Abstract

Purpose - This paper uses a concurrent mixed method approach to explore the key variables that can influence customer experience at a food and wine event.

Design/methodology/approach - A concurrent mixed methods approach, using a participant-generated image (PGI) method, together with a recall survey, provided images with associated narratives, descriptive statistics, correlations, and hierarchical multiple regression analysis to explore how attendees appraise their experiences based on their goals and the link between experience appraisals and overall evaluations.

Findings - Through the participant-generated image (PGI) method (N = 25), we determined that customer experience at the event could be viewed as a hierarchical model, comprising a fundamental sensory experience together with three higher-order customer experience components (fun, discovery, and inspiration). A separate concurrent recall study (N = 598) demonstrated the relationship between the same four customer experience components and overall satisfaction as well as recommendation and repeat visitation.

Practical implications - The results suggest that to promote positive customer experiences, along with the product of the event itself, event managers should focus on activity programs that are fun, inspirational, and novel, as well as sensory.

Originality/value - Our study focuses on a single case study of an event to examine and extend our understanding of customer experience. The use of a concurrent mixed methods approach provides us with different types of data from two separate samples of participants. By integrating data from each study we are able to build a conceptual model of the salient dimensions of customer experience and then quantitatively analyze how these salient dimensions are related to outcome variables.

Keywords Customer experience, Participant-generated image (PGI) method, Mixed methods, Customer satisfaction, Intention to recommend, Intention for repeat visit

Paper type Research paper
Introduction

Recent research has pointed to the importance of the concept of customer experience. Customer experience is related to the appraisals or evaluations people make when they are interacting with a product, a service provider or an organisation (LaSalle and Britton, 2003, Shaw and Ivens, 2002), and focuses on what people are doing in the moment and how they might think or feel about that moment. In any service interaction there is likely to be a multitude of experiences that occur at different points in time associated with a consumer’s purchase; these are often referred to as touch points. Related literature in service design (Polaine et al., 2013) depicts these experiences based on touch points as part of a customer journey. The touch points may be related to many different activities depending upon the service under consideration. Activities can be anything that the customer may experience, for example, waiting in line to buy a ticket, talking to a waiter or tasting food at a restaurant. A customer is likely to appraise these experiences giving them some personal meaning or interpretation. How an experience is appraised will depend on an individual’s personal frame, especially goal congruence (whether the experience is congruent with what the person hoped to get out of the interaction) (Puccinelli et al., 2009). Finally it is likely that any appraisals made will also impact on overall evaluations. Thus, it is argued that the study of customer experience through to overall service evaluation is important.

Developing a more thorough understanding of customer experience by evaluating personal goals and their fit with the context is particularly relevant to experiences within the event sector. The event literature has not focused a high degree of attention on understanding the types of experiences that people may have when attending a food and wine event. This study adopts a mixed methods approach in an effort to better understand the experiences that people have at an event, as well as the associations between these experiences and overall customer evaluations. Two methods are adopted: a participant-generated image (PGI) study
and a recall based survey. Data were collected simultaneously with a focus on the same event but with separate samples. Analysis was undertaken sequentially, by first analysing narratives that were associated with the photos people took at the event and then testing the findings identified from the PGI study using quantitative data from the survey.

Specifically, two key questions guided this research:

RQ1: How do people appraise their experiences through personal narrative and what are the most salient dimensions?

RQ2: What salient dimensions of customer experience are most likely to be associated with satisfaction, recommendation or loyalty of an event?

This research makes a number of contributions: it captures snapshots of customers’ momentary experiences and collects narratives that provide new insights into what salient dimensions contribute to people’s event experiences; it verifies the pattern of results from the PGI study and tests the relationships between salient dimensions and overall evaluation variables.

Literature Review

The concept of customer experience

Customer experience is a major component of the service industries. Prior research suggests that the customer’s experience of a service has strong links to important outcome variables such as satisfaction and loyalty (e.g., Pullman and Gross, 2004, Walls, 2013, Walls et al., 2011). However, understanding and managing customer experience is challenging, as “experience” encompasses many variables related to the customer’s sensory experience, feelings during the experience, and concurrent and subsequent appraisals. In defining an experience, we concur with other scholars (e.g., Bolton et al., 2014, Gentile et al., 2007,
Verhoef et al., 2009, Walls et al., 2011) that an experience is an occurrence that will involve the individual in some way, either emotionally, physically, socially, or cognitively. For example, customer experiences can be cognitive such as learning new information, or they can be hedonic, such as having fun, and others can be sensory or social in nature.

The literature acknowledges the multidimensionality of experiences (e.g., Gentile et al., 2007, Verleye, 2015, Hosany and Witham, 2009). For instance, other researchers (e.g. Schmitt, 1999) argue for multiple types of customer experiences, including sensory, emotional, cognitive, physical, and social experiences. Building from insights of previous studies, Gentile et al. (2007) argues for the multidimensional structure of customer experience to include sensory, emotional, cognitive, social, pragmatic, and lifestyle components. Furthermore, Gentile et al. (2007) reported on a survey of customers to provide empirical evidence that sensory component was reported as the most important dimension to customer experience (see also Agapito et al., 2012, Berry et al., 2006, Pine and Gilmore, 1998). More importantly, the results of this study suggest that different components are activated depending upon the individual, the consumption situation, and the service offerings (Bharwani and Jauhari, 2013, Gentile et al., 2007, Verleye, 2015).

In the food and wine event context, customer experience is a complex phenomenon (Getz, 2010, Getz, 2013), as experiences are formed through a set of communications and interactions between customers and event components at different touch points. Event components include celebrity chefs/performers, exhibiting vendors/products, event staff/volunteers, paid (add-on) activities, and event venue settings. Once a customer enters the event, sensory elements (e.g. lighting and temperature) at the event venue start to affect the customer’s experience, as do interactions with staff. Customers are likely to have different experiences through these interactions and communications at various moments (touch points), such as having a sensory experience when sampling food and wine, having a
cognitive experience when discovering new food/wine products or an emotional experience when having fun with friends. Hence, investigating customer experience at a food and wine event from a multidimensional perspective may help generate new knowledge of the customer experience concept.

Appraisals of customer experience

Researchers have identified that atmosphere, service personnel, price, and assortment (Berry *et al.*, 2006, Bolton *et al.*, 2014, Gentile *et al.*, 2007, Meyer and Schwager, 2007, Walls *et al.*, 2011) impact directly on consumers’ experiences. Building from these insights, researchers (Verhoef *et al.*, 2009, Walls *et al.*, 2011) propose that customer experience is also influenced by factors that do not lie within the control of service providers. For example, other customers can impact a person’s experience (Zomerdijk and Voss, 2010), because any interaction between customers can contribute to customers’ social needs potentially making an experience more pleasing (Zomerdijk and Voss, 2010). Also, any current customer experiences will be influenced by past customer experiences (Bolton and Lemon, 1999).

By acknowledging the importance of these elements, which are within and outside service providers’ control, on customer experience, Verhoef *et al.* (2009) argue that customers’ goals when purchasing or using a particular service or product will be a moderating influence on evaluations. Goals are defined as processes that motivate and direct behavior. Arnold and Reynolds (2003) identify that customers have various goals; for example, some may need social engagement, while others seek fun or want to learn new knowledge. The various customer goals determine what types of experiences that individual customers are seeking and explain why different customer experiences are elicited from different customers under the same consumption context (Puccinelli *et al.*, 2009, Wen and Chi, 2013).
One specific situation in which people have experiences is event. For example, at a food and wine event, customers may attempt to achieve varied and multiple of goals, such as: having fun, social interaction, doing things with family, sampling food and beverage, and obtaining knowledge/education (e.g., Bowen and Daniels, 2005, Kim et al., 2001, Mason and Beaumont-Kerridge, 2004, Savinovic et al., 2012, Van Zyl and Botha, 2004, Yuan et al., 2005). Some goals are more cognitive in nature, such as learning new recipes or cooking methods; while some goals are highly associated with sensory experience, like sample good food and wine products; and others may be more affective in nature such as feeling happy and having fun. Thus, we propose that in the context of a food and wine event, the event organiser provides the landscape via event components for offering customer experiences, however, it is the customer who truly creates the experience, through constant appraising of various moments (touch points) based on their goals.

Event experience appraisals and outcome variables

We drew on principles of Appraisal Theory (e.g., Roseman et al., 1990, Smith and Ellsworth, 1985) as a foundation to understand how people appraise their momentary experiences at an event. Appraisals tend to be cognitive evaluations of experiences and are usually closely related to other feelings such as arousal and valence (Kuppens et al., 2012). Whether qualitatively or quantitatively derived, customer experience appraisal will be considered within a framework of the goals that are relevant at the time (Puccinelli et al., 2009, Hosany, 2011). Within Appraisal Theory, this match is known as goal congruence (Roseman et al., 1990), which is likely to be an important underlying contributor to the feelings people experience at an event, and influence outcome variables such as satisfaction and loyalty (e.g., Soscia, 2007, Mosteller et al., 2014). Services marketing research (e.g., Kim et al., 2010, Wijaya et al., 2013) widely recognizes customer satisfaction and behavioral intentions (e.g.,
intention to recommend and intention for repeat visit) as the most important outcome variables to be measured.

To investigate the two research questions, the present study utilizes a concurrent mixed methods design to capture the dynamic and subjective on-site event experiences as well as evaluations of post-experience outcomes. The next section elaborates the definition of a mixed methods approach and the design of a mixed methods approach for the current study.

Mixed methods approach

Leech and Onwuegbuzie (2009) describe a concurrent mixed methods approach as a study with two phases (qualitative and quantitative phases) that occur concurrently (i.e., data will be collected simultaneously). In particular, the qualitative and quantitative portions of the study will not be mixed until both data types have been collected and analyzed. Integration typically occurs at the data interpretation stage. This approach enables researchers to gain a deeper understanding of a phenomenon drawing on multiple sources of data (Hanson *et al.*, 2005). This approach is adopted in the current research.

This study uses two methods concurrently to investigate customer experience at a food and wine event, providing in-depth insights and new knowledge of customer experience: participant-generated image (PGI) method, a more qualitative oriented study to capture customer experience during the event, and a quantitative recall survey, implemented as a post-event study. The PGI study aims to identify the salient components of customer experience at the event through participants’ own cameras, while the concurrent recall survey tests the relationships between individuals’ appraisals of these salience components and key customer outcome variables like satisfaction, intention to recommend and intention for repeat visit.

Method Overview
Event context

This study examines customer experiences in the context of a national food and wine event in Brisbane, Australia. This annual event, held indoors, runs over a three-day period (Friday, Saturday, and Sunday). All study participants arrived in the morning and attended the event for one full day. The exhibiting food/wine vendors were mainly food and wine producers who attract local visitors and also people from nearby areas to enjoy a day out. The event comprises many activities, including food and wine displays, celebrity chef demonstrations, cooking classes, coffee-making classes, and wine-tasting master classes, and offers chill-out lounges and entertaining leisure activities (e.g., croquet). This broad offering allows for the capture and comparison of many experiences across the entire event period.

Research design

From an epistemological position, we take a pragmatic approach to the research by adopting methods that can be integrated to provide greater insight into customer experience (Johnson et al., 2007). As illustrated in Figure I, the research design involved two studies that were implemented to collect data at the same event but with different samples. Data from the first study (qualitative) were used to develop a model and then data from the second (quantitative) study were used to test the influence of the components in the model with broader customer evaluation variables.
While the studies were conducted concurrently, the analysis was more sequential. The use of PGI method captured “snapshots” of customers’ experiences over a one-day period and facilitated reflections of their experiences on the basis of their photos, narratives, and attribute ratings. The methods and results of the two studies are presented in Sections 4 (PGI study) and 5 (recall study), followed by a discussion that integrates the findings from the two concurrent studies. Table I details the participant information, data collection and data analysis processes for two studies.
Table I.

Data collection and data analysis process of PGI study and recall study

<table>
<thead>
<tr>
<th></th>
<th>PGI Study</th>
<th>Recall Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Participants(^a)</td>
<td>25</td>
<td>598</td>
</tr>
<tr>
<td>Data collection</td>
<td>Participant-driven</td>
<td>Researcher-driven</td>
</tr>
<tr>
<td></td>
<td>“Open choice” Narratives</td>
<td>“Set questions”</td>
</tr>
<tr>
<td>Theoretical</td>
<td>CEx literature</td>
<td>CEx literature</td>
</tr>
<tr>
<td>background</td>
<td>Appraisal theory</td>
<td>Appraisal theory</td>
</tr>
<tr>
<td>Data analysis</td>
<td>• Content analysis of narratives</td>
<td>• Draw from subset of recall data</td>
</tr>
<tr>
<td></td>
<td>• Identify salient components to food and wine event</td>
<td>• Confirmation of PGI model</td>
</tr>
<tr>
<td></td>
<td>experience</td>
<td>• Link to overall evaluation variables</td>
</tr>
<tr>
<td></td>
<td>• Propose conceptual model</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Two separate groups of respondents were recruited concurrently to participate in the two separate studies.

PGI Study

Method

Participants

To be eligible, participants needed to be day-ticket holders to the event. To assist with recruitment of participants, the event organizer sent email invitations on behalf of the researchers to a sample of ticket holders listed in their database. Twenty-five event attendees completed the study: 21 are female (80%) and four are male (20%). Twenty-four per cent of the participants were aged between 25-34 years old, 28% were aged between 35-44 and 40% were aged between 45–54. Fourteen (56%) work full-time. This sample profile is reflective of the event’s target market, which is predominantly female attendees (83.2%), aged between 25-64 years old (85%) with a mode of 45-54 years old. In terms of any previous attendance at the event, 44% of the participants indicated they went to the event for the first time, and the rest 56% went the event at least once in the past. Nearly 75% of the participants went to the event with their family, friends or partner.
Procedure
Participants used their smartphones to take photos of anything they felt contributed in some way to their customer experiences (either positive or negative) during the day at the event. Within three days of attending the event, each participant sent back 10 self-selected photos that best represented his/her experiences at the event. Photos were then incorporated into an online survey (Qualtrics) for further collection of feedback from the participants. Participants completed the reflective photo-elicitation survey within seven days of the event.

Measures
Each photo in the survey was followed by an open-ended question asking the participant to reflect on the motivation for taking the picture, giving participants an opportunity to write their own narrative about each experience. This question was repeated for each of the ten photos. Demographic information included gender, age, employment status, number of previous visits, and event attendance companion (if any).

Data analysis
The narratives associated with the 246 submitted images were analyzed through two cycles of coding to obtain in-depth data on customer experience at the event. In the first cycle of coding, two research team members independently reviewed the narratives for significant phrases or sentences and applied a descriptive coding process (Saldaña, 2013) to identify what activities participants were doing at the event. Then similar activities were regrouped into experience patterns through category coding process (Saldaña, 2013). In the second cycle coding, the two researchers further analyzed these experience categories through a combination of pattern and hierarchical coding (Saldaña, 2013) to produce a higher-order structure of three key themes, each representing an important aspect of the experience sought by participants at the event (see Figure II).
Figure II.
Overview of procedure and outcome for the analysis of participants’ narratives submitted by participants in PGI study

First Cycle Coding

Open coding
Narratives regarding to activities respondents were doing at the event
- Tasting wine
- Tasting cheese
- Watching demonstrations
- Listening to workshops
- Smelling aroma of coffee

Pattern coding
Regrouped similar activities into experience patterns
- Sight
- Smell
- Sound
- Taste

Second Cycle Pattern/Hierarchical Coding

Fun
Discovery
Inspiration

Conceptual Model

Proposed hierarchical model of CEx at the event
See Figure III
Results

Analysis of narratives (First cycle of coding)

The preliminary analysis of the narratives indicated that 227 out of 246 narratives submitted by participants described activities using sensory based words to explain their experiences and the remaining 19 comments were mainly related to interactions with vendors, chefs and friends. Examples of these sensory based activities included sampling food and wine, smelling the aroma of coffee, watching cooking demonstrations, and listening to wine/beer tasting workshops. These activities were classified into key sensory experience categories associated with four of people’s five senses: sight, smell, taste, and sound. Among the 227 narratives associated with sensory experiences, 178 were associated with the visual aspects of food and beverages (Sight), 74 were related to the taste of food and/or beverages (Taste), four were about the sound (listening) at the venue (Sound) and the three were associated with the smell of food and beverages (Smell). This first cycle of coding revealed the strong sensory theme that clearly affected people’s experience at the event. However, it became clear that these sensory descriptions were also closely linked to higher order themes, derived from a second cycle of coding.

Analysis of narratives (Second cycle of coding)

Next, two research team members independently applied a pattern and hierarchical coding process (Saldana, 2013) and reviewed the narratives again for more precise examples of experiences (over and above the sensory categories captured in the first cycle of coding). This process yielded a high correspondence of coding (> 90%). Disagreements (< 10%) were discussed until the researchers reached consensus on the themes. Three key patterns were identified through the coding of the narratives associated with each photo: feelings of fun (134 references), discovery (110 references), and inspiration (37 references). Table II
provides the list of the three key patterns, along with descriptions, frequencies, and illustrative quotes.

Table II.

Illustrations of three key patterns, description, frequency, and example quotes

<table>
<thead>
<tr>
<th>Patterns</th>
<th>Description</th>
<th>Frequency</th>
<th>Example Quotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fun</td>
<td>Any comments about fun, excitement, and enjoyment</td>
<td>134</td>
<td>• My friend is enjoying a sausage speciality and some wine and she is happy! It shows that we had a great time.</td>
</tr>
<tr>
<td>Discovery</td>
<td>Any comments about discovery of new trends of food and wine, learning new things about food and wine</td>
<td>110</td>
<td>• My first cronut! Have heard a lot about this 'food' and was pleased to have the opportunity to try it. Very unusual looking!</td>
</tr>
<tr>
<td>Inspiration</td>
<td>Any comments about feeling inspired by food and wine experts</td>
<td>37</td>
<td>• I love that this represents history and the fantastic marketing idea of displaying the food and advertising the growers as fresh and local.</td>
</tr>
</tbody>
</table>

Conceptual model

As illustrated in Figure III, the coding of narratives associated with images submitted by participants illustrates that sensory experience provides a foundation for individuals’ experiences at the food and wine event, which is not surprising owing to the nature of this event: it is very much about the sight and taste of food and wine. The further exploration of the sensory experiences revealed three higher-order patterns over and above the foundation of sensory experience, including fun, discovery, and inspiration. By integrating findings from the two cycles of coding of narratives, we proposed a model of customer experience (i.e., fun,
discovery, inspiration and sensory) as a framework for understanding and enhancing the overall customer experience at similar festivals and leisure experiences.

Figure III.
A conceptual model of overall customer experience at a food and wine event

![Conceptual model of overall customer experience](image)

The proposed customer experience model was explored in the complementary study by using a recall survey (with a separate sample but focusing on the same event) and investigating the effect of various experience dimensions on overall assessment variables including satisfaction, intention to recommend, and intention for repeat visit.

Recall Survey

To investigate the statistical significance of the salient dimensions from the PGI study, a subset of data from the concurrent recall survey were used to test the pattern of results presented in the hierarchical model (Fig. III). The recall study used *a priori* defined attributes for participants to rate in respect of their experiences. This included seven attributes identified in the literature and preliminary focus group interviews. However, only the four relating to the PGI study are used to statistically test whether the variables of fun, discovery, and inspiration predict levels of customer satisfaction, intention to recommend, or intention for repeat visit when controlling for the foundation dimension of sensory experience.
Method

Participants

We received 598 usable responses, i.e. a 21% response rate after careful examination of the data checked for missing data, patterned responses, unusually short completion time (under three minutes), and outliers. Within the final sample, 476 respondents were female and 122 were male. 23% of the participants were aged between 25-34 years old, 20% were aged between 35-44 and 27% were aged between 45-54. 60% of participants work full-time. This sample profile is reflective of the event target market. In terms of event attending times, 31% of the participants went to the event for the first time, 43% went the event at least once but less than four times, while 27% went to the event for four times or above. Nearly 95% of the participants went to the event with their family, friends or partner. About 5% of the people attended the event alone.

Preliminary tests were conducted to investigate if any differences occurred on the key independent variables or dependent variables between those who attended as part of a social group (e.g. partner, family or friends) or as a single person. No significant differences were found and hypothesis testing was then undertaken.

Procedure

To be eligible for the recall survey, participants needed to be attendees at the same event outlined in the PGI study (but not be participating in the PGI study). To assist with access to, and recruitment of, participants, the event organizer sent email invites on behalf of the researcher to a sample of event attendees listed in the company’s database. The email invitation to participate in the study was sent to a random selection of addresses within one week after the show, inviting a total 2,798 event attendees to participate in the study.
Participants who registered for the PGI study were excluded from the email list. Email invitations were sent within one week of attending the event.

Measures

In order to identify which personal goals attendees normally appraise in relation to the event, focus group interviews were conducted two months before the event with people who attended the event in previous years. The event company also conducted independent focus group interviews with previous event attendees to get a better understanding of customers’ needs and what elements might be missing from current event offerings. The two sets of focus group results identified seven attributes (i.e., personal goals) that brought customers to this event:

- Bonding with family or friends
- Discovering new trends about food and wine
- Having fun
- Feeling inspired about food and wine
- Interacting with food and wine experts
- Having a positive sensory experience (e.g., smells, tastes)
- Having a multicultural food experience

These attributes were investigated to identify the salient dimensions of customer experiences at an event as well as the links between the salience dimensions and key customer outcome variables like satisfaction and return intentions. As outlined before, only the four dimensions (i.e., fun, discovery, inspiration and sensory) relating directly to the PGI study’s findings are reported. As there was a reliance on the event organizer for access to event attendees, restrictions on the length of the survey were made resulting in the use of single item measures. Other researchers (Ginns and Barrie, 2004, Wanous et al., 1997) demonstrate that when the construct is simple a single-item measure is sufficient. While
reliability cannot be calculated, the measures in our research are based on previous research, straightforward and unambiguous with good face validity.

In line with Appraisal Theory, the questions assessing customer experience appraisals used the question adapted from Hosany (2011) and Kuppens et al. (2012) to measure the congruence level between attendees’ goals and their real experiences at the event: “To what extent did your experience at the event contribute to achieving the goals you had in relation to (each of the four IVs: sensory/fun/inspiration/discovery)?” All four items were measured on a 5-point scale: 1 = not at all to 5 = very much.

The overall evaluations (dependent variables) incorporated measures of overall satisfaction (1 = very dissatisfied to 5 = very satisfied), likelihood to recommend the event to others (1 = very unlikely to 5 = very likely), and likelihood to return to the event the following year (1 = very unlikely to 5 = very likely) (Hosany and Witham, 2009, Wu et al., 2013). Demographic information included gender, age, employment status, number of previous visits, and dining out habits.

Results

Descriptive and correlation data were reviewed and then three separate four-step hierarchical multiple regressions were conducted with each of the three overall evaluation items (satisfaction, recommendation, repeat visitation) as the dependent variables. A hierarchical approach was selected to confirm the roles of each independent variable in predicting the DVs. The order of the variables entered into the equation was based on the pattern found in the PGI study: step one, sensory; step two, inspiration; step three, discovery; and step four, fun. All of the relevant assumptions associated with this statistical analysis were tested and met.
Table III provides the descriptive statistics and correlations among the study variables. Analysis revealed significant correlations between the four variables and overall assessment attributes, including customer satisfaction, intention to recommend, and intention for repeat visit. The mean scores suggest that people experience high levels of fun, which is congruent with results of the PGI study. Inspiration, discovery and sensory were also favorably evaluated.

Table III.
Descriptive statistics and correlations

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3.86</td>
<td>.96</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>4.16</td>
<td>.84</td>
<td>.63</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3.77</td>
<td>.96</td>
<td>.64</td>
<td>.59</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>3.48</td>
<td>.99</td>
<td>.57</td>
<td>.56</td>
<td>.70</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>4.23</td>
<td>.83</td>
<td>.52</td>
<td>.58</td>
<td>.58</td>
<td>.50</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>4.38</td>
<td>.84</td>
<td>.51</td>
<td>.55</td>
<td>.49</td>
<td>.75</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>4.36</td>
<td>.95</td>
<td>.45</td>
<td>.52</td>
<td>.52</td>
<td>.47</td>
<td>.68</td>
<td>.82</td>
<td>1.00</td>
</tr>
</tbody>
</table>

** Correlation is significant at the .01 level (two-tailed).
* Correlation is significant at the .05 level (two-tailed).

a. To rate their appraisals of experience dimensions (the extent that experience contributed to achieving goals) individuals used a five-point scale that ranged from 1 = not at all to 3 = moderate amount to 5 = very much; overall satisfaction (1 = very dissatisfied to 5 = very satisfied), intention to recommend and intention for repeat visit (1 = very unlikely to 5 = very likely).

Table IV presents the results of the hierarchical multiple regression analyses for satisfaction. The model revealed that at step one, sensory experience contributed significantly to the regression model, $F(1, 597) = 222.18, p < .000$ and accounted for 27% of the variance in satisfaction. Introducing the inspiration variable explained an additional 10% of variance in satisfaction and this change in R^2 was significant, $F(2, 596) = 177.22, p < .000$. Adding discovery to the regression model explained an additional 1% of the variance in satisfaction and this change in R^2 was significant, $F(3, 595) = 121.76, p < .000$. Finally, the addition of fun to the regression model explained an additional 5% of the variance in satisfaction and this change in R^2 was significant, $F(4, 594) = 111.71, p < .000$. When all four independent variables were included in step four of the regression model, discovery was not significant.
predictor of satisfaction. The most important predictor of satisfaction was fun. The semi-
partial correlation shows that fun uniquely explained 28% of the variance in satisfaction.
Together the four independent variables accounted for 43% of the variance in satisfaction.

Table IV.
Hierarchical regression analysis for variables predicting satisfaction (N = 598)

<table>
<thead>
<tr>
<th>Predictors</th>
<th>β</th>
<th>t</th>
<th>sr²</th>
<th>Significance</th>
<th>R²a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.27</td>
</tr>
<tr>
<td>Sensory</td>
<td>.52</td>
<td>14.91</td>
<td>.52</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.37</td>
</tr>
<tr>
<td>Sensory</td>
<td>.26</td>
<td>6.15</td>
<td>.20</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.41</td>
<td>9.83</td>
<td>.32</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.38</td>
</tr>
<tr>
<td>Sensory</td>
<td>.23</td>
<td>5.38</td>
<td>.17</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.34</td>
<td>7.01</td>
<td>.23</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>.12</td>
<td>2.68</td>
<td>.09</td>
<td>.008**</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.43</td>
</tr>
<tr>
<td>Sensory</td>
<td>.12</td>
<td>2.63</td>
<td>.08</td>
<td>.009**</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.28</td>
<td>5.72</td>
<td>.18</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>.07</td>
<td>1.49</td>
<td>.05</td>
<td>.136</td>
<td></td>
</tr>
<tr>
<td>Fun</td>
<td>.31</td>
<td>7.14</td>
<td>.28</td>
<td>.000***</td>
<td></td>
</tr>
</tbody>
</table>

* p < .05. ** p < .01. *** p < .001.
a. R² change is significant at each step, p < .01.

Similarly, Table V presents the results of the hierarchical multiple regression analyses
for intention to recommend. The model revealed that at step one, the sensory variable
contributed significantly to the regression model, F (1, 597) = 209.05, p < .000 and accounted
for 26% of the variance in recommendation intention. Introducing the inspiration variable
explained an additional 8% of variance in recommendation and this change in R² was
significant, F (2, 596) = 155.84, p < .000. Adding discovery to the regression model
explained an additional 2% of the variance in recommendation and this change in R² was
significant, F (3, 595) = 109, p < .000. Finally, the addition of fun to the regression model
explained an additional 7% of the variance in recommendation and this change in R² was
significant, $F (4, 594) = 109.59, p < .000$. When all four independent variables were included in step four of the regression model, discovery was not significant predictor of recommendation. The most important predictor of recommendation was fun. The semi-partial correlation shows that fun uniquely explained 26% of the variance in recommendation. Together the four independent variables accounted for 43% of the variance in recommendation.

Table V.

Hierarchical regression analysis for variables predicting intention to recommend ($N = 598$)

<table>
<thead>
<tr>
<th>Predictors</th>
<th>β</th>
<th>t</th>
<th>sr^2</th>
<th>Significance</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>Sensory</td>
<td>.51</td>
<td>14.46</td>
<td>.51</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.34</td>
</tr>
<tr>
<td>Sensory</td>
<td>.27</td>
<td>6.30</td>
<td>.21</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.38</td>
<td>8.73</td>
<td>.29</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.36</td>
</tr>
<tr>
<td>Sensory</td>
<td>.24</td>
<td>5.41</td>
<td>.18</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.29</td>
<td>5.81</td>
<td>.19</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>.15</td>
<td>3.22</td>
<td>.11</td>
<td>.001**</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.43</td>
</tr>
<tr>
<td>Sensory</td>
<td>.10</td>
<td>2.25</td>
<td>.07</td>
<td>.025*</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.21</td>
<td>4.32</td>
<td>.13</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>.09</td>
<td>1.87</td>
<td>.06</td>
<td>.063</td>
<td></td>
</tr>
<tr>
<td>Fun</td>
<td>.36</td>
<td>8.50</td>
<td>.26</td>
<td>.000***</td>
<td></td>
</tr>
</tbody>
</table>

* $p < .05$. ** $p < .01$. *** $p < .001$.

a. R^2 change is significant at each step, $p < .01$.

Last, Table VI presents the results of the hierarchical multiple regression analysis for intention for repeat visit. The model revealed that at step one, the sensory variable contributed significantly to the regression model, $F (1, 597) = 155.08, p < .000$ and accounted for 21% of the variance in repeat visit intention. Introducing the inspiration variable explained an additional 8% of variance in repeat visit and this change in R^2 was significant, $F (2, 596) = 123.86, p < .000$. Adding discovery to the regression model explained an
additional 2% of the variance in repeat visit and this change in R^2 was significant, $F (3, 595) = 88.40, \ p < .000$. Finally, the addition of fun to the regression model explained an additional 4% of the variance in repeat visit and this change in R^2 was significant, $F (4, 594) = 79.73, \ p < .000$. When all four independent variables were included in step four of the regression model, sensory was not significant predictor of repeat visit. The most important predictor of repeat visit was fun. The semi-partial correlation shows that fun uniquely explained 20% of the variance in repeat visit, followed by inspiration, which explained 14% of the variance. Together the four independent variables accounted for 35% of the variance in repeat visit.

Table VI.
Hierarchical regression analysis for variables predicting intention for repeat visit ($N = 598$)

<table>
<thead>
<tr>
<th>Predictors</th>
<th>β</th>
<th>t</th>
<th>sr^2</th>
<th>Significance</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory</td>
<td>.45</td>
<td>12.45</td>
<td>.45</td>
<td>.000***</td>
<td>.21</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.29</td>
</tr>
<tr>
<td>Sensory</td>
<td>.21</td>
<td>4.73</td>
<td>.16</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.38</td>
<td>8.59</td>
<td>.30</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.31</td>
</tr>
<tr>
<td>Sensory</td>
<td>.17</td>
<td>3.80</td>
<td>.13</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.29</td>
<td>5.52</td>
<td>.19</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>.17</td>
<td>3.55</td>
<td>.12</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.35</td>
</tr>
<tr>
<td>Sensory</td>
<td>.07</td>
<td>1.43</td>
<td>.05</td>
<td>.154</td>
<td></td>
</tr>
<tr>
<td>Inspiration</td>
<td>.22</td>
<td>4.35</td>
<td>.14</td>
<td>.000***</td>
<td></td>
</tr>
<tr>
<td>Discovery</td>
<td>.12</td>
<td>2.53</td>
<td>.08</td>
<td>.012*</td>
<td></td>
</tr>
<tr>
<td>Fun</td>
<td>.28</td>
<td>6.12</td>
<td>.20</td>
<td>.000***</td>
<td></td>
</tr>
</tbody>
</table>

* $p < .05$. ** $p < .01$. *** $p < .001$.

a. R^2 change is significant at each step, $p < .01$.

Discussion and implications

Conclusions

Our study focuses on a single case study of an event to identify salient customer experiences and associated feelings and then links these to broader consumer evaluations. The use of a
concurrent mixed method design facilitates the goals of the study by providing different types of data from two separate samples of participants. Narrative data from the PGI study provides much needed insight to the voice of event attendees, while the quantitative data helps to demonstrate how key customer experiences are related to important outcome variables. In answer to our research questions, we found that four key customer experience dimensions (sensory, fun, discovery and inspiration) were frequently appraised as forming the most focus for photographs and subsequent narratives. While all four dimensions were found to be important, sensory was found to be most pervasive receiving many narrative references from participants. However, three other dimensions were found to build on the foundation of sensory with fun reflecting the peak experience. All four experience dimensions were shown to be associated with overall consumer evaluations, however, fun and inspiration were consistently the most significant predictors, confirming the value of adding a quantitative survey.

Theoretical implications

This research highlights the main activities people report as important customer experiences at a food and wine event, which include tasting food and wine, shopping, discovering specialist (artisan) products, and attending paid event programs. Most activities were found to include some element of a sensory experience as providing a foundation for the customer experience. This is not surprising as sensory elements play a fundamental role where food is the major attraction. This is in line with other researchers’ findings (e.g., Mason and Paggiaro, 2012). The majority of participants in the PGI study took photos and spoke of their sensory experiences at the event in relation to their four senses: sight, taste, sound and smell. No evidence was found to be associated with the sense of touch. Yet, touch is something that may be especially of interest to serious foodies, as Croce and Perri (2010) report research to suggest tactile involvement can enhance experiences. Like other research
(e.g., Agapito et al., 2012, Lee et al., 2012), our study demonstrates that the appraisal of the sensory experience is an important and fundamental customer experience with significant correlation to satisfaction, recommendation and repeat visitation.

While the sensory dimension is imperative to a positive CEx, a sense of fun, inspiration and discovery are also very important to people’s experiences when attending a food and wine event. In our study, when participants talked about their sensory experiences, what affected their experiences went well beyond food or beverage. Of particular significance in the present study is identification of a three dimensional higher-order customer experience model at the food and wine event, including the importance of fun moments, the sense of inspiration from food and wine experts, and the opportunity for discovery of new food and wine products. As an example, participants enjoyed having fun with friends when sampling food and wine together, or feeling inspired when watching a cooking demonstration by the chefs or discovering new cooking methods that were shared by the chefs. This supports Getz and Robinson (2014) research that found serious foodies are seeking experiences such as cooking lessons and demonstrations.

The conceptual model is broadly consistent with Getz and Robinson’s (2014) four-cell multidimensional design model for food events. First, like their research, our study found customer experience to be multidimensional. Although not perfectly mirroring our research there are common outcomes: discovery through learning; entertainment and fun; consumption of food and wine; artistry of food (which relates to our theme of inspiration). Thus, the current study lends further evidence to the identification of core experiences related to food events. While some research (e.g., Walls et al., 2011, Wan and Chan, 2013, Wu et al., 2013) has argued a case for the importance of human interaction with service personnel, our study identifies other salient dimensions. However, it should be noted that some level of human interaction is contained within customer experience dimensions of fun, discovery and
inspiration, yet reviewing the narratives revealed that while human interaction might occur, the emphasis of people’s stories was on the experiential outcomes felt or considered.

The quantitative phase of the research tests how these four components (sensory, fun, discovery, inspiration) affect overall evaluations of the event experience, and the results suggest that fun and inspiration, in particular, as well as sensory elements consistently predict participants’ ratings of satisfaction and intention to recommend. Fun, inspiration and discovery were most salient for predicting intentions for repeat visit to the event in future. Past research in the context of food and wine events (Axelsen and Swan, 2010, Lee et al., 2008, Mason and Paggiaro, 2012, Park et al., 2008, Wan and Chan, 2013, Wu et al., 2013, Yuan et al., 2005) acknowledged the importance of food and beverage and the impact of venue ambiance and facilities on attendees’ perceptions, emotions or behavioral intentions. However, the focus of all previous studies was mainly on the quality aspect of these attributes at the events, instead of the experiences associated with people’s five senses. Some recent marketing publications (e.g., Agapito et al., 2013, Agapito et al., 2012, Lee et al., 2012) start to address the importance of sensory experiences and suggest a sensory marketing approach to individuals’ experiences in the service context. The current study provides evidence supporting a sensory marketing approach in the context of food and wine events, but our research also points to other key experiences (i.e., fun, discovery and inspiration) as vital to overall customer evaluations, which confirms Chang and Yuan (2011) and Getz and Robinson (2014) profile of food event attendees: seeking a different kind of experience combining food, setting, environment and higher order benefits such as education and hands-on participation.

Previous event research has been dominated by quantitative survey-based research (e.g., Hwang et al., 2016, Mason and Paggiaro, 2012, Park et al., 2008, Wu et al., 2013, Yuan et al., 2005) and focused on examining various aspects of event experience from motivation
to satisfaction. While the knowledge gained is valuable, several researchers (Crowther et al., 2015, Getz, 2010, Getz and Page, 2015) have called for the usage of alternative techniques to better understand event experiences and meanings. The use of a mixed methods approach, particularly a concurrent mixed methods design, in the event context is still largely underexplored. As this study demonstrates, the use of a PGI approach can be suited to serve this purpose, since participants use the photographs to reflect on their experiences at various touch points and share their perceptions through their narratives. As illustrated in our study, the recall quantitative study allows an investigation of the key dimensions (fun, discovery, inspiration and sensory) identified from the PGI study with the connection to key consumer evaluation measures. These results show the value of adopting a mixed methods approach to gain varied and deeper insights into customer experience.

Practical implications

Our study shows that sensory experience provides the foundation of customer experience at a food and wine event. The design of food and wine events should therefore aim to maximise opportunities for interactions around the sensory experiences. In particular, this study didn’t find empirical evidence from participants’ photos or narratives associated with the sense of touch, so there are some opportunities to test this further. Event companies and exhibiting vendors could consider redesigning the event programs to add the element of touch experience, such as inviting attendees to touch ingredients when doing cooking demonstrations.

The results also suggest that three higher-order experiences including having fun, getting inspiration from food and wine experts, and discovering new food and wine products and trends are closely tied to sensory experiences as well as providing the greatest predictive value for satisfaction and other consumer behavior variables. To promote positive customer experiences, event managers should maintain a strong focus on activity programs that are
novel, inspirational, and fun by incorporating these into sensory experiences. Traditionally, businesses focus on customer satisfaction but perhaps fail to consider the finer momentary experiences (touch points) that ultimately contribute to customer satisfaction. Emerging service design tools enable businesses to map out every single touch point and identify how to improve customer experience by adding elements of fun, inspiration, and discovery to incorporate with sensory experiences at suitable touchpoints. To demonstrate how to incorporate the three key variables to enhance customer experience, Table VII offers possible examples of implementing elements of fun, inspiration, and discovery at touchpoints by incorporating with sensory experiences. Event managers can review the table for specific ideas to incorporate into event design.

Table VII.

Incorporation of sensory into examples of implementing fun, inspiration, and discovery at touchpoints

<table>
<thead>
<tr>
<th>Touchpoints</th>
<th>Fun</th>
<th>Inspiration</th>
<th>Discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchasing tickets</td>
<td>Send an entertaining and quirky message to</td>
<td>Offer free e-recipes to customers who purchase</td>
<td>Add a picture of unusual ingredient(s) at the</td>
</tr>
<tr>
<td>online</td>
<td>confirm payment. Enhance the sensory</td>
<td>the tickets. Enhance the sensory experience</td>
<td>end of confirmation email and post a question</td>
</tr>
<tr>
<td></td>
<td>experience with a cute moving image to</td>
<td>experience with high quality images in the</td>
<td>“Do you know what ingredient is this?” Enhance</td>
</tr>
<tr>
<td></td>
<td>capture sight.</td>
<td>e-book to capture sight.</td>
<td>the sensory experience with high quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ingredient images to capture sight.</td>
</tr>
<tr>
<td>Event entrance</td>
<td>Invite customers to take a photo with event</td>
<td>Put up a sign with a photo of a spectacular-</td>
<td>Put up TV screens to play short interviews</td>
</tr>
<tr>
<td></td>
<td>logo and post it on event’s official social</td>
<td>looking food dish and a quote saying “You can</td>
<td>with chefs introducing the dish they are going</td>
</tr>
<tr>
<td></td>
<td>media platforms (e.g., Facebook, Instagram),</td>
<td>make this and stun your friends!” Enhance the</td>
<td>to cook or with vendors introducing new food/</td>
</tr>
<tr>
<td></td>
<td>using specified hashtags to win incentives.</td>
<td>sensory experience to capture sight.</td>
<td>wine products exhibited at the event. Enhance</td>
</tr>
<tr>
<td></td>
<td>Enhance the sensory experience</td>
<td></td>
<td>the sensory experience to capture sight and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sound.</td>
</tr>
</tbody>
</table>
Limitations and future research

By employing the participant-generated image (PGI) technique and a concurrent recall survey, this study extends the research of customer experience in the context of food and wine events. The PGI method offers an unobtrusive, engaging, and inspiring opportunity for participants to communicate information about their unique customer experience (Petermans et al., 2014). Furthermore, by combining the results of the PGI approach with the results from an associated recall survey assists in capturing the multifaceted and holistic nature of customer experience and the follow-on effect on the evaluation of overall experiences. In the current study, all the photos were taken in situ at the event but associated narratives were collected after the event. Future research could develop tools (e.g., an app) which allows the participant to take photos in situ and also complete a survey associated with each photo at the same time.

In this way, researchers can really capture each participant’s experiences and evaluations in
the real time, which will definitely bring more new insights to customer experience. In the quantitative study, we used a single item to measure each of the experiences, as length of the questionnaire was restricted in order to access the event’s email database. Using multiple items for each experience construct may improve the ability to fully conceptualize each dimension of fun, inspiration, discovery and sensory and test reliability. This study examined only one event, and future research could be conducted in other event contexts.
References

Polaine, A., Løvlie, L. and Reason, B. (2013), *Service design: From insight to implementation*, Rosenfeld Media, LLC, New York, USA.

