1. **Title:** Use of face masks by non-scrubbed operating room staff: a randomized controlled trial.

2. **Authors:** Adj. Prof Joan Webster¹,²,³,⁴ (BA), Nursing Director, Research, Centre for Clinical Nursing.

 Sarah Croger¹, (B Nurs). Project Officer, Centre for Clinical Nursing

 Carolyn Lister¹, (B Nurs). Project Officer, Centre for Clinical Nursing

 Michelle Doidge¹, (B Nurs). Clinical Nurse Consultant, Infection Monitoring and Prevention Services

 Michael J Terry¹, (B Nurs). Clinical Nurse Consultant, Infection Monitoring and Prevention Services

 Prof. Ian Jones¹,⁴ (ChM, FRANZCOG) Executive Director, Women’s and Newborn Services.

3. **Affiliations:**

 ¹ Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia.

 ² Queensland University of Technology, QLD, Australia, ³ Griffith University, QLD Australia. ⁴ University of Queensland, QLD Australia.

4. **Mailing address:** Joan Webster

 Centre for Clinical Nursing

 Level 2, Building 34

 Royal Brisbane and Women’s Hospital

 HERSTON, QLD 4029, Australia

5. **Email address for corresponding author:** joan_webster@health.qld.gov.au

 Facsimile number: +61 7 3636 5832

6. **Word count:** Abstract = 244; Body text = 2248

7. **Abbreviated title:** Face masks to prevent surgical site infection
ABSTRACT

Background: Ambiguity remains about the effectiveness of wearing surgical face masks. The purpose of this study was to assess the impact on surgical site infections when non-scrubbed operating room staff did not wear surgical face masks.

Design: Randomised controlled trial.

Participants: Patients undergoing elective or emergency obstetric, gynecological, general, orthopaedic, breast or urological surgery in an Australian tertiary hospital.

Intervention: 827 participants were enrolled and complete follow-up data was available for 811 (98.1%) patients. Operating room lists were randomly allocated to a ‘Mask group’ (all non-scrubbed staff wore a mask) or ‘No Mask group’ (none of the non-scrubbed staff wore masks).

Primary end point: Surgical site infection (identified using in-patient surveillance; post discharge follow-up and chart reviews). The patient was followed for up to six weeks.

Results: Overall, 83 (10.2%) surgical site infections were recorded; 46/401 (11.5%) in the Masked group and 37/410 (9.0%) in the No Mask group; odds ratio (OR) 0.77 (95% confidence interval (CI) 0.49 to 1.21), p = 0.151. Independent risk factors for surgical site infection included: any pre-operative stay (adjusted odds ratio [aOR], 0.43 (95% CI, 0.20; 0.95), high BMI aOR, 0.38 (95% CI, 0.17; 0.87), and any previous surgical site infection aOR, 0.40 (95% CI, 0.17; 0.89).

Conclusion: Surgical site infection rates did not increase when non-scrubbed operating room personnel did not wear a face mask.

Keywords: MeSH terms - Masks; Protective clothing; Surgery; Surgical wound infection.
INTRODUCTION

Using surgical facemasks to limit the spread of bacteria from the nose and mouth to reduce surgical site infection (SSI) rates has been standard practice for over a century.¹ There have been at least three investigations of their effectiveness in preventing surgical site infection.²-⁴ Two of these were large studies, both of which reported fewer SSIs in the non-masked group;²,⁴ the third trial was abandoned after one week because three out of five patients in the unmasked group developed a postoperative wound infection compared with no infections in the masked group.³ Each of these studies had some design faults, which may explain why face-masks continue to be worn by non-scrubbed staff and why professional bodies continue to support their use.⁵,⁶ Moreover, a recent systematic review concluded that harms or benefits associated with wearing facemasks in operating theatres remained unclear.⁷ The authors recommended that future studies should discriminate between scrubbed and non-scrubbed staff, provide clear definitions of infection and randomise by theatre list.⁷ Consequently, the objective of the current study was to assess if the surgical site infection rate was affected when non-scrubbed members of the operating room team remained unmasked.

METHODS

Research design

A randomised controlled trial was used.

Randomisation process

Operating lists were randomised into two arms, Mask group and No-Mask group, using a computer-generated randomisation schedule. Allocation occurred immediately before the commencement of the session, following a phone call to a person who was unaware of the type of list in each theatre. The CONSORT guidelines were followed from the point of recruitment.
Participants and setting

We obtained Institutional Ethics approval to conduct the study. Consent to participate from the surgical teams was negotiated before the study commenced. All staff, including surgeons, anaesthetists, nurses and ancillary staff were included in this process. At the time of the study, 17 operating theatres were functioning in our large tertiary centre; all of these were included. Only non-scrubbed staff, including anaesthetists, were asked to comply with the random assignment. The only exclusions were surgeries where it was considered necessary for all staff to wear masks, for example if the patient was infected with an airborne bacteria. Apart from the intervention, no attempt was made to modify normal practice; masks were not standardised for the study.

Data Collection

Preoperative information.

Baseline data was collected to allow an assessment of how comparable patients were in terms of their risk for developing a wound infection. The surgical site surveillance – Composite Risk Index was used for this purpose. The Index, recommended by National Nosocomial Infection Surveillance System, consists of three factors: 1) the patients physical status, 2) the length of surgery and 3) wound classification. All wounds were rated using classifications adapted from the Centre for Disease Control Guideline for the Prevention of Surgical Site Infection. Wound classification usually occurs at the time of incision by the surgical team. If this did not occur, the Infection Control Practitioner attempted to obtain an opinion from the surgical team postoperatively. Additional information collected included age, gender, weight, BMI, any history of previous wound infection, current co-morbidities, smoking status, ASA classification, use of pre-operative antibiotic prophylaxis, the date and
type of surgery and length of time in the operating room, number of staff in the operating room and whether the wound was drained. These details were obtained from the wound surveillance database or the patients’ medical record.

Postoperative information.

Additional information was added during the postoperative inpatient stay. This included administration of post operative antibiotics and the length of pre-operative and post operative hospital stay. Details about any postoperative wound infection was obtained by routine surveillance methods, that is, by the medical officer, ward staff or infection control nurse who were blinded to the treatment protocol. Surgical site infections occuring after hospital discharge were captured using a number of strategies: 1) through the hospital’s routine follow-up system, which used a standard questionnaire seeking information from the patient about wound status; 2) information from post discharge follow-up clinics; 3) chart reviews and; 4) where no information could be retrieved by any of these methods, a phone call was made to the patient or to their general practitioner, both of whom were unaware of treatment allocation.

Definition of surgical site infection

For surgical site surveillance, the infection control team adheres to criteria defined by the National Nosocomial Infection Surveillance System. These include superficial incisional (an infection involving skin or subcutaneous tissue of the incision and excluding stitch abscess), deep incisional (an infection involving deep soft tissue of the incision), and organ space (an infection involving any part of the anatomy, other than the incision, which was opened or manipulated during an operation).
Sample size justification.

Based on preliminary data from obstetric theatres, approximately 12% of patients developed a surgical site infection, either in hospital or after discharge. We calculated that a sample size of at least 450 in each arm of the study would be sufficient to achieve a power of 80% using a 95% confidence interval to detect a 40% difference in the surgical site infection rate between the Masked and No Masked groups.

Data Analysis

Baseline patient characteristics were compared using Student's t test for continuous variables and the chi-square statistic with Yate’s correction when appropriate for categorical variables. All patients randomised were analysed by intention to treat, regardless of the treatment received. We used standard methods to calculate the odds ratio of an outcome in the No-mask group compared with the masked group, with a 95% confidence interval. In both groups of patients, parameters are expressed as means ± SD or as the number of patients. All tests of significance were 2-sided. The proportion of patients with a surgical wound infection (Mask versus No Mask) was calculated using the formula adopted by the Infection Control Department, that is numerator (total number of wound infections) divided by denominator (total number of surgeries where data was collected). Infection control staff were blinded to the study allocation.

RESULTS

Based on two separate funding grants, data was collected in two phases (between 15 June 2007 and 30 September 2007 and between 2 June 2008 and 12 September 2008). A total of 827 patients were enrolled and 811 (98.1%) patients completed the trial; 401 Mask group and 410 No Mask group (Figure 1). Two
hundred and eighty two patients were obstetric (34.1%), a further 96 (11.6%) were gynaecology, 118 (14.3%) were undergoing breast surgery, 311 (37.7%) were general surgical patients (180 open surgery and 131 laparoscopy surgery) and 18 (2.2%) were urology cases. The majority of patients (671; 81.1%), were admitted on the day of surgery. The mean age of the sample was 45.03 (SD 16.73). Participants were similar at base line for risk factors related to surgical site infection (Table 1).

Primary outcome

Wound infection

The mean follow-up period for the Mask group was 33.4 days (SD 22.1) and for the No Mask group it was 33.4 days (SD 22.8). During this time a total of 83 (10.2%) surgical site infections were recorded; 46 (11.5%) were in the Masked group and 37 (9.0%) in the No Mask group. The difference was not statistically significant; odds ratio (OR) 0.77 (95% confidence interval (CI) 0.49 to 1.21), p = 0.151. Of the 83 infections recorded, 70 (84.3%) were superficial, 11 (13.3%) were deep incisional and two (2.4%) occurred in an organ space. Obstetric surgery had the highest SSI rate (14.9%) and general laparoscopic surgery the lowest (6.3%). Table 2 shows further details. Only 26 (31%) patients had microbiological information recorded. Six were positive for *Staphylococcus aureus*, two *Escherichia coli*, and one each of *Pseudomonas aeruginosa*, *Enterobacter* species, *Enterococcus faecalis*, *Proteus mirabilis*, *Candida albicans*, *Streptococcus agalactiae*, *Streptococcus* species Group G, and *Corynebacterium* species. The remainder recorded either no growth, or mixed skin flora or mixed *enterococcus* species.

Factors associated with Surgical site infection

In the univariate analysis, 12 factors were associated with a surgical site infection in this sample. Statistically significant factors were entered simultaneously
into a binary logistic regression model predicting surgical site infection. After
adjustment, any pre-operative hospital stay, having high BMI, and having a history of
surgical site infection remained significant predictors of SSI.

DISCUSSION

Wearing face masks had no statistically significant effect on the development
of surgical site infection in this cohort. Results concur with outcomes from a previous
large trial, which also found a non-significant but lower rate of infection in the Non-
Masked group. The result seems counter-intuitive, given the long and embedded
history of wearing masks to prevent infection. However, several small experimental
studies investigating the role of wearing masks in containing the spread of microorganisms provide some explanation. In one experiment, staff were randomly
allocated to wear or not wear masks during 30-minute operating sessions. Air was
sampled and comparable bacterial counts were recovered whether masks were worn
or not. Similarly, when un-masked volunteers were asked to talk loudly within the
vicinity of the operating table they failed to contaminate settle plates, which had been
placed on the table. Moreover, organisms recovered from settle plates placed on
the operating room table during obstetric surgery were different to organisms
recovered from infected wounds. This suggests that masks are less important than
other well known factors, such as weight, length of hospital stay and duration of
surgery, in preventing surgical site infection.

Risk factors for surgical site infection in the current study were similar to those
found elsewhere. The one exception was the operation classification of
caesarean section, where the range of SSI rates generally falls between between
1.6% and 7.4%. However, in an earlier study at this hospital, the SSI rate among
clinic patients was 15.8%, comparable to our current rate. It is also possible that
some of the common univariate factors associated with SSI, such as weight and
length of postoperative stay would have remained predictive in the regression analysis if the sample had been larger.

Staff response to the study was generally positive. After initial hesitation borne of long tradition, staff expressed relief when they were assigned to a theatre randomised to the No-Mask group. The discomfort of wearing a mask, often through long surgical procedures, is one difficult aspect of operating room work. For some, who cannot wear masks for long periods, it may be a reason for excluding surgery as a career choice or curtailing a chosen option. Guidelines for use of facemasks by anaesthetists already suggest that masks need only be worn by the scrub team,15 our results provide further support for the recommendation.

One of the strengths of the study was our extensive follow-up. The hospital surveillance rate is based on laboratory data and on postal returns from patients. According to infection control staff, the postal response rate is between 30 – 40%. In our study, we used the hospital data where available and, where it was not, we retrieved data from medical records (including information from follow-up clinics). If follow-up data was unavailable from any of these sources, the patient was contacted by phone and asked a series of questions about the condition of their wound. If doubt still existed, we spoke to the patient’s general practitioner (GP). We found that patients who were contacted by phone were very pleased to be able to discuss their hospital care. On a number of occasions, where post operative care with a GP had been unsatisfactory and the wound had not healed, we were able to arrange a follow-up visit to the hospital.

Post hoc analysis indicated that our study was underpowered; slightly less than 70% with an alpha of 0.05. However, when we combined our results with those of Tunevall (1991), results statistically favoured not wearing a mask ($p = 0.04$). Even
so, to be confident of these results, it would be useful to repeat this study as an
equivalence trial; or ensure that any superiority trial was suitably powered.

ACKNOWLEDGEMENT

Financial support: JW received grant support through two Queensland Health
Nursing Research Grants.

Conflict of interest: None
REFERENCE LIST

Table 1: Baseline characteristics and risk factors for surgical site infection for Mask and No-Mask groups (results are number and percent unless otherwise indicated)

<table>
<thead>
<tr>
<th>Factor</th>
<th>No Mask</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Mean age [SD]*</td>
<td>45.4 [16.9]</td>
<td>44.7 [16.6]</td>
</tr>
<tr>
<td>Male gender</td>
<td>76 (18.1)</td>
<td>87 (21.4)</td>
</tr>
<tr>
<td>Any pre-operative hospitalization</td>
<td>81 (19.3)</td>
<td>75 (18.4)</td>
</tr>
<tr>
<td>Mean weight [SD]</td>
<td>77.9 [19.4]</td>
<td>80.7 [19.7]</td>
</tr>
<tr>
<td>Prophylactic antibiotics</td>
<td>324 (82.7)</td>
<td>305 (85.0)</td>
</tr>
<tr>
<td>Surgery classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>326 (77.6)</td>
<td>322 (79.3)</td>
</tr>
<tr>
<td>Sub-acute</td>
<td>44 (10.5)</td>
<td>34 (8.4)</td>
</tr>
<tr>
<td>Emergency</td>
<td>50 (23.4)</td>
<td>50 (23.8)</td>
</tr>
<tr>
<td>Wound classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean</td>
<td>344 (82.5)</td>
<td>316 (78.0)</td>
</tr>
<tr>
<td>Clean contaminated</td>
<td>70 (16.8)</td>
<td>86 (21.8)</td>
</tr>
<tr>
<td>Contaminated/dirty/infected</td>
<td>3 (0.7)</td>
<td>3 (0.7)</td>
</tr>
<tr>
<td>ASA† classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>148 (35.5)</td>
<td>122 (30.1)</td>
</tr>
<tr>
<td>Two</td>
<td>105 (25.2)</td>
<td>113 (27.9)</td>
</tr>
<tr>
<td>Three</td>
<td>50 (12.0)</td>
<td>49 (12.1)</td>
</tr>
<tr>
<td>Four</td>
<td>3 (0.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Not specified</td>
<td>111 (26.6)</td>
<td>121 (29.9)</td>
</tr>
<tr>
<td>Mean length of surgery in minutes (SD)</td>
<td>85.8 [63.9]</td>
<td>88.4 [69.2]</td>
</tr>
</tbody>
</table>

*Standard deviation, † American Society of Anesthesiologists
Table 2: Infection characteristics for each surgical specialty

<table>
<thead>
<tr>
<th>Type of Surgery</th>
<th>No infection</th>
<th>Superficial</th>
<th>Deep incisional</th>
<th>Organ space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gynaecology</td>
<td>87 (91.9)</td>
<td>4 (4.2)</td>
<td>4 (4.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Obstetric</td>
<td>239 (85.1)</td>
<td>39 (13.9)</td>
<td>3 (1.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>General (open)</td>
<td>157 (90.2)</td>
<td>13 (7.5)</td>
<td>2 (1.1)</td>
<td>2 (0.0)</td>
</tr>
<tr>
<td>General (laparoscopic)</td>
<td>119 (93.7)</td>
<td>7 (5.5)</td>
<td>1 (0.8)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Urology</td>
<td>15 (88.2)</td>
<td>2 (11.8)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Breast</td>
<td>112 (94.9)</td>
<td>5 (4.2)</td>
<td>1 (0.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Total</td>
<td>729 (89.8)</td>
<td>70 (8.6)</td>
<td>11 (1.4)</td>
<td>2 (0.2)</td>
</tr>
</tbody>
</table>
Potentially eligible
Patients booked for open surgery ≥ 18 years during data collection periods
(n = 827)

Randomised
(n = 827)

Allocated to Intervention group (masks not worn by non-scrubbed staff; n = 420)

Allocated to Control group (masks worn by non-scrubbed staff; n = 407)

Post-randomisation exclusions (n = 8)
Operation cancelled (n = 8)

Post-randomisation exclusions (n = 6)
Operation cancelled (n = 6)

Number completing trial
(n = 412)

Number completing trial
(n = 401)

Lost to follow-up
(n = 2)

Lost to follow-up
(n = 0)

Number analysed (n = 410)

Number analysed (n = 401)

Figure 1
<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>No mask</td>
<td></td>
<td></td>
<td></td>
<td>M-H, Fixed, 95% CI</td>
<td>M-H, Fixed, 95% CI</td>
</tr>
<tr>
<td>Tunevall 1992</td>
<td>55</td>
<td>1551</td>
<td>62.6%</td>
<td>0.74 [0.52, 1.05]</td>
<td>0.77 [0.48, 1.21]</td>
</tr>
<tr>
<td>Webster 2010</td>
<td>37</td>
<td>410</td>
<td>37.4%</td>
<td>0.75 [0.56, 0.99]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1961</td>
<td>1938</td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total events: 1961

Heterogeneity: $\chi^2 = 0.02$, df = 1 ($P = 0.90$); $I^2 = 0$

Test for overall effect: $Z = 2.02$ ($P = 0.04$)

Figure 2.
Figure 1. Flow of participants through the study

Figure 2. Forest plot of two clinical trials investigating use of face masks to prevent surgical site infection.