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Abstract 
 
 

Sound is one of a human beings most important senses. After vision, it is the sense most 

used to gather information about the environment. Despite this, comparatively little 

research has been done into the field of sound recognition. The research that has been 

done mainly centres around the recognition of speech and music.  

 

Our auditory environment is made up of many sounds other than speech and music. This 

sound information can be taped into for the benefit of specific applications such as 

security systems. Currently, most researchers are ignoring this sound information. 

 

This thesis investigates techniques to recognise environmental non-speech sounds and 

their direction, with the purpose of using these techniques in an autonomous mobile 

surveillance robot. It also presents advanced methods to improve the accuracy and 

efficiency of these techniques. 

 

Initially, this report presents an extensive literature survey, looking at the few existing 

techniques for non-speech environmental sound recognition. This survey also, by 

necessity, investigates existing techniques used for sound recognition in speech and 

music. It also examines techniques used for direction detection of sounds.  

 

The techniques that have been identified are then comprehensively compared to 

determine the most appropriate techniques for non-speech sound recognition. A 

comprehensive comparison is performed using non-speech sounds and several runs are 

performed to ensure accuracy. These techniques are then ranked based on their 

effectiveness. The best technique is found to be either Continuous Wavelet Transform 

feature extraction with Dynamic Time Warping or Mel-Frequency Cepstral Coefficients 

with Dynamic Time Warping. Both of these techniques achieve a 70% recognition rate. 

 

Once the best of the existing classification techniques is identified, the problem of 

uncountable sounds in the environment can be addressed. Unlike speech recognition, 



 

non-speech sound recognition requires recognition from a much wider library of sounds. 

Due to this near-infinite set of example sounds, the characteristics and complexity of non-

speech sound recognition techniques increases. 

 

To address this problem, a systematic scheme needs to be developed for non-speech 

sound classification. Several different approaches are examined. Included is a new design 

for an environmental sound taxonomy based on an environmental sound alphabet. This 

taxonomy works over three levels and classifies sounds based on their physical 

characteristics. Its performance is compared with a technique that generates a structured 

tree automatically. 

 

These structured techniques are compared for different data sets and results are analysed. 

Comparable results are achieved for these techniques with the same data set as previously 

used. In addition, the results and greater information from these experiments is used to 

infer some information about the structure of environmental sounds in general. Finally, 

conclusions are drawn on both sets of techniques and areas of future research stemming 

from this thesis are explored.
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Chapter 1 

Introduction 

 

It has long been a goal of researchers around the world to build a computer that acts like a 

human being. The research of Brooks [Brooks98] is an example of developing human-

like movement in robots. However, another subset of this research is to develop machines 

that have the same sensory perception as human beings. This work finds its practical 

application in the wearable computer domain (e.g. certain cases of deafness where a 

bionic ear (cochlea implant) cannot be used) as well as in the development of robots that 

can perform human-like sensory tasks (such as security). 

  

Human beings use a variety of different senses in order to gather information about the 

world around them. If we were to list the five classic human senses in order of 

importance, it is generally accepted that we would come up with the sequence:  

 

1. Vision 

2. Hearing 

3. Touch 

4. Smell 

5. Taste 

 

Vision is undoubtedly the most important sense with hearing being the next important 

and so on. However, despite the fact that hearing is a human beings second most 

important sense, it is all but ignored when trying to build a computer that has human-like 

senses. The research that has been done into computer hearing revolves around the 

recognition of speech and music, with little research done into the recognition of non-

speech environmental sounds. 
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This chapter will revise the relevant background and discuss the motivation of this thesis. 

It will also give an aim and a hypothesis related to that aim. Finally, it will discuss the 

domain of this thesis and the scope within that domain. 

 

1.1 Problem Statement & Research Question 

 

Research Question 

How can I develop a computer system that can recognise non-speech environmental 

sounds, for the purpose of surveillance? 

 

This research question develops from the problem explained in the introduction, that non-

speech sound recognition research has been neglected in favour of the more fashionable 

speech recognition or speaker identification research. More formally, it can be stated as 

follows: 

 

Problem Statement 

Considering that the auditory component of the world is made up of not only speech, but 

also many other sounds, it is important that a computer can recognise and classify not 

only speech, but also the other common sounds in an environment. Areas such as hearing 

aid technology and security systems can benefit from research into a system that can 

identify non-speech sounds. 

 

1.2 Aim 

 

Aim 

To develop an efficient system that can recognise non-speech environmental sounds, with 

the intent of installing this system in a self-contained sound sensing system for 

autonomous surveillance.  
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In order to facilitate the development of this system, several steps were carried out: 

1. Investigate existing recognition techniques used in other domains (i.e. Speech 

recognition and Music recognition) and determine whether these techniques can be 

applied to non-speech sound recognition. 

2. Comprehensively compare these techniques for the domain of non-speech in order to 

determine the most efficient algorithms for this domain. 

3. Investigate advanced techniques to accelerate the identification of non-speech sounds. 

This will be done using several techniques, including a non-speech sound taxonomy 

based on the source of a sound and separated according to the physical state of the 

source (i.e. solid on liquid, liquid on liquid etc.) and its material composition (metal, 

wood etc.). This kind of taxonomy has not been developed previously. Other 

advanced techniques will also be presented. 

 

I will elaborate on each of these points. Within previous research [Cowl00, CowlSit00, 

CowlSit01], I identified some techniques that could be used for non-speech sound 

identification and direction detection, and implemented them as an exploration case. 

However, no comparison was made between the selected techniques and other techniques 

in order to determine the most appropriate technique for the recognition of non-speech 

sounds.  

 

Therefore, the first step in this research was to identify alternative techniques that could 

be used for recognition of non-speech sounds and compare them. I have done this by 

turning to two domains of research that have had greater focus over the years: speech 

recognition and music recognition. These techniques provide a starting point when 

looking for techniques that could be used for non-speech sound recognition. A 

comprehensive review of these techniques was carried out (in the literature review) and 

the techniques that can be used for non-speech sound recognition were identified. 

 

After these techniques had been identified, each was implemented as a prototype and 

tested on specific data sets. This comparative surveying helps to determine the 

performance of each technique. 
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Based on the results from this comparison, additional advanced techniques (such as the 

implementation of a non-speech sound taxonomy and the development of an 

environmental sound alphabet) were investigated. These techniques were used in 

conjunction with results from the previous experiments to present a more generalized 

method for a larger corpus of sounds. This is because while speech is bounded to a 

typical range of frequencies, environmental sounds go beyond these boundaries. The 

frequency space is vast and as the number of sounds in a system increases, finding the 

matching pattern that identifies a sound is like finding the proverbial needle in a 

haystack. A sound taxonomy tree provides a systematic and efficient way to approach 

this problem. 

 

1.3 Hypothesis 

 

Premises:  

1. Environmental sound identification is a classification problem, where an unknown 

sound is matched to known sound patterns for similarity and identification.  

2. Environmental sounds are vast (uncountable), they can be produced by the 

interaction of media in any physical state, in any frequency range.  

3. Human speech is a subset of environmental sounds always produced by the 

interaction of air and the vocal cords.  

 

Hypothesis 

If I can find a systematic way to identify environmental sounds, I could increase the 

efficiency of environmental sound identification for the purpose of security surveillance. 

A system can be developed that will recognise a large corpus of environmental sounds. 

This system will use a structured classification technique (sound taxonomy) to improve 

classification accuracy and speed.  
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Previous work has shown that it is possible to develop a system that will recognise non-

speech environmental sounds [Cowl00, CowlSit00, CowlSit01]. However, it is surmised 

that as the amount of sounds trained in this system increases, the classification accuracy 

of the system will decrease. Also, as more sounds are trained in the system, the time 

taken for a classification will become much longer. This is because of the infinite amount 

of non-speech sounds in our environment.  

 

Therefore, in order to develop an accurate and efficient system for non-speech sound 

recognition, advanced techniques must be used to overcome the problem of pattern 

matching against an almost infinite set of patterns. A technique that shows promise is the 

technique of an environmental sound taxonomy. This taxonomy looks at classifying 

sounds based on their physical properties (liquid to liquid, solid to liquid etc). 

Classification decisions are also made based on recognition of different materials 

involved in the sound (wood, stone, glass etc.). This method of classification is expected 

to improve accuracy and efficiency. 

 

1.4 Domain & Scope 

 

The aim of this research is to develop a self-contained sound sensing system. This system 

will consist of two parts: a non-speech sound recognition subsystem and a source 

localization subsystem. The purpose of the research is to develop the sound sensing 

(recognition) system for a security surveillance domain.  

 

Using the results of this research, it is envisioned that an autonomous mobile robot can be 

built that should be able to navigate and explore a room, listening for sounds. When a 

sound is heard, the robot can identify the type of sound. Depending on the sound, it can 

then move towards or away from the sound and take the appropriate action (such as 

taking a picture or calling the police). For example, the system could detect a window 

being broken in the right hand side of the house and then detect footsteps in the same 

section of the house. It could then transmit this information to the authorities where it 



 7

could be used to dispatch a police unit to investigate (although this intelligent 

transmission is not in the scope of this research).  

 

The fundamental thinking behind this domain is as a limiting factor on the types of 

sounds that should be recognised by the sound sensing system. It is obvious that building 

a system that can recognise all non-speech sounds in our environment is not only 

impractical but also almost impossible using today’s technology. Therefore, the security 

domain limits the sounds to be recognised by the system to a much smaller finite set (but 

a set still much larger than that used in speech recognition). 

 

1.5 Research Contribution 

 

The research in this thesis contributes to research into non-speech sound. It makes several 

contributions to the research community that have not been made previously. 

 

Firstly, this thesis presents an Environmental Sound Taxonomy. While taxonomies exist 

for other domains, no taxonomy has been developed for the area of non-speech sound 

recognition. Also, the development of an environmental sound taxonomy required the 

development of a novel environmental sound alphabet as a means to build the hierarchy. 

 

Secondly, this thesis contributes a comprehensive comparison of existing speech and 

musical instrument recognition techniques in the domain of non-speech sound 

recognition. This comparison is presented in a thorough fashion for all of the common 

recognition techniques in these domains. Comparison of different speech and musical 

instrument recognition techniques has been performed before, but not as 

comprehensively, and not in the domain of non-speech sound recognition. 

 

Finally, this thesis presents an several advanced algorithms for non-speech 

environmental sound recognition. The area of non-speech is an area that has been all but 

neglected in the research community. These algorithms present a basis on which further 
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research into refining the techniques can be built. Furthermore, results from this 

comparison show some of the general characteristics of environmental sounds, which will 

be invaluable for future research. 

 

1.6 Organisation of this Document 

 

The remainder of this thesis will be organised into six sections. 

 

Chapter 2 will cover previous literature in the areas of non-speech sound recognition. It 

will also look at relevant work in the areas of speech and music recognition. 

 

Chapter 3 will discuss the hypothesis and present possible solutions to the problems 

highlighted by the literature review. 

 

Chapter 4 will cover the methodology proposed to begin to answer the research question 

and will include descriptions of the algorithms and techniques used. 

 

Chapter 5 will present results of the research and draw conclusions from these results. 

 

Chapter 6 will present the design for several advanced techniques that aim to reduce the 

pattern matching search space for non-speech environmental sounds. 

 

Chapter 7 will present results from the application of these advanced techniques and draw 

conclusions from these results. 

 

Chapter 8 will conclude this document and discuss future research directions that could 

be motivated by this work. 
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Chapter 2 

Literature Review 

 

This chapter is split into four sections. The first section will review the basic theory 

required in order to understand the research area. It includes details on sound digitization, 

transforms, the structure of environmental sound from a human perspective and the 

basics of neural networks. 

 

The second section will cover the area of non-speech environmental sound recognition. 

In this section, existing non-speech sound recognition techniques will be analysed. A 

comparative study will also be discussed identifying those speech and music recognition 

techniques that can be used for non-speech sound recognition. This section will also 

discuss time-frequency techniques and their applicability to the domain. Finally, it will 

also discuss the related area of source separation, also known as computational auditory 

scene analysis. 

 

The third section will cover the area of source localisation or direction detection. Again, 

existing techniques for source localization will be discussed. 

 

Finally, the fourth section will discuss the results from the literature review and explain 

the problems that these techniques face when applied to environmental sounds. These 

problems will then be addressed in Chapter 3 and Chapter 4. 

 

2.1 Basic Theory 

 

Sound is generated when an object (such as a tuning fork) causes a disturbance in the 

density of the medium in which it resides (usually air) [Tipler91]. This disturbance 

propagates through the medium. When the disturbance reaches a human ear, it is 
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converted into electrical signals that the brain interprets as sound. This disturbance takes 

the form of a wave (Figure 1), with the amplitude (or height) of the wave representing the 

amount of movement of molecules in the medium and the frequency (or length) of the 

wave representing the amount of time occurring before the waveform repeats. 

 

 

 

 

 

Figure 1 – A Simple Waveform 

 

2.1.1 Sound Digitization 

 

In order to investigate or analyse the processes involved in non-speech sound 

identification as performed by a computer, it is necessary to review the basics of how this 

analog sound information is stored in the computer. The process of transferring analog 

sound signals into digital bits to be stored on the computer is known as analog-to-digital 

conversion or the digital encoding process [Kefau99].  

 

A true analog signal can be represented as a continuous waveform. However, to store this 

waveform in the computer, values of the wave are taken at regular intervals. This process 

is called sampling. It is the process by which a continuous-time variable is measured as 

distinct, separate instants of time. By sampling, the smooth curve from the measurements 

is replaced by a finite set of numbers. Each pulse amplitude is then rounded to one of a 

finite number of levels, in this case into an eight-bit number. This process is called 

quantization. In essence, the process of sampling and quantization is an encoding process 

that converts the analog waveform into a binary representation.  

 

The sampling period depends on the nature of the signal (Figure 2). However, for a 

periodic signal it must be such that each lobe of the sinusoid (waveform) is sampled at 

least once [Palm00]. A Fourier series can then represent the signal in the frequency 

Frequency 

Amplitude 
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domain. The plot of the Fourier series versus the frequency is called the spectrum and is 

characteristic for a sound.  

 

The specifics of this sampling process will be explained in more detail: Frequency is 

measured in Hertz, which represents the amount of times per second a sample point is 

taken. For instance, a sample rate of 4Hz means a sample point is being taken 4 times a 

second. Nyquist discovered that a minimum of two sample points per cycle is required in 

order to determine the correct shape of a waveform. Since the limit of human hearing is 

22KHz, a waveform must be sampled at 44KHz in order to preserve all the information a 

human can hear [Steig96]. This means that, in applications such as the subject of this 

thesis (where frequencies can be within this entire range), a waveform will be sampled 

44,000 times per second and each sample point will then be stored in the computer as a 

data point.  

 

 

 

 

 

 

Figure 2 – Sampling a Wave 

 

In the process of quantization that follows sampling, the amplitude of the signal at each 

sampling point is stored [Kefau99]. If we were to use a scale to measure amplitude with a 

+1 and –1 representing the maximum amplitude of the waveform, we could define the 

amplitude of the wave using a set of discrete values at each point. For instance, in Figure 

3, sampling point 1 has a value of 0.000, sampling point 2 a value of 0.625 and so on. 

This is called the quantization interval. 
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Figure 3 - Quantization in volts [Kefau99] 

 
However, due to the fact that computers can only store information at the lowest level in 

binary, this decimal value is converted into a binary value (by assigning each value along 

the scale a binary equivalent). For instance, 0.25 becomes 01 binary, 0.5 becomes 10 

binary and 1.0 becomes 11 binary. The amount of bits used in the scale is referred to as 

the resolution, and is measured in bits per word (amount of bits used to store the 

amplitude of each sampling point). In the example given, the resolution would be 2 bits 

per word, since 2 bits are used to represent the value of each sampling point. A problem 

quickly becomes apparent with this method. Using the scale above, how would the 

sampling point value of 0.625 be stored? Due to the amount of bits used in the scale, the 

value must be rounded up or down to the nearest number with a binary equivalent (in this 

case, rounded down to 0.5 or 10 binary). The process of rounding produces a 

quantization error. Quantization error is measured as the amount required to bring the 

value in line with one of the quantization intervals (in our example, the quantization error 

is 0.125, which is the amount rounded down from 0.625 to get 0.5).  
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2.1.2 Transforms & Windows 

 

Once a sound wave has been sampled into a computer, it can be manipulated in various 

different ways (this reveals different types of information). One of the most important 

manipulations that can be performed on a sound wave is a Fourier transform [Shie99]. It 

has been studied and used for many decades, and its numerical methods are well 

developed. By representing the sound samples as a Fourier series, we simplify numerical 

manipulations of otherwise complex calculations. The Fourier transform process involves 

breaking a complex wave down into its characteristic sinusoidal components. This 

process allows the wave to be easily analysed. A Fourier transform performs this function 

by obtaining the amplitude for a given frequency. By applying different frequencies to a 

wave, it can be split into a set of discrete frequency components. These values can then 

be more easily analysed. Many other methods such as Laplace Transform, Fast Fourier 

Transform, Discreet Fourier Transform, Gabor expansion and Short-Time Fourier 

transform can also be used to analyse a given wave in both the frequency and time 

domains, but all work on a similar fundamental concept as the Fourier transform 

[Shie99]. 

 

For sound recognition tasks, a common alternative to the Fourier Transform is the 

Discrete Cosine Transform (DCT) [Acken99]. The DCT can be compared to an FFT on a 

one-dimensional sequence. Compared to an FFT, a DCT removes some erroneous high-

frequency components that are introduced into the spectrum with an FFT. These 

components are introduced due to the method by which an FFT determines frequency. 

When an FFT is performed on a sequence, it is assumed that the sequence is repeated 

periodically. However, the joining of these sequences produces a glitch. This glitch 

introduces these erroneous components. In comparison, a DCT reflects a signal before 

extending it periodically. This creates a smoother transition between each sequence and 

prevents the production of the high-frequency components. 
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In addition to transforms, windowing techniques can also be applied to a signal in order 

to improve pattern recognition (that is, the ability to recognise patterns within the signal, 

which is important in areas such as the one covered in this thesis). A number of 

speech/speaker recognition techniques use overlapping windows on a signal in order to 

improve processing. When windowing a signal, the standard window forms a rectangle. 

However, this kind of window produces a signal with a series of ripples in the frequency 

response. Therefore, it is common to use a tapered windowing technique in order to 

remove these ripples. The most common technique used in speech recognition is the 

Hamming window technique [Carti00]. This technique uses a tapered window that causes 

the main lobe of the window spectrum to increase in width. In turn, this causes more 

rounding of the signal and therefore decreases ripples in the signal. However, this is at 

the expense of making the characteristics at the edge of the window less sharp. This can 

be compensated to some extent by increasing the length of the window, producing more 

acceptable results than a standard rectangular window. 

 

2.1.3 The Sound Recognition Process 

 

Most recognition and classification problems are implemented using a three-stage 

process. 

1. Data Preprocessing 

2. Feature Extraction 

3. Classification 

 

The sequence of these three stages is shown in Figure 4. 
  

Figure 4 - Traditional Classification Sequence 

 

Data Preprocessing is the first step in the process. This step differs depending on the 

classification task being performed. For instance, for handwriting recognition, this step 

Data 
Preprocessing 

Classification Feature 
Extraction 
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involves splitting each sentence up into separate words and letters and performing other 

initial tasks (such as correcting the slant inherent in many individuals handwriting).  

 

Data Preprocessing for sound recognition (including speech recognition), involves taking 

a sound from the environment and loading it into a computer. Typically, this is done 

using a microphone. In addition, a computer represents sounds in a digital format, which 

means that the analog signal produced by a microphone has to be converted into a digital 

format via sampling and quantization techniques [Kefau99]. 

 

Feature Extraction is then performed to reduce the huge data set produced in the previous 

step. Feature extraction involves selecting pieces of the input data that uniquely 

characterize that information [Fuku90]. The choice of features is up to the researcher and 

is based on their belief of which feature most accurately characterises a sound. Again, 

this step differs depending on the classification task being performed. For sound 

recognition, many techniques have been used for feature extraction, from the simple 

(identifying all of the frequencies in a sound), to the extravagant (modeling of the feature 

extraction of the human auditory system). However, no matter what the technique, sound 

researchers agree that feature extraction is the most difficult part of the recognition 

process.  

 

Feature extraction can be performed at three levels of understanding, as shown in Table 1 

[Faich00, Gonz97]. Statistical feature extraction works directly on the data from the 

environment. For instance, the colour of each pixel in a picture could be measured. This 

information could then be used as a feature for classification and testing. Syntactical 

feature extraction expands upon statistical feature extraction by understanding the 

structure of the object. For instance, a speech recognition system could use a syntactical 

technique to split the speech into separate words (requiring the system to understand the 

concept of a word, or at least the syntax of a speech signal (spaces between words)). 

Finally, semantic feature extraction requires prior knowledge of an object. For instance, a 

text recognition system may use a dictionary to process explanations of each word.  
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TABLE 1. LEVELS OF FEATURE EXTRACTION 

Statistical Data Based 

Syntactical Data with Structure 

Semantic Prior Knowledge of Environment 

 

All of these levels of understanding can (and should) be combined together to produce a 

system that performs good feature extraction. For instance, a speech recognition system 

could use statistical techniques to identify when speech is being fed into a microphone (as 

opposed to silence). Syntactical techniques could then split the speech into separate 

words. Each word could then be recognised (e.g. using a statistical technique) and then a 

semantic technique could be used to interpret each word using a dictionary. 

 

Classification is the third step in the recognition process. Classification involves taking 

the features generated in the previous step and linking each feature to a particular 

classification (a form of pattern recognition) [Schal90]. Again, this can be done in many 

ways. For sound recognition, many techniques have been used, including Hidden Markov 

Models, Neural Networks and Reference Model Databases (as used with Dynamic Time 

Warping). All of these techniques use a training/testing paradigm. Training gives the 

system a series of examples of a particular item, so it can learn the general characteristics 

of that item. Then, when Testing is performed, it can identify the class of the item being 

tested. As an optional step, classification can also involve fuzzy logic processing 

[Setnes99]. This is done prior to training in order to establish some correlation between 

the training set and the final classifications. 

 

Classification does face one hurdle. It is important to ensure that the testing and training 

sets are recorded in the same conditions in order to get optimum results. In an analysis of 

training and testing techniques for speech recognition, Murthy explains how training data 

must be collected from within a variety of different environments to assure that a 

representative set of training data is stored in the database [Murthy99]. Murthy introduces 

the use of a filter bank to remove erroneous environmental sounds from the sound sample 

to ensure these do not effect classification. Speech recognition/Speaker identification 
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researchers typically refer to techniques that attempt to correlate training and testing data 

as “robust” techniques [Lilly00, YuanX99]. Robust recognition techniques are most 

useful if noise and other factors affect the training data. 

 

2.1.4 Aspects of Environmental Sounds 

 

There have been few attempts to define the term “environmental sound”. However, 

Vanderveer defines four general but important points that may help to identify an 

environmental sound [Vander79].  

 

1. It is produced by real events. 

2. It has meaning by virtue of the causal events. 

3. It is more complicated than laboratory-generated sounds such as pure tones. 

4. It is not part of a communication system such as speech. 

 

This definition shows that Vanderveer believes that there is a clear distinction between 

speech and non-speech sounds. However, human hearing seems to make little distinction 

between speech and non-speech sounds.  

 

Ballas and Howard [Ballas87] discuss how they believe that a human perceives 

environmental sounds as equivalent to a form of language. Of interest in the article, 

Ballas and Howard make reference to a lack of an equivalent to the phonetic alphabet for 

environmental sounds. They suggest that this is because speech is produced from a 

limited set of different actions by the vocal mechanisms of a human being whereas 

environmental sounds can be produced from a much wider range of sources. 

 

Ballas and Howard detail how semantics (understanding of the context of a sound) are 

important in recognising the sound, regardless of whether that sound is speech or non-

speech. They then explain how this equates to two forms of processing in the human 

auditory system: top-down and bottom-up. Top-down is related to the meaning 



 18

(semantics) of the sound whereas bottom-up is related to the statistical features of the 

sound.  

 

Ballas and Howard discuss how environmental sounds are typically described by their 

semantic meaning as opposed to their statistical properties. That is, a sound is described 

as “glass breaking” and not “a quick sound, with varying and yet constantly high-pitched 

elements”.  

 

Ballas and Howard also show that a human beings confidence in correctly identifying a 

sound decreases as the amount of causes for that sound increase. They call sounds with a 

large amount of causes “sound homonyms”. They then suggest that just as the difference 

in speech homonyms such as “knight” and “night” cannot be determined without the 

context of a sentence, sound homonyms also need the context of other sounds in order to 

be identified by a human. 

 

This theory is backed up by experiments related to the playback of several sounds to 

human beings. In these cases, the order of the sounds relates to a human being’s semantic 

interpretation of the sounds. For instance, if a clang sound is proceeded by a screeching 

sound, the semantic interpretation may be that the “auditory scene” just heard was that of 

a car crash (with the screech being interpreted as a tyre skid sound). On the other hand, if 

the same clang sound is combined with water dripping and a burst of air, the semantic 

interpretation is typically that of machine noise in a factory. 

 

Finally, the theories of top-down processing suggest that the library of sounds that a 

human being has previously learnt directly relates to their ability to identify an 

environmental sound, just as it does for speech. If a human being has not previously 

heard a sound or series of sounds (such as the aforementioned car crash), it will not be 

recognised in such a way by that person. This idea of previously learnt ideas has 

applications in the area of computer sound identification and training of computers to 

recognise certain sounds. 
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2.1.5 Neural Networking Techniques 

 

Neural Networks (NN) are a mathematical tool for finding best fit functions to given 

multivariate data. Although NN’s were first created as a means for researchers to model 

the functioning human brain, they have gradually become a useful tool for analysis and 

classification of information [Haykin99]. The simplest NN consists of a single neuron 

with several inputs and a single output.  A neuron is characterised by a series of numbers 

that are referred to as weights. As the neuron is given data (trained), weights are modified 

within that neuron according to a training algorithm. For the purpose of real world 

problems, a set of neurons is joined together into a network, which is then called a 

perceptron (Figure 5).   

 

Figure 5 - An example Back Propagation Network. 

 

A very common algorithm used within a perceptron is called the Back Propagation 

Algorithm (BPA) [Buhrke95].  The BPA is a supervised learning approach. This 

algorithm uses the same training and testing technique mentioned previously in order to 

classify results. 

 

A NN can use a supervised learning approach to classify sound information [Haykin99]. 

First, Feature Extraction of the waveform is performed. The features are then given to the 

NN as inputs, with the user giving the correct output as well. The NN slowly adjusts itself 

to the data. New data can then be given to the NN and it will classify the data based on 

the previous information. 
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NN’s can also perform unsupervised learning by clustering data around expected features 

[Schal90]. One of the most common techniques for unsupervised neural networking is the 

Self-Organising Map (SOM), first developed by Kohonen [Kohon97]. It involves using a 

neural network to produce a map that shows how the different features cluster around 

each other. By applying some grouping rules to the map, it can be split into a set of 

classes that can be used for classification. One of the main advantages of this approach is 

that the classes need not be known prior to the training and testing of the neural network, 

due to the fact that the classes can be obtained from the self-organising map at the 

conclusion of the training. 

 

The technique of using a NN for data storage and classification allows for the efficient 

storage of a large amount of information, due to the fact that once the information is 

given to the neural network for training, it can be forgotten. However, the problem with 

NN’s lies in the fact that the training process is sub-optimal [Buhrke95]. Since the 

neurons in a perceptron can only be adjusted by a slight variation in its weights, a NN 

does not give as exact a portrayal of the training data as if it was actually stored in a 

database and used directly. This means that the information in the NN can produce a 

wrong classification due to the way that the neurons have been weighted by the training 

data.  

 

To understand this better, consider the difference between storing a textual explanation of 

a person’s facial features versus storing a picture of the person. No matter how well the 

textual description is written, the picture will always give a much clearer idea of what the 

person looks like. This is because features will always exist in the picture that are 

impossible to include in a textual description. This same logic can be applied to neural 

networks. A neural network stores the features of an object. While this will suffice in 

most cases, it does not equate to storing the actual object. This is because features will 

always exist in the object that are difficult to describe for the neural network. 
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2.2 Sound Recognition 

 

Research into the field of non-speech sound recognition is sparse. As noted previously, 

the majority of auditory research is centred on the identification and recognition of 

speech signals. Those systems that do exist work on a very specialized domain or with 

only a few classes. Due to this, existing research into sound recognition is difficult to 

find. However, some research does exist. These results will be discussed in this section.  

 

Due to this lack of non-speech sound recognition research, techniques for speech 

recognition and music recognition will also be discussed in the hope that these techniques 

could be adapted for use with non-speech sounds. Another recent research area, time-

frequency feature extraction is also discussed with relation to its applicability to non-

speech environmental sound recognition. Finally, a further research topic related to sound 

recognition called Auditory Scene Analysis, involving the separation of multiple sounds 

within an environment, will be discussed. 

 

2.2.1 Existing Non-Speech Literature 

 

This section will cover the literature related directly to the recognition of non-speech 

sounds. 

 

Initial research into systems that perform non-speech sound recognition revealed a 

program that seemed suitable for environmental sound recognition. The Canary program 

was developed by the Cornell Lab of Ornithology and is designed to recognise bird song 

[Cornell01]. However, upon further scrutiny of the Canary program, it was found that it 

stopped just short of actually recognising the sound. 

 

The Canary program (see Figure 6) analyses a signal given to it (of a bird song) and then 

allows the user to plot a spectrum of the signal. It also allows the user to perform a 

correlation analysis between two signals. However, the program lacks the ability to 
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identify a signal as being the song of a specific type of bird. This has to be done either 

through visual inspection or by manual correlation with other frequency spectra of birds 

until a match is found. However, if the second method is used, the correlation still relies 

on visual inspection of a spectrogram representing the difference between the two 

signals. 

 

 

Figure 6 - The Canary working environment. 

 
From this example, it can be seen that non-speech sound identification is not a trivial 

exercise. It requires that a sound be recognised irrespective of differences in length and 

small changes in frequency.  

 

Goldhor presents a technique that tries to tackle these problems. It uses a Mel frequency 

cepstral coefficient technique for feature extraction and a modified vector classification 

technique for classification [Goldh93]. However, as opposed to vector quantization, 

Goldhor uses the vectors in order to perform supervised clustering into classes. Goldhor 

also calculates mean and variance values for each sound class and uses a time warping 

technique to ensure all samples are a constant length. 
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Using this technique, Goldhor performed four tests on his database of 23 sounds. 

Throughout the four tests, Goldhor reports an accuracy of recognition close to 100%. 

Goldhor also notes that the problems with sound identification research may occur in 

sound separation and different environment issues. These issues are addressed in the 

section on Auditory Scene Analysis. 

  

Hiyane also presents a signal processing based system for classification of five single 

impulsive sounds [Hiya00]. Single impulsive sounds are sounds created by the impact 

between objects. This system uses a training and testing technique based on the 

distinguishing features of a sound gathered at the peak and reverberation times. 

Unfortunately, Hiyane neglects to mention the specific technique used to classify the 

sound features. Hiyane notes that the recognition rate for this system is approximately 

80%. He also notes similar problems to Goldhor with regards to multiple sound 

segregation and the fact that different sounds produce distinctly different waveforms. 

 

Woodard presents a theoretical model for a system that uses a combination of linear 

predictive coding (LPC), vector quantization (VQ) and hidden Markov models (HMM) to 

classify three types of environmental sounds [Wood92]. Woodard uses a technique based 

on VQ product codes, where each index sequence in the VQ product code can be equated 

to a markov chain. However, the theoretical approach Woodard presents lacks 

comprehensive research data. An overall performance measure of 96% is given, but no 

information is available on the number of runs performed or the structure (and amount of 

overlap) of the test and training sets. In addition, classification of only three natural 

sounds could be considered to be statistically insignificant. Unfortunately, to this date, 

further review of the literature finds no further papers that would provide more detail in 

this area. 

 

Interestingly, Dorken et. al present a uniquely different approach to the problem of 

environmental sound recognition [Dorken92]. Dorken et al use Knowledge-based signal 

processing methods in order to both recognise the sounds and separate them (a form of 
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Auditory Scene Analysis). This method works by comparison against a contour 

developed from a waveform. This contour is developed based on a short-time Fourier 

transform (STFT) of sections of the waveform and then selection of peaks within each 

STFT window. This approach is a novel approach that uses advanced signal processing 

and sound understanding approaches grouped together using knowledge-based 

techniques. However, because of this, the technique requires substantial effort in building 

up. It is computationally slow and unsuitable for a security system that requires fast 

response times. 

 

Reyes-Gomez and Ellis [ReyesEl03] present a technique that uses cepstral coefficients 

for feature extraction combined with a clustering technique and HMM’s. Reyes-Gomez 

and Ellis acknowledge the lack of natural basic units in HMM’s. To combat this problem, 

they use a clustering technique or a GMM to generate clusters for different sounds. 

Sounds are split into “types” (such as “animal” sound, “machines” etc). The clusters are 

then used as states in the HMM, in the same way as phonemes are used as states. Using 

this technique, Reyes-Gomez and Ellis achieve a classification rate of 85% - 90% on their 

arbitrarily selected classes of sound (depending on clustering technique used). However, 

the applicability of the HMM is not fully explored (why not simply use the GMM for 

recognition?). In addition, their classification is performed using “types”, so they have no 

defined way for their system to make a further, more refined classification, except by 

using traditional pattern recognition techniques. 

 

Environmental Sound Recognition has also been performed in a much more limiting 

domain than those presented up to this point. A small amount of research has been 

performed (mainly for military applications) in identifying vehicles based on their 

acoustic emissions. 

 

Liu presents an LVQ based technique for the recognition of ground vehicles (such as 

tanks) [Liu99]. Liu performs tests on the standard LVQ algorithm (as presented by 

Kohonen [Kohon97]) as well as two modified LVQ techniques: Tree Structure Vector 

Quantization (TSVQ) and Parallel TSVQ (PTSVQ). When using the PTSVQ technique 
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on sounds already trained into the LVQ network, Liu obtains a 90% classification rate. 

However, when separate “unknown” test sounds are used, a recognition rate of 68% is 

achieved. In addition, Liu makes no mention of how many classes of vehicles were used 

or how the LVQ technique was selected. 

 

Sampan also presents a ground vehicle recognition system [Sampan97]. In this system, 

Sampan tests several variations of two main techniques: multi-layer perceptron (MLP) 

neural networks and fuzzy algorithms. Again, Sampan performs tests using “ideal” data 

in the form of the Iris data set. When using the Iris data set, performance of all algorithms 

is close to 100%. Sampan also uses real data. For this data, Sampan takes five classes of 

ground vehicle and tries to classify test data into one of those five classes. For this test, 

each algorithm performs around 75% classification accuracy. However, it is unclear how 

the algorithms would perform if the amount of sounds were increased. 

 

2.2.2 Speech Recognition 

 

As mentioned previously, most pattern recognition techniques (including speech 

recognition) utilise three steps for recognition (Figure 4). These are: 

1. Data Preprocessing 

2. Feature Extraction 

3. Classification 

 

The first step, data preprocessing, has already been explained adequately in the Basic 

Theory section of this document. Data Processing for speech is performed in the same 

way as it is for non-speech. Therefore, this section will explain the different techniques 

used in speech recognition for each of the other steps (feature extraction and 

classification). 
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2.2.2.1 Feature Extraction 

 

Feature Extraction techniques for speech recognition have evolved considerably over the 

years. Initially, features were extracted based on frequency. For instance, a researcher 

could identify the frequencies contained in a speech sample using some kind of frequency 

transform method. These frequencies then became the features of the sound [Rodman99].  

 

In recent times, techniques have been developed that endeavor to filter the frequency 

information in order to isolate those frequencies that have a greater chance of 

characterising the speech sample [Juang00].  

 

These filtering techniques can be broadly split into two areas: 

• FFT-Based techniques 

• Filter Bank Based techniques 

 

In addition, some researchers have suggested that identification of multicomponent 

signals could also be used as a feature extraction technique [Fine91, Cohen92]. For 

instance, speech is naturally multicomponent and can be split into formants (resonant 

frequencies of the vocal tract). However, these techniques have not been well developed 

or benchmarked for speech and will therefore not be discussed in detail in this report. 

 

FFT-Based techniques work with frequency information, specifically that produced by a 

Fast Fourier Transform (FFT). Techniques within this area include LPC (Linear 

Predictive Coding) and standard homomorphic Cepstral Coefficients [Lilly00]. The LPC 

technique included in this section works around the notion of a vocoder [Rodman99]. A 

vocoder is a device that can generate human speech when given the correct input. 

Coincidentally, the input for a vocoder also represents a set of features that can be used 

for speech recognition.  
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For Cepstral Coefficients, the signal is first split into frames using Hamming windows. A 

FFT is performed on each frame and the power spectrum of the frame is then calculated. 

A magnitude log is then performed and an inverse FFT is applied. This produces the 

Cepstral Coefficients.  

Figure 7 – Applying Cepstral Coefficients 

 
For Linear Predictive Coding, the signal is also split into frames using Hamming 

windows. As with Cepstral Coefficients, an FFT is then calculated followed by 

calculation of the Power Spectrum. An inverse FFT is then applied to the frame. Finally, 

the Levison-Durbin Algorithm is applied to produce Linear Predictive (LP) features 

[Haykin99]. These LP features are then converted into LPC Cepstral Coefficients by the 

application of a formula that performs calculations based on the previous information in 

the signal.  

Figure 8 – Applying Linear Predictive Coding 

 

Filter Bank Based techniques produce the same set of coefficients (either LPC Cepstral 

Coefficients or homomorphic cepstral coefficients). However, this set of techniques also 

includes a filter bank (based on a model of the human auditory system) which is designed 

to filter out those frequencies that are less likely to characterise a sound. Examples of 

filter bank based techniques include Bark Spectrum Cepstral Coefficients [Lilly00], Mel 

Spectrum Cepstral Coefficients and Perceptual Linear Prediction (PLP) [GoldM00]. 

 

Since the main difference in these techniques is in the contents of the filter bank, the 

method of implementation of these techniques is similar. First, Hamming windows are 
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used to split the signal into frames. Each frame then has its Power Spectrum calculated. 

Next, the filter is applied to the frame. Signal Power is then calculated and the 

appropriate algorithm is applied to produce either Cepstral Coefficients or LPC Cepstral 

Coefficients. 

 

For Cepstral Coefficients, a magnitude log is performed and then an inverse Discrete 

Cosine Transform (DCT) is performed. For LPC, an inverse DCT is performed and then 

the Levison-Durbin algorithm is applied. 

 

Once features have been extracted from the speech sample, these features can be used for 

pattern recognition within the classification section of the procedure. 

 

2.2.2.2 Classification 

 

For classification, a plethora of different pattern recognition methods are used, depending 

on the originating source of the speech sample. If the original speech sample is an 

isolated word, standard statistical pattern recognition techniques such as Vector 

Quantization (VQ), Hidden Markov Models (HMM) [Jelin97], Acoustic Modeling (such 

as Dynamic Time Warping (DTW)) and Clustering Techniques (such as Self-Organising 

Maps (SOM) and Learning Vector Quantization (LVQ)) [Rabin90] can be applied to 

recognise the word. On the other hand, if the original speech sample is a series of 

connected words or a subset of continuous speech (such as dictation), more complicated 

methods have to be applied [Rabin93]. This is due to the difference between an isolated 

word, which is a single impulse sound, and continuous speech, which is a multiple 

impulse sound. A single impulse sound is one that has a short life in the time domain (e.g. 

Clicking fingers, door banging, single spoken word). A multiple impulse sound has a 

longer instance in the time domain [Melih98] (e.g. a musical composition, a sentence of 

words). 
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Multiple impulse sounds require more specialized variations on the HMM technique 

[Rabin93]. This involves first splitting the continuous speech signal into manageable 

sections (such as words, phonemes etc.). Each of these sections can then be recognised 

using the techniques listed above. The simplest way to do this is to use a whole-word 

technique, where each word is separated from the continuous speech sample and then 

techniques for isolated word recognition are applied [Rabin93]. However, this is time 

consuming because a system has to be trained for each word in all of its different 

phonetic variations. Also, the phonetic content of each individual word will inevitably 

overlap, causing redundancy in the system. 

  

Due to this overlap, subword techniques are the preferred method of continuous speech 

recognition [Watro90]. This is because they do not need the above-mentioned 

redundancy. Subword techniques split the section into separate phonemes, syllables, 

demisyllables and acoustic units or, in the case of numbers, separate digits [Jiang00] with 

phonemes (typical length: 80ms) seeming to be the most popular choice [Kohon90, 

Lee90, Watro90]. The phonemes are then trained into a system as isolated words and can 

be recognised in the same way, with the additional requirement that the system must be 

able to form subwords back into the correct words. 

 

2.2.3 Musical Instrument Recognition 

 
To understand Music Instrument recognition, it is first important to understand the more 

general field of Recognition of Music. This field can be split into three distinct areas: 

• Musical Pitch Recognition 

• Music Instrument Recognition 

• Computational Auditory Scene Analysis (CASA) 

 

Musical Pitch Recognition concentrates on recognising the pitch of single tones or group 

of tones produced by musical instruments. This allows for structured searching of these 

instruments and, to a lesser extent, the generation of automatic musical score. In contrast, 

Music Instrument Recognition cares not for pitch, but concentrates on the recognition of 
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the type of instrument being played (ie. Saxophone, Clarinet etc). Finally, the field of 

CASA is a major area of research in sound recognition work. CASA looks at splitting a 

polyphonic sound source (that may contain music, but also speech and environmental 

sounds) into separate sounds that can then be recognised by standard pattern recognition 

techniques. CASA is beyond the scope of this work, but in the general field of CASA, the 

thesis and subsequent work of Dan Ellis [Ellis96, Ellis98]; and the work in music CASA 

of Kashino & Murase [KashMur99] may be of some interest (CASA will also be 

discussed in more detail later in this chapter). 

 

When looking at applying existing techniques from Music Recognition to Environmental 

Sound Recognition, it is readily apparent that the obvious choice between these areas is 

Music Instrument Recognition. Pitch does not play a role in our domain in the way it 

does for music (rather, simply as a feature for use in recognition of sounds). CASA is 

outside the scope of this work. However, Music Instrument Recognition could be 

considered similar to the recognition of environmental sounds. 

 

Until the late 90’s, little work had been done in the field of Music Instrument 

Recognition, and even less work had been done with realistic musical instrument 

recordings (and not single tones). The first major work that covered this area was the 

thesis of Keith Martin from the MIT Media Lab [Martin99].  

 

Martin’s thesis is of great interest because he proposes the use of a taxonomic hierarchy 

for the classification of musical instrument sounds. Martin suggests a multi-level 

hierarchy, where each level splits instruments into their natural categories (woodwind, 

brass, percussion; alto, tenor, bass etc). On each level, a selection of features is chosen 

based on the discriminatory properties of the sound under test. Typical features include 

items such as pitch, pitch variance, vibrato strength and onset duration. Classification is 

then performed using a simple maximum-likelihood estimation. Martin also suggests 

several enhancements to ensure a classification does not get “stuck” in the incorrect leaf 

node. Correct classification emerges from the lowest level of the hierarchy, with results 
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(on realistic music samples, not isolated tones) of 90% for instrument families and 70% 

for individual instruments. 

 

In addition to the work of Martin, several other seminal works also exist in the area of 

Music Instrument Recognition. The majority of these systems use standard feature 

extraction and pattern recognition techniques, oft-times taken from work previously done 

in the field of speech recognition (such as cepstral coefficients and k-nearest neighbour 

classification). 

 

Marques & Moreno used several different techniques for the feature extraction and 

classification of musical instruments, with the best results coming from a combination of 

mel-frequency cepstral coefficients with either Gaussian Mixture Models (GMM) or 

Support Vector Machines (SVM).  Martin [Martin99] reports initial results from Marques 

showing a classification rate of 72% for professional recordings and 45% for non-

professional recordings. Since then, a further technical report from Cambridge Research 

Laboratory [MarqMor99] shows an error rate of 30% (70% classification) when using 

mixed data, reduced to only 2% (98% classification) when using data from a single 

source. This suggests the applicability of robustness techniques (also tested in speech 

recognition) to this domain, in order to combat this problem with variable training/test 

data. 

 

Brown also presents a system using cepstral coefficients [Brown99]. In this case, the 

system uses Q-cepstral coefficients with a Gaussian Mixture Model for classification 

(one model for each instrument). On independent, noisy samples of music, the system 

achieves a classification rate of 94%, between oboe and saxophone recordings. However, 

this system achieves only 84% when extended to include four samples of instrument 

(oboe, saxophone, flute and clarinet). 

 

Eronen & Klapuri apply a music instrument recognition system very similar to the system 

used by Martin, with the addition of some spectral features [EroKlap00]. They use Bark 

frequency cepstral coefficients to determine these spectral features as well as some 
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temporal features. They then propose the use of taxonomy for classification, identical to 

that used by Martin, with the exception of the addition of a piano class. For this 

taxonomy, they use Gaussian classification at the higher levels and k-nearest neighbour 

(k-NN) classification on the lower levels of the hierarchy. This approach achieves results 

of 94.7% for classification of instrument families and 80.6% for classification of 

individual instruments. 

 

In addition to these “realistic recording” systems, a number of recognition systems exist 

that classify musical instruments based on isolated tones. Systems such as these are 

limited in their applicability to environmental sound recognition (due to the tonal nature 

of signal tones). Nonetheless, they deserve some analysis. 

 

Of these systems, the most recent (and arguably, the most successful) has been developed 

by Ichiro Fujinaga. Fujinaga (in cooperation with Karl MacMillan and Angela Fraser) 

[FujiMac00, FraserFuj99, Fujinaga98], proposes the use of pitch detection for feature 

extraction (based on the fiddle program by Puckette [PuckApZi98]) and the k-nearest 

neighbour (k-NN) technique for subsequent recognition of these features. The pitch 

detection technique used takes advantage of the fact that musical instruments are by their 

nature very tonal. This means that the pitch of a single note is an excellent feature to use. 

In addition, the database used specifically splits different tones with a short pause, 

allowing simple classification of a single tone. For these experiments, Fujinaga obtained 

a result of 95% - 100% when classifying 3 – 10 instrument groups, but this result fell to 

68% on a 39-timbre group (made up of 23 orchestral instruments). 

 

2.2.4 Time-Frequency Feature Extraction 

 
Although the Fourier Transform (FT) is the most common technique for the 

transformation of amplitude-time signals into amplitude-frequency signals, it does not 

handle non-stationary signals well. This is because non-stationary signals do not contain 

the same frequencies in all parts of the signal. In order to understand this, an example is 

in order. 
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Given a vector t, the following formula will produce a stationary signal (a signal with 

frequencies contained equally throughout the whole signal). 

 

)40sin()4sin()( tttx ππ +=  (1)
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Figure 9 – A simple Waveform with Constant Frequencies 

 

This signal is made up of the following two waveforms, with each waveform constant 

throughout the signal. 
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Figure 10 – Waveforms contained in Original Signal 
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The Fourier transform of this signal would look like this: 
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Figure 11 – Fourier Transform of Original Signal 

 

In comparision, the following formula (using the same two signals) will produce a non-

stationary signal (with frequencies spaced out unevenly in the signal). Most pratical 

signals (including sound signals) are of this type. 
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Figure 12 – Second Example Signal 
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The Fourier Transform of this signal would look like this: 

 

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

 

Figure 13 – Fourier Transform of Second Example Signal 

 

It should be noticed that, apart from the jagged noise at the bottom (introduced due to the 

sharp transition from one frequency to the next), this signal is almost identical to the 

previous signal. This is because a Fourier transform does not take time information into 

account. It simply identifies all frequencies contained in a signal for the entire length of 

the signal. Therefore, in order to accurately represent the frequency information 

contained in a non-stationary signal, a technique needs to be used that preserves both 

time information and frequency information, therefore producing a signal spectrum in the 

time-frequency domain. 

 

2.2.4.1 Time-Frequency Transforms 
 

Several different techniques have been proposed to perform a time-frequency transform 

on a signal [Polikar03]. The most common of these are: 

• Wavelets 

• Short Time Fourier Transform (STFT) 

• Wigner-Ville Distribution 

 

Of these, the STFT is the easiest to implement. It simply applies a FT to successive 

windowed segments of the signal. This allows both frequency and time information to be 

presented for a signal. The STFT of the second signal is shown in Figure 14. 
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Figure 14 – An Example Short-Time Fourier Transform 

 

Notice the graph is now three-dimensional, with the x axis representing time, y axis 

representing frequency and z axis representing the amplitude of the frequencies. Also 

notice that time on this plot is no longer represented in the original form, but in the 

number of overlapping windows that have been taken of the original signal to generate 

the STFT. This representation of time is called translation, as it no longer relates directly 

to time samples. 

 

From this angle, the plot does not show much. However, the results are interesting if we 

turn the plot around to a different angle (as shown in Figure 15).  

 

We can see that for the first 50 samples, the signal contains a lower frequency signal than 

for the last 50 samples. Using this method, we benefit from both time and frequency 

information and can gain a better representation of a non-stationary signal. 
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Figure 15 – An Example STFT from another angle 

 

However, a problem is apparent from this plot. Namely, what frequencies are contained 

in this signal? Even taking into account the fact that the frequency axis is not normalised, 

each frequency is still not clear. The second frequency could be anything from 2 to 4 on 

the graph. Similarly, the first could be any frequency from 0 to 3.  

 

This is due to the fact that the STFT function used to generate this plot takes a lot of time 

samples. Therefore, each frequency sample is quite small and frequencies are shown in 

wider bands. The algorithm can also be configured to take less time samples. This 

approach produces the following two plots: 
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Figure 16 – Second Example STFT Plot 
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From the second plot it can be seen that frequency is now more easily determined. Each 

frequency takes a narrower range and it is therefore easier to determine each frequency. 

However, the first plot shows that now the times for each frequency overlap. It is not as 

clear when one frequency ends and another begins. 

 

These two examples highlight the main problem with STFT: resolution. As the time 

resolution increases, the frequency resolution decreases. If we attempt to increase 

frequency resolution, the time resolution must decrease. This is unavoidable using a 

windowing technique (and is called the Heisenberg uncertainty principle). 

 

So, how do we solve this problem? Application of a different technique can not solve the 

problem (the Heisenberg uncertainty principle is unavoidable), but it can allow different 

resolutions for frequency and time depending on which is more important. The technique 

that allows us to do this is the wavelet transform. 

 

2.2.4.2 Wavelet Transform 

 

In order to combat this resolution problem inherent in an STFT, wavelets are used. A 

wavelet applies good time resolution (and therefore poor frequency resolution) at high 

frequencies and good frequency resolution (and therefore poor time resolution) at low 

frequencies. Due to the fact that most signals contain high frequencies for only short 

amounts of time and low frequencies for longer amounts of time, this approach presents a 

good time-frequency representation. 

 

To perform a wavelet transform, we must first select a mother wavelet. This wavelet is a 

typical representation that acts as a template and will be compressed or dilated and then 

compared with the signal selected. Several different mother wavelets have been 

proposed, including the Morlet wavelet and the mexican hat wavelet. An example of 

these wavelets (taken from the Mathworks Help files) is shown in Figure 17. 
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Figure 17 – Two Example Mother Wavelets 

 

Once a mother wavelet has been selected, it is used to window the signal. First, it is 

compressed to a size equivalent to the highest frequencies in the signal. It is then 

windowed onto the signal (as with a STFT). If the frequencies match, a high number will 

be generated otherwise a low number will be generated. Once this windowing procedure 

is complete, the signal is dilated slightly and the process repeats. The product of this 

process is a series of values representing the frequencies contained in the signal. 

However, because of the way this technique is applied (with highly compressed (high 

frequency) waveforms applied first), frequency is reversed. This means that the first 

iteration of the technique generates high frequencies, while the last iteration detects lower 

frequencies. 

 

In order to represent this inverse frequency (1/frequency) relationship, the term scale is 

used. Scale represents the inverse frequency of a waveform. This means that a CWT plot 

will show the higher frequencies at the lower end of the number scale and the lower 

frequencies at the higher end of the number scale. Since the CWT time-frequency 

transform is also based on overlapping window samples and not time samples, the term 

translation is also used. Figure 18 shows an example of a wavelet transform from two 

different viewpoints. 
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Figure 18 – An Example Continuous Wavelet Transform [Polikar03] 

 

2.2.4.3 Discrete Wavelet Transform 

 

The type of transform described in the previous section is known as a continuous wavelet 

transform (CWT). This transform is applied in a continuous fashion across the entire 

signal. If done in a computer, it is discretized by setting the scale values to some discrete 

set (ie. s = [1, 2, 3…]) but despite this, it is still a discretized CWT (also known as 

Wavelet Series due to the use of orthonormal wavelets). 

 

However, just as with the Fast Fourier Transform (FFT), another algorithm has been 

developed to perform the Wavelet Transform process faster. This algorithm is called a 

Discrete (Fast) Wavelet Transform (FWT). 

 

Essentially, a FWT produces the same results as a CWT when applied to a signal that is 

sampled discreetly (as is the case with almost ALL signals used for computer 

computation). A FWT does this by applying a series of high-pass and low-pass filters to 

the original signal. These filters split the signal into separate components. By continually 

breaking down the low-pass component of the signal, we obtain a set of data that 

represents the signal well in the time-frequency domain. 
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For example, say we had a signal containing a maximum frequency of 1000Hz that is 

2048 samples long. We would first use a high pass and low pass filter on this signal. This 

would give us two signals, one containing only those frequencies from 500HZ – 1000Hz 

and one containing the frequencies from 1Hz to 500Hz. After the filters have been 

applied, we can then subsample these signals. This is because the low pass signal can 

only contain frequencies up to 500Hz, but the original length of the signal allows for 

double this frequency. Similarly, the high pass signal can only contain frequencies from 

500Hz to 1000Hz, but the length allows for double this. We subsample by removing 

every other sample from the signal (producing two 1024 sample signals). This has the 

effect of halving the time resolution but doubling the frequency resolution (as with the 

low frequencies in the CWT). We then apply high and low pass filters to the new low 

passed signal and repeat the procedure. This is repeated until we have a signal with only 

one sample. 

 

The result of this procedure is a series of signals, each half the length of the last. Working 

from the highest signal to the lowest signal, it is clear that the first signal generated 

contains 1024 samples of time resolution and frequency range from 500Hz to 1000Hz. 

The next signal contains 512 samples of time resolution and frequency range of 250Hz to 

500Hz etc. The final signal contains 1 sample of time resolution and less than 1Hz of 

frequency range. 

 

Figure 19 – A typical Discrete (Fast) Wavelet Transform [Polikar03] 
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This generated signal meets the criteria set out for the CWT. Although at first glance it 

would appear that lower signals contain less frequency information, one must bear in 

mind that more time samples are being used to represent less frequency information, 

therefore frequency resolution is increased. A plot of a typical FWT signal is shown in 

Figure 19. 

 

In order to interpret this signal, we must mentally split it into sections based on the levels 

produced by the FWT process. The signal shown in Figure 19 is generated from a 256-

point signal sampled at 10KHz. From our knowledge of the FWT, we know that the first 

128 samples (from the right) correspond to those frequencies from 5000Hz to 10000Hz. 

We can see that this section contains no information. The second set of 64 samples then 

corresponds to frequencies from 2500Hz to 5000Hz. We can see that for this section, the 

sample produces some small frequencies in this range at around the middle of the sample. 

The next 32 samples represent frequencies from 1250Hz to 2500Hz. As can be seen, the 

majority of the signal energy is contained in this range, around the middle of the sample 

(in time). The process of analysis can continue for the remainder of the signal, but in this 

case we have identified that the majority of energy in the original signal was in the 

middle of the translation band between 1250Hz and 2500Hz. Considering the original 

signal shown in Figure 20, which has a length of 1sec, this is a reasonable conclusion. 

 

Figure 20 – The Original Waveform for the FWT [Polikar03] 
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2.2.4.4 Daubechies’ Wavelets 

 

A final point that should be noted when looking at the FWT transform is the issue of 

signal reconstruction. If we are using a FWT for compression, then it is imperative that 

the original signal can be reconstructed from the FWT information. Due to the extra 

information contained in a CWT, reconstruction is always possible with a CWT, but for a 

FWT, this information does not exist.  

 

In order to be able to reconstruct a signal from FWT information, we require the 

application of ideal high pass and low pass filters. However, these type of filters do not 

exist. However, filters DO exist that allow for a perfect reconstruction. These are called 

the Daubechies filters (developed by Ingrid Daubechies [Daube92]) and a FWT 

performed using these filters produces Daubechies’ wavelets, which are simply wavelets 

with the ability to be reconstructed into the original signal. 

 

2.2.5 Auditory Scene Analysis  

 

An extension of sound classification research is called Auditory Scene Analysis 

[Bregman90]. This process involves analysing a scene, such as the noise produced at a 

cocktail party, and then separating and classifying the sounds in the environment. When 

auditory scene analysis is implemented in a computer, it is called computational auditory 

scene analysis [Cooke01]. Computational auditory scene analysis requires understanding 

how sounds can be combined in an environment and then understanding the way the 

sounds are represented in a waveform. This information can then be used to split the 

waveform into separate sounds. It also involves using one of the identification techniques 

outlined above. 
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Although other approaches to source separation exist [HoytW94, Huang95, Liu99], the 

main research in computational auditory scene analysis can be broken into two areas: 

Data-Driven Source Separation and Prediction Driven Source Separation. 

 

The approach discussed in [Bregman90] describes a data-driven approach to scene 

analysis. This involves using the statistical and semantic features of a waveform in order 

to understand the different sounds contained within the waveform.  

 

The second approach to scene analysis is proposed in [Ellis96, Ellis98] and uses 

prediction techniques in addition to data-driven techniques. First, a small amount of the 

waveform is analysed. Sounds are identified using a data approach. A prediction is then 

made on how these sounds will change next, and how this is expected to affect the 

waveform. The next section of the waveform is then sampled and the prediction is 

modified accordingly. The process then continues. The advantage of this approach is that 

sounds that may have been muffled or covered by other sounds, i.e. overlapping (and 

therefore hard to detect), can still be recognised due to the previous prediction. 

 

2.3 Direction Detection 

 

To implement this environmental sound recognition system in an autonomous robot for 

surveillance, it must not only be able to identify a sound, but also have an idea of the 

direction from which it came. This entails the use of direction detection or source 

localization techniques. Unlike non-speech sound recognition, direction detection has had 

more attention in the research community. This section will discuss the two areas of 

source localisation research and what they involve. 

 

Current research can be split into two broad areas: 

• Simulation of Head Related Transfer Functions 

• Time Delay Estimation 
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Each of these areas will be discussed in this section. In addition, this section will discuss 

the concept of Microphone Arrays, which is required in order to understand how source 

localization is implemented. 

 

2.3.1 Microphone Arrays 

 

Most source localization techniques rely on the concept of a microphone array [Brand97]. 

The simplest form of microphone array is modeled on the human auditory system and 

consists of two microphones. However, microphone arrays can contain many more 

microphones, depending on the way the technique is implemented [Brand97]. 

 

The majority of microphone array based techniques still rely on the use of the 

microphones in the array in pairs [Omolo97]. Omologo suggests that it is important to 

investigate the configuration of the microphone array [Omolo97]. This means that the 

way that the microphones in the microphone array are positioned relative to the sources 

of noise (distance) as well as relative to each other is important. The number of 

microphones (counted in pairs) is also relevant [Arslan00]. 

 

Another important consideration when building a microphone array is selection of 

microphones. Microphones are available in two types: omni-directional or directional. 

Omni-directional microphones hear sounds in all directions equally and are therefore 

suited to systems where sound arriving from say, the rear, is not an issue. Directional 

microphones receive sound from only a selected degree pattern. Figure 21 shows a 

microphone with a 90° field of “hearing”. Sound A will be heard by this microphone 

while sound B will be ignored. 
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Figure 21 – Example of a directional microphone. 

 
A benefit of using a directional microphone is the ability of a series of these microphones 

to form “beams”. This type of microphone array is called a beamforming microphone 

array [Steele00, Brand00]. A beamforming microphone array uses directional 

microphones and selects a direction from which to gather a sound. Weights are assigned 

and these are used to emphasise the signal coming from the direction selected. 

 
Finally, another consideration when using microphone arrays is near-field reflections and 

interference [Ryan00]. Most microphone arrays are designed with the intention that 

sounds will be far away from the microphones. This has the advantage of allowing 

researchers to assume that all waves approaching the microphones will be planar. 

However, in some applications, sounds are produced closer to the microphone. In these 

instances, wavefront curvature is detected by the array and errors can be recorded. 

Techniques have been developed to deal with this occurrence and will be investigated if 

the need arises. 

 

2.3.2 Simulation of Head Related Transfer Functions 

 

Head Related Transfer Functions (HRTF) relate to the way that a human being uses the 

information from their two ears to determine the direction of sound [Shaik99]. As well as 

being used to generate virtual 3D sounds (such as the techniques used in Dolby 

Headphone technology) [Georg00], techniques have also been developed that attempt to 

simulate HRTF in order to allow a computer to localise sound information. The majority 

A

B
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of HRTF techniques work within the frequency domain (by first using some kind of 

Fourier Transform on the sound sample). However, techniques also exist that work in the 

time domain [Cheve98]. For instance, some Auditory Scene Analysis techniques present 

methods by which sounds are localized in the time domain. 

 

Nandy discusses a frequency-based model that simulates the human ear’s ability to 

recognise both interaural time differences (ITD) and interaural auditory differences (IAD) 

from each ear [Nandy95]. The model also attempts to simulate the different sections of 

the ear canal from the cochlea to the auditory cortex. A neural network is then trained 

using the data from both sources. (For background information on how ITD and IAD are 

used by human beings in order to localise sound, please refer to [KingC95, Konis95]. In 

addition, [Hart99] presents interesting information on ITD and IAD and their 

weaknesses.) 

 

The experimental data presented in [Nandy95] suggests that simulation of HRTF allows 

for relatively good direction localisation within the horizontal plane. However, the 

system presented by Nandy does not localise within the vertical plane. 

 

Liu presents a system based on a two microphone biological hearing system utilizing ITD 

[Liu99]. The system uses the Shamma’s Stereausis neural network model to remove the 

neural delay from a system. This system also performs signal segregation (auditory scene 

analysis). Unfortunately, Liu presents only the theoretical underpinning of this technique 

and presents no experimental results, making the efficiency and accuracy of this 

technique difficult to determine. 

 

Gill & Troyansky present a model for the determination of the elevation of a natural 

sound using monaural cues [GillT00]. This system is built around a neural network. 

Because this system is monaural, it does not use ITD or IAD, but uses multiple 

“snapshots” to determine direction. Results from this system are good, providing 

adequate snapshots are able to be gathered. The system produces little error for three 

snapshots, but jumps to 40% error if only two snapshots are used. In addition, the 
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implementation of a HRTF model is complicated and cumbersome. Therefore, a simpler 

alternative using only ITD may be considered. 

 

2.3.3 Time Delay Estimation 

 

Similar to HRTF, Time Delay Estimation (TDE) relies on comparing the difference in 

time that a sound signal arrives at various microphones. Obviously, the sound signal 

arriving first is closer to the source of the sound. By carefully configuring the 

microphone array, the source of the sound can be determined with an error of less than 

10cm [Omolo97]. However, unlike HRTF, the processing that occurs on the signals once 

they are encoded into the computer does not rely on inputting them into a model of the 

human auditory system. TDE techniques rely on signal processing techniques to compare 

the phase difference between the different sound waves [Brand97]. Techniques used 

include normalized cross correlation, least mean square (LMS) adaptive filter [Omolo97] 

and crosspower-spectrum phase (CSP) analysis techniques [Rabink96]. 

 

Hiyane uses a beamforming microphone array in order to track the direction of a sound 

source [Hiya00]. The microphone array used by Hiyane consists of 16 microphones 

arranged in a circular pattern with a diameter of 30cm (see Figure 1.5). In a single sound 

environment, Hiyane notes that the resolution of source direction estimation is less than 

10 degrees. However, he also notes problems can occur when multiple sounds are 

introduced into the environment at the same time. 

 

 

Figure 22 - Circular microphone array with 16 channels [Hiya00] 
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Interestingly, Huang presents a hybrid model that uses TDE and a precedence model (a 

simple HRTF model intended to cancel echoes and reverberation) for robot navigation 

[Huang99]. Huang presents this system on a small robot with three microphones. The 

time difference between the microphones allows the robot to determine direction. 

Interesting, the robot also contains a sonar device that allows it to avoid obstacles while 

moving towards the sound.  

 

However, Huang only tests the abilities of this robot using two sounds sources: a 

sinusoidal tone produced by a speaker and the sound of hands clapping. This only 

represents one “real” environmental sound, according to the definitions put forth by 

Vanderveer [Vander79]. For the sinusoidal tone produced by the loudspeaker, error is 

only one degree. However, for the clapping, error is seven degrees.  

 

This implementation seems to work to within an acceptable error and would be suitable 

as a base for this project. However, testing would have to be performed to ensure 

accuracy does not decrease when the system is exposed to a greater number of 

environmental sounds. 

 

2.4 Problems with Existing Methods 

 

The previous chapter has provided a comprehensive review of the existing research into 

source classification and source localization techniques. From this literature review, it 

becomes apparent that the area of source localization is quite well covered. It would be 

relatively easy to implement an existing source localization technique for a robot that 

needs to localize non-speech sounds, satisfactory to the purpose. 

 

However, the area of source classification is not so clear-cut. Almost no research has 

been done in the area of non-speech sound recognition. Much more research has been 

conducted into speech and musical instrument recognition than has been applied to the 
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area of general, non-speech environmental sounds. The research that has been done into 

non-speech sounds tends to focus on one technique to the exclusion of all others. This 

means that no comparison has been done to determine the most appropriate feature 

extraction and classification techniques for the recognition of non-speech environmental 

sounds.  

 

In addition, while advanced techniques such as taxonomic hierarchies have been applied 

to the areas of speech recognition and musical instrument identification, these techniques 

have not been applied to environmental sounds. It is apparent that it is the application of 

these techniques that has allowed these domains to overcome the complexity of their 

pattern search space. However, because of the recognised lack of an environmental sound 

alphabet, no such structured classification methods for non-speech environmental sounds 

exist. It is possible that the implementation of a more structured technique based on an 

environmental alphabet would produce improved results for environmental sounds. 
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Chapter 3 

Hypothesis & Proposed Solution1 
 

From the literature review, it can be seen that the problem within this area of research can 

be broken into two components. First, no comprehensive comparative study has been 

done to determine the most appropriate technique for non-speech sound recognition. 

Secondly, advanced techniques for non-speech sound recognition have not been 

investigated.  

 

This thesis aims to address these problems, as outlined in the hypothesis: 

 

Hypothesis 

If I can find a systematic way to identify environmental sounds, I could increase the 

efficiency of environmental sound identification for the purpose of security surveillance. 

A system can be developed that will recognise a large corpus of environmental sounds. 

This system will use a structured classification technique (sound taxonomy) to improve 

classification accuracy and speed.  

 

                                                 
1 The work reported in this chapter and the following chapters resulted in the following publications: 
 
− M. Cowling, R. Sitte, “Recognition of Environmental Sounds using Speech Recognition Techniques”, 

Advanced Signal Processing for Communications Systems, 2002, Kluwer Academic Publishers. 
− M. Cowling, R. Sitte, “Comparison of Techniques for Environmental Sound Recognition”, Pattern 

Recognition Letters, Elsevier Science Inc.,Vol. 24, Issue 15, Nov. 2003, pp. 2895-2907. 
− M. Cowling, R. Sitte, “Building an Environmental Sound Taxonomy for Autonomous Robot 

Surveillance”, Proc. of DSPCS’03, Gold Coast, QLD, Australia, December, 2003. 
− M. Cowling, R. Sitte, “Time-Frequency Environmental Sound Recognition for Autonomous Robot 

Surveillance”, Proc. of AMiRE 2003, Brisbane, February, 2003. 
− M. Cowling, R. Sitte, “Structured Classification of Environmental Sounds”, Proceedings of WoSPA 2002, 

Brisbane, December, 2002.  
− M. Cowling, R. Sitte, “Analysis of Speech Recognition Techniques for use in a Non-Speech Sound 

Recognition System”, Proceedings of DSPCS’02, Manly, NSW, Australia, January, 2002. 
− M. Cowling, R. Sitte, “Sound Identification and Direction Detection for Surveillance Applications”, 

Proceedings of ICICS 2001, Singapore, October, 2001. 
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3.1 Proposed Solution 

 

This section analyses a number of techniques for their suitability to environmental sound 

recognition. As mentioned in the literature review, sound recognition (be it speech or 

environmental) is generally done in two phases: first feature extraction, followed by 

classification (using artificial intelligence techniques). This section discusses techniques 

in both these phases. Feature extraction is where a sound is manipulated in order to 

produce a set of characteristic features for that sound. For instance, a sound could be 

considered a high-pitched sound, or a low-pitched sound. Classification is then used to 

recognize the sound by cataloging the features of existing sounds in some way (training) 

and then comparing the test sound to this database of features (testing). 

 

Feature extraction can be split into two broad types: stationary (frequency-based) feature 

extraction and non-stationary (time-frequency based) feature extraction. Stationary 

feature extraction produces an overall result detailing the frequencies contained in the 

entire signal. With stationary feature extraction, no distinction is made on where these 

frequencies occurred in the signal. In contrast, non-stationary feature extraction splits the 

signal up into discrete time units. This allows frequency to be identified as occurring in a 

particular area of the signal, aiding understanding of the signal. 

3.1.1 Feature Extraction (Stationary) 
 
For stationary feature extraction, speech and musical instrument recognition rely on only 

a few different types of feature extraction technique (each with several different 

variations). Initially, I considered eight popular techniques (two of which are commonly 

used in musical instrument recognition and all of which are commonly used in speech 

recognition) as possible candidates for feature extraction of non-speech sounds. These 

were: 

• Frequency Extraction (Music & Speech) 

• Homomorphic Cepstral Coefficients 

• Mel Frequency Cepstral Coefficients (Music & Speech) 

• Linear Prediction Cepstral (LPC) Coefficients 
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• Mel Frequency Linear Prediction Cepstral (LPC) Coefficients 

• Bark Frequency Cepstral Coefficients 

• Bark Frequency Linear Prediction Cepstral (LPC) Coefficients 

• Perceptual Linear Prediction (PLP) Features 

 

It should be noted that while Frequency Extraction is a stationary technique, other 

techniques using Cepstral Coefficients could be considered “pseudo-stationary” 

techniques because they split the signal into time-slices. These are not true time-

frequency techniques, because each time-slice has to be taken in context with other time-

slices in order to produce relevant information.  

 

Techniques based on LPC Coefficients were based on the idea of a vocoder, which is a 

simulation of the human vocal tract. Since the human vocal tract does not produce 

environmental sounds, these techniques typically seem to highlight non-unique features 

in the sound and are therefore not appropriate for recognition of non-speech sounds.  

 

According to Lilly [Lilly00], the results of the Mel Frequency Based Filter and the Bark 

Frequency filter are similar, mainly due to the similar nature of these filters. Gold 

[GoldM00] also mentions that PLP and Mel Frequency are similar techniques. Based on 

these previous findings, I selected only the more popular Mel Frequency technique for 

testing. 

3.1.2 Feature Extraction (Non-Stationary) 
 
The main time-frequency techniques that are commonly mentioned in the general 

literature (eg. [Cohen95]; [Hubbard95]) are: 

• Short-Time Fourier Transform (STFT) 

• Fast (Discrete) Wavelet Transform (FWT) 

• Continuous Wavelet Transform (CWT) 

• Wigner-Ville Distribution (WVD) 
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All of these techniques use different algorithms to produce a time-frequency 

representation of a signal. While STFT uses a standard Fourier transform over several 

windows, Wavelet-based techniques apply a mother wavelet to a waveform to surmount 

the resolution issues inherent in STFT. WVD is a bilinear time-frequency distribution 

that also uses advanced techniques to try and combat these resolution difficulties. It has 

higher resolution than the STFT, but suffers from crossterm interference and produces 

results with coarser granularity than Wavelet techniques [Hubbard95]. Of the two 

wavelet techniques, FWT is usually used for encoding and decoding of signals, while 

CWT is used for recognition tasks. 

 

Despite its common usage for speech/sound coding, the FWT could be used successfully 

for recognition tasks, so it should be included in our comparative study. However, early 

tests on the Wigner-Ville distribution showed a transformation duration in excess of five 

minutes for signals of the length typical for environmental sounds. Given the intention to 

develop my system into a real-time surveillance system, this excessive duration was 

deemed unacceptable. 

 

Based on these findings, three techniques (STFT, FWT, CWT) should be tested for their 

ability to classify non-speech sounds.  

3.1.3 Classification 
 
After feature extraction, a classification technique is used to catalogue the features. Test 

features can then be compared to this database.  

 

The following classification techniques are commonly used for speech/speaker 

recognition or have, in the past, been used for this application domain. They are: 

• Dynamic Time Warping (DTW) 

• Hidden Markov Models (HMM) 

• Learning Vector Quantization (LVQ) 

• Self-Organising Maps (SOM) 

• Ergodic-HMM's 
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• Artificial Neural Networks (ANN) 

• Long-Term Statistics (LTS) 

 

In addition to these techniques, I also highlighted three techniques commonly used on 

realistic recordings in musical instrument recognition (not just isolated tones): 

• Maximum Likelihood Estimation (MLE) 

• Gaussian Mixture Models (GMM) 

• Support Vector Machines (SVM) 

 

To aid in selection of techniques, comparison tables were built (using [GoldM00]; 

[Lee96, Lee96b]; [Rodman99] as a base) to compare the different feature extraction and 

classification methods used by each of these techniques (Table 2, Table 3).  

 

The comparison tables showed that some of these techniques, by their very nature, cannot 

be used for non-speech sound recognition. Any of the techniques that use subword 

features are not suitable for non-speech sound identification. This is because 

environmental sounds lack the phonetic structure that speech does. There is no set 

“alphabet” that certain slices of non-speech sound can be split into, and therefore 

subword features (and the related techniques) cannot be used (this is also noted in 

[ReyesEl03]). 

 

Due to the lack of an environmental sound alphabet, the Hidden Markov Model (HMM) 

based techniques mentioned will be difficult to implement. However, this technique may 

be revisited in the future if necessary, and if a meaningful way of developing sound sub-

units can be devised. However, this is beyond the purpose of this research. 

 

The SOM and LVQ techniques are complementary to each other. Kohonen developed 

both techniques, with specific applications intended for each technique. For 

classification, Kohonen [Kohon90] suggests the use of the LVQ technique over the SOM 

technique. Therefore, LVQ will be the technique tested.  
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Long-term statistics cannot be applied in combination with non-stationary feature 

extraction techniques. Therefore, this classification technique will only be tested on its 

own feature extraction techniques. 

 

Finally, all of the techniques used for musical instrument recognition work on a similar 

paradigm, that of unsupervised classification. For efficiency, I selected the most widely 

used of these techniques for testing, GMM’s. 

 
 

TABLE 2. SPEECH RECOGNITION 
 

Technique Sub 
Technique 

Relevant 
Variable(s) / Data 

Structures 

Input Output 

Sound 
Sampling 

ALL Analog Sound 
Signal 

Analog Sound 
Signal 

Digital Sound 
Samples 

Feature 
Extraction 

Dynamic 
Time Warping 
(DTW) 

Statistical Features 
(e.g. LPC 

coefficients) 

Digital Sound 
Samples 

Acoustic Sequence 
Templates 

 Hidden 
Markov 
Models 
(HMM) 

Subword Features 
(e.g. phonemes) 

Digital Sound 
Samples 

Subword Features 
(e.g. phonemes) 

 Artificial 
Neural 
Networks 
(ANN) 

Statistical Features 
(e.g. LPC 

coefficients) 

Digital Sound 
Samples 

Statistical Features 
(e.g. LPC 

coefficients) 

Training and 
Testing 

Dynamic 
Time Warping 
(DTW) 

Reference Model 
Database 

Acoustic Sequence 
Templates 

Comparison Score

 Hidden 
Markov 
Models 
(HMM) 

Markov Chain Subword Features 
(e.g. phonemes) 

Comparison Score

 Artificial 
Neural 
Networks 
(ANN) 

Neural Network 
with Weights 

Statistical Features 
(e.g. LPC 

coefficients) 

Positive/Negative 
Output 
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TABLE 3. SPEAKER RECOGNITION 
 

Technique Sub 
Technique 

Relevant 
Variable(s) / Data 

Structures 

Input Output 

Sound 
Sampling 

ALL Analog Sound 
Signal 

Analog Sound 
Signal 

Digital Sound 
Samples 

Feature 
Extraction 

Dynamic 
Time Warping 
(DTW) 

Statistical Features 
(e.g. LPC 

coefficients) 

Digital Sound 
Samples 

Acoustic Sequence 
Templates 

 Hidden 
Markov 
Models 
(HMM) 

Subword Features 
(e.g. phonemes) 

Digital Sound 
Samples 

Subword Features 
(e.g. phonemes) 

 Vector 
Quantization 
(VQ) 

Statistical Features 
(e.g. LPC 

coefficients) 

Digital Sound 
Samples 

Statistical Features 
(e.g. LPC 

coefficients) 
 Ergodic-

HMM's 
Subword Features 
(e.g. phonemes) 

Digital Sound 
Samples 

Subword Features 
(e.g. phonemes) 

 Artificial 
Neural 
Networks 
(ANN) 

Statistical Features 
(e.g. LPC 

coefficients) 

Digital Sound 
Samples 

Statistical Features 
(e.g. LPC 

coefficients) 

 Long-Term 
Statistics 

Statistical Features 
(Mean and 
Variance) 

Digital Sound 
Samples 

Statistical Features 
(Mean and 
Variance) 

Training and 
Testing 

Dynamic 
Time Warping 
(DTW) 

Reference Model 
Database 

Acoustic Sequence 
Templates 

Comparison Score

 Hidden 
Markov 
Models 
(HMM) 

Markov Chain Subword Features 
(e.g. phonemes) 

Comparison Score

 Vector 
Quantization 
(VQ) 

VQ Network & 
Codebooks 

Statistical Features 
(e.g. LPC 

coefficients) 

Distortion Value 

 Ergodic-
HMM's 

Markov Chain Subword Features 
(e.g. phonemes) 

Comparison Score

 Artificial 
Neural 
Networks 
(ANN) 

Neural Network 
with Weights 

Statistical Features 
(e.g. LPC 

coefficients) 

Positive/Negative 
Output 

 Long-Term 
Statistics 

Reference Model 
Database 

Statistical Features 
(Mean and 
Variance) 

Comparison Score
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Chapter 4 

Experiments with Existing Techniques from Speech and Music 

 

This chapter will explain the method used to address the first task in the hypothesis 

(outlined in Chapter 1) for this work, the comparison of existing techniques to determine 

the best existing technique that can be used for classification. It discusses the equipment 

used in this project and the implementation details for each of the feature extraction and 

classification techniques selected. 

 

4.1 Equipment Used 

 

One of the goals of this project is to develop a sound identification and direction 

detection system that is viable for a commercial application such as a security system. To 

this end, equipment was chosen to be inexpensive while still producing output that would 

allow reasonable results. Table 4 shows a list of the equipment used for experimentation. 

 
TABLE 4. EQUIPMENT USED 

 
Equipment Used 

2 x Optimus Electret Condenser Replacement Microphones 
 Frequency Response 100 – 10,000Hz 
 Impedance  1k +/- 30% at 1,000Hz 
 Sensitivity  -68 +/- 3dB 
 Operating Voltage 1.5V DC 
 Cable Length  1.8m 
1 x Sony Minidisc Recorder / Optimus Stereo Cassette Recorder 
 
1 x Go Multi-Voltage Plug Pack 
 240V AC to 3/4.5/6/7.5/9/12V DC – 500mA 
 Cable Length  1.8M 
1 x 1.2m stereo plug 

3.5mm stereo plug to 3.5mm stereo plug 
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Due to this self-imposed budgetary constraint, selection of microphones was limited. 

Condenser microphones were required for this research (due to their longer range over 

Dynamic microphones (which have a maximum range of approximately 50cm)), so these 

were selected. Microphones were then chosen that balanced cost with frequency 

response, which was the next consideration. Based on these criteria, a pair of condenser 

microphones with 10,000Hz frequency response were selected. 

 

The tape recorder was specifically chosen for its ability to combine two monaural 

channels from the two microphones into one stereo channel. While an adapter cable could 

be used for this, the tape recorder allows for the channels to be properly and easily 

combined together into one stereo channel. This is necessary to avoid confusion over 

which channel is the right channel and which channel is the left channel. The minidisc 

recorder was selected for its high sampling rate. This allowed me to ensure that the data 

capturing device was not losing important frequency information from the sounds. 

 

4.2 Comparison Experiment 
 

This section discusses the methodology used in my comparison of techniques. It includes 

the description of the experiment setup, the comparative study method and the 

implementation details. All calculations were done using Matlab 6 on a Pentium 4 

1.6GHz Desktop machine with 528MB of RAM. 

4.2.1 Experiment Setup 
 
The experiment consists of tests on eight sounds, each with six different samples. The 

sounds used for this test are listed below and are some typical sounds that would be 

classified in a sound surveillance system. 
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TABLE 5. SET OF SOUNDS USED IN THE EXPERIMENTS. 

Sound Type 

Jangling 

Keys 

Footsteps 

(Close) 

Footsteps 

(Distant) 

Wood  

Snapping 

Coins 

Dropping 

Footsteps on 

Leaves 

Footsteps on 

Glass 

Glass  

Breaking 

 

The techniques are tested using a jackknife method, identical to the method used by 

Goldhor [Goldh93]. A jackknife testing procedure involves training a classification 

system with all data except the sound sample that will be tested. This sound is then tested 

against the classification system and the classification is recorded. In cases where the 

setting of initial weights may affect the classification result (as is the case with LVQ and 

ANN techniques), training is repeated 5 times, with different weight initializations each 

time. A correct classification is only recorded if more than three of the training runs are 

correct. This jackknife procedure is repeated with all six of the samples from each of the 

eight sounds. 

 

For the experiment setup, sound recording was conducted under quiet conditions. Dual 

Condenser Microphones were used to record to Sony Minidisc using the maximum 

sampling rate of 44100Hz, with 16 bits per sample. It should be noted that Sony Minidisc 

uses the lossy AATRAC3 compression format, but I do not expect the application of the 

lossy compression used in AATRAC3 to unduly effect the recognition process.   

 

4.2.2 Comparative Study Method 
 
The feature extraction and classification techniques shown in the comparison are tested 

for their ability to classify non-speech sounds in two ways. First, testing is performed, 

using these techniques, on non-speech sounds. Data on the parameters, the resulting time 

taken and the final correct classification rate are recorded.  Then, these results are 

compared with statistics and previous results for the performance of the classification 



 61

techniques with speech recognition and with musical instrument recognition. This 

demonstrates how these techniques perform compared against each other and provide an 

evaluation to the results for non-speech. 

 

Moreover, since feature extraction and classification are both required to recognise a 

sound, each classification technique must also be tested against each feature extraction 

technique to determine the best combination of these two techniques. The exception to 

this is the long-term statistics technique, which generates its own features and therefore  

requires no feature extraction techniques.  

 

Based on the above and on the selections made in the previous chapter, this produces a 

set of experiments summarized in the following table: 

TABLE 6. COMBINATION OF FEATURE EXTRACTION/CLASSIFICATION TECHNIQUES 

 LTS FE MFCC HCC STFT FWT CWT 

Learning 

Vector 

Quantization 
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Networks 
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Gaussian 

Mixture 

Models 

  

 

 

 

 

 

 

 

 

 

 

 

Long-Term  

Statistics 

 

 

 

      

 



 62

4.2.3 Feature Extraction Implementation – Stationary 

 
In this comparison, I tested three stationary feature extraction techniques, whose 

implementation is discussed in this section. 

4.2.3.1 Frequency Extraction 
 

Frequency Extraction was performed using the Fast Fourier Transform (FFT) routine, 

which uses the following equation for a DFT: 
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2−= and is the frequency we wish to check for, j counts all the samples in 

the signal and N is the length of the signal being tested. The results of the FFT were then 

windowed into a set number of bands, each with a constant length. The mean signal 

power of each band was then taken to produce a reduced FFT feature, with a single value 

for each band. This FFT feature was then used as input to train the classification system. 

Empirical testing for several bands (i.e. 64, 128, 256 and 512) revealed that splitting the 

frequency signal into 256 bands produced the most accurate results. Since non-speech 

sound covers a wider frequency range than speech (anywhere from 0Hz to 20,050Hz, the 

approximate limit of human hearing), a 44,100 point FFT (N = 44100) was performed, to 

allow a greater frequency resolution across all the frequencies required. 

4.2.3.2 Mel-Frequency Cepstral Coefficients 
 

Figure 23 – Applying Mel-Frequency Cepstral Coefficients 

 
I used the MFCC algorithm from the Auditory Toolbox by Malcolm Slaney of Interval 

Research Corporation [Slaney98]. This toolbox is in wide use in the research community. 
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The toolbox applies three steps to produce the MFCC. First, it splits the signal into 

sections (determined by the number of coefficients, which in this implementation is 13) 

and applies a Hamming window using the standard Hamming window equation: 
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where N represents the length of the subset of the signal which is being windowed. A 

Mel-Frequency Filterbank is then applied to each windowed segment. The mel-frequency 

filter bank m is built using a logarithmic frequency mapping expressed by the following 

relation [Lilly00]: 
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where f represents the range of frequencies in the signal. The application of this filterbank 

produces a series of magnitude values (one for each filter). A Cepstral Coefficient 

formula (shown in the next section) is then used to perform a frequency warping using 

these magnitude values to produce MFCC and these features are then collected into a 

single feature vector, which is more appropriate for training a network. Special attention 

was paid to removing the first scalar within the vector, which represents the total signal 

power and is therefore too sensitive to the amplitude of the signal (as suggested by Lilly 

[Lilly00] and Gold [GoldM00]). 

 

4.2.3.3 Homomorphic Cepstral Coefficients 
 

Figure 24 – Applying Homomorphic Cepstral Coefficients 

 
My implementation of the Homomorphic Cepstral Coefficient (HCC) algorithm was 

based on the MFCC algorithm from the Auditory Toolbox by Malcolm Slaney of Interval 
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Research Corporation [Slaney98] (Figure 24). This algorithm was modified to produce 

HCC as opposed to MFCC by removing convolution with the Mel Frequency Filterbank. 

 

To apply this method, we first split the signal using Hamming windows. We then 

calculate the cepstrum (X(n)) for each of the windowed segments. The cepstrum is the 

Fourier transform of the log magnitude spectrum. Once we have done this, we can 

calculate cepstral coefficients using the following relation [Lilly00]: 
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and n is the length of the windowed segment being manipulated. I selected the first 13 

coefficients produced by this relation. These features were then used in a vector notation, 

which is more appropriate for training a network. As with the MFCC, special attention 

was paid to removing the first scalar within the vector, which represents the total signal 

power and is therefore too sensitive to the amplitude of the signal (as suggested by Lilly 

[Lilly00] and Gold [GoldM00]). 

 

4.2.4 Feature Extraction Implementation - Non-Stationary 
 
This section explains and discusses the implementation details of the three non-stationary 

feature extraction techniques that I tested in my comparative study. In the case of STFT 

and CWT, a principal component analysis (PCA) was used after feature extraction to 

reduce the dimensionality of the resulting signal. An adaptive algorithm was used to 

calculate the maximum number of principal components required for the training data 

used (based on the energy in each dimension and a variable threshold). In both cases, a 

threshold value of 1% was found to produce the most accurate results. This process 
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reduced the size of the signal significantly. For the STFT, it reduced the size of the matrix 

from 128x67 (or 8643 features) to 18x67 (or 1206 features). For CWT, it reduced the size 

of the matrix from 8820x55 (or 485,100 features) to 12x55 (or 660 features). 

 

4.2.4.1 Short-Time Fourier Transform 
 
A Short-Time Fourier Transform (STFT) was implemented using Matlab’s FFT routine 

and a rectangular windowing algorithm. This approach allowed finer control over the 

resultant resolution of the STFT by allowing me to systematically change the number of 

samples in both time and frequency. The signal was windowed and then a FFT was 

calculated for each windowed segment [Cohen95]. This produces the following relation 

for the calculation of a STFT: 
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where ω is the frequency, τ is the signal length, s(t) is the signal and h(t) is the 

windowing function. This algorithm was implemented in Matlab with a variable window 

size parameter (allowing the resolution of the STFT to focus more closely on either time 

data or frequency data). Empirical testing of several values for window size (ie. 50, 100, 

150 and 200), over small repeated classification experiments, using various classification 

techniques, showed that a window size of the sample frequency scaled by 100 produced 

the most accurate results when tested. 

 

4.2.4.2 Fast Wavelet Transform 
 
For the fast wavelet transform (FWT), I used the periodized, orthogonal FWT_PO 

algorithm from the Matlab Wavelab toolbox by Stanford University [Dono02]. Like all 

FWT algorithms, this algorithm convolves the signal with a filter and then applies a 

subsampling relation: 

∑
∞

−∞=

−⋅=
k

knxkhny )2()()(  
(8)



 66

This subsampling equation is then repeated on the lower half of the signal (and optionally 

the high half of the signal), such that: 

∑ −⋅=
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As a filter (ie. h(t) and g(t)) , I applied the popular Daubechies filters [Daube92] to the 

signal. Dabauchies filters allow for the perfect reconstruction of a signal from the FWT. 

A vanishing moment variable can be set for these filters upon generation; however, the 

value of this coefficient seemed to make little difference to the classification rate. Due to 

the nature of the FWT, the signal requires no PCA to reduce its dimensionality, meaning 

the result of the FWT can be used directly in the classification system. 

 

4.2.4.3 Continuous Wavelet Transform 
 
For the continuous wavelet transform (CWT), I used the discretized CWT algorithm from 

Stanford Unviersity’s Matlab Wavelab toolbox [Dono02]:  
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where τ represents translation, s represents scale and )(tψ  is the mother wavelet, which 

was chosen to be the Morlet mother wavelet (Figure 25), defined as: 
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where a is a modulation parameter and s again represents scale [Daube92]. This mother 

wavelet has been used for recognition tasks in the past and produced acceptable results 

[OrrPh01]. 
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Figure 25 – The Morlet Mother Wavelet 

4.2.5 Classification 
 
Four classification techniques will be tested in this comparison. The implementation of 

each of these techniques will be discussed in this section. 

 

4.2.5.1 Learning Vector Quantization 
 

Learning vector quantization (LVQ) was implemented using the inbuilt LVQ routines in 

Matlab’s neural network toolbox. The network was initialized with 50 competitive 

neurons and a learning rate of 0.05. Trials were performed using each set of sounds in the 

experiment suite and running until the network converged. Using this approach, it was 

found that ~ 50 iterations gave the most accurate classification rate.  

 

4.2.5.2 Artificial Neural Networks 
 

The Artificial Neural Network (ANN) was implemented using the fast back propagation 

algorithm (BPA) in the Matlab neural network toolbox. I used the Levenberg-Marquardt 

Back Propagation algorithm and tansig activation functions. The network was initialized 

with 50 hidden neurons and a learning rate of 0.05. The limit of the sum-squared error 

was set to 0.001 and the momentum constant was set to 0.95. These settings allowed the 
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network to converge in ~ 500 iterations. Because ANN’s work by random initialization of 

weights, several different runs were performed using the ANN and the results were 

averaged. This allowed a more consistent sampling of different random weight values. 

 

4.2.5.3 Dynamic Time Warping 
 

I implemented Dynamic time warping (DTW) using the dtw function in the Auditory 

Toolbox developed by Malcolm Slaney [Slaney98]. DTW uses a dynamic programming 

approach (as opposed to a linear approach) to align the length of the signal with the 

length of the reference signal. DTW minimizes a global error by using a sequential 

optimization strategy where the current estimate of the global optimization function is 

updated for each possible step. Enough information is retained on the set of plausible 

hypotheses to allow the set of choices for the minimal global error to be reconstructed at 

the end. This means that a signal warped using DTW more closely resembles the original 

signal than a signal warped using a linear time warp [GoldM00]. 

 

To use DTW, feature extraction was first applied to each signal and then the test signal 

was warped against each of the reference signals and the error between these two signals 

was recorded. The smallest error was taken to represent the closest class of sound. 
 

4.2.5.4 Long-Term Statistics 
 

The Long-Term Statistics (LTS) were implemented using the mean and covariance 

functions available in the standard Matlab distribution. Mean and covariance were 

calculated for each of the reference signals and stored in a matrix. The mean and 

covariance of the test signal was then compared to this matrix. The closest match was 

selected as the correct class. If the closest mean and covariance occurred in different 

classes, the test was deemed to be inconclusive. 
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4.2.5.5 Gaussian Mixture Models 
 

I implemented Gaussian Mixture Models (GMM) using the Netlab toolbox developed by 

Ian Nabney [Nabney02]. GMM’s use an unsupervised learning technique to determine 

the centres and variance of clusters within a search space. The GMM’s in Netlab are 

initialized using the k-means classification technique and then trained with an 

Expectation-Maximization (EM) algorithm. I trained a GMM for each of the classes of 

sound in the domain. Once this was done, I worked out the probability of each of these 

models on the training data. Because each of the classes has equal priority, testing the 

system then simply involves finding the class Ci that produces the highest )|( iCxp r , 

where xr  is the data under test. 
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Chapter 5 

Results and Discussion (Existing Techniques) 
 

In this chapter, I present the results of my comparison and discuss the validity of these 

techniques to the domain of environmental sound recognition. Results and their 

subsequent interpretation are presented for each classification system using all feature 

extraction techniques (Table 7 - Table 12 and Figure 26 - Figure 32). The result shown is 

the total classification rate over all sounds and all samples using the jackknife technique 

(which is explained in the previous chapter). 
 

5.1  Non-Speech Suitability Testing 
 
This subsection will present the results for the experiments on non-speech sounds, using 

various feature extraction and classification techniques. Results for the LVQ classifier are 

presented below (Table 7, Figure 26). These results show that the most accurate feature 

extraction technique is the CWT technique, which makes a correct classification 54% of 

the time. The worst technique is the STFT technique, which is unable to make any 

classifications. The success of the CWT technique can be expected, since this technique 

presents a large amount of information to the LVQ classifier. However, the poor 

performance of the STFT technique can be explained by the difficulty in finding a good 

resolution in both time and frequency using the STFT technique.  

 
TABLE 7. LEARNING VECTOR QUANTIZATION (LVQ) 

Method % Correct 

FT 50% 

MFCC 37.5% 

HCC 12.5% 

STFT 0% 

FWT 12.5% 

CWT 54% 
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Figure 26 - Comparison of LVQ for Environmental Sound Recognition 

 
Results for the ANN classifier are presented below (Table 8, Figure 27). Surprisingly, 

despite previous successful results using ANN’s in speech, the results here are quite low. 

This can be explained due to the lack of ability for ANN’s to linearly discriminate 

different results. The disparity between the ANN and LVQ results will be discussed more 

in the following section. 

 

TABLE 8. ARTIFICIAL NEURAL NETWORK (ANN) 

Method % Correct 

FT 0% 

MFCC 4% 

HCC 0% 

STFT 0% 

FWT 0% 

CWT 41% 
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Figure 27 - Comparison of ANN for Environmental Sound Recognition 
 
 
Results from the DTW classifier are presented below (Table 9, Figure 28). Of all of the 

results in this experiment, the results for the DTW classifier are by far the best, with a 

70% classification rate using the MFCC or CWT feature extraction techniques. Once 

again, this is consistent as, before the introduction of HMM’s in the speech recognition 

field, the DTW classifier as the common choice for recognizing speech signals. This is 

due to low computational complexity coupled with good results. 

 

TABLE 9. DYNAMIC TIME WARPING (DTW) 
Method % Correct 

FT 66% 

MFCC 70% 

HCC 29% 

STFT 58% 

FWT 12% 

CWT 70% 
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Figure 28 - Comparison of DTW for Environmental Sound Recognition 

 

Results are presented below for the LTS technique (Table 10, Figure 29). These results 

are quite unremarkable (at 29%), but this is to be expected, as LTS is primarily used for 

speaker recognition and not speech/non-speech classification. Nonetheless, it is 

interesting to see which of these two types of techniques (speaker vs. speech) is more 

appropriate for this domain. 

 

TABLE 10. LONG-TERM STATISTICS (LTS). 

Method % Correct 

FT 29% 

Power FT 29% 

Figure 29 - Comparison of LTS for Environmental Sound Recognition 
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Finally, results are presented for the GMM classifier below (Table 11, Figure 30). GMM 

is the classifier most often used in music recognition (typically with the MFCC feature 

extraction technique). Despite this, it still performs quite well in the non-speech domain, 

with a result of 46% using either the MFCC or STFT technique. This shows the closeness 

between the music, speech and non-speech domains when it comes to choice of classifier. 

However, it also shows were some differences may occur (with typical scores for GMM 

in music being closer to 80%). 

 

 

TABLE 11. GAUSSIAN MIXTURE MODELS (GMM) 

Method % Correct 

FT 21% 

MFCC 46% 

HCC 12% 

STFT 46% 

FWT 25% 

CWT 21% 

Figure 30 - Comparison of GMM for Environmental Sound Recognition 

 

0%

20%

40%

60%

80%

100%

FT MFCC HCC STFT FWT CWT

Gaussian Mixture Models (GMM)



 75

5.2 Interpretation of Non-Speech Results 
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Figure 31 - Comparison of Best Results for Non-Speech Sound Recognition. 

 

 

The results obtained for this set of experiments are somewhat surprising. Even though the 

results from speech recognition suggest that an ANN will outperform the LVQ technique, 

the opposite occurs for non-speech recognition. I propose that this is due to the closeness 

of the various environmental sounds presented to the two networks. 

 

It is widely accepted that one of the main advantages of LVQ over ANN’s is their ability 

to correctly classify results even where classes are similar. In this case, sounds such as 

footsteps (close) and footsteps (distant) appear the same but contain slightly lower or 

higher amplitudes. LVQ is able to classify these sounds properly where the ANN cannot 

distinguish them. Furthermore, the detailed results of each test show that the ANN was 

classifying footsteps (close) as footsteps (distant) and vice versa. To support this 

hypothesis, further tests were performed on the ANN using several different MSE values 

(to allow more training time). The results of these different experiments are presented in  

Table 12 and compared in Figure 32. 
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TABLE 12. FURTHER ANN RESULTS FOR ENVIRONMENTAL SOUND RECOGNITION. 

Method % Correct (MSE – 0.001) % Correct (MSE – 0.0001) 

FT 0% 0% 

MFCC 4% 4% 
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Figure 32 - Comparison of ANN Results with alternative MSE values 

 
From these results, it can be seen that the ANN results remain the same regardless of the 

MSE value. This suggests that the ANN has problems training the sample sounds, most 

likely because these sounds are non-linearly separable. 

 

The performance of the Mel Frequency Cepstral Coefficient (MFCC) feature extraction 

algorithm over the Fourier Transform (FT) Based Frequency Extraction algorithm is also 

interesting. Surprisingly, in all cases except when DTW or GMM is used as a classifier, 

the FT algorithm outperforms the MFCC algorithm. However, to achieve the same results 

with the FT algorithm, it has to spend almost 10 times as long training as the MFCC 

algorithm does.  

 

For the LVQ tests, it seems that the MFCC algorithm can achieve a maximum 

classification rate of approximately 37.5%. In contrast, the FT algorithm can achieve a 

slightly higher rate, reaching its maximum at around 50%.  

 

The DTW algorithm also produces surprising results. This algorithm shows only a small 

difference (equivalent to one classification) in performance between the MFCC algorithm 

0%
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and the FT algorithm. This is in contrast to the large difference between these algorithms 

in the LVQ tests. DTW also performs classification much quicker than the LVQ and 

ANN techniques. This is most likely due to the fact that DTW does not require any 

training and instead relies on a series of reference models. The downside to this approach 

is the extra storage space required for these templates. 

 

In contrast to results presented by Lilly [Lilly00], my results show a substantial 

difference in classification between the HCC technique and the MFCC technique. Due to 

the fact that other researchers report similar classification rates using these two 

techniques (eg. [Lilly00], [GoldM00]), implementation of these techniques could 

conceivably be improved. However, since MFCC seems to be the more popular technique 

and produces the better results of the two techniques, at this stage I will continue to use it 

in its current form.  

 

For time-frequency techniques, these results show that the combination of CWT with 

DTW produces the best results, with the CWT producing a top comparative study 

percentage of 70% with DTW. Results are also promising for the use of the CWT with 

LVQ and ANN, producing top results of 54% and 41% respectively. 

 

The results from this comparative study reveal some interesting findings. It is interesting 

to note the poor performance of the STFT algorithm with both ANN and LVQ. Despite 

providing average performance using DTW (29%), a STFT combined with either an 

LVQ or ANN network fails to provide any correct classifications. Although results for 

stationary feature extraction techniques support this low classification rate for ANN’s, 

performance with LVQ is surprising. Further research may endeavour to manipulate the 

resolution of the STFT in order to improve LVQ classification rate (an issue that does not 

affect the Wavelet family of time-frequency techniques).  Nonetheless, the performance 

of STFT with GMM produces quite good results, suggesting that maybe the problem lies 

with the learning algorithms in LVQ/ANN. 
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Overall, it is clear from these results that the DTW classification technique could be 

considered the most suitable for environmental sound recognition, especially in a 

surveillance context. Not only does the DTW technique perform the best of all the 

techniques that I investigated and compared, but it also produces the results quickly 

(under 1 second for a testing classification as compared to an average of 5 seconds for 

artificial intelligence techniques). However, this technique still needs to be investigated, 

as it uses a template matching method, which could turn out to be a weakness when the 

amount of sounds in the database increases. Nevertheless, there is ample opportunity to 

improve the technique in these circumstances with the use of difference measures to 

produce general representations of each class of sound. 

 

For feature extraction, the results are not so clear-cut. They show that the pseudo-

frequency technique of MFCC’s produces a classification rate of 70% when used with the 

DTW technique. However, they also show that the same classification rate can also be 

achieved using the time-frequency technique of CWT. The relative effectiveness and 

classification efficiency of these two techniques will become apparent when they are 

applied to a larger database of sounds. Once again, opportunity exists to improve upon 

these techniques by systematic testing and refinement of these techniques over several 

iterations. The results presented in this work demonstrate the obvious superiority of these 

techniques over the other techniques that I investigated for environmental sound 

recognition. 

 

It could be argued that these classification rates do not parallel with the accuracy that can 

be achieved in speech recognition using HMM’s. However, as was explained earlier, they 

are not suitable for environmental sounds, because HMM uses a discrete model. 

 

In general, due to the variability inherent in environmental sounds, accuracy with 

techniques such as DTW will probably always be lower than the classification rate that 

can be achieved in the more constrained area of speech recognition. 
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5.3  Comparison of Classification Results with Speech & Music 
 

This section shows results of selected techniques from the results section (LVQ, ANN, 

GMM) in other related domains (speech recognition and musical instrument recognition). 

This allows a comparison of these techniques among the different domains. 

 

5.3.1 Speech Recognition 
 
For the sake of completeness, I compare my LVQ and ANN non-speech results with 

results reported for speech recognition systems. Due to the current popularity of HMM 

methods in speech recognition at the present time, results for DTW are difficult to find, 

therefore no DTW results are presented. 

 

For ANN’s, a selection of results from Castro and Perez [Castro93] are shown in  

Table 13. Their results were taken on an isolated word recognition set with typically high 

classification error, the Spanish EE-set. Castro and Perez’s Multi-Layer Perceptron 

(MLP) used the back propagation algorithm, contained 20 hidden neurons and was 

trained over 2000 iterations with various amounts of inputs. The figures given are the 

MLP’s estimated error rate with a 95% confidence interval. 

 

For LVQ, results from Van de Wouver e.a. [Vandew96] are shown in  

Table 14 for both female and male voices. These results present statistics for both a 

standard LVQ implementation for speech recognition and an implementation of LVQ that 

then has fuzzy logic performed on it (FI-LVQ). As can be seen from the results, the use 

of LVQ for speech recognition produces rather low recognition results. 

 

TABLE 13. ANN FOR SPEECH RECOGNITION 

Number of Inputs % Correct 

550 inputs 80.3% 

220 inputs 83.7% 
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TABLE 14. LVQ FOR SPEECH RECOGNITION 

Method % Correct 

(Female) 

% Correct (Male) 

Standard LVQ 36% 29% 

FILVQ 60% 64% 
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Figure 33 - Comparison of Speech Recognition Results. 

 
Compared to the results from my comprehensive comparison, these results (Figure 33) 

are quite interesting. The comparison shows the best result for LVQ in non-speech is 

54%, when combined with a CWT feature extraction technique. The results for LVQ in 

speech are only between 6 and 10% above this, even with the application of Fuzzy Logic. 

Without the application of fuzzy logic, the results for speech using LVQ are 18% worse 

than the non-speech results. 

 

For ANN’s, the results from speech show a much higher percentage rate than the results 

from non-speech. For non-speech, the best result is 41% using the CWT feature 

extraction technique. This is much lower than the 83.7% achieved using ANN’s for 

speech. I believe this is due to the non-speech data being non-linearly separable, and will 

elaborate more on this in the discussion section. 
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5.3.2 Musical Instrument Recognition 
 

I looked at techniques used in musical instrument recognition, considering that it might 

be closer to environmental sound recognition than to speech. In this field, two seminal 

works stand out as using GMM’s. Marques & Moreno [MarqMor99] used several 

different techniques for the feature extraction and classification of musical instruments, 

with the best results coming from a combination of mel-frequency cepstral coefficients 

with either Gaussian Mixture Models (GMM) or Support Vector Machines (SVM).  

Martin [Martin99] reports initial results from Marques showing a classification rate of 

72% for professional recordings and 45% for non-professional recordings. Since then, a 

further technical report from Cambridge Research Laboratory [MarqMor99] shows a 

classification rate of 70% when using mixed data, increased to 98% when using data 

from a single source. This suggests the applicability of robustness techniques (also tested 

in speech recognition) to this domain, in order to combat this problem with variable 

training/test data. These results are summarized in Table 15. 

 

Brown also presents a system using cepstral coefficients [Brown99]. In this case, the 

system uses Q-cepstral coefficients with a Gaussian Mixture Model for classification 

(one model for each instrument). On independent, noisy samples of music, the system 

achieves a classification rate of 94%, between oboe and saxophone recordings. However, 

this system achieves only 84% when extended to include four samples of instrument 

(oboe, saxophone, flute and clarinet). These results are summarized in Table 16. 

 

TABLE 15. MFCC/GMM FOR MUSICAL INSTRUMENT RECOGNITION 

Mixed Data Single Source Data 

70% 98% 

 
 

TABLE 16. Q-CEP/GMM FOR MUSICAL INSTRUMENT RECOGNITION 

2 Instrument Types 4 Instrument Types 

94% 84% 
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Figure 34 - Comparison of Musical Instrument Recognition Results. 

 

If we compare these results (Figure 34) to the results for non-speech sounds, we see that 

GMM’s can be much better applied in the musical instrument domain. The best result for 

GMM’s in non-speech is 46%, while musical instrument recognition can achieve a 94% 

recognition rate. However, it must be considered that the results for non-speech are taken 

on 8 classes of sounds. The results for musical instrument recognition are taken on only 2 

and 4 classes of sounds. This could account for the higher recognition rate. Brown also 

shows with her results that classification rate decreases quickly as the number of classes 

increase (down from 94% to 84% for 2 and 4 classes respectively). It is possible that, if 

Brown ran her tests on 8 classes of musical instrument, she would get similar results to 

those shown for non-speech sounds. 
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5.4 Conclusion of Comparative Study 
 

This chapter presented the results of a comparative study of time-frequency and 

frequency-based (or pseudo-frequency) techniques for non-speech environmental sound 

recognition and showed the applicability of either of these representations to 

environmental sound recognition. However, classification rates do not parallel with the 

accuracy that can be achieved in speech recognition using Hidden Markov Model’s. Due 

to the variability inherent in environmental sounds, accuracy is probably lower than with 

the more constrained area of speech recognition. 

 

The results revealed that a combination of continuous wavelet transform with dynamic 

time warping produces a classification rate of 70%. Combination of Mel-Frequency 

Cepstral Coefficients with dynamic time warping also produced 70%. From this, it is 

clear that DTW is a superior technique for classification of environmental sounds. Now 

that this obvious superiority of techniques has been shown, further refinements can be 

performed on these techniques to possibly produce even better classification rates. 

 

However, any refinements to the technique will still be constrained by the larger pattern 

search space that is underpins the nature of these techniques. If I can develop a technique 

that will reduce the size of this pattern search space, I should be able to produce a more 

efficient and accurate system. The following two chapters discuss the investigation of 

advanced techniques for classification of non-speech environmental sounds to facilitate 

this.  
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Chapter 6 

Advanced Classification Techniques 

 

The results presented in the previous section are good, but they do not parallel with 

results that can be obtained in the (albeit, much more constrained) area of speech using 

techniques such as Hidden Markov Models (HMM’s). This is because the area of speech 

(and indeed, of music) requires a much smaller finite set of sounds to perform good 

classification. The human vocal system can only produce a certain number of phonemes 

and a well-trained speech recognition system only has to recognize each of these 

phonemes. In contrast, an environmental sound recognition system is required to classify 

a much larger set of sounds, in a near infinite set. 

 

In order to combat this problem, I propose the use of advanced techniques, the purpose of 

which are to reduce the size of the pattern matching search space into smaller sets of 

classes, in much the same way as the splitting of spoken dialogue into words and 

phonemes achieves this for speech. Some sort of structured taxonomy would allow me to 

achieve this goal. 

 

Two structured taxonomies are proposed in this section: 

• Taxonomy Based on Source-Source Collisions & Physics 

• Automatically Generated Taxonomy (using the C4.5 technique [Quinlan93]). 

 

Each of these structured classification techniques will be discussed in this chapter. In 

addition, this section will also discuss the experimental method and equipment used. 
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6.1 Experimental Method 
 
The taxonomy is implemented in three levels, with the first level using the features 

described for classification and the second and third levels using existing speech 

recognition techniques. 

 

Recognition of a sound requires two independent stages: feature extraction and 

classification. Therefore, each classification technique must also be tested against each 

feature extraction technique to determine the best combination of these two techniques.  

This produces a set of experiments summarized in the following table (Table 17): 

 

TABLE 17. COMBINATION OF FEATURE EXTRACTION/CLASSIFICATION TECHNIQUES 
 MFCC STFT CWT 
LVQ    
DTW    

 
 

6.2 Experiment Setup 
 
The techniques are tested using a jackknife method, identical to the method used by 

Goldhor [Goldh93]. A jackknife testing procedure involves training a classification 

system with all data except the sound samples that will be tested. This sound is then 

tested against the classification system and the classification is recorded. In cases where 

the setting of initial weights may affect the classification result (as is the case with the 

LVQ technique), training is repeated 5 times, with different weight initializations each 

time. A correct classification is only recorded if more than three of the training runs are 

correct. 

 

For the experiment setup, sound recording was conducted under quiet conditions. Dual 

Condenser Microphones were used to record to Sony Minidisc using the maximum 

sampling rate of 44100Hz, with 16 bits per sample. It should be noted that Sony Minidisc 

uses the lossy AATRAC3 compression format, but I do not expect the application of the 
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lossy compression used in AATRAC3 to unduly affect the recognition process.  In 

addition to the sounds recorded using Minidisc, additional sounds were used from the 

"Non-speech sound dry source database" developed by RWCP [Hiyane02]. Table 18 

shows an example sound for each classification on the first level. 

 

TABLE 18. EXAMPLES OF EACH TYPE OF SOUND USED. 

Sound Type Example Sound 
Solid-Solid Soda can hit with a metal stick 
Solid-Liquid Water dripping into empty sink 
Solid-Gas Deodorant can spraying 
Liquid-Liquid Pouring water into a full glass 
Liquid-Gas Bubbles escaping from boiling water. 
Gas-Gas N/A 

 
 

6.3 Taxonomy Based on Physics 
 

It seems evident that, as the amount of sounds that a system needs to recognise increases, 

the efficiency and accuracy of the system will decrease. This is because the system will 

take longer to train, the more sounds it needs to recognise. Also, as similar sounds are 

trained in the system, the difference between these sounds will be too fine to allow a 

distinction, meaning that accuracy will decrease. 

 

In order to combat this decrease in usefulness as the amount of sounds increase, I propose 

the development of an environmental sound taxonomy, which classifies sounds on 

several levels before recognition. The advantage of this approach is that each 

classification level contains a smaller set of sounds, increasing the accuracy and 

efficiency of the system. Although taxonomies have been used in both speech [LiSet01] 

and music [MartYo98] in the past, no such taxonomy has been developed for 

environmental sounds. 

 

However, there is a problem with the development of this taxonomy. What will be the 

higher level groups in the hierarchy on which the sounds are classified? In order to 
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answer this question, I propose the development of a novel environmental sound alphabet 

(as suggested by Ballas & Howard). Due to the fact that human beings perceive sounds 

based on their semantic meaning and not on their characteristics [Ballas87], I propose 

that this is the most appropriate way for my system to classify sounds. 

 

So, what will be the components of this environmental sound alphabet? Since the domain 

being researched is environmental sounds, it seems that the most logical selection of 

characters would be related to this domain. Within language, each character roughly 

represents a phonetic sound produced by the source of the sound (the human voice box 

and vocal tract). In environmental sounds, an alphabetic character could also represent 

the source of a sound. The lowest level of recognition relates to recognising the 

representative objects with which the sound was made and their physical states. As 

recognised in the field of physics, three physical states of objects exist [Tipler91]. These 

are: 

1. Solid 

2. Liquid 

3. Gas 

 

These states could therefore be used for classification of non-speech sounds. In addition, 

the specific properties of each physical object could also be recognised. For instance, 

solids produce different sounds depending on whether they are metal, glass or wood. 

These properties could also be used for classification. 

 

Based on this information, my system will initially classify sounds using a three level 

hierarchy. On the first level, the system will identify the sound as belonging to one of six 

classes. Each class will look for the interaction of two objects, each related to one of the 

three states of matter in the environment (solid, liquid, gas). This will produce six classes 

that a sound could belong to: 

1. Solid-Solid (S-S) 

2. Solid-Liquid (S-L) 

3. Solid-Gas (S-G) 
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4. Liquid-Liquid (L-L) 

5. Liquid-Gas (L-G) 

6. Gas-Gas (G-G) 

 

A sound will be identified as belonging to one of these classes and then the appropriate 

second level classification will occur. 

 

The next level of the system can classify sounds based on their material characteristics. 

For instance, a solid can be wood or glass or metal etc. This level of classification will 

classify each solid on these characteristics and will classify gases and liquids based on 

similar characteristics. Some examples could include: 

• Metal on Metal (M-M) 

• Metal on Wood (M-W) 

• Water on Metal (W-M) 

• Water on Wood (W-W) 

• Steam through Plastic (S-P) 

• Steam through Metal (S-M) 

• Steam in Water (S-W) 

 

Finally, the third level will contain the standard pattern recognition approach to 

recognition, but with one important difference. There will be several networks, each 

based on the different sounds produced by the previous classification. In this way, a 

sound can be tested against a much smaller network that has been trained with a smaller 

(but more specific) selection of sounds. This is hoped to improve the accuracy and 

efficiency of the system. 

 

Figure 35 shows a hierarchy using these classification techniques.
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Figure 35 – Sound Taxonomy with Environmental Sound Alphabet Components
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Techniques such as the structured taxonomy proposed have previously been used in 

domains other than environmental sound recognition. In independent work, Martin 

[Martin99] proposed the use of a similar taxonomic approach to the classification of 

musical instruments, which are suitable to this type of approach. 

 

There is some parallelism between Martin’s work and ours. He proposes the use of a 

taxonomic hierarchy for the classification of musical instrument sounds. Martin suggests 

a multi-level hierarchy, where each level splits instruments into their natural categories 

(woodwind, brass, percussion; alto, tenor, bass etc). On each level, a selection of features 

is chosen based on the discriminatory properties of the sound under test. Typical features 

include items such as pitch, pitch variance, vibrato strength and onset duration. 

Classification is then performed using a simple maximum-likelihood estimation. Martin 

also suggests several enhancements to ensure a classification does not get “stuck” in the 

incorrect leaf node. Correct classification emerges from the lowest level of the hierarchy, 

with results (on realistic music samples, not isolated tones) of 90% for instrument 

families and 70% for individual instruments. 

 

In contrast to the work of Martin, environmental sounds do not have a natural set of 

classification indexes. In order to overcome this, I propose the development of an 

environmental sound taxonomy. This will be done in the three levels already proposed. 

The structure of each level will be described in the following sections. 

 

6.3.1 Level One Filtering 
 
For this first-level filtering, I have developed several features to show the distinction 

between the different types of sounds: 

 

Impact Frequency (IF) Feature - Using a Short-Time Fourier Transform (STFT), 

determines the impact moment of the sound and then obtains the Fourier transform (and 

therefore the fundamental frequency) at that time. 
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Fundamental Frequency (FF) Feature – Performs a Fourier transform on the entire 

signal and determines the fundamental frequency for the entire signal. 

 

Impact Tail Sum (ITS) Feature – Determines the activity of frequencies above a set 

frequency f at the impact point. Typically liquid-related sounds contained a much lower 

concentration of these frequencies (being generally much more tonal). 

 

General Tail Sum (GTS) Feature – Calculates the activity of frequencies above a set 

frequency f for the entire waveform. Liquid-Gas sounds contain lower frequency values 

for this feature. 

 

These features were then applied in a systematic fashion to determine the type of sound 

being dealt with. Figure 36 shows a decision tree outlining how these features were 

implemented (where TH is a empirically determined threshold value, f1 is 10000Hz, f2 is 

2000Hz and f3 is 4000Hz). 
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Figure 36 – Decision Tree showing the Taxonomies Classification on the 1st Level
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6.3.2 Level Two & Three Classification 
 
For the second and third level recognition in the taxonomy, I selected techniques 

previously used for speech recognition (see Chapter 2 & Chapter 3). The techniques I 

selected were: 

 

Feature Extraction: 

• Mel-Frequency Cepstral Coefficients 

• Short-Time Fourier Transform 

• Continuous Wavelet Transform 

  

Classification: 

• Dynamic Time Warping 

• Learning Vector Quantization 

 

6.3.2.1 Feature Extraction Techniques 
 
In this comparison, I tested three feature extraction techniques, whose implementation is 

discussed in this section. 

 

Mel-Frequency Cepstral Coefficients 
 

Figure 37 – Applying Mel-Frequency Cepstral Coefficients 

 
I used the MFCC algorithm from the Auditory Toolbox by Malcolm Slaney of Interval 

Research Corporation (1998) [Slaney98], which is in wide use in the research 
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community. The toolbox applies several steps to produce the MFCC (Figure 37). First, it 

splits the signal into sections (determined by the number of coefficients, which in this 

implementation is 13) and applies a Hamming window using the standard Hamming 

window equation: 
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where N represents the length of the subset of the signal which is being windowed. A 

Mel-Frequency Filterbank is then applied to each windowed segment. The mel-frequency 

filter bank m is built using a logarithmic frequency mapping expressed by the following 

relation: 
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where f represents the range of frequencies in the signal. The application of this filterbank 

produces a series of magnitude values (one for each filter). A Cepstral Coefficient 

equation: 
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is then used to perform a frequency warping using these magnitude values to produce 

MFCC and these features are then collected into a single feature vector, which is more 

appropriate for training a network. Special attention was paid to removing the first scalar 

within the vector, which represents the total signal power and is therefore too sensitive to 

the amplitude of the signal [Lilly00, GoldM00]. 
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Short-Time Fourier Transform 
 
A Short-Time Fourier Transform (STFT) was implemented using Matlab’s FFT routine 

and a rectangular windowing algorithm. This approach allowed finer control over the 

resultant resolution of the STFT by allowing me to systematically change the number of 

samples in both time and frequency. The signal was windowed and then a FFT was 

calculated for each windowed segment [Cohen95]. This produces the following relation 

for the calculation of a STFT: 

τττ
π

ω ω dthseS tj
t )()(

2
1)( −= ∫ −  (16)

 
where ω is the frequency, τ is the signal length, s(t) is the signal and h(t) is the 

windowing function. This algorithm was implemented in Matlab with a variable window 

size parameter (allowing the resolution of the STFT to focus more closely on either time 

data or frequency data). Empirical testing showed that a window size of the sample 

frequency scaled by 100 produced the most accurate results when tested. 

 

A principal component analysis (PCA) was used after feature extraction to reduce the 

dimensionality of the resulting signal. An adaptive algorithm was used to calculate the 

maximum number of principal components required for the training data used (based on 

the energy in each dimension and a variable threshold). A threshold value of 1% was 

found to produce the most accurate results. This process reduced the size of the signal 

significantly, from 128x67 (or 8643 features) to 18x67 (or 1206 features). 

 

Continuous Wavelet Transform 
 
For the continuous wavelet transform (CWT), I used the discretized CWT algorithm from 

Stanford University’s Matlab Wavelab toolbox [Slaney98]:  
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where τ represents translation, s represents scale and )(tψ  is the mother wavelet, which 

was chosen to be the Morlet mother wavelet [Daube92], defined as: 
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where a is a modulation parameter and s again represents scale. This mother wavelet has 

been used for recognition tasks in the past and produced acceptable results [OrrPh01]. 

 

6.3.2.2 Classification 
 
Two classification techniques will be tested in this comparison. The implementation of 

each of these techniques will be discussed in this section. 

 

Learning Vector Quantization 
 
Learning vector quantization (LVQ) was implemented using the inbuilt LVQ routines in 

Matlab’s neural network toolbox. The network was initialized with 50 competitive 

neurons and a learning rate of 0.05. These settings allowed the network to converge in ~ 

50 iterations and were found to give the most accurate classification rate.  

 

Dynamic Time Warping 
 
I implemented Dynamic time warping (DTW) using the dtw function in the Auditory 

Toolbox developed by Malcolm Slaney [Slaney98]. DTW uses a dynamic programming 

approach (as opposed to a linear approach) to align the length of the test signal with the 

length of the reference signal. DTW minimizes a global error by using a sequential 

optimization strategy where the current estimate of the global optimization function is 

updated for each possible step. Enough information is retained on the set of plausible 

hypotheses to allow the set of choices for the minimal global error to be reconstructed at 

the end. This means that a signal warped using DTW more closely resembles the original 

signal than a signal warped using a linear time warp [GoldM00]. 

 

To use DTW, feature extraction was first applied to each signal and then the test signal 

was warped against each of the reference signals and the error between these two signals 

was recorded. The smallest error was taken to represent the closest class of sound. 
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6.4 Automatically Generated Tree 
 
In addition to testing using a taxonomy based on physical states, other advanced 

techniques that would reduce the pattern matching search space were also investigated. 

The C4.5 technique developed by Ross Quinlan [Quinlan93] was selected for this 

comparison. The C4.5 technique was selected as a counterpoint to the physical tree. The 

C4.5 technique analyses the data and develops a decision tree from the data 

automatically. In this way, instead of having pre-determined levels and nodes within the 

tree, a tree is generated that will classify well based on the data. 

 

In addition, a tree generated using the C4.5 technique is totally deterministic. This means 

that the decisions made by the tree can be analysed after the tree has been built and the 

ability of the tree on particular sets of data can be determined. This is in contrast to most 

artificial intelligence techniques, where the mechanics of how the classification technique 

made the choice can remain a mystery. 

 
An extract of an example tree generated by C4.5 is shown in Figure 39. The determinants 

in this tree are taken from Fast Fourier Transform’s (FFT’s) of typical environmental 

sounds. They are labeled from lowest to highest frequency. The example uses 256 

features from the FFT for classification. Looking at this tree, we can see the deterministic 

nature of the C4.5 technique. The example tree could be used with any sound to 

determine its class. For this comparison, C4.5 will be tested with the same feature 

extraction techniques used for the physical taxonomy (MFCC & FFT). It is also clear 

from the example that only a few of the features are used to make a determination. This is 

another important feature of C4.5. The technique makes it easy to assess which features 

carry the highest weight in uniquely identifying a sound. 
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Figure 38 – Example of the features used for C4.5 

 

An example may help to clarify how the C4.5 technique can be used. A sample sound is 

shown in Figure 38. This is the spectrum of coins dropping on a metal sheet. To aid in 

clarity, this graph is shown in sample and not Hertz, because this representation more 

closely parallels with the results from the C4.5 technique. We can use the tree generated 

by the C4.5 technique to classify this sound. 

 

Working our way from the top of the tree to the bottom, we see that the first test uses 

feature 96. If the value of this feature is less than 0.47378 (normalized value) then the 

classification moves along the Yes (Y) branch of the tree, otherwise is moves along the No 

(N) branch of the tree. For our example, the value of feature 96 is obviously below 

0.47378, so we move along the Y branch of the tree. 

 

For the second test, the value of feature 36 is tested. In our example, the value of feature 

36 is above the threshold shown (0.44536), so we follow the N branch of the tree. For the 

third test, the value of feature 105 is tested. In this case, the value of the feature in our 

example is below the threshold (0.2119), so the Y branch is followed. 

 

Two tests are then performed on feature 1. The first checks whether the value of feature 1 

is below 0.44353. In our example it is, so we follow the Y branch. Finally, the last test 
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checks the value of feature 1 more closely. Once again, the value is below the threshold, 

meaning the Y branch is followed. This leads us to leaf node on the tree, which reports 

that the classification of the sound is as class 34, which is Coins Dropping on Metal.  
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Figure 39 – An Example C4.5 Tree (Extract) 
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Chapter 7 

Results & Discussion (Advanced Classification Techniques) 

 
This chapter discusses the testing of the various different classifiers and feature extraction 

techniques within the taxonomy. Tests are performed with the previous set of sounds, and 

also with a larger corpus of sounds. Finally, some conclusions are also drawn on the 

nature of environmental sounds, based on the results of the C4.5 technique that are 

presented in this chapter. 

 

7.1  Testing with the Jackknife Technique 
 
This section shows the results from the experiments performed with the taxonomy. Each 

table (Table 19, Table 20) has two columns. The first column, Level 2, is the percentage 

correct classification into material type (Metal-Metal, Wood-Metal etc.). The second 

column, Level 3, is the percentage correct at the lowest level of the tree (“Coins 

Dropping, Wood Snapping” etc.). The two tables are also shown graphically in Figure 40 

and Figure 41. 

 
TABLE 19. LEARNING VECTOR QUANTIZATION (LVQ)  

Method Level 2  Level 3 
MFCC 54% 16% 
STFT 13% 4% 
CWT 16% 16% 
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Figure 40 – Learning Vector Quantization 
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TABLE 20. DYNAMIC TIME WARPING (DTW) 
Method Level 2 Level 3 
MFCC 70% 66% 
STFT 16% 12% 
CWT 20% 20% 
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Figure 41 – Dynamic Time Warping 

 

7.2  Testing With A Large Corpus Of Sounds 
 
After performing this preliminary testing, testing was also performed with a larger set of 

sample sounds. The size of the set was increased in both variety (more classes) and 

volume (more sound samples). This large corpus of sounds was intended to test the 

hypothesis that the structured classification techniques would perform better with a larger 

set of different classes of sounds.  

 

Each experiment was performed on the two most successful types of feature extraction 

technique (FFT & MFCC), using the DTW classification technique where required (in 

the physical taxonomy and on the flat classification). Two test sets were used (Table 21): 

 

TABLE 21. TRAINING/TEST SETS USED FOR LARGER SET TESTS 

Known Training Set: 30 classes of sound 

Test Set: 15 classes of sound (all classes trained) 

Unknown Training Set: 20 classes of sound 

Test Set: 10 classes of sound (trained), 10 classes of sound (untrained) 
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Three experiments were conducted using the larger test sets. These were: 

• Experiment 1 -Tree built with a physics model 

• Experiment 2 - Automatic Tree using C4.5 

• Experiment 3 - No Taxonomy, Flat Classification  

 

Four runs were performed for each experiment. The results of these experiments are 

presented in Table 22 to Table 39 and the averages for each feature extraction technique 

(FFT & MFCC) are graphed in Figure 42 through Figure 47. 

 

TABLE 22. FFT EXPERIMENT 1 (LARGER CORPUS) 

Method Known Unknown 
Run 1 32% 21% 
Run 2 31% 22% 
Run 3 43% 22% 
Run 4 20% 20% 
Average 32% 21% 

 

TABLE 23. FFT EXPERIMENT 2 (LARGER CORPUS) 

Method Known Unknown 
Run 1 34% 17% 
Run 2 23% 24% 
Run 3 20% 12% 
Run 4 30% 11% 
Average 27% 16% 

 
 

TABLE 24. FFT EXPERIMENT 3 (LARGER CORPUS) 

Method Known Unknown 
Run 1 80% 40% 
Run 2 76% 40% 
Run 3 73% 43% 
Run 4 70% 33% 
Average 75% 39% 
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Figure 42 – Average Recognition Rates for FFT using a Larger Data Set 

 

TABLE 25. MFCC EXPERIMENT 1 (LARGER CORPUS) 

Method Known Unknown 
Run 1 21% 17% 
Run 2 29% 22% 
Run 3 30% 12% 
Run 4 20% 18% 
Average 25% 17% 

 
 

TABLE 26. MFCC EXPERIMENT 2 (LARGER CORPUS) 

Method Known Unknown 
Run 1 27% 5% 
Run 2 7% 5% 
Run 3 8% 10% 
Run 4 13% 9% 
Average 14% 7% 

 

TABLE 27. MFCC EXPERIMENT 3 (LARGER CORPUS) 

Method Known Unknown 
Run 1 54% 33% 
Run 2 59% 33% 
Run 3 50% 29% 
Run 4 58% 29% 
Average 55% 31% 
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Figure 43 – Average Recognition Rates for MFCC using a Larger Data Set 

 

TABLE 28. HCC EXPERIMENT 1 (LARGER CORPUS) 

Method Known Unknown 
Run 1 17% 5% 
Run 2 15% 12% 
Run 3 10% 10% 
Run 4 3% 4% 
Average 12% 8% 

 
 

TABLE 29. HCC EXPERIMENT 2 (LARGER CORPUS) 

Method Known Unknown 
Run 1 7% 5% 
Run 2 4% 4% 
Run 3 10% 9% 
Run 4 8% 2% 
Average 7% 5% 

 

TABLE 30. HCC EXPERIMENT 3 (LARGER CORPUS) 

Method Known Unknown 
Run 1 10% 3% 
Run 2 15% 11% 
Run 3 5% 7% 
Run 4 10% 11% 
Average 10% 8% 

 

 



 106

Exp 1 Exp 2
Exp 3

known
unknown0%

20%

40%

60%

80%

100%

% of 
recognition

HCC known
unknown

 
Figure 44 – Average Recognition Rates for HCC using a Larger Data Set 

 

TABLE 31. CWT EXPERIMENT 1 (LARGER CORPUS) 

Method Known Unknown 
Run 1 17% 7% 
Run 2 14% 11% 
Run 3 25% 16% 
Run 4 10% 9% 
Average 17% 11% 

 
 

TABLE 32. CWT EXPERIMENT 2 (LARGER CORPUS) 

Method Known Unknown 
Run 1 8% 7% 
Run 2 12% 5% 
Run 3 10% 3% 
Run 4 10% 7% 
Average 10% 6% 

 

TABLE 33. CWT EXPERIMENT 3 (LARGER CORPUS) 

Method Known Unknown 
Run 1 26% 10% 
Run 2 24% 22% 
Run 3 33% 19% 
Run 4 28% 13% 
Average 28% 16% 
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Figure 45 – Average Recognition Rates for CWT using a Larger Data Set 

TABLE 34. FWT EXPERIMENT 1 (LARGER CORPUS) 

Method Known Unknown 
Run 1 14% 5% 
Run 2 10% 7% 
Run 3 15% 12% 
Run 4 5% 3% 
Average 11% 7% 

 
 

TABLE 35. FWT EXPERIMENT 2 (LARGER CORPUS) 

Method Known Unknown 
Run 1 10% 5% 
Run 2 5% 6% 
Run 3 10% 10% 
Run 4 10% 6% 
Average 9% 7% 

 

TABLE 36. FWT EXPERIMENT 3 (LARGER CORPUS) 

Method Known Unknown 
Run 1 7% 3% 
Run 2 7% 5% 
Run 3 10% 7% 
Run 4 5% 2% 
Average 7% 4% 
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Figure 46 – Average Recognition Rates for FWT using a Larger Data Set 

 

TABLE 37. STFT EXPERIMENT 1 (LARGER CORPUS) 

Method Known Unknown 
Run 1 17% 7% 
Run 2 16% 7% 
Run 3 18% 13% 
Run 4 5% 4% 
Average 14% 8% 

 
 

TABLE 38. STFT EXPERIMENT 2 (LARGER CORPUS) 

Method Known Unknown 
Run 1 7% 5% 
Run 2 7% 7% 
Run 3 13% 7% 
Run 4 8% 2% 
Average 9% 5% 

 

TABLE 39. STFT EXPERIMENT 3 (LARGER CORPUS) 

Method Known Unknown 
Run 1 10% 2% 
Run 2 9% 5% 
Run 3 10% 7% 
Run 4 5% 2% 
Average 9% 4% 
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Figure 47 – Average Recognition Rates for STFT using a Larger Data Set 

 

7.3  Discussion 
 
These results are surprising, especially when compared to the results obtained previously 

using a non-taxonomic approach (see Chapter 5). 

 

Previous results showed a classification of 70% with DTW, when it was used with either 

CWT or MFCC. LVQ showed a classification rate of 50% with frequency extraction and 

a classification rate of 54% with CWT. 

 

Comparing the DTW results, we see some correlation between MFCC/DTW in the non-

taxonomic approach and MFCC/DTW in the taxonomic approach. This shows the 

applicability of the taxonomic approach to classification of environmental sounds. 

 

In comparison, the results presented for LVQ show a lesser classification rate for the final 

classification. Only on the second level are results comparable to those from the non-

taxonomic approach. This is surprising, considering that the pattern search space has been 

significantly reduced. However, by analyzing the percentages for the higher levels and 

the results from the tests with a larger corpus of sounds, it quickly becomes apparent that 

the technique is getting “lost” in the lower levels of the taxonomy (this will be explained 

shortly). 

 



 110

The results from the tests with the larger corpus of sounds come as quite a surprise. 

Despite the physical taxonomy previously showing that it has the ability to perform as 

well as the non-taxonomy, this result does not scale well when the amount of sounds used 

in the comparison are increased. From the results it can be seen that while the non-

taxonomy implementation maintains results similar to those obtained with the smaller 

corpus of sounds, the physical taxonomy obtains lower results than were obtained with 

the smaller corpus of sounds. 

 

Also of surprise are the results from Experiment 2, which was the C4.5 technique. In 

these experiments, the C4.5 technique also performs below expectations, with results on 

par with the physical taxonomy. 

 

Of the three techniques, the non-taxonomy approach shows the most promise for the 

classification of non-speech environmental sounds, despite the ability of the advanced 

techniques to split the pattern search space. I believe this is because the structured 

classification techniques are getting “lost” in the lower levels of the taxonomy. 

 

As the taxonomy is being used for testing, classifications are occurring sequentially down 

the levels. On level one, classification is always correct, due to the deterministic approach 

taken. However, on level 2, the taxonomy can only be guaranteed to make a correct 

classification a certain percentage of the time (for instance, with MFCC/LVQ, 54% of the 

time). If it makes this correct classification, it then moves onto the appropriate third level 

node and performs pattern recognition on the third level. However, even if it does not 

make the correct classification (and at this stage the taxonomy has no idea if the 

classification it has just made is correct), it will still move to the third level and perform 

pattern recognition. Considering that it has incorrectly selected the third level node to 

move to, this will mean no chance of producing a correct classification. 

 

Due to this, an incorrect classification on the second level will increase the chances 

greatly of an incorrect classification on the third level. This means that the percentage 
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correct for the taxonomy on the third level is reduced proportionally to the amount of 

incorrect classifications on the second level. This also applies to the C4.5 technique.  

 

The percentages of correct classification on the second level of the taxonomy support this 

and are shown for the MFCC and FFT techniques in Table 40. It can be seen that, as with 

the smaller set of sounds, the average result from the second level of the taxonomy is 

similar to the result with these techniques on the non-taxonomic approach. It is only on 

the third level that the result drops to that shown in the tables above. 

 

TABLE 40. MFCC/FFT LEVEL 2 RESULTS (PHYSICAL TAXONOMY) 

Method MFCC FFT 
Run 1 56% 70% 
Run 2 57% 68% 
Run 3 57% 65% 
Run 4 72% 70% 
Average 61% 69% 

 

 

In order to combat this problem, Martin proposes the use of beam searching techniques 

within the hierarchy [Martin99]. However, these beam searching techniques require the 

use of a confidence score to show how confident the node is that it has made a correct 

classification. If confidence on the third level is low, the taxonomy can move back to the 

second level and select the next best choice of third level node.  

 

As of this time, techniques such as LVQ and DTW cannot produce this confidence score. 

Future work could examine the use of embedded hypothesis testing, confidence scores 

and beam searching as a way of improving the performance of the taxonomy. 

 

7.4  Reverse Engineering the Search Environment 
 
In addition to analysing the percentage recognition for these results, we can also use the 

results of the C4.5 technique to begin to make some determinations of the features that 

uniquely characterise each sound. As mentioned in the previous chapter, an advantage of 
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the C4.5 technique is that it provides full information about how it makes its 

classifications (in a tree format). We can examine this tree to make determinations on 

which features are important for different sounds and classes of sounds. 

 

By analysing the tree’s produced for the FFT classification (which was the most 

successful C4.5 classification method), we can see some interesting observations 

emerging. 

  

Firstly, on the lower level of the taxonomy generated, the features further up in the 

frequency range are used much more frequently to perform a classification. FFT features 

1 through 4 are frequently used to make a final classification on the lower levels of the 

resultant taxonomy. Higher features (for examples, feature 103 and feature 209) are used 

on the first levels of the taxonomy, but the lower levels typically use features on the 

lower end of the frequency spectrum. This is not surprising, since almost all sounds 

contain lower frequencies, where as only some sounds contain higher frequencies. 

Therefore, the higher frequencies can be used to make the initial distinctions and then the 

lower frequencies can be used to differentiate between different sounds. 

 

For example, for the first run of the FFT feature extraction technique with C4.5, the 

values of features 7, 45, 13, 17 and 156 are used to make a decision that a sound involves 

water. The value of feature 1 is then used to determine if this is a bubbles in water sound 

or a pouring water sound. Similarly, in the third run of the FFT feature extraction 

technique with C4.5, the values of features 6, 1 and 2 are used to make a decision on 

whether the sound involves metal (in this case, coins). The value of feature 4 is then used 

to determine whether the sound is coins dropping on metal or coins dropping on wood. 

To help illustrate this, the spectra of these four sounds are presented in Figure 48 to 

Figure 51. These spectra are presented with the horizontal axis measured in samples (and 

not the usual Hertz) to allow a direct comparison between the features in the C4.5 

technique and the respective values on the frequency spectra. 



 113

Figure 48 – Frequency Spectrum of Bubbles 

 

Figure 49 – Frequency Spectrum of Pouring Water 
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Figure 50 – Frequency Spectrum of Coins on Metal Sheet 

Figure 51 – Frequency Spectrum of Coins on Plywood Sheet 

 
In addition, in some cases it can be seen that a particular feature is unique to a type of 

sound or set of sounds. For instance, in one of the runs, the value of feature 50 is used to 

determine the difference between a singular clap of hands and a plurity of clapping. 

Feature 50 is not used for any other purpose. It could be inferred that feature 50 is unique 

in determine the type of clapping sound that is being heard. Similarly, feature 5 is used to 
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make a determination between the type of bell being heard (either a small bell or a large 

bell). This feature is also used in no other context. Figure 52 to Figure 55 show the 

spectrum of these sounds. 

Figure 52 – Spectrum of a Single Clap of the Hands 

 
Figure 53 – Spectrum of a Plurity of Clapping 
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Figure 54 – Spectrum of a Large Bell Ringing 

Figure 55 – Spectrum of a Small Bell Ringing 

 

Finally, in some cases, a particular feature can be used to determine the type of sound 

being heard (in accordance with the physical taxonomy previously discussed). In more 

than one of the runs, the value of feature 209 is used to determine whether or not the 

sound being heard is a metal-metal type sound. This feature is used on the higher level of 

the taxonomy. On the lower levels, the values of features 1, 2, 5 and 13 are used to 

determine particular sounds, but all of which could be considered to be metal-metal 
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sounds. Examples include Soda Can / Metal Stick, Padlock Locking and Door Locking 

(see Figure 56 to Figure 58). Feature 209 is not used anywhere else in the taxonomy. 

From this, it could be inferred that the value of feature 209 in a FFT (in addition with 

selected other features) can be used to uniquely work whether a sound involves a metal 

object in some way. 

Figure 56 – Spectrum of Soda Can being hit with a Metal Stick 

Figure 57 – Spectrum of Padlock Locking 
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Figure 58 – Spectrum of Door Locking 

 
Overall, although the results from this study do not present unique frequencies for all 

types of sounds (and indeed, no study could promise this), they do begin to give some 

ideas on the harmonic frequencies that could be used to classify different sounds and 

types of sounds. Combined with a novel environmental sound alphabet, these results 

allow us to begin to infer the general nature of environmental sounds. From results such 

as these, better classification systems can be built that take this advanced information into 

account, allowing more efficient and accurate classification of this extremely large 

pattern matching search space. 

 
 

7.5  Lessons Learned 
 
The following hypothesis was presented at the beginning of this work: 
 
Hypothesis 

If I can find a systematic way to identify environmental sounds, I could increase the 

efficiency of environmental sound identification for the purpose of security surveillance. 

A system can be developed that will recognise a large corpus of environmental sounds. 

This system will use a structured classification technique (sound taxonomy) to improve 

classification accuracy and speed.  
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The work in this thesis has made significant progress towards satisfying this hypothesis 

and the applicability of this work cannot be denied. Neither the work of Martin (which 

was in musical instrument recognition) or the work of researchers such as Reyes-Gomez 

& Ellis (in speech recognition) was able to perform acceptable second level classification 

for a set of sounds as large as has been demonstrated with this work. If further 

refinements can be done to improve the classification rate on the lower levels of the 

taxonomy, the high results on the second level of the taxonomy should allow a system 

that can classify with a great degree of accuracy. 

 

In addition, and perhaps more importantly, this work begins to infer some information 

from the results on the general nature of environmental sounds. From the results of the 

C4.5 technique on such a large corpus of sounds, we can begin to determine the features 

that allow us to uniquely identify environmental sounds. Combined with a novel 

environmental sound alphabet, we can begin to identify the harmonic frequencies for 

different types of environmental sounds. This means that these inferences can then be 

used to further refine environmental sound recognition techniques, allowing greater 

accuracy and efficiency and a greater understanding of the nature of environmental 

sounds. 

 

Despite this, these experiments confirm what has been shown in the initial literature 

review. Researchers such as Martin [Martin99] and Reyes-Gomez & Ellis [ReyesEl03] 

demonstrated the ability of techniques to classify sounds into broad groups with a 

reasonable accuracy. Both researchers also showed the difficulty in then classifying on a 

more detailed level once this initial classification had been made. The results from this 

survey correlate with these results from other researchers in the field. 

 

Within this work, classification rates on the second level are consistently as good as those 

obtained using non-taxonomic approaches. It is only on the third level that classification 

rates fall below those using non-taxonomic techniques. The results from this work 
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strengthen those already presented by researchers working in the similar but distinct 

fields of speech and music ([Martin99], [ReyesEl03]). 

 

This work also presents many unique opportunities for future work. A novel taxonomy 

has been presented that has demonstrated its ability to classify sounds into broad groups. 

This taxonomy can be improved with alternative classification techniques to allow a 

greater classification on the lower levels. Techniques such as beam searching and fuzzy 

logic can be used to introduce a level of “intelligence” into the taxonomy, allowing for 

more structured classification on the third level and a subsequent increase in the 

classification for the technique. 

 

Finally, it is surprising to note the remaining lack of competition in the field of 

environmental sound recognition. Despite the applicability of this research to fields such 

as Source Separation and Computational Auditory Scene Analysis (CASA), relatively 

little work is being performed. This makes the results of this work even more important, 

as they provide some of the only groundwork that can then be used by researchers in the 

field of CASA to greater understand environmental sounds and how they might be 

separated from other sounds in our environment. 
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Chapter 8 

Conclusions 

 

Considering that the auditory component of the world is made up of not only speech, but 

also many other kinds of sounds, it is important that a computer can recognise and 

classify not only speech, but also the other common sounds within an environment. As 

mentioned previously, areas such as hearing aid technology and security systems would 

benefit from research into a system that could identify non-speech sounds. In addition, a 

system such as this could also benefit from being able to identify the source of a sound 

(the direction it came from). 

 

Based on this problem, the aim of this PhD thesis was to develop an efficient system that 

can recognise environmental sounds and their source, using a structured classification 

technique. The domain of this research is security, specifically with the intent of being 

embedded in an autonomous robot for surveillance. 

 

This thesis has achieved this aim. It has presented a choice of techniques that can be used 

to classify environmental sounds with an accuracy of 70% in a robotic security system. It 

has also presented the design and testing of a more structured classification system that 

could be used to increase this classification rate. Finally, it has also shown some general 

features of environmental sounds that could be used in the future to develop more 

“intelligent” recognition systems. 

 

8.1 Summary of Work 
 
This work began with a comprehensive review of existing techniques for classification of 

environmental sounds. Due to a lack of literature on non-speech sound recognition 

techniques, speech and musical instrument recognition techniques were investigated for 

classification. A comprehensive analysis was performed on all speech recognition 

techniques in common use and those suitable for non-speech sound recognition were 
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identified. Source localisation techniques were also reviewed and those suitable for non-

speech direction detection were also selected. Finally, the few existing research papers on 

non-speech environmental sound recognition were studied and integrated into this work. 

 

After a comprehensive literature review, it was decided that the area of non-speech sound 

recognition and source localisation would benefit from research into the following areas: 

• Comprehensively compare techniques from Speech & Music to determine their 

applicability to Environmental Sounds. Implement these techniques and determine the 

best techniques for Environmental Sounds. 

• Investigate advanced techniques for Environmental Sound Recognition that can 

reduce the pattern matching search space. Develop a new technique using ideas from 

physics. 

• Compare and constrast the results from these two types techniques and draw 

conclusions 

 

Chapters 3 and 4 cover the comprehensive comparison of existing techniques from 

speech and music as applied to environmental sounds. Existing techniques from speech 

and music were analysed and feature extraction/classification techniques that could be 

applied to non-speech environmental sounds were selected for testing. These techniques 

were: 

 

Feature Extraction 

• Frequency Extraction (FE) 

• Mel-Frequency Cepstral Coefficients (MFCC) 

• Homomorphic Cepstral Coefficients (HCC) 

• Short-Time Fourier Transform (STFT) 

• Continous Wavelet Transform (CWT) 

• Discrete (Fast) Wavelet Transform (FWT) 
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Classification 

• Learning Vector Quantization (LVQ) 

• Artificial Neural Networks (ANN) 

• Long-Term Statistics (LTS) 

• Dynamic Time Warping (DTW) 

• Gaussian Mixture Models (GMM) 

 

In Chapter 5, these comparisons were performed and the quantitative results were 

extensively discussed. Without structured classification techniques, a combination of a 

MFCC based feature extraction technique and a DTW based classification technique is 

the most appropriate approach to developing an environmental sound recognition system 

(achieving 70% recognition). In addition, an FT/LVQ based approach or an MFCC/LVQ 

approach also shows promise. 

 

Based on these results, Chapter 6 then discussed the use of structured classification 

techniques for classification of non-speech environmental sounds. A technique for 

classification using the physical properties of sounds was developed and other techniques 

were investigated for classification using a more advanced approach. Feature extraction 

techniques were then selected from those that performed best in the previous 

experiments. This produced the following list of techniques: 

 

Feature Extraction 

• Mel-Frequency Cepstral Coefficients (MFCC) 

• Short-Time Fourier Transform (STFT) 

• Continous Wavelet Transform (CWT) 

 

Classification 

• Physical Taxonomy 

• C4.5 Tree Building Technique 

 



 124

Testing was performed using these techniques. Results were presented in Chapter 7, with 

a result of 66% using MFCC/DTW on a 3-level taxonomy based on the physical states of 

the originating objects. Slightly lower results were achieved using the structured C4.5 

technique and the MFCC or FFT feature extraction techniques. Lower results from this 

technique are accepted in the research community when comparing to neural network and 

deterministic-based techniques. 

 

Finally, Chapter 7 also discussed testing performed on a large corpus of sounds that 

contained greater variety and volume of environmental sounds. Testing on a larger corpus 

of sounds showed that, even with a smaller pattern search space, structured techniques do 

not work as well as unstructured techniques. Examining results from the second level 

classification of the physical taxonomy showed that this is because confusion on the first 

or second level means that the taxonomy can no longer make a correct classification. 

Implementation of a different classification technique that allows backtracking through 

the tree may help this result to improve, but this would require a further comparative 

study. 

 

In addition, the results from this work on structured classification techniques was 

examined and interpreted. This interpretation revealed the beginning of some 

understanding of those features that uniquely identify environmental sounds. The results 

from the C4.5 technique were especially helpful in presenting this information, allowing 

a greater understanding of the weighting of different features for environmental sound 

recognition and how these different features could be used for classification in the future. 

 

Overall, the main contribution of this thesis is to dispel the misconception that all speech 

recognition techniques can simply be used for non-speech sounds. It achieves this by 

giving a comprehensive comparison of speech recognition techniques that work with 

environmental sounds and presenting a novel advanced taxonomy that can be used to 

improve recognition (after it has been refined).  
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8.2 Future Research Directions 
 

There are many interesting directions that could be taken from this work. I foresee three 

immediate directions for research stemming from this PhD work. These are listed below: 

 

• Future research could investigate the implementation of alternative classification 

techniques within the physical taxonomy. If we can find a classification technique 

that allows us to perform a hypothesis test and measure the confidence of the 

classification that has been made, we can use this confidence rating to implement 

beam searching techniques that allow the taxonomy to move up to the previous level 

of the tree and make an alternative classification, thereby improving the classification 

rate.  

 

• Fuzzy logic techniques could also be investigated for the classifications made on each 

level. This should allow those sounds that approach the boundaries of a particular 

classification to be classified successfully for the lower levels of the tree. 

 

• The techniques outlined could be implemented in a robotic device. This would 

produce unique challenges in the areas of software design. For distributed control, 

communication methods would have to be investigated. For autonomous control, 

efficient implementations of the algorithms would have to be produced to work on the 

limited hardware available to autonomous robotic devices. 
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