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Abstract

The key task of transmitting quantum states encompasses a diverse array of tech-
niques and applications. This thesis presents experimental work in optical quantum
information science, focused on strategies for transmitting quantum states with high
fidelity and security. The majority of the work in this thesis is in photonic quantum
information science, although one experiment used continuous–variable states.

In the first experiment, the noiseless amplification of a photon polarisation qubit
was realised, using delocalised single photon ancilla states and two single–mode
amplification stages operating coherently. Artificial loss was applied to a single
photon, to simulate a loss in a long–distance quantum transmission channel, and
for the highest gain setting that was investigated, the qubit amplifier achieved a
five–fold increase in transmission fidelity.

In the second experiment, linear optical techniques for distributing mode entangle-
ment in a quantum network were studied. Quantum networks are based on a series
of nodes, potentially separated by significant distances, and connected via quantum
repeaters. Different quantum repeater architectures have been proposed, but they
all include embedded distillation stages, which are based on linear optical techniques.
We simulate two distinct quantum repeater scenarios, using different configurations
of an entanglement swapping stage, a noiseless single–mode amplification stage,
and loss. The performance of the amplification stage in overcoming the loss is
characterised in both configurations. Significant distillation of mode entanglement
is achieved in one configuration, and an increase in mode coherence is achieved in
the other configuration.

Secure quantum communication is a highly active field of research. Device–independent
protocols, such as device–independent quantum key distribution (DIQKD), offer
guaranteed security even when devices are untrusted. This level of security comes
at the cost of violating a Bell inequality, which is extremely challenging with current
technology. A more feasible alternative is one–sided DIQKD, which involves the
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violation of a steering inequality with less stringent requirements. In our experiment,
we investigate a quantum–refereed steering protocol, in which both parties can be
untrusted. We successfully demonstrate steering of a Bell–local state, and lay the
groundwork for quantum–refereed one–sided DIQKD demonstrations. This type of
protocol would seem to be the natural solution for common nodal networks, in which
a secure central node communicates with many unsecured terminal nodes.

The final experiment demonstrated the coherent conversion of a squeezed vacuum
state from 1550 nm, at telecommunication wavelength, to 532 nm. A frequency
conversion efficiency of 89.2% was measured for a weak coherent state. Frequency
conversion of non–classical optical states is an important step for interfacing various
quantum technologies, or for entangling two spatially separated quantum memories,
which generally operate in the visible frequency spectrum. In the end, half of a 1550
nm squeezed vacuum state was converted to 532 nm, and 1.4 dB of entanglement
was measured between frequencies.
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Chapter 1

Introduction

The 1960s was a momentous decade in recent human history [1–3]. It was around
this time that many of the conceptual foundations were laid for the current field of
quantum information science. To be sure, the ideas that were germinating in the
1960s had important antecedents, and key concepts were developed later, but it is
convenient to take this decade in the middle of the last century as a starting point
to trace the development of quantum information science [4].

It was in 1961 that Maxwell’s demon was finally put to rest, by Landauer’s erasure
principle [5]. Maxwell’s demon is the name given to a thought experiment first
proposed by Maxwell in 1871 [6, 7]. The second law of thermodynamics states that
the entropy of a closed system cannot decrease, but Maxwell imagined a machine that
would apparently violate this law. He imagined a gas cylinder initially at thermal
equilibrium, with a central partition dividing it into two halves. A microscopic
“demon” operates a small gate at the partition, which is the only way to move
between the halves of the cylinder. The demon could, in principle, individually
separate the fast– and slow– moving gas particles: when a particle with a higher
velocity than the ensemble mean approaches the gate from the left, the demon opens
the gate and lets it through, closing the gate after it. Over time, the total entropy in
the cylinder would decrease, and violate the second law of thermodynamics. Szilard
considered the paradox in terms of an idealised heat engine, from which one could
extract work by making appropriate measurements, and was the first to explicitly
point out the connection between information and physics [8]. The paradox persisted
until Landauer’s insight that the demon must measure each particle to determine
its velocity, and store that information in a memory. Memory is always finite, so
the demon must eventually erase some information stored in memory in order to
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make new measurements. Erasing information increases entropy, and an analysis
showed that this entropy increase must be at least as much as the entropy decrease
due to the demon’s actions, thus satisfying the second law of thermodynamics [4].
This analysis prompted Landauer to make his famous statement that “information
is physical” [9, 10].

An earlier pioneering result highlighting the role of information in physics is the
work by Shannon from 1948 on communication capacity [11]. Shannon quantified the
physical resources required to store classical information, and how much information
can reliably be transmitted across a noisy classical communication channel. The
modern theory of information and communication is based on his mathematical
definition of the concept of information

In 1964, Bell introduced a theorem [12, 13] concerning the famous EPR paradox [14],
proving that a local hidden variable (LHV) model of nature (favoured by Einstein,
Podolsky and Rosen) was incompatible with the predictions of quantum mechanics.
The correlations predicted by any LHV model are limited by inequalities (now known
as Bell inequalities), which are violated in quantum theory. In other words, a LHV
model can reproduce measurement results predicted by quantum theory some of the
time, but it cannot mimic all possible quantum correlations in an experiment. This
compelled a re–appraisal of the assumptions of local realism in the original EPR
paradox, as Bell’s theorem confirmed that one of them must be abandoned.

In a series of papers in 1963, Glauber defined the concept of optical coherence in
quantum mechanical terms [15, 16]. In their experiments on stellar interferometry in
1956, Hanbury Brown and Twiss had observed correlations between the fluctuations
in photocurrents of two independent detectors illuminated by the same star. This
motivated Glauber to investigate the photon statistics of radiation fields, and his
results can be considered the beginning of the field of quantum optics [17]. Around
that same time, the first laser system was built by Maiman in 1960 [18], based on
ideas from a few years earlier due to Schawlow, Townes [19], Basov and Prokhorov
[20]. The invention of the laser heralded the new field of nonlinear optics, which is
the study of phenomena due to the modification of optical properties of a material
system in the presence of light [21].

Within a relatively short period of time in the mid–20th century, the role of infor-
mation in physics started to gain prominence, Bell’s theorem re–framed the ongoing
discussion about permissible models of nature, and the fields of quantum optics and
nonlinear optics had emerged. In subsequent decades, these sub–fields of physics
would intersect and merge in fruitful and sometimes surprising ways. By the 1980s
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the idea that computation is limited by the laws of physics had been developed
further [22]; in 1982 Feynman was the first to propose that simulating a quantum
mechanical system would require building a quantum computer [23]. The first
measurements of non–classical states of light [24] paved the way for a series of
experiments demonstrating the violation of a Bell inequality; the most famous of
these are the 1981–2 Aspect experiments [25–27].

A significant development in quantum optics was the first observation of interference
between two single photons by Hong, Ou and Mandel in 1987 [28]. This is a purely
non–classical phenomenon, now known as the Hong-Ou-Mandel (HOM) effect, and is
the only known example of the interference of single photons1. For the two photons
to interfere at a 50:50 beam splitter, they must be mode–matched in all degrees of
freedom, effectively making them indistinguishable. Feynman’s simple prescription
[29] for calculating the probability of a certain outcome can explain the HOM effect:
since the two photons are indistinguishable at the beam splitter, their probability
amplitudes for reflection and transmission are added, and the absolute square of the
result gives the probability of detecting photons in each output port. The probability
amplitude for finding a photon in each output port is zero, and a photon “bunching”
effect is observed. This can be thought of as another example of information (in the
form of distinguishability) playing a fundamental role in physics2.

One of the first great successes in the nascent field of quantum information was
a theoretical proposal for teleporting an unknown quantum state, using an entan-
glement resource and classical communication [33]. The protocol included a joint
Bell state measurement, and it was realised that this could be achieved using the
recently discovered HOM effect [34, 35], which can project two photons into an anti–
symmetric entangled state, i.e. the singlet state. The experimental demonstrations
followed shortly after [36, 37], and was extended to demonstrate entanglement
swapping in 1998 [38]. In any experiment involving quantum teleportation, no
matter or energy is every really teleported; it is only a quantum state that is ever
teleported, and a quantum state is essentially information.

Another milestone in the early history of quantum information science was the
no–cloning theorem, developed in 1982 by Wootters and Zurek [39], and inde-
pendently by Dieks [40]. In both papers, the point was made that a quantum

1Cross–phase modulation in a Kerr medium is a relatively weak effect, and has so far not been
demonstrated for single photons.

2The primacy of distinguishing information in the HOM effect is emphasised in “quantum eraser”
experiments [30–32], in which the single photons are not mode–matched in one degree of freedom
at the beam splitter, but distinguishing information is erased just before detection, to recover
interference.
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cloning device would, in principle, allow for faster–than–light communication. It was
shown, however, that the linearity of quantum mechanics rules out the possibility of
any deterministic quantum cloning device. In the quantum teleportation protocol,
the initial unknown state is destroyed by measurement (so that no two copies of
the state ever exist at once), and one bit of classical communication is required
to be sent to the other party, confirming that communication is limited by the
speed of light. Wootters and Zurek connected quantum cloning with noiseless
amplification, which had implications in quantum state discrimination as well as
quantum communication.

In spite of its simplicity, the no–cloning theorem has had far–reaching consequences.
The first quantum cryptography scheme, known as BB84 [41], is a quantum key
distribution (QKD) protocol proposed in 1984, that consists of encoding classical
information on quantum states, and transmitting them over a public channel. The
no–cloning theorem guarantees that, provided the error rate in transmission is lower
than a certain threshold, there is no possibility of an adversary eavesdropping on the
communication. The first quantum communication protocol to use entanglement was
proposed in 1991 [42], and guaranteed communication security with the violation of
a Bell inequality. Quantum communication has since become one of the most well–
developed and promising areas of research in optical quantum information science.

The revolutionary insight that efficient quantum computation is possible with lin-
ear optics, using non–classical interference in the HOM effect and single photon
detection, was due to Knill, Laflamme and Milburn in 2001 [43]. In the paper, it
was shown that single qubit rotations and controlled–NOT (CNOT) gates between
qubits were enough for scalable linear optical quantum computing (LOQC). Not
long after this, the first photonic CNOT gate was experimentally demonstrated and
characterised [44]. By the beginning of the twenty first century, the field of quantum
information science had been firmly established, and incorporated principles and
techniques from diverse disciplines.

The experiments in this thesis investigate techniques to enhance quantum commu-
nication in various ways. Quantum states are very fragile, and their purity degrades
rapidly in a noisy environment, such as a realistic quantum transmission channel.
Highly pure quantum states are required in quantum logic gates, and for most
other quantum information tasks. Security is also undermined by excessive loss and
mixture in transmission, which is one of the main goals of quantum communication.
Finally, quantum communication serves as a link between various other quantum
information systems, such as sources of non–classical light and quantum memories.
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To link these different technologies, the properties of quantum states will need to be
transformed in a highly controlled and precise way.

Chapter 2 presents an overview of some of the theoretical background necessary to
understand the experiments in subsequent chapters. The chapter begins with a brief
review of nonlinear optics, which is fundamental to the generation of non–classical
states of light. In the rest of the chapter, key terms and concepts in experimen-
tal quantum information science are introduced. General details are presented in
Chapter 2, while more specific theoretical background can be found in the subsequent
chapters, as it relates to individual experiments.

Chapter 3 presents the experimental realisation of a heralded noiseless qubit ampli-
fier. A qubit, a two–mode quantum state, is the quintessential model for encoding
quantum information. Signal amplification, which is ubiquitous in classical com-
munication, is limited in the quantum regime by the no–cloning theorem. A non–
deterministic strategy closely related to quantum teleportation is used to overcome
the limitation set by quantum mechanics. The qubit amplifier, though probabilistic,
is heralded, and thus has direct applicability to device–independent quantum key
distribution. A nearly five–fold increase in transmission fidelity is measured at the
qubit amplifier output.

An experimental investigation of entanglement distribution with linear optics in
quantum networks is described in Chapter 4. Transmission loss in a quantum
network is simulated by a variable attenuator and an entanglement swapping stage,
and is compensated using a single–mode noiseless amplification stage. The setup
is operated in two distinct configurations: the first configuration simulates loss
before the terminal node of a quantum repeater, and the second simulates loss
between intermediate nodes. Distribution of high–quality entanglement is required
in quantum networks, and our amplification protocol distils mode entanglement
that has been degraded through transmission loss. In the first configuration, the
measured concurrence of the mode–entangled state was three times higher with
amplification than it would have been otherwise. The results indicate that this
is a promising and robust technique that would be reasonably straight–forward to
integrate into future quantum networks.

A quantum–refereed steering protocol is realised in Chapter 5. The experimental
violation of a steering inequality is directly related to one–sided device–independent
QKD (DIQKD). Violation of a steering inequality is an asymmetric task, in which
an external referee must trust one of the parties. This can potentially undermine
the security of the protocol, if Alice and Bob are in a pre–arranged conspiracy, or
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if Bob’s measurement device has somehow been compromised without his knowing.
With the addition of quantum randomness by the referee, neither Alice nor Bob need
to be trusted. A steering inequality is violated in this quantum–refereed scenario,
using a Bell–local Werner state. This protocol, which has significantly less strict
requirements than full DIQKD, is well–suited to situations where a secure central
node in a network communicates with multiple untrusted terminal nodes.

The experiment in Chapter 6 concerns the frequency conversion of a squeezed state
from 1550 nm to 532 nm. Converting the frequency of a squeezed state from
telecommunication frequencies, where transmission loss is lowest, to visible frequency
is a necessary step for interfacing optical continuous–variable states with quantum
memories. The frequency conversion is a coherent process based on difference
frequency generation, making it tunable in principle.

Chapter 7 concludes this thesis. The main results are summarised and put into
context, and future directions for research are discussed.
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Chapter 2

Classical and Quantum Theory
of Light

2.1 Introduction

James Clerk Maxwell unified electricity and magnetism in 1873, and proposed
that light is an electromagnetic wave [45, 46]. The modern theory of classical
electrodynamics begins with Maxwell’s famous four equations. At the beginning
of the twentieth century, one of the outstanding questions in physics was how to
explain the “ultraviolet catastrophe” in the blackbody radiation spectrum. Max
Planck postulated in 1900 that electromagnetic energy could only be absorbed and
emitted in discrete quanta, and introduced the Planck constant h relating energy
to radiation frequency [47]. This revolutionary idea inspired Albert Einstein to
propose, in 1905, that all electromagnetic radiation energy is quantised, mainly in
order to explain the photoelectric effect [48].

In the late 1950’s, the maser [49] and then lasers [18] were being demonstrated
for the first time in laboratories. The genesis of nonlinear optics came after the
invention of the laser, as only a laser was capable of producing light at high enough
intensities in the optical regime to observe nonlinear effects in materials. Since then,
the related field of quantum optics has progressed immensely, thanks in large part
to the possibility of studying light–matter interactions with strong coherent fields,
as well as the ability to generate quantum states of light using nonlinear materials.

This thesis focuses on generating, manipulating and measuring non–classical states
of light, particularly in the context of the relatively new field of quantum information
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science. This chapter presents an overview of the theoretical background that
will be useful for understanding the experimental work discussed in subsequent
chapters. To begin with, elements of classical nonlinear optics are discussed, and the
connection with generating non–classical states of light will be discussed. Canonical
quantisation is introduced next, and the statistical properties of different categories
of electromagnetic radiation are described. In the following section, encoding qubits
on single photons and physically implementing qubit operations are considered.
Finally, some details concerning the detection of single photons and reconstructing
their quantum states are presented.

Three of the four main chapters in this thesis describe experiments in photonic
quantum information science, or quantum information with “discrete variables”.
The non–classical states in these experiments are single photons, and linear optical
components form the main experimental apparatus. After the single photons have
been created, the only nonlinear element in the experiments are the single photon
counting modules (SPCM) that detect single photons at the end of an optical
circuit. This background theory in this chapter is predominantly intended to present
background theory relevant to discrete variable quantum information. One chapter
(Chapter 5) presents the results of an experiment using continuous variables. Most
of the material in this chapter is relevant to that experiment, and the first few
sections of Chapter 5 (as well as Appendix B) present additional background that
will be helpful to understanding quantum optics in cavities.

2.2 The Classical Wave Equation

Here, and in Section 2.3, we closely follow the approach in [21]. Maxwell’s equations
fully describe classical electromagnetic fields and associated phenomena. Their
differential form (in SI units) is:

∇ ·D = ρ ∇ ·B = 0 (2.1 a,b)

∇×E = −∂B
∂t

∇×H = ∂D
∂t

+ J (2.1 c,d)

The vector fields E and B are the electric and magnetic fields, while D is the electric
displacement field, and H is the magnetising field due to magnetic poles. The symbol
ρ denotes distribution of free charge, and J denotes free current. We are interested
in the case where there are no free charges or currents, and thus:

ρ = 0 , J = 0 . (2.2 a,b)
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We also assume that the material is not magnetic, which means

B = µoH , (2.3)

where µo denotes the permeability of free space.
The electric displacement field D is the field arising from interaction of light with
the material. It is related to the electric field in the following way:

D = εoE + P, (2.4)

where εo denotes the permittivity of free space. In (2.4), there is a part proportional
to the original field E, and a part proportional to the polarisation vector P. The
polarisation vector describes the motion of atomic dipoles in the material. These
dipoles individually behave as microscopic oscillators, which can collectively produce
new electromagnetic radiation. Many interesting effects in nonlinear optics can be
explained classically, without quantising the electromagnetic field. To derive several
nonlinear effects in the next sections, we will treat the polarisation vector as a
perturbative term in the equation of motion for the material. The polarisation
vector can therefore be described as a power series expansion in E:

P = εo[χ(1)E + χ(2)E2 + χ(3)E3 . . . ] (2.5a)

= εo

∞∑
n=1

χ(n)En (2.5b)

=
∞∑
n=1

P(n) . (2.5c)

It is convenient to separate P and D into their linear and nonlinear components:

P = P(1) + P(NL) , D = D(1) + D(NL) , (2.6 a,b)

where
D(1) = εoE + P(1). (2.7)

Assuming that the material is lossless, the relationship between D(1) and E can be
written in terms of a dielectric tensor:

D(1) = ε0ε
(1) ·E . (2.8)

The expression is simplified in the case of an isotropic material, as the dielectric
tensor reduces to a scalar quantity: ε(1) = ε(1) = 1 +χ(1). The higher order terms in
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P generate the nonlinear effects that we will be interested in. The relative strength
of the P(NL) terms are typically very small, which is consistent with the observation
that high field intensities are required to observe any nonlinear effects. Here we will
only be concerned with nonlinear effects up to order χ(2), and higher order effects
will be neglected.

Maxwell’s wave equation can be derived in a straightforward way from the four
equations in (2.1). Taking the curl of the equation for the electric field E in (2.1
c,d), the order of the space and time derivatives are interchanged in the right–hand
side of the resulting equation. Next, the equation for the magnetising field H in (2.1
c,d) is substituted in, by noting its relation to B in (2.3). The free current term J
vanishes due to (2.2). Finally, (2.4) is substituted in, to obtain:

∇×∇×E + 1
c

∂2

∂t2
E = −µo

∂2

∂t2
P. (2.9)

Recalling the vector calculus identity

∇×∇×E = ∇(∇ ·E)−∇2E (2.10)

and noting that the contribution of the ∇(∇ · E) term can be neglected in the
paraxial or slowly varying amplitude approximation, equation (2.9) becomes

∇2E− 1
c2
∂2

∂t2
E = µo

∂2

∂t2
P. (2.11)

In general, optical materials will be dispersive, meaning that the dielectric tensor
will be frequency dependent. The frequency components of the electric, linear
displacement, and polarisation fields should be considered separately, and a plane
wave solution is tested:

E(r, t) =
∑
n

En(r, t) =
∑
n

[
En(r)e−iωnt + E∗n(r)eiωnt

]
(2.13a)

D(1)(r, t) =
∑
n

D(1)
n (r, t) =

∑
n

[
D(1)
n (r)e−iωnt +D∗(1)

n (r)eiωnt
]

(2.13b)

P(NL)(r, t) =
∑
n

P(NL)
n (r, t) =

∑
n

[
P(NL)
n (r)e−iωnt + P∗(NL)

n (r)eiωnt
]

(2.13c)

Taking into account the frequency modes of these three fields, and the frequency
dependence of the dielectric tensor, equation (2.11) can be re-written as:

∇2En(r, t)− ε(1)(ωn)
c2

∂2

∂t2
En(r, t) = µo

∂2

∂t2
P(NL)
n (r, t) (2.14)
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This is the wave equation for an isotropic, dispersive nonlinear material. Each
frequency mode separately satisfies (2.14), with an explicitly frequency dependent
dielectric tensor. The equation has the form of a driven harmonic oscillator, with
the nonlinear polarisation response of the medium on the right hand side acting as
the source term. Without the source term, (2.14) simplifies to describe free waves
propagating with the velocity v = c/

√
ε(1).

2.3 Three–Wave Mixing Effects

Three–wave mixing processes are mediated by χ(2), the second-order nonlinear sus-
ceptibility of the material. Some crystals are known as centrosymmetric, or equiva-
lently they are said to have inversion symmetry. This means the medium is invariant
under spatial inversion of its atomic wave functions. From (2.5), this implies that
P(n) = −P(n) for all even n, which can only be true if χ(n) = 0. Therefore even-
ordered nonlinear susceptibilities, including χ(2), only occur in noncentrosymmetric
materials, and this is the type of material necessary to observe three–wave mixing
effects.

We consider the general case where the incident field is composed of two distinct
frequency components: ω1 and ω2. The nonlinear polarisation is the source term in
the wave equation (2.14), and as we are concerned with terms up to order χ(2), this
driving term is proportional to E2. There will be five different frequency components
from E2 contributing to P(2), meaning that radiation at any of these frequencies can
be emitted due to interactions in the medium:

ω1 + ω2 |ω1 − ω2| (2.15 a,b)

2ω1 2ω2 (2.15 c,d)

0 (2.15 e)

Thus, the second-order nonlinear susceptibility can mix two waves of different fre-
quencies, and generate a third wave. The frequencies (2.15 a,b) are the (a) sum–
frequency and (b) difference–frequency, while (2.15 c,d) are the second harmonics
of the fundamental frequencies. Finally, (2.15 e) is a static term known as optical
rectification, which represents a constant polarisation in the material induced by
the light field. The form that the three–wave mixing process takes depends on what
fields are provided as inputs, the phase matching conditions, and what field is taken
to be the output.
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2.3.1 Sum–Frequency Generation

!1
!2

!1
!2
!3 = !1 + !2

�(2)

Figure 2.1: Input and output frequency modes in sum–frequency generation (SFG).

In sum–frequency generation (SFG), fields at two distinct frequencies, ω1 and ω2,
interact in the material to generate a third field at the sum–frequency ω3:

ω3 = ω1 + ω2 , (2.16)

The frequency-dependent wave equation (2.14) governs the dynamics of the interac-
tion. Since we can think of the polarisation source term as a small perturbation to
the free-space evolution, we can propose a plane-wave solution to (2.14), assumed
to be propagating in the +z direction with frequency ω3:

E3(z, t) = E3(z)e−iω3t + E∗3 (z)eiω3t (2.17a)

= A3(z)ei(k3z−ω3t) +A∗3(z)e−i(k3z−ω3t) (2.17b)

The wavenumber k and linear index of refraction n are

k3 = n3ω3
c

, n2
3 = ε(1)(ω3) , (2.18)

and A3 is the complex amplitude of the wave. The nonlinear polarisation in sum–
frequency generation can be expressed as the following scalar relationship:

P3 = 4εoχA1A2e
i(k1+k2)z (2.19)

where χ ∝ χ(2) is the effective nonlinear coupling constant. Substituting (2.19) into
the wave equation (2.14) gives the expression

d2A3
dz2 + 2ik3

dA3
dz = −4χω2

3
c2 A1A2e

i(k1+k2−k3)z (2.20)

We can now invoke the slowly varying amplitude approximation again, but now the
approximation can be quantified. It is valid as long as∣∣∣∣∣d2A3

dz2

∣∣∣∣∣�
∣∣∣∣k3

dA3
dz

∣∣∣∣ (2.21)
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meaning that the amplitude of the field does not change over wavelength distance
scales. This assumption, generally true, allows us to neglect the second-order deriva-
tive in (2.20), and we are left with an expression describing the spatial evolution of
the ω3 field amplitude, as a result of its coupling to the ω1 and ω2 waves:

dA3
dz = 2iχω2

3
k3c2 A1A2e

i∆kz (2.22)

Similarly, the ω1 and ω2 field amplitudes evolve as:

dA1
dz = 2iχω2

1
k1c2 A3A

∗
2e
−i∆kz (2.23a)

dA2
dz = 2iχω2

2
k2c2 A3A

∗
1e
−i∆kz (2.23b)

These are known as the coupled–wave equations for sum–frequency generation, as
the evolution of one field’s amplitude explicitly depends on the amplitudes of the
other two fields. We have introduced a quantity known as the wave vector mismatch:

∆k = k1 + k2 − k3 (2.24)

In general (2.24) is a vectorial relationship. Here, we are limiting the discussion to
the z direction, and the the z components can therefore be written in a scalar
equation. The vectorial nature of (2.24), however, is critical to the upcoming
discussion of collinear and non–collinear SPDC in Section 2.3.4. For perfect phase
matching, ∆k = 0, the amplitude of the sum–frequency wave increases linearly with
z, the distance propagated through the nonlinear medium. The argument of the
complex wave function in (2.17) is k3z±ω3t, and the frequency matching condition
ω3 = ω1 + ω2 and the perfect phase matching condition k3 = k1 + k2 ensure that
they interact over an extended duration of time and region in space. Phase matching
will also specify the direction in which the sum–frequency wave is emitted from the
material. The amplitude at the end of the medium is:

A3(L) = 2iχω2
3A1A2
k3c2

L∫
0

ei∆kzdz (2.25a)

= 2iχω2
3A1A2
k3c2

(
ei∆kL − 1
i∆k

)
(2.25b)
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The intensity of the field is the magnitude of the time-averaged Poynting vector:

I3(L) = 2n3ε0c|A2
3| (2.26a)

= 8(χ)2ω2
3I1I2

n1n2n3ε0c2 L
2sinc2

(∆kL
2

)
(2.26b)

This is the solution in the simple limit where the two input pump fields are un-
depleted throughout the interaction. It is clear that, were it not for the imperfect
phase matching, the sum–frequency output intensity would increase linearly with
the input field intensities, and quadratically with the length of the material. The
coherence length of the three–wave interaction is commonly defined as:

Lcoh ≡ ∆k/2 . (2.27)

This is the length over which the three–wave mixing process will stay in phase.
The phase matching function has the following form: If the length of the material
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Figure 2.2: (a) Phase matching function. (b) Output intensity I3(L) for perfect and
imperfect phase matching.

L is greater than Lcoh, then the output wave gets out of phase with its driving
polarisation, and energy flows from ω3 back to the ω1 and ω2 fields. There is an
oscillatory behaviour, as the three waves come in and out of phase over multiples of
this coherence length. By contrast, for perfect phase matching the output power of
the sum–frequency field simply increases quadratically.
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2.3.2 Second Harmonic Generation

Second harmonic generation (SHG) is the special degenerate case of sum–frequency
generation:

ω1 = ω2 = ω , ω3 = 2ω . (2.28 a,b)

The ω field is the strong pump field at the fundamental frequency, and some energy
from the pump field is up–converted to a field at the second harmonic frequency 2ω.

! !
2!�(2)

Figure 2.3: Input and output frequency modes in second harmonic generation (SHG).

The perfect phase matching condition is achieved when 2kω = k2ω. Since ∆kL/2
is the argument of the phase matching function, it is apparent that the greater the
length of the material L, the narrower the phase matching function (Figure 2.2(a))
becomes. In other words, the conversion efficiency is more sensitive to the phase
mismatch ∆k for a longer material, as long as L ≤ Lcoh.

2.3.3 Difference–Frequency Generation

!1
!3

!1
!3
!2 = !3 � !1

�(2)

Figure 2.4: Input and output frequency modes in difference–frequency generation (DFG).

Difference–frequency generation (DFG) is the three–wave mixing process described
by (2.15), in which the inputs are two fields at the frequencies ω1 and ω3, and the
output is the difference–frequency field at ω2 = ω3−ω1, where ω1 is taken to be the
lower frequency field. For simplicity, we assume that the ω3 field is a strong pump
field, and is undepleted throughout the interaction, while the ω1 field is a relatively
weak input field that can be depleted. We begin by recalling the equations (2.22)
and (2.23a), which determine the evolutions of the field amplitudes in three–wave
mixing. In DFG, the phase mismatch is now:

∆k = k3 − k1 − k2 (2.29)
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In general, we assume imperfect phase matching. As we expect the coupled A1(z)
and A2(z) fields to exhibit similar spatial variation, we test solutions to (2.23a) and
(2.22) of the following form:

A1(z) = (Feigz +Ge−igz)e−i∆kz/2 (2.30a)

A2(z) = (Ceigz +De−igz)e−i∆kz/2 (2.30b)

Substituting these test solutions into (2.23a) and (2.22), and separately collecting
terms in eigz and e−igz, yields two simultaneous equations for C and F , which can
be written in matrix form:(

i(g −∆k/2) −K1

K∗2 i(g + ∆k/2)

)(
F

C

)
= 0 (2.31)

For convenience, we have defined the new constants:

Kj ≡
2iχω2

jA3

kjc2 , (2.32)

where j ∈ {1, 2} indexes the frequency modes. In order for the set of equations
in (2.31) to have a solution, the determinant of the coefficient matrix must vanish.
This sets the quantity g:

g =
√
K1K∗2 −∆k2/4 (2.33)

Using the simultaneous equations for F and C, as well as forG andD, and combining
them with the initial conditions

A1(0) = F +G A2(0) = C +D (2.34)

the coefficients can be derived for the general solution:

A1(z) =
[
A1(0)

(
cosh(gz)− i∆k

2g sinh(gz)
)

+ K1
g
A∗2(0)sinh(gz)

]
ei∆kz/2 (2.35a)

A2(z) =
[
A2(0)

(
cosh(gz)− i∆k

2g sinh(gz)
)

+ K2
g
A∗1(0)sinh(gz)

]
ei∆kz/2 (2.35b)

To more easily interpret this solution, we can make simplifying assumptions. We
consider the case of perfect phase matching, ∆k = 0, and the initial condition where
there is no difference–frequency wave incident on the medium (A2(0) = 0, A1(0) =
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arbitrary). The equations (2.35) become:

A1(z) = A1(0)cosh(gz) (2.36a)

A2(z) = i

√
n1ω2
n2ω1

A3
|A3|

A∗1(0)sinh(gz) (2.36b)

The size of the amplitudes |A1(z)| and |A2(z)| grow monotonically with increasing
z. As before, the effect of imperfect phase matching would be to decrease the
difference–frequency field amplitude. In contrast to SFG, where the fields exhibit

z
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|A1(z)|
2

|A2(z)|
2

Figure 2.5: Amplitude of output fields in difference–frequency generation (DFG).

an oscillatory behaviour, the amplitudes of the two fields increase exponentially with
interaction time.

2.3.4 Spontaneous Parametric Down Conversion

!p !p
!s
!i

�(2)vac

Figure 2.6: Input and output frequency modes in spontaneous parametric down conversion
(SPDC). The dashed arrow indicates vacuum field input.

Spontaneous parametric down conversion (SPDC) can be considered, in some re-
spects, to be a special case of DFG. As seen in Figure 2.5, when a strong pump field
ω3 and a weak field ω1 are incident on the nonlinear material, both a difference–
frequency field ω2 is generated, and the lower frequency input field ω1 is amplified.
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For the initial condition A1(0) = 0, meaning that there is only one input field ω3,
the interaction is known as spontaneous parametric down conversion. “Parametric”
denotes that the pump field is strong enough for its properties to remain essentially
unchanged throughout the interaction. By convention, ω3 is known as the pump
field (ωp), the higher–frequency output field is called the “signal” (ωs), and the
lower–frequency output field is called the “idler” (ωi). The energy conservation and
phase matching relations for this process are:

ωp = ωs + ωi ∆k = kp − ks − ki (2.37)

So far, we have considered these three–wave mixing processes from an exclusively
classical point of view. SPDC is the first process we encounter that requires a
quantum description. By looking at (2.36), it is clear that both A1(z) and A2(z)
depend on the initial field strength A1(0), which we are assuming here is vacuum.
The classical treatment predicts that no new light will be generated, but in fact
this is incorrect. In the quantum theory of light, which will be described in more
detail in the next section, the vacuum is not a zero–energy state. Thus, when the ωp
field enters the material, the vacuum energy fluctuations “seed” the process whereby
the pump field down–converts some of its energy to fields at two lower frequencies:
ωs = ωp/2 + Ω and ωi = ωp/2− Ω.

The phase matching condition is now explicitly a vector relationship in (2.37).
Considering SPDC explicitly in terms of the interaction of photons: a single photon
at the pump frequency ωp is down–converted into a pair of photons at the signal
and idler frequencies, in an energy–conserving process. As ~k is the momentum of
a single photon, satisfying the phase matching condition ensures that momentum is
also conserved. These two conservation relations are represented schematically in
Figure 2.7. In quantum mechanics, conjugate variables (e.g. position and momen-
tum) satisfy a minimum uncertainty relation. The nonlinear interaction occurs over
the length of the crystal, L, implying that momentum need only be approximately
conserved to within a fundamental uncertainty: ∆k ∼ ~/L [50].

The phase matching condition of the material can be engineered to support down–
conversion at various frequencies. In general, a range of side–band frequencies
will be down–converted, where pairs of these side–band frequencies are entangled
through energy and momentum conservation. The degenerate case, Ω = 0, is
of particular importance in the following chapters. In this case, which mode is
labelled the “signal” or “idler” is arbitrary. Spatial filtering is commonly employed to
select a particular signal–idler frequency pair—as seen in Figure 2.8(b), appropriate
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Figure 2.7: (a) Energy conservation relation in SPDC. (b) Momentum conservation relation
(vectorial relation) in SPDC.

collection points on the SPDC cone can select the degenerate pair.

Finding phase matching conditions for pump, signal and idler waves in a particular
material can be challenging, and is an active field of research. The main difficulty
is due to the fact that most materials exhibit normal dispersion, which means that
the index of refraction, n(ω), increases with frequency. This makes it impossible to
simultaneously conserve energy and momentum in (2.37). Since χ(2) materials are all
birefringent, the solution is often to use the angle–dependence of the index of refrac-
tion to satisfy the phase matching condition. A uniaxial birefringent crystal has two
fundamental indices of refraction: no for the ordinary polarisation, perpendicular to
the crystal axis, and ne for the extraordinary polarisation, along the crystal axis.
For a beam propagating through the crystal at an angle θ to the crystal axis, its
extraordinary polarisation (in the plane formed by the crystal axis and the beam
direction) experiences an index of refraction nE(θ), that is angle–dependent [51]. By
precisely engineering the optic axis of a crystal, the phase matching condition can
be met. Due to the finite width of the sinc function in 2.2(a), and the argument
above based on the fundamental uncertainty in phase matching, it should be clear
that perfect phase matching is not a requirement for down conversion, and imperfect
phase matching will only reduce the efficiency.

Each instance of a pump photon down–converting into a signal–idler photon pair in
the material occurs with an independent probability, due to the randomness in the
fluctuation of the vacuum. From outlining the theory of three–wave maxing in the
previous sections, it is reasonable to assume that the probability of a downconversion
event occurring will be proportional to properties of the crystal (such as its χ(2) and
phase matching condition), as well as the pump power. In general, we can write the
wave function of the signal–idler pair in the following way:

|ψSPDC〉s,i ∝ |0〉s|0〉i + η|1〉s|1〉i + η2|2〉s|2〉i + . . . (2.38)
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Since the efficiency coefficient η is very small (typically of order 10−2 for the SPDC
sources discussed in this thesis), we can neglect higher–order terms for most pur-
poses, and use SPDC as a source of correlated single photons. Due to energy
conservation, it is clear that the signal and idler photons must be correlated in
time. Due to momentum conservation, the spatial modes that the photons occupy
must also be correlated.
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Figure 2.8: (a) Side view of the exit angle in type–I non–collinear SPDC. Here the signal and
idler photons are shown to be degenerate, and exit the crystal in a symmetric diverging cone
around the pump beam. By momentum conservation, a signal–idler photon pair (i.e. from
the same down conversion event) are always on opposite sides of the down conversion cone,
indicated by the red arrows. (b) Front view of down conversion light cone for type–I phase
matching. Down conversion can be non–degenerate, and all frequency pairs are possible,
as long as the signal and idler photon energies add up to the pump photon energy. The
degenerate case is indicated by the black ring, with signal and idler photons positioned at
opposite sides of the cone.

The photon pairs are also correlated in polarisation, and the type of correlation
depends on the phase matching condition of the crystal. In Type–I phase matching,
the pump field is polarised in one direction, and both down–converted photons
are polarised in the orthogonal direction. In Type–II phase matching, the down–
converted photons are orthogonally polarised, from which it is possible to generate
an entangled polarisation state. Further details about these two phase matching
conditions, and the output states that arise from them, will be given in Section 2.5.

2.4 Quantizing the Electromagnetic Field

The classical mode of a light field can be uniquely defined in terms of only a few
properties: frequency, direction of propagation, spatial mode (for a Gaussian beam:
waist size and location), intensity, absolute phase, and direction of polarisation. The
concept of a photon derives from quantising the electromagnetic field. It is tempting
to think of photons as massless “particles” propagating at the speed of light. It is
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more accurate, however, to say that a mode of light has a photon occupation number,
which is one property of the mode [52]. Photon occupation numbers of an optical
mode are the result of quantising the electromagnetic field. Photons follow Bose–
Einstein statistics, and hence the photon occupation number of a single mode can
be greater than one.

Most textbooks begin quantising the electromagnetic field by presenting the classical
Hamiltonian for the field, and noting its formal equivalence to the energy of a
simple harmonic oscillator. If the field is assumed to be inside a cavity resonator,
the Hamiltonian of the radiation field is a sum of independent oscillator energies.
Each quantised mode of the field is dynamically equivalent to a simple harmonic
oscillator, and the electric and magnetic fields can thus be identified with the
canonical position and momentum variables. Canonical quantisation dictates that
two classical variables, conjugates in Hamilton’s equations [53], can be replaced
in the Hamiltonian by quantum mechanical operators, which are then related by
the commutator instead of Poisson brackets. A detailed description of canonical
quantisation can readily be found in most quantum mechanics textbooks [54], but
some of the results will be presented and discussed in this chapter.

Indexing the field modes by k, the quantum mechanical Hamiltonian for the elec-
tromagnetic field is:

H = ~
∑
k

ωk

(
â†kâk + 1

2

)
(2.39)

The dimensionless operators â and â† obey the bosonic commutation relation:

[âk, â†k′ ] = δk,k′ [âk, âk′ ] = [â†k, â
†
k′ ] = 0 (2.40)

When we are discussing a single mode, the indices can be dropped. Their relation
to the electromagnetic field is:

Ê(z, t) = Ê(+)(z, t) + Ê(−)(z, t) (2.41a)

= A[â e−i(ωt−kz) + â† ei(ωt−kz)] (2.41b)

B̂(z, t) = B̂(+)(z, t) + B̂(−)(z, t) (2.41c)

= B[â e−i(ωt−kz) + â† ei(ωt−kz)] (2.41d)

The coefficients A and B are for normalisation, and have the same dimensions as
an electric and magnetic field, respectively. We are generally more interested in
the quantised electric field, as photo-detection devices generally respond to electric
fields.
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At this point, it is convenient to introduce “bra-ket” notation, where a “ket” |ψ〉
denotes a vector representing a quantum state, and a “bra” 〈ψ| is defined as a
dual vector to |ψ〉 in Hilbert space1. An energy eigenstate of a single–mode field is
written |n〉, and denotes a state with a fixed number of photons n. The operator â
is known as the annihilation operator, and the operator â† is the creation operator.
Appropriately, they transform the energy eigenstate in the following ways:

â†|n〉 =
√
n+ 1 |n+ 1〉 â|n〉 =

√
n |n− 1〉 (2.42)

The appropriately named creation operator adds one photon to the energy eigen-
state, and the annihilation operator removes one photon from the state. The
normally ordered product of the pair is the number operator n̂ = â†â, whose
eigenvalue is the photon excitation number of the mode: n̂|n〉 = n|n〉. The energy
of the state is:

H |n〉 = En|n〉 (2.43a)

= ~ω
(
n+ 1

2

)
|n〉 (2.43b)

The photon occupation number of the vacuum state |0〉 is zero, and yet the state
contains a zero point energy ~ω/2. This is true for every mode, and since there are
an infinite number of modes, it implies that the vacuum contains an infinite amount
of energy. That is misleading, however, because as in classical mechanics, the level
of zero energy can be arbitrarily chosen. What is significant is that the vacuum state
has a finite (i.e. non–zero) energy variance, which explains a variety of quantum
effects. In the previous section, for example, we saw that SPDC relied on energy
fluctuations of the vacuum state to enable down-conversion.

An energy eigenstate is commonly known as a Fock or number state. The single
photon number state |1〉 is of special importance in this thesis, since quantum
information with discrete variables typically encodes information using the prop-
erties of single photons. As mentioned in the previous section, SPDC is a common
method of generating single photons at high enough flux to demonstrate many
quantum information protocols. SPDC occurs with very low probability, so the
down–conversion mode is dominated by the vacuum. But since two correlated
photons are always produced when down–conversion does occur, it is common to
use the idler photon as a herald for the signal photon, effectively filtering out the
vacuum component. Higher order terms are also present in (2.38), and for this
reason the outputs of an SPDC source cannot be considered “true” single photons,

1A complex vector space with a defined inner product.
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only very good approximations of them.

2.4.1 Types of Electromagentic Radiation

Single photons are the backbone of experiments in photonic quantum information
science, and they are often generated by SPDC. It is clear from the higher–order
terms in (2.38), however, that the output of an SPDC source is not a pair of pure
single photons. While the SPDC output state is an excellent approximation of a pair
of photons, it is necessary to have a way of describing and characterising a range of
states. In this section, a useful way of categorising optical states is introduced. The
next section briefly introduces correlation measures, used to determine the photon
statistics in electromagnetic radiation.

Thermal light—the everyday light we are most familiar with—is the result of the
thermal (random) motion of charged particles in materials. At the beginning of
the 20th century, Planck quantised blackbody radiation, and in doing so derived an
expression for the statistical distribution of thermal photon frequencies. Blackbody
radiation is emitted from an idealised cavity in thermal equilibrium, and the field
mode energies are quantised as harmonic oscillators, as described in the previous
section. The Boltzmann factor PB(n) = exp[−En/kBT ]/

∑
n exp[−En/kBT ] gives

the probability that a single mode is thermally excited to its nth energy state, and
thus the mean number of photons excited in a field mode is 〈n〉 = nPB(n).

Coherent states of light are eigenstates of the annihilation operator, and can be
expressed as an infinite series in the number state basis:

â|α〉 = α|α〉 |α〉 = e−
|α2|

2

∞∑
n=0

αn√
n!
|n〉 (2.44)

Other important properties of the coherent state are that the probability of detecting
n photons is a Poissonian distribution:

Pc(n) = e|α|
2 |α|2n

n! (2.45)

and the average photon number 〈n̂〉 and its uncertainty (standard deviation) ∆n are
related in the following way:

〈n̂〉 = |α|2 = n̄ ∆n =
√
〈n̂2〉 − 〈n̂〉2 = |α| =

√
n̄ (2.46)

It is a general property of Poissonian distributions that the uncertainty scales as
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the square root of the distribution’s mean. A coherent state therefore exhibits
Poissonian statistics in the photon number uncertainty of a single mode. Figure
2.9(a) graphically shows that for fixed mean photon number n̄, a thermal state has
a larger uncertainty than a coherent state, and is said to be super–Poissonian. In the
limit n̂ � 1, the uncertainty scales as ∆n ≈ n̄. If the photon number uncertainty
in a field is less than the square root of the mean, ∆n < n̄, the state is said to have
sub–Poissonian statistics, and this is one signature of a non–classical state. The
most extreme example of this would be a Fock state, which has a precisely defined
photon number, and hence a vanishing uncertainty. As expected, then, the output
of SPDC also exhibits sub–Poissonian statistics.
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Figure 2.9: (a) Thermal vs. coherent state photon number probability distribution, n̂ = 1
for both. The probability of detecting photon number P (n) = 〈n|ψ〉|2, where |ψ〉 is the
coherent or thermal state. (b) Photon number distribution for coherent states with different
n̂. As n̂ � 1, the discrete Poissonian distribution begins to look like a continuous normal
distribution.

2.4.2 Correlation Measures

The first–order correlation function is a measure of a single field’s interference with
itself:

G(1)(τ) = 〈Ê(−)(t)Ê(+)(t+ τ)〉 =
∫
dt Ê(−)(t)Ê(+)(t+ τ) (2.47)

The correlation of the field amplitude is measured at a fixed position and polarisa-
tion, with a portion of the same field that is shifted by a time interval τ . The degree
of first–order temporal coherence is defined as the normalised version of G(1)(τ):

g(1)(τ) = 〈Ê
(−)(t)Ê(+)(t+ τ)〉
〈Ê(−)(t)Ê(+)(t)〉

= G(1)(τ)
〈Ê(−)(t)Ê(+)(t)〉

(2.48)
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For a light source that is first–order coherent, g(1)(0) = 1, and g(1)(τ) → 0 when
τ � τc. The time interval τc, outside of which the light will no longer interfere with
itself, is known as its coherence time. The degree of first–order coherence determines
the modulation amplitude of the output intensity in an interferometer, known as the
classical interference visibility:

〈Iout〉 = 〈Iin〉[1± |g
(1)(τ)|cos(φ)]
2 Vis. = |g(1)(τ)| (2.49)

For a coherent state, such as the output of a continuous wave laser, the coherence
time is assume to be practically infinite, and hence g(1)(τ) is constant.

The degree of second–order temporal coherence measures intensity correlations:

g(2)(τ) = 〈Ê
(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)〉

〈Ê(−)(t)Ê+(t)〉2
= G(2)(τ)
〈Ê(−)(t)Ê+(t)〉2

(2.50)

It gives information about the probability of detecting a photon at time t+ τ , when
a photon has already been detected at t. Using the Cauchy inequality it can be
shown that 1 ≤ g(2)(τ) ≤ ∞ and g(2)(τ) ≤ g(2)(0) for classical fields. Violation of
these inequalities is a signature of non-classicality, and performing such an intensity
correlation measurement is a common way of testing to what extent a state can be
described as non-classical state (e.g. a single photon).

0
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Figure 2.10: Normalised second–order correlation functions of thermal, coherent, and single
photon states, for a single mode.
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2.5 Encoding Qubits on Photons

A bit is the fundamental unit of classical information, and can take a value of either
0 or 1. A quantum bit, commonly known as a qubit, is the fundamental unit of
quantum information, and can be in a linear superposition of basis states |0〉 and
|1〉. In its most general form, a qubit can be written as

|ψ〉 = α|0〉+ β|1〉 , (2.51)

where |0〉 and |1〉 are orthonormal basis states (called the computational basis), and
α and β are complex numbers satisfying the normalisation condition |α|2 + |β|2 = 1.
Thus, the qubit |ψ〉 represents a vector in Hilbert space.

In experimental quantum information, a qubit |ψ〉 is encoded in the properties of
a physical system that contains suitable basis states, such as a non–classical state
of light. The polarisation state vector of a single photon is restricted to the plane
perpendicular to its direction of motion. It therefore exists in a two-dimensional
Hilbert space, and is particularly well–suited to encoding qubits [55]. By convention,
the computational basis {|0〉, |1〉} is designated to be the horizontal and vertical
polarisation states {|H〉, |V 〉}. The full set of standard polarisation basis states is:

Horizontal = |H〉 ≡ |0〉 Vertical = |V〉 ≡ |1〉
Diagonal = |D〉 = |H〉+ |V〉 Anti− diagonal = |A〉 = |H〉 − |V〉
Right− circular = |R〉 = |H〉+ i|V〉 Left− circular = |L〉 = |H〉 − i|V〉

(2.52)
Another advantage of encoding qubits in polarisation states is that polarisation can
be easily manipulated using linear optical components such as wave plates, filters
and polarising beam splitters.

The SPDC process, introduced in Section 2.3.4, provides the single photon states
upon which qubits can be encoded. A down-conversion event is an energy and
momentum conserving process in which a pump photon splits into two photons
of lower frequency. The signal and idler photons are always entangled in energy
and momentum, and may also be entangled in polarisation depending on the phase
matching conditions. In the parametric approximation (i.e. a classical, un-depleted
pump field), the SPDC Hamiltonian for the type–I phase matching condition is:

Htype–I = ~ηâ†sâ
†
i + H.c. (2.53)

The type–I phase matching condition produces two classically correlated photons:
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the signal and idler will have the same polarisation, but it is determined and always
perpendicular to the polarisation of the pump beam. A single nonlinear crystal
with type–I phase matching does not generate polarisation entanglement, although
two such thin crystals can be used in a “sandwiched” configuration to generate
polarisation entanglement. Further details about sandwiched type–I SPDC sources
can be found in Section 5.5.1.
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Figure 2.11: (a) Side view of collinear type–II SPDC. (b) Side view of non–collinear
(crossed cones) type–II SPDC. Photons in orthogonal polarisations are down converted in
separate cones, with their axes at angles symmetric about the pump beam axis. (c) Front
view of crossed cones type–II SPDC. At the points where the polarisation cones overlap,
polarisation–entangled photons can be collected.

A type–II SPDC source can be operated in collinear mode (Figure 2.11(a)) or with
crossed down conversion cones (Figure 2.11(b) and 2.11(c)). The Hamiltonians for
these two type–II sources are:

Htype–II, coll. = ~ηâ†sVâ
†
iH + H.c. (2.54a)

Htype–II, cross = ~η(â†sVâ
†
iH + â†sHâ

†
iV) + H.c. (2.54b)

In the type–II collinear case, the two polarisation modes are in the same spatial
mode, and hence they are not in an entangled state. In the type–II crossed cones
case, down converted photons are typically collected at the points where the cones
intersect (marked by X in Figure 2.11(c)), and this state can be written in the
following way:

|ψ(t)〉type–II ' |0〉sV|0〉sH|0〉iV|0〉iH
− iηt(|1〉sV|0〉sH|0〉iV|1〉iH + |0〉sV|1〉sH|1〉iV|0〉iH) (2.55a)

The signal and idler photons are correlated in having orthogonal polarisations, but
the individual photons are in a superposition of |H〉 and |V〉. The second term
in (2.55), when normalised, is a maximally entangled polarisation state, and is
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equivalent to one of the four Bell states:

|ψ+〉 = 1√
2

(|V〉s|H〉i + |H〉s|V〉i) (2.56)

This output state can be transformed into any of the three other Bell states using
only local operations. The Bell states are maximally entangled two–qubit states, and
are commonly used in various quantum information protocols, or for fundamental
tests of quantum theory [13].

2.5.1 Representing Quantum States of Light

In this section, common ways of visualising and representing qubits and non–classical
states are introduced2. Polarisation qubits are commonly visualised on the Poincaré
unit sphere, which is the optical equivalent of the Bloch sphere—the difference
between the two spheres being solely in how the axes are labeled. As |ψ〉 is a
pure state, which can be described by a wave function, the vector extends from the
origin to the surface of the sphere.
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Ŝ1

Ŝ2
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Figure 2.12: (a) A pure state |ψ〉 has fixed magnitude equal to unity on the Poincaré sphere,
and therefore the two angles {θ, φ} uniquely define the state vector: |ψ〉 = cos(θ/2)|H〉 +
eiφsin(θ/2)|V 〉. (b) Projection of state vector |ψ〉 onto the Stokes parameters.

The component vectors adding to |ψ〉 in Figure 2.12(b) are the Stokes parameters,
commonly used to describe polarisation states of a classical electromagnetic field.

2For a good overview, refer to [56].
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In the quantum formalism, they are projection operators:

Ŝ0 = |H〉〈H|+ |V 〉〈V | Ŝ1 = |H〉〈H| − |V 〉〈V |
Ŝ2 = |D〉〈D| − |A〉〈A| Ŝ3 = |R〉〈R| − |L〉〈L|

(2.57)

For a pure state like |ψ〉, the Ŝ0 projector, representing the length of the state vector,
is equal to unity.

The most general state is a mixed state—a statistical mixture of pure states. This
state can only be described as a density matrix:

ρ ≡
∑
j

pj |ψj〉〈ψj |, (2.58)

where |ψj〉 is one possible pure state, indexed by j, and pj is the probability of
finding the system in that state. If the system is in a pure state, then there is only
one term in the sum:

ρ = |ψ〉〈ψ|. (2.59)

In matrix form, |ψ〉 is a column vector, 〈ψ| is a row vector, and |ψ〉〈ψ| is the outer
product:

|ψ〉 = α|H〉+ β|V 〉 |ψ〉 =
(
α

β

)
〈ψ| = α∗〈H|+ β∗〈V | 〈ψ| =

(
α∗ β∗

)

|ψ〉〈ψ| = αα∗|H〉〈H|+ αβ∗|H〉〈V |+ βα∗|V 〉〈H|+ ββ∗|V 〉〈V | (2.60a)

=
(
|α|2 αβ∗

βα∗ |β|2

)
(2.60b)

In (2.60), |α|2 and |β|2 are the probabilities of finding the qubit in the computational
basis states |H〉 and |V 〉, respectively. The off–diagonal terms are known as the
coherence terms, which appear when the qubit is in a superposition of basis states.

A condition that a density matrix representing a real physical state must satisfy is
that the trace equals one: tr(ρ) = 1. For a pure state, this is simply the normalisation
condition |α|2+|β|2 = 1. For a mixed state, it ensures that the probability weightings
for the different states in the ensemble (2.58) add up to one:

∑
i pi = 1. A scalar

quantity known as a state’s purity is a common measure in quantum information
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science:

Purity = tr(ρ2)

= 1 Pure state,

< 1 Mixed state.
(2.61)

The purity is a common figure of merit when measuring the quality of a prepared
quantum state for quantum information processing, or when quantifying the effect
of noise on the state. The purity is determined by the coherence terms in the density
matrix. The minimum purity is Pmin = 1/d, where d is the dimension of the state.
For a qubit d = 2, and Pmin = 1/2.

Density matrices are a complete and general description of quantum states, but
they can be unwieldy and difficult to interpret when dealing with states of many
dimensions. Another useful description of a state is its description in phase space
[57]. Recalling the quantised electric field (2.41), two new quantities can be defined:

Q̂ ≡ â+ â†√
2

P̂ ≡ i(â− â†)√
2

(2.62)

The dimensionless Q̂ is commonly known as the amplitude quadrature, and P̂ is
known as the phase quadrature. The quadrature names are attributed to the fact
that Q̂ can be identified with the coordinate variable x̂ in the Hamiltonian of the
electromagnetic field, and P̂ can be identified with the momentum variable p̂. The
two quadratures are always orthogonal to one another, and the reference frame is
arbitrary:

Q̂Θ = âeiΘ + â†e−iΘ√
2

P̂Θ = i(âeiΘ − â†e−iΘ)√
2

= cos(Θ)Q̂ + sin(Θ)P̂ = −sin(Θ)Q̂ + cos(Θ)P̂
(2.63)

Different parameters Θ coincide with different physical observables {Q̂Θ, P̂Θ}, which
is the underlying principle of homodyne tomography, a powerful technique for mea-
suring quantum states of light. Further details about homodyne tomography can be
found in Section 6.4.1 of Chapter 6.

A phasor diagram graphically represents these quadratures in phase space. A
classical state of light is represented by a point, since the quadratures can be
simultaneously determined to arbitrarily high accuracy. For a quantum state, Q̂
and P̂ are non–commuting operators, and there is a minimum uncertainty relation:
(∆Q̂)2(∆P̂)2 ≥ 1. This means a quantum state of light will be represented by an
area in phase space (Figure 2.13(a)), instead of a point.
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Figure 2.13: (a) Phasor diagram of a theoretical coherent state. Its amplitude is proportional
to its displacement from the origin (red arrow), and it has a definite phase Θ, with the
Q̂ quadrature acting as the zero phase reference. The fundamental uncertainty in the
quadratures is given by the projections ∆Q̂ and ∆P̂. It is represented as a symmetric
ball, due to the fundamental uncertainty in its quadratures. Its amplitude is represented by
the red arrow, showing displacement from the origin. (b) Wigner distribution of a coherent
state. (c) and (d) Wigner distribution of a theoretical single photon state. A single photon
is a non–classical state, indicated by the fact the the Wigner function is negative–valued at
certain points in phase space. For the single photon, the Wigner distribution is negative at
the origin.

Phasor diagrams only present information about the quadrature projections of a
quantum state. To graphically present the full information in a density matrix, we
must go a step further, and calculate a quasi–probability distribution. There are
several different ways to generate a quasi–probability distribution for a given state,
but perhaps the best known is the Wigner distribution. The Wigner distribution
W (q, p) can be calculated from a density matrix ρ in the following way:

W (q, p) = π−1
∫ +∞

−∞
e2ipy〈q − y|ρ|q + y〉dy (2.64)

The Wigner distribution can be inverted to regain the density matrix. The Wigner
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function gives the quadratures projections in a straight-forward way:

w(q) =
∫ +∞

−∞
W (q, p)dp w(p) =

∫ +∞

−∞
W (q, p)dx (2.65)

The Wigner distribution is a “quasi”–probability distribution because it can take
negative values for certain states. A negative value in the Wigner distribution is
often interpreted as a characteristic of non-classicality. The quadrature projections
w(q) and w(p) are always positive definite, and give the correct quantum mechanical
distributions for position and momentum. Two other quasi–probability distributions
commonly used as the P function and the Q function. These three representations
differ in their operator ordering conventions for calculating the distributions. The
same quantum state can have quite different representations depending on which
convention is used.

2.5.2 Qubit Operations

A closed system evolves via a unitary transformation:

|ψ(t+ τ)〉 = Û|ψ(t)〉, (2.66)

where the unitarity condition for the operator

Û†Û = ÛÛ† = 1 (2.67)

ensures that the evolution is reversible, i.e. if time were to run backwards, the
state |ψ(t + τ)〉 would evolve deterministically to |ψ(t)〉. Equivalently, we can say
that information is preserved under a unitary transformation. In linear optics, the
operations before final detection are unitary operations. These operations include
manipulating the polarisation state of photons using wave plates, splitting spatial
modes using polarising or non-polarising beam splitters, classical interference and
two–photon interference.

Polarisation qubits, with basis states that are polarisation modes of a single photon,
are used extensively in this thesis, due to the relative ease with which they can be
manipulated. A wave plate is an optically flat birefringent material that can induce a
delay between the ordinary and extraordinary components of a photon’s polarisation
vector. Wave plates are commonly made from quartz, which is a uniaxial crystal
with positive birefringence (ne > no). The extraordinary polarisation is defined
as the polarisation component lying in the plane of the crystal’s optic axis, and
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the ordinary polarisation is then the orthogonal polarisation component. A relative
phase between the two polarisations is acquired due to the different phase velocities
through the crystal. Wave plates are manufactured to generate a phase delay of
either half of a wavelength (half wave plate, HWP) or a quarter of a wavelength
(quarter wave plate, QWP). Wave plates are mounted so as to be rotatable around
their surface normal axis, so the plane of the optic axis can be changed.

The operations of a HWP and QWP are given by the following unitary matrices:

ÛH(θ) = i

[
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

]
(2.68a)

ÛQ(θ) = 1√
2

[
1 + i cos(2θ) i sin(2θ)
i sin(2θ) 1− i cos(2θ)

]
(2.68b)

The angle θ is the angle between the optic axis plane of the wave plate and the
laboratory reference frame. Any pure polarisation state can be transformed into any
other pure polarisation state on the Poincaré sphere using the following sequence
of wave plates: a QWP, followed by a HWP and then another QWP, all with the
appropriate optic axis angles.

ÛH(✓)| i| i

(a)

ÛQ(✓)| i| i

(b)

| i

ÛQ(✓1) ÛQ(✓3)ÛH(✓2)

Û| i

| iÛ†| i

(c)

Figure 2.14: (a) Half wave plate. (b) Quarter wave plate. (c) Arbitrary polarisation rotation:
Û = ÛQ(θ3)ÛH(θ2)ÛQ(θ1).

It is often necessary to convert polarisation modes to spatial modes, and this can be
achieved using polarising beam splitters (PBS) or beam displacers (BD). Beam dis-
placers are typically calcite crystals several tens of millimetres in length, which sep-
arate orthogonal polarisations into parallel spatial modes. Polarising beam splitters
are often made of two right-angle glass prisms making contact at their hypotenuse to
form a cube, with a dielectric coating along the cube’s diagonal interface. In contrast
to the beam displacer, the polarising beam splitter cube reflects S-polarised light at
a 90◦ angle, and transmits P-polarised light straight through.

Another common linear optical element is the non-polarising beam splitter (BS) [58].
These are similar to PBS’s, but provide a splitting ratio between the two output
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Figure 2.15: (a) Polarising beam splitter cube. (b) Beam displacer.

ports that is ideally independent of polarisation. In reality, the splitting ratio is
usually slightly different for S and P polarisations. A beam splitter with reflectivity

â†
in ĉ†

out

d̂†
out

b̂†
in

⌘

Figure 2.16: Beam splitter cube (non-polarising) with reflectivity η.

η transforms input modes in the following way:

â†in →
√
η ĉ†out + i

√
1− η d̂†out (2.69a)

b̂†in →
√
η d̂†out + i

√
1− η ĉ†out (2.69b)

In general, we will use the “symmetric” beam splitter convention, where all reflec-
tions induce a π/2 phase shift, as shown in (2.69). Such a beam splitter mixes the
two input fields in the the output spatial modes. It is an important component in
many optical circuits, one reason being that by carefully choosing the input fields,
the 50:50 beam splitter can be used to generate Hong–Ou–Mandel interference.

2.5.3 Hong–Ou–Mandel Interference

Hong–Ou–Mandel (HOM) interference [28] is the non-classical interference of two
identical photons at the input ports of a beam splitter. It is an effect that is not
predicted by classical electromagnetic theory, as it depends essentially on the quan-
tisation of the electromagnetic field. The setup to observe HOM interference is the
following: a single photon is sent to each input port of a symmetric (η = 0.5) beam
splitter. Apart from being in orthogonal spatial modes, the two single photons are
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otherwise indistinguishable—i.e. their other physical properties, such as polarisation
and temporal profile, are identical. Classical field theory predicts that, when single
photon detectors are placed at the output ports, statistically half of the time either
output detector will “click” alone, and half the time both detectors will click in
coincidence (i.e. simultaneous detection signals). Quantum theory predicts the
correct outcome, which is that the probability for coincidence detection is zero.
This is due to the destructive interference of the single photon amplitudes to travel
to opposite output ports:

â†inb̂
†
in|00〉 → (1/2)(d̂†out + iĉ†out)(ĉ

†
out + id̂†out)|00〉 (2.70a)

= (i/2)(d̂†outd̂
†
out + ĉ†outĉ

†
out)|00〉+ (1/2)(d̂†outĉ

†
out − ĉ

†
outd̂

†
out)|00〉 (2.70b)

= (i/2)(d̂†outd̂
†
out + ĉ†outĉ

†
out)|00〉+ (1/2)[d̂†out, ĉ

†
out]|00〉 (2.70c)

= (i/2)(d̂†outd̂
†
out + ĉ†outĉ

†
out)|00〉 (2.70d)

It is clear from the Bose–Einstein commutation relations introduced in (2.40) that
[d̂†out, ĉ

†
out] = 0 in the equation above. Single photon detectors at the output ports

of the beam splitter measure the electric field operators Ê (see (2.41)) in modes c
and d. The joint probability of detecting photons in both modes c and d, at times t
and t+ τ respectively, is:

Pc,d(τ) = 〈1d 1c|Ê−c (t)Ê−d (t+ τ)Ê+
d (t+ τ)Ê+

c (t)|1c 1d〉 (2.71)

The form of (2.71) is similar to the second–order correlation function g(2)(τ) from
(2.41), the difference being that in (2.71) there are two input modes. The interference
of the two identical single photons at the balanced beam splitter ensures that
Pc,d(0) = 0. This effect is known as photon bunching, since the two indistinguishable
but initially independent single photons occupy the same output mode after the
beam splitter. As the delay τ in one input mode approaches the order of the
coherence time τcoh of the single photons, the distinguishing information destroys
any interference, and the normalised joint probability Pc,d(τ > τcoh)→ 1.

A major disadvantage of using linear optics for certain quantum information tasks is
the difficulty of getting two photons to interact. Cross phase modulation is possible,
for example, in certain nonlinear materials, but the nonlinearity is typically too weak
for an observable effect at the single photon level. HOM interference, however, is one
of the only practical ways of getting two photons to interfere with each other, and
it is an essential component in linear optical quantum gates, such as the quantum
controlled–NOT (CNOT) gate [44].
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2.6 Measuring Photonic Qubits

2.6.1 Single Photon Detection

A photodetector responds to the electric field of a beam of light, converting the
energy in the electric field into an electronic current via the photo–electric effect.
Photodetectors are photodiodes (semi–conductors) operating in reverse bias—when
an electron–hole pair is created in the depletion zone due to photoionisation, the
electrons move towards the n-junction and the holes towards the p-junction along
the gradient of the applied electric field [59].

An avalanche photodiode (APD) is a photodiode with a reverse bias that is high
enough to cause the avalanche multiplication of photo–current. After photoionisa-
tion, the electron and hole are accelerated to a high enough velocity to generate
another electron–hole pair due to impact–ionisation. Thus, impact–ionisation gen-
erates a large gain on the initial photo–current.

An APD is said to operate in Geiger mode if the reverse bias is well above the
breakdown voltage. This means that a single photoionisation is enough to generate
an avalanche of impact ionisations, and a macroscopic electronic current on the order
of mA. This mode of operation is known as Geiger mode by analogy with Geiger
counters, or also single photon avalanche detector (SPAD). Accordingly, commercial
SPADs can only count single photon detection events, and cannot discriminate be-
tween a single photoionisation or multiple photoionisations in the detection window.
Implementing photon number discrimination in SPADs is an active area of research.

SPADs have a quantum efficiency, which is the probability of a single photon creating
an electron–hole pair. SPADs also suffer from dark counts, which are spurious impact
ionisation avalanches due to thermal effects. To minimise dark counts, SPADs are
usually cooled. SPADs for detecting single photons with visible to near–infrared
wavelength are usually made from silicon, and typically have a quantum efficiency
50%. For photons at telecom wavelengths, SPADs are made from InGaAs, and their
quantum efficiency is somewhat lower.

2.6.2 Quantum State Tomography

Qubit tomography is performed by measuring the Stokes parameters {σx, σy, σz}
for an ensemble of identically prepared qubits. The preparation procedure must
therefore be kept constant throughout data collection, in order to collect accurate
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measurement statistics. There is always noise associated with a measurement,
meaning that the measurement statistics only correspond closely (but not exactly)
to the theoretical probabilities of the qubit. To account for this noise, a maximum
likelihood optimisation is performed using the measurement data. This is a numerical
search of all (physically valid) theoretical density matrices that could give similar
measurement results to the given data set. The theoretical density matrix with the
highest probability of generating the given data set is taken to be the density matrix
of the measured system [55].

2.7 Summary

This chapter has reviewed some of the theoretical background that will be helpful
in understand the experiments described in subsequent chapters. Additional back-
ground can be found in each chapter, as it relates to a specific experiment.
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Chapter 3

Heralded Noiseless
Amplification of a Photon
Polarization Qubit

3.1 Acknowledgements

Guoyong Xiang and I constructed the SPDC photon source and optical circuit
together. I collected and analysed the data, under the supervision of Geoff Pryde.
The theoretical results presented in Section 3.7, characterising the effects of source
and detector efficiencies, are due to Tim Ralph. The results presented in this chapter
were published in [60].

3.2 Introduction

Photons are the best long–range carriers of quantum information, but the inevitable
absorption and scattering of photons in a transmission channel places a serious
limitation on viable communication distances. The amplification of quantum infor-
mation, analogous to relay stations in classical communication networks, will be an
essential feature of future quantum technologies, with direct applications to quantum
communication, metrology and fundamental tests of quantum theory.

There are unique challenges involved in amplifying quantum signals. Deterministic
noiseless amplification of an arbitrary quantum state is forbidden by the no–cloning
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theorem [39, 40], and there is a minimum noise cost imposed by quantum mechanics
for deterministic amplification [61]. A common approach to circumventing these
restrictions is to make the amplification non–deterministic—some of the time, the
state is amplified without adding noise, and the rest of the time the amplification
fails, and the state is destroyed in the process. On average, no laws of quantum
mechanics are contradicted.

The noiseless linear amplification (NLA) of single mode optical states has recently
been experimentally demonstrated using a few different approaches [62–67]. Qubits,
which are two–mode states, are the quintessential model for encoding quantum
information. Qubits, or systems of entangled qubits, are central to most protocols
for transmitting and processing quantum information [4], and play a large role in
other proposed quantum technologies [68, 69], as well as proposed investigations of
quantum theory [70]. A natural implementation of a travelling qubit is an excitation
coherently shared between two harmonic oscillators. In optics, this implementation
is a photonic qubit, in which the information is encoded in orthogonal polarisation,
spatial or temporal modes of a single photon.

A great deal of attention has been devoted to the challenge of efficiently transmitting
qubits over significant distances. Overcoming transmission loss is of both funda-
mental and practical interest. From a fundamental perspective, long-range tests of
Bell inequalities have normally been vulnerable to the detection loophole: owing
to losses, not all entangled pairs are detected, and the fair sampling assumption is
invoked to argue that the undetected pairs would not have significantly changed
the measurement statistics. Only quite recently have steering [71–73] and Bell
inequality [74, 75] violations been experimentally demonstrated with the detection
loophole closed. These tests, however, have relied on highly efficient superconducting
transition–edge sensors (TES) [72, 74, 75] with ∼ 95% quantum efficiency [76], or
modified steering inequalities with lower efficiency bounds [71, 73]. Superconducting
TES detectors are very expensive and technically challenging to operate, and not
yet widely available, while modified inequalities with lower efficiency bounds have
only been derived for asymmetric steering protocols.

Developing practical techniques to overcome transmission loss thus remains a highly
active field. Inevitable transmission losses can in principle be compensated by ampli-
fying the signal. A noiseless qubit amplifier, although necessarily non–deterministic,
can have an independent heralding signal to notify when the state has been success-
fully amplified. A heralding signal allows two parties to be certain that they share an
entangled pair before measurement. This implies that the overall detection efficiency
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would no longer depend on transmission efficiency, but only on the intrinsic efficiency
of the measurement devices.

ALICE BOB

Herald

Qubit
Amplifier

Transmission
Loss

Entangled
Photon Pair

Figure 3.1: Conceptual diagram of a one–way device–independent quantum key distribution
(DIQKD) protocol, using a heralded noiseless qubit amplifier to overcome transmission loss.
Alice possess a source of entangled photon pairs, and send one photon across a lossy quantum
transmission channel to Bob. The state, initially a qubit encoded in the polarisation of
a pure single photon, is now a mixture of single vacuum and single photon. The qubit
amplifier nondeterministically increases the weight of the single photon term in the mixture,
in principle arbitrarily close to a single photon. Alice and Bob only perform measurements
on their respective photonic qubits when successful amplification is heralded in Bob’s qubit
amplifier. In this way, their detection efficiency only depends on the intrinsic quantum
efficiency of their detectors, and no longer on transmission efficiency. If their detectors are
reasonably efficient, Alice and Bob can violate a Bell inequality, which effectively guarantees
that they share entanglement, independently of what their specific measurement procedure
was.

Closing the detection loophole in an optical Bell test experiment is essentially
equivalent to establishing device–independent quantum key distribution (DIQKD)
between two parties, as the rigorous violation of a Bell inequality guarantees the
presence of entanglement independent of the specific measurement procedure [77–
80]. Another approach to closing the detection loophole, by heralding the presence
of a qubit using a quantum non–demolition measurement [81], has been proposed
but so far not demonstrated.

The one–way DIQKD protocol pictured in 3.1 could be implemented using a heralded
noiseless qubit amplifier, as suggested in [77]. Alice, who trusts her measurement
device and entangled photon source, sends half of an entangled photon pair through
the transmission channel, to Bob. The transmission channel, assumed to have a low
efficiency, transforms the single photon into a mixed state, in which the vacuum term
dominates. Once the mixed state reaches Bob, it is sent to the qubit amplifier, which
heralds the successful amplification of the single photon component—or equivalently,
suppression of the vacuum term. Bob and Alice then only measures the subset of
amplified states, which in principle can be maximally entangled. If Alice and Bob’s
detectors are reasonably efficient, they should be able to demonstrate the violation
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of a Bell inequality, despite the loss present in the transmission channel.

3.3 Amplifying Quantum States

Amplifying a signal is ubiquitous in long–range classical communication networks.
It is impossible to amplify a quantum signal in a similarly straightforward way, as
the linearity of quantum mechanics precludes deterministically cloning an unknown
quantum state [39, 40]. The early investigations that culminated in the famous
no–cloning theorem were greatly motivated by the problem of distinguishing be-
tween two or more quantum states. Two perfectly distinguishable quantum states
are represented by orthogonal vectors in Hilbert space, and in fact, deterministic
cloning is only possible for such a restricted set of orthogonal states [82]. As two
orthogonal states are perfectly distinguishable to begin with, cloning cannot increase
their distinguishability. Thus, preserving the indistinguishability of quantum states
[83, 84] can be seen as an equivalent restriction on permissible operations. The
original no–cloning theorem was formulated for pure states, but has been extended
to non–commuting mixed states [85].

A quantum state represented in phase space has a phase angle Θ and an asso-
ciated phase uncertainty ∆Θ, as seen in Figure 3.2(a). Amplification increases
the amplitude of the state, or displaces the state further from the origin in phase
space. Noiseless amplification would reduce phase uncertainty, and increase the
distinguishability of states. The process must therefore add enough noise to maintain
∆Θ after the amplification, or the overlap of two states in 3.2(b). A rigorous
derivation of the minimum noise added to an arbitrary quantum state when it is
deterministically amplified can be found in [61].

Noiseless amplification of a coherent state |α〉 increases its amplitude by a factor g,
in the transformation

|α〉 → |gα〉 , (3.1)

where |g| > 1. Although deterministic noiseless amplification is impossible, noiseless
amplification can be achieved by making the transformation non–deterministic [86]:

|α〉〈α| → P|gα〉〈α|+ (1− P)|0〉〈0| , (3.2)

where the state is successfully amplified by the factor g with probability P, and
with probability 1−P the transformation fails, and the output state is assumed to
be vacuum (without loss of generality). It is now the probability of success that
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Figure 3.2: (a) A coherent state represented in phase space has a phase angle Θ, and
an associated phase angle uncertainty ∆Θ. Noiselessly amplifying an arbitrary state, or
displacing it further from the origin in phase space, would concentrate its phase information
by reducing ∆Θ. This is prohibited by the linearity of quantum mechanics, and consequently
the state’s quadrature variances ∆Q̂ and ∆P̂ must increase accordingly, to preserve ∆Θ.
(b) Illustration of noiseless amplification of two quantum states increasing their distin-
guishability, which is prohibited by the linearity of quantum mechanics. Quantum–limited
deterministic amplification will preserve the distinguishability of two quantum states, while
classical amplification will decrease the distinguishability.

guarantees the distinguishability of states is not increased. For the case of a small
coherent state |α〉, the upper bound on the success probability is:

P ≤ 1− exp[−|α|2]
1− exp[−|gα|2] . (3.3)

For the maximum allowable probability, the average distinguishability of the state
after amplification is equal to the distinguishability of the original state.

3.3.1 Strategies for Noiseless Amplification

The optimal strategies for deterministic noisy amplification, or optimal quantum
cloning, have been investigated and realised in many cases [87, 88]. More recently,
nondeterministic noiseless amplification has generated a great amount of theoretical
and experimental activity, and several different approaches to noiseless linear am-
plification of optical states have been experimentally demonstrated [89]. Different
strategies often share several features in common: they are non–deterministic, but
heralded by an independent signal; they require ancillary states; and they have so
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far only been demonstrated for states of relatively small amplitude.

One noiseless amplification strategy consists of coherent addition and subtraction of
a single photon from the state [64]. Coherent addition and subtraction of a single
photon to an optical state approximately corresponds to applying the creation and
annihilation operators to the state. Exploiting the commutation relation between
the two operators [90, 91], coherent photon addition followed by subtraction doubles
the amplitude of a small coherent state:

Ĝg=2|α〉 = ââ†|α〉 (3.4a)

' ââ†(|0〉+ α|1〉) (3.4b)

= |0〉+ 2α|1〉 . (3.4c)

In (3.4), the amplitude α of the initial coherent state is taken to be small, |α| � 1.
In this limit, the coherent state |α〉 can be approximated to a very high fidelity by
a superposition of the |0〉 and |1〉 number states:

|α〉 ' |0〉+ α|1〉 . (3.5)

A single photon is coherently added to the initial state using a down–converter
setup, and the other photon in the down converted pair acts as a heralding signal
for photon addition. Successful amplification in [64] is heralded by coincidence de-
tection between the idler from the down–converted pair, and the photon subtracted
from the state. The amplifier setup requires mode matching between the down–
converter and the signal state, but does not require interferometric stability, and
the amplified output state is of high fidelity. This is for a fixed amplitude gain
g = 2, however, and varying the gain factor would require a more sophisticated
setup, with interferometric stability.

Another approach to amplification involves incoherently adding photons to a state,
followed by photon subtraction [65]. The small coherent state in (3.5) is displaced
by the addition of thermal noise. Subtraction of a pre–determined number of
photons heralds the output state, which has a reduced phase uncertainty due to the
conditioning. The transformation is not noiseless, as the output state is less pure
than the input, but demonstrating that adding thermal noise and conditioning can
concentrate the phase information of a state is nevertheless surprising and significant.

This chapter presents experimental results on the heralded noiseless amplification
of a two–mode state, based on the generalised quantum scissors technique. Gen-
eralised quantum scissors are a modification of optical state truncation [92], which
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is a method of limiting the number–state expansion of an optical state to leave
only its vacuum and one photon components. The noiseless amplification of single
mode states using the generalised quantum scissors approach has been successfully
demonstrated in several experiments [62, 63, 66, 93, 94]. Loss mitigation for a single–
rail qubit using generalised quantum scissors has also recently been demonstrated
[67].

3.3.2 Quantum Scissors

D1

D2

|1i

|↵i

| i

Ancilla
State

50:50

Mode A

Mode C

Mode B

50:50
Mode A

Figure 3.3: Quantum scissors setup proposed by Pegg et al. [92]. The original aim was
to prepare an arbitrary single mode state of the form |Ψ〉 = γ0|0〉 + γ1|1〉, by sending a
coherent state |α〉 to the input (Mode B), and projecting it into the output (Mode C) by
projective measurement in one of the two heralding detectors (D1 or D2). The protocol
uses the mode entanglement of a de–localised single photon ancilla between Mode A and
Mode C, and single photon detection to condition the correct state in the output mode. The
protocol is nondeterministic but heralded, and if the input is a small amplitude coherent
state |α| � 1, or simply a superposition of vacuum and a single photon state, then the
quantum scissors effectively teleports the state from the input mode into the output mode.
As in the traditional teleportation protocol [33], no light from the original state is ever
transmitted to the output, and it is the information in the wave function that is teleported
into the output mode.

In the original formulation of the quantum scissors by Pegg et al., the aim was
to create an arbitrary superposition state of vacuum and single photon, of the
form γ0|0〉 + γ1|1〉, which they note is the simplest optical state containing any
phase information. Other approaches to creating such superposition states have
subsequently been investigated [95]. Their strategy was to use a coherent state |α〉,
and truncate higher order terms (hence the name quantum scissors), leaving only
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the vacuum and single photon terms with the phase relationship intact:

|α〉 =
∞∑
n=0

γn|n〉 → |ψ〉 = γ0|0〉+ γ1|1〉 . (3.6)

The apparatus for optical state truncation is illustrated in Figure 3.3. An ancillary
single photon state in mode A of Figure 3.3 is sent to a 50:50 beam splitter, and is
transformed into a de–localised single photon state in modes A and C:

|1〉A → |φ〉A,C = 1√
2

(|1〉A|0〉C + i|0〉A|1〉C) (3.7a)

= 1√
2

(â† + iĉ†)|0〉 , (3.7b)

where â† (ĉ†) is the creation operator for spatial mode A (C), and |0〉 is the global
vacuum state. The state |φ〉A,C is a mode–entangled state, or a de–localised single
photon state [96–98]. After the first beam splitter, mode A of |φ〉A,C is superposed at
a second 50:50 beam splitter with a coherent state |α〉C from mode C. The combined
state |φ〉A,C ⊗ |α〉B is transformed via the beam splitter operator ÛA,B for modes A
and B:

|φ〉A,C ⊗ |α〉B → |Ψ〉 = ÛA,B(|φ〉A,C ⊗ |α〉B) (3.8a)

= ÛA,B|φ〉A,C ⊗ ÛA,B|α〉B. (3.8b)

The beam splitter operator has the form

ÛA,B = exp
[
i
π

4
(
â†b̂+ âb̂†

)]
, (3.9)

and its effect [56] on the states |φ〉A,C and |α〉B is

ÛA,B|φ〉A,C = 1√
2

ÛA,B(â† + iĉ†)|0〉 (3.10a)

= 1√
2

( 1√
2

(
â† + ib̂†

)
+ iĉ†

)
|0〉 (3.10b)

and

ÛA,B|α〉B = ÛA,B|α〉B (3.11a)

=
∣∣∣∣ iα√2

〉
A

∣∣∣∣ α√2

〉
B

(3.11b)

= exp
[
−|α|2

2

]( ∞∑
n=0

(
iα√

2

)n (â†)n

n!

)( ∞∑
m=0

(
α√
2

)m (b̂†)m

m!

)
|0〉 (3.11c)
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Note that, while the state in (3.10) is mode entangled, the state in (3.11) is fully
factorized, and therefore has no entanglement.

The output state of the quantum scissors is heralded by a single photon detection
in either mode A or mode B. Detections of singe photons in both mode A and mode
B, or of two photons in either of the modes, do not constitute successful heralding
events. This corresponds to projecting |Ψ〉 onto either 〈1A0B| or 〈0A1B|, to herald the
desired superposition state in the output mode. The output state consists of those
terms where 〈1A0B|Ψ〉 and 〈0A1B|Ψ〉 are non–zero, and both of these correspond to
at most one photon in modes A and B. Higher order terms in the state (3.11) will
consequently be filtered out. To calculate the quantum scissors output, the coherent
states need only be expanded to first order. The two successful heralding events are:

〈1A0B|Ψ〉 =
exp

[
−|α|2

2

]
√

2
〈1A0B|

( 1√
2

(
â† + ib̂†

)
+ iĉ

)(
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α√
2
â†
)(

1 + α√
2
b̂†
)
|0〉

(3.12a)

= 1
2exp

[
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2

] (
1− αĉ†

)
|0〉 , (3.12b)

〈0A1B|Ψ〉 = i

2exp
[
−|α|2

2

] (
1 + αĉ†

)
|0〉 . (3.12c)

One of the heralded states, 〈0A1B|Ψ〉, is a copy of the input coherent state |α〉 in
the output mode, up to a normalisation factor, and with the higher order terms
truncated. The other heralded state, 〈1A0B|Ψ〉, is a copy of |α〉 with an additional
π phase shift between the vacuum and single photon term. As this π phase shift is
associated with one of the two known heralding events, it can always be corrected
at the output.

Pegg et al. note in [92] that their protocol is similar to quantum teleportation
[33], and in fact, teleportation using quantum scissors has been experimentally
demonstrated [99]. The typical quantum teleportation protocol uses EPR–entangled
ancillae and a Bell state measurement, while in the quantum scissors the mode en-
tanglement of a de–localised single photon is used. Both protocols, however, require
classical communication to correct for potential phase shifts in the output mode.
Since it was first proposed, the quantum scissors protocol has inspired numerous
theoretical investigations into possible realisations [100–102] and optimisations [103].
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3.3.3 Generalised Quantum Scissors

Ralph and Lund introduced a modification to the quantum scissors [62, 104], known
as the generalised quantum scissors, in which the amplitude of the single photon
term in the superposition state is increased at the output. If the input state is
considered to be a small coherent state (|α| � 1), or a superposition of the vacuum
and a single photon to begin with, the output state is then an amplified version of
the input. The modification to the original quantum scissors is that the first 50:50
beam splitter in Figure 3.3 becomes a variable reflectivity beam splitter in Figure
3.4(a), with amplitude reflectivity denoted by η.

The state |φ〉A,C in (3.7) becomes

|φ〉A,C = 1√
2

(√
1− ηâ† + i

√
ηĉ†
)
|0〉 . (3.13)

The superposition of the single photon between modes A and C is no longer equally
weighted, as the beam splitter reflectivity η determines the splitting ratio. The
heralded output states from the generalised quantum scissors are:

〈1A0B|Ψ〉 = exp
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In the new heralded output states, the single photon term in the superposition
is weighted by a coefficient. Identifying the amplitude gain g ≡

√
η/(1− η), the

amplitude of the single photon is probabilistically increased without adding noise to
the state:

|α〉 ' |0〉+ α|1〉 → |0〉+ gα|1〉 ' |gα〉 . (3.15)

The generalised quantum scissors is a noiseless linear amplifier (NLA), with the
amplitude gain g determined by the ratio of the amplitude reflectivity to transmis-
sivity at the variable beam splitter. The probability of successfully heralding an
amplified output state is proportional to 1−η = (1 + g2)−1, implying that for larger
amplifications the probability of success will diminish proportionally.
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Figure 3.4: (a) Generalisation of the quantum scissors protocol. The first 50:50 beam splitter
becomes a variable–reflectivity beamsplitter, where η denotes its amplitude reflectivity. This
changes the weighting of the single photon in the output state, which is an effective amplitude
gain. The gain factor is g ≡

√
η/(1− η), and |g| > 1 when η > 1/2, or when more of the

single photon is reflected into the output mode than sent to the heralding detectors. The
probability of success scales inversely with gain: P ' (1 + g2)−1. A higher gain leads to a
lower success probability. (b) The experimental implementation of the generalised quantum
scissors NLA stage. The variable reflectivity η is achieved using a HWP and PBS in the
ancilla mode. The signal state is reflected at the first beam splitter, and superposed with
the transmitted ancilla mode. The two modes are indistinguishable in all degrees of freedom
at that point, but in orthogonal polarisations: the signal is in |V〉 and the ancilla is in |H〉.
The second HWP and PBS project into the {|D〉, |A〉} basis, effectively making the modes
completely indistinguishable (erasing which–path information). The amplified output state
is then heralded by D1 or D2, in the same way as before.

In practice, the NLA stage based on generalised quantum scissors is constructed
according to the schematic in Figure 3.4(b). The variable reflectivity beam splitter
from Figure 3.4(a) is achieved used a HWP and PBS in the ancilla mode. As before,
the ancilla photon is entangled between the reflected mode, at the NLA output,
and the transmitted mode that is directed to the heralding detectors. The input
state |α〉 is reflected at the first PBS and, as before, no light from the signal mode
ever directly reaches the output mode. The ancilla and signal are mode matched
after the first beam splitter, except for the polarisation degree of freedom where
they occupy orthogonal polarisation modes. The second HWP and PBS project
the heralding beam into a polarisation basis shifted by π/2 on the Poincaré sphere,
effectively erasing which–path information. Successful amplification in the output
mode is again heralded by a single photon detection in either D1 or D2.



50 Heralded Noiseless Amplification of a Photon Polarization Qubit

3.4 Experimental Concept

In contrast to previous experiments in noiseless linear amplification [62–64, 66], now
we are not interested in single mode states of the form |Ψ〉 = γ0|0〉 + γ1|1〉, but in
single photons mixed with the vacuum state. The state of a single photon subspace
can be a two–mode state, and in fact, a qubit encoded on the polarisation state of a
single photon is just such a state. After transmission through any quantum channel
with non–zero loss, a photonic qubit will be in the mixed state ρin, consisting of a
vacuum and single photon component:

ρin = γ0|0〉〈0|+ γ1|ψin
1 〉〈ψin

1 | , (3.16)

where the vacuum state will dominate (γ0 > γ1) for a very lossy channel. The qubit
is encoded in the polarisation state of the single photon subspace:

|ψin
1 〉 = α|1H0V〉+ |0H1V〉 ≡ α|H〉+ β|V〉 . (3.17)

The state ρin is the input to the qubit amplifier, |H〉 denotes the horizontal polar-
isation state and |V〉 the vertical polarisation state. The noiseless qubit amplifier
is an optical circuit that works probabilistically, but with an independent heralding
signal, to generate the transformation

ρin → (1− P)|00〉〈00| ⊗Πf + Pρout ⊗Πh . (3.18)

Here Πh is the projector on the subspace of heralding states corresponding to
successful amplification, with the amplified state ρout at the circuit output:

ρout = γ0|00〉〈00|+ g2γ1|ψin
1 〉〈ψin

1 |
N

. (3.19)

The projector Πf (fail) projects onto the subspace of cases in which the heralding
success signal is not received, and the state is discarded. The relative weighting of
the qubit subspace |ψin

1 〉 in the mixed state is increased by the gain factor g2.

Owing to amplification, the output state must be renormalised by N = γ0 + g2γ1.
With probability P, the likelihood of detecting a single photon is actually multiplied
by the factor Gnom = g2/N , where Gnom takes renormalisation into account. Am-
plification occurs when Gnom > 1, implying that γ0/N < 1, or that the vacuum
component is reduced compared to what it is in the input state.

The qubit amplifier is constructed from two noiseless linear amplification (NLA)
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Figure 3.5: Conceptual diagram of the noiseless qubit amplifier circuit. The input signal ρin
is split with a PBS into its polarisation components ρH,in and ρV,in, which are individually
amplified in separate NLA stages. The reflectivity’s ηH and ηV (always set to be equal)
are related to the amplifier gains through g =

√
η/(1− η). The amplified states ρH,out and

ρV,out are coherently recombined to recover ρout, the amplified qubit at the output.

stages, and is depicted in 3.5. This application of single–mode NLA stages was
proposed theoretically in [77]. Orthogonal polarisations |H〉 and |V〉 that are the
basis states of the qubit are amplified individually in separate NLA stages, and
coherent recombined at the output. Although the two NLA stages are independent,
their combined effect in the qubit amplifier is to increase coherence between two
output modes that do not interact.

The reflectivity of the variable beam splitter in each NLA stage (ηH and ηV) de-
termines the nominal gain in the mode. Successful amplification is heralded by
detection of a photon in only one of the detectors in each stage (either D1 or D2

in the stage amplifying |V〉, and either D3 or D4 in the stage amplifying |H〉), and
the output state is analysed using detectors D5 and D6. An important point is that
the decision to keep a particular signal is based solely on an independent heralding
event that occurs before the final measurement choice. There is no post–selection
on the final measurement results.

Figure 3.5 is a conceptual depiction of the experiment. A qubit is initially encoded
on the polarisation state |ψin1 〉 of a single photon. Polarisation–independent loss is
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applied to the single photon, transforming it into the mixed state ρin. A PBS sepa-
rates the orthogonal polarisation modes of the qubit in the single photon subspace
of ρin, sending the |V〉 mode to be amplified in the lower NLA stage, and |H〉 to be
amplified in the upper stage. When both amplifications are successfully heralded,
the output states ρH,out and ρV,out from each NLA stage are coherently recombined
at a PBS, to recover the final output state ρout. Quantum state tomography can
then be performed on ρout to verify that the photon subspace has been increased,
and that coherences in the polarisation state have survived.

3.5 Experimental Setup

The experimental setup consisted of a SPDC single photon source, described in
Section 3.5.1, and an optical circuit described in Section 3.5.2. Details can also be
found in [60].

The SPDC source is double–passed, allowing collection of two photon pairs into
four spatial modes. Three of the photons are used directly in the circuit, and
the last photon is sent directly to a single photon counting module, and acts as
an external trigger. The conceptual depiction of the qubit amplifier in Figure 3.5
shows polarisation modes being separated into orthogonal spatial modes, and then
recombined after amplification. This implies interferometric stability between the
the two NLA stages, which would be technically very challenging to achieve. To
avoid this, the two polarisation modes remain in the same spatial mode, which
makes the entire optical circuit in Figure 3.7 passively stable.

3.5.1 SPDC Source

The laser used was a Tsunami model Ti:Sapphire laser, manufactured by Spectra–
Physics. This laser could provide approximately 2.8 W of frequency–tunable pulsed
coherent light in the TEM00 spatial mode. The repetition rate was 80 MHz, with a
pulse width of ∼ 100 fs. The laser was operated at 780 nm wavelength, and part of
the output was used as a pump field for second harmonic generation (SHG) in a 2
mm thick β-Barium Borate (BBO) crystal. The 780 nm pump frequency is filtered
after the SHG using two dichroic mirrors and a pair of prisms, to ensure that only
390 nm light is sent to the SPDC crystal. A small iris is placed in between the two
prisms, to additionally filter out other frequencies. Back–reflected 390 nm light is
also filtered with a dichroic mirror, to prevent reflections from re–entering the laser
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Figure 3.6: Schematic representation of the SPDC source used to generate single photon
states for the qubit amplifier circuit. The SPDC crystal (BBO cut for type–I, degenerate
down conversion) is pumped with 100 mW of 390 nm light from an SHG process (see text
for details). The down converted photon pair from the forward pass of the pump beam
passes through a dichroic mirror, and is coupled into single mode optical fibre. One of
the photons is sent directly to a fibre–coupled single photon counting module, and acts as
an external trigger to herald the presence of its pair in the circuit. Its pair is couple into
polarisation–maintaining optical fibre, and is sent to the A2 mode (see Figure 3.7). The
pump beam is retro–reflected at the dichroic mirror, and another down converted photon
pair is independently generated in the backward pass through the crystal. Both photons
are coupled into polarisation maintaining optical fibres, and are sent to the signal and A1
modes of the optical circuit.

The 390 nm light is used to pump a 2 mm thick BBO crystal cut for type–I
(polarisation–unentangled) SPDC. The pump beam was focused using a plano–
convex spherical lens with a 50 cm focal length. The pump beam is double–passed
through the SPDC crystal, with a dichroic mirror retro–reflecting the 390 nm beam,
while transmitting the 780 nm light down converted from the forward pass. The
pump beam must be reflected at a slight angle from the forward optical path, to
prevent it from re–entering the laser cavity and de–stabilising the laser. A beam
dump is therefore put in the path of the retro–reflected beam some distance behind
the SPDC crystal.

The down converted light is coupled into single mode optical fibres. Long–pass filters
(not pictured) are placed directly before all four fibre couplers, to additionally filter
out background 390 nm light. Both photons generated in the backward pass, and
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one of the photons from the forward pass, are coupled into polarisation–maintaining
fibres, and sent to the optical circuit. The other photon from the forward pass acts
as an external trigger, to herald the presence of its pair in the optical circuit, and is
coupled into regular single mode optical fibre and sent to a single photon counting
module.

3.5.2 Noiseless Linear Amplification Stages

The interferometer from Figure 3.5 was experimentally realised in polarisation–mode
configuration. The orthogonal polarisation modes |H〉 and |V〉 that are the basis
states of the qubit remain in the same spatial mode, making the optical circuit
passively stable against vibrations. The two NLA stages from 3.5 are in series in
3.7, and the polarisation modes are individually addressed using wave plates and
polarising beam splitters.

One of the single photons from the backward pass of the SPDC source is sent to
the signal mode of the optical circuit, depicted in 3.7. Immediately after exiting
the polarisation–maintaing fibre, the photon passes through a HWP and PBS.
This serves two purposes: to ensure the initial purity of the photon’s polarisation
state, and apply loss. Applying loss before preparing the polarisation qubit state is
equivalent to applying polarisation–independent loss to the qubit. The polarisation
state is next encoded onto the single photon subspace using a QWP and HWP, and
the state in the optical circuit becomes ρin from Equation (3.16).

The two ancilla photons pass through a HWP and PBS (not shown in Figure 3.7)
immediately after exiting the optical fibre, to ensure their highly pure polarisation
states. The effective reflectivities ηH and ηV of the central beam splitters in the NLA
stages are set to be equal, to apply identical gain factors to both polarisation modes.
The axis of the HWP between the two NLA stages was set to 45 degrees, to flip the
polarisations so the |H〉 mode is amplified in the second stage. The advantage of the
setup in 3.7 is that the two amplified polarisation modes are automatically recom-
bined in the output, in an inherently stable way. State tomography is performed on
ρout using the output detector D5 and D6.
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Figure 3.7: Experimental qubit amplifier circuit. The orthogonal spatial modes of the
conceptual interferometer in Figure 3.5 are here superposed in the same spatial mode, to
make the optical circuit passively stable. The NLA stages are implemented in series, and
the |V〉 polarisation is reflected at the PBS in the first stage to be amplified, while the
|H〉 polarisation passes through unchanged. A HWP with its optic axis set to 45 degrees
flips the two polarisations, and the original |H〉 polarisation is reflected at the PBS in the
second stage to be amplified, while the original |V〉 polarisation passes through unchanged.
The amplified polarisation modes are coherently recombined in the output mode, in a way
that is inherently stable, to recover the amplified qubit ρout. The initial loss was applied
before qubit state preparation. This is identical to polarisation–independent loss after qubit
preparation.

3.6 Experimental Results

Results were collected for three different gain settings, listed in 3.1. The loss at the
beginning of the optical circuit was constant, and the size of the single photon
in ρin was measured to be γ1 = 0.041 ± 0.005. The performance of the qubit
amplifier was characterised in two ways: by directly measuring the gain factor at
the output, to be compared with the gain expected from the ancilla mode splitting
ratio and renormalisation; and by performing quantum state tomography on the
qubit subspace of the output state, to verify that coherence was preserved, and to
calculate the increase in transmission fidelity.

3.6.1 Characterising the SPDC Source and Optical Circuit

Single photon detection rates and coincidence efficiencies were measured for the
source using detectors in the optical circuit. The power of the 390 nm pump beam
was set to 100 mW directly before the SPDC crystal in 3.7. This is regulated using
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Figure 3.8: Hong-Ou-Mandel interference between the signal and A2 modes (see Figure
3.7). The optical delay was varied in A2 to match temporal modes of the two photons at
the PBS. As photons in the signal and A2 modes are from independent sources (different
passes in the SPDC setup), the non–classical interference must be measured using 4–fold
coincidence detection between the external trigger heralding the presence of a photon in
the A2 mode, and detection of an A1 photon in D2 heralding the presence of a photon in
the signal mode. The acquisition time for each data point was 180 seconds, and the fitted
interference visibility was 91%.

the HWP and PBS before the SHG crystal, which controls the 780 nm power from the
Ti:Sapphire laser. The 390 nm power was kept at 100 mW to limit the higher order
terms created in SPDC, which would be considered noise in the qubit amplification
protocol. The laser bandwidth was typically kept at a FWHM of ∼ 5.4− 5.7 nm, as
it was found that the Ti:Sapphire laser’s mode locking was less robust at narrower
bandwidths. Bandpass filters of 3 nm were placed directly before the couplers at
every output port of the optical circuit (not pictured), effectively setting the spectral
shape of the pulses.

The photons in the signal and first ancilla (A1) mode are pairs from the backward
pass of the SPDC source, and their coincidence efficiency was typically measured to
be 18 − 20% in D1 and D2 of the circuit. The single photon detection rate from
the signal mode ranged from 5.5 · 104 s−1 in D1 to 4.0 · 104 s−1 in D6, while for the
A1 mode it ranged from 6.5 · 104 s−1 in D1 to 5.5 · 104 s−1 in D6. The photon in
the second ancilla mode (A2) is from the forward pass of the SPDC source, and its
pair is the external trigger photon in 3.6. The single photon detection rate from
the A2 mode ranged from 1.10 · 105 s−1 in D3 to 9.0 · 104 s−1 in D6, while the
detection rate in the external trigger was 1.20 · 105 s−1. The coincidence efficiency
measured between the A2 mode and the external trigger was typically ∼ 15%. The
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lower efficiency in the forward pass was likely due to coupling more background
light into those modes. Another contributing factor was that the phase matching
condition was slightly different for the two passes in the source, since the reflected
beam must pass through the SPDC crystal at a slightly different angle, in order to
not be retro–reflected back into the laser cavity.

The signal and A1 modes are matched at the central beam splitter in the first
NLA stage, to generate non–classical HOM interference that is measured in D1

and D2. The two photons are matched to the same spatial and temporal mode
at the central beam splitter but, as the signal photon is reflected and A1 photon
is transmitted at the PBS, they are in orthogonal polarisation modes. Using the
HWP and PBS in front of the two detectors, a projection on the diagonal (|D〉 =
(|H〉+ |V〉)/

√
2) and anti–diagonal (|A〉 = (|H〉 − |V〉)/

√
2) polarisation basis erases

which–path information, and thereby creates HOM interference that is manifested
as vanishing two photon coincidence detection rate between D1 and D2 (see Figure
3.8).

Measuring HOM interference between the signal and ancilla photons guarantees that
they are indistinguishable. As they must occupy the same temporal mode at the
beam splitter, this sets a fixed phase relationship between the photon in the signal
mode, and the reflected ancilla mode which is the output of the NLA stage. This is
necessary to establish coherence between modes at the output. A photon detection
at eitherD1 orD2 gives no information, in principle, about whether the photon came
from the signal or ancilla mode, which is in essence a quantum eraser [31, 95, 105]. It
is this absence of distinguishing information that induces the interference between
modes, allowing a measurement in D1 or D2 to project the input signal into the
output mode.

As the photons in the signal and A1 modes are a pair from the same source—the
backward pass of the SPDC—they HOM interference can be measured in two–fold
coincidence detection. The HOM interference visibility was typically measured to be
∼ 97%, with a small accidental coincidence rate due to detector dark counts (< 1%)
subtracted off. The HOM interference in the second NLA stage is between photons
from independent sources, and must therefore be measured in four–fold coincidence
detection. The signal mode is transmitted through the first NLA stage, and the
A1 photon is sent directly to D2, without any mode splitting or interference. The
signal and A2 modes are overlapped at the central beam splitter in the second NLA
stage, and HOM interference is measured as before, in D3 and D4. The photon in
the A1 mode acts as a trigger to herald the presence of the presence of a photon in
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the signal mode, and the external trigger similarly heralds the presence of a photon
in the A2 mode. The HOM interference is thus measured in four–fold coincidence
detection between the signal and A2 photons, conditioned on detection at the two
triggers.

The HOM interference between the signal and A2 photons is plotted in 3.8. A Gaus-
sian function was fitted to the data, and the interference visibility was calculated as
the ratio of the Gaussian amplitude and the constant coincidence rate outside the
interference region. The visibility was calculated to be 91%.

3.6.2 Amplification

Three different gain factors were investigated, for an input state with a single photon
subspace size γ1 = 0.041±0.005. To measure the size of the single photon subspace,
the signal mode is transmitted directly through the circuit to D5 and D6, without
mode splitting or interference, and the ancillae are likewise transmitted directly to
the heralding detectors (D1 and D2 for A1, and D3 and D4 for A2). The size
of the single photon in ρin is the rate of detecting a single photon in D5 or D6,
conditioned on heralding detections in the external trigger, D1 or D2, and D3 or
D4. The signal size is thus given by a ratio of four–fold to three–fold coincidence
detections: C4/C3, where C3 is the appropriate combination of three–fold heralding
detections, and C4 comprises an additional detection in D5 or D6. To obtain a
final value for γ1, the detected state size is scaled by the detector efficiency (εdet)
and path efficiency through the optical circuit (εpath). We use εdet = 0.5 for our
silicon avalanche photodiode detectors (Perkin Elmer SPCM–AQR–14FC) at 780
nm wavelength, and the optical path efficiency from the circuit input to D5 and
D6 was measured to be εpath = 0.64 ± 0.04. The actual input size was therefore
calculated using the expression

γ1 = 1
εdet · εpath

C4
C3

. (3.20)

The average size of the amplified photon subspace in the output state ρout is mea-
sured using the same four–fold to three–fold coincidence detection ratio, but with
the central beam splitters in the NLA stages set to the correct reflectivities ηH and
ηV. Since detection and path inefficiencies affect the detected input and output
states in the same way, they don’t need to be included to calculate the measured
gain:

Gm = (C4/C3)amp

(C4/C3)in (3.21)
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The effective reflectivities ηH and ηV for the ancilla modes in the two NLA stages
were calibrated by observing the ratio of single photon detection rates D6/D2 for
A1, and D6/D3 for A2. The ratio g2 = η/(1 − η) determines the nominal gain
Gnom = g2/N after re–normalisation, whereN is the normalisation factor for ρout. In
the limit of g2γ1 � 1, the re–normalisation can safely be neglected, and Gnom ' g2.

The performance of the qubit amplifier was characterised in two ways: in terms
of its measured gain Gm, and in terms of the state fidelity between |ψin

1 〉 and
the output state ρout. The input photon polarisation state |ψin

1 〉 was prepared in
right–hand circular polarisation |R〉 = (|H〉 − i|V〉)/

√
2 for all three gain settings.

The measured gains are compared in 3.1. In practice, successful amplification can
be heralded by different combinations of coincidence detections, and the observed
splitting ratios g2 (and hence Gnom) varied slightly with small differences in path and
detector efficiencies. To accurately estimate Gnom and its uncertainty, the effective
splitting ratios were measured through all paths in the optical circuit that could
herald successful amplification, to calculate an average value and standard deviation.
Similarly, Gm was measured using a representative sample of heralding heralding
combinations: detection in D5 or D6 heralded by D1 and D3, and detection in D5

or D6 heralded by D2 and D4. An average measured gain and standard deviation
were calculated using the four coincidence combinations.

A saturation effect can be seen in comparing the highest nominal gain Gnom =
6.5± 0.08 with the corresponding measured gain Gm = 5.7± 0.5—this is due to the
non–unit efficiency of delivering ancilla photons to the circuit, as well as to the lack
of number resolution in the detectors. In the |g| → ∞ limit, the attainable gain in
the qubit amplifier is in principle equal to the ancilla source efficiency [60], and this
is consistent with recent theory [106].

For the case of the middle gain, Gm = 3.3, the qubit |ψin
1 〉 was prepared in the

g2 Gnom Gm

2.08± 0.08 2.0± 0.2 2.2± 0.2
3.48± 0.09 3.2± 0.4 3.3± 0.6
8.40± 0.45 6.5± 0.8 5.7± 0.5

Table 3.1: The nominal (Gnom) and measured (Gm) intensity gains were determined for three
different splitting ratios g2 (with ηH = ηV). The input qubit state size was γ1 = 0.041±0.005.
The nominal intensity gain was determined by measuring splitting ratios between the output
detectors and heralding detectors in each NLA stage (see text for details). The measured
intensity gain was determined by taking the ratio of successfully heralded photon detection
rate in the output state, to the photon detection rate γ1 in the input state.



60 Heralded Noiseless Amplification of a Photon Polarization Qubit

H V

H

V

ï���

�

���

H V

H

V

ï���

�

���

(a)

H V

H

V

ï���

�

���

H V

H

V

ï���

�

���

(b)

H V

H

V

ï���

�

���

H V

H

V

ï���

�

���

(c)

H V

H

V

ï���

�

���

H V

H

V

ï���

�

���

(d)

H V

H

V

ï���

�

���

H V

H

V

ï���

�

���

(e)

H V

H

V

ï���

�

���

H V

H

V

ï���

�

���

(f)

Figure 3.9: Density matrices of the single photon subspace for the six canonical polarisations
inputs (a)—(f), with Gm = 3.3 ± 0.6. The left–hand plots show the real elements of
the density matrices, and the right–hand plots show the imaginary elements. The semi–
transparent bars are the state matrix elements of the single photon qubit |ψin

1 〉〈ψin
1 | in the

input state ρin, and the solid bars represent the amplified single photon subspace ρout
1 of the

output state ρout. The increase in the size of the single photon subspaces after amplification
is apparent from the figures, as well as the fact that coherences are preserved at the circuit
output. A small systematic imbalance in favour of |H〉 is noticeable for all polarisations, and
this is due to different heralding path efficiencies in the two NLA stages of the qubit amplifier.
These density matrices correspond to a subspace of the system, and are consequently not
normalised.

six canonical polarisation basis states {|H〉, |V〉, |D〉, |A〉, |R〉, |L〉}, and the density
matrices of the output qubits were reconstructed using quantum state tomography.
The un–normalised density matrices for the six output qubit subspaces are shown
in Figure 3.9, with the density matrices of the corresponding input qubit subspaces
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shown as semi–transparent bars. The real elements of the density matrices are
plotted shown in the left subplots, and the imaginary elements in the right subplots.
The increased size of the qubit subspace in the overall mixed state is apparent.

Gm 〈R|ρin|R〉 〈R|ρout
1 |R〉 〈R|ρout|R〉

2.2± 0.2 0.041 0.831± 0.005 0.071± 0.001
3.3± 0.6 0.041 0.819± 0.009 0.119± 0.008
5.7± 0.5 0.041 0.891± 0.009 0.208± 0.002

Table 3.2: The fidelity between the amplified output state ρout and the ideal qubit subspace
|ψin

1 〉 = |R〉 was compared for all three measured gains Gm. The input fidelity 〈R|ρin|R〉
in all three cases corresponds to the size of the photon in the input (ρin), since perfect
polarisation qubit preparation was assumed. The fidelity of the output qubit 〈R|ρout

1 |R〉 is
measured using quantum state tomography. This shows that imperfect HOM interference
in the NLA stages adds polarisation mixture to the output qubit.

The fidelity between the output state and the input polarisation qubit, 〈ψin
1 |ρout|ψin

1 〉,
is compared to the fidelity between input state and polarisation qubit, 〈ψin

1 |ρin|ψin
1 〉,

for the three gains in Table 3.2. The fidelity 〈ψin
1 |ρout|ψin

1 〉 depends on the size of
the qubit subspace, but also on the purity of the qubit after amplification. The
qubit amplifier introduces some mixture into the polarisation qubit subspace, and
ρout from (3.19) is more accurately written

ρout = γ0|00〉〈00|+ g2γ1ρ
out
1

N
, (3.22)

where the output qubit subspace ρout
1 is itself a mixed state in general. This

polarisation mixture is not a fundamental feature of amplification [60], but is rather
a result of imperfect mode matching between the signal and ancilla modes, which
translates to a decrease in the non–classical interference visibility, and hence an
imprecise phase relationship between basis states in the output mode. To a lesser
extent, higher order photon terms from the SPDC source that populate the ancilla
modes also contribute to polarisation mixture in the qubit subspace: one down–
converted photon in an ancilla pulse can trigger a heralding detector, and another
photon in the same pulse can be reflected into the output mode, without fixing the
phase between this second photon and the input mode. These spurious coincidence
events are measured as polarisation mixture during quantum state tomography of
the output mode.

For the measured gain Gm = 3.3, the fidelity averaged over the six polarisation
states increased from 〈ψin

1 |ρin|ψin
1 〉 = 4.1% to 〈ψin

1 |ρout|ψin
1 〉 = 11.7 ± 0.8%. This

increase in fidelity is slightly lower than the value of Gm would suggest, and it can
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Figure 3.10: Absolute values of the ρin (semi–transparent bars) and ρout (solid bars) density
matrices. (a) Absolute values of the elements from the full density matrix for gainGm = 5.7±
0.5 and input polarisation |ψin

1 〉 = R〉. As the input state was an attenuated single photon,
and the qubit amplifier operates on the single photon subspace, it can be assumed that no
coherence exists between the vacuum and single photon subspace. The absolute values of
the population and coherence terms in ρin and ρout are compared for (b) Gm = 5.7± 0.5 (c)
Gm = 3.3± 0.6 and (d) Gm = 2.2± 0.2, all for |ψin

1 〉 = |R〉. The comparison highlights the
decrease of vacuum in the mixed state, and a corresponding increase in the size of the qubit
subspace and coherences.

be explained by the polarisation mixture in ρout
1 added by the qubit amplifier. The

fidelities are compared for the three gain settings, with |ψin
1 〉 = |R〉, in Table 3.2. In

Figure 3.10(a), the absolute value of the full density matrix for ρout (solid bars) and
ρin (semi–transparent bars) is depicted. The non–zero terms in 3.10(a) are shown
in 3.10(b), where it is more apparent that the vacuum term is partially suppressed
and the probability of the qubit subspace is correspondingly increased as a results
of amplification. The absolute values of the density matrix elements for the two
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other gains are also presented in 3.10. The coherence terms between the vacuum
and single photon were set to zero, as the initial state at the beginning of the optical
circuit was an attenuated single photon state.

3.7 Discussion

This is the first experimental realisation of the noiseless amplification of a two–
mode quantum state, which is an important advance towards meeting the challenge
of establishing DIQKD [77]. The purity of the qubit remains high after amplification
(Figure 3.9), and the amplifier achieves a significant improvement in transmission
fidelity for qubits subjected to substantial losses (Table 3.2). Qubit amplification
is completely heralded—no post–selection is required—leaving the output qubit
available for subsequent quantum information processing. For the highest measured
gain Gm = 5.7, the transmission fidelity was increased from 〈R|ρin|R〉 = 4.1% to
〈R|ρout|R〉 = 20.8± 0.2%, a five–fold increase.

There was a slight variation in output state purities that depended on the polarisa-
tion input, and this was due to different non–classical interference visibilities in the
two NLA stages, and different efficiencies in the ancilla modes. From theoretically
investigating the effects of source and detection efficiency on the qubit amplifier’s
performance [60], we conclude that the gain saturation observed in our data (Figure
3.1) is caused by source inefficiency in the ancilla mode and lack of number resolution
in the detectors. A gain saturation factor, denoted by L, is calculated for the output
state:

ρout = (γ0 + Lγ1)|00〉〈00|+ g2γ1ρ
out
1

γ0 + γ1(g2 + L) . (3.23)

The gain saturation in (3.23) only affects the relative probabilities of terms in the
mixed state ρout, and does not affect the purity of the qubit subspace ρout

1 . The gain
saturation factor L can be expressed as

L = 1 + 1− τ
τ(1− η) (3.24a)

= 1 + (1− τ)g2

τ
, (3.24b)

and only depends on the single photon source efficiency in the ancilla modes, denoted
by τ , and the factor g2. From (3.23) and (3.24), the highest attainable qubit
efficiency from the amplifier is τ , or the ancilla efficiency, which is consistent with
other theory [106]. This maximum qubit efficiency is achieved in the |g| → ∞ limit.
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When factoring out detector efficiency, denoted by δ, and path efficiency through
the optical circuit, we estimated our average source efficiency to be approximately
0.45. Taking into account detector and source efficiency, the theoretical probability
of successfully amplifying a qubit was calculated to be

P = δ2τ2(1− η)2(γ0 + γ1(g2 + L)) . (3.25)

The experimental success probability was calculated from data by taking the ratio of
three–fold coincidence detections heralding successful amplification, Camp

3 , to three–
fold coincidence detections when the circuit is not set to amplify, Cin

3 (see Section
3.6.2 and (3.21)). This corresponds to the success probability conditional on ancillae
photons being delivered to the circuit and being detected, i.e. with τ = δ = 1. For
the case of Gm = 3.3 (shown in Figure 3.9), P ' 0.05. This is consistent with the
expected value from (3.25).

Improved photon sources currently under development [107–111] can be integrated
directly into the qubit amplifier, and the circuit could therefore be use to amplify a
state arbitrarily close to a single photon (that is, arbitrary suppression of vacuum).
Amplification is inversely related to success probability, but amplification to an
extreme level is not required, for example, to violate a loophole–free Bell inequality.
Heralded noiseless qubit amplification is a powerful technique, with direct applica-
tions in DIQKD, fundamental tests of quantum physics and a range of emerging
quantum technologies [112–114].
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Chapter 4

Entanglement Distribution in
Quantum Networks with Linear
Optics

4.1 Acknowledgements

Guoyong Xiang and I constructed the SPDC photon source together. I modified
the optical circuit from the qubit amplifier experiment (presented in Chapter 3) for
the present experiment. I collected and analysed the data, under the supervision of
Geoff Pryde and with input from Tim Ralph. A manuscript on the results presented
in this chapter is currently in progress.

4.2 Introduction

Entanglement is the fundamental resource in quantum information [4], and enabling
efficient distribution of entanglement across a quantum network is a highly active
research area [115, 116]. A quantum network consists of universal nodes—with the
ability to send, receive, store and perform local operations on a quantum state—
connected by transmission channels. A node essentially requires a fully functional
quantum memory, and a tremendous amount of research activity is directed towards
realising quantum memories in a variety of physical systems: single atoms in cavities
[117, 118], trapped ions [119, 120], atomic ensembles [121], and superconducting
circuits [122] are some examples. On the other hand, the transmission channel
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connecting distant nodes is always an optical channel. Photons are a very appealing
quantum information carrier, for their naturally low rate of decoherence and the
ease of encoding and controlling information on their physical properties. Linear
optics and single photon detection can mediate interaction between quantum states
at spatially separated nodes of a network, thereby inducing conditional entanglement
[123].

Creating entanglement across large distances could be considered a goal in itself,
enabling fundamental tests at new distance scales [124, 125]. Violating a Bell
inequality is equivalent to demonstrating device–independent quantum key distribu-
tion (DIQKD) [77], and recent experiments demonstrating entanglement in space–
like separated bipartite systems [71, 125–127] also prove the feasibility of a secure
device–independent communication link over appreciable distances. Once entangle-
ment is established between nodes, various secure quantum communication [128] or
computation [129, 130] protocols can be performed across a network.

Any realistic transmission channel includes loss and decoherence, due to absorp-
tion and scattering of photons. Shared entanglement decreases exponentially with
transmission distance, and purification protocols are necessary to extend the vi-
able transmission range. Purification in the form of entanglement concentration is
possible with linear optics, and these experimental techniques can be applied in a
variety of realistic conditions. This chapter investigates a linear optical technique for
mitigating transmission loss in entanglement distribution that is suitable for a wide
variety quantum repeater architectures. We focus on the problem of transmission
in quantum networks, and do not attempt to demonstrate a working quantum
node. Combining some of the key ingredients in quantum repeater proposals—
single photons, entanglement swapping and purification—the performance of the
purification technique is assessed for two distinct configurations of the optical circuit,
by tomographic reconstruction of the quantum state at the end of the circuit.

4.3 Quantum Repeaters

The probability of a photon being absorbed or scattered increases exponentially with
transmission distance, which means that distributed entanglement deteriorates at
the same rate. A practical strategy to overcome loss in entanglement distribution is a
quantum repeater. The first quantum repeater was proposed by Briegel, Dür, Cirac
and Zoller (BDCZ) in 1998 [131], and consisted of a series of N − 1 entanglement
swapping stages that divide a total transmission distance L into smaller elementary
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Figure 4.1: Conceptual depiction of the BDCZ repeater configuration described in [131].
Elementary links of entangled resources, usually pairs of photons, are connected at inter-
mediary nodes (C1 − C3) via entanglement swapping, to entangle the principal nodes A
and B. To entangle nodes separated by distance L, photons only traverse distances of L/4.
Purification stages at intermediary nodes can repair the effects of noise and loss, in principle
ensuring that nodes A and B become maximally entangled. Three intermediary nodes are
shown here, but the number of nodes N − 1 is determined by the total distance L and
attenuation and noise rate across the channel.

linkage distances L/N . The resource requirement is N entangled photon pairs, and
each photon travels a distance L/(2N) to interact with another photon from an
adjacent pair at the entanglement swapping stage, thereby entangling the terminal
nodes separated by the full distance L—see Fig. 4.1. The BDCZ model incorporates
two–photon detection at the entanglement swapping stage, and as the entanglement
swapping stages must all succeed simultaneously, the probability of successfully
distributing an entangled state (or in other words, the rate at which entanglement
can be transmitted) decreases exponentially with distance.

Generation of entangled photons, entanglement swapping and entanglement purifi-
cation are currently all non–deterministic operations, only succeeding with indepen-
dent probabilities. To realise a quantum repeater in practice, quantum memories
will need to hold states until purification or entanglement swapping are successful.
A quantum repeater scheme based on linear optics, single photon detection and
collective excitations in atomic ensembles was proposed in 2001 by Duan, Lukin,
Cirac and Zoller (DLCZ) [123].

Entangled photon pairs in the BDCZ scheme are replaced in the DLCZ protocol
by spatially separated and entangled atomic ensembles. Two atomic ensembles
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separated by up to an attenuation length L/N become entangled in the following
way. A three–level Λ system in alkali–metal atoms is formed by two metastable
ground state sub–levels and one excited electronic state. A laser pulse on the
transition from one ground state to the excited state results in spontaneous emission
of a single photon when the electron relaxes to the second metastable ground state.
The emission modes from both atomic ensembles are matched, to erase which–
path information, and interact at a beam splitter; conditioned on detection of a
single photon after the beam splitter, the two atomic ensembles are projected into
a maximally entangled state. As spontaneous emission from either atomic ensemble
only occurs with low probability, the majority of the time no photon is detected, and
this process of forming an elementary entangled link in DLCZ is non–deterministic
(but heralded).

Once the elementary link is successfully heralded, entanglement can be extended be-
yond L/N by connecting atomic ensembles from two different elementary links. The
stored excitations in two atomic ensembles are retrieved using read–out laser pulses,
with close to unit efficiency due to collective enhancement [132], and combined in
an entanglement swapping stage to extend the entanglement to twice the original

Node A Node BC2

Shared Entanglement

Atomic Ensembles

C1

L

N C3

Figure 4.2: Conceptual depiction of the DLCZ repeater architecture described in [123]. The
entangled photon pairs in 4.1 are replaced by atomic ensembles. An elementary link consists
of two atomic ensembles within distance L/N of each other. The ensembles are conditionally
entangled, at intermediary node C1, when spontaneous emission modes are combined at a
beam splitter, and a single photon with equal amplitude of originating from both modes is
detected. Elementary links are connected via entanglement swapping, at intermediary nodes
C2 and C3, to entangle principal nodes A and B separated by a distance L. As before, the
length of an elementary link L/N is determined by transmission efficiency, and in principle,
nodes A and B can become maximally entangled.
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length. Using N of these links, two atomic ensembles separated by a distance L can
be entangled, in a similar way to the BDCZ scheme. In BDCZ, the purifications in
all N elements would need to succeed simultaneously, and this probability decreases
exponentially with distance. In DLCZ on the other hand, once a quantum state
has been successfully purified it is stored in an atomic ensemble quantum memory,
and the communication efficiency therefore scales polynomially. It should be noted
that transmission losses in DLCZ simply reduce the probability of successfully
swapping entanglement between elementary links, but once entanglement swapping
is successfully heralded, the states are maximally entangled. Thus, entanglement
swapping in DLCZ filters out the vacuum component in a state, effectively purifying
it.

Since these early proposals for quantum repeater architectures, several modifications
and refinements have been proposed, and a comparison of various approaches can
be found in [133]. All quantum repeaters that are discussed, however, incorporate
the same key ingredients: single photons, entanglement swapping with linear optics,
and quantum memories. As long as single photons are transmitted over appreciable
distances, vacuum will always be mixed in with the state due to transmission loss.
As mentioned, this would decrease the success probability of entanglement swapping,
but the distributed entanglement would ultimately not be affected.

At this time, quantum memories are still technically extremely challenging to realise,
and their performance is far from ideal [134]. For this reason, a quantum state stored
in memory is a precious resource. As an NLA stage not only filters the vacuum
component of a transmitted photonic state, but also incorporates an independent
signal heralding successful amplification, it is a useful technique for heralding that
a pure state has been sent to a quantum memory. This could be important,
for example, if the quantum memory also performs local quantum information
processing, which generally requires high purities. Alternatively, if two-photon
detection is required in a quantum network, an NLA stage can herald when a pure
single photon state is being sent to an entanglement swapping stage, signalling
that the state in the adjacent quantum memory can safely be released. Another
recent quantum repeater proposal [113], combining qubit amplification and quantum
memories to form heralded pairs of entangled photons, and Bell state (two–photon)
measurements for entanglement swapping, can also be seen as motivation for the
current work.

An NLA stage integrated into a quantum network can be considered to perform
quantum erasure correction. Quantum error–correcting codes [135, 136] are an
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important advance towards enabling fault–tolerant quantum computing. In the
continuous–variable regime, experimental quantum error correction has recently
been demonstrated for decoherence [137] and loss [138] channels. In the discrete
variable regime, overcoming decoherence noise in entanglement distribution has
previously been demonstrated by encoding states in a decoherence–free subspace
[139, 140]; correcting measurement errors in linear optics quantum gates has also
been experimentally investigated [141]. Compensating for photon loss, however,
remains an important goal, which the current work addresses.

In the experiment, orthogonal spatial modes of a quantum network are simulated by
orthogonal polarisation modes of a single photon state. A one–to–one mapping exists
between a photon polarisation qubit, which is a two–mode state, and the mode–
entangled states considered in many quantum repeater proposals. Using wave plates
and PBSs, the orthogonal polarisation modes can be addressed independently. The
optical circuit consists of two NLA stages, one operated as a single–mode amplifier
and the other as a teleportation stage to swap mode entanglement, and variable
loss in one mode. A polarisation mode of each photon is sent to an entanglement
swapping stage, thereby entangling the two photons’ orthogonal polarisation modes
that never interacted. Two configurations of the setup are investigated: in the
first configuration, called the “terminal link” configuration, loss is added to the
“outer” mode, between an ancilla photon source and a terminal node or quantum
memory (see Fig. 4.5); in the second configuration, called the “intermediate link”
configuration, loss is added to the “inner” mode, between an ancilla photon source
and an entanglement swapping stage (see Fig. 4.10). In both configurations, loss is
repaired with the NLA stage operated as a single–mode amplifier, which is based on
the generalised quantum scissors [62, 92, 99] introduced in Chapter 3.

It should be emphasised that the details of the BDCZ and DLCZ repeater architec-
tures have been introduced purely as illustrative examples. Both configurations that
we experimentally study in this chapter could be applied in any general quantum
repeater architecture.

4.3.1 Concept of Mode Entanglement

In the DLCZ repeater architecture, it is single mode entanglement that is being
shared between atomic ensembles—a single photon in a superposition of two separate
spatial modes. Despite considerable debate in the past, it is now clearly established
that a single photon delocalised between two modes represents an entangled system.
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A single photon de–localised between spatial modes A and B can be written

|ψ〉A,B = |0〉A|1〉B + |1〉A|0〉B , (4.1)

where |0〉A,B and |1〉A,B denote the occupation number of spatial modes A and B.
One counter–argument, for example had been that writing (4.1) in terms of field
operators

|ψ〉A,B = (â†A + â†B)|0A0B〉 , (4.2)

suggests that there is no entanglement, as it is a simple superposition of two field
mode operators acting on the vacuum.

A conclusive argument [96, 98, 142] in favour of entanglement, however, can be
made by imagining two cavities in spatial modes A and B that each contain single
atoms. The atom–cavity system can be prepared in such a way that if a photon
enters the cavity, it will be deterministically absorbed and excite the atom. The
single de–localised photon |ψ〉A,B in (4.1) is transformed into the atomic state

|Ψ〉A,B = |g〉A|e〉B + |e〉A|g〉B , (4.3)

with |g〉A,B and |e〉A,B denoting the ground and excited states, respectively, of the
atoms in modes A and B. This new state |Ψ〉A,B is generally agreed to be entangled,
and it was created directly from |ψ〉A,B using only local operations and classical
communication (LOCC). It is known that entanglement cannot be increased using
LOCC alone [4, 143], and this implies that |ψ〉A,B must be equally entangled.

It would be inaccurate, however, to say it is the single photon and the vacuum state
that are entangled in |ψ〉A,B. It is in fact the modes A and B that are entangled
in their occupation number [97]. Mode entanglement is a useful resource that has
potential applications in quantum communication and computation [144–147]. As
previously discussed (see Section 2.5), qubits in linear optical quantum information
are often encoded in a single photon’s polarisation state: |ψ〉 = α|H〉 + β|V〉.
The photonic qubit occupies a single spatial mode, but it can easily be trans-
formed into a superposition of two spatial modes using a wave plate and a PBS:
α|H〉 + β|V〉 = α|1H0V〉 + β|0H1V〉 → α|10〉 + β|01〉. In quantum computing, this
is known as dual–rail encoding, where the basis states of the qubit are orthogonal
spatial modes. Polarisation encoding is formally equivalent to dual–rail encoding
of a qubit [148]. An important point is that a dual–rail qubit is not an entangled
state: it is a single photon with basis states {|01〉, |10〉}. A delocalised photon is only
entangled if it is considered a subspace of a larger space, spanned by the basis states
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{|00〉, |01〉, |10〉, |11〉}. This larger space is a two qubit space, comprised of two modes
that are each limited to 0 or 1 photons. In other words, it is an entangled state of
two single–rail qubits. This is an important point to keep in mind, as the full state
density matrix of basis states {|00〉, |01〉, |10〉, |11〉} is experimentally reconstructed.

4.3.2 Entanglement of Formation and Concurrence

Entanglement is the fundamental resource in quantum information, and like any
resource, a method of quantifying it is essential. A pure quantum state is entangled
if it is not factorizable, as in the case of the four Bell states {Ψ±, Φ±}. A mixed
state is entangled if it cannot be represented as a mixture of factorizable pure states.
Several different measures of entanglement have been proposed for mixed states [149],
and here we will focus on a measure known as the entanglement of formation.

The entanglement of formation was designed to quantify the resources needed to
create a given entangled state [150]. In the case of a bipartite pure state, the
entanglement of formation is equivalent to the von Neumann entropy of either of
the two subsystems [151]. An analytic expression for the entanglement of formation
of bipartite1 mixed states has also been developed [152], and this formula is described
below.

Given a bipartite mixed state ρ, a non–Hermitian matrix % can be defined:

% ≡ ρρ̃ , (4.4)

where ρ̃ is the spin–flipped state

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) . (4.5)

Here ρ∗ is the complex conjugate of ρ when expressed in the standard computational
bases {|00〉, |01〉, |10〉, |11〉}, and σy is the Pauli matrix

σy =
(

0 −i
i 0

)
. (4.6)

A quantity C(ρ) called the concurrence is now defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} , (4.7)

1Consisting of two parts, in this case two modes.
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where the λjs are the square roots of the eigenvalues of % in decreasing order. The
λjs are non–negative real numbers, and the concurrence is bounded between 0 ≤
C(ρ) ≤ 1. The entanglement of formation is then:

E(C) = G
[

1 +
√

1− C2

2

]
(4.8)

with
G[x] ≡ −xlog2x− (1− x)log2(1− x) . (4.9)

The entanglement of formation is monotonically increasing and ranges from 0 to
1, as desired for an entanglement measure. The concurrence is also monotonically
increasing from 0 to 1, and can therefore be taken as a measure of entanglement
in its own right. Following [153], we calculate the concurrence in Section 4.5.3 to
characterise mode entanglement in our experiment.

4.3.3 Teleporting Arbitrary Quantum States

Quantum teleportation is one of the great early successes of quantum information
science [33, 36, 154, 155]. If one party, Alice, possesses a quantum state |ψ〉 that
she wants to transmit to another distant party, Bob, the laws of quantum mechanics
impose some fundamental constraints on how it can be achieved. One straightfor-
ward method would be for Alice to measure |ψ〉, and then send Bob the classical
information so he could reconstruct the state for himself. But it is impossible for
Alice to accurately measure a single copy of a wave function [84].

If Alice and Bob already share a maximally entangled photon pair, Alice can send her
unknown state |ψ〉 by consuming their entangled resource and communicating two
bits of classical information to Bob. The procedure is for Alice to interact |ψ〉 with
her half of the entangled pair. If we suppose Alice and Bob initially share the Bell
state |Φ+

A,B〉, and Alice’s unknown quantum state is written in the computational
basis as |ψ〉 = α|0A〉+ β|1A〉, the full three qubit state is:

|ψA〉 ⊗ |Φ+
A,B〉 = (α|0A〉+ β|1A〉)(|0A0B〉+ |1A1B〉)√

2
. (4.10)

It is important to realise that Alice’s two–qubit state can be expressed as a super-



74 Entanglement Distribution in Quantum Networks with Linear Optics

position of all four Bell states [156]:

|ψA〉 ⊗ |Φ+
A,B〉 = 1

2[|Φ+
AA〉(α|0B〉+ β|1B〉) + |Φ−AA〉(α|0B〉 − β|1B〉) (4.11a)

+ |Ψ+
AA〉(α|1B〉+ β|0B〉) + |Ψ−AA〉(α|1B〉 − β|0B〉)] . (4.11b)

By performing a joint Bell state measurement on the two qubits in her possession,
she projects Bob’s qubit into one of four possible states. One of the four possibilities
is exactly the state Alice wanted to send Bob in the first place, that is |ψ〉. The
other three states only require local qubit rotations to be transformed into |ψ〉.
After performing her Bell state measurement, Alice simply sends Bob two classical
bits informing him which of the four possible outcomes she measured, and this
determines the operation Bob must perform to recover |ψ〉. An important detail of
this protocol is that Alice’s original state |ψ〉 is destroyed in the projective Bell state
measurement. If it had not been destroyed, two identical states |ψ〉 would exist in
the end, in direct contradiction with the no–cloning theorem. This is, in fact, why
the procedure is called quantum teleportation, instead of quantum cloning. Another
detail to notice is that Alice never learned what the state was, as it was unnecessary
for teleportation. Finally, the physical system—the energy of a single photon, in
this example—was never teleported, but only the information contained in its wave
function.

4.3.4 Entanglement Swapping

The quantum teleportation technique can be extended from teleporting an arbitrary
quantum state to entangling two qubits that never directly interact with each other.
This procedure is called entanglement swapping [38] (see Figure 4.3), and the main
idea is that the the arbitrary qubit |ψ〉 in the quantum teleportation protocol is now
one half of another entangled qubit pair. Alice and Bob initially share the entangled
ancilla |Ψ−B〉, and Alice receives a state |ψ2〉 that is unknown to her, but which is in
fact half of another singlet |Ψ−A〉. The four–qubit state in the computation basis is

|ψ1234〉 = 1
2 |Ψ

−
A〉 ⊗ |Ψ

−
B〉 (4.12a)

= 1
2(|01〉|12〉 − |11〉|02〉)(|03〉|14〉 − |13〉|04〉) . (4.12b)
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Figure 4.3: Conceptual diagram of an entanglement swapping setup. Alice possesses an
unknown state |ψ2〉, and half of a Bell state |ψ3〉. She can teleport |ψ2〉 to Bob by
performing a two photon Bell state measurement on |ψ2〉 and |ψ3〉, and classically sending
her measurement result to Bob. As |ψ2〉 was originally maximally entangled with |ψ1〉, the
state Bob now possesses is also maximally entangled with |ψ1〉. Thus, Bob has swapped his
initial entanglement with |ψ3〉 for entanglement with |ψ1〉, never having directly interacted
with |ψ1〉 or |ψ2〉.

Like before, the combined state can be re–expressed as a superposition of all four
Bell states [38]:

|ψ1234〉 = 1
2(|Ψ+

14〉|Ψ
+
23〉+ |ψ−14〉|Ψ

−
23〉+ |Φ+

14〉|Φ
+
23〉+ |Φ−14〉|Φ

−
23〉) . (4.13a)

Alice performs a joint Bell state measurement on qubits 2 and 3, and projects Bob’s
state into one of four possible states. When Alice communicates two classical bits
encoding her measurement outcome to Bob, he can correct his half of the state with
local operations. Bob now possesses a subsystem that is half of the entangled state
|Ψ−A〉, never having directly interacted with any part of the original state |Ψ−A〉.

4.4 Experimental Components

Two distinct configurations of the experiment—referred to as the terminal link
configuration (Section 4.5) and the intermediate link configuration (Section 4.6)—
were studied, using the same experimental components. They both incorporated the
NLA stages used for the noiseless amplification of a polarisation qubit, described in
3.5 and [60]. Polarisation–dependent loss was also common to both, and this loss
was applied by using a half wave plat and a partially–polarising beam splitter.
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The location of the loss in the optical circuit, and the detection patterns at the
circuit output, were the main differences between the two configurations. In the
next sections, elements common to the two schemes will be described.

4.4.1 Photon Source Characterisation

The single photons for this experiment were generated using the SPDC source
described in 3.5.1. As before, two pairs of degenerate polarisation–unentangled
photons at 780 nm were produced in the double–passed BBO crystal. The 380 nm
pump beam was held at a constant power of 100 mW to limit higher–order terms in
the down–converted modes.

A 3 nm interference filter was placed directly before each single photon count-
ing module, to minimise coupling of background light. The bandwidth of down–
converted photons was typically ∼ 5.5 nm FWHM directly from the source, as this
was found to be the narrowest bandwidth achievable with the Ti:Sapphire pump
laser while maintaining stable mode–locking over extended time intervals. The
interference filters effectively limit the bandwidth of the photons in the circuit to
3 nm, which gives an expected photon coherence length ∆Lc ' λ2/∆λ ' 0.2 mm.
This is consistent with the FWHM of the HOM interferences in Figure 5.7.

As in Chapter 3, the photons in the signal mode and the first ancilla mode are pairs
generated in the backward pass of the SPDC source. The coincidence efficiency for
this pair of photons in the circuit was typically measured to be 17−18%. The single
photon detection rate from the signal mode ranged from 6.0 × 104 s−1 in D1 to
4.5 × 104 s−1 in D6, while for the first ancilla mode it ranged from 9.5 × 104 s−1

to 7.5 × 104 s−1. The second ancilla mode and the photon acting as the external
trigger are a pair from the forward pass of the SPDC, and the coincidence efficiency
was typically measured to be 16 − 18%. The detection rate in the external trigger
was 1.55× 105 s−1 and in the second ancilla mode it ranged from 1.20× 105 s−1 in
D3 to 1.00× 105 s−1 in D6.

4.4.2 HOM Interference Characterisation

The signal and ancilla modes are matched at the central beam splitter in the
entanglement swapping stage of Figure 4.6, to generate HOM interference between
single photons. As in Chapter 2, the photon anti–bunching effect is measured in
D1 and D2. This non–classical interference is between photons of the same down–
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conversion pair (both are from the backward pass in the SPDC), and the interference
visibility is therefore expected to be close to unity. Interference visibility between
the signal and first ancilla mode was typically measured to be 96−97%, with a small
accidental coincidence rate (< 1%) subtracted off.

The HOM interference in the second NLA stage of Figure 4.6 is always between
photons from independent sources, since the second ancilla photon is from the
forward pass of the SPDC source. The modes are overlapped at the central beam
splitter in the NLA stage, and the photon anti–bunching effect is measured inD5 and
D6. The non–classical interference between the signal mode and the second ancilla
mode is plotted in Figure 4.4(a), and the interference between the first ancilla and
second ancilla modes is plotted in Figure 4.4(b).
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Figure 4.4: Measurement of the Hong–Ou–Mandel interference visibility between (a) the
signal and second ancilla modes, and (b) the first and second ancilla modes. The optical
delay was varied with a motorised linear translation stage in the second ancilla mode. The
measurement was made in four–fold coincidences, with the external trigger and the other
ancilla acting as extra triggers. Collection time for each data point was 150 seconds in (a),
and 180 seconds in (b). The dashed curves are the Gaussian functions fitted to the data
sets.

A Gaussian function was fitted to both data sets in Figure 5.7, and the interference
visibility was calculated as the ratio of the Gaussian amplitude coefficient and the
constant background. The visibility between the signal mode and the second ancilla
mode is 88%, and the visibility between the first ancilla and second ancilla modes is
96%.
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4.5 Terminal Link Configuration

In the first configuration of the experiment, the channel between an entangled
resource and a principal node (quantum memory) is lossy. Two entangled photon
pairs are linked by an entanglement swapping stage in the middle of the channel,
which fulfils the role of an auxiliary node in 4.1. The loss in the outer channel is
overcome by a noiseless linear amplification (NLA) stage. When the entanglement
swapping and NLA stages work simultaneously, entanglement is shared between
nodes A and B despite the loss that is present in the channel.

Node A Node B

Loss

NLA

Ent. Swap

Shared Entanglement

(C1) (C2)

(E1) (E2)

Entangled
Source 1

Entangled
Source 2

Figure 4.5: Conceptual diagram of the terminal link configuration of the experiment. The
loss and amplification are in the outside mode E1, between an ancillary entanglement source
and a terminal node, which is generally a quantum memory.

Both the entanglement swapping and NLA are achieved with linear optical ele-
ments and single photon counting modules, and consequently they are both non–
deterministic transformations. Since both stages use the generalised quantum scis-
sors [92, 99], they produce independent heralding signals when they succeed. The
advantage of an independent heralding signal is that the nodes are guaranteed
to share entanglement without needing to directly measure it, meaning that the
entanglement can be used for quantum information tasks. Another advantage can
be seen for the case where the entanglement swapping succeeds with a significantly
higher probability than the NLA stage. In this situation, it would save entangled
resources to wait for a successful NLA heralding signal to guarantee that the loss has
been corrected, and only then send an entangled state to the entanglement swapping
stage to connect the nodes. The protocol is completely flexible regarding the order
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in which the operations are performed and the auxiliary modes are connected.

4.5.1 Experimental Concept

The two–mode polarisation state of a single photon used in this experiment is a
perfect analogy for the spatially separated modes in quantum networks. Sending
a polarisation qubit to a polarisation beam splitter will transform the state into
a delocalised photon. The linear optical circuit (see Figure 4.5) uses three single
photons—the spatial modes C1 and E1 in 4.5 are encoded in orthogonal polarisation
modes of the signal photon at the beginning of the circuit, and two other photons are
ancillae in the entanglement swapping and NLA stages. The polarisation state of the
signal photon is in a single spatial mode, and can be written in the mode–occupation
representation as:

|ψ1〉 = α|1H0V〉+ β|0H1V〉 ≡ α|H〉+ β|V〉 . (4.14)

As discussed in Section 4.4.1, the coincidence efficiency of the SPDC source providing
single photons to the optical circuit was in the range of 14− 19%, meaning that the
state at the beginning of the circuit is in fact a mixture of vacuum, single photon
and higher order terms. Polarisation–independent loss was also applied to the state
at the beginning of the circuit, to increase the proportion of vacuum in the mixture.
This is to simulate a high–loss channel, as would be expected in a long repeater
link, and it also avoids saturating the NLA gain [62], as will be discussed later in
the chapter. The real state after the initial polarisation–independent loss is therefore

ζ ' γ0|0〉〈0|+ γ1|ψ1〉〈ψ1|+ ε|2〉〈2| , (4.15)

where |0〉 is the vacuum state and |2〉 is the two–photon state for all modes, and
higher order terms are neglected. The entanglement swapping stage next generates
a non–deterministic, but heralded, transformation:

ζ → (1− Ps)|0〉〈0| ⊗Πf + Psρs ⊗Πs , (4.16)

where Πs is the projector onto the subspace of heralding states corresponding to
successful teleportation

ρs = γ0|0〉〈0|+ γ1ρ
s
1 + ε|2〉〈2| , (4.17)
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and Πf (fail) is the projector onto the subspace of cases when the heralding success
signal is not received. The specific form of the state in the failure condition is
irrelevant, as it is ignored, an it is convenient to represent it as the vacuum state.
The terms in the initial state ζ and entanglement swapped state ρs have identical
coefficients in principle, and the only difference in ρs is that the original pure single
photon polarisation state |ψ1〉〈ψ1| becomes a mixed state ρs1 after entanglement
swapping. The small degree of mixture in ρs1 is predominantly due to imperfect
HOM interference between the signal and ancilla photons (or between modes C1 and
C2 in 4.5). Second–order terms |2〉〈2| in modes that can create spurious heralding
signals also contribute to the mixture of the output state.

The entanglement swapping operation produces an independent heralding signal
with probability Ps, and conditioned on this case the entanglement swapped state
ρs is sent onwards. With probability 1 − Ps the entanglement swapping fails,
the output state is discarded, and the procedure can be repeated until successful.
This is equivalent to waiting until entanglement is successfully swapped between
modes C1 and C2 in 4.5. As already mentioned in Section 4.5, the order of the
stages in the protocol is arbitrary, and it is equally possible to wait for successful
amplification before sending the modes onward for entanglement swapping. Next,
in our experimental setup, loss is applied to |H〉 in ρs1 (or mode E1 in Figure 4.5),
to produce the state

ρin = γ′0|0〉〈0|+ γ′1ρ
s
1 + ε|2〉〈2| . (4.18)

The probabilities in the mixed state have now changed, to reflect the fact that
loss in |H〉 results in an imbalance between polarisation modes (i.e. |α|2 < |β|2 in
(4.14)), implying that the overall single photon probability is reduced γ′1 < γ1 and
the vacuum probability is correspondingly increased, γ′0 > γ0. In addition, ε should
also decrease, but this effect is effect is small enough to be neglected here.

Finally, the NLA stage amplifies the |H〉 mode back to the level of |V〉. The
transformation is again non–deterministic but heralded:

ρin → (1− Pa)|0〉〈0| ⊗Πf + Paρout ⊗Πa , (4.19)

where Πf is the projector onto the subspace of failed amplification events as before,
and Πa is the projector onto the successfully amplified output state ρout:

ρout = γ′′0 |0〉〈0|+ γ′′1ρ
a
1 + ε|2〉〈2| . (4.20)

Thus, with probability Pa, the unbalanced polarisation state ρin is amplified and



Terminal Link Configuration 81

transformed into ρout, which contains an equal superposition of |H〉 and |V〉 in the
single photon subspace. In the ideal case ρout = ζ, or ρa1 = |ψ1〉〈ψ1| and γ′′0 = γ0,
γ′′1 = γ1. However, due to unavoidable mixture from imperfect HOM interference,
and spurious heralded contributions from higher order terms, ρa1 will never be entirely
pure (see Table 4.1).

The overall success probability in the full circuit is P = Ps ·Pa, and the output ρout
is heralded by the state Πs ⊗ Πa, which is orthogonal to Πf ⊗ Πf , Πs ⊗ Πf and
Πf ⊗Πa.

4.5.2 Linear Optical Circuit

|1i
⇢in

⇢out

|1i

⌘s ⌘a

|1i

X

D1

D2 D3

D4
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D6

Polarisation
State
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Entanglement
Swap Stage

Output Polarisation 
State Tomography
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Polarisation
Dependent

Loss

Signal
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A1
Mode

A2
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Figure 4.6: Linear optical circuit implementing loss and amplification in the terminal arm
of a quantum repeater. A state having very high fidelity with a single photon enters the
signal mode, and is prepared with the first HWP and PBS as a mixture of vacuum, single
photon, and a very small two photon component. The polarisation state of the single photon
subspace is prepared in a balanced superposition of |H〉 and |V〉, in state ξ. Polarisation
mode |V〉 (equivalent to C1 in 4.5) is swapped with the |V〉 (reflected, equivalent to E2) mode
of the first ancilla photon, while signal mode |H〉 (E1) is transmitted through the stage, to
create ρs. Loss is applied to mode |H〉 using a HWP and PPBS, creating ρin. Mode |H〉
is amplified in the NLA stage to compensate for the loss, while mode |V〉 is transmitted
through the stage, to create ρout.

In our experiment the three single photons sent to the optical circuit depicted in
Figure 4.6 each initially pass through a HWP and PBS. This is to ensure that they
are in a pure polarisation state to begin with. In the case of the signal mode, the
initial PBS also applies a polarisation–independent loss that reduces the size of the
single photon term in the state. The loss is effectively polarisation–independent,
because it is before the polarisation state of the signal photon is assigned for the
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experiment. The single photon term is artificially reduced to simulate a high–loss
transmission channel, and also to avoid saturation in the gain [60, 62].

For the entanglement swapping and NLA stages to operate in the linear regime, the
condition γ′1, γ′′1 � 1 must be satisfied. After this condition is met using the first
HWP and PBS to attenuate the signal, the signal photon’s polarisation state can be
set using the next HWP and QWP. As before (see Chapter 3) polarisation modes are
ideal for our purposes because they are easy to manipulate, and more importantly, an
optical circuit with spatially superposed polarisation modes is passively phase stable.
The polarisation state of the signal photon is prepared in the diagonal state |D〉 =
(|H〉+ |V〉)/

√
2—the essential feature is that this state is an equal superposition of

|H〉 and |V〉, and the value of the phase between them is unimportant, as long as it
is well–defined.

The spatial mode E1 is identified with |H〉, and C1 with |V〉, in the initial polarisation
state |D〉. The spatial mode entanglement between E1 and C1 is equivalent to the
polarisation mode entanglement between |H〉 and |V〉. The entanglement swapping
stage and the NLA stage are both generalised–quantum–scissors–style amplifiers
operating on polarisation modes, and are described in detail in Section 3.3.2. In
the entanglement swapping stage, the signal |V〉 is teleported into the output mode,
implying that the signal |H〉 becomes mode entangled with |V〉 in the output mode.
This is identical to entangling E1 and E2 in Figure 4.5. The effective amplitude
reflectivity ηs of the central beam splitter is set to 1/2, for teleportation into the
output mode without gain.

The |H〉 mode is next subjected to loss, and then amplified back to the level of |V〉
by the NLA stage. A partially–polarising beam splitter (PPBS) reflects a fraction
of one polarisation, while leaving the other polarisation mostly unaffected. The
reflected portion of |H〉 is sent to a beam dump, to simulate loss in the E1 channel.
The total polarisation state transmitted through the PPBS ideally comprises all of
the original |V〉 mode, and the portion of |H〉 that is not reflected. In reality, the
|V〉 mode will also experience a small amount of loss, but this is taken into account
in the experiment. The loss to mode |H〉 is calibrated directly in the circuit, by
measuring the ratio of detected photon counts in both transmitted modes. A loss
factor of 1/2 then corresponds to a detected |H〉 photon rate that is half of the
detected |V〉 rate. In this experiment, the relative loss between |H〉 and |V〉 modes
is of primary interest, and any overall loss due to imperfection of the PPBS can
effectively be subsumed into the polarisation–independent loss at the beginning of
the circuit.
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The PPBS was manufactured for 1/3 loss in one polarisation mode at 810 nm,
and the loss at 780 nm was found to be approximately 1/2 near normal incidence.
Higher losses, of approximately 3/4 and 5/6, were also achieved by tilting the PPBS
to change the in–plane angle of incidence. Loss factors of approximately 1/2, 3/4
and 5/6 were then compensated in the NLA stage by tuning the reflectivity ηa to
achieve the correct effective amplification factors Gm. The loss and gain factors were
experimentally measured in the optical circuit (Lm and Gm, respectively), and their
values are listed in Table 4.1.

The real gain in |H〉 was experimentally calibrated to correct for the three loss
settings, by varying the effective reflectivity for the ancilla photon at the central
beam splitter of the NLA stage (as discussed in Section 3.3.2). At the end of
the optical circuit, polarisation state tomography is performed on the final output
state. The density matrix is reconstructed, and mode entanglement is measured by
calculating the concurrence of the full state. Although the two entangled modes
are spatially superposed in the output, the protocol is equivalent to distributing
mode entanglement over a distance with transmission loss, and serves as a proof–
of–principle demonstration.

4.5.3 Experimental Results

Tomography of the polarisation state in the single photon subspace was performed
on ρin and ρout, the states before and after the NLA stage, respectively. Detectors
D3 and D6 were used for tomography of ρin, and D5 and D6 were used for tomog-
raphy of ρout. The polarisation state density matrices were reconstructed from the
tomographic measurements using maximum–likelihood reconstruction (see Section
2.6.2).

The results of the input and output state tomographies are presented in Figures
4.7, 4.8 and 4.9, for the three loss and gain settings. Subfigures (a) and (b) depict
the absolute values of the input and output polarisation state density matrices,
and subfigure (c) shows the full normalised state with the vacuum and two–photon
terms. Subfigure (d) directly compares the absolute value of non–zero elements in
the output density matrix depicted in (c), with the input density matrix elements
(represented as semi–transparent bars). The inset shows a magnified view of the
single and two–photon elements.

States in the experiment were tomographically measured with four–fold coincidence
detection. For the measurement of ρout, a successful measurement signal consisted
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Lm 57± 2% 77± 2% 84± 3%
Gm 1.98± 0.07 3.0± 0.1 4.1± 0.2

Input

〈H|ρin|H〉 (1.64± 0.04) · 10−2 (1.06± 0.03) · 10−2 (0.79± 0.03) · 10−2

〈V|ρin|V〉 (3.84± 0.07) · 10−2 (4.54± 0.06) · 10−2 (4.83± 0.07) · 10−2

tr{(ρs1)2} 97± 1% 96± 1% 97± 1%
C(ρin) (2.5± 0.2) · 10−2 (1.7± 0.2) · 10−2 (1.2± 0.2) · 10−2

Output

〈H|ρout|H〉 (3.25± 0.06) · 10−2 (3.13± 0.06) · 10−2 (3.25± 0.06) · 10−2

〈V|ρout|V〉 (3.49± 0.06) · 10−2 (3.76± 0.06) · 10−2 (3.72± 0.06) · 10−2

〈2|ρout|2〉 (1.4± 0.2) · 10−4 (1.5± 0.2) · 10−4 (1.2± 0.2) · 10−4

tr{(ρa1)2} 85.1± 0.8% 84.5± 0.6% 82.4± 0.8%
C(ρout) (3.4± 0.2) · 10−2 (3.3± 0.2) · 10−2 (3.2± 0.2) · 10−2

Table 4.1: Summary of results for the BDCZ repeater configuration of the optical circuit.
Three different loss settings were tested, while the state size was kept approximately constant
throughout. The performance of the protocol was assessed based on the purity of the
polarisation subspaces, the probabilities of the |H〉 and |V〉 modes in the full states, and the
concurrences.

of a coincidence between the external trigger directly from the SPDC source (see
Section 4.4.1), a successful heralding signal from the entanglement swapping stage
(in either D1 or D2), a successful heralding signal from the NLA stage (in either
D3 or D4), and detection of a single photon at the circuit output (in either D5
or D6). During measurement of each polarisation basis, one state is sent to D5
while its orthogonal pair is sent to D6, and half way through tomography the optic
axis of the HWP is rotated by 45 degrees, to send the orthogonal states to opposite
detectors for an equal time. This averages over the different path and detection
efficiencies of D5 and D6, guaranteeing that this imperfection of the optical circuit
does not affect state reconstruction.

Three–fold coincidence counts, between the external trigger, D1 or D2, and D3
or D4, were also recorded during state tomography. The size of the single photon
subspace relative to vacuum in the mixed state ρout was calculated as the ratio
of four–fold coincidence rates to three–fold coincidence rates: γ′′1 = C4/C3. As the
output state is heralded by three–fold coincidences, this ratio gives the probability of
measuring a single photon at the output, conditional on heralding. The probabilities
of the |H〉 and |V〉 modes in the output state are the ratio of four–fold to three–
fold coincidences when measuring in the {H,V} basis: 〈H|ρout|H〉 = C4,H/C3 and
〈V|ρout|V〉 = C4,V/C3.

Tomography of the input state ρin used detectors D3 and D6. As the NLA stage is
not used in ρin, its ancilla photon was sent directly toD4 without any mode splitting,
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and acted as a second trigger. The four–fold coincidences were then between the
external trigger, the successful heralding signal from the entanglement swapping
stage (in D1 or D2), the second trigger in D4, and detection of a single photon at
the output (in D3 or D6). Again, orthogonal polarisations for each measurement
basis swapped detectors half way through tomography, to neutralise the effect of
detection efficiency imbalance between D3 and D6 in state reconstruction.

Five–fold coincidence counts were also recorded during tomography of ρout, between
the usual three–fold pattern and D5 and D6. This directly measures the probability
ε of the two photon term in the successfully heralded output state. As expected,
ε � γ′′1 � γ′′0 , and it was found that the vacuum, single photon and two photon
probabilities each differed by two orders of magnitude (see Table 4.1). The full ρout
state is depicted in (c) of Figures 4.7, 4.8 and 4.9, where the relative probabilities of
the vacuum, single photon and two photon terms can be compared. It was reasonable
to assume that no coherences existed between the vacuum, single photon and two
photon terms, and all off–diagonal elements in (c) were set to zero, with the exception
of the coherences in the polarisation subspace.

The purities of the polarisation states ρs1 and ρa1 are shown in Table 4.1. The
purities after entanglement swapping are around 96 − 97%, which is slightly below
the HOM interference visibility at that stage, as expected. The purities after
amplification are in the range 82 − 85%, which is again slightly below the bound
(∼ 86 − 87%) given by the product of the ρs1 purity and the HOM interference
visibility between independent photons in the NLA. The loss in the |H〉 mode can
be seen in (a) of Figures 4.7, 4.8 and 4.9—the |H〉〈H| element in the density matrix
is significantly lower than |V〉〈V|. Subfigure (b) shows the two populations balanced
after amplification, as desired. The inset of (d) compares the polarisation matrix
elements between the input (semi–transparent bars) and output (solid bars) states.
It is easier to see in the inset that the |H〉〈H| term increases from input to output,
and the |V〉〈V| term essentially remains constant. The slight de–amplification of
the |V〉〈V| population seen in (d) is most likely due to loss through the optical
circuit. The single photon probability in ρout is small enough compared to the
ancilla photon efficiency for us to believe that saturation in the NLA stage is not
the dominant effect. Amplification increases the overall single photon subspace in
ρout, and a corresponding suppression of the vacuum term in (d) can clearly be seen.
The coherence terms also increase slightly after the amplification, which is the cause
of the increase in the mode entanglement.

Similar to the approach in [62, 153, 157], the concurrences for the density matrices
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ρin and ρout were calculated to verify mode entanglement. Having experimentally
determined the non–zero elements of the density matrices, the formula for concur-
rence in 4.3.2 was used to calculate the values listed in Table 4.1. The two photon
term was only measured in ρout, and was assumed to be equal in ρin when calculating
its concurrence. This is a reasonable assumption, given that the teleportation and
amplification operate on the single photon subspace, and the heralded two photon
terms in ρin and ρout are regarded as noise in the protocol. For the largest loss factor
Lm = 84±3%, the concurrence is increased nearly three–fold, from (1.2±0.2) ·10−2

to (3.2± 0.2) · 10−2, a significant improvement.
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Figure 4.7: NLA gain Gm ' 2. Absolute value of (a) input and (b) output polarisation density
matrix. (c) Full output density matrix. (d) Absolute values of input and output matrix elements.
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Figure 4.8: NLA gain Gm ' 3. Absolute value of (a) input and (b) output polarisation density
matrix. (c) Full output density matrix. (d) Absolute values of input and output matrix elements.
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Figure 4.9: NLA gain Gm ' 4. Absolute value of (a) input and (b) output polarisation density
matrix. (c) Full output density matrix. (d) Absolute values of input and output matrix elements.
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4.5.4 Summary

A method of distributing entanglement between nodes of a quantum network in
the presence of loss has been demonstrated. In this configuration, loss was added
to the channel between an entangled resource and one of the terminal nodes or
quantum memories. The experiment presented above consists of two NLA stages,
one operating as an amplification stage to compensate for photon loss, and the other
operating as a stage to swap mode entanglement. Both of these are key elements in
proposed quantum repeater architectures.

The technique was demonstrated for three different loss settings, and for the highest
loss (Lm = 84± 3%), the concurrence between output modes was increased almost
threefold compared to what it would have been without amplification. This is
therefore a valuable technique for ensuring that a highly pure entangled state is sent
into a quantum memory, for future quantum information processing. This could
effectively herald the entanglement of two quantum memories, or an elementary link
in a quantum repeater, without the need for any post-selection to filter out a vacuum
component, as proposed in [113]. Advantages of this protocol are that the NLA and
the entanglement swapping stages both give independent heralding signals, and the
order of the stages is unimportant. In principle, the NLA stage could successfully
herald that loss in mode E1 (in Figure 4.5) has been repaired, before entanglement
swapping between modes C1 and C2 is attempted. Waiting for the next link in
the channel to be purified before swapping entanglement could conserve valuable
previously-entangled resources.

4.6 Intermediate Link Configuration

In contrast to the first configuration, here the loss is applied to the entanglement
swapping channel, and the NLA stage is used to compensate for the loss directly
before entanglement swapping. A useful conceptual picture might be two quantum
memories separated by the entanglement swapping stage between them. It should be
emphasised again, however, that this is for illustrative purposes, and the technique is
applicable to a variety of situations. As mentioned already, successful entanglement
swapping effectively filters out the vacuum component of the entangled state [123].
The potential advantage of this configuration, then, would be in a scenario in
which the second quantum memory already stores long-range entanglement, which is
being extended using the first quantum memory and entanglement swapping. If the
channel between the first quantum memory and the entanglement swapping stage
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is lossy, it would be beneficial to wait for the NLA to herald that the loss in this
channel has been repaired, before the second quantum memory releases its stored
state. The fidelity of the entanglement swapping operation can be increased in this
way, by correcting the erasure error in one channel beforehand.

Loss

NLA

Ent. Swap

(C1) (C2)

(E1) (E2)

Node A Node B

Quantum
Memory 2

Quantum
Memory 1

Entangled
Originally

Entangled
Originally

Shared Entanglement

Figure 4.10: Conceptual diagram of the second experimental configuration. The loss is
now in mode C1, one of the entanglement swapping channels. The entangled resources are
depicted here as quantum memories, or atomic ensembles, but the entangled resources in
the experiment are photon pairs, as before.

4.6.1 Experimental Concept

As before, the two–mode polarisation state of a single photon represents the spatial
modes in a quantum network. Beginning with the state ζ from (4.15), loss is applied
again to mode |H〉, while leaving mode |V〉 largely unchanged. The state after loss
(and directly before amplification) is

ρin = γ0|0〉〈0|+ γ1|ψ1〉〈ψ1|+ ε|2〉〈2| . (4.21)

The single photon subspace can be represented as a pure state in ρin, because the
loss only increases the vacuum probability without adding polarisation mixture. The
|H〉 mode is then amplified in the NLA stage to compensate for the loss. The |V〉
mode passes through the NLA stage without any mode splitting or interference. The
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NLA generates the transformation

ρin → (1− Pa)|0〉〈0| ⊗Πf + Paρa ⊗Πa , (4.22)

where Πf is the heralding projector corresponding to failed amplification events, and
Πa is again the projector in the ancilla subspace heralding the successfully amplified
output state ρa:

ρa = γ′0|0〉〈0|+ γ′1ρ
a
1 + ε|2〉〈2| . (4.23)

The amplification adds a small amount of mixture into the polarisation subspace, due
to unavoidable experimental imperfections, and the polarisation is hence represented
as the mixed state ρa1. After the NLA, the |H〉 mode is sent to the entanglement
swapping stage, where the |V〉 mode again passes through unchanged. The entan-
glement swapping stage transforms the system into

ρa → (1− Ps)|0〉〈0| ⊗Πf + Psρout ⊗Πs , (4.24)

with the final heralded polarisation state

ρout = γ′′0 |0〉〈0|+ γ′′1ρ
s
1 + ε|2〉〈2| . (4.25)

The total probability of transforming the unbalanced polarisation state ρin into ρout
is the same as in the previous configuration: P = Pa · Pa.

4.6.2 Linear Optical Circuit

The three single photons are prepared in pure polarisation states to begin with, by
each passing through a HWP and PBS. A polarisation–independent loss is again
applied to the signal mode photon, to ensure that the single photon component in
the state is always small: γ′1, γ′′1 � 1. After this, the signal photon is prepared
in the |D〉 polarisation state. In this configuration, the correspondence between
spatial modes in the conceptual depiction of Figure 4.10 and polarisation modes
in the experimental circuit of Figure 4.11 are reversed: |H〉 represents C1 and |V〉
represents E1.

The PPBS is now at the beginning of the optical circuit, and subjects the signal |H〉
mode (C1) to loss before the NLA and entanglement swapping stages. The signal
|V〉 mode (E1) passes unchanged through the loss, NLA and entanglement swapping
stages, and acts as a reference against which the final |H〉 mode can be measured at
each stage, for amplitude and coherence.
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Figure 4.11: Linear optical circuit simulating the DLCZ repeater configuration. A single
photon enters the signal mode, and is prepared with the first HWP and PBS as a mixture of
vacuum, single photon, and a very small two photon component. The polarisation state of
the single photon subspace is prepared in a balanced superposition of |H〉 and |V〉, in state
ξ. Loss is applied to polarisation mode |H〉 (equivalent to C1 in 4.10) using a HWP and
PPBS, creating ρin. Mode |H〉 is amplified in the NLA stage to compensate for the loss,
while mode |V〉 is transmitted through the stage, to create ρa. Mode |V〉 (E1) is teleported
to ancilla mode |V〉 (reflected, equivalent to E2), to create ρout.

4.6.3 Results

A single loss setting, Lm = 78± 3%, was tested in this configuration, and the three
states ρin, ρa and ρout were each tomographically reconstructed. A compensating
gain factor of Gm = 4.3±0.2 is subsequently applied in the NLA stage. Three states
were measured in four–fold coincidence detection (as before), to characterise each
of the three stages in the protocol—loss in mode |H〉, noiseless amplification and
entanglement swapping.

After the loss, ρin was measured in detectorsD2 andD6, while the ancilla photon for
the NLA stage was sent directly to D1 without any mode splitting or interference,
and the ancilla photon for entanglement swapping was likewise sent to D4. The ρin
tomography data collected in D2 and D6 was conditioned on these two additional
(internal) triggers from the ancilla photons. Detectors D3 and D6 were used in
the tomography of ρa, conditioned on the external trigger from the SPDC source,
successful amplification heralded in detector D1 or D2, and the ancilla photon in the
entanglement swapping stage acting as an extra trigger inD4. The final output state
ρout is measured in detectors D5 and D6, conditioned on successful amplification
heralded in D1 or D2, successful entanglement swapping heralded in D3 or D4, and
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ρ = ρin ρ = ρa ρ = ρout

〈H|ρ|H〉 (0.32± 0.01)× 10−2 (1.40± 0.05)× 10−2 (1.37± 0.05)× 10−2

〈V|ρ|V〉 (1.46± 0.02)× 10−2 (1.26± 0.05)× 10−2 (1.19± 0.04)× 10−2

〈2|ρ|2〉 (8.7± 0.3)× 10−7 — (2.0± 0.3)× 10−5

tr{(ρ1)2} 99.97± 0.15% 92.3± 0.9% 79.0± 1.5%
C(ρ) (1.20± 0.02)× 10−2 (1.56± 0.08)× 10−2 (1.06± 0.09)× 10−2

|〈H|ρ1|V〉| 0.39 0.69 0.54

Table 4.2: Summary of results for the intermediate link configuration of the optical circuit.
This is data for a single loss setting Lm = 78 ± 3%. The performance of the protocol was
assessed based on the purity of the polarisation subspaces, the probabilities of the |H〉 and
|V〉 modes in the full states, the concurrences and the size of the coherences.

the external trigger as always. Again, a HWP rotation of 45 degrees swapped the
two detectors measuring the signal state for half of the time in every tomography,
to average over unequal path efficiencies.

The two photon term 〈2|ρout|2〉 was measured during state tomography, by record-
ing the five–fold coincidences between the usual three–fold coincidence patterns, a
detection in D5 and one in D6. This directly measures the probability of the two
photon term in ρout: ε = C5/C3. The two photon term 〈2|ρout|2〉 was not measured
in the same way, because too few five–fold coincidence events were could be recorded
for conclusive statistics. Instead, 〈2|ρin|2〉 was determined by measuring a ratio of
three-fold coincidence to single photon rates. The ancilla photon in the NLA stage
was sent directly to D1 to act as a trigger, since photons in this ancilla mode and
the signal mode are generated in the same source. The signal mode is split evenly
between D2 and D6, and the ratio of three–fold coincidences between D1, D2 and
D6 and single counts detected in D1 is recorded: ε = C3/S .

This procedure only measures the two photon term in the signal mode, without
any contribution from the entanglement swapping ancilla mode. This is somewhat
artificial, because one might want to compare the performance of the circuit with
amplification, to the performance without amplification, but in both cases with tele-
portation. Teleportation requires an ancilla photon as well, which would contribute
two–photon terms to the output state. Our experimentally determined value for
〈2|ρin|2〉 thus serves as a lower bound for ε. This presents the best–case scenario for
the input state, but a worst–case scenario for a comparison with our output state.

The results of the tomographies are depicted in Figure 4.12: subfigures (a)—(b)
show the normalised polarisation subspaces |ψ1〉〈ψ1|, ρa1 and ρs1, while (d) shows
the full states ρin (semi–transparent bars) and ρout. The inset in (d) compares the
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polarisation elements of the ρin and ρout density matrices. The |H〉〈H| probability
is amplified in the output to re–balance the polarisation state. In subfigure (e) the
matrix elements in (a)—(c) are directly compared: ρin from (a) is represented by
the widest and lightest bars, ρa from (b) is represented by the middle–width and
shaded bars, and ρout from (c) is represented by the narrowest solid bars. The
main difference between ρa and ρout is a decrease in the coherence terms, which
is a result of lower polarisation state purity after the entanglement swap. This is
a result of imperfect interference in the entanglement swapping stage between the
signal and ancilla photons, which are generated in independent sources. From the
measured independent HOM visibility, and the purity of ρa1 from the NLA stage, the
upper bound for the purity after entanglement swapping is ∼ 82%, compared to the
measured 79± 1.5% purity of ρs1.
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Figure 4.12: Loss factor Lm = 78 ± 3% and NLA gain factor Gm = 4.3 ± 0.2. Absolute
values of the density matrix elements (a) |ψ1〉〈ψ1|, (b) ρa1 and (c) ρs1, the polarisation states
after loss, amplification and entanglement swapping, respectively. (d) Absolute values of ρin
(semi–transparent bars) and ρout. (e) Absolute values of |ψ1〉〈ψ1| (widest bars), ρa1 (middle
bars) and ρs1 (narrowest bars).

The concurrences were calculated for ρin, ρa and ρout, and they are listed in Table
4.2. The concurrence increases from (1.20± 0.02) · 10−2 to (1.56± 0.08) · 10−2 after
the NLA stage, but is reduced to (1.06± 0.09) · 10−2 after entanglement swapping.
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The reduced purity tr{(ρs1)2} = 79.0± 1.5% after entanglement swapping, as well as
the higher two photon probability ε = (2.0± 0.3) · 10−2 can explain why the overall
concurrence in ρout is approximately equal to the original concurrence in ρin. The
absolute value of the coherence increases from 0.39 in 4.12(a) to 0.54 in 4.12(c), and
all three coherence terms can be compared directly in 4.12(e). We note that our value
for 〈2|ρin|2〉 was in fact a lower bound, which implies that C(ρin) = (1.20±0.02)·10−2

is the best case value. This suggests that the concurrence could be increased from ρin

to ρout in an identical experiment, if single photon sources with lower rates of higher
order terms were used. Developing true and deterministic single photon sources is
a very active research field that incorporates diverse approaches, due to the fact
that reliable single photon generation is currently a limitation in most quantum
information protocols.
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Figure 4.13: Data for input state with a single photon probability that is too large (with
respect to ancilla efficiency). Absolute values of the density matrix elements (a) |ψ1〉〈ψ1|, (b)
ρa1 and (c) ρs1, the polarisation states after loss, amplification and entanglement swapping,
respectively. (d) Absolute values of ρin (semi–transparent bars) and ρout. (e) Absolute
values of |ψ1〉〈ψ1| (widest bars), ρa1 (middle bars) and ρs1 (narrowest bars). Saturation (de–
amplification) in both the NLA and entanglement swapping stages becomes evident in (d).
See Appendix A for further details.

The experimental limitations of this configuration were explored in further detail:
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Figure 4.13 shows data for an input state that is too large compared to the efficiency
with which we can deliver ancilla states to the circuit, resulting in saturation of both
the NLA and entanglement swapping stages. This saturation effect is manifested as
a de–amplification of mode |V〉, which is the mode that had not been amplified. For
an explanation of this effect, refer to Appendix A. Figure 4.14 shows data for a state
subjected to less loss, and in this case the advantage from noiseless amplification is
offset by the effect of experimental imperfections on the final output state.

It is interesting to note that from Figures 4.13(a), 4.13(b) and 4.13(c) it would
appear as though the protocol works correctly—the saturation is not evident in the
polarisation subspace. The problem is obvious in Figure 4.13(e), where it can be seen
that the |H〉〈H| and |V〉〈V| probabilities become balanced from a de–amplification
of |V〉〈V|, instead of an amplification of |H〉〈H| as expected. The protocol hence
weakens the mode entanglement, and the concurrence is reduced from C(ρin) ' 0.088
to C(ρout) ' 0.029.
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Figure 4.14: Loss factor Lm ' 56%. Absolute values of the density matrix elements (a)
|ψ1〉〈ψ1|, (b) ρa1 and (c) ρs1, the polarisation states after loss, amplification and entanglement
swapping, respectively. (d) Absolute values of ρin (semi–transparent bars) and ρout. (e)
Absolute values of |ψ1〉〈ψ1| (widest bars), ρa1 (middle bars) and ρs1 (narrowest bars). The
loss is too small, and the advantage from the NLA stage is counterbalanced by experimental
imperfections—the ρs1 coherences in (d) are only marginally higher than in |ψ1〉〈ψ1|.
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Even when the total single photon probability in ρin is reduced enough compared to
ancilla efficiency for the NLA and entanglement swapping stages to work linearly,
there is a loss regime in which this protocol does not offer a clear advantage. In 4.14
the loss to mode |H〉 in ρin was measured to be Lm ' 56%. Despite a moderate
over–amplification of the |H〉 mode in ρout, the coherence in the polarisation state
ρs1 is not significantly greater than the original coherence in |ψ1〉〈ψ1|, as seen in
4.14(e). Comparing concurrence in the input C(ρin) ' 0.011 to concurrence in the
output C(ρout) ' 0.007 confirms that the protocol is not advantageous in this regime.
Inevitable experimental imperfections in each stage reduce the advantage of these
techniques, and this fact will need to be acknowledged for practical applications of
long–distance quantum networks. This point becomes even clearer by noting that
the concurrence in the state after amplification C(ρa) ' 0.011 is equal to the input
concurrence. The entanglement swapping reduces the polarisation state purity from
tr{(ρa1)2} = 92% to tr{(ρs1)2} = 80%, which accounts for the net loss in mode
entanglement.

4.6.4 Summary

In this configuration of the optical circuit, loss was added to the entanglement
swapping channel. A useful conceptual picture to motivate this configuration is two
nodes or quantum memories separated by an entanglement swapping stage between
them, in order to extend the range of entanglement.

The performance of the protocol was demonstrated for a loss of Lm = 78± 3%, and
a clear increase in the coherence between modes was measured in the output state.
The concurrence of the modes was moderately increased after the amplification stage,
but after entanglement swapping the final concurrence decreased to approximately
the same value as at the input. The fact that overall concurrence does not increase
can be explained by imperfect HOM interference in the NLA and entanglement
swapping stages, which introduced mixture and lead to a purity of 79.0 ± 1.5% in
the single photon subspace. The ancilla photons in the two stages also contributed
two photon terms to the output state, and the concurrence is highly sensitive to
noise from higher order terms.

The performance of this configuration was also investigated using a larger input
state size: 〈1|ρin|1〉 ' 0.12 (see 4.13). In this case, as both the NLA and entangle-
ment swapping stages are based on generalised quantum scissors, the single photon
component of the input state proved to be too large, and saturation effects were
observed in both stages. The coherence between modes was consequently reduced
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after both amplification and entanglement swapping. A smaller loss setting was
also investigated (Lm ' 56%), and in this regime the advantage of amplification was
counterbalanced by the effects of experimental imperfections, and the coherence was
only marginally increased at the output.

These results suggest that this configuration offers an advantage in certain regimes,
where it can increase coherence between modes. The results also highlight what
improvements could be made—in particular, it is likely that the only modification
to this configuration that is required to demonstrated entanglement concentration
is a single photon source in the ancilla modes with suppressed higher order terms.

4.7 Discussion

The work presented in this chapter used two NLA stages based on generalised
quantum scissors to investigate mitigating photon loss in quantum networks. In
one configuration, loss was applied to the channel between a photon source and
a quantum memory, and the distillation of mode entanglement was successfully
demonstrated. In the second configuration, loss was applied to the channel between
a photon source and the entanglement swapping stage, and while coherence between
modes was increased with amplification, overall mode entanglement did not increase.

The greatest limitation of our approach is that the largest theoretically attainable
output state size is equal to the ancilla source efficiency [106], and as the output
state size approaches this limit the NLA stage saturates [60, 62, 63]. The need
for deterministic single photon sources is a common theme in quantum information
science, and significant progress has been made in increasing the efficiency of both
generation and detection of single photons at various wavelengths [107]. In principle,
with deterministic single photon sources a NLA stage could yield an output state
arbitrarily close to a pure single photon. The probability of successful amplifica-
tion scales inversely with the gain, so a tradeoff would need to be found between
state purity and transmission rate, which would depend on the specific application.
Higher–order photon number terms in the ancilla modes, which are an extra source of
noise that were particularly noticeable in the second configuration of our experiment,
are also an important consideration in engineering better single photon sources.

Another limitation of this approach is that it requires the stability of optical path
lengths to within the coherence length of the photons. Since the goal is to extend
quantum networks over large distances, this would be a serious technical challenge.
More work is required to ascertain whether this could be technically feasible, or if
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another approach to compensating for photon loss can be found with less stringent
stability requirements.

The advantage of our technique can be seen in the scenario discussed in [113]. The
authors note that heralding entanglement in an elementary link, consisting of two
quantum memories separated by a linkage distance, is the necessary ingredient for
high fidelity and high rate entanglement distribution. In their proposal, an entangled
photo source is located close to one quantum memory, so that one photon is stored
in memory without any loss. The other photon pair is transmitted to a second
quantum memory. A NLA stage close to the second memory ensures that a pure
state has been stored, effectively heralding entanglement creation in an elementary
link. The resource requirement for the NLA is an on–demand single photon ancilla,
but generated locally—that is, close to the second quantum memory. Subsequently,
multiple elementary links can be connected via entanglement swapping, to extend
the range of entanglement. This scenario is similar to the one depicted in Fig.
4.5, the conceptual diagram for the terminal configuration, except that a second
quantum memory directly after the first photon source, in the entanglement swap
arm, is not pictured there. As already mentioned, the advantage of the second
configuration, where the NLA is in the entanglement swapping arm, would be
evident in a scenario where long–range entanglement has previously been established,
and is being extended to the next node. The memory containing the long–range
entanglement should not release its state until the NLA heralds that transmission
loss in the channel on the other side of the entanglement swapping stage has already
been corrected. This increases the success probability of the entanglement swapping
operation. Although proposed quantum repeaters such as the one in Ref. [113]
explicitly consider entanglement between two particles, or qubits, we have previously
demonstrated that the techniques described in this chapter can readily be extended
to apply to qubits [60].

The goal of building a quantum repeater unifies several research areas, including
quantum memories, quantum communication, state purification and error correc-
tion. It represents a great challenge, but also holds the key to developing a practical
quantum internet [115, 116]. The value of quantum repeaters may extend beyond
quantum information networks, and their potential application to metrology has re-
cently been investigated [158]. The experimental results presented in this chapter set
a benchmark for linear optical protocols that will be integrated in quantum repeater
architectures, and identify areas for future improvement and further investigation.
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Chapter 5

Quantum-Refereed Steering for
Enhanced Security

5.1 Acknowledgements

The two SPDC sources and the Bell state analysis setup were constructed by Adam
Bennet and Dylan Saunders, and I assisted in their optimisation. Adam Bennet
and I characterised the Werner state and the Bell state measurement. I performed
the primary data analysis, with input from Adam Bennet, and supervision from
Michael Hall and Geoff Pryde. The payoff function for the quantum–refereed steering
protocol, presented in Section 5.4.1, was developed by Michael Hall.

5.2 Introduction

It has been shown that one–sided DIQKD requires the violation of a steering in-
equality, in analogy to two–way DIQKD required the violation of a Bell inequality,
which is a strong category of non–classical correlation [159]. The rigorous violation
of a Bell inequality requires very high detection efficiencies in order to rule out the
detection loophole, which is extremely challenging with the existing technology [74].
Steering is generally less restrictive, and it has been shown that steering can be
demonstrated with arbitrarily low efficiencies [71]. This is motivation to consider
scenarios in which the security of a central node in a communication network can be
guaranteed, but the other nodes to which it transmits signals are not secure. In such
a case, one–sided DIQKD could guarantee communication security in the network.
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If two spatially separated parties, Alice and Bob, report measurement results that
violate a steering inequality [160–162], this only proves to an external referee, Char-
lie, that Alice really is steering Bob’s system if Charlie is willing to assume that Alice
and Bob did not agree on a list of measurement outcomes prior to being separated.
Combining lists of measurement results is logically insufficient to guarantee that
two parties truly share entanglement [163]. An added degree of security, in the
form of a semi–quantum refereeing protocol, or semi–quantum game, is required to
address the problem. This is the subject of the experimental results presented in
this chapter.

5.3 Non-Classical Correlations

The idea of classical correlations is well–known and reasonably intuitive. Corre-
lations exist between systems in nature that cannot be explained using classical
reasoning alone, but which are predicted by quantum theory. In a general sense,
these non–classical or quantum correlations can be explained by the superposition
principle in quantum mechanics: a system can exist in a superposition of two
eigenstates, with a fixed phase between the states.

To sketch out a somewhat simplistic example of the difference between classical and
non–classical correlations: imagine that Alice and Bob know that inside a box there
is one red ball and one green ball. With their eyes closed, they each take one ball out
of the box, and still keeping their eyes shut Alice boards a plane to Perth (Australia)
while Bob boards a plane to Hamilton (Bermuda). Once at their destinations, Alice
can ascertain whether she has a red or green ball by looking at what is in her
hand. If she sees a green ball, she instantaneously knows that Bob, on the other
side of the world, must be holding a red ball. By making a local measurement,
she immediately gains information about a system that is a great distance away—
with her local measurement, she instantaneously determines if Bob’s ball is red or
green, when it is on the other side of the world. Nothing mysterious or un–intuitive
happens in this scenario, and this is a purely classical correlation.

The scenario can be modified to illustrate a quantum correlation. Now the two balls
in the box are “quantum” balls, and before looking at them one can only describe
them as having complementary colours on the colour wheel. That is, if one is red
the other is green, if one is blue the other is orange, if one is purple the other is
yellow, etc. From Perth, Alice can now choose how to “measure” the ball—she can
equally ask if the ball is blue, green or red. In the quantum formalism, this is called
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choosing the measurement basis for a system. The point is that the colour of Alice’s
ball is actually undefined until she makes a decision to test it in a specific basis,
and the only defining feature is that the two balls are always opposite colours. If
she tests whether the ball is green and the result is affirmative, she and Bob both
know that Bob’s ball is green without Bob needing to check it himself. So far, this
is identical to the classical case. The difference now is that Alice can measure in
any basis, and the correlation will persist. For example, if she tests whether her ball
is purple, she will automatically ensure that Bob’s ball is either yellow or purple,
based on her measurement result. In the classical case, the balls were always either
red or green (even if Alice and Bob did not know it), and they could never be any
other colour. In the quantum case, Alice has the freedom to measure her ball in any
colour basis, and by doing so, she collapses Bob’s ball in Bermuda into the same
colour basis, with the opposite colour. To truly verify that Alice and Bob are seeing
non–classical (i.e. quantum mechanical) correlations, Bob should measure his ball
in a different colour basis than what Alice measures hers in. This ensures that Alice
and Bob don’t simply share a list of correlated values, or in other words, that they
don’t share a statistical mixture of classically correlated states. By measuring in
different colour bases over many trials, and looking at their measurement results,
Alice and Bob can test that the exact colour of their balls is truly undetermined
before measurement, existing in a superposition of possibilities. This is essentially
what the inequalities that will be introduced in the next sections are testing1.

5.3.1 Einstein-Podolsky-Rosen Paradox and Entanglement

In 1935, Einstein, Podolsky and Rosen (EPR) proposed a thought–experiment to
highlight why they believed that quantum mechanics could not be a complete theory
[14]. Their thought experiment was essentially the description of non–classical
correlations form the last section, but using the formalism of quantum mechanics.
The essence of the argument is as follows (the argument was originally framed in
terms of continuous variables, but Bohm [164] re–framed it in terms of discrete spin
variables, which is conceptually simpler). Two entangled particles are in the pure
state

|Φ+〉 = 1√
2

(|0A1B〉+ |1A0B〉) (5.1)

where the composite particles A and B are separated by lightyears. A measurement
of particle A would seem to affect a measurement of particle B, in that if Alice

1For a thorough exposition of the difference between classical and non–classical correlations,
refer to Bell’s paper “Bertlmann’s socks and the nature of reality”, which can be found in [13]
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measures her particle to be in the state |0〉, it collapse the wave function of Bob’s
particle into the eigenstate |0〉. Einstein, who had previously developed the theory
of relativity, believed that this “instantaneous collapse” effect was “spooky action at
a distance”, and violated the principles of local realism. The realism assumption in
local realism states that if there is a physical property or quantity associated with a
system, which can be predicted with certainty without disturbing the system, then
this physical quantity corresponds to an “element of reality”. The locality assump-
tion states that there can be no action at a distance, so that a local measurement
at A cannot disturb a space–like separated system B.

Einstein et al. were arguing for a local hidden variable model of reality, in which
no effect can propagate faster than the speed of light, and the properties of a
system are predetermined by variables, which are hidden prior to measurement.
The paradox in the EPR experiment is the the system variables of A and B appear
to depend on what is measured. Around this same time, Schrödinger also made
influential contributions to the early these early discussions. He called the apparent
influence by A on the wave function of the remote system B “steering”, and also
coined the term “entanglement” to describe the inseparability (or unfactorizibility)
of the individual wave functions for the subsystems A and B [165]. In another
thought experiment that carries his name (Schrödinger’s cat paradox), he imagined
a microscopic quantum system, such as an atom, entangled with a macroscopic
object such as a cat. Since the microscopic object is generally in a superposition
state, this implies that the macroscopic object must also exist in a superposition,
leading to absurd conclusions, like the cat being in a superposition of a live and dead
state [166]. The phenomenon of entanglement was central to the early development
of quantum mechanics, and von Neumann later proposed that measurement–induced
wave function collapse could be explained by the measurement apparatus becoming
entangled with the measured system [167].

The EPR paradox set in motion a long–lasting debate over the interpretation of what
quantum theory says about the nature of reality [168]. Although most standard
interpretations assert that “realism”, or hidden variables, do not exist in nature,
alternative interpretations have not definitively been ruled out. Perhaps the two
most famous alternative interpretations are the Bohm-de Broglie interpretation [169,
170] and Everett’s many–worlds interpretation [171].
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5.3.2 Bell Inequalities

Since the original EPR paper, much effort has been devoted to developing quantita-
tive models to constrain the types of theories that could describe how nature really
works [172]. The most famous result in this line is Bell’s theorem, due to John Bell in
1964 [12, 13]. Bell derived an inequality that all local hidden variable (LHV) theories
must satisfy, and showed that quantum mechanics predicts that the inequality will
be violated. Bell’s theorem demonstrates the incompatibility of quantum mechanics
and LHV theories.

Clauser et al. extended Bell’s theorem in 1969, deriving an inequality that is
somewhat simpler than Bell’s original one, and could more easily be implemented
in the laboratory [173]. The idea behind the CHSH inequality is presented, which
is enough to understand the essential idea in Bell’s theorem. Bell imagined the
following scenario: Alice and Bob each have one particle of a pair of particles, which
may be correlated in some way. Alice and Bob both also have two measurement
apparatuses each: Alice’s apparatuses are A1 and A2, while Bob’s are B1 and B2.
They agree together that they will both, independently but simultaneously, choose
one measurement apparatus and measure their particle with it. It can conveniently
be assumed that the possible measurement results are always ±1, without any loss
of generality. Bell’s inequality states that for a LHV theory

E(A1B1) + E(A1B2) + E(A2B1) + E(A2B2) ≤ 2 , (5.2)

where E(AjBk) is the expectation value for Alice measuring Aj and Bob measures
Bk. The only assumptions that enter into the derivation of this inequality are those
of local realism: a) a measurement reveals a pre–existing element of physical reality,
and b) a measurement made by Alice has no effect on a measurement made by Bob,
when he is space–like separated from her. In other words, the inequality does not
refer to quantum theory at all, and hence the inequality is theory–independent. The
quantum mechanical prediction for the inequality is

E(A1B1) + E(A1B2) + E(A2B1) + E(A2B2) = 2
√

2 > 2 , (5.3)

violating the bound set by local realism. This demonstrates that, in order for
quantum mechanics to accurately describe nature, which it has been repeatedly
confirmed to do, one of the two assumptions in local realism must be abandoned.
It is impossible for a LHV theory to accurately describe nature. Another influential
result, complementary to Bell’s theorem, is the Kochen–Specker theorem [174].
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Kochen and Specker showed that quantum mechanical commutation relations are
incompatible with a non–contextual hidden variable theory. Quantum mechanical
observable can therefore not be considered elements of physical reality outside the
context of how they are measured.

The earliest violation of the CHSH inequality with causally separated parties was
demonstrated by Aspect et al. in 1982, using entangled photons. The test of Bell’s
theorem was convincing but not conclusive, as low detection efficiencies meant that
measurements could only be performed on a post–selected sub–ensemble of events.
Only very recently has a Bell inequality been conclusively violated [74, 75], with the
detection loophole finally closed.

5.3.3 Steering Inequalities

Schrödinger originally coined the term “steering” in 1935 to refer to the EPR thought
experiment. The phenomenon in the original thought expedient, whereby Alice
affects, or “steers” Bob’s state by choosing a basis to measure her own state in, was
mostly superseded in popular discussion by Bell inequalities, which involve a slightly
different scenario. A rigorous definition of steering was not established until 2007,
when steering was defined operationally, in terms of a quantum information task, and
a steering inequality was derived [160]. A hierarchy exists for entangled states, and
steerable states were shown to be a strict superset of Bell nonlocal states, and a strict
subset of all entangled (non–separable) states [161] (see Figure 5.1). The success
of this approach highlights the advantage in operationally defining entanglement
inequalities. In the remainder of this chapter, entanglement inequalities will be
discussed as quantum information protocols, and the Bell and steering protocols are
described below.

In the Bell inequality protocol (see Figure 5.2(a)), the aim is for Alice and Bob
to convince an external referee, Charlie, that they share a Bell nonlocal state
between them. An ensemble of identical bipartite states are prepared and distributed
between Alice and Bob, who then separate to a space–like distance from each other.
After the preparation step, communication is forbidden between Alice and Charlie.
Alice and Bob will communicate with Charlie, who trusts quantum mechanics but
does not trust either of them (represented by the black box covering Alice’s and
Bob’s measurement devices in 5.2(a)). Alice and Bob proceed to simultaneously
measure their quantum state one at a time, reporting their results to Charlie. If
the correlations between their results are too strong to be explained by any LHV
model, Charlie must conclude that they really do share entanglement above the Bell
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Bell non-local

Steerable

Non-separable

All quantum states

Figure 5.1: Hierarchy of entanglement. Bell non–local states, capable of violating a Bell
inequality, are a strict subset of steerable states, only capable of violating a steering
inequality. They are both strict subsets of non–separable states, which are quantum states
with non–zero entanglement.

nonlocal threshold.

The steering protocol (see Figure 5.2(b)) is derived by weakening the Bell inequality
protocol. Steering is asymmetric, unlike demonstrating Bell non–locality, and Char-
lie now trusts Bob while still not trusting Alice. The criteria Charlie uses to decide if
Alice and Bob truly share entanglement is whether the correlations can be explained
by any local hidden state (LHS) model for Bob. In a LHS model, Bob’s system is
in a definite state, and it is simply unknown to him. This could be the result of
Alice cheating in the preparation stage by secretly giving Bob a local pure state
that is known to her. Charlie can in principle perform quantum state tomography
on Bob’s state (because he trusts everything Bob tells him), and only concedes that
Alice and Bob share entanglement if Alice can steer Bob’s state. In other words,
the correlations between their measurements must exceed the LHS bound set by the
steering inequality [160].

Similarly, by weakening the criteria in the steering protocol, a protocol for determin-
ing non–separability can be arrived at (see Figure 5.2(c)). In this protocol, Charlie
trusts both Alice and Bob, and can therefore perform quantum state tomography on
both of their states. By reconstructing the full density matrix, it can be determined
whether or not the state is separable [149, 175].

Early experimental investigations of steering [176–179] used continuous–variable
states. More recently, steering was experimentally demonstrated using entangled
polarisation qubits [81, 180]. In this experiment, the degree of entanglement could
be tuned by preparing various Werner states [175], and the steering of a Bell local
state was conclusively shown for the first time.
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Figure 5.2: Comparing (a) standard QKD, (b) one–sided DIQKD and (c) DIQKD config-
urations. In standard QKD, Alice and Bob must both trust their measurement devices.
One–sided DIQKD is an asymmetric protocol, in which only Bob must trust his device,
and Alice can be untrusted (signified by the black box over her measurement device). Alice
must prove to the referee, Charlie, that she can steer Bob’s state, and this is achieved by
violating a steering inequality. In DIQKD, both Alice and Bob can be untrusted, and they
prove to Charlie that they share entanglement by violating a Bell inequality. DIQKD has
the most strenuous requirements, in terms of the strength of the correlation the parties must
demonstrate, and detection efficiencies. Standard QKD has the weakest requirement, it only
being necessary to show that Alice’s and Bob’s states are not separable, by each performing
quantum state tomography on their systems.

5.4 Experimental Concept

In standard QKD, communication security is proven under the assumption that
Alice and Bob can trust their measurement devices. Recently, the successful hacking
[181, 182] of the BB84 protocol [41] has demonstrated the weakness of this assump-
tion. Trust in one’s measurement device becomes unnecessary in a DIQKD protocol
[79]: the measurement devices can be considered black boxes, as their specific inner
workings are not relevant as long as a Bell inequality is violated.

DIQKD protocols impose strenuous requirements on overall detection efficiency
[74, 75]. One–sided DIQKD protocols, which involve the violation of a steering
inequality instead of a Bell inequality [159], impose somewhat lower detection effi-
ciency requirements [71–73]. For Charlie to witness steering, however, he must trust
Bob (and implicitly, Bob’s measurement device).

Generalising recent work [183] on non–local (or “semi–quantum”) games, and in-
spired by the work extending it to one–sided DIQKD [184, 185], a device–independent
protocol to prove the steerability of a state has been developed [186], that no longer
requires Charlie to trust Bob. It is believed that the protocol can be extended to
quantum–refereed one–sided DIQKD, and this is being theoretically investigated.
The experimental work presented in this chapter implements such a protocol to
witness Bob steering Alice’s state. The details of the experimental protocol can be
found in Section 5.4.1. A state from a class of mixed entangled states known as
Werner states was used in the experiment, to demonstrate steering of a strictly Bell
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local state.

5.4.1 Quantum-Refereed Steering Protocol

Pre–shared classical information can be used by Alice and Bob to mimic non–
classical correlations, and convince the referee Charlie to erroneously assert that
they share a steerable state. In the standard steering protocol (see Figure 5.3(a)),
Charlie is required to trust Bob (and his measurement device) to verify that Alice
and Bob share a steerable state. In Figure 5.3(a), a green box around Bob’s
apparatus indicates trust by Charlie, while the protocol is device–independent with
respect to Alice, indicated by the black box. In the modified, quantum–refereed
steering protocol (Figure 5.3(b)), Charlie is not required to trust Bob in order to
verify steering, and steering can be verified in a fully adversarial context. Classical
communication from Charlie to Bob in 5.3(a) is replaced by quantum communication
in 5.3(b) (indicated by the red arrow from Charlie to Bob), and this quantum
randomness effectively neutralises any pre–arranged cheating strategy that Alice
and Bob could have agreed upon in the protocol’s preparation stage [187]. The
green box around Charlie in 5.3(b) indicates that Charlie must now trust his own
ability to correctly prepare the quantum state he sends to Bob.

ALICE BOB

?
Quantum

Measurement
Device

CHARLIE

±1 ±1

⇢

j j

(a)

ALICE BOB

?

CHARLIE

±1 ±1

⇢

j !j

(b)

Figure 5.3: Comparing (a) one–sided DIQKD and (b) quantum–refereed one–sided DIQKD
configurations. In one–sided DIQKD, the aim is for Bob, whom Charlie trusts (signified
by the green box), and Alice to demonstrate that they share a steerable state ρ. Charlie
communicates classical measurement settings j to both parties, and analyses the correlations
of Alice’s and Bob’s results to see whether they violate a steering inequality, thus proving
that Alice can steer Bob’s state. In the quantum–refereed case, Charlie trusts neither Bob
nor Alice, and must only trust his own ability to accurately prepare and send a quantum
state. His trust in Bob is replaced by quantum communication (red arrow), by which he
sends Bob a quantum state ωj instead of a classical measurement setting, as he did in (a).
Bob will make a joint measurement on ρB ⊗ ωj when trying to violate a steering inequality,
which prevents him from conspiring with Alice to deceive Charlie.

Our modified steering protocol follows the general approach proposed in [184, 185].
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Alice and Bob share a Werner state ρ, in polarisation space (see Section 5.5.1 for
details). Charlie sends Bob the state ωj , proportional to an eigenstate of one of the
three Pauli operators σj (j ∈ {1, 2, 3}), and he sends Alice the measurement basis
j (i.e. a classical signal). Alice can use her knowledge of the measurement basis to
inform her own choice of measurement, and returns a dichotomic result ap = ±1 to
Charlie. Bob possesses the combined state ρB ⊗ ωj , where ρB is Bob’s half of the
state ρ that he shares with Alice, and ωj ≡ (1±σj)/2 is the state that Charlie sends
to him. Bob projects his combined state onto the observable

B ≡ 2|Ψ−〉〈Ψ−| − 1⊗ 1 , (5.4)

and also returns a dichotomic result ±1. In the original semiquantum game in [183],
Bob performed a full Bell state measurement on his combined state. In [185], it was
shown that a simple projection onto a maximally entangled state was enough in their
protocol. The observable B corresponds to projecting Bob’s combined state onto the
singlet state |Ψ−〉, which is the easiest measurement to implement experimentally.
Charlie uses Alice’s and Bob’s reported results to construct the “payoff” function

P(ρ) ≡
∑

p

[
sp〈ap(1⊗ 1 + B)〉ρB⊗ωp −

1√
3
〈(1⊗ 1 + B)〉ρB⊗ωp

]
, (5.5)

where p is an index that can take one of six values: p = ±j ∈ {±1,±2,±3}, and sp

is the sign of p.

The payoff function will be positive for any steerable state, and negative for any non–
steerable state. The payoff function is robust against any conspiratorial cheating
strategy between Alice and Bob, since a non–steerable state combined with local
operations and shared randomness still cannot yield a positive payoff [184, 187].

5.4.2 Werner States

Werner states are the best–known class of mixed entangled states, and can be be
expressed in terms of the three Pauli matrices:

Wµ = 1
4

1⊗ 1− µ 3∑
j=1

σj ⊗ σj

 , (5.6)

where the {σx, σy, σz} Pauli matrices are indexed by j ∈ {1, 2, 3}, and 1 is the
two–dimensional identity operator. A Werner state is entirely determined by the
parameter µ ∈ [0, 1], with µ = 0 corresponding to a completely mixed state, and
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µ = 1 corresponding to the singlet state, which is a maximally entangled state.
Using the formula for the singlet state

|Ψ−〉〈Ψ−| = 1
4

1⊗ 1− 3∑
j=1

σj ⊗ σj

 , (5.7)

the Werner state can be expressed in a couple of different ways:

Wµ = µ|Ψ−〉〈Ψ−|+ 1− µ
4 1⊗ 1 (5.8a)

= 1 + 3µ
4 |Ψ−〉〈Ψ−|+ 1− µ

4 (1⊗ 1− |Ψ−〉〈Ψ−|) , (5.8b)

Thus, a Werner state is a weighted sum of the singlet state, which is a maximally
entangled state, and symmetric (“white”) noise from the identity matrix, as in (5.8a).
Alternatively, it can be considered a weighted mixture of a symmetric (singlet)
subspace and an anti–symmetric (triplet) subspace, as in (5.8b). The Werner state
has been a convenient model to use when deriving quantum information bounds,
and it is known that a Werner state is entangled if and only if µ > 1/3 [175], it can
only violate the CHSH inequality if µ > 1/

√
2 ' 0.707 [173], and it cannot violate

any Bell inequality if µ < 0.6595 [188].

Steering inequalities have also been derived for Werner states [160]. These steering
bounds generally depend on the number of measurement settings—how many bases
Bob measures his state in. For three measurement settings (corresponding, for
example, to the Pauli observables σx, σy, and σz), a Werner state is steerable if µ >
1/
√

3 ' 0.5774, and this is the Werner parameter bound we use in the experiment.
For a larger number of measurement settings, the Werner parameter required for
a steerable state is reduced, and asymptotes for an infinite number of settings at
µ > 1/2 [180]. Werner states are consequently ideally suited to be test states
for proof–of–principle demonstrations of quantum information protocols, as their
entanglement class is well–understood, easily measured and varied.

5.5 Experimental Setup

The experimental setup consists of: a polarisation–entangled photon source, which
generates the state ρ to be distributed between Alice and Bob; a polarisation–
unentangled source, which Charlie uses to send the state ωj to Bob; and a Bell state
analysis setup, with which Bob performs a joint measurement on his half of ρ and
the state Charlie sends him. Details about these experimental components can be
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found in the next sections.

The principle laser is a Tsunami model Ti:Sapphire laser manufactured by Spectra–
Physics. This laser can provide approximately 2 W of frequency tuneable pulsed
coherent light in the TEM00 spatial mode. The repetition rate was 80 MHz, with
a pulse width of ∼ 100 fs. The laser was operated at 820 nm wavelength, and the
output was sent to a BBO crystal to be up–converted to 410 nm, in a SHG process.
These components are not picture in 5.4.

The 410 nm pump beam is split at the first PBS in Figure 5.4; half (∼ 200 mW)
of the optical power is sent to Alice’s and Bob’s (polarisation–entangled) source,
and ∼ 200 mW is sent to Charlie’s (polarisation–unentangled) source. Two pairs
of up–converted photons at 820 nm are used in the remainder of the experiment.
Frequency filtering is applied at all output ports using tilted band–gap interference
filters manufactured for a central wavelength of 810 nm (not pictured). All light
is coupled into single–mode 820 nm optical fibre at the output ports (illustrated as
green lines), and is detected using single photon counting modules (SPCM).
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Figure 5.4: Both SPDC sources consist of a pair of 0.5 mm sandwiched BiBO crystals
cut for type–I phase matching, with their optic axes perpendicularly oriented. Charlie’s
SPDC source is operated to generate polarisation–unentangled photons. One of Charlie’s
photons is sent straight to a SPCM, and heralds when the second photon arrives at the
Bell state analysis setup. The other SPDC setup is configured to generate polarisation–
entangled photons, creating the state ρ shared between Alice and Bob. The state from
the SPDC source can be transformed into any of the four Bell states. This is done with a
fibre polarisation control (FPC) on Bob’s fibre, and a tilted HWP with its optic axis in the
horizontal plane, that applies a phase φ between |H〉 and |V〉. Alice’s photon is sent to her
detection setup, while Bob’s photon is coupled into single–mode fibre and sent to the Bell
state analyser. The Bell state analyser, which takes as inputs Bob’s half of the entangled
state ρ and the state ωj that Charlie sends him, consists of a central 50:50 beam splitter and
polarisation analysers at its output ports. With pseudo–number resolving detectors, two of
the four Bell states (including |Ψ−〉) can be perfectly resolved, while the remaining two are
imperfectly resolved (see text for details).
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5.5.1 SPDC Sources

A sandwiched SPDC source [189] was used to generate polarisation–entangled pho-
ton pairs. In this source, two adjacent, thin (0.5 mm) Bismuth Borate (BiBO)
crystals cut for type–I phase matching are oriented so their optic axes and the pump
beam define perpendicular planes. That is, the first (second) crystal’s optic axis and
the pump beam define the vertical (horizontal) plane. The pump beam is diagonally
polarised, and can generate a down conversion event in both crystals. The vertical
polarisation component of the pump will produce horizontally polarised photon pairs
(due to type–I coupling) in the first crystal, while the vertical component of the
pump will generate vertically polarised photon pairs in the second crystal. As the
two crystals are thin and directly adjacent to one another, the two down conversion
light cones will be spatially indistinguishable from each other. In principle, no
information exists to determine if a down–converted pair came from the first or
second crystal, which means that the two down conversion processes are coherent2.
A down–converted photon pair is thus in an entangled state

|ψ〉 = |H1H2〉+ eiφ|V1V2〉√
2

, (5.9)

where the subscripts indicate collection modes, and the relative phase φ is deter-
mined by details of the phase matching condition. The state in (5.9) is maximally
entangled, and can be transformed into any of the four Bell state {|Ψ±〉, |Φ±〉} by
local operations, using wave plates and phase shifters.

Charlie’s source of quantum states that he sends to Bob was an identical sandwiched
type–I SPDC source, operated in the polarisation–unentangled mode, by setting the
pump polarisation to effectively pumping only one crystal. Charlie prepares the
signal photon in an eigenstate of one of the Pauli operators σj , and the idler photon
acts as a herald, or external trigger, signalling that its pair has been delivered to
the optical circuit. The idler photon must be measure in the same basis j. Charlie’s
ability to send the correct state ωj to Bob was experimentally characterised. An
average fidelity of Fav = 98.7± 0.6% was measured in the Bell state analysis setup
for the six Pauli operator eigenstates from Charlie’s source.

The singles rate from the entangled source was (8.2 ± 0.3) × 104 s−1 and a two–
fold coincidence rate of (4.2 ± 0.1) × 103 s−1, while the singles rate from Charlie’s

2The two crystals must be thin to allow for high spatial overlap of the down conversion cones.
From a geometric argument [189], the spatial overlap will be high if θdcL/D � 1, where θdc is the
opening angle of the down conversion cone (∼ 3◦), L is the crystal thickness, and D is the pump
beam diameter.



Experimental Setup 113

unentangled source was (9.2± 0.3)× 104 s−1, and the two–fold coincidence rate was
(4.2± 0.3)× 103 s−1.

5.5.2 Bell State Analysis

Bob makes a joint projective measurement of his state ρB ⊗ ωj on the singlet
subspace. Performing a full Bell state measurement that resolves all four Bell
states is impossible using linear optics and post–selection [190]. Hong–Ou–Mandel
interference can be used to filter the singlet state |Ψ−〉: single photons will only
anti–bunch if they are in a joint anti–symmetric state, and will bunch if they are in
any of the three symmetric triplet states |Ψ+〉, |Φ±〉. The signature of measuring
|Ψ−〉 is therefore a coincidence detection between the two output ports of the 50:50
beam splitter, and theoretically the efficiency of this measurement is only limited
by the HOM interference visibility (see Section 5.6.1). The triplet states will all be
measured as coincidences within one output port of the 50:50 beam splitter.

Polarisation modes are separated in each output arm after the 50:50 beam splitter
using wave plates and PBSs. As a result, the |Ψ+〉 = (|HV〉 + |VH〉)/

√
2 state

can also be perfectly resolved, as its signature is a coincidence in a single output
arm between different polarisation modes. The remaining two triplet states |Φ±〉 =
(|HH〉 ± |VV〉)/

√
2 cannot be perfectly resolved with the apparatus in 5.4. In these

two states, the two photons will occupy the same output mode after the 50:50 beam
splitter, and also be identically polarised, meaning that they will exit the same port
after a PBS as well. A SPCM with number resolution could, in principle, distinguish
the |Φ±〉 states from the other two Bell states, although it would still not be possible
to resolve |Φ+〉 from |Φ−〉.

Fortunately, the quantum–refereed steering protocol only requires Bob to project
his state onto the singlet subspace, with the orthogonal result combining all three
triplet state projections. Measuring the aggregate of the projections onto |Φ±〉 is
therefore acceptable. We implemented pseudo–number–resolving detection, by using
50:50 fibre beam splitters at the four output modes of the Bell state measurement,
and using eight SPCM instead of the original four. With this strategy, there is
a 50% probability that two photons in one output mode will be split at the fibre
beam splitter, and register a coincidence in two detectors. In our data analysis, we
therefore double the measured rate of |Φ±〉 detections, to account for the half of
those states that we were unable to measure directly.
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5.6 Experimental Results

A quantum–refereed steering inequality was violated with a Bell–local Werner state.
The quantum-refereed steering protocol was also tested using a singlet state, and a
maximum violation of the steering inequality was observed.

5.6.1 Characterising HOM Interference
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Figure 5.5: Measurement of the Hong–Ou–Mandel (HOM) interference visibility between
Bob’s and Charlie’s photons, at the central 50:50 beam splitter in the Bell state analyser.
The output coupler in Charlie’s arm was on a motorised linear translation stage, which
temporally mode–matched the two photons. Data was collected in four–fold coincidence
detection, and the collection time for each data point was 1800 seconds. A Gaussian function
was fitted to the data set (see text for details), and the interference visibility was calculate
to be 89%.

The Bell state analysis setup in 5.4 is based around a non–classical HOM interference
between the ρB and ωj photons at the central 50:50 beam splitter. It was necessary
to characterise the HOM interference, as high interference visibility was required to
effectively resolve the singlet state |Ψ−〉 from the other three triplet Bell states—
only the singlet state anti–bunches at the beam splitter. Bob performs a joint
measurement on ρB⊗ωj , and the fibre output coupler for the ωj photon is on a linear
z−translation stage, to match temporal modes between the ρB and ωj photons.

As the ρB and ωj photons are from independent SPDC sources, it was necessary
to measure the HOM interference (see Figure 5.5) in four–fold coincidences. Thus,
a photon detected in Alice’s detector heralds the presence of the ρB photon at the
50:50 beam splitter, and a detection in Charlie’s other detector heralds the presence
of the ωj photon.
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A Gaussian function was fitted to the data set in Figure 5.5, and the interference
visibility was calculated using the amplitude of the fitted function. As the output
coupler was translated along the z−axis across the interference region, the coupling
efficiency to the output couplers changed slightly due to imperfect alignment of the
translation stage; this can be seen as a decrease in the coincidence rate outside
the interference region (compare coincidence rates at z = −0.3 and z = 0.2). When
fitting the Gaussian function to the data set, a linear background term was added to
accommodate for this small variation in coupling efficiency. An average coincidence
rate outside the interference region (dotted black line in Figure 5.5) was use in
the visibility calculation: the visibility is the ratio of the fitted Gaussian function’s
amplitude to the average coincidence rate. A HOM interference visibility of 89%
was calculated.

5.6.2 Characterising the Werner State

There are several different methods of generating polarisation Werner–states, in-
cluding: the depolarised method, which consists of inducing a spatially dependent
phase shift on one of the polarisation qubits with a prism, and then tracing over
the spatial degree of freedom [180, 191]; the patchwork method, which consists of
a double–passed type–I SPDC source and a series of phase shifting and decohering
elements between and after the two passes [192]; or a method using fast variable
polarisation rotators [193].

Our method to calculate the payoff function P(ρ) for an experimental Werner state ρ
is relatively straight–forward, and uses the fact that a Werner state can be expressed
as a statistical mixture of all four Bell states. Data is taken when ρ is consecutively
prepared in the four Bell states, and the data sets are aggregated to produce a value
of the payoff function for the effective state ρ. The Werner parameter is tuned by
weighting the data collection time for the singlet state compared to data collection
time for the three triplet states (data collection time between the three triplet states
is identical). For example, to test the payoff function using a completely mixed state
(µ = 0 from Section 5.4.2), data can be taken for an equal time with all four Bell
states.

Payoff function data was collected for all six possible states ωj that Charlie sends
to Bob. For each ωj , payoff function data was collected when ρ = |Ψ−〉 for 9,000
seconds, and for each of the three triplet states ρ = {|Ψ+〉, |Φ±〉} for 860 seconds.
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Figure 5.6: Comparison of the ideal Werner state Wµ with the experimentally reconstructed
Werner state ρe. The absolute value of the density matrix elements for (a) Wµ and (b) ρe.
(c) The real valued elements of the Wµ density matrix. The (d) real and (e) imaginary
elements of the ρe density matrix.

Based on these data collection times, the effective state is expected to be

ρ = 0.777|Ψ−〉〈Ψ−|+ 0.223(1⊗ 1− |Ψ−〉〈Ψ−|) , (5.10)

which corresponds to roughly expecting µ = 0.703, from (5.8b). This Werner
parameter is above the desired range 0.5774 < µ < 0.6595, in which quantum–
refereed steering of a Bell–local state can be demonstrated. This is deliberate, as we
cannot prepare perfect Bell states, and the small amount of noise in each of the four
Bell states adds together as symmetric noise in the aggregate ρ, further reducing
the actual Werner parameter.

The quality of the four individual Bell states was characterised using quantum state
tomography in the Bell state analysis setup, and the average fidelity was measured
to be Fav = 0.976 ± 0.017, while the average purity was Pav = 0.955 ± 0.003. For
further details, refer to Table 5.1

AWerner state density matrix was produced using the experimental density matrices
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of the four Bell states. The initial weighting was based on the relative amount of
data used from each Bell state that was used to calculate the payoff function P(ρ),
which is more accurate than using data collection time, as in (5.10). The ratio of
data from the four Bell states contributing to the payoff function gave a preliminary
value µ = 0.682. A numerical search was then implemented to arrive at a more
accurate value of µ.

ρe P(ρe) F(ρe) T (ρe)

|Ψ−〉〈Ψ−|e 0.958± 0.004 0.977± 0.002 0.913± 0.009
|Ψ+〉〈Ψ+|e 0.955± 0.002 0.076± 0.001 0.911± 0.005
|Φ−〉〈Φ−|e 0.950± 0.002 0.974± 0.001 0.898± 0.004
|Φ+〉〈Φ+|e 0.956± 0.003 0.977± 0.002 0.916± 0.006

Average 0.955± 0.003 0.976± 0.002 0.909± 0.008

Table 5.1: The average purity (P), fidelity (F) and tangle (T ) from the Monte Carlo
simulations of the experimentally reconstructed states ρe. All four Bell states are measured.

In a Monte Carlo simulation of 200 iterations, the parameters are varied in the
experimentally reconstructed density matrix

ρe = 1 + 3µe
4 |Ψ−〉〈Ψ−|e + 1− µe

4 (|Ψ+〉〈Ψ+|e + |Φ−〉〈Φ−|e + |Φ+〉〈Φ+|e) . (5.11)

Quantum state tomography of the Bell states is based on measuring the Stokes
parameters, and deriving a density matrix using maximum likelihood reconstruc-
tion (see Section 2.6.2). Uncertainty in the Stokes parameter measurements is
determined by Poissonian statistics, as it is due to the shot noise of single photon
detection events. The Stokes parameter measurements for each Bell state are varied
within Poissonian uncertainty, to generate slightly different experimental Bell states
{|Ψ±〉e, |Φ±〉e} in each iteration of the Monte Carlo simulation. At the same time,
the estimatedWerner parameter µe is also varied in each iteration, as the total singlet
and triplet counts are changed within Poissonian uncertainty. In each iteration, an
ideal Werner state of the form

Wµ = 1 + 3µ
4 |Ψ−〉〈Ψ−|+ 1− µ

4 (|Ψ+〉〈Ψ+|+ |Φ−〉〈Φ−|+ |Φ+〉〈Φ+|) (5.12)

is fitted to the experimental Werner state ρe, by varying the parameter µ in (5.12)
to maximise the fidelity between the ideal and experimental Werner state:

F(ρe,Wµ) = tr
(√

W
1/2
µ ρe W

1/2
µ

)2
. (5.13)
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After each iteration, the fitted Werner parameter µ and the fidelity F(ρe,Wµ) are
recorded. At the end of the 200 iterations, the average fitted Werner parameter
and fidelity are calculated, as well as their standard deviations. The fitted Werner
parameter was found to be µ = 0.6478±0.0045, and this value is substituted for the
estimate µe in (5.11).

The density matrices for the final ρe andWµ are depicted in Figure 5.6. The absolute
values of the density matrixWµ (Figure 5.6(a)) and ρe (Figure 5.6(b)) are compared.
The real–valued matrix elements of Wµ in Figure 5.6(c) can be compared to the
real and imaginary density matrix elements of ρe in Figures 5.6(d) and 5.6(e),
respectively. There is a slight imaginary component in the |H〉〈V| and |V〉〈H|
elements of ρe, and this is likely due to small phase rotations from experimental
components, and does not significantly impact the payoff function measurement.

5.6.3 Steering Inequality Measurement

Data for the payoff function P(ρ) was collected in four–fold coincidence: Alice detects
a photon in her detector, Charlie detects a photon in his triggering detector, and
Bob measures a two–fold coincidence in the Bell state analysis setup. As mentioned,
Charlie sends all six possible ωj states to Bob, and for a given ωj , singlet and triplet
state detection events are separated in Bob’s Bell state analysis. In the payoff
function

P(ρ) ≡
∑

p

[
sp〈ap(1⊗ 1 + B)〉ρB⊗ωp −

1√
3
〈(1⊗ 1+ B)〉ρB⊗ωp

]
, (5.14)

the index p ∈ {±1,±2,±3} corresponds to the six possible states that Charlie can
send to Bob:

ωz = 1± σj
2 , j ∈ {1, 2, 3} . (5.15)

The first term in the sum, sp〈ap(1 ⊗ 1 + B)〉, is the correlation of Bob measuring
a singlet state (from (5.4), it is clear that 1 ⊗ 1 + B = 2|Ψ−〉〈Ψ−|) and Alice’s
measurement result aj . The sign factor sp is in (5.5) to account for the fact that
when Charlie changes from sending a positive eigenvalue eigenstate ωj to a negative
eigenvalue eigenstate ω−j , the correct correlation in Alice’s result will also switch
sign. This sign factor is accounted for in the experiment, however, by correlating
Alice’s measurement projection with the state Bob sends to Charlie—Alice’s result
that is correctly correlated with Bob’s measurement is thus always measured in the
same detector, for all p.
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Figure 5.7: (a) Plotting the value of the payoff function P(ρ) for a singlet state (Bell non–
local, µ = 0.98) and for a steerable Werner state (Bell local, µ = 0.6478 ± 0.0045). The
dashed horizontal black line is the upper payoff limit for a maximally entangled state, and
the dashed red line at P(ρ) = 0 shows the minimum payoff function value required to
demonstrate that a state is steerable. The green region is the range of steerable states based
on the Werner parameter µ, and the purple region is the range of Bell non–local states.
The dashed vertical purple line shows the minimum Werner parameter needed to violate
the CHSH inequality. (b) A magnified view of the steerable state data point. The payoff
value is positive within error, as required to demonstrate quantum–refereed steering. It is
also fully within the green region, which shows the range of steerable states based on the
Werner parameter.

The payoff function is calculated for a Bell–nonlocal state, and for a state that is
steerable but Bell–local. These two data points are presented in 5.7(a). To measure
the Bell non–local case, a singlet state was prepared, and it was measured to have
98.2% fidelity with the ideal singlet. The payoff function for this state was calculated
to be P(ρ) = 1.262± 0.036, which reaches the theoretical limit Pmax(ρ) = 3−

√
3 '

1.2679 for a maximally entangled state.

A magnified picture of the payoff data point for the steerable state is found in
5.7(b). As described in Section 5.6.2, the fitted Werner parameter for this state is
µ = 0.6478 ± 0.0045, which lies in the range of steerable Werner states 0.5774 <

µ < 0.7071, within uncertainty. The value of the payoff function for this state was
calculated to be P(ρ) = 0.051± 0.027, which is positive to within error. The payoff
function is positive only for steerable states.

5.7 Discussion

This is the first demonstration of the violation of a steering inequality when neither
party can be trusted. In all previous demonstrations, the asymmetric steering
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steering task has involved implicit trust between Charlie, the referee, and Bob, the
party whose quantum subsystem is being steered. Quantum randomness is added
into the protocol, by replacing the classical instructions Charlie sends to Bob with
quantum instructions, in the form of a quantum state the Bob uses to perform a
joint measurement. This invalidates the requirement of trust between Charlie and
Bob, since no pre–arranged cheating strategy between Alice and Bob exists by which
they can deceive Charlie in the new protocol.

One–sided DIQKD is an extension of standard DIQKD; based on the violation of
a steering inequality, such an asymmetric protocol could be directly applicable to
scenarios in which a secure central server trades information with many unsecured
terminals. Recently, a quantum access network architecture was investigated [128]—
a nodal network with point–to–multipoint connections, demonstrating a resource–
efficient strategy for practical realisation of multi–user QKD technology. One–sided
DIQKD could be applied in just such a scenario. It has been shown that one–
sided DIQKD is secure against the most general (i.e. coherent) attacks [159, 194,
195], under only a few assumptions (memoryless devices [196], integrity of location).
Loophole–free tests of a Bell inequality are at the very limit of what is possible using
current technology [74, 75], while violating steering inequalities have the advantage
of less strenuous detection efficiency requirements [71–73].

Secure quantum communication will become ever more integrated with other quan-
tum information tasks [115, 130], as the range [197] and resilience [198] of protocols
increases. The experimental result presented in this chapter is an important addition
to the array of techniques for securing the distribution of quantum information in
different scenarios.
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Chapter 6

Frequency Conversion of
Squeezed States

6.1 Acknowledgements

The work presented in this chapter was carried out over the course of three months,
while visiting Professor Roman Schnabel’s laboratory in the Max Planck Institute
for Gravitational Physics (Albert Einstein Institute), at the Leibniz Universität
Hannover. Prior to arriving, some of the experimental set up (Figure 6.7) had been
constructed and used in previous experiments [199].

My main contributions to the experiment were in the frequency conversion efficiency
measurement (6.6.1), and the first measurement of squeezed vacuum at 1550 nm
(6.6.2). I also built two homodyne tomography setups, HD1550 and HD532, as well
as various optical paths in the setup. In addition, I modified the SFG cavity to
increase conversion efficiency. All of the work was done together with Petrissa Zell
and Christina Vollmer, with significant assistance from Christoph Baune and Axel
Schönbeck.

6.2 Introduction

Frequency conversion of quantum states of light is a topic of long–standing interest
[200], with potential applications in fields such as gravitational wave detection [201–
205] and quantum computing [206–208]. Common sources of non–classical light, such
as SPDC setups or quantum dots, commonly emit at IR or near–IR wavelengths.
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Quantum memories that are being developed for quantum networking, and to facili-
tate full–scale quantum computing, are mostly incompatible with these light sources.
An array of different systems are being investigated as potential quantum memories:
rare–earth ion doped crystals (Pr3+:Y2SiO5) using gradient echo [209], or EIT [210],
at wavelengths ∼ 606 nm; atomic frequency combs in Nd:Y2SiO5 crystals [211], with
wavelengths ∼ 883 nm, and in Ti:Tm:LiNbO3 waveguides [212], at ∼ 795 nm; warm
atomic vapour using gradient echo [213], at ∼ 795 nm; and Faraday interaction in
Caesium vapour [214], at ∼ 860 nm. In general, most quantum memories are being
developed in the optical regime from 500–900 nm [215, 216]. In addition, although
high–efficiency detectors for telecommunication wavelengths are being developed
[217, 218], currently available single photon detector for visible wavelengths have
significantly higher quantum efficiency than commercially available photon detectors
at IR wavelengths [107]. Finally, generating squeezed states at shorter wavelengths
is directly applicable in gravitation wave detection, as the phase sensitivity of an
interferometer scales inversely with wavelength.

Frequency conversion and frequency entanglement are thus important techniques
for connecting quantum technologies [219, 220]. As new approaches to distributed
quantum computation are explored [130], in which a client can securely implement
a quantum computation task through a remote server, quantum computing and
quantum communication will merge into the same task. Quantum information is
best transmitted at telecommunication wavelengths, around 1500 nm where the
optical loss is lowest, and this will be a critical constraint on distributed ground–
based protocols. Wavelength flexibility could also be desirable as recently proposed
satellite–based quantum communication protocols [221] and experiments [222] are
developed.

The aim of the experiment was to demonstrate frequency conversion of a squeezed
state, and the verification of entanglement between squeezed vacuum at 1550 nm
and at 532 nm. A squeezed state is versatile, with applications in quantum commu-
nication, computing and measurement, but it is also very sensitive to loss. Successful
frequency conversion of squeezing demonstrates that the process is suitable for highly
fragile non–classical states. The experimental work presented in this chapter includes
the first results of the experiment—characterising the frequency conversion efficiency,
and generating the squeezed state. The frequency conversion of squeezed vacuum
and measurement of frequency mode entanglement, which are the main results, are
not presented in this thesis, as I did not participate in collecting that data. Details
about the full experiment can be found in [223]. The results presented here do,
however, represent the key steps necessary to achieve squeezing and entanglement
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conversion.

6.3 Quantum Optical Theory in Continuous Variables

Previous chapters in this thesis discussed quantum optics experiments in discrete
variables—single photons—and the techniques associated with controlling and mea-
suring them. In continuous–variable quantum optics experiments, light is considered
to be a wave, generally comprised of a macroscopic number of photons in a mode.
In the simplest case, the light wave is in a coherent state, introduced in 2.4.1. A
coherent state is a minimum uncertainty state, meaning that its variance is equal to
that of the vacuum state. The variance of an observable x̂ is defined in the following
way:

V(x̂) = 〈∆x̂2〉 = 〈x̂2〉 − 〈x̂〉2 . (6.1)

In classical mechanics, a non–zero variance of the observable x̂ is associated with
noise, or imperfect preparation of the system with the desired property. An ideally
prepared quantum system will still have non–zero variance, however, due to the
probabilistic nature of quantum measurement. The variance, in this case, can be
thought of as quantum noise, since it is a fundamental property of the system. When
a state is represented in phase space, as in 2.5.1, the width of a quadrature is given
by the variance of the state at that measurement angle.

In continuous–variable experiments, the quantum noise is often the property of
interest. Squeezed states of light, a frequent topic of such experiments, are states
with variance below the vacuum noise in one quadrature, and a correspondingly
increased variance in the orthogonal quadrature. When the noise correlation is
between quadratures of a single mode, it is known as a single–mode squeezed state.
When the noise correlations are between two different modes, which might be at
separate optical frequencies for example, it is known as a two–mode squeezed state.
There is a rich variety of continuous–variable quantum states, and their applications
can be found in every field of quantum optics and quantum information. Continuous
and discrete variables can be used in the same experiment, and hybrid quantum
optics is a growing field that is garnering much interest [224, 225].

6.3.1 Sum–Frequency Conversion

The classical theory of sum–frequency conversion was presented in 2.3.1. In this
chapter, SFG is described semi–classically, using quantum operators to describe the
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signal and idler modes, and only making the parametric approximation to treat
the pump classically. By explicitly treating the inputs as quantum states, it is
shown that the process is coherent and does not collapse the states. The interaction
Hamiltonian describing SFG is

H = i~ξ (â†1â2e
−iω0t − â1â

†
2e
iω0t) . (6.2)

The pump field at ω0 is treated classically in (6.2), and the coupling constant ξ is
therefore proportional to the nonlinear coefficient χ(2) and the intensity of the pump
field. The equations of motion in the Heisenberg picture for the two fields are

dâ1
dt = i

~
[H , â1] + ∂â1

∂t

dâ2
dt = i

~
[H , â2] + ∂â2

∂t
(6.3a)

= −ξâ2 , = ξâ1 .

These are two coupled differential equations with solutions

â1(t) = cos(ξt) â1(0)− sin(ξt) â2(0) , (6.4a)

â2(t) = cos(ξt) â2(0) + sin(ξt) â1(0) . (6.4b)

According to (6.4), full quantum state transfer will occur between frequency modes
ω1 and ω2 after a characteristic time that depends on the interaction length and the
coupling strength. The fact that the time–dependent annihilation operators at both
frequencies can explicitly be expressed in terms of the initial conditions confirms
that the converted output is also a pure quantum state.

6.3.2 Optical Parametric Amplification

!1 !2 = !0 � !1

�(2)
!0

!0

!1

L

Figure 6.1: Input and output optical frequencies in an optical parametric amplifier (OPA),
consisting of a χ(2) nonlinear material of length L. Due to energy conservation, the signal
frequency ω1 and the generated idler frequency ω2 must add to the pump frequency ω0.
Thus, it is a difference–frequency generation (DFG) process. If the input amplitude of the
ω1 seed field is zero, this becomes the familiar SPDC configuration, where phase matching
determines the generated frequencies ω1 and ω2.

The SPDC process was discussed in 2.3.4, and it was indicated that the zero–point
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energy fluctuation of the vacuum field facilitates the generation of light at a new
frequency. The new light exhibits sub–Poissonian photon statistics, and is known
as a squeezed vacuum state. When a low–intensity field is added to the input of the
χ(2) material alongside the strong pump field, it is known as an optical parametric
amplifier (OPA). This is a DFG process, in which the “seed” or signal field intensity
is much lower than the classical pump field intensity. The signal field is amplified,
and an idler field at the difference frequency is also generated. Supplementary details
can be found in [226]. The interaction Hamiltonian describing the OPA process is:

H = i~ξ (â†1â
†
2e
−iω0t − â1â2e

iω0t) , (6.5)

where ξ is the coupling constant for the interaction (proportional to χ(2) and the
pump intensity), the pump field is treated classically, and â1, â2 are the annihilation
operators for the signal and idler modes, respectively. The equations of motion in
the interaction picture are:

˙̂a1 = − i
~

[â1,H ] = ξâ†2 ,
˙̂a†2 = − i

~
[â†2,H ] = ξâ1 . (6.6)

The solutions to these equations of motion are:

â1(t) = cosh(ξt) â1(0) + sinh(ξt) â†2(0) , (6.7a)

â2(t) = cosh(ξt) â2(0) + sinh(ξt) â†1(0) . (6.7b)

The time–dependent mode operators in (6.7) recall the time–dependent complex
amplitudes (2.35) in the classical description of DFG. By once again taking a semi–
classical approach and treating the signal field as a quantum state, the OPA process
is shown to be coherent. If we assume the initial coherent states |α1, α2〉 in modes
ω1 and ω2, the average photon number in the signal mode is:

〈n1(t)〉 = 〈α1, α2| a†1(t)a1(t) |α2, α1〉 (6.8a)

= |α1cosh(ξt) + α∗2sinh(ξt)|2 + sinh2(ξt) . (6.8b)

The photon number in either one of the output modes depends on the amplitude of
both the input modes, as well as the relative phase between them. In the absence
of any input signal, the output still grows exponentially due to the last term in
(6.8). This situation—a strong classical pump combined with vacuum states in the
signal and idler inputs—is the familiar SPDC configuration from Chapter 2. The
zero point energy fluctuations of the vacuum state input combine with the strong
pump to generate photons in the output, the number being proportional to sinh(ξt)
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after a time t.

If the OPA is phase matched for a degenerate output, it acts as a phase–sensitive
amplifier, amplifying one quadrature and attenuating the other, depending on the
relative phase of the input states. Here, the squeezing and anti–squeezing are directly
on the quadratures of the fundamental beam, since â1 = â2 = â and the Hamiltonian
no longer yields two coupled equations of motion (6.7). In the interaction picture,
the unitary operator for time evolution of the degenerate OPA is

U(t) = exp
[−iH t

~

]
= exp[ ξt (â†2 − â2) ] . (6.9)

This is the single–mode squeezing operator, with squeeze parameter r = ξt. As
mentioned earlier, a coherent state is a minimum–uncertainty state, with identical
variance in both quadratures equal to the vacuum noise. The squeezing operator
transforms a coherent state into a squeezed state, which is another minimum–
uncertainty state with reduced variance in one quadrature, at the expense of in-
creased variance in the other. The squeezing parameter determines the amount by
which the variance of the quadrature is squeezed and anti–squeezed:

V(Q̂, t) = e2ξt V(Q̂, 0) , V(P̂ , t) = e−2ξt V(P̂ , 0) . (6.10)

Here Q̂ and P̂ are the amplitude and phase quadrature defined in (2.62) of Chapter
2. If the OPA is non–degenerate, the time evolution operator is

U(t) = exp[ ξt (â†1â
†
2 − â1â2) ] , (6.11)

which is the two–mode squeezing operator. The output of the OPA will be a two–
mode squeezed state, where the squeezing and anti–squeezing can be observed in
the sum of the quadratures:

Q̂+ = Q̂1 + Q̂2√
2

, P̂+ = P̂1 + P̂2√
2

, (6.12)

with Q̂1,2 and P̂1,2 denoting the amplitude and phase quadratures in modes ω1

and ω2. In this case, there will not be any squeezing on the individual beams.
The correlation between the noise in the two beams is quantum entanglement
of the type discussed in the EPR paradox. In the limit of infinite squeezing, a
measurement of one beam at a certain phase angle yields perfect information about
the quadrature of the other beam. Another phase angle could have been measured
instead, however, yielding perfect information about the second beam at a new
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angle. Thus, information can be gained about non–commuting variables of the
second beam, by only measuring the first beam.

6.3.3 Cavity Equation of Motion

↵out
1

↵in
2

↵in
1

↵out
2

↵c

Figure 6.2: Three mirror ring cavity configuration. The two side mirrors have identical
amplitude reflection and transmission coefficients

√
R and

√
T , respectively, while the middle

mirror is assumed to be purely reflective. The coefficient γj represents loss to mode j due
to leakage out of the cavity, while µj represents loss due to other internal processes such as
absorption or scattering. The coefficient γ′j = γj + µj includes all cavity losses in mode j.

A cavity resonator only supports specific frequency modes, and if the cavity contains
a nonlinear material, its periodic mode structure has a strong influence on the
nonlinear interaction, as in the case of an optical parametric oscillator for example.
For this reason, the equation of motion of a field in a cavity must be taken into
account. It is conceptually convenient to consider a three mirror ring cavity, as
depicted in Figure 6.2.

Input fields αin1 and αin2 enter the cavity through the two end mirrors. It is assumed
that both end mirrors have high amplitude reflectivity:

√
R =

√
1− T ' 1. This

ensures that the change to a wave after one round trip is small. If τ is the round
trip period for the circulating cavity field αc, the change after one round trip is

αc(t+ τ) =
√

(1− T1)(1− T2)(1− Λ)eiφ αc(t) (6.13a)

+
√

(T1)(1− T2)eiφ αin1 (t) +
√
T2e

iφ αin2 (t) . (6.13b)

The fields acquire a phase φ after one round trip, and near a cavity resonance
φ ' mod[2π]. The factor Λ in (6.13), which is assumed to be very small (Λ � 1),
accounts for internal loss in the cavity due to absorption or scattering. Expanding
αc(t + τ) to first order gives αc(t) + ταc(t), while the transmission terms can be
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expressed as a Taylor series to first order, in order to linearise into:

τα̇ = (iφ− γ1 − γ2 − µ1 − µ2) α+
√

2γ1 α
in
1 +

√
2γ2 α

in
2 , (6.14)

where γj = Tj/2 and µj = Λj/2 are the leakage and internal loss coefficients for
mode j, and the subscript has been dropped from αc. Equation (6.14) describes the
field inside the cavity, which is related to the field exiting the cavity through:

αoutj =
√
Tj α−

√
1− Tj αinj (6.15a)

'
√

2γj α− αinj . (6.15b)

Different approaches have been used to rigorously establish the quantum equations
of motion for cavity modes. A relatively simple method is to apply the canonical
quantisation rules to the classical equation of motion in (6.14). For convenience,
the cavity is assumed to be at resonance, and φ = 0. A total loss coefficient is also
introduced: γ′j = γj+µj . Finally, when considering the quantum modes, the vacuum
mode Γ̂ that is coupled into the cavity due to internal losses must be included. The
quantum equation of motion for cavity modes is thus:

τ ˙̂aj + γ′âj =
√

2γ âinj +
√

2µ Γ̂j . (6.16)

Resonator cavities are often used in continuous–variable quantum optics experiments
to prepare the mode of a laser beam. A beam of light can only have a high
transmission through a cavity if it is spectrally and spatially well mode–matched to
the cavity. To see that this is the case, consider a resonant, lossless and symmetric
cavity: φ = 0, µ = 0 and γ1 = γ2 = γ. The equation of motion (6.16) is expressed
in the frequency domain via a Fourier transform, and the boundary condition (6.15)
is used to derive the cavity output:

âout1 (ω) = γ âin2 (ω) + iωτ âin1 (ω)
γ − iωτ

, (6.17a)

âout2 (ω) = γ âin1 (ω) + iωτ âin2 (ω)
γ − iωτ

. (6.17b)

We assume that a single photon, with a broad frequency distribution centred at the
cavity resonance frequency, is sent to the cavity. If the reflected port is considered
“lost”, the transmitted field will be a mixture of vacuum, and a single photon with
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a Lorentzian frequency distribution that depends on the cavity parameter γ:

|〈âout1 (ω)|âout1 (ω)〉|2 ∝ γ2

γ2 + (ωτ)2 (6.18)

This shows that a cavity can filter out a specific frequency mode of an incoming
radiation field, and only let the desired mode through. The characteristics of the
filtered frequency mode can be tuned using the cavity parameters, represented in
(6.18) by γ and τ .

6.3.4 Optical Parametric Oscillation

!1 !2 = !0 � !1

�(2)
!0

!0

!1

L

Figure 6.3: Input and output optical frequencies in an OPO, consisting of a χ(2) nonlinear
material of length L inside a linear resonator cavity. This is represented as a DFG process,
where the signal (ω1) and idler (ω2) frequencies must add to the pump (ω0) frequency. The
threshold parameter σ is the point at which the pump power equals the rate of energy loss
in the OPO system. If the pump power significantly exceeds threshold, there is positive
feedback and the fields generated via the OPO interaction tend towards bright coherent
states. If the OPO is driven at or below threshold, the cavity output fields are squeezed
states, with maximal (in principle infinite) squeezing occurring at exactly threshold. If the
OPO is degenerate (ω1 = ω2 = ω), single–mode squeezing is produced. If the OPO is
non–degenerate (a NOPO), the two–mode squeezing is in the sum of the different mode
quadratures.

An optical parametric oscillator (OPO) consists of a nonlinear material placed inside
a cavity resonator. If the cavity mirrors are highly reflective at both fundamental
frequencies ω1 and ω2, it is known as a doubly resonant oscillator. If the mirrors are
highly reflective at only one of the fundamental frequencies, the device is called a
singly resonant oscillator. Below the threshold condition, the equations describing
the OPO are linear, and the pump field can be treated classically.

The Hamiltonian for a non–degenerate OPO is:

H = HI + HP + HS + HL (6.19a)

HI = i~χ(2) (â†sâ
†
i âp − âsâiâ

†
p) (6.19b)

The full system Hamiltonian is composed of the following parts: HI describes the
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coupling between the fundamental and harmonic frequencies, HS and HP describe
the driving fields at the signal and pump frequencies, and HL describes the cavity
losses for all modes.

The outline of a derivation of the equations of motion in a non–degenerate OPO is
presented in Appendix B. This closely follows the approach in [227, 228], while a
detailed solution of the degenerate case can be found in [226]. The cavity equation
of motion (6.16) is combined with HI , the coupling term of the Hamiltonian from
(6.19). The equations of motion due to HI are:

˙̂a0 = χ(2)â1â2 (6.20a)
˙̂a1 = −χ(2)â0â

†
2 (6.20b)

˙̂a2 = −χ(2)â0â
†
1 (6.20c)

The two fundamental modes are coupled through these equations of motion. A non–
degenerate OPO can therefore produce two–mode squeezing, a concept introduced
in 6.3.2 and further developed in Appendix B. Squeezing and anti–squeezing can be
measured in the sum of the quadratures (6.12), while there will be no single–mode
squeezing of the individual quadratures.

Two–mode squeezing is generally only observed when the OPO is not driven too
far above threshold. The threshold condition is the point at which the rate of
incoming pump energy balances the rate of energy loss due to leakage and internal
loss processes. By finding the stationary solutions (B.4) to the mean field equations
of motion, the threshold condition is obtained:

σ =
√
P/P0 = 2

√
(2χ2γ0)/(γ′20 γ′1γ′2) αin0 . (6.21)

The incoming pump intensity is P , and P0 = (γ′20 γ′1γ′2)/(8χ2γ0) is the threshold
intensity. The coefficients γ′j and γj are again the total loss and leakage loss
coefficients for a single pass through the OPO cavity, as in (6.16). The OPO operates
above threshold when σ > 1, or when the incoming harmonic intensity exceeds the
total losses in the system. Above threshold, the fundamental beams tend towards
uncorrelated coherent states, and hence two–mode squeezing tends towards zero.
However, two–mode squeezing has been shown near but still above threshold [229].
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The squeezing spectrum for a non–degenerate OPO is shown in (B.10):

Vout
Q̂+ (ω) = 1− 4γγ′

ω2τ2 + 4γ′2σ2 (6.22a)

Vout
P̂+ (ω) = 1 + 4γγ′

ω2τ2 + 4γ′2(σ − 1)2 . (6.22b)

This shows two–mode squeezing and anti–squeezing on the sum of the quadratures
Q̂+ and P̂+ defined in (6.12). Squeezing is measured in the laboratory using a
homodyne tomography setup, introduced in 6.4.1. The measurement does not need
to be constant, but can be made at any frequency, and this measurement frequency
is the ω in the denominator of (6.22). In the ideal case, the maximum squeezing
is always measured at zero frequency, but for technical reasons a higher squeezing
value can often be measured at non–zero frequencies. The highest squeezing value
is expected when the OPO is driven at the threshold σ.

In deriving equations (6.22), the cavity parameters for the two fundamental modes
were set to be identical, for simplicity. Thus, the squeezing spectrum for a degenerate
OPO would look identical to (6.22), with the key difference being that it would be
single–mode squeezing and anti–squeezing, meaning that Q̂+ → Q̂ and P̂+ → P̂ ,
where Q̂ and P̂ are defined in (2.62). In the degenerate single–mode case, there can
be no inter–beam correlations or EPR entanglement as previously mentioned, since
two modes would be required. While two–mode squeezing could be used in certain
quantum information protocols, such as continuous–variable QKD or Schrödinger
cat state quantum computation, single–mode squeezed states can enhance the phase
sensitivity of interferometers, and have been proposed for gravitational wave detec-
tion [201].

6.4 Experimental Techniques

Cavity resonators and homodyne detection are two common features of continuous
variable experiments. These components are generally absent from discrete variable
experiments, and the experimental techniques associated with them have therefore
not been previously discussed in this thesis. The next sections briefly present the
main details of balanced homodyne detection and cavity stabilisation. Further
details can be found in [228].
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�
⇥ I�(t)

IA(t)

IB(t)

A

B

signal

LO

Optical
Circuit

Figure 6.4: Balanced homodyne tomography apparatus. The signal field and local oscillator
(LO), which is phase matched to the signal, are mixed on a 50:50 beam splitter. The
average intensities 〈nA〉 and 〈nB〉 in modes A and B are converted to photo–currents IA(t)
and IB(t). The difference current I−(t) = IA(t)−IB(t) is directly proportional to the noise
of the signal, scaled by the amplitude of the LO. The relative phase Θ between the LO and
signal determines in which quadrature the noise is being measured.

6.4.1 Balanced Homodyne Tomography

Balanced detection of a single–mode beam consists of sending it to a 50:50 beam
splitter, with a detector at each output port. This can give information about the
the field’s total (classical and quantum) noise, but it cannot differentiate between
the field quadratures. To measure a specific quadrature of the signal beam, a phase
reference is required. A local oscillator (LO) in the other input port of the beam
splitter fulfils that requirement, and turns it into a balanced homodyne tomography
setup. In providing a phase reference, the LO must be phase locked to the signal
beam, so that the relative phase of the LO determines the quadrature angle that is
being measured (see (2.63) in Chapter 2). For this reason, the LO often originates
from the same pump beam that generates the signal, as shown in Figure 6.4, to
make spectral and spatial mode matching easier.

Both detectors in Figure 6.4 generate a photo–current that is proportional to the
intensity of the field in that port: IA ∝ 〈n̂A〉. The difference of the two macroscopic
photo–currents, processed electronically, is the quantity of interest in homodyne
tomography:

I−(t) ' 2αLO[δQ̂in(t) cos(Θ) + iδP̂in(t) sin(Θ)] . (6.23)

This expression is valid as long as the local oscillator amplitude is far stronger than
the signal. The difference current is the ideal quantity to measure, because it is
proportional to the noise of the signal scaled by the amplitude of the LO. The
noise of the LO and the amplitude of the signal are entirely absent from (6.23),
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as desired. A spectrum analyser is used to measure the variance of the difference
current: V(I−) = (∆I−(t))2. By correctly choosing the measurement angle with
the LO phase, the variance of the difference current will be directly proportional to
one of the quadrature variances.

It is actually the beating between the LO and signal fields that is measured in bal-
anced homodyne detection. If the measurement frequency of the spectrum analyser
is ω, the beating is measured between the LO and the correlated sidebands at ω0±ω
on the signal beam. The expression for the squeezing spectrum (6.22) suggests that
the squeezing is highest at zero measurement frequency. In practice, the presence of
other noise sources in an experiment, which are not fundamental properties of the
signal, often means that higher squeezing can be observed at non–zero measurement
frequencies.

6.4.2 Cavity Stabilization

The Pound–Drever–Hall (PDH) technique is a widely used method of stabilising a
laser’s frequency to a cavity linewidth, or alternatively, of stabilising the length of a
cavity that is resonant with a laser beam [230]. It is a key component of gravitational
wave interferometers, among its other uses. In the experiment presented in this
chapter, it was the technique used to stabilise cavity lengths.

If an incident field is initially resonant with a cavity, a straightforward way to mea-
sure fluctuations in the cavity’s length would be to monitor the reflected intensity,
and keep it at zero—if the cavity length changes slightly, the incoming field is no
longer perfectly on resonance, and part of the field will be reflected. The problem
with this method is that the intensity of the reflected beam is symmetric about
resonance, and there is no way to immediately determine in which direction the
cavity length must be shifted to bring it back on resonance. The phase of the
reflected beam is not symmetric about resonance, however, and measuring this phase
yields enough information to move directly back onto resonance.

Measuring a phase requires a phase reference, and to this end, sidebands are created
on the incident beam. Sidebands can be created using an electro–optic modulator
(EOM), which can simply consist of a crystal between capacitor plates, whose index
of refraction is a function of the local electric field strength. If the voltage applied
to the capacitor varies sinusoidally with frequency Ω and small amplitude β, the
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time–dependent electric field is:

E(t) = E0 e
i(ωt+β sin Ωt) (6.24a)

' E0 e
iωt(1 + iβ sin Ωt) (6.24b)

= E0

(
eiωt + β

2 ei(ω+Ω)t − β

2 ei(ω−Ω)t
)

(6.24c)

The phase modulation creates two sidebands above and below the carrier frequency.
The envelope of the carrier wave will exhibit a beat pattern at the modulation
frequency Ω, and this is used in PDH stabilisation as an error signal. If the
modulation frequency is high enough, the sideband frequencies are out of resonance
with the cavity, and they will be completely reflected. The reflected beam is
measured with a fast photodetector, and the modulation at Ω is isolated in the
signal by applying a mixer and a low–pass filter to the photodetector current. The

0

ε (
er

ro
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na

l)

Frequency

↑cavity resonance

Figure 6.5: A simulation of the error signal ε used in PDH stabilisation, produced in the
reflected port (high frequency modulation) of a cavity when the modulation frequency Ω is
large compared to the cavity linewidth.

reflection coefficient for a symmetric cavity without losses is the ratio of reflected to
incident amplitude:

γ(ω) = Eref
Ein

. (6.25)

If the modulation frequency is high enough to move the sidebands out of resonance
with the cavity, then the power of the modulation signal in the reflected beam is
proportional to

P (Ω) ∝ Im[ γ(ω)γ∗(ω + Ω)− γ∗(ω)γ(ω − Ω) ] . (6.26)
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This is the error signal that is used to lock the cavity length, ε = P (Ω). The function
ε has a large constant derivative around resonance, making it anti–symmetric about
the resonance point, which is ideal for an error signal used to stabilise cavity length
on resonance.

6.5 Experimental Setup

In the following sections, the full setup in Figure 6.7 is divided into stages, and
technical details about each stage are presented.

6.5.1 Laser Preparation

SHG

532 nm
EOM

EOM FI
MC Nd : YAG

1064 nm

Figure 6.6: The laser preparation stage of the setup. The main laser source was a commercial
Nd:YAG solid–state laser emitting ∼ 2 W of coherent radiation at 1064 nm, in a single spatial
mode. This beam was used to pump an SHG cavity, and produce ∼ 1W of optical power
at 532 nm, also in a single spatial mode. The 532 nm light passes through a mode cleaner
cavity for additional filtering of its spatial and frequency modes, after which approximately
700 mW of optical power is left to be used as a pump beam for the next stage of the setup.

The initial laser in the experimental setup was a Neodymium–doped Yttrium Alu-
minum Garnet (Nd:YAG) laser. The laser was the Mephisto model manufactured
by Inno–light. This laser provided approximately 2 W of continuous wave (c.w.)
optical power at 1064 nm wavelength. The light from this laser passed through a
Faraday isolator (FI), to prevent back reflections from re-entering the laser cavity.
It then passed through an electro–optical modulator (EOM), which modulated at
a sideband frequency of 15 MHz. The light next entered the SHG cavity, which
consisted of a 7% doped MgO:LiNbO3 crystal with a curved back surface and a
coupling mirror. The coupling mirror had a reflectivity of 90% at 1064 nm, and less
than 4% at 532 nm. The flat surface of the crystal had anti–reflective coating (R
< 0.05%), and the curved surface had high–reflective coating for both wavelengths
(R > 99.96%). The SHG cavity was stabilised using the PDH locking technique,
with the sidebands from the EOM. Approximately 1 W of optical power at 532 nm
was produced from the SHG. This light was sent through a three–mirror ring cavity
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with 1.3 MHz linewidth, known as a mode cleaner (MC), in order to filter a well–
defined TEM00 spatial mode and to suppress technical frequency noise. The MC
was again locked using the PDH technique, with 29.5 MHz sidebands. This initial
setup provided a strong coherent beam at 532 nm, which was used to pump the
non–degenerate OPO.
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6.5.2 Non-degenerate OPO

NOPO

1550 nm

810 nm

532 nm

Figure 6.8: The non–degenerate OPO consists of a PPKTP crystal in a monolithic cavity.
It is driven above threshold, with approximately 700 mW of 532 nm pump light, to produce
two coherent (un–entangled) beams at 1550 nm and 810 nm. The frequencies are then
separated with a dichroic mirror.

In order for oscillation to occur in a non–degenerate (doubly–resonant) OPO, the
cavity must simultaneously be resonant at both fundamental frequencies. Cavity res-
onance modes—Airy functions—occur periodically in the frequency spectrum, and
the field transmitted through a cavity will have a Lorentzian frequency distribution
(6.18). Adjacent transmission peaks are separated by a frequency known as the free
spectral range (FSR), and the width of the Lorentzian peak is determined by the
finesse of the cavity. In general, resonance modes of one fundamental frequency will
not overlap with resonance modes of the other fundamental frequency, and this is the
case depicted in Figure 6.9(a). By temperature–tuning the nonlinear material in the
cavity, and thus changing its length, the resonance modes of the two fundamental
frequencies can be overlapped. Note that the axes of the two frequency modes
increase in opposite directions. This is due to the fact that adding the frequencies
at any two corresponding points must satisfy energy conservation: ω1 + ω2 = ω0.

The phase matching condition of the nonlinear material inside the OPO, discussed
in 2.3.1, must also be considered—parametric oscillation only occurs when the
resonance modes overlap within the phase matching region 6.9(b). The probability of
generating oscillatory behaviour in the OPO grows with increasing overlap between
the two resonance modes and the phase matching region 6.10.

As the material’s phase matching is temperature tuned, different fundamental res-
onance modes overlap within the phase matching region—moving from one overlap
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 ↑
 no resonance

 → ω1

 ← ω2

(a)

 ↑
 resonance

 → ω1

 ← ω2

(b)

Figure 6.9: (a) Simulation of a NOPO with no modes overlapping within the phase matching
region (dotted curve). A frequency comb exists for each fundamental frequency (the
frequencies at every point along their axes add up to the pump frequency ω0), and the
cavity modes will not generally overlap. (b) Cavity modes at the fundamental frequencies
overlap. These two frequencies add to the pump frequency, conserving energy.

condition to the next one is called a mode hop. The general trend is that a
resonance overlap that begins on the left side of the phase matching region will
progress via mode hops towards the right side of the region. As this happens,
one fundamental frequency is increasing, while the other is decreasing by the same
amount. Eventually, the last mode hop will be too far outside the phase matching
region on the right, and a new resonance overlap on the left side of the phase
matching condition will be the dominant oscillation—this is known as a cluster
jump. The process continues in this pattern throughout temperature tuning, with
each new mode hop and cluster jump corresponding to a new pair of fundamental
frequencies.

The 532 nm beam from the SHG was used to pump the NOPO above threshold,
and generate two unentangled coherent beams at 810 nm and 1550 nm. The non-
linear material was a 8.9 mm long periodically–poled Potassium Titanyl Phosphate
(PPKTP) crystal, whose two curved end surfaces formed a monolithic standing–
wave cavity for both output fields. The front surface was 99.9% reflective at 810
nm and 1550 nm, and the back surface was 94% reflective. This created a cavity
with a finesse of F = 100, a linewidth of 91 MHz and a FSR of 9.15 GHz. The
back surface of the PPKTP was highly reflective at 532 nm, and its front surface
was highly transmissive, meaning that the pump beam passed through the crystal
twice. The threshold power of the NOPO, which depends on the phase matching
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 ↑
 oscillation

 → ω1
 ← ω2

 overlap

Figure 6.10: The overlap of the cavity modes with the phase matching function must be
taken into account, as the overlap of all three functions determines the strength of the
interaction in the NOPO.

condition and the spatial mode quality of the pump beam, was typically between 70
mW and 130 mW. The PPKTP temperature, which determined the phase matching,
was controlled with a Peltier element and held around 60◦ C. The phase matching
condition determined the outgoing wavelengths—this behaviour was generally linear
for mode hops, but it was step–like at cluster jumps, making the exact wavelengths
from the NOPO difficult to predict. Further details about the incremental behaviour
can be found in [199].

6.5.3 Squeezing Generation

The 1550 nm output beam from the NOPO pumped a PPKTP crystal, phase
matched for SHG. The PPKTP crystal had a curved back surface with highly
reflective coating for 1550 nm and 775 nm, and a flat front surface with anti–
reflection coating at both wavelengths. A coupling mirror formed a linear cavity
with the back surface, and this mirror had 85% reflectivity at 1550 nm and 97.5%
reflectivity at 775 nm. The cavity length was stabilised using sidebands on the 1550
nm field, and the temperature of the crystal was generally held at ∼ 50◦ C.

The 775 nm coherent light generated from the SHG cavity pumped another PPKTP
crystal, phase matched for parametric down conversion (PDC). The PPKTP crystal
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Figure 6.11: The squeezing generation stage consists of an SHG cavity and a parametric
down conversion (PDC) cavity, which together convert an incoming 1550 nm coherent beam
into a squeezed vacuum state at 1550 nm. The entire process is mediated by 775 nm light,
which is created in the SHG and used as a pump in the PDC.

and cavity were identical to the SHG setup in everything but the phase matching,
forming a doubly–resonant cavity for 775 nm and 1550 nm. The system, operating
below threshold, behaved like a vacuum–seeded OPA, and the 775 nm light was
down–converted back to 1550 nm, but in a squeezed vacuum state. The threshold
power for a doubly–resonant OPO is generally lower than for a singly–resonant OPO,
and the threshold power to induce oscillation in the PDC was expected to be around
15 mW based on simulations1. The typical PDC pump power used in the experiment
was ∼ 10 mW, below threshold.

6.5.4 Frequency Conversion

The quantum up–conversion from 1550 nm to 532 nm was achieved using sum–
frequency generation. A 9.3 mm PPKTP crystal, anti–reflection coated at 810 nm,
1550 nm and 532 nm, was placed inside a linear cavity. The crystal temperature
was generally held at ∼ 70◦ C. The back mirror was highly reflective at 1550 nm
and 810 nm (R > 99.9%), and the front mirror had 97% reflectivity at 810 nm and
91% reflectivity at 1550 nm. The front mirror was highly reflective at 532 nm (R >
99.9%) and the back mirror was highly anti–reflective (R < 0.1%), ensuring that all
the converted light exited the cavity through the back mirror. The cavity length was
stabilised using PDH locking, with 24.5 MHz sidebands on the 810 nm field. Using
sum–frequency conversion, the squeezed vacuum at 1550 nm would eventually be
converted to a squeezed vacuum at 532 nm. As a first step, however, we measured

1Later, ∼ 25 mW of pump power was sent into the cavity without reaching threshold. Threshold
conditions are sensitive to many factors, including crystal temperature, imperfect mode matching
and the exact wavelength from the NOPO, so threshold powers from simulations tend to be
somewhat approximate.
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squeezed vacuum
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Frequency Conversion
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squeezed vacuum at 532 nm

Figure 6.12: The frequency conversion is achieved using a SFG setup consisting of a PPKTP
crystal in a cavity. Using the coherent 810 nm beam from the NOPO as a pump, an incoming
squeezed vacuum state at 1550 nm (or a weak coherent 1550 nm field in 6.6.1) is up–converted
to 532 nm at the output.

the quantum conversion efficiency of the SFG process, using a dim 1550 nm signal
field and a strong 810 nm pump field, to ensure that the process would be parametric.
Details about this measurement can be found in Section 6.6.1.

6.6 Results

In the following sections, experimental results that I participated in collecting while
in Hannover are presented. Data collected by others after I left Hannover is not
included in this thesis, but details can be found in [223]. The results presented here
demonstrate the key experimental steps necessary for converting a squeezed vacuum
state from 1550 nm to 532 nm, and for measuring entanglement between squeezed
vacuum states at the two wavelengths.

6.6.1 Frequency Conversion Efficiency

The frequency conversion efficiency was characterised using a weak 1550 nm signal
beam and a strong 810 nm pump beam, ensuring that the pump would be unde-
pleted throughout the process. The intensities of the optical fields were measured
with photo–detectors, which were calibrated using power meters. The conversion
efficiency was calculated as the ratio of converted 532 nm photons to 1550 nm input
photons:

ηR = 〈n〉532
〈n〉1550

= 532 · P532
1550 · P1550

= Υ · 532 · Pmeas
532

1550 · Pmeas
1550

. (6.27)
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The correction factor Υ accounts for error in the absolute calibration of the photo–
detectors with the power meters. To determine this factor, the depletion of the
signal field was recorded by monitoring the 1550 nm light reflected at the input of
the cavity and transmitted through the cavity. With the 810 nm pump initially
blocked, the 1550 nm signal beam reflected from the front mirror when the cavity
was far off resonance (Prefl,max), and the transmitted signal when the cavity was at
resonance (Ptrans,max), were both measured. The relative depletion is thus

ηD = 1− Prefl + Ptrans
Pin

(6.28a)

= 1− ( Prefl
Prefl,max

+ Ptrans,max
Prefl,max︸ ︷︷ ︸

κ

· Ptrans
Ptrans,max

) , (6.28b)

which should, in principle, yield the same result as ηR. In practice, the two methods
differ slightly2 in Figure 6.13(a), and data using both methods is used to derive a best
estimate for the real conversion efficiency. The measured data sets were compared to
a theoretical model by numerically simulating the SFG system. A nonlinear cavity
simulator program [231] was written to provide a theoretical model based on system
parameters such as wavelengths, beam powers, waist size, mirror reflectivity’s and
crystal properties. This model was then fitted simultaneously to the power ratio
data and the signal depletion data, using a Python script from [199]. The numerical
optimisation produces the correction factor Υ.

The data presented in Figure 6.13(b), which is the data in Figure 6.13(a) adjusted
by the correction factor Υ, was produced in [223]. The maximum uncorrected
conversion efficiency was found to be 91.7%, and the true maximum conversion
efficiency after correction was found to be 89.2%, with a 810 nm pump power of 165
mW and an 1550 nm input signal power of 2 mW.

As theoretically predicted, the energy oscillates between the interacting modes (6.4),
which explains the gradual decrease in conversion efficiency after the maximum
is reached at P810 = 165 mW. The conversion efficiency curve depends on the
temperature (phase matching) of the SFG cavity, as well as the temperature of
the NOPO cavity. As discussed in 6.5.2, when the phase matching of the NOPO
is temperature tuned, the wavelengths of the two fundamental resonance modes
that overlap also change by small amounts. This is to ensure that energy is also
conserved in the conversion process. The SFG system parameters are generally

2The ratio method (ηR) of determining conversion efficiency depends on the accuracy of power
meters, and the depletion method (ηD) includes absorption and scattering. By using two different
methods, a more accurate efficiency curve can be fitted to the data.
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Figure 6.13: Frequency conversion efficiencies measured using ηR and ηD. (a) Uncorrected
conversion efficiencies, showing a maximum efficiency of 91.7%. (b) Conversion efficiencies
scaled by the factor Υ, showing the true maximum conversion efficiency of 89.4%. The solid
curves show the theoretical simulation of the nonlinear cavity, fitted simultaneously to both
the ηR and ηD data.

wavelength sensitive, so these small changes to the NOPO output wavelengths can
significantly affect the conversion efficiency in the SFG. While data was collected
for the conversion efficiency measurement, care was taken to ensure that the NOPO
did not undergo any mode hops or cluster jumps, to ensure that the wavelengths
were constant throughout.

The overall efficiency of converting a squeezed vacuum state at 1550 nm to a squeezed
vacuum state at 532 nm is expected to be somewhat lower than the measured 89.2%
quoted above. This is due to the fact that the squeezing parameter of a squeezed
state is extremely sensitive to loss, and reduction in squeezing is due to losses in the
optical path between the SFG and the HD532. A total loss of ∼ 56% in the optical
path between the SFG and homodyne measured was determined in [223] for the
homodyne detector and the conversion process. Since the HD532 detectors could not
be oriented at their Brewster angle in the setup, their effective quantum efficiency
was effectively ∼ 79%.

6.6.2 Single–Mode Squeezing

The quadrature noise of a squeezed vacuum state at 1550 nm was measured using the
balanced homodyne tomography setup HD1550. The 1550 nm squeezed vacuum is
the output field from the OPA in the squeezing generation stage of the experimental
setup 6.7. A spectrum analyser measured the squeezed and anti–squeezed quadra-
tures of the field at a sideband frequency f = 8MHz, with a resolution bandwidth
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∆f = 300kHz and a video bandwidth v = 300Hz. The phase was controlled manually
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Figure 6.14: Quadrature noise traces of the squeezed 1550 nm field, measured using a
network analyser. Quadrature noise is relative to vacuum noise power, which is set to be
the zero noise level. The red trace shows noise in the squeezed quadrature, the blue shows
the anti–squeezed quadrature, and the black trace is vacuum noise.

to measure the squeezing and anti–squeezing in Fig. 6.14. The detectors in HD1550

were two InGaAs photo-diodes from OSI Optoelectronics (FC InGaAs–300) with a
quantum efficiency of 80%. The homodyne detector was custom made, and it was
confirmed by measurement that its noise power increased linearly with increasing LO
power, within the optical power regime used in the experiment (2–8 mW). The traces
in Figure 6.14 are normalised to the vacuum noise, which was measured by blocking
the signal field before the detector. From the average of the traces, the measured
squeezing was 1.1 dB and the anti–squeezing was 2.9 dB, which is not corrected
for dark noise in the detectors. In Figure 6.15, the quadrature noise changes as a
function of the measurement angle, which was manually varied. For comparison,
the average squeezing and anti–squeezing values calculated from Figure 6.14 are
included as dashed lines on the plot. The value of the quadrature noise fluctuates
between the maximum attained squeezing and anti–squeezing, as expected.
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Figure 6.15: Quadrature noise measurement, as LO phase Θ is varied. The black trace
shows the vacuum noise reference, and the green trace shows the noise on the 1550 nm field,
which dips below vacuum noise when the squeezed quadrature is measured. The dashed red
and blue lines are the squeezing and anti–squeezing values form 6.14, and are included as a
reference.

6.7 Discussion

The results presented in 6.6.1 and 6.6.2 represent the key steps towards converting
a squeezed vacuum state from 1550 nm to 532 nm. After I left Hannover, the 1550
nm squeezed vacuum was split at a 50:50 beam splitter (picture after the squeezing
generation stage in 6.7), and half of the field was sent to HD1550, while the other half
was sent to the SFG and up–converted to 532 nm, to finally be measured at HD532.
Once part of the 1550 nm squeezed vacuum is converted to 532 nm, a two–mode
squeezed state has been created. In a two–mode squeezed state, the variance in
quadratures is correlated between the two modes. In 2000, Duan et al. derived an
inseparability criterion [232] for two EPR–like operators:

û ≡ |a|Q̂1 + 1
a

Q̂2 (6.29a)

v̂ ≡ |a|P̂1 −
1
a

P̂2 , (6.29b)

where a is an arbitrary non–zero real number, and 1 and 2 index two modes. Duan
et al. showed that the variance of these operators obeys the following inequality for
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all separable states:

〈(∆Q̂)2〉+ 〈(∆P̂)2〉 ≥ 1
2

(
a2 + 1

a2

)
. (6.30)

The violation of this inequality is a sufficient condition to demonstrate entanglement
of a continuous–variable state. Setting a = 1 expresses the above inequality in its
mosty intuitive form:

〈(∆(Q̂1 + Q̂2))2〉+ 〈(∆(P̂1 − P̂2))2〉 ≥ 1 . (6.31)

Using this criterion, a final entanglement of 1.4 dB was measured between squeezed
vacuum states at 1550 nm and 532 nm [223]. In this way, single–mode squeezing
on the 1550 nm squeezed vacuum state was converted to two–mode entanglement
between widely separated frequencies, with one in the telecommunication range and
the other in the visible regime.

This work investigates an efficient and coherent process for converting the frequency
of a quantum state, or for two–mode frequency entanglement from single–mode
entanglement. The results significant improve upon previously demonstrated fre-
quency conversion efficiency of non–classical states of light [233]. The process is
tuneable in principle, has the potential to give access to quantum states in previously
unattainable frequency regimes, as well as to facilitate the integration of quantum
communication and quantum storage technologies.
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Chapter 7

Conclusion

The fundamental questions about the role of information in physics raised over 50
years ago have persisted as fascinating and fruitful topics of investigation. With
technological and theoretical breakthroughs over the past half–century, researchers
have been able to isolate and control quantum systems with ever–increasing preci-
sion. These practical advances have, in turn, enabled new generations of experiments
in basic physics. In the past decade: experiments have verified Landauer’s principle
by measuring the energy cost of erasing information from a memory [234], as well
as converting measurement information into work [235, 236]; Bell’s inequality has
been experimentally violated with causally independent photons, while closing the
detection loophole [74, 75]; and the first demonstrations of practical quantum com-
putation tasks have been demonstrated, with Shor’s quantum factoring algorithm
[237–240] and the simulation of quantum systems with a basic quantum computer
[241, 242].

In the middle of the last century, the diversity of applications that the emerging field
of quantum information would encompass could not be fully appreciated. Pioneering
figures in the field were, however, able to guess at the future direction of research.
Over twenty years ago, it was apparent that quantum techniques would need to be
integrated, in order for quantum technologies to be viable. This idea is illustrated
in the 1993 paper [33] introducing the theory of quantum teleportation:

Although it is currently unfeasible to store separated EPR particles
for more than a brief time, if it becomes feasible to do so, quantum
teleportation could be quite useful.

Based on this quotation, the usefulness of quantum teleportation would appear to
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have been somewhat underestimated at first [43, 243, 244], but the essential point
that the authors were making continues to be valid. Integration of current quantum
techniques will play a major role in the future of quantum information science.

The first experimental result in this thesis is the heralded noiseless amplification of a
qubit. The restriction against noiseless amplification of a quantum state is embedded
in the structure of quantum mechanics [39], but as is often the case, the constraint is
not as absolute as it may at first seem, and noiseless amplification is in fact achievable
within certain parameters. As discussed in Chapter 3, a qubit is the quintessential
model for encoding quantum information. Two noiseless linear amplification stages
were used to coherently amplify the modes of a photon polarisation qubit, which
were recombined at the output of the optical circuit. The amplification is non–
deterministic but heralded, meaning that when amplification is successful, the out-
put qubit is available for further quantum information processing. This is a powerful
and robust technique, that has direct applications to secure quantum communication
protocols such as DIQKD [77]. The limits on noiseless amplification of a qubit were
experimentally investigated, to characterise the achievable performance with current
singe photon sources and detectors.

The next result, presented in Chapter 4, investigated a linear optical technique for
mitigating the effect of photon loss in quantum networks. This experiment adapted
the optical circuit from Chapter 3, using one NLA stage as a single–mode amplifier
and the other as a stage to swap mode entanglement. Two different configurations
of the circuit, corresponding to the position at which single–mode loss was added,
were investigated and characterised. In the first configuration, where the loss and
amplification were in the channel between a photon source and a potential quantum
memory, a significant distillation of the concurrence between modes was measured.
In the second configuration, where the loss and amplification were between a photon
source and the entanglement swapping stage, a clear increase was observed in the
coherence between modes, although it was not enough to increase the concurrence.
We concluded that imperfect ancilla states can largely explain the limitations of our
second configuration.

The advantage of the technique presented in Chapter 4 can be seen in the context
of the quantum repeater proposed in Ref. [113]. This approach uses heralded
qubit amplifiers, of the type demonstrated in Chapter 3, to construct elemen-
tary links similar to those first introduced in the DLCZ repeater protocol [123].
These elementary links consist of two quantum memories (atomic ensembles are
most commonly considered) separated by a minimum linkage distance, that share
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entanglement—mode entanglement in Ref. [123], and EPR entanglement in Ref.
[113]. In contrast to the original DLCZ repeater, the approach presented in [113]
requires both quantum memories to successfully store a photon in order to form
an elementary link, and a qubit amplifier can be used to herald this. The first
configuration in Chapter 4 could address this scenario, by adding another quantum
memory close to the first photon source in Fig. 4.5, in the C1 (entanglement swap)
channel. In general, the first configuration ensures that a pure state is sent into a
quantum memory. This could also be important if the memory is used for quantum
information processing, in which case high–purity states are generally required. The
advantage of the second configuration can be seen in a scenario where long–range
EPR entanglement has already been established, and is being extended to the next
node via a Bell state (two–photon) measurement. In this case, any transmission loss
in the new channel leading to the Bell state measurement should be corrected using
the NLA stage, before the entangled quantum memory releases its state. The NLA
stage thus increases the probability of successfully swapping states, and maintaining
the long–range entanglement.

The technique in Chapter 4 could be applied to a variety of quantum repeater
architectures, and is not limited to the scenarios discussed here. Although mode
entanglement is used in Chapter 4, extending the NLA stage to form a qubit
amplifier, to be directly applicable in the proposal of Ref. [113], was studied
in Chapter 3. A small difference in the optical circuit’s behaviour in Chapter 4
compared to Chapter 3, due to the effect of state renormalisation after the ampli-
fication stage, is discussed in Appendix A. Taken together, the work in Chapters
3 and 4 set a benchmark for linear optical techniques aimed at facilitating long–
range entanglement protocols in the presence of imperfect transmission channels. A
quantum erasure–correcting code that preserves coherence despite transmission loss
has been experimentally demonstrated for continuous–variable states [138], and our
work addresses a similar problem for discrete variables. Our results also underscore
the great potential benefits of the next generation of single photon sources and
detectors. With high–quality, on–demand single photon sources, the techniques
based on NLA stages would no longer be limited to relatively small amplitude states
[106]. In principle, with deterministic ancillary sources, attenuated states could be
amplified arbitrarily close to a single photon [60]. These techniques will also benefit
from improved single photon detectors: higher detection efficiency will translate
directly to higher amplification success rates. As the NLA is based around the
concept of projection synthesis [92], a potentially interesting direction for future
research could be to use single photon detectors with number–resolution, in order
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to operate on a broader class of non–classical states. Another interesting extension
of the work in Chapters 3 and 4, which has been proposed in Ref. [112], is to
adapt these techniques to the high–fidelity teleportation of non–classical continuous–
variable states. Hybrid techniques, combining elements from discrete and continuous
variable quantum optics, have been successfully used to recently achieve important
milestones in quantum information science [225, 245]. These hybrid techniques show
promise in harnessing the advantages of discrete and continuous variable quantum
optics to overcome the limitations in both [224].

In Chapter 5, a quantum–refereed steering protocol was demonstrated. The viola-
tion of a steering inequality enables one–sided DIQKD, but demonstrating steering
required one of the parties, Bob, to be completely trustworthy. Inspired by work
on semi–quantum games [183], modifications to the standard one–sided DIQKD
procedure have been studied [184, 185]. We derive a modified steering inequality
[186] that accounts for the referee Charlie sending Bob a quantum state, instead
of the usual classical measurement setting. Due to this quantum randomness,
Charlie can distrust both Alice and Bob, and must now only trust his own ability
to accurately prepare a quantum state. Using this quantum–refereed protocol, we
experimentally violated a steering inequality, when Alice and Bob shared a Bell–local
state. The advantage of one–sided DIQKD is that fully symmetric DIQKD imposes
extremely rigorous experimental requirements, that are still at the frontier of what
is technologically possible [74, 75], while one–sided DIQKD is far more feasible [71–
73]. Furthermore, it is the natural solution for nodal networks, such as the quantum
access network architecture recently demonstrated [128]. Our proof–of–principle
demonstration of quantum–refereed steering is a versatile modification of one–sided
DIQKD, requiring one less key assumption, and hereby enhancing communication
security. It thus expands the range of scenarios to which one–sided DIQKD could
be applied.

The final experiment in Chapter 6 involved coherently converting the frequency of
a squeezed vacuum state from 1550 nm to 532 nm. Frequency conversion of non–
classical states is necessary to be able to interface different quantum technologies.
Quantum information is transmitted in optical modes, at the telecommunication fre-
quency regime around 1550 nm, where absorption and scattering is lowest. Quantum
memories, on the other hand, are based on atomic transitions in alkali metals, with
frequencies in the visible spectrum. A conversion efficiency of 89.2% was measured
for a weak (∼ 2 mW) coherent field, using a sum–frequency generation process [200].
In the end, entanglement of 1.4 dB was measured between the squeezed vacuum
at 1550 nm and 532 nm. In previous experiments, frequency conversion of single
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photons from telecommunication to visible wavelengths has been demonstrated with
∼ 5% efficiency [233]. Quantum memories have narrow acceptance bandwidths that
are typically very difficult to match to the spectral bandwidth of single photons,
while still maintaining a bright enough photon source. Recent work has begun to
address this issue [246], but compressing the spectral bandwidth of a single photon
down to the range of quantum memories, or appropriately filtering the sources using
cavities, remains a challenge. Entangled squeezed states, on the other hand, are
often generated in cavity–based sources and consist of many frequency channels,
each of which can be narrowband. Frequency conversion of squeezed states might
be regarded as an attractive method of interfacing non–classical optical states and
quantum memories.

The term quantum information science covers a multitude of sub–fields. A unifying
theme is the precise preparation, control and measurement of quantum systems,
either to probe and elucidate fundamental aspects of quantum theory, or to exploit
these non–classical features in the service of practical applications. The experimen-
tal work in this thesis represents a step towards connecting quantum information
technologies, in order to expand the range of quantum systems that can be studied.
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Appendix A

Effect of State Renormalisation
in NLA Experiments
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Figure A.1: Conceptual diagram of a noiseless linear amplification stage based on the
generalised quantum scissors

Two noiseless linear amplification (NLA) stages are used in Chapter 3 to noiselessly
amplify a qubit, and in Chapter 4 to correct for loss and swap entanglement between
single–mode states. Both experiments use generalised–quantum–scissors–type am-
plifiers [62, 92].

In Figure 4.13 of Chapter 4, the single photon component of the input state is
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relatively large, and a saturation effect is observed at the output of the first NLA
stage. The aim had been to use one NLA stage to equalise the polarisation mode
states of the single photon, and the 〈H|ρout|H〉 and 〈V|ρout|V〉 probabilities are
equalised as desired, but while 〈H|ρin|H〉 is amplified, 〈V|ρin|V〉 is somewhat de–
amplified in the process. This de–amplification effect is not observed in the qubit
amplifier of Chapter 3, even though we studied it in the saturation regime as well.
Here we discuss why it should be expected in Chapter 4 but not in Chapter 3.
Throughout the discussion we will refer to the single NLA stage depicted in Figure
A.1.

We start with the mixed state in the signal mode

ρ = γ0|0〉〈0|+ γH|H〉〈H|+ γV|V〉〈V|+ γHV(|H〉〈V|+ |V〉〈H|) , (A.1)

where the total single photon probability is γ1 = γH + γV. The coherence terms in
the polarisation state are not important in this analysis, and can be neglected in the
following, for convenience. Similarly, the mixed state in the ancilla mode is

ξ = α0|0〉〈0|+ α1|1〉〈1| . (A.2)

In both signal and ancilla modes, the vacuum term dominates: γ0 > γ1, α0 >

α1. Higher order terms can be neglected, and the states are effectively normalised:
γ0 + γ1 ' α0 + α1 ' 1.

As in Chapter 4, polarisation–dependent loss is applied by passing ρ through a
HWP and PPBS. The attenuation factor in the |H〉 mode is denoted by ε, and ρ is
transformed into the input state

ρin = γ0|0〉〈0|+ εγH|H〉〈H|+ γV|V〉〈V| . (A.3)

It is clear that the state in (A.3) is not a normalised state. The re–normalised state
after loss is

ρr
in = γ0|0〉〈0|+ εγH|H〉〈H|+ γV|V〉〈V|

γ0 + εγH + γV
(A.4a)

= γ′0|0〉〈0|+ γ′H|H〉〈H|+ γ′V|V〉〈V| . (A.4b)

Since γ0 + εγH + γV = N1 < 1, the relation between the re–normalised probabilities
and the original probabilities is: γ′0 = γ0/N1 > γ0, γ′H > γH and γ′V > γV.

The |H〉 mode of the state ρr
in is then amplified in the NLA stage by a factor G. The
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output state thus becomes

ρout = γ′0|0〉〈0|+Gγ′H|H〉〈H|+ γ′V|V〉〈V| . (A.5)

The state in (A.5) is once again not a normalised state, and must be re–normalised:

ρr
out = γ′0|0〉〈0|+Gγ′H|H〉〈H|+ γ′V|V〉〈V|

γ′0 +Gγ′H + γ′V
(A.6a)

= γ′′0 |0〉〈0|+ γ′′H|H〉〈H|+ γ′′V|V〉〈V| . (A.6b)

Now γ′0 + Gγ′H + γ′V = N2 > 1, since G > 1. After re–normalisation, the vacuum
term has decreased in the mixture: γ′′0 = γ′0/N2 < γ′0. The |H〉 mode has increased:
γ′′H > γ′H, although it is by a factor less than G. The |V〉mode, on the other hand, has
decreased: γ′′V < γ′V. Overall, the single photon component of the state has increase
(the vacuum has decreased), but the amplification in mode |H〉 has somewhat de-
amplified mode |V〉. This is effect is not observed in the qubit amplifier of Chapter
3, because there both modes are amplified, and the de–amplification of the opposite
modes are cancelled out. The saturation effect in the qubit amplifier is therefore
manifested as a levelling off of the achievable gain, as the output state size approaches
the ancilla efficiency. In the remainder of this Appendix, we used various observed
photon rates in the optical circuit of Chapter 3 to calculate the approximate degree
of de–amplification we should expect in mode |V〉. Our analysis is consistent with
the degree of de–amplification observed in Figure 4.13 of Chapter 4.

The gain G of the NLA stage is set to compensate the loss: G = ε−1. In A.1, the
gain is determined by the ratio of reflected to transmitted intensity, with η as the
reflected intensity coefficient:

G = η

1− η , (A.7)

implying that in the ideal case η = (1− ε)−1 in order for the gain to compensate for
the loss.

One way in which the performance of the optical circuit is characterised in Chapters
3 and 4 is by experimentally comparing the size of the |H〉 and |V〉 modes in ρin

and ρout. As ρout is a heralded state, it is the heralded probabilities of detecting
|H〉 and |V〉 that are compared. To make the comparison with ρin, the heralded
probabilities of detecting modes |H〉 and |V〉 are measured in the input state as
well, with the ancilla photon just acting as an independent trigger. The coincidence
detection rate (C2) between the heralding and output detectors is measured, and
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the heralded probability is the coincidence detection rate normalised by the single
photon detection rate in the heralding detectors. The ratio is

R = C2(D1+2, D3+4)
D1+2

. (A.8)

The heralded probabilities in ρin are measured by sending the ancilla mode directly
to the heralding detectors without any mode splitting, and the signal mode likewise
directly through the NLA stage to the output detectors. The heralded rate of
measuring the |H〉 signal mode is the coincidence detection rate between D4 and
D1+2, while the heralded rate of measuring the |V〉 signal mode is the coincidence
detection rate between D3 and D1+2. The integration time for all detection rates is
one second.

The symbol A1 is used to represent the rate of detected single photons per second
from the ancilla mode A1. Another rate that will be important is the rate of single
photons per second detected in the initial (unattenuated) state ρ, and it is denoted
by the symbol S1. The heralded probabilities (denoted by the subscript h) of |H〉
and |V〉 in the input state are given by the ratios

〈H|ρin|H〉h = C2{〈1|ξ|1〉, 〈H|ρin|H〉}
A1

, (A.9a)

〈V|ρin|V〉h = C2{〈1|ξ|1〉, 〈V|ρin|V〉}
A1

. (A.9b)

The coincidence rates in the numerators of (A.9) can be estimated from the co-
incidence efficiency υ between ρ and A1, and the measured singles rates in these
modes:

υ ≡ C2{〈1|ξ|1〉, 〈1|ρ|1〉}√
S2

1 +A2
1

(A.10)

The single photon subspace of the initial state ρ is in an equal superposition of |H〉
and |V〉, and the loss attenuates |H〉 by the factor ε. This implies:

C2{〈1|ξ|1〉, 〈H|ρin|H〉} = ε C2{〈1|ξ|1〉, 〈1|ρ|1〉}
2 (A.11a)

'
ευ
√
S2

1 +A2
1

2 , (A.11b)
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and

C2{〈1|ξ|1〉, 〈V|ρin|V〉} = C2{〈1|ξ|1〉, 〈1|ρ|1〉}
2 (A.12a)

'
υ
√
S2

1 +A2
1

2 . (A.12b)

The heralded probabilities of |H〉 and |V〉 in the input state are thus

〈H|ρin|H〉h '
ευ
√
S2

1 +A2
1

2A1
(A.13a)

〈V|ρin|V〉h '
υ
√
S2

1 +A2
1

2A1
(A.13b)

To measure ρout, the |H〉mode in ρin is sent to the heralding detectorsD1+2, while the
|V〉 mode is sent to the output detectors D3. Using a HWP, an effective reflectivity
η is set at the central beam splitter, sending ηξ to D4 and transmitting (1 − η)ξ
to D1+2. The single detection rate in D1+2 is approximately (1/2)εS1 + (1− η)A1.
Substituting into (A.8) yields

〈H|ρout|H〉h = C2{D1+2, D4}
D1+2

(A.14a)

' C2{〈H|ρin|H〉, 〈1|ηξ|1〉}
〈H|ρin|H〉+ 〈1|(1− η)ξ|1〉 (A.14b)

'
ευη

√
S2

1 +A2
1

εS1 + 2(1− η)A1
, (A.14c)

and

〈V|ρout|V〉h = C2{D1+2, D3}
D1+2

(A.15a)

' C2{〈V|ρin|V〉, 〈1|(1− η)ξ|1〉}
〈H|ρin|H〉+ 〈1|(1− η)ξ|1〉 (A.15b)

'
υ(1− η)

√
S2

1 +A2
1

εS1 + 2(1− η)A1
. (A.15c)

Estimates of the probabilities 〈H|ρout|H〉h and 〈V|ρout|V〉h are expressed in terms
of a few experimental parameters in (A.14) and (A.15). Substituting the typically
observed rates S1 ' 5.5 · 104 s−1 and A1 ' 8.5 · 104 s−1 with a coincidence efficiency
υ ' 0.175, and assuming a loss factor ε = 1/2 and η = 2/3, the estimated heralded
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probabilities become:

〈H|ρin|H〉h ' 0.05 〈H|ρout|H〉h ' 0.07 (A.16 a,b)

〈V|ρin|V〉h ' 0.10 〈V|ρout|V〉h ' 0.07 (A.16 c,d)

The NLA stage increases |H〉 from a heralded input probability ∼ 0.05 to a heralded
output probability ∼ 0.07. Furthermore, the two polarisations are balanced in ρout

after amplification, as desired. The |V〉 mode, however, has been de–amplified in
the process: 〈V|ρin|V〉h > 〈V|ρout|V〉h. This is the saturation effect presented in
4.13. The ratio of the heralded output to input probability for the |V〉 mode is

〈V|ρout|V〉h
〈V|ρin|V〉h

= 2(1− η)A1
εS1 + 2(1− η)A1

. (A.17)

The saturation effect becomes negligible, or 〈V|ρout|V〉h/〈V|ρin|V〉h → 1, when
εS1 � 2(1 − η)A1. The single photon rate in the ancilla mode must be much
greater than the single photon rate in the signal mode to avoid saturation effects.

In the case of the qubit amplifier presented in Chapter 3, the |V〉 signal mode is
amplified in the first NLA stage while the |H〉mode passes through the stage, and |H〉
is amplified in the second NLA stage while |V〉 pass through. If the input state size is
too large, both polarisations are alternately amplified and de–amplified in the NLA
stages. Saturation in the qubit amplifier therefore manifests itself as asymptotically
approaching a maximum gain factor, determined by the ancilla efficiency relative to
the state size.
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Appendix B

Dynamics of Optical Parametric
Oscillators

↵out
1 , ↵out

2

↵in
1 , ↵in

2

↵in
0

↵out
0

�(2)

Figure B.1: Optical parametric oscillator in a three–mirror ring cavity. See text for details.

We investigate a system consisting of a nonlinear χ(2) material inside a ring cavity, as
shown in Figure B.1. A strong pump field with frequency ω0 couples into the cavity,
and two other fields at frequencies ω1 and ω2 are generated from the interaction
between the pump and the nonlinear material. The single–pass loss parameters in
the cavity are given by γi and µi, associated with loss through the mirror and all
other loss mechanisms (e.g. absorption), respectively.

The equation of motion of a field in an empty cavity was derived in 6.3.3. The
interaction Hamiltonian for a non–degenerate OPO was give in 6.3.4. The dynamics
of an OPO can be approximately described by combining the cavity equation of
motion with the equations of motion from the interaction Hamiltonian. In the
following, all fields will be represented as classical (complex–valued) amplitudes,
which can be decomposed into a mean amplitude and a fluctuation term: α = ᾱ+δα.
We take τ to be the time for all fields to complete a single pass through the cavity.
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The evolution of the fields on that time scale is:

τ α̇0 + γ′0 α0 = χ(2) α1α2 +
√

2γ0 α
in
0 +

√
2µ0 Γin0 (B.1a)

τ α̇1 + γ′1 α1 = −χ(2) α0α
∗
2 +

√
2γ1 α

in
1 +

√
2µ1 Γin1 (B.1b)

τ α̇2 + γ′2 α2 = −χ(2) α0α
∗
1
√

2γ2 α
in
2 +

√
2µ2 Γin2 (B.1c)

The equations (B.1) describe the fields inside the cavity. The final measurements
will be made on the fields at the cavity output, and the condition relating the input,
internal and output fields is:

αouti =
√

2γ αi − αini (i = 0, 1, 2) . (B.2)

We first consider the stationary mean field solutions to (B.1). We assume that there
is only one field αin0 initially coupling into the OPO. The stationary mean field
equations are therefore:

γ′0ᾱ0 = 2χᾱ1ᾱ2 +
√

2γ0ᾱ
in
0 (B.3a)

γ′1ᾱ1 = −2χᾱ0ᾱ2 (B.3b)

γ′2ᾱ2 = −2χᾱ0ᾱ1 (B.3c)

The coefficient γ′i = γi + µi groups together losses due to escaping the cavity and
absorption. Between (B.1) and (B.3), we have made the substitution χ(2) = 2χ for
convenience. The phases in (B.3) can be chosen in the above equations to ensure
that all the mean field amplitudes are real. The solutions to (B.3) are:

ᾱ0 = γ′1γ
′
2

4χ2 (B.4a)

ᾱ1 = γ′0γ
′
2

4χ2 (σ − 1) (B.4b)

ᾱ2 = γ′0γ
′
1

4χ2 (σ − 1) (B.4c)

In the above equations, the pump parameter σ = 2
√

(2χ2γ0)/(γ′20 γ′1γ′2) αin0 . The
pump parameter can be expressed as σ =

√
P/P0, where P = |αin0 |2 is the incoming

pump intensity, and P0 = (γ′20 γ′1γ′2)/(8χ2γ0) is the threshold intensity. If σ > 1, then
the OPO is operating above threshold, and the fundamental fields αout1 and αout2 at
the cavity’s output will approach coherent states. We now look at the dynamics of
the field fluctuation terms. At this point we make the simplifying assumption that
the loss coefficients for the fundamental fields are equal: γ′i = γ′, (i = 1, 2). Keeping
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this in mind, the fluctuation terms in Equation (B.1) become:

τ δα̇0 + γ′0 δα0 = −
√
γ′0γ
′(σ − 1) δα2 −

√
γ′0γ
′(σ − 1) δα1 (B.5a)

+
√

2γ0 δα
in
0 +

√
2µ0 δΓin0 (B.5b)

τ δα̇1 + γ′ δα1 = γ′ δα∗2 +
√
γ′0γ
′(σ − 1) δα0 +

√
2γ δαin1 +

√
2µ Γin1 (B.5c)

τ δα̇2 + γ′ δα2 = γ′ δα∗1 +
√
γ′0γ
′(σ − 1) δα0 +

√
2γ δαin2 +

√
2µ δΓin2 (B.5d)

To further simplify the calculation, we make another assumption that the cavity
finesse for the pump field is much lower than for the fundamental fields: γ′0 � γ′.
This implies that the pump field amplitude evolves on a much longer time scale
than the fundamental fields, and its time derivative in (B.5) can be adiabatically
eliminated:

γ′0 δα0 = −
√
γ′0γ
′(σ − 1) (δα1 + δα2) +

√
2γ0 δα

in
0 +

√
2µ0 δΓin0 . (B.6)

This stationary value for δα0 is substituted into (B.5). The first–order differential
equations for δα1 and δα2 can be converted to algebraic equations using the following
property of the Fourier transform: F [ḟ(t)] = −iωF [f(t)]. We obtain two coupled
equations in the frequency domain:

(γ′σ − iωτ) δα̃1 = γ′ δα̃∗2 + γ′(1− σ) δα̃2 +
√

2γ0γ′(σ − 1)/γ′0 δα̃in0 (B.7a)

+
√

2µ0γ′(σ − 1)/γ′0 δΓ̃in0 +
√

2γ δα̃in1 +
√

2µ δΓ̃in1 (B.7b)

(γ′σ − iωτ) δα̃2 = γ′ δα̃∗1 + γ′(1− σ) δα̃1 +
√

2γ0γ′(σ − 1)/γ′0 δα̃in0 (B.7c)

+
√

2µ0γ′(σ − 1)/γ′0 δΓ̃in0 +
√

2γ δα̃in2 +
√

2µ δΓ̃in2 (B.7d)

The following variables can now be defined:

pi = δαi + δα∗i qi = −i(δαi − δα∗i ) (i = 0, 1, 2) (B.8)

In terms of these new variables:

γ′σ p̃1 + ωτ q̃1 = γ′(2− σ) p̃2 +
√

2γ0γ′(σ − 1)/γ′0 p̃in0 (B.9a)

+
√

2µ0γ′(σ − 1)/γ′0 p̃in
′

0 +
√

2γ p̃in1 +
√

2µ p̃in′1 (B.9b)

γ′σ p̃2 + ωτ q̃2 = γ′(2− σ) p̃1 +
√

2γ0γ′(σ − 1)/γ′0 p̃in0 (B.9c)

+
√

2µ0γ′(σ − 1)/γ′0 p̃in
′

0 +
√

2γ p̃in2 +
√

2µ p̃in′2 (B.9d)

Equation (B.9) shows that the amplitude and phase quadratures of the fundamental
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fields are coupled. In other words, the quantum noise in the generated beams will be
correlated, and it is interesting to look at the fluctuation variance for the sum of the
phase quadratures and the sum of the amplitude quadratures: Q+ = (q1 + q2)/

√
2

and P+ = (p1 + p2)/
√

2. It is also clear from (B.9) that the noise in the cavity
depends directly on the noise of the input fields p̃ini . Assuming the inputs are
all coherent states, their variances can be normalised: V inpi (ω) = 〈|p̃ini |2〉 = 1 and
similarly for V inqi (θ). Recalling the relation between the internal field and the cavity
output (B.2), the noise variance in the sum of quadratures is:

VoutQ+ (ω) = 〈|qout(ω)|2〉 = 1− 4γγ′

ω2τ2 + 4γ′2σ2 (B.10a)

VoutP+ (ω) = 〈|pout(ω)|2〉 = 1 + 4γγ′

ω2τ2 + 4γ′2(σ − 1)2 (B.10b)

The minimum uncertainty for both quadratures is V inqi,pi(ω) = 1, which describes
a coherent state. The variance in the fundamental fields’ amplitude quadrature
decreases below this level, and it is said to be squeezed. To still satisfy the quantum
uncertainty relation, the variance in the complementary phase quadrature must
increase, and this quadrature is said to be anti–squeezed. Equations (B.10) show
the squeezing spectrum in the sum of the Q̂ and P̂ quadratures. Thus, there is
a correlation between the noise of the fundamental fields generated in the non–
degenerate OPO.
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