Exploring Breast Cancer Drug Targets in the Third Dimension with Imaging

Carrie Jade Lovitt
Bachelor of Science (Honours)

School of Biomolecular and Physical Sciences
Science, Environment, Engineering and Technology
Griffith University

Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy

November 2013
Abstract

This project utilises innovative methodology to evaluate the suitability of novel three-dimensional (3D) cell culture models for investigating anti-cancer drug activity. 3D cell culture methodology was utilised as this in vitro approach is considered to recapitulate the in vivo conditions more accurately than two-dimensional (2D) monolayer cell culture. Two separate 3D cell culture model formats were developed which are amenable to automated liquid handling systems, and a variety of instruments for total well fluorescence and confocal imaging. The first 3D cell culture assay developed was in a 384-well format, and was validated as suitable for use for drug discovery. The second 3D cell culture assay was optimised for 1536-well format, specifically created for extensive drug combination studies.

The 3D breast cancer cell culture assay developed for drug discovery utilised the breast cancer cell lines of MDA-MB-231 (endocrine receptor- and ErbB2 receptor-negative), MCF-7 (endocrine receptor-positive) and BT-474 (ErbB2 receptor over-expression). This 3D cell culture assay was miniaturised to a 384-well format, developed to be semi-automated and was thoroughly characterised for sensitivity and reproducibility. In addition, measurements of metabolic activity or spheroid morphology can be utilised for determination of drug activity. To validate the 3D breast cancer cell culture assay for use in high-throughput applications, a pilot screen comprising of 741 clinically relevant drugs was completed. Results from the pilot screen identified a number of drugs with anti-breast cancer activity that warranted further investigation. The drugs of interest were a mixture of drugs with both novel and demonstrated anti-cancer activity.

One drug of interest from the pilot screen was ciclopirox olamine, a drug currently used to treat fungal infections, which was recently identified as having anti-breast cancer activity. To further investigate the potential use of ciclopirox olamine in breast cancer therapy regimes in a pre-clinical setting, a novel 3D breast cancer cell culture assay was specifically developed for drug/compound combination studies in a high-throughput manner. This 3D breast cancer cell culture model was miniaturised to a 1536-well format and characterised for assay quality and reproducibility. Ciclopirox
Abstract

Olamine was further researched for use in breast cancer therapy in conjunction with doxorubicin, as ciclopirox olamine has been identified as an iron chelator. Iron chelators can be administered in combination with doxorubicin in breast cancer therapy regimes. However, more potent iron chelating drugs may also enhance anti-breast cancer activity. In the combination studies undertaken, results show that ciclopirox olamine is a potential candidate for anti-breast cancer therapy.

Culturing breast cancer cell lines in 3D cell culture has been shown to result in a range of different characteristics when compared to culturing cells in a traditional 2D monolayer. To determine if the 3D cell culture models demonstrated altered drug sensitivity due to the more biologically relevant culturing conditions, the activity of various standard of care breast cancer chemotherapy drugs was evaluated in both 2D and 3D cell cultures. Results showed significant drug resistance in 3D cell culture for anthracyclines and taxanes against selected breast cancer cell lines when compared to 2D cell culture. To investigate the mechanisms of anthracycline and taxane drug resistance observed in 3D cell culture models, a number of parameters which may contribute to altered drug sensitivity were examined. These parameters included: drug penetration, proliferation of cells in 3D culture, analysis of drug activity in 3D cell culture in the absence of extracellular matrix (ECM) proteins and altered expression of various key protein levels resulting from drug exposure.

Research revealed that doxorubicin penetrated breast cancer cells in 3D cell culture within hours of exposure at various drug concentrations. Therefore, the inability of doxorubicin to penetrate 3D cell culture was subsequently ruled out. However, cell lines were found to proliferate at a significantly lower rate in 3D cell culture compared to 2D cell culture, which may have impacted on drug sensitivity. In addition, there was cell line-dependent drug sensitivity differences detected in 3D cell cultures in the absence of ECM. The sensitivity changes observed in 3D cell cultures to doxorubicin in the absence of ECM were investigated further. Due to β1-integrin being intimately associated with the ECM, β1-integrin signalling was investigated for its potential role in doxorubicin resistance. Studies revealed that preventing β1-integrin signalling in 3D cell culture during drug exposure reduced the levels of Bcl-2 and Bcl-XL, suggesting that β1-integrin partially mediates drug resistance.
Collectively, the results obtained here show the reduced proliferation rate and expression of β1-integrin may contribute to drug resistance in breast cancer tumours.

These studies have resulted in the development of two miniaturised, well-characterised and reproducible assays using 3D breast cancer culture, which are suitable for high-throughput pre-clinical drug/compound evaluation and combination studies. Application of 3D cell culture increased our understanding of anti-breast cancer drug activity and enabled research into approaches for overcoming resistance mechanisms in breast cancer therapy.
Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Signature: Date:
Table of Contents

Abstract .. i
Statement of Originality .. iv
Table of Contents .. v
List of Figures and Tables .. xii
List of Abbreviations ... xviii
Statement Acknowledging the Extent and Nature of Any Assistance Received in the Pursuit of the Research .. xx
Acknowledgements .. xxii

Chapter One: General Introduction .. 1

1.1 Introduction to the mammary gland .. 1
 1.1.1 Development, structure and function of mammary gland .. 1
 1.1.2 Mammary gland cellular and extracellular components and their association with breast cancer ... 2

1.2 Breast cancer classification and subtypes .. 5
 1.2.1 Breast cancer morphological classification ... 5
 1.2.2 Breast cancer subtypes based on gene expression patterns ... 5

1.3 Models in breast cancer biology to recreate the tumour micro-environment 6
 1.3.1 Drug testing in two-dimensional cell culture compared to three-dimensional cell culture ... 6
 1.3.2 Anchorage-dependent homotypic three-dimensional cell culture models for breast cancer ... 8
 1.3.3 Anchorage-independent homotypic three-dimensional cell culture models for breast cancer .. 10
 1.3.4 Heterotypic three-dimensional cell culture models for breast cancer 11

1.4 Breast cancer treatment ... 13
 1.4.1 General breast cancer treatment and combination therapy .. 13
 1.4.2 Use of chemotherapy in breast cancer treatment .. 14
 1.4.3 General targeted therapy in breast cancer treatment .. 17

1.5 Resistance to drugs in breast cancer .. 18
 1.5.1 General resistance to drugs in breast cancer .. 18

1.6 Project aims and significance ... 19
Chapter Two: Materials and Methods ...33

2.1 General methodology ...33
 2.1.1 Chemicals and reagents ..33
 2.1.2 Culture conditions for breast cancer cell lines ..33
 2.1.3 Doubling time of cell lines ...33
 2.1.4 Effect of dimethyl sulfoxide on breast cancer cell line monolayer cell cultures34
 2.1.5 Immunofluorescence procedures used for two- and three-dimensional assays35

2.2 Assay development and drug/compound evaluation procedures for the 384-well microtitre plate format three-dimensional cell culture assay and corresponding two-dimensional cell culture assay ...36
 2.2.1 Assay sensitivity using resazurin as an indicator of metabolic activity for two- and three-dimensional assays in a 384-well microtitre plate format36
 2.2.2 Spheroid size measurements and spheroid distribution evaluation in a 384-well microtitre plate format ..37
 2.2.3 Experimental procedures for examining the number of spheroids per well in a 384-well microtitre plate format ...39
 2.2.4 Coefficient of variation and Z’-factor evaluation in a 384-well microtitre plate format ...40
 2.2.5 Experimental procedures for evaluation of reference drugs and 741 clinically relevant drugs in both two-dimensional and three-dimensional cell culture in a 384-well microtitre plate format ...42
 2.2.5.1 Initial evaluation of a clinically relevant drug/compound library in two-dimensional monolayer cell culture..42
 2.2.5.2 Drug preparation for reference drugs and drugs identified from the clinically relevant drug library ..43
 2.2.5.3 Drug application in the developed two-dimensional and three-dimensional cell culture assays ...44
 2.2.5.4 Drug activity measurements for the developed two-dimensional and three-dimensional cell culture assays ..45
 2.2.5.5 Drug activity analysis for the developed two-dimensional and three-dimensional cell culture assays ..46

2.3 Methodology for investigation of drug resistance mechanisms in three-dimensional cell culture ...48
2.3.1 Experimental procedures for evaluation of reference drugs paclitaxel and doxorubicin on breast cancer cell lines in three-dimensional cell culture utilising the synthetic matrix, PuraMatrix™ ... 48

2.3.2 Experimental procedures for determining proliferation rate of two-dimensional and three-dimensional cell cultures in a 384-well microtitre plate format ... 49

2.3.3 Experimental procedures for evaluation of doxorubicin diffusion into two-dimensional and three-dimensional cell cultures ... 52

2.3.4 Experimental procedures for evaluation of β1-integrin expression, morphology and size analysis and inhibition with and without the presence of doxorubicin................................. 54

2.3.5 Western blot protocol for elucidation of signalling pathways in MDA-MB-231 breast cancer cell line in three-dimensional cell cultures following doxorubicin exposure .. 55

2.4 Assay development and drug/compound combination evaluation procedures for three-dimensional cell culture assay in a 1536-well microtitre plate format 58

2.4.1 Evaluation of spheroid size and number of spheroids per well in 1536-well three-dimensional cell culture ... 58

2.4.2 Coefficient of variation and Z’-factor evaluation in a 1536-well format 59

2.4.3 Experimental procedures for examination of paclitaxel survival after drug removal in three-dimensional cell culture (1536-well format) ... 60

2.4.4 Methodology for the evaluation of β1-integrin knockdown in the presence of doxorubicin in three-dimensional cell culture (1536-well format)................................. 61

2.4.5 Experimental procedures for evaluation of reference drugs and drug combinations in three-dimensional cell culture in a 1536-well plate format ... 61

2.4.5.1 1536-well three-dimensional cell culture assay set-up procedures 61

2.4.5.2 Preparation of drugs and compounds used in combination studies 62

2.4.5.3 Drug application in the developed 1536-well three-dimensional cell culture assay ... 65

2.4.5.4 Drug activity measurements for drug/compound combination experiments... 65

2.4.5.5 Drug activity analysis for drug/compound combination experiments 65

2.5 References ... 70

Chapter Three: Development of a Miniaturised Three-Dimensional Cell Culture Model for Breast Cancer ... 71

3.1 Abstract .. 71

3.2 Introduction .. 72

3.3 Results ... 76
3.3.1 Breast cancer cell line characteristics in two-dimensional and three-dimensional cell culture .. 76
3.3.2 Reproducibility of two-dimensional and three-dimensional cell culture assay conditions .. 80

3.4 Discussion .. 88
3.5 References .. 93

Chapter Four: Evaluation of Reference Drugs for the Miniaturised Three-Dimensional Cell Culture Assay .. 98
4.1 Abstract .. 98
4.2 Introduction .. 99
4.3 Results .. 104
 4.3.1 Breast cancer cell line response to doxorubicin in two-dimensional and three-dimensional cell culture ... 106
 4.3.2 Breast cancer cell line response to epirubicin in two-dimensional and three-dimensional cell culture .. 110
 4.3.3 Breast cancer cell line response to gemcitabine in two-dimensional and three-dimensional cell culture .. 113
 4.3.4 Breast cancer cell line response to vinorelbine in two-dimensional and three-dimensional cell culture ... 117
 4.3.5 Breast cancer cell line response to paclitaxel in two-dimensional and three-dimensional cell culture ... 120
 4.3.6 Breast cancer cell line response to docetaxel in two-dimensional and three-dimensional cell culture .. 124
 4.3.7 Summarised breast cancer cell line response to chemotherapeutic drugs in three-dimensional cell culture compared to two-dimensional cell culture .. 127
4.4 Discussion ... 129
4.5 References ... 135

Chapter Five: Validation of the Three-Dimensional Cell Culture Assay .. 140
5.1 Abstract ... 140
5.2 Introduction ... 141
5.3 Results ... 142
 5.3.1 Initial screen of clinically relevant drug library in two-dimensional monolayer cell culture .. 142
5.3.2 Evaluation and validation of drugs identified with anti-breast cancer activity from the clinically relevant drug library ... 149
 5.3.2.1 Cerivastatin .. 149
 5.3.2.2 Simvastatin ... 151
 5.3.2.3 Mycophenolic acid .. 153
 5.3.2.4 Ciclopirox olamine ... 155
 5.3.2.5 Topotecan hydrochloride ... 157
 5.3.2.6 Rubitecan ... 159
 5.3.2.7 Digitoxin crystalline .. 161
 5.3.2.8 Mitoxantrone dihydrochloride ... 163
 5.3.2.9 Salinomycin .. 165
 5.3.2.10 Maduramicin ammonium ... 167
 5.3.2.11 Summary ... 169

5.4 Discussion .. 170
 5.4.1 Cerivastatin and simvastatin .. 171
 5.4.2 Mycophenolic acid .. 173
 5.4.3 Ciclopirox olamine .. 174
 5.4.4 Topotecan hydrochloride and rubitecan .. 175
 5.4.5 Digitoxin crystalline .. 176
 5.4.6 Mitoxantrone dihydrochloride .. 177
 5.4.7 Salinomycin and maduramicin ammonium 178
 5.4.8 General discussion .. 179

5.5 References .. 182

Chapter Six: Drug Resistance Mechanisms in Three-Dimensional Cell Culture 187
 6.1 Abstract ... 187
 6.2 Introduction .. 188
 6.3 Results ... 194
 6.3.1 Cellular proliferation in two-dimensional and three-dimensional cell culture 194
 6.3.2 Three-dimensional cell culture response to chemotherapeutic drugs in the absence of extracellular matrix .. 197
 6.3.3 Survival of breast cancer three-dimensional cell cultures after the removal of paclitaxel .. 202
6.3.4 Doxorubicin diffusion into three-dimensional cell cultures ... 205
6.3.5 Investigation of β1-integrin involvement in doxorubicin resistance in MDA-MB-231 three-dimensional cell cultures .. 210
6.3.6 Combination of doxorubicin and β1-integrin in three-dimensional MDA-MB-231 cell culture ... 218

6.4 Discussion ... 220
6.4.1 Cellular proliferation in two-dimensional and three-dimensional cell culture 220
6.4.2 Three-dimensional cell culture response to chemotherapeutic drugs in the absence of extracellular matrix ... 221
6.4.3 Survival of breast cancer three-dimensional cell cultures after the removal of paclitaxel ... 223
6.4.4 Doxorubicin diffusion into three-dimensional cell cultures 225
6.4.5 Investigation of β1-integrin involvement in doxorubicin resistance in MDA-MB-231 three-dimensional cell cultures ... 227
6.4.6 Combination of doxorubicin and β1-integrin in three-dimensional MDA-MB-231 cell culture ... 230
6.4.7 Summary .. 231

6.5 References .. 232

Chapter Seven: Impact of Combination Studies in Three-Dimensional Breast Cancer Cell Culture ... 237

7.1 Abstract .. 237

7.2 Introduction ... 238

7.3 Results .. 244
7.3.1 Assay development and characterisation for three-dimensional breast cancer cell culture in a 1536-well microtitre plate format ... 244
7.3.2 Combination studies in breast cancer three-dimensional cell culture 251
7.3.2.1 Combination studies evaluating doxorubicin and paclitaxel 252
7.3.2.2 Combination studies evaluating doxorubicin with ciclopirox olamine 254
7.3.2.3 Combination studies evaluating doxorubicin with Dp44mT 256

7.4 Discussion .. 258
7.4.1 Assay development and characterisation for three-dimensional breast cancer cell culture in a 1536-well microtitre plate format ... 258
7.4.2 Combination studies in breast cancer three-dimensional cell culture 261
7.4.2.1 Combination studies evaluating doxorubicin and paclitaxel 261
Chapter Eight: Conclusions and Future Directions ..271

8.1 Importance of this research for the field of drug discovery271
8.2 Establishment and validation of a novel three-dimensional cell culture assay for drug discovery ...271
8.3 Investigation into the resistance mechanisms observed in 3D breast cancer cell culture to a selection of chemotherapeutic drugs ..273
8.4 Establishment and evaluation of a novel three-dimensional cell culture assay for in vitro drug combination studies ...275
8.5 Conclusions ..276
8.6 References ..278

Appendix One ...279

Appendix Two ...294
List of Figures and Tables

Chapter One

Figure 1.1. Diagram illustrating the structure of the human breast .. 2
Figure 1.2. Histological section of a normal human breast ... 3
Figure 1.3. Diagram representing breast cancer subtypes ... 6
Figure 1.4. Chemical structures of cisplatin and carboplatin .. 15
Figure 1.5. Chemical structures of doxorubicin and epirubicin .. 15
Figure 1.6. Chemical structures of paclitaxel, docetaxel and vinorelbine 16
Figure 1.7. Chemical structures of capecitabine, cyclophosphamide and gemcitabine 17
Figure 1.8. Chemical structure of tamoxifen .. 18

Chapter Two

Table 2.1. Protocol completed to determine spheroid size measurements using ImageJ 38
Figure 2.1. A representative image of automated segmentation completed by ImageJ to identify three-dimensional structures in differential interference contrast (DIC) images 39
Figure 2.2. Screenshot of segmentation protocol created in Harmony™ 47
Table 2.2. Segmentation protocol used to determine three-dimensional (3D) culture viability in Harmony™ ... 47
Figure 2.3. Representative image of Acapella™ nuclei segmentation in monolayer cell culture ... 50
Table 2.3. Segmentation protocol used to separate and count nuclei in Volocity™ in three-
dimensional cell culture .. 51
Figure 2.4. Representative image of nuclei segmentation by Volocity™ in three-dimensional cell culture ... 52
Table 2.4. Condition- and cell line-dependent drug concentrations used for investigation of doxorubicin diffusion in breast cancer cell lines in two-dimensional (2D) and three-dimensional (3D) cell culture ... 53
Figure 2.5. Representative matrix configuration of drug/compound doses applied in a 1536-
well plate format for combination studies .. 64
Table 2.6. Drug combination doses and corresponding ratios used in combination experiments for paclitaxel (Drug ‘A’) and doxorubicin (Drug ‘B’) ... 67
Table 2.7. Drug combination doses and corresponding ratios used in combination experiments for ciclopirox olamine (Drug ‘A’) and doxorubicin (Drug ‘B’) .. 68
Table 2.8. Drug/compound combination doses and corresponding ratios used in combination experiments for Dp44mT (Drug ‘A’) and doxorubicin (Drug ‘B’) .. 69
Chapter Three

Figure 3.1. Similarities of the in vivo micro-environment to the recapitulated three-dimensional (3D) cell culture in vitro micro-environment...75

Table 3.1. Doubling time of breast cancer cell lines in two-dimensional cell culture media condition..76

Figure 3.2. Morphology of breast cancer cell lines in two-dimensional (2D) and three-dimensional (3D) cell culture ..78

Figure 3.3. Cell orientation in three-dimensional (3D) cell culture for breast cancer cell lines ..79

Figure 3.4. Dimethyl sulfoxide (DMSO) effect on breast cancer cell line growth in monolayer culture ..80

Figure 3.5. Size of spheroids in three-dimensional cell culture over a 12 day period of time 82

Figure 3.6. Distribution of spheroid size per well in a 384-well plate over a 12 day period of time ..83

Table 3.2. Number of spheroids per well in a 384-well microtitre plate format on Day 9 in three-dimensional cell culture ..84

Figure 3.7. Determining the relationship between the number of cells seeded per well and the fluorescence intensity at the assay conclusion for two-dimensional (2D) cell culture and three-dimensional (3D) cell culture assays ..86

Table 3.3. Percentage coefficient of variation (%CV) and Z’-factor from two-dimensional (2D) and three-dimensional (3D) cell culture in a 384-well format ...87

Chapter Four

Table 4.1. Structure and mechanism of action for doxorubicin...100

Table 4.2. Structure and mechanism of action for epirubicin..101

Table 4.3. Structure and mechanism of action for paclitaxel...102

Table 4.4. Structure and mechanism of action for docetaxel...103

Table 4.5. Structure and mechanism of action for vinorelbine..103

Table 4.6. Structure and mechanism of action for gemcitabine..104

Table 4.7. Doxorubicin IC₅₀, area under the curve (AUC) and Hill slope values for breast cancer cell lines in two-dimensional cell culture and three-dimensional cell culture obtained using the metabolic activity assay ...106

Figure 4.1. Two-dimensional and three-dimensional breast cancer cell culture response to doxorubicin...108

Table 4.8. The IC₅₀ values for three-dimensional cell culture calcein AM live cell staining image analysis in response to doxorubicin for breast cancer cell lines ..108

Figure 4.2. Three-dimensional breast cancer cell culture response to doxorubicin.................109
Table 4.9. Epirubicin IC$_{50}$, area under the curve (AUC) and Hill slope values for breast cancer cell lines in two-dimensional cell culture and three-dimensional cell culture, obtained using the metabolic activity assay .. 110

Figure 4.3. Two-dimensional and three-dimensional breast cancer cell culture response to epirubicin .. 111

Table 4.10. The IC$_{50}$ values for three-dimensional cell culture calcein AM live cell staining image analysis in response to epirubicin for breast cancer cell lines ... 112

Figure 4.4. Three-dimensional breast cancer cell culture response to epirubicin 113

Table 4.11. Gemcitabine IC$_{50}$, area under the curve (AUC) and Hill slope values for breast cancer cell lines in two-dimensional cell culture and three-dimensional cell culture, obtained using the metabolic activity assay ... 114

Figure 4.5. Two-dimensional and three-dimensional breast cancer cell culture response to gemcitabine .. 115

Table 4.12. The IC$_{50}$ values for three-dimensional cell culture calcein AM live cell staining image analysis in response to gemcitabine for breast cancer cell lines 115

Figure 4.6. Three-dimensional breast cancer cell culture response to gemcitabine 116

Table 4.13. Vinorelbine IC$_{50}$, area under the curve (AUC) and Hill slope values for breast cancer cell lines in two-dimensional cell culture and three-dimensional cell culture, obtained using the metabolic activity assay ... 117

Figure 4.7. Two-dimensional and three-dimensional breast cancer cell culture response to vinorelbine .. 118

Table 4.14. The IC$_{50}$ values for three-dimensional cell culture calcein AM live cell staining image analysis in response to vinorelbine for breast cancer cell lines 119

Figure 4.8. Three-dimensional breast cancer cell culture response to vinorelbine 120

Table 4.15. Paclitaxel IC$_{50}$, area under the curve (AUC) and Hill slope values for breast cancer cell lines in two-dimensional cell culture and three-dimensional cell culture, obtained using the metabolic activity assay ... 121

Figure 4.9. Two-dimensional and three-dimensional breast cancer cell culture response to paclitaxel .. 122

Table 4.16. The IC$_{50}$ values for three-dimensional cell culture calcein AM live cell staining image analysis in response to paclitaxel for breast cancer cell lines 122

Figure 4.10. Three-dimensional breast cancer cell culture response to paclitaxel 123

Table 4.17. Docetaxel IC$_{50}$, area under the curve (AUC) and Hill slope values for breast cancer cell lines in two-dimensional cell culture and three-dimensional cell culture, obtained using the metabolic activity assay ... 124

Figure 4.11. Two-dimensional and three-dimensional breast cancer cell culture response to docetaxel .. 124

Table 4.18. The IC$_{50}$ values for three-dimensional cell culture calcein AM live cell staining image analysis in response to docetaxel for breast cancer cell lines 125

Figure 4.12. Three-dimensional breast cancer cell culture response to docetaxel 126
Table 4.19. The IC\textsubscript{50} values for three-dimensional cell culture in response to chemotherapeutic drugs measured by resazurin (metabolic activity) and calcein AM (cell viability) for breast cancer cell lines ..128

Table 4.20. Summary of the differences between two-dimensional (2D) cell culture and three-dimensional (3D) cell culture in response to chemotherapeutic drugs for breast cancer cell lines ..129

Chapter Five

Figure 5.1. Initial screening results of the 741 drug/compound library on MDA-MB-231 in two-dimensional cell culture for the 22\textmu M dose ..144

Figure 5.2. Initial screening results of the 741 drug/compound library on MDA-MB-231 in two-dimensional cell culture for the 2.2\textmu M dose ..145

Figure 5.3. Initial screening results of the 741 drug/compound library on MDA-MB-231 in two-dimensional cell culture for the 0.22\textmu M dose ..146

Table 5.1. Summary of the mechanism of action and published activity of drugs identified in the pilot screen ..148

Figure 5.4. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to cerivastatin ..150

Figure 5.5. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to simvastatin ..152

Figure 5.6. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to mycophenolic acid ..154

Figure 5.7. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to ciclopirox olamine ..156

Figure 5.8. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to topotecan hydrochloide ..158

Figure 5.9. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to rubitecan ..160

Figure 5.10. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to digitoxin crystalline ..162

Figure 5.11. Two-dimensional (2D) and three-dimensional (2D) breast cancer cell culture response to mitoxantrone dihydrochloride ..164

Figure 5.12. Two-dimensional (2D) and three-dimensional (2D) breast cancer cell culture response to salinomycin ..166

Figure 5.13. Two-dimensional (2D) and three-dimensional (3D) breast cancer cell culture response to maduramicin ammonium ..168

Table 5.2. Summary the results from the pilot screen between two-dimensional (2D) and three-dimensional (3D) cell culture ..170
Chapter Six

Figure 6.1. Extrinsic and intrinsic apoptosis pathways ..189

Figure 6.2. Illustration of integrin heterodimer combinations191

Figure 6.3. Representation of integrin signalling pathways ..192

Figure 6.4. Total number of cells per well and total number of cells per spheroid in three-dimensional (3D) cell culture ...196

Figure 6.5. Three-dimensional breast cancer MCF-7 cell culture with PuraMatrix™ in response to doxorubicin and paclitaxel ...199

Figure 6.6. Three-dimensional breast cancer MDA-MB-231 cell culture with PuraMatrix™ in response to doxorubicin and paclitaxel ...201

Figure 6.7. Three-dimensional (3D) breast cancer MCF-7 cell culture in response to paclitaxel over time ...203

Figure 6.8. Three-dimensional (3D) breast cancer MDA-MB-231 cell culture in response to paclitaxel over time ...204

Figure 6.9. Two-dimensional (2D) breast cancer cell culture response to the accumulation of doxorubicin in MCF-7 and MDA-MB-231 cells ...206

Figure 6.10. Three-dimensional breast cancer cell culture response to the accumulation of doxorubicin in MCF-7 cells ...208

Figure 6.11. Three-dimensional breast cancer cell culture response to the accumulation of doxorubicin in MDA-MB-231 cells ...209

Figure 6.12. Three-dimensional (3D) breast cancer MDA-MB-231 cell culture expression of β1-integrin ...211

Figure 6.13. Three-dimensional breast cancer MDA-MB-231 cell culture in response to β1-integrin and doxorubicin inhibition ...212

Figure 6.14. The signalling responses of total protein kinase B (AKT) and phosphorylated AKT (S473) after exposure to doxorubicin and/or β1-integrin inhibition for MDA-MB-231 three-dimensional (3D) breast cancer cell culture214

Figure 6.15. The signalling responses of total mitogen-activated protein kinase (MAPK) and phosphorylated MAPK (T202-T204) after exposure to doxorubicin and/or β1-integrin inhibition for MDA-MB-231 three-dimensional (3D) breast cancer cell culture215

Figure 6.16. The signalling responses of Bcl-2 and Bcl-xL after exposure to doxorubicin and/or β1-integrin inhibition for MDA-MB-231 three-dimensional (3D) breast cancer cell culture ..217

Figure 6.17. Three-dimensional (3D) breast cancer MDA-MB-231 cell culture in response to doxorubicin combined with β1-integrin inhibition ..219

Figure 6.18. Proposed model of MDA-MB-231 three-dimensional (3D) cell culture cellular survival following exposure to doxorubicin ..229
Chapter Seven

Table 7.1. Structure and mechanism of action for doxorubicin and paclitaxel chemotherapeutic drugs...240

Figure 7.1. Cellular iron metabolism in normal cells and cancer cells.................................241

Table 7.2. Structure and mechanism of action for ciclopirox olamine242

Table 7.3. Structure and mechanism of action for di-2-pyridylketone-4,4′,dimethyl-3-thiosemi-carbazone (Dp44mT)...243

Figure 7.2. Miniaturisation of cell culture in high-throughput formats..........................244

Figure 7.3. Three-dimensional (3D) breast cancer cell culture morphology, size and number of spheroids over time in a 1536-well plate for MDA-MB-231..246

Figure 7.4. Percentage coefficient of variation (%CV) and Z′-factor data for 1536-well plate assay development..249

Figure 7.5. Reference drugs established for three-dimensional (3D) MDA-MB-231 1536-well microtitre plate assay...250

Figure 7.6. Normalised isobolograms for paclitaxel and doxorubicin drug combinations in MDA-MB-231 three-dimensional (3D) cell culture..253

Figure 7.7. Normalised isobolograms for ciclopirox olamine and doxorubicin drug combinations in MDA-MB-231 breast cancer cell three-dimensional (3D) cell culture255

Figure 7.8. Normalised isobolograms for di-2-pyridylketone-4,4′,dimethyl-3-thiosemi-carbazone (Dp44mT) and doxorubicin drug combinations in MDA-MB-231 breast cancer cell three-dimensional (3D) cell culture..257
List of Abbreviations

% = Percentage
%CV = Percentage coefficient of variation
°C = Degrees Celsius
µl = Microliter/s
µM = Micromolar
2D = Two-dimensional
3D = Three-dimensional
ANOVA = Analysis of variance
AUC = Area under the curve
BF = Bright field
BRCA1 = Breast cancer 1, early onset
BSA = Bovine serum albumin
CMF = Cyclophosphamide/methotrexate/fluorouracil
Da = Daltons
DCIS = Ductal carcinoma in situ
DIC = Differential interference contrast microscopy
DMSO = Dimethyl sulfoxide
DNA = Deoxyribonucleic acid
ECM = Extracellular matrix
EDTA = Erythrylenediaminetetraacetic acid
EGF = Epidermal growth factor
EGFR = Epidermal growth factor receptor
ER = Oestrogen Receptor
ErbB2/HER2 receptor = Human Epidermal Growth Factor Receptor 2
FAK = Focal adhesion kinase
FGF = Fibroblast growth factor
FIC = Fractional inhibitory complex
FIX = Fractional inhibitory index
GEM = Genetically engineered mouse
GFR Matrigel = Growth factor reduced Matrigel
GRB2 = Growth-factor-receptor-bound-2
HCA = High-content analysis
HIF-1 = Hypoxia-inducible factor 1
HMG-CoA 3-Hydroxy 3-methylglutaryl coenzyme A
HTS = High-throughput screening
IC$_{50}$ = Half maximal inhibitory concentration
IDC = Invasive ductal carcinoma
IDC = Invasive ductal carcinoma
IF = Immunofluorescence
IGF = Insulin-like growth factor
IGF-1R = Insulin-like growth factor 1 receptor
ILC = Invasive lobular carcinoma
JNK = Jun-amino terminal kinase
LCIS = Lobular carcinoma in situ
MAPK = Mitogen-activated protein kinase
ml = Millilitre/s
mM = Millimolar
mTOR = Mammalian target of rapamycin
List of Abbreviations

NaCl = Sodium chloride
NFκB = nuclear factor kappa-light-chain-enhancer of activated B cells
nM = Nanomolar
PAGE = Polyacrylamide gel electrophoresis
PAK = p21-activating kinase
PARP = Poly (ADP-ribose) polymerase
PBS = Phosphate-buffered saline
PDGF = Platelet-derived growth factor
PFA = Paraformaldehyde
PI3K = Phosphatidylinositol 3-kinase
PR = Progesterone receptor
PRF Matrigel = Phenol red-free Matrigel
PtdIns(3,4,5)P3 = phosphatidylinositol-3,4,5-trisphosphate
PTEN = Phosphatase and tensin homolog
rBM = Reconstituted basement membrane
RGD = Arg-Gly-Asp
RTK = Receptor tyrosine kinase
SD = Standard deviation
SDS = Sodium dodecyl sulphate
SEM = Standard error of the mean
SFKs = Src family kinases
SOS = Son-of-sevenless
TBS = Tris-buffered saline
TBS/T = Tris-buffered saline with Tween-20
TGF-β = Transforming growth factor beta
TLDU = Terminal duct lobular unit
v/v = Volume per volume
VEGF = Vascular endothelial growth factor
w/v = Weight per volume
Statement Acknowledging the Extent and Nature of Any Assistance Received in the Pursuit of the Research

Three publications have resulted from research undertaken as part of this PhD project to date. The papers are listed as follows:

I acknowledge the contribution of the co-authors within these publications. Only the research completed and the methodology developed as part of this PhD project is presented in this thesis and the research completed by others has been excluded or duly acknowledged and referenced. The design and development of this PhD project was completed in consultation with my supervisor, Professor Vicky Avery. The contribution of others to this work is detailed below.

Collaborative research with Todd Shelper was undertaken for the development of the miniaturised three-dimensional (3D) cell culture model for breast cancer. The results from the development and validation of this assay are described in research completed as part of Chapter Three, Chapter Four and Chapter Five of this thesis and a selection of these results is published in the manuscript entitled: “**Miniaturized Three-**
"Dimensional Cancer Model for Drug Evaluation." I acknowledge the contributions of my co-authors (Todd Shelper and Vicky Avery) for their contributions in this publication.

Application of methodology developed as part of this PhD was published within the manuscript entitled: “Nickel and Zinc Cyclam-amino Acid and Cyclam-peptide Complexes may be Synthesized with “Click” Chemistry and are Non-toxic.” The two-dimensional cell culture assay methodology utilised in the initial monolayer screening of the library of clinically relevant drugs in Chapter Five against MDA-MB-231 was utilised to obtain the breast cancer results published within this manuscript. The results obtained from the screening of the clinically relevant drug library were not included in this manuscript. I acknowledge the contributions of my co-authors (Mingfeng Yu, Jason Price, Paul Jensen, Todd Shelper, Sandra Duffy, Louisa Windus, Vicky Avery, Peter Rutledge and Matthew Todd) for their independent research presented in this publication.

Methodology developed in the course of this PhD project, and utilisation of images resulting from the 3D assay, were included within the manuscript recently accepted and in press entitled: “PCaAnalyser: A 2D-Image Analysis Based Module for Effective Determination of Prostate Cancer Progression in 3D Culture.” The methodology for determination of doxorubicin penetration into 3D breast cancer spheroids and a small portion of the results obtained from the research into drug penetration in 3D breast cancer cell culture conducted as a component of this PhD project (Chapter Six) was incorporated into the manuscript. I acknowledge the contributions of my co-authors (Md Tamjidul Hoque, Louisa Windus and Vicky Avery) for their independent research outcomes which have been presented in this publication.
Acknowledgements

The completion of this research project would not have been possible without the involvement and support of numerous people.

First and foremost I would like to express my gratitude to my supervisor, Professor Vicky Avery, for her support, encouragement and guidance throughout my PhD candidature.

I would like to thank Dr Louisa Windus and Todd Shelper for their assistance with imaging and analysis techniques. I would also like to thank the past and present members of the Discovery Biology laboratory for helpful discussions and support throughout my research. Many thanks to Dr Debra Kiss, Dr Amy Jones, Dr Sabine Fletcher, Dr Leonardo Lucantoni, Angela Hillsdon, Rebecca Lang, Dr John Holleran, Aaron Lock, Aarti Aurora, Sas Loganathan, Preethi Mayura Guru, Todd Shelper, Dr Grant Stuchbury, Melissa Sykes, Sandra Duffy, Tristan Glover and Dr Louisa Windus.

I would like to thank Griffith University and the Australian Government for awarding financial support through an Australian Postgraduate Award and Cancer Therapeutics CRC for awarding a top-up scholarship. I also wish to express gratitude to Griffith University, Cancer Therapeutics CRC, the Cancer Council Queensland, the New York Academy of Sciences in conjunction with PepsiCo, PerkinElmer and Cold Spring Harbor Laboratory for awarding funding. The funding awarded provided me the opportunity to attend a range of workshops, national and international conferences over the course of my PhD, which contributed immensely to my professional development.

I would also like to thank my family, particularly my parents Philip and Sharon Lovitt, and friends for their support throughout my PhD project.