting the MRI images, and Dr Owen Gilles for screening participants for MRI. Further, this research was funded in part by a Children’s Health Queensland Innovation Grant (to CPC), a Brisbane Royal Children’s Hospital Private Practice Research Fund (to CPC, SM, and DGL), a Griffith University Research Fellowship (to CPC), and a Griffith University Publication Assistance Scholarship (to HK). Contribution by Luca Modenese was supported in part by a Griffith University New Researcher Grant and in part by the EPSRC, under Grant EP/K03877X/1. Dr Hans Kainz wants to thank Dr Rita Stagni for the fruitful discussions via email and Skype and for reviewing the manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://dx.doi.org/10.1016/j.gaitpost.2017.06.002.

References