The faithful replication of DNA is pivotal for the survival of all organisms. However, small bacteriophage such as φX174 relies on its *E. coli* host for almost all its replication proteins. The only encoded proteins implicated in the replicating bacteriophage DNA are gene protein A (gpA) and gene protein A* (gpA*), and these proteins are involved in initiation of replication and shut-down of host DNA replication, respectively. Both proteins are encoded by the same gene and gpA* is expressed from an internal, in-frame ATG start codon. The resulting gpA* represents the C-terminal 341 residues of gpA and was reportedly translated from a polycistrionic mRNA transcribed from a promoter located upstream of *gene A*. Attempts to clone *gene A* to produce quantities of gpA for structural and functional characterisation have been unsuccessful. Investigation of the 5′ upstream region of *gene A* revealed the presence of a putative promoter region, and if functional may allow the constitutive expression of gpA* during cloning, leading to the shut-down of host DNA replication which is lethal. We have shown that the placement of this putative region upstream of the *luc* gene resulted in the expression of luciferase confirming that the region acts as a promoter. The expression levels obtained from this promoter were twice that obtained using the *lac* promoter, and when inserted in the reverse orientation relative to the *luc* gene the expression levels were reduced by 98.6%.