Adherence to Evidence-Based Pressure Injury Prevention Guidelines in Routine Clinical Practice: A Longitudinal Study

Wendy Chaboyer
Professor, Menzies Health Institute Queensland, Griffith University, Queensland

Tracey Bucknall
Professor, Deakin University, Centre for Quality and Patient Safety, Alfred Health Partnership, School of Nursing and Midwifery, Faculty of Health, Geelong, Victoria

Brigid Gillespie
Professor, Menzies Health Institute Queensland, School of Nursing and Midwifery, Griffith University and Gold Coast Health and Hospital Service, Queensland

Lukman Thalib
Associate Professor, Department of Public Health, College of Health Sciences, Qatar University, Doha, Qatar

Elizabeth McInnes
Nursing Research Institute, Australian Catholic University and St Vincent’s Health Australia (Sydney), Darlinghurst, New South Wales

Julie Considine
Professor, Deakin University, Centre for Quality and Patient Safety, Eastern Health Partnership, School of Nursing and Midwifery, Faculty of Health, Geelong, Victoria

Edel Murray
Quality Manager, St Vincent’s Private Hospital (Sydney), Darlinghurst, New South Wales

Paula Duffy
Director of Nursing Diagnostic, Emergency and Medical Services, Gold Coast Hospital and Health Service, Queensland

Michelle Tuck
Clinical Nurse Consultant- Wound Management, The Alfred Hospital, Melbourne, Victoria

Emma Harbeck
Senior Research Assistant, Menzies Health Institute Queensland, Griffith University, Queensland

Correspondence to:
Wendy Chaboyer
Menzies Health Institute Queensland, Griffith University Gold Coast Campus, Griffith University, Queensland, Australia, 4222
e-mail: W.Chaboyer@griffith.edu.au
Key Messages

- The aim of this longitudinal study was to describe adherence to evidence-based pressure injury prevention (PIP) guidelines in routine clinical practice in Australian hospitals; specifically the frequency and duration of use of nine PIP strategies.
- Of all patients, 165 (20.7%) received only 1 PIP strategy and 494 (61.8%) received ≥2 PIP strategies at some point during the study period.
- There was no statistical difference in proportion of time the Not at risk, At risk and At high risk groups received ≥1 and ≥2 strategies; on average this was less than half the time they were in the study.
- Patients in this study did not receive PIP strategies consistently throughout their admission although it is possible patients’ risk changed over the study period.
- This is the first large, longitudinal study to document the frequency and duration of use of PIP strategies in patients at risk of pressure injuries.
Abstract

The aim of this longitudinal study was to describe adherence to evidence-based pressure injury prevention (PIP) guidelines in routine clinical practice in Australian hospitals. Data were analysed from four control sites in a larger cluster randomised trial of a PIP intervention. The sample of 799 patients included 220 (27.5%) Not at risk, 344 (43.1%) At risk and 110 (13.8%) At high risk. A total of 84 (10.5%) patients developed a PI during the study; 20 (9.0% of 220) in the Not at risk group, 45 (13.1% of 344) in the At risk group, 15 (13.6% of 110) in the At high risk group and 4 (3.2% of 125) patients who did not have a risk assessment completed. Of all patients, 165 (20.7%) received only one PIP strategy and 494 (61.8%) received ≥2 PIP strategies at some point during the study period. There was no statistical difference in proportion of time the three risk groups received ≥1 and ≥2 strategies; on average this was less than half the time they were in the study. Thus, patients were not receiving PIP strategies consistently throughout their hospital stay although it is possible patients’ risk changed over the study period.

Keywords

Pressure ulcer, Adverse events, Prevention, Processes of care, Clinical practice guidelines
Adherence to Evidence-Based Pressure Injury Prevention Guidelines in Routine Clinical Practice: A Longitudinal Study

Introduction

Prevention of pressure injuries (PIs) has become an international priority because of their frequency of occurrence and negative sequelae for individuals and their families as well as for the health system. In many countries PI prevalence in hospitals ranges from about 9 to 18% (1-4). Patients who develop PIs report pain, discomfort, restrictions on their social lives, and their quality of life in general is affected (5-9). On rare occasions, death can result from complications associated with PIs (9-11). The National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance (12) note that yearly, PIs cost approximately $US11 billion in the United States, £750 million in the United Kingdom and up to $US2.8 billion in the Netherlands. One Australian study estimated PIs cost around $983 million dollars per annum and consumed 524,661 additional bed days (13). Opportunity costs were valued at an additional AU$820 million per annum, for a total combined cost of AU$1.8 billion per annum (13). Further, in some Australian settings, financial penalties are imposed on hospitals when patients develop PIs (14) and in the US Medicare does not reimburse for PI treatment (15). In Australia, PI prevention and management is one of the ten National Safety and Quality Health Service Standards (16). Given PIs have negative outcomes for patients and place an economic burden on the healthcare system, PIP is a major healthcare priority.

International PIP guidelines describe recommended PIP strategies including (i) PI risk assessment of all patients, (ii) the use of pressure relieving measures such as regular repositioning, appropriate support surfaces and protection such as booties and elbow pads, (iii) good skin care including use of protective skin creams, (iv) adequate nutrition, and (v) patient education (12, 17). Yet globally, evidence from large multi-site studies demonstrates
implementation of PIP strategies is suboptimal at best. For example, in a Swedish study of 1,173 patients in five hospitals, only 40% of patients were risk assessed within 24 hours (18). For the 202 (20%) patients who were identified as at risk, less than 20% (n=39) of those had a PIP care plan and the most frequently used PIP strategy, pressure reliving foam mattresses, was used in less than 30% (n=342) of all patients (18). In a Norwegian study, 305 of 1,209 (25%) patients were identified as at risk of PI; 44% of those were provided with pressure redistributing support surfaces and 22% received planned repositioning (3). In another study of those patients who were identified as at risk, on average less than half received PIP strategies during their care (19). In fact, in one large Belgian study of almost 20,000 patients, only 10.8% of at risk patients received adequate PIP strategies (2). In another Belgian study of 2,105 patients in 94 randomly selected wards in 14 hospitals, 625 patients were identified as at risk but only 13.9% were found to have received adequate PIP (20). In the US, a retrospective analysis of data from 710,626 patients from 1,419 hospitals reported that of the 282,500 patients identified at risk of PI, 93% received PI risk assessment and a skin assessment within 24 hours of admission, but only 56-90% received PIP strategies (21).

In addition to these cross-sectional studies that have collected data at one point in time, a few small studies have undertaken a longitudinal approach. For example, one observational study of 241 at risk Australian patients in two hospitals collected data every 30 minutes for 24 hours on at risk patients and found only 30% had a fully completed risk assessment on admission (22). While 90% of these patients were repositioned regularly, only 11% had a chart note about patients receiving PIP education (22). In a German study 32 patients who were reported as high risk of developing a PI or who currently had a PI were observed during three nursing shifts (morning, afternoon and night) in a day (23). Only a third (n = 11) of patients in this study were risk assessed on admission and almost 90% (n = 28) had no skin assessment recorded. Repositioning occurred for just over 40% (n = 13) of
patients with a turning schedule used for 31% (n = 10) of patients (23). In another small study undertaken in Australia, 26 patients were observed six times over a 24 hour period (twice per 8-hour shift) (24). Over 90% (n = 24) of patients had a risk assessment completed and 39% (n = 10) had a formal PI management plan documented.

The current body of research shows that while PI risk assessment may occur during hospitalisation, implementation of appropriate PIP strategies does not always happen, which leads to a clear evidence-practice gap. However, most of the research has been either cross-sectional or retrospective in nature (8, 19, 21, 25) therefore, there is no way of knowing whether these ‘snapshots’ accurately reflect the PIP strategies patients receive throughout the duration of their hospital stay. There is a need to better understand PIP practices that occur beyond those observed at one point in time, on one day or those only recorded in the patients’ medical record.

Research aim

The aim of this longitudinal study was to describe adherence to evidence-based pressure injury prevention (PIP) guidelines in routine clinical practice in Australian hospitals; specifically the frequency of use and duration of nine specific PIP strategies. A secondary aim was to compare PIP strategy use across PI risk subgroups. Understanding current PIP practice identifies both areas of best practice and areas for improvement, and will help guide others to reduce the occurrence of PIs and to improve implementation of evidence based recommendations for the prevention and treatment of PIs.

Materials and Methods

This longitudinal study reports on an analysis of observational data collected between July 2014 and December 2014 from the control sites (i.e. routine care) in a larger cluster randomised trial of a PIP intervention (citation masked for blinded peer review).
Setting and Sample

This study was conducted in four acute care hospitals in two Australian states (Queensland and Victoria). All were metropolitan referral hospitals that catered for diverse adult patient populations and case-mix groups and offered acute medical, acute surgical and rehabilitative services. Of the four hospitals, one was private and three were public facilities, with a combined median of hospital beds of 659 (Interquartile Range IQR=20) and a range of 508-750 beds. All hospitals met the Australian National Safety and Quality Health Service Standard 8 (Preventing and Managing Pressure Injuries), and had documented PI governance structures and processes such as hospital-wide PI or wounds committees and PI policies and procedures (e.g. screening patients on admission and implementing PIP interventions where clinically indicated). They also provided PIP education in hospital orientation for new nursing graduates. Three sites used the Braden Risk Assessment Tool/Scale (26) and one site used the Waterlow Scale/Score (27) pressure injury risk assessment.

Patients were eligible for the study if they were: aged ≥18 years; had an expected hospital length of stay of ≥48 hours; at risk of PI as measured by limited mobility (i.e. requiring physical or mechanical assistance to reposition or ambulate); and able to read English and provide informed consent. Patients’ hospital admission or current PI risk score was not an inclusion criterion. Patients were excluded if they were: admitted to hospital for >36 hours prior to recruitment; admitted as a day-only patient (e.g. day surgery and or for infusions), admitted to critical care, emergency, maternity, paediatrics, mental health or dialysis; previous trial participants; or were receiving palliative or receiving end-of-life care. Patients reached the trial endpoint when they: developed a PI; were discharged from hospital; reached 28 days; were transferred to another hospital or to critical care requiring mechanical ventilation; or died. The sample for this analysis included patients in the control group, who received routine care only. Based on patients’ admission risk assessment score determined by
Data collection

Data collection was longitudinal, using observation, patient self-reporting and daily chart review during the study. Baseline patient demographic and clinical data, including diagnosis and PI risk assessment and other data related to PI risk factors such as body mass index and co-morbidities were collected immediately after recruitment from patients’ medical records. After one day of training, research assistants undertook daily skin assessments until patients reached the trial endpoint. Data on nine evidence-based PIP strategies including documented repositioning regimen and nutrition care plan, use of six pressure relieving devices (i.e. pillows for heel elevation, air-mattresses, chair cushions, wedges, elbow/heel booties and other pressure relieving devices), and use of skin care products for PIP, such as barrier creams, were also collected daily using observation and/or chart review. At or near the trial endpoint, patients were asked a series of questions about the assistance they received in relation to five PIP strategies (education on PIP, help to reposition, help with skin care, nutritional needs identifies and help to meet nutritional needs). All data were entered directly into a web-based electronic case record form using tablet computers. Data collection occurred from July, 2014 to December, 2014.

Ethical considerations

The trial was registered with the Australian New Zealand Clinical Trials Registry (registration number ACTRN # masked for peer review) and received a human research ethics committee approval from the hospitals and university. All participants were given a
verbal outline of the study, a study information sheet and provided written consent to participate.

Statistics

Data was exported from the trial study database and analysed using IBM SPSS Statistics (V.22) and StataCorp Stata Statistics/Data Analysis (V.13.1) (StataCorp LP, College Station, TX, USA). To examine sample characteristics and the use of PIP strategies, frequency and percentages for categorical variables and, depending on the data distribution, means and standard deviations or medians and IQR for continuous variables were calculated. Cluster (hospital) adjusted chi-square tests were used to compare implementation of each strategy between the three risk groups stratified by the baseline PI risk levels. Cluster (hospital) adjusted chi-square tests were also used to compare patients’ perceptions of assistance between the three risk groups stratified by the baseline PI risk levels.

To examine whether the total number of PIP strategies differed between risk groups, the total number of PIP strategies received was computed for all patients and using mixed models analysis, with risk group as the fixed effect and hospital intercept as the random effect (to account for cluster). The data was then analysed to calculate the number of days patients in each risk group received each PIP strategy, divided by the number of days they were in the trial, resulting in the proportion of time patients in each subsample received each strategy. Risk group differences for this computed variable were also compared using a mixed models design.

Both computed dependent variables (number of PIP strategies received and proportion of time patients in each subsample received each strategy) were examined using a linear mixed effects model to account for the within-subjects nature of the trial, the unbalanced group data and the effect of cluster (hospital), using the mixed procedure in SPSS (28). All
models used risk group (Not at risk, At risk and At high risk) as the fixed categorical effect and used random effects for the intercept and hospital (4 levels) (29, 30). Though multiple covariance structures were tested, the best fitting models used scaled identity and maximum likelihood estimation methods, with convergence achieved within 100 iterations and 10 step-halvings. For significant fixed effects found, pairwise comparisons using marginal means compared risk group differences using a Bonferroni adjustment for multiple comparisons to control for Type 1 error. P values <0.05 were considered significant.

Finally, as using multiple strategies to help prevent PIs is a clinical practice guideline recommendation (12), box and whisker plots are used for visual understanding and descriptive comparisons between the 3 risk group’s average proportion (%) of time (days) patients received at least 1 and ≥2 PIP strategies during the trial.

Results

Of 800 patients recruited to the control group, 799 patients’ data were analysed as one patient was incorrectly recruited. Patients were mostly from medical and surgical wards at each site. Data was collected for 4 months and 28 days (151 days), which reflects a total of 523 study days across all four sites. Based on their initial PI risk assessment completed by hospital nurses, the Not at risk subsample size was 220 (27.5%); the At risk subsample size was 344 (43.1%); and the At high risk subsample size was 110 (13.8%). There were 125 (15.6%) patients who did not have a risk assessment completed on admission so were excluded from analyses that examined subgroup differences. Patient characteristics are provided in Table 1. A total of 84 (10.5%) patients developed a PI during the study; 20 (9.0% of 220) in the Not at risk group, 45 (13.1% of 344) in the At risk group, 15 (13.6% of 110) in the At high risk group and 4 (3.2% of 125) patients who did not have a risk assessment completed.
The various PIP strategies used at least once during the study period are outlined in Table 2. Almost two thirds of the sample had a repositioning schedule implemented and about half had some form of support surface/pressure relieving device. There were no statistically significant differences in the use of these two strategies by risk group, however more pillows for heel elevation were used in the At high risk group. About half the sample received some form of special skin care (e.g. barrier creams) to prevent PI, but only about a quarter of the sample had a nutritional care plan implemented.

Of all patients, 165 (20.7%) received only one PIP strategy and 494 (61.8%) received ≥2 PIP strategies at some point during the study period (Table 2). There were 140 (17.5%) patients who received no PIP strategies during the study period including 49 (14.2%) who were At risk and 11 (10.0%) who were assessed as At high risk of PI. Approximately 86% of patients identified as At risk, or At high risk of PI (n=394) received ≥1 PIP strategy at some point during the study period (see Table 2 for full group summaries). Using the patient sample of those who received a risk assessment at admission (n=674), a linear mixed model analysis was conducted. The intracluster correlation (ICC) was used to explore the clustering effect of hospital. The ICC for hospital was 0.09, indicating that only 9% of the total variability in the number of PIP strategies received was attributable to differences between hospitals. Due to ICC size, removal from the model was considered, however subsequent analyses without the hospital variable led to a poorer model fit and hence it was retained (-2 Log Likelihood=2055.6). The final model showed significant fixed effects, that is, significant risk group differences in the total number of PIP strategies patients received at some point during the study were found (F[2, 28.2] =15.5, p <.001). Pairwise comparisons between group levels with a Bonferroni correction, show all risk group marginal means were significantly different from one another (p <.001). That is, patients who were At high risk received, on average, more PIP strategies (m=3.5, std error =0.2 [95% CI 3.1-3.9]) when
compared to the At risk (m=2.8, std error=0.1 [95% CI 2.6-3.1]) and those Not at risk (m=2.3, std error=0.1 [95% CI 2.1-2.6]), who received on average the least number of PIP strategies.

Additionally, a linear mixed model analysis was conducted to examine risk group differences in the proportion of time patients received PIP strategies during the study. The ICC for hospital was 0.23, indicating that approximately 23% of the total variability in the proportion of PIP strategies received for patients occurs between hospitals. The final model (-2 Log Likelihood =4909.5) found no significant risk group effect (F [2, 16.0] = 1.1, p =.366) for patients who received ≥1 PIP strategy (n=558). Consistent findings are reported for patients who received multiple (≥2) PIP strategies (n=416); no significant differences between risk groups were found (F [2, 15.6] = 0.8, p = .470). That is, patients’ average proportion of time implemented PIP strategies were received was similar across the three risk groups. It was also noted that only 33 patients (4.1% of 799), received their implemented PIP strategies 100% of the time they were in the study.

Due to these results, risk group distributions were examined. Figures 1 and 2 visually depicts the average proportion (%) of time (days) patients received ≥1 and ≥2 PIP strategies during the study. The box represents the upper and lower quartiles, the line in the box representing the median and the whiskers representing the range of data, with outliers depicted as dots. Of the 558 patients in the three risk groups who received ≥1 strategy, the 164 Not at risk patients had a median of 40% (IQR 30-57%), the 295 At risk patients a median of 50% (IQR 33-67%) and the 99 At high risk patients a median of 44% (IQR 33-60%). Of the 416 patients in the three risk groups who received ≥2 strategies, the 105 Not at risk patients had a median of 42% (IQR 30-57%), the 227 At risk patients a median of 50% (IQR 37-63%) and the 84 At high risk patients a median of 42% (IQR 33-56%). Regardless of risk rating, all groups showed a similar trend in the proportion of time the PIP strategies were received. The majority (75%) of all risk assessed patients received their implemented PIP
strategies 63% or less of the time while observed during the trial. However, on average this was less than half the time they were in the study.

Patients’ perceptions of the assistance they received with their PIP care is summarised in Table 3. On average, about 60% of the patients reported receiving adequate assistance in repositioning and skin care, had their nutritional needs identified and received adequate support in meeting those needs. Just over a third of patients reported receiving education on PIP. The pooled chi-square adjustment for each strategy found that the groups did not differ. The cluster adjusted p-values of the chi-squares are also provided in Table 3.

Discussion

The results of this study provide a better understanding of the use of PIP strategies in routine clinical practice, both in terms of frequency and duration of use. About 10% of patients developed a PI during the study. Just over 60% of patients received ≥2 PIP strategies at some point during the study. We found that the use of PIP strategies at some point in the study was positively associated with risk group assessment, but, when considering the duration of time patients received PIP strategies, there was no difference between risk groups. That is, patients from all three risk groups received their implemented PIP strategies a median of 50% or less of the time they were in the study.

The Australian National Safety and Quality Health Service Standards (16) mandate PI risk assessment on admission, yet this did not occur for about 15% of patients. The reason for suboptimal PI risk assessment is unknown. However, previous research suggests several factors influence completion of PI risk assessment tools. First, adequacy of knowledge (31, 32) and limited training in use of PI screening tools (33) may affect nurses’ completion of PIP risk assessment tools. Second, nurses consider some patient characteristics more important than others in predicting PI risk factors, which may influence whether or not a risk
assessment is performed (34). Third, the large number of other assessments tools required to be completed by nurses and duplications of information contained within these tools may overburden nurses (35). Finally, the extent to which risk scores accurately predict patients who will develop a PI, and their benefit over clinical judgement has been questioned (36-38). Thus, there are likely a multitude of reasons why PI risk assessments are not completed.

Implementation of a repositioning schedule was the most predominant PIP strategy used across all subgroups. Previous researchers have also shown that repositioning and mobilisation are often the most frequently used PIP strategies in practice (12, 21, 39-41). Yet, the most recent Cochrane review examining empirical support of repositioning highlights that there is still uncertainty for the ideal frequency and positioning to help prevent PIs (40). Perhaps such an ideal does not exist, with a better approach of tailoring repositioning regimes to individual patient circumstances.

Use of pressure relieving support surfaces or devices was another frequently used PIP strategy across all subgroups. Support surfaces alone do not prevent PIs; instead they are recommended for patients who have been identified as at risk of developing PIs in conjunction with an appropriate PIP plan (12, 42). The recently updated Cochrane review by McInnes et al. (42) found that when compared to standard hospital foam mattresses, use of alternative foam mattresses may decrease PI development in patients at risk. However, insufficient evidence was found to determine the value of seat cushions and other constant low pressure devices as effective PIP strategies (42).

When considering other PIP strategies that were implemented, lower numbers of patients across all subgroups received a nutritional care plan (23, 43). This finding is consistent with a much smaller German study, that found assessment and recording of nutritional status was infrequently undertaken (23). Malnutrition in hospitals is a well-
documented phenomenon (44-46) and its prevention relies on a multidisciplinary approach, with the team often implementing multiple strategies (47-49). Given this and the association between malnutrition and PI (50-52), it is likely a multifaceted intervention will be required to improve nutritional practices for all patients, including those who are at risk of PI.

When we asked, less than 40% of patients stated they received education on PIP. Educating patients and their families’ about PIs supports shared decision making in patient care and increases patient participation, which may lead to improved patient satisfaction and safety, and decreases in adverse events and hospital length of stay (9, 53, 54). Educating patients is important as patients are an untapped source of assistance in their own care. For example, patients and family can assist in detecting PIs, initiate prevention strategies and be aware of detrimental practices such as aggressive massaging and or rubbing of bony prominences (55), which can lead to shared responsibility of care (56). Yet, our study is only one of several that have documented limited PIP patient education. For example in an Australian study that examined PIP strategies a cohort of 241 patients from two large metropolitan hospitals found that only 11% of charts had documented evidence of PIP education (22). In another smaller Australian study (n=26) only 2 patients (or their caregivers) received PIP education (19). Moore et al. (19) reported that patient education was adopted the poorest of all PIP strategies with only 4 of 180 Norwegian and Irish patients receiving this strategy. Hoviattalab et al. (23) report similar results in their small German study (n=36) where patient education was not received at all. Yet, by being informed, patients and families can better participate in their own care, as was found in a small Swedish study examining the effect of a PI information pamphlet on patients’ participation in PIP (57). Patients who participate in their care are safer, have a decreased risk of errors and adverse events, and enhanced perceptions of the quality of care (58, 59). Thus, once educated, patients who have a vested interest in PIP may be an additional resource in the combat of PIs.
This study is the first to our knowledge to identify both the numbers and the frequency (i.e. duration) of use of PIP strategies. We found that there was little difference in the proportion of time patients of various risk groups (Not at risk, At risk and At high risk) received any PIP strategies. In fact, when considering the proportion of time they received these strategies, it was evident that it was most common for the three groups to receive ≥1 and ≥2 strategies ≤50% of the time. We did not collect daily risk scores; therefore we do not know if a change in patient risk influenced these findings, thus this is one possible reason for our findings. Another possible reason relates to nursing culture and local practices. For example, one study conducted in Belgium, found nurse’s attitudes towards PIs was associated with the implementation of PIP strategies (20). Other studies identify nurses’ knowledge influences their practice (32).

Less than 5% of patients received their implemented PIP strategies 100% of the time they were in the study. Yet, two systematic reviews of PIP programs (reflecting multiple strategies aimed at multiple levels of the organisation) have shown beneficial effects, although the quality of the primary research reviewed was a major limitation in both reviews (60, 61). For example, most of the 39 quality improvement studies in one review involved multiple interventions and had positive outcomes; however none of these studies were randomised trials (60). Also, most of the programs in these two reviews were comprehensive, and did not focus only on PIP strategies aimed at individual patients but on organisational practices, thus our findings are not directly comparable to these systematic review findings.

Limitations

There are a number of limitations to this study. First, while it is one of only a few longitudinal studies, we only collected data once per day and relied on documentation and observation for some PIP strategies such as a repositioning routine. It is possible that some
strategies were missed; however we also asked patients if they had received assistance with these various strategies. Second, data was only available for patients’ initial risk score, which may have changed during their hospitalisation. It would be expected that as PI risk changes, so might the strategies nurses use. Third, we do not have any information on the extent to which specific PIP strategies were required for patients nor do we know why some patients received or did not receive each strategy. Thus, while this is the first study to examine both the frequency and duration of use of PIP strategies throughout hospital admission to the best of our knowledge, we cannot determine the extent to which these strategies were appropriate. However, international guidelines recommend the use of multiple strategies (12) and given our sample all had limited mobility, it is plausible that more patients should have received ≥2 strategies more often than less than half of the time they were in the study.

In conclusion, this longitudinal study documented the daily use of PIP strategies during routine clinical practice in four Australian hospitals. It showed repositioning regimes and some form of support surface/pressure relieving devices were the most frequently used PIP strategies but in general, PIP strategies were used less than half the time patients were in the study. A better understanding of why PIP strategies are not used consistently may help to identify and tailor future interventions focusing on ensuring evidence-based guidelines are use consistently throughout patients’ hospital stay.
Acknowledgements

This study was funded by the National Health and Medical Research Council project grant number 1058963. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the manuscript. This study could not have been undertaken without the support of patients and the staff at participating hospitals and the authors thank both groups for their contribution to the research. Specific acknowledgement of the contribution by the following staff is acknowledged: Leanne Gleghorn and Jane Rodgers.
References

56. Armstrong D. New opportunities to improve pressure ulcer prevention and treatment: implications of the CMS inpatient hospital care present on admission indicators/hospital-acquired conditions policy: a consensus paper from the

Table 1: Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total Sample N=799</th>
<th>Not at risk Subsample n=220 (27.5%)</th>
<th>At risk Subsample n=344 (43.1%)</th>
<th>At high risk Subsample n=110 (13.8%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>365 (45.7)</td>
<td>114 (51.8)</td>
<td>149 (43.3)</td>
<td>49 (44.5)</td>
</tr>
<tr>
<td>Age (years) Median IQR</td>
<td>74.0 (22.0)</td>
<td>73.0 (24.0)</td>
<td>74.0 (22.0)</td>
<td>76.0 (19.0)</td>
</tr>
<tr>
<td>Range</td>
<td>19-104</td>
<td>21-104</td>
<td>19-100</td>
<td>36-97</td>
</tr>
<tr>
<td>Admission type n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical</td>
<td>463 (57.9)</td>
<td>117 (53.2)</td>
<td>206 (59.9)</td>
<td>62 (56.4)</td>
</tr>
<tr>
<td>Medical</td>
<td>316 (39.5)</td>
<td>93 (43.3)</td>
<td>132 (38.4)</td>
<td>47 (42.7)</td>
</tr>
<tr>
<td>Cancer</td>
<td>20 (2.5)</td>
<td>10 (4.5)</td>
<td>6 (1.7)</td>
<td>1 (0.9)</td>
</tr>
<tr>
<td>BMI range n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese</td>
<td>259 (32.4)</td>
<td>80 (36.3)</td>
<td>111 (32.3)</td>
<td>38 (34.6)</td>
</tr>
<tr>
<td>Overweight</td>
<td>266 (33.3)</td>
<td>69 (31.4)</td>
<td>120 (34.9)</td>
<td>32 (29.1)</td>
</tr>
<tr>
<td>Healthy weight</td>
<td>247 (30.9)</td>
<td>67 (30.5)</td>
<td>104 (30.2)</td>
<td>31 (28.2)</td>
</tr>
<tr>
<td>Underweight</td>
<td>27 (3.4)</td>
<td>4 (1.8)</td>
<td>9 (2.6)</td>
<td>9 (8.2)</td>
</tr>
<tr>
<td>Comorbidities per patient n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>193 (24.2)</td>
<td>42 (19.1)</td>
<td>83 (24.1)</td>
<td>33 (30.0)</td>
</tr>
<tr>
<td>1</td>
<td>232 (29.0)</td>
<td>59 (26.8)</td>
<td>107 (31.1)</td>
<td>25 (22.7)</td>
</tr>
<tr>
<td>2</td>
<td>193 (24.2)</td>
<td>66 (30.0)</td>
<td>77 (22.4)</td>
<td>27 (24.5)</td>
</tr>
<tr>
<td>3</td>
<td>125 (15.6)</td>
<td>35 (15.9)</td>
<td>54 (15.7)</td>
<td>20 (18.2)</td>
</tr>
<tr>
<td>≥4</td>
<td>56 (7.0)</td>
<td>18 (8.3)</td>
<td>23 (6.7)</td>
<td>5 (4.5)</td>
</tr>
<tr>
<td>Hospital length of stay (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>6.0 (5.0)</td>
<td>5.0 (4.0)</td>
<td>6.0 (4.0)</td>
<td>7.0 (4.0)</td>
</tr>
<tr>
<td>Range</td>
<td>1-84</td>
<td>2-34</td>
<td>1-84</td>
<td>2-36</td>
</tr>
<tr>
<td>Time in study (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>5 (4.0)</td>
<td>4.0 (3.0)</td>
<td>5.0 (4.0)</td>
<td>5.0 (4.0)</td>
</tr>
<tr>
<td>Range</td>
<td>1-29</td>
<td>1-21</td>
<td>1-28</td>
<td>1-15</td>
</tr>
<tr>
<td>Risk assessment at admission n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed</td>
<td>674 (84.4)</td>
<td>220 (100.0)</td>
<td>344 (100.0)</td>
<td>110 (100.0)</td>
</tr>
<tr>
<td>Not administered</td>
<td>125 (15.6)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Risk assessment tool used n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braden</td>
<td>530 (66.3)</td>
<td>196 (89.1)</td>
<td>301 (87.5)</td>
<td>33 (30.0)</td>
</tr>
<tr>
<td>Waterlow</td>
<td>144 (18.0)</td>
<td>24 (10.9)</td>
<td>43 (12.5)</td>
<td>77 (70.0)</td>
</tr>
<tr>
<td>PI at baseline n (%)</td>
<td>95 (11.9)</td>
<td>20 (9.1)</td>
<td>56 (16.3)</td>
<td>9 (8.2)</td>
</tr>
<tr>
<td>PI obtained during study n (%)</td>
<td>84 (10.5)</td>
<td>20 (9.1)</td>
<td>45 (13.1)</td>
<td>15 (13.6)</td>
</tr>
</tbody>
</table>

Note. IQR=interquartile range, BMI=body mass index, PI=pressure injury
<table>
<thead>
<tr>
<th>Pressure Injury Prevention Strategy</th>
<th>Total Sample</th>
<th>Not at risk Subsample</th>
<th>At risk Subsample</th>
<th>At high risk Subsample</th>
<th>Cluster adjusted χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repositioning schedule implemented</td>
<td>512 (64.0)</td>
<td>120 (54.5)</td>
<td>232 (67.4)</td>
<td>74 (67.3)</td>
<td>0.839</td>
<td></td>
</tr>
<tr>
<td>Any support surface/pressure relieving device</td>
<td>418 (52.3)</td>
<td>80 (36.4)</td>
<td>176 (51.2)</td>
<td>91 (82.7)</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td>Pillow for heel elevation used</td>
<td>232 (29.0)</td>
<td>44 (20.0)</td>
<td>102 (29.7)</td>
<td>42 (38.2)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Air mattress used</td>
<td>197 (24.7)</td>
<td>24 (10.9)</td>
<td>68 (19.8)</td>
<td>64 (58.2)</td>
<td>0.362</td>
<td></td>
</tr>
<tr>
<td>Chair cushion used</td>
<td>90 (11.3)</td>
<td>17 (7.7)</td>
<td>30 (8.7)</td>
<td>23 (20.9)</td>
<td>0.557</td>
<td></td>
</tr>
<tr>
<td>Wedge used</td>
<td>81 (10.1)</td>
<td>20 (9.1)</td>
<td>37 (10.8)</td>
<td>11 (10.0)</td>
<td>0.988</td>
<td></td>
</tr>
<tr>
<td>Elbow/heel bootie used</td>
<td>54 (6.8)</td>
<td>9 (4.1)</td>
<td>13 (3.8)</td>
<td>20 (18.2)</td>
<td>0.492</td>
<td></td>
</tr>
<tr>
<td>Other pressure relieving device used</td>
<td>136 (17.0)</td>
<td>22 (10.0)</td>
<td>70 (20.3)</td>
<td>25 (22.7)</td>
<td>0.521</td>
<td></td>
</tr>
<tr>
<td>Special skin care to prevent Pls</td>
<td>386 (48.2)</td>
<td>83 (37.7)</td>
<td>194 (56.4)</td>
<td>49 (44.5)</td>
<td>0.757</td>
<td></td>
</tr>
<tr>
<td>Nutritional care plan implemented</td>
<td>201 (25.1)</td>
<td>43 (19.5)</td>
<td>92 (26.7)</td>
<td>43 (39.1)</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td>N (%) patients with 1 PIP strategy</td>
<td>165 (20.7)</td>
<td>59 (26.8)</td>
<td>68 (19.8)</td>
<td>15 (13.6)</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>N (%) patients with 2 PIP strategies</td>
<td>149 (18.6)</td>
<td>45 (20.5)</td>
<td>68 (19.8)</td>
<td>16 (14.5)</td>
<td>0.453</td>
<td></td>
</tr>
<tr>
<td>N (%) patients ≥ 3 PIP strategies</td>
<td>345 (43.1)</td>
<td>60 (27.3)</td>
<td>159 (46.2)</td>
<td>68 (61.8)</td>
<td>0.173</td>
<td></td>
</tr>
<tr>
<td>Total N (%) patient who received ≥ 1 PIP strategy</td>
<td>659 (82.5)</td>
<td>164 (74.5)</td>
<td>295 (85.8)</td>
<td>99 (90.0)</td>
<td>0.610</td>
<td></td>
</tr>
</tbody>
</table>

^a number of patients who received Pressure Injury Prevention (PIP) strategies at some point during the study
Table 3: Patients’ Reported Assistance with Pressure Injury Prevention Care

<table>
<thead>
<tr>
<th>Pressure Injury Prevention Strategy</th>
<th>Total Sample n = 799</th>
<th>Not at risk Subsample n=220</th>
<th>At risk Subsample n=344</th>
<th>At high risk Subsample n=110</th>
<th>Cluster adjusted χ² p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received adequate help to reposition</td>
<td>506 (63.3)</td>
<td>146 (66.4)</td>
<td>222 (64.5)</td>
<td>63 (57.3)</td>
<td>0.999</td>
</tr>
<tr>
<td>Received adequate help for skin care</td>
<td>477 (59.7)</td>
<td>128 (58.2)</td>
<td>213 (61.9)</td>
<td>62 (56.4)</td>
<td>0.992</td>
</tr>
<tr>
<td>Nutritional needs were identified</td>
<td>455 (57.0)</td>
<td>127 (57.7)</td>
<td>197 (57.3)</td>
<td>60 (54.4)</td>
<td>0.998</td>
</tr>
<tr>
<td>Received adequate help to meet nutritional needs</td>
<td>477 (59.7)</td>
<td>129 (58.6)</td>
<td>209 (60.8)</td>
<td>66 (60.0)</td>
<td>0.998</td>
</tr>
<tr>
<td>Received education on pressure injury prevention</td>
<td>293 (36.7)</td>
<td>80 (36.4)</td>
<td>136 (39.5)</td>
<td>38 (34.5)</td>
<td>0.997</td>
</tr>
</tbody>
</table>
Figure 1. Box plot with whiskers from minimum to maximum displaying the proportion of time the three risk groups received ≥1 PIP strategies in the study (n= 558)
Figure 2: Box plot with whiskers from minimum to maximum displaying the proportion of time the three risk groups received ≥2 PIP strategies in the study (n= 416)