

NOTE

The electronic version of this thesis has slightly different
page formatting and pagination to the printed version

which was submitted for examination.

Within the electronic version, there are some
discrepancies between the page numbers shown in the
Table of Contents for some Chapter Sections, and the

actual pages on which those Sections begin.

The content of the electronic version is otherwise
identical to that of the submitted printed version.

Remote Intelligent Air Traffic
Control Systems

for Non-controlled Airports

Glenn Brown
DipElecEng(RMIT) BComputing(CQU)

School of Engineering
Faculty of Engineering and Information Technology

Griffith University

Submitted in fulfilment of the requirements of the degree of Master of
Philosophy

29 January 2003

Remote Intelligent Air Traffic Control Systems
for Non-controlled Airports

This work has not previously been submitted for a degree or diploma in any
University. To the best of my knowledge and belief, the thesis contains no

material previously published or written by another person except where due
reference is made in the thesis itself.

...
Glenn Brown
29 January 2003

Abstract

Non-controlled airports are literally that - uncontrolled. Safe separation

is achieved by pilot vigilance. The consensus of reports on incidences at non-

controlled airports generally conclude that pilots cannot rely entirely on vision to

avoid collision and attempts should be made to obtain all available traffic

information to enable a directed traffic search. . Ideally, a system is required

which has the ability to provide advice to all parties to ensure separation minima

is maintained. Provision of a such a system would remove a measure of pressure

from the pilot to allow that person to devote their attention to their prime

responsibility of flying the aircraft To this end, research on use of intelligent

remote advisory systems for non-controlled airports was undertaken with

emphasis on those systems which could minimize human resources and

associated recurring costs, to provide a measure of repeatability and to provide

an acceptable level of safety.

A rule based system was developed and evaluated. The evaluation

showed that use of a rule based system as the basis of an intelligent remote air

traffic control system for non-controlled airports is a viable proposition. In test

scenarios, collision hazards were identified and evasion tactics generated. For a

full operational system, the application of the rules and definition of the aircraft

circuit area may need refining; however, the results are certainly encouraging.

Remote Intelligent Air Traffic Control Systems
For Non-Controlled Airports

Contents

Page
1. Definition of the Problem.

1.1 Introduction 1-1
1.2 Aim 1-4
1.3 Method of Approach 1-5
1.4 Outcomes 1-5
1.5 Scope of the Thesis 1-6

2. Current Operating Procedures
2.1 Introduction 2-1
2.2 See and Avoid Deficiencies 2-2
2.3 Specific Operations 2-6
2.4 Traffic Control Initiatives 2-7
2.5 Overlapping Alerting Systems 2-24
2.6 Possible Areas for Improvement 2.26

3. Review of Agents and Intelligent Systems
3.1 Introduction 3-1
3.2 Application Of Agent Structures To Air Traffic Control 3-2

4. Existing Air Traffic Management and Control Systems and Agent
Structures.

4.1 Introduction 4-1
4.2 Conflict Resolution 4-4
4.3 Conflict Resolution - Classic Methods 4-5
4.4 Conflict Resolution - Neural Dynamic Programming 4-11
4.5 Existing ATM Models 4-20
4.6 Discussion of Existing ATM Models 4-25
4.7 Suggested Model Requirements 4-32

5. Model Requirements and Considerations
5.1 Introduction 5-1
5.2 Aircraft and Aerodrome Dynamic Models 5-1
5.3 Sensor Accuracy and Update Rate 5-17
5.4 Confirmation of Intent 5-32
5.5 “Rules of the Road” 5-37
5.6 Aircraft Equipment 5-37
5.7 Conflict Roles 5-39
5.8 Response Interaction 5-40
5.9 Recommended Model Solutions 5-41

6. Appropriate Collision Avoidance Algorithms
6.1 Introduction 6-1
6.2 Time to Closest Approach (T2CPA) 6-1
6.3 Conflict Reaction Intensity 6-5
6.4 Applicability of T2CPA to Aerodrome Circuit Areas 6-6
6.5 Summary 6-10

7. System Structure
7.1 Design Requirements 7-1
7.2 The Hardware 7-3
7.3 The Intelligence 7-4

8. System Evaluation
8.1 Introduction 8-1
8.2 Model Description 8-2
8.3 Evaluation 8-7

9. Conclusions 9-1

10. References 10-1

Annexes : A. Near Midair Collisions Systems Reports of Non-
Controlled Airports . US Airspace

B. Operations at Non-controlled Aerodromes.
C. Review of Agents
D. Existing ATM Models
E. Sample Detection Module Code
F. Rules Summary
G. Sample Control Module Code
H. Sample Strategic Module Code
I. Advisory Data Packets - Simulation #1
J. Advisory Data Packets - Simulation #2
K. Advisory Data Packets - Simulation #3

List of Figures

Number Title Page

1-1 Aircraft Hidden by Runway Markings 1-3
2-1 Reduced field of Vision with Saccadic

Eye Movement 2-4
2-2 CTAF Designated Area - Benalla Vic 2-8
2-3 Typical TCAS Cockpit Display 2-13
2-4 ADS-B System 2-15
2-5 Optimum PRM Multilateration/ADS-B SetUp 2-20
2-6 Multiple Alerting System Threshold Regions 2-24
4-1 Four Aircraft Cluster 4-6
4-2 Multi Aircraft Cluster 4-7
4-3 Example of Manoeuvre Optimization 4-10
4-4 Genetic Algorithn Principle 4-13
4-5 Structure of a Chromosone 4-16
4-6 Neural Network Structure 4-18
4-7 Basic Conflict Model Requirements 4-26
5-1 Typical Landing Pattern 5-2
5-2 Information Flow Sequence 5-4
5-3 Alert and Protection Zones 5-4
5-4 Visual Circling Approaches 5-5
5-5 Possible approach Paths to Portland Aerodrome 5-6
5-6 Basic Turn Criteria 5-9
5-7 Possible Arrival Trajectories 5-11
5-8 Aircraft Arrival 5-12
5-9 Separation Errors 5-12
5-10 Finals Zones 5-14
5-11 Crosswind Areas 5-14
5-12 Zones 5-15
5-13 Distance vs Probability 5-22
5-14 Lateral Errors 5-24
5-15 Vertical Errors 5-25
5-16 Squitter Emission Distribution 5-28
5-17 Transmitted Altitudes 5-30
5-18 Aircraft Altitude reporting with

Moving Average 5-31
5-19 Aircraft Altitude Reporting with

Exponential Averaging 5-32
5-20 Update Rate Displacements 5-33
5-21 Base Leg Trajectories 5-35
5-22 Runway Operations 5-37
5-23 Aerodrome Circuit Operations 5-38
5-24 Typical ADB-S Setup 5-40
5-25 System Stability 5-41

List of Figures (cont)

Number Title Page

6-1 Geometry for Constant Bearing Method 6-2
6-2 Slow Closure Rates 6-4
6-3 Geometry for Bramson Criteria 6-4
6-4 Model for ACAS III Logic 6-6
6-5 Aircraft Trajectories 6-7
7-1 System Hardware 7-4
7-2 System Intelligence 7-6
8-1 Ftower Graphical User Interface 8-3
8-2 Initial Data Input 8-3
8-3 Aircraft Start Point Data 8-3
8-4 Simulated Aircraft Receiver 8-6
8-5 Simulation #1 8-9
8-6 Simulation #2 8-12
8-7 Simulation #3 8-13

List of Tables

Number Title Page

2-1 GPS Transponder Features 2-12
4-1 Conflict model Capabilities 4-29
5-1 Separation minima 5-8
5-2 Zone Criteria 5-17
5-3 Source and Extent of GPS PSEUDO

Range Error 5-20
5-4 Navigation Sensor Error Statistics for

Point Cook Approaches 5-23
8-1 Simulation #1 Summary 8-10
8-2 Simulation #2 Summary 8-11
8-3 Simulation #3 Summary 8-11

List of Symbols and Acronyms

A/C Aircraft
ABAS Aircraft Based Augmentation System
ACA Aerodrome Circuit Area
ADS Automatic Dependent Surveillance
ADS-A Automatic Dependent Surveillance - Addressed
ADS-B Automatic Dependent Surveillance - Broadcast
AI Artificial Intelligence
AFRU Aerodrome Frequency Response Unit
AGL Above Groud Level
AKL Agents Kernel Language
APRIL Agent Process Interation Language
AMASS Airport Movement Area Safety System
AR augmented reality
ARC2000 Automatic Radar Control Project
ATC Air Traffic Control
ATIDS Airport Target Identification System
ATM Air Traffic Management
ATIS Automated Terminal Information Service
BASI Bureau of Aircraft Safety Investigaton
BDT Banc de Test tool
C A/G Certified Air/Ground Radio Operator
CAA Civil Aviation Authority
CASA Civil Aviation Safety Authority
CATS Complete Air Traffic Simulator
CDTI Cockpit Dipsplay of Traffic Information
CPA Closest Point of Approach
CPDLC Controller Pilot Data Link Communications
CSV comma separated format
CTAF Common Traffic Advisory Frequncy
DATCOM Data communication
DCPC Direct Controller Pilot Communications
EEC Eurocontrol Experimental Center
ETA Estimated time of Arrival
FAA Federal Aviation Authority
FIR Flight Information Region
FMS Flight Management System
ft feet
GA General Aviation (aircraft)
GA Genetic Algorithm
GBAS Ground Based Aujgmentation System
GEO Geostationary Satellite
GNSS Global Navigation Satellite System
GPS Global Positioning Satellite
GUI Graphical User Interface
ICAO International Civil Aviation Organisation
ID Identification

IFR Instrument Flight Rules
KB Knowledge Base
KQLM Knowledge Query Manipulation Language
MA Moving Average
MBZ Mandatory Broadcast Zone
MTOW Maximum take off weight
NARSIM National Aerospace Laboratory ATC Reseach Simulator
NAS National Airspace System
NATS National Air Traffic Services
NM nautical mile
OCA Outside Controlled Airspace
PDA Personal Data Assistants
PN pseudonoise
PRM Precision Radar Monitor
RA Resolution Advisory
RAMS Reorganized ATC Mathematics Simulator
Rate 2 A turn at a constant rate of six degrees per second
RATSG Robust Air Traffic Situation Generator
RMS Root mean squared value
R/T Receiver/Tramitters
SA Selective Availability
SATCOM Satellite commication
SBAS Space Based Augmentation System
SDAT Sector Design Analysis Tool
SIMMOD Simulation Modeller
SSR Seconday Surveillance Radar
T2CPA Time to closest approach
TA Traffic Advisory
TAAATS The Australian Advanced Air Traffic System
TAAM Total Airspace and Airport Modeller
TCAS Traffic Alert and Traffic Avoidance System
TDMA Time Division Multiple Access
TDOA Time Difference to Arrival
TOPAZ Traffic Organizaion and Perturbation Analyzer
UHF Ultra High Frequency
VDB VHF Data Broadcast
VFR Visual Flight Rules
VH Prefix for Australian registered aircraft (e.g. VH TBF)
VHF Very High Frequency

Page 1- 1

SECTION 1

Definition of the Problem

1.1 Introduction

Currently, non-controlled airports are literally that - uncontrolled. Safe

separation is achieved by both pilot vigilance and inter-pilot communication. While

mandatory communication requirements for pilots, together with separation minima,

approach, circuit and departure procedures are detailed and published, the responsibility

to see and avoid is vested in the pilot. However, the basic practice of see and avoid has

severe limitations and deficiencies caused by human physical capabilities (Krause,

1995).

For operations that are reliant on pilot to pilot radio communication for safe

separation, failures of other than radio equipment, ie the human component can cause

safety problems. Examples of incidences, taken from Australian Confidential Incident

Reports (Bureau of Air Safety Australia, 1999), where there were alleged failure to

broadcast are shown below:

.After overflying for a conventional circuit join at

Mareeba strip and making approach calls as required, a

commercial operator landed beside me on the grass edge

without me being aware of his presence. No response to my

joining calls etc. I can only hope that he was aware of my

presence.

.We had called that we were on finals when the other

aircraft called lining up, but it appeared that the pilot ignored

the call

Page 1- 2

.At no time did I hear any broadcast from this aircraft......

.Having made a call taxiing and before lining up for

departure, I was about to apply power on when an aircraft

made a call turning final to land in the opposite direction.

There was no overfly of the field, approach call, or response to

my taxiing call. I could easily have been on rotation when the

approaching call made the turning final call.

While these incidents did not resulted in loss of life, there have been cases

where lives have been lost due to collisions within the aerodrome circuit area. In one

incident, two aircraft collided at an altitude of about 1200 feet as one aircraft was

tracking to enter the crosswind leg at an uncontrolled aerodrome. A subsequent

investigation was unable to determine the flight path of the second aircraft nor was it

able to confirm whether the pilot of the second aircraft made the required radio calls.

There were suggestions that the aircraft may have been tuned to different radio

frequencies at the time that each aircraft made their respective calls and were unable to

hear the respective calls.The collision occurred in fine and clear conditions about one

nautical mile (NM) from the upwind end of the runway and both aircraft were being

flown under Visual Flight Rules (VFR). It appears that neither pilot was aware of the

presence of the other until it was too late.

In a second incident, one aircraft landed on a second which was lining up for

takeoff. The pilot of the landing aircraft did not see any aircraft on the runway or

adjacent to it prior to committing to landing. A reconstruction of the incident revealed

that the aircraft lining up would have been very difficult to see as it was on the

threshold ‘piano keys’ (Figure 1-1). In the first photo, the aircraft is nearly invisible

when on the threshold markings. It does not become visible until the range is much

closer and the aircraft has moved clear of the markings. The radios in both aircraft were

tuned to the correct frequency and the pilot of the landing aircraft had made the

appropriate calls on entering the circuit area. The analysis of this incident showed that

by missing one critical radio broadcast, both pilots were reliant on visual observation to

Page 1- 3

detect each others presence. Without some prior indication of the presence and location,

the chances of sighting each other were reduced.

Figure 1-1. Aircraft Hidden by Runway Markings

These incidences show that see-and-avoid procedures have severe limitations.

These limitations are highlighted in a number of references and summarised in a

Bureau of Aircraft Safety Investigation (Commonwealth Department of Transport and

Regional Services, 1999) as follows:

a. A traffic search in the absence of traffic information is less likely to be

successful than a search where traffic information has been provided

because knowing where to look greatly increases the chance of sighting

the traffic.

b. Field trials conducted ... found that in the absence of a traffic alert, the

probability of sighting threat aircraft is generally low until a short time

before impact. Traffic alerts were found to increase search effectiveness

by a factor of eight. A traffic alert from air traffic control or from a

radio listening watch is likely to be similarly effective.

For comparison, details of near midair collision reports from the US Federal

Aviation Authority are contained in Annex A. The consensus of reports on this subject

generally conclude that "pilots should recognize that they cannot rely entirely on vision

to avoid collisions... they should attempt to obtain all available traffic information,

Page 1- 4

whether from Air Traffic Services or a listening watch to enable them to conduct a

directed traffic search." The greater the number of aircraft and the more varied the

activities, the harder it is for pilots to keep track of other aircraft.

To minimize the probability of communication errors, ideally a third party is

required which has the ability to reinforce communication between all parties and to

provide advice to all parties to ensure separation minima is maintained. Within

controlled airspace, this is provided by a human element; the air traffic controller.

However, for uncontrolled airspace, no such luxury exists.

Provision of such a system in uncontrolled airspace would remove a measure of

pressure from the pilot to allow that person to devote their attention to their primary

responsibility of flying the aircraft. To promote cooperation with all users, any system

to enhance safety should be simple, unobtrusive and have a friendly interface. The

system would need to possess a measure of self-intelligence to recognize problems and

to implement acceptable solutions.

To this end, research on use of intelligent remote advisory systems for non-

controlled airports was undertaken with emphasis on those systems which could

minimize human resources and associated recurring costs, to provide a measure of

repeatability and to provide an acceptable level of safety.

1.2 Aim

The aim of this thesis is to document research undertaken to examine the

feasibility of a remote intelligent air traffic control system for use at uncontrolled

airports by:

a. defining requirements for a such a system, and

b. evaluating the operation of such a system.

Page 1- 5

1.3 Method of Approach

There are four basic stages in my method of approach:

a. A definition of current operational procedures and hardware to define the

playing field.

b. Examination of available data and procedural structures (agents) that can

be employed

c. Examination of existing air traffic control and management models to

determine their applicability

d. Resulting from the research undertaken, examination, suggestion and

definition of system structures that could be used to improve the

situation

1.4 Outcomes

Research was undertaken to examine the feasibility of a remote intelligent air

traffic control system for use at uncontrolled airports. The research culminated in

defining requirements for a such a system and evaluating the operation of such a

system. A form of centralized coordination was found to be necessary. The centralized

organization should be responsible for collecting all available data from each agent

(aircraft), processing this data to determine if conflicts exist and, if so, generating

resolutions ensuring that mandatory space constraints are complied with. The

algorithms required for this could be case-base learning which can then be used to

improve solution quality and to augment or replace runtime communication of conflict

feedback.

The evaluation of the system proposed by this research showed that use of a rule

based system as the basis of an intelligent remote air traffic control system for non-

Page 1- 6

controlled airports is a viable proposition. In test cases, collision hazards were

identified and satisfactory evasion tactics generated.

1.5 Scope of the Thesis

In Section 2, the current operating procedures at non-controlled or non-towered

airports are discussed to define areas to responsibility in providing safe separation and

to examine the equipment in current use for collision avoidance.

In Section 3, agents and intelligent systems are reviewed and the application of

agent structures to air traffic control scenarios are examined.

In Section 4, the characteristics and capabilities of existing air traffic

management and controls systems are detailed and their suitability of their use, in full or

part for non-controlled aerodrome environments are discussed. In this discussion,

conflict resolution and collision avoidance techniques for air traffic control are

examined.

In Section 5, the issues involved in formulating dynamic models of non-

controlled aerodromes are discussed, including sensors, data processing and human

performance.

In Section 6, appropriate collision avoidance algoritms are specified and the

requirement to be able to predict the expected aircraft trajectory discussed.

In Section 7, the design requirements, the hardware and the intelligence of an

effective collision avoidance system are detailed.

In Section 8, the effectiveness of a proposed system is evaluated.

In Section 9, conclusions on the reseach undertaken are drawn.

Page 2-1

SECTION 2

Current Operating Procedures at Non-Controlled Airports

2.1 Introduction

Within the controlled airspace scenario, the responsibility for the safe operation

of an aircraft is a shared task. It involves both pilots and air traffic controllers (ATC).

As with all issues involving aviation safety, the responsibilities and duties of one group

can be interlaced with those of another. Normally, this provides another level of safety

and redundancy, allowing each group to provide a level of quality assurance to the

other. When the aircraft is in flight, many of the duties of pilots and ATC compliment

each other. However, there is a distinct line that can be drawn between the legal and

statutory duties of each group with respect to separation of aircraft.

ATC have a legal responsibility to separate aircraft from one another by issuing

control instructions. The safety aspect of air traffic control is embedded in this

separation responsibility and if proper separation is maintained, the controller's primary

responsibility is maintained. If for some reason a pilot cannot continue to operate within

the control instructions, for example, cannot maintain visual separation as directed

because the aircraft enters cloud, it is the ATC responsibility to advise another course of

action to provide positive separation.

The pilot has the final and ultimate authority for the safe operation of the

aircraft. If the pilot considers that the air traffic control clearance may compromise the

safe operation of the aircraft, the pilot can refuse to accept it and may take any action

deemed necessary, including deviating from the ATC clearance, to ensure safety. While

the pilot has some latitude as to how slowly or quickly they comply with a clearance,

they do not have the authority to modify the clearance boundaries without ATC

authority. Basically, within controlled airspace, pilots and ATC compliment and

enhance one another to ensure safe separation.

Page 2-2

For non-controlled airspace there is no controller and it is the responsibility of

aircrew to provide safe separation between themselves.. An integral part of collision

avoidance for non-controlled airspace is the practice of see and avoid, which on its own

has severe limitations. To ensure some semblance of safety, approved operations are

normally specified in addition to the normal see and avoid requirements. In an attempt

to improve this situation and other situations where traffic detection and collision

avoidance are of concern (including in controlled airspace), several traffic control

initiatives actions have been taken by a number of parties and new items of equipment

have been introduced. These include :

a. provision of automatic radio response units ;

b. use of certified air/ground radio operators ;

c. Traffic Collision Avoidance System ;

d. Automatic Detection Surveillance Systems ; and

e. Precision Radar/Runway Monitor.

There are also a number of patented applications which make use of this and similar

technology. For completeness, these are also summarized below.

2.2 See And Avoid Deficiencies

All mid-air collisions have one thing in common; the inability to see and avoid.

The deficiencies in relying on see and avoid are based solely on human physical

limitations (Krause, 1995) and can be categorized into the following areas:

a. scanning methods and eye physiology,

b. optical illusions and visual phenomena,

Page 2-3

c. recognition and reaction, and

d. visual appearance.

Scanning Methods and Eye Physiology

Eye scanning methods are based on the theory that traffic detection can be made

through a series of eye fixations at different points in space. There are a variety of

techniques but each requires the pilot to break down the scanning area into blocks of

vision, 10 to 15 degrees wide, and for the pilot to sweep each of these blocks in a

sequence and to focus on the instrument panel at some stage during the sweep.

For flying in featureless environments, for example, a uniformly overcast sky or

a cloudless sky, studies by Lockheed and the USAF have shown that the human eye is

unable to focus from a close object (Krause, 1995), like an instrument panel, to infinity

in a featureless sky, then back to the close object again. The eye does not have sufficient

visual stimulus and therefore tends to remain in constant movement, thus eliminating

the ability to focus. As the brain is unable to process a clearly defined image, blurred

vision results. Without a background or line of reference in which an aircraft could

stand out, you are literally staring into space.

For pilots who stare too long at objects or at blocks of sky hoping to increase

their chances of spotting traffic, these same studies have shown that after approximately

60 seconds of looking at a distant object, the focal point of the eye slips to less than

three metres.

Further, the eye cannot physically scan in a smooth rhythm; rather, they jump

from one focal point to another in a series of fixations or saccades. In saccade eye

movement, illustrated in Figure 2.1, the ability to detect small objects is sharply

reduced, leaving large gaps in the distant field of vision. In the figure, the shaded areas

are in the field of vision. The spaces between are visual gaps. During such eye

movement, there is reportedly only a 35 percent chance of detecting another aircraft,

even when the location of the target is known (Krause, 1995).

Page 2-4

Figure 2.1. Reduced Field of Vision with Saccadic Eye Movement

Optical Illusions and Visual Phenomena

The appearance of visual phenomena is very common in the flight environment

and these can easily cause the pilot to become disoriented, with respect to aircraft

attitude, or may give false impression of the location of other aircraft in the vicinity.

Some of these phenomena include:

a. False Reference. This is most commonly observed when in cloud layers

where cloud formations, ceilings or decks have definable lines that are

mistaken for the horizon.

b. Oculogyral. As a pilot experiences relatively fast acceleration and

trumps his head, objects that he may be observing can appear to shift

slightly away from their true position.

c. Oculographic. This is similar to oculogyral and is mainly observed when

flying high performance jet aircraft where viewed object can appear to

rise from their exact positions.

d. Autokinesis. This night time effect occurs when a single stationary light

appears to be moving. With this, it is possible to mistake a stationary

light for a target aircraft.

Field of Vision

Visual Gap

Page 2-5

e. Night Myopia. Night myopia can inhibit ones ability to properly focus

on objects.

f. Flash Blindness. Flash blindness can cause inferior vision for a period

of up to 30 seconds after the event.

Recognition and Reaction

The recognition and reaction time in a see and avoid situation is approximately

10.5 seconds. This time is derived by the following:

a. Time for the eye to see, but not recognize a target - 0.1 seconds ;

b. Time to recognize the target - 1 second ;

c. To realize that there is a threat of collision - 5 seconds ;

d. Time to make the decision on how to avoid it - 4 seconds ; and

c. A muscle reflex time of 0.5 seconds.

Added to this is the aircraft reaction lag time. This is greatly dependent on the aircraft

performance parameters.

There are a number of factors that can extend this period including task

saturation, poor meteorological conditions, stress, fatigue, sleep deprivation, age,

smoking, alcohol and drugs and medication. However, the majority of the time (9

seconds) is attributed to the threat recognition and decision making processes. To

enhance safety, this time needs to be reduced.

Visual Appearance

There is a “Minimum Visual Detection Angle” theory (Krause, 1995).

According to the theory, in a head-on or overtaking encounter, the opposing pilot

Page 2-6

should not be able to detect the threat aircraft until its wingspan fills 12 minutes (or 0.2

degrees) of arc. However, the angle theory can be quite misleading. For an aircraft

with a wingspan of 10 metres, the aircraft should be expected to become visible at a

range of approximately 2860 metres. For aircraft travelling at 120 knots, the time to

collision would be approximately 19 seconds. For a reaction and recognition time of

10.5 seconds, this sounds quite reasonable. When, however, one considers that, at that

distance, the target aircraft wings would be near invisible, the minimum detection range

would be somewhat less than 2860 metres and the time to collision would be reduced

accordingly. Additionally, aircraft flying against a complex background may be unable

to be seen by the scanning pilot if the contrast between the target and background is

below a minimum threshold. The threshold could be illumination dependent or colour

dependent.

2.3 Specified Operations

Currently, within Australia, operations at non-controlled airports are detailed in

an Aeronautical Information Publication produced by Airservices Australia

(Aeronautical Information Publication 1.1). These operations, detailed in Annex B,

cover aspects of communications, selection of circuit direction, separation and height,

taxiing, departure, climb and cruise procedures, arrivals, landing manoeuvres and

separation minima for landing.

Areas around noncontrolled airports are normally designed as either a

Mandatory Broadcast Zone (MBZ) or a Common Traffic Advisory Frequency (CTAF)

zone (Figure 2.2). The frequencies allocated to MBZ and CTAF are those on which

pilots can arrange mutual separation. These frequencies are not usually monitored by

ATC. MBZ procedures apply within 15nm radius of a designated aerodrome up to and

including 5000ft above ground level (AGL) unless otherwise specified. The carriage

and use of a radio is mandatory for operations within an MBZ. CTAF zones are within

5nm of designated aerodromes up to and including 3000ft AGL unless otherwise

specified. The carriage and use of radio is not mandatory, but pilots of radio equipped

aircraft are required to make broadcasts on the CTAF.

Page 2-7

When approaching an aerodrome and before crossing the MBZ or CTAF area

boundary, the pilot must broadcast the following details on the MBZ/CTAF frequency

(as appropriate) ;

a. callsign and aircraft type;

b. position (distance and radial/bearing);

c. level; and

d. intentions.

If there are other aircraft in the area, their presence is usually made known to the

aircraft now entering the area, by corresponding radio broadcasts. This normally results

in copious mental notes and visualisations of area traffic by all concerned to determine

how safe separation can be assured. In the event that the pilot selects the incorrect radio

frequency or simply does not broadcast, the presence of other aircraft in the area

remains an unknown and safe separation problems could emerge.

2.4 Traffic Control Initiatives

Automatic Radio Response Unit

CASA have introduced (Civil Aviation Safety Authority, 1999) rules that

require that a radio communication service be installed at more than 120 regional

airports where regular public transport aircraft carrying more than ten passengers

operate. Most of these services consist of an automatic radio unit that is activated by the

pilot and which confirms that radio contact has been made with the correct aerodrome.

Page 2-8

Figure 2.2 CTAF Designated Area - Benalla, Victoria
(AirServices Australia 1998)

The typical response, or beep-back, unit is designed to increase safety as well as

to provide a useful radio test technique. When a transmission is initially received by the

unit, it will broadcast a recorded message response (e.g. "Kempsey CTAF"). Thereafter

it will respond with beeps at five minute intervals. This indicates to the pilot that the

radio is switched to the correct MBZ/CTAF frequency and that the transmitter, receiver,

headset squelch etc are working.

Additionally, the units can be used to activate runway lighting by signals

downloaded on the MBZ/CTAF frequency. If the applicable mode is activated and

darkness is sensed by an ambient light sensor, runway lighting will be activated. The

unit will report by voice on the MBZ/CTAF frequency that the lights have been

activated and are working. The wind sock light will start flashing 20 minutes after

runway light activation and will flash at the rate of once per second for the next final 10

minutes. A voice signal is also transmitted to indicate that the lights will be

extinguished in 10 minutes

CTAF
Boundary

Page 2-9

Certified Air/Ground Radio Operators

Airservices Australia in conjunction with the CASA set up a trial of using radio

operators at uncontrolled airports (AirServices Australia 1999). The initial trial utilized

a certified air/ground (C A/G) operator at Ayers Rock airport to pass on weather,

aerodrome and traffic information to aircraft using the airport. The elements of the

service are:

a. Frequency Confirmation. Voice response by the C A/G Radio

operator (or beepback by an Aerodrome Frequency Response Unit

(AFRU) when the operator is not present) confirms radio operation and

frequency selection.

b. Air Traffic Information. The C A/G operator provides traffic

information of known and relevant aircraft operating in the terminal

airspace which have advised their presence on the aerodrome frequency,

or which has otherwise been observed by the operator. Separation is not

arranged by the operator; this is the responsibility of the pilots in

normal alerted see and avoid separation.

c Aerodrome Weather Information. The C A/G operator provides

prevailing weather at the aerodrome in terms of wind speed and

direction, runway favoured by the wind, runway surface conditions,

QNH, temperature, and estimated cloud base and visibility.

d. Emergency Services Alerting. The C A/G operator provides a telephone

contact to civil services for emergency alerting.

e. Other Advice. On request by a pilot, or when the operator considers it

prudent, a course of action may be suggested by the operator.

Page 2-10

The service is advisory and the success of the service is reliant on the acceptance of

and participation by pilots . The trial was well received and permanent C A/G radio

services were established at selected airports.

Pilots are encouraged to make additional broadcasts to assist in keeping the C

A/G Radio Operator's information updated. The C A/G Operator will respond to the

first broadcast an aircraft makes when arriving, departing or overflying the MBZ.

Thereafter, the operator will not normally respond to aircraft broadcasts unless a pilot

calls the service.

A similar alternative system has been suggested from within the air service

industry which would require mandatory full reporting to a flight service officer by all

aircraft within 48km of an aerodrome. However, use of this system relies on the

availabliltiy of a human operator and the resultant ongoing expense.

Traffic Collision Avoidance System

TCAS is the acronym for Traffic alert and Collision Avoidance System. In the

basic system, the TCAS equipment in the aircraft interrogates transponders on other

aircraft in the vicinity. By interrogation of replies from these transponders, the TCAS

equipment calculates whether the other aircraft present potential collision threats and

provides appropriate display indications to assure separation. There are currently three

‘models’ of transponders; Modes A, C and S and the basic capabilities of each are listed

in Table 2.1.

There are two versions of TCAS - TCAS I and TCAS II. Both systems provide a

map like display of surrounding traffic (Figure 2.3). Both provide a traffic advisory

(TA) whenever other aircraft come close. TCAS II has an additional function called a

resolution advisory (RA) to command a manoeuvre, such as climb or descend, to

resolve the conflict.

The system is based on the time-to-go to the closest point of approach (CPA).

When an aircraft approaches to 6NM horizontally and ± 1200 feet vertically, the TCAS

takes note of the intruder aircraft but does not consider it a threat. If the intruder reaches

Page 2-11

an outer protected volume (about 40 seconds to CPA), a TA is issued. If the intruder

crosses the boundary of the inner protected volume (about 25 seconds from CPA), a RA

is displayed. This advises the pilot to change or monitor his vertical speed to increase

or maintain separation. Displayed traffic and resolution advisories are supplemented by

synthetic vocal messages generated by the TCAS computer. A message is issued at the

start of the TA, at the start of the RA, each time the RA changes and finally when the

conflict is cleared.

The TCAS II comprises the following components:

a. The Mode S/TCAS control panel, for all TCAS elements controls.

b. The Mode S Transponder, for air-to-air data exchange.

c. The TCAS computer unit, for surveillance, tracking threat detection and

resolution, and advisory generation.

d. TCAS displays, for TA and RA either combined in other displays or in

the vertical speed indicator.

Using surveillance reports each second, the TCAS logic tracks the slant range

and closing speed of each target, to determine the time in seconds to CPA. If the target

is equipped with an altitude-coding transponder, the TCAS logic also tracks the altitude

reports to project the altitude of the target at the CPA.

In a TCAS/TCAS encounter, each aircraft transmits interrogations to the other

via the Mode S link to ensure the selection of complimentary RA.

TCAS detection logic uses range and altitude tests to qualify an intruder as a

threat. The criteria for a threat is that it is either already close enough in range or

altitude, or that it is converging in range or altitude with the predicted time to minimum

range or co-altitude being less then a designated time threshold. Two basic requirements

for threat declaration are that the intruder must be airborne and that issuance of RA's

must not be inhibited. Transition to the threat state from any other intruder status state

occurs when conditions described by the Threat-Condition macro are satisfied.

Page 2-12

Mode A: Transmit Identification, 4096 selectable identifier addresses
Mode C: Transmit Altitude
Mode S: 24 bit fixed identifier address (call sign)

Mark 3 ARINC 718. Requires separate data processor (ADLP)

Mark ARlNC 718A · additional functionalities for ADS-B
4 (proposed) with · Integral processing of DAP Level 4

· enhanced functionality,
· extended squitter (1 l 2bit)

(Different altitude format not
compatible with Mark 3)

no datalink capability Basic Functionality
Level (DAP=Downlink · Automatic reporting of Flight ID

1 Aircraft Parameter) . Transponder Capability Report
. Altitude reporting (in 25ft intervals if

available on the aircraft);
Standard length . Flight Status (airborne /on the ground)
Datalink

Level Comm Protocol A Enhanced Functionality (Basic Functionality
2: and B plus)

(Minimum
requirement for
International Ops) . Magnetic Heading;

. Speed (IAS/TAS/Mach No);

. Rol1 Angle;

. Track Angle Rate
Extended length . Vertical Rate (barometric rate or,

Level Datalink preferably, baro-inertial);
3: Comm Protocol A B · True Track Angle;

and C · Ground Speed
(not used)

Extended Functionality (Enhanced
Extended length Functionality plus)

Level Additional DAPs that include those relating to
4: Comm Protocol A B aircraft intention are currently under evaluation

C and D for future use. These include:
· Selected Flight Level / Altitude;

Additional . Selected Magnetic Heading;
· Selected Track (Previously Selected

Level functionalities Course);
5: for ADS-B

communications . Selected Indicated AirSpeed/Mach Number

Table 2.1 GPS Transponder Features

.

TCAS II uses both audio and visual techniques to supply information (Bergault,

nodate). This is from a 'heads-down' map display in the instrument panel and requires

the pilot to then look upwards in search of the target. This is inefficient.

Page 2-13

Figure 2.3. Typical TCAS Cockpit Display

A head-up auditory display has been assessed. This processes the aural alert so

that its perceived direction comes from the relative direction of the intruding traffic.

Tests showed a significant difference in target acquisition time between the two,

favouring the 3-D audio TCAS condition by 500 ms.

Currently, within CASA, the consideration of TCAS in the design of airspace

rules and procedures has been excluded. This exclusion takes cognizance of the

International Civil Aviation Organisation (ICAO) recommendation (ICA0, 1997) which

states that :

"the prevention of collisions, the establishment of appropriate

separation, and the information which might be provided in

relation to conflicting traffic and to possible avoiding action

shall conform with the normal ATS procedures and shall

exclude consideration of aircraft capabilities dependent on

ACAS equipment"

Page 2-14

There are currently limitations (Civil Aviation Safety Authority, 2000a) to the

TCAS. Approximately 30 percent of VH registered GA aircraft that operate in non-

controlled airports are not equipped with transponders. Considering this, there is about a

10 percent possibility that an aircraft in non-controlled airspace may not be detected by

TCAS. This may be due to an aircraft not having a transponder, the transponder not

being serviceable or not being turned on, at any one time.

Automatic Dependent Surveillance - Broadcast

There are two automatic dependent surveillance (ADS) systems. The first is the

ADS-Addressed (ADS-A) system (Anon, 2000) which sends datalink information from

the aircraft flight management system directly to ATC or the aircraft operator on

demand. The information available includes:

a. Basic position, altitude and speed.

b. Flight identification (flight number).

c. Predicted route group for the next and next+1, latitude and longitude,

ETA and altitude.

d. Ground speed, track validity, true track and vertical speed.

e. Mach speed, vertical rate, heading validity ad true heading.

f. Wind speed, wind validity, wind direction, and temperature.

The information can be transmitted by satellite, via the transponder or by VHF

radio (if in range). ADS-A is unlike the real-time radar environment because ADS

datalink reports are normally sent out in set intervals. In an oceanic environment, ADS

updates are required every 15 to 30 minutes.

The Automatic Dependent Surveillance - Broadcast (ADS-B) system (Thornton,

no date) relies on the satellite based global positioning system. Each ADS-B equipped

Page 2-15

aircraft broadcasts its precise position in space via a digital datalink along with other

data, including airspeed, altitude and whether the aircraft is turning, climbing or

descending. This provides anyone with ADS-B equipment a more accurate depiction of

air traffic than radar can provide. Additionally, ADS-B works at low altitudes and on

the ground. It can therefore be used to monitor traffic on taxiways and runways of an

airport. It is also effective in remote areas or in mountainous terrain where there is no

radar or limited coverage (Figure 2.4).

ADS-B provides the same information to pilots in aircraft cockpits and to

ground controllers so that they can both see the same data. In late 1999, conflict-

detection and resolution software was to be added to the system.

Since ADS-B uses digital technology common to most home computers, it can

be scaled down for use in smaller, general aviation aircraft. ADS-B provides an

opportunity for smaller single-engine or twin-engine aircraft to have cockpit displays

similar to the ones installed in airliners. Accessibility to smaller aircraft gives ADS-B

the potential to dramatically improve aviation safety in skies that are becoming

increasingly crowded.

ADS-B datalinks potentially can be used to display weather radar data or flight

clearances in the cockpits of general aviation aircraft. Using affordable multi-function

displays, smaller aircraft for the first time will have practical access to weather radar

displays, airborne traffic and other linked data.

Page 2-16

Figure 2.4. ADS-B System

Applications of ADS-B include (Federal Aviation Authority, no date) :

a. Air-to-Air Cockpit Display of Traffic Information (CDTI) is the basic

technology which will enable the pilot to 'electronically see and avoid

other aircraft in a largely passive mode. Each aircraft automatically

broadcasts its position to all equipped aircraft in the surrounding area

and this information is visually depicted in a cockpit display.

Independent of ground based radar, CDTI will greatly enhance a pilots

situational awareness and lead to safer and more efficient airspace

operations. ADS-B will also enhance traffic collision avoidance systems

in the future.

b. Air-to-Ground ADS-B provides surveillance data to controllers or

aircraft operations facilities on the ground. An aircraft in flight

broadcasts its position, altitude, identification and other pertinent data to

ground stations that relay this data to ATC or aircraft operations

facilities. This information is used to effectively establish surveillance in

remote locations or extend or replace current surveillance capabilities.

c. Ground-to-Ground ADS-B provides accurate position and identification

of aircraft and other equipped vehicles for airport surface surveillance.

One technique of ADS-B is known as "Mode S extended squitter" also referred

to as GPS squitter. This uses the standard surveillance frequency of 1090 MHz for the

position broadcast. Each aircraft broadcasts (or squitters) its 3D position (latitude,

longitude and barometric altitude) and identification twice per second using a modified

Mode S transponder. The transponder obtains position information from a source of

global navigation, such as a GPS.

The basic GPS guarantees an accuracy of up to 300 metres 99 percent of the

time (Thomas, 2000). This is considered close enough for enroute usage through to non-

precision approaches, but not for precision approaches that require accurate readings to

Page 2-17

about 15 metres. There are GPS enhancement schemes currently underway in North

America, Europe and Australia. These fall into three general categories:

a. Aircraft Based Augmentation Systems (ABAS) which combines GPS

with other airborne navigation systems such as Inertia Navigation

Systems and is already available through Boeing’s FANS-1 package.

FANS-1/A data link operations provide Direct Controller Pilot

Communications (DCPC) and surveillance capabilities beyond the range

of line of sight radar and VHF voice communications. Message are

transferred by VHF and satellite data links.

b. Space Based Augmentation Systems (SBAS) which use ground monitors

linked to a geostationary satellite to provide users with GPS correction

signals.

c. Ground Based Augmentation System (GBAS) which involves the

establishment of a ground reference station at airports to broadcast

satellite ranging corrections via a VHF link to aircraft within a 25-30

nautical mile radius.

In the US, developmental work is well underway to use Mode S as the basis for

transmitting aircraft derived, highly accurate Global Navigation Satellite System

(GNSS) position and velocity information thus permitting interoperability between the

classical rotating SSRs and the new ADS-B technology. Other technologies, including

self organizing VHF based networks and more capable broadcast technologies that

would support other broadcast applications such as ground uplinked weather and traffic

information being investigated.

Australia has focused on the development of its own style of system, the

Ground-based Regional augmentation System (GRAS) (Craige, no date). This uses a

widely distributed ground reference system similar to the SBAS which is then

distributed on a local VHF network. This is SBAS-like in that it uses a distributed

network of reference stations for monitoring GPS, and a central processing facility for

computing GPS integrity and differential correction information. But instead of

Page 2-18

transmitting this information to users via dedicated geostationary satellites (GEOs),

GRAS delivers SBAS message data to a network of terrestrial stations for a local check

and reformatting. Each site emits a GBAS-like, VHF Data Broadcast (VDB) signal in a

TDMA-managed time slot. Users can employ a GPS/GBAS-capable receiver to obtain

GPS augmentation data for both enroute and terminal area approach/departure

operations depending on the VHF network coverage. The GRAS approach is beneficial

in Australia where a GEO satellite is either not available or too costly to broadcast

SBAS data. GRAS also allows for Sovereignty control while still providing unified

corrections and integrity for enroute capability.

Further extensions of the ADS-B, is The Australian Advanced Air Traffic

System (TAAATS), Controller Pilot Data Link Communications (CPDLC) and

Automatic Dependent Surveillance (ADS) data link operations which will be used to

provide services to FANS-1/A equipped aircraft in the airspace west of 120 degrees east

(AirServices Australia, 2000).

CPDLC supports:

a. emergency alerting,

b. the uplink of ATC clearances and instructions,

c. the downlink of position reports and clearance requests, and

d. free text as a supplement to pre-formatted message elements.

ADS supports automatic reporting by the aircraft’s Flight Management System

(FMS) of aircraft position and intent information in accordance with the parameters

established by the ground system. ADS Periodic and Event contracts are established

automatically on receipt of a logon. The default Periodic-reporting rate is 30 minutes.

When the Lateral Deviation event of 5NM either side of track is exceeded or the

Altitude Deviation Event of 200 feet above or below the cleared flight level is

Page 2-19

exceeded, TAAATS automatically increases the periodic reporting rate to 5 minutes

while the aircraft is outside tolerance.

Following an initial CPDLC position report on first contact, ADS reporting will

fulfil normal position reporting requirements within the flight information region (FIR).

ADS is used within the FIR to establish and monitor Oceanic Radio Navigation

distance standards between ADS reporting aircraft. Normal procedural standards will be

applied between ADS and non-ADS aircraft.

ADS contracts are terminated automatically after the aircraft leaves the FIR.

When an aircraft with established ADS contracts is interrogated by radar, the Event

contracts are automatically cancelled and the Periodic contract is reset to the reporting

rate of 60 minutes to prevent unnecessary reports being sent.

Precision Radar Monitor

The Precision Radar Monitor (PRM) provides air traffic control (ATC) with a

display of aircraft arrivals along an extended approach centreline (Evers, 1997). It was

designed to allow more planes to land in bad weather. Air Services Australia estimate

(Harvey 2000) that bad weather delays could be reduced by 80 percent. Currently, at

Sydney Airport, 46-50 aircraft can be moved per hour in absolutely perfect weather. In

bad weather, this figure drops to 30. Additionally, currently Sydney's parallel runway's

can be used to land planes simultaneously only when the weather is fine. However,

with PRM, simultaneous operation on the parallel runways are possible in adverse

conditions.

The initial PRM system, the E-scan system, presented a high cost sensor system.

As a result, the US FAA evaluated alternative lower-cost surveillance techniques

including the "Multilateration/ADS-B" system (Evers, 1997). This system, depicted in

Figure 2.5, uses transponder Mode S and Mode A/C interrogations at multiple lateral

receivers to locate and identify aircraft. The key element of the system is the

receive/transmitters (R/T) which each contain a 1090MHz receiver, a 1030MHz

interrogator and hardware for time-stamping. Multilateration is a technique for

positioning an object by receiving signals from it at several locations.

Page 2-20

Mode S multilateration uses the R/T's to time stamp and decode the transponder

squitters. The R/T then sends data to the Master Work station for position processing.

Each time data is received from three R/T's, an aircraft’s lateral position can be

ascertained and its Time Difference to Arrival (TDOA) computed. This provides a

back-up in the event of a GPS avionics failure. The aircraft altitude is obtained by Mode

S interrogations. Mode A/C multilateration also uses TDOA techniques with the R/T's

interrogating the aircraft Mode A/C transponders to gain responses. The system

interfaces with either the Airport Target Identification system (ATIDS) or the Airport

Movement Area Safety System (AMASS) to obtain information on aircraft near the

surface.

Mode S Reliable coverage was demonstrated out to 10-15nm from the runway

and down to an altitude approximately 75 feet above the runway. Runway coverage was

demonstrated using the ATIDS. The Mode S data update rate was monitored and an

update rate at best was an average of 0.9 seconds with a 97 percent probability of

update within 2 seconds was recorded. The RMS cross-track position accuracy was

found to be ± 5.2 metres and the RMS along-track ± 7.6 metres. Accuracy was found to

be affected by positioning of the R/T units.

Figure 2.5 Optimum PRM Multilateration/ADS-B Setup

Page 2-21

Mode C The accuracy results for aircraft with Mode A/C transponders were

similar to the Mode S results. The RMS crosstrack and along-track accuracy were found

to be ± 8.8 and ± 5.8 metres respectively. An average update rate of 2.6 seconds was

recorded with a 58 percent probability of update every two seconds. It was thought that

the update rate could be improved by refining the transponder whisper-shout parameters

(ie signal levels).

False Targets No false targets were detected or tracked during the evaluation.

ADS-B Operation The ability of the system to determine ADS-B target position

by multilateration was demonstrated. The test indicated that two or more 1090 MHz

ADS-B receivers may be required to perform PRM surveillance in an environment

where all aircraft are 1090 ADS-B equipped and multilateration is not implemented.

ADS-B performance for surface aircraft dropped to approximately 50-70 percent due to

multipath interference from building/structure reflections. Such reflections did not

affect monitoring aircraft to the threshold.

Other Patented Applications

Traffic Alert and Collision Avoidance System (Rich et al, 1997). The airspace is

divided into a grid of volume elements each which has a discreet pseudonoise (PN)

code. A GPS system is used to determine the vehicles position within one of the

volume elements. A TCAS transmitter on the vehicle generates a collision avoidance

signal by modulating a carrier signal with the PN code. The signal is transmitted on a

common comms channel using time-multiplexing with psuedorandom sequencing. Each

vehicle within its volume element and the immediate elements tracks collision

avoidance messages. Based on calculated vehicle paths, impending collision or

avoidance instructions are provided to the operator of the receiving vehicle.

Aircraft Position and Monitoring System (Kuroda, 1995). An aircraft

subsystem acquires and monitors data on the aircraft position, ID and FOM. This data is

transmitted to a ground station via satellite (SATCOM) or data (DATCOM)

communication lines. On the ground, a tracking processing unit collates the input data

Page 2-22

with track data in a track file prepared on the basis of flight schedule data of the aircraft.

The existing track data is updated or a new track file is prepared. A display device

shows the position and ID data of the aircraft together with the track processing

determinations.

GPS Collision Avoidance System (Tognazzini, 1999). Each vehicle is equipped

with a GPS and broadcasts current location information and receives and displays

location information from other vehicles. For vehicles not equipped with GPS and

transceivers, information is taken from common ground equipment.

Portable Personal Navigation Tracking System (Sprague et al, 1995. A

data/voice modem periodically keys-up a radio transmitter and transmits a packet of

information containing user position and velocity obtainer through a GPS and adds a

user ID code and time tag. Incoming message packets are used to provide member

absolute positions and velocities. This information is stored by user ID as goal or

waypoint equivalents allowing distance-to-goal, ETA and velocity made good estimates

for a target track screen in the respective GPS receiver.

GPS Vehicle Collision Avoidance Warning and Control (Lemelson et al , 1999).

A vehicle’s tracking position on a pathway is determined with centimetre accuracy

using GPS signals, DGPS auxiliary range correction signals and pseudolite carrier phase

ambiguity resolution signals from a fixed known earth based station. Supplemental

mechanisms (video, radar, lidar, laser, optical scanners) are used for detection. The data

is processed and analysed in neural networks to identify, rank and evaluate

collision/hazard objects. A fuzzy logic associative memory generates control systems to

avoid each collision hazard.

Universal Dynamic Navigation, surveillance, emergency location and collision

avoidance system and method (Fraughton et al 19992). Each aircraft determines its

own position using an existing position determining system. Each craft then transmits

its own position data on a tregular basis. This can be received by other craft to

determine collision hazards. Preferably, a visual indication of surrounding traffic is

given.

Page 2-23

QuickTrak Transponder System (Anon, 2000). Location and security status are

transmitted together as a low power spread-spectrum modulated radio signal in the

lower part of the UHF radio frequency band. This signal is intercepted and decoded at a

number of remote receiver sites and relayed to a central processing site where position

calculations are carried out and information processed for further action. The spread

spectrum scheme provides the use of multiple channels for the simultaneous

transmission of many signals; eg tracking and status.. The position accuracy is

reportedly 5 metres in an open transmission area and about 30 metres in a built up area.

NAVMAN GPS System (Anon, no date). The NAVMAN GPS system is an

add-on application for handhelds, laptops or PDA’s. The system converts the handheld

in to a compact, rugged and highly integrated land navigation instrument. The

HandMap software displays its maps down to street level and shows many other points

of interest. The system receives its information from the GPS satellite network via a

low-power GPS receiver that clips to the back of the handheld. Custom maps can be

loaded into the handheld using the MapToGo PC software provided with the package.

The heart of the NAVMAN GPS system is the GPS receiver. The design of the receiver

is tailored for use on platforms but the results are always the same in terms of satellite

acquisition and data processing.

GPS Based Augmented Reality Collision Avoidance System (Eschenbach,

2000). The proposed system comprises a global positioning system (GPS) based

augmented reality (AR) aircraft collision avoidance system. It includes a GPS receiver,

for receiving GPS signals and determining a present position using the GPS signals, and

an automatic dependent surveillance (ADS-B) receiver, for receiving an ADS-B signal

from an aircraft. It also includes an AR visor coupled to both the GPS receiver and the

ADS-B receiver. Using the aircraft present position and the ADS-B signal, the AR visor

determines a three dimensional bearing to the target aircraft. The AR visor is adapted to

be worn by a user and is designed to display symbology indicating the three

dimensional bearing to the target.

Page 2-24

2.5 Overlapping Alerting Systems

Prioritization

The growth of automation on the flight deck and at ATC facilities can result in

overlap between independent alerting systems (as viewed by a single operator) (Kuchar,

1998). One example is the specialized PRM system for closely-spaced parallel

approaches, with conventional TCAS monitoring other traffic in the area. In cases

where two or more alerting systems have overlapping responsibility for a certain hazard

category, there are issues of prioritization that should be resolved regarding system

design and evaluation. The systems can operate simultaneously, one system can be

inhibited under certain circumstances or both systems could be partitioned:

Simultaneous Operation

In simultaneous operation, both alerting systems operate at the same time while

monitoring the same hazard. This provides redundancy in threat detection but can cause

conflicts related to mismatches in the timing or conditions under which alerts occur

from each system. For example, if one system indicates that there is a hazard while the

other system does not, the operator needs to have some basis with which to decide

which system to believe. This can be illustrated by the use of a space-state diagram

shown in Figure 2.6. System A issues an alert when a state variable, x, exceeds some

 System B Alerts A & B Both Alert
y

Threshold

Neither System Alerts System A Alerts

x Threshold ®

Figure 2.6. Multiple Alerting System Threshold Regions

Page 2-25

value; while System B uses a different sensor to monitor a second variable, y, and issue

an alert if y exceeds some value. Either system may alert first. Of particular concern is a

situation where one system increases its hazard level at the same time that the second

system downgrades its hazard level. The pilot would need to ascertain which trend was

correct.

Complete Inhibition

This method is likely where specialized alerting systems are required for

different phases of flight. Inhibition could be incorporated in a system concept in which

TCAS is entirely inhibited once an aerodrome approach begins to prevent nuisance

alerts. The transition could be automatic or designed to act on command.

Complete inhibition reduces the potential for simultaneous alerts and increases

effective performance in terms of nuisance alerts and safety level. However, the

transition between the two alerts must be unambiguous and not produce any reduction

in the threat level.

Partitioned Operation

In partitioned operation, both systems continue to operate with each specific

hazard in the environment tracked by only one of the two systems. This method has

been proposed for closely-spaced parallel approaches with a specialized alerting system

monitoring the relevant parallel traffic, while TCAS monitors other traffic in the area.

This mode offers better hazard management and increased safety levels. However, it

places burdens on the design to provide hysterisis and to provide indicators to the

operator to advise which hazard is being monitored by which system.

2.6 Possible Areas for Improvement

The foregoing review has indicated several deficiences in current collision

avoidance practices. Specifically:

Page 2-26

a. Due to limitations in the human eye, the probability of a pilot to visually

detect another aircraft can be as low as 35 percent even when the

location of the target aircraft is known.

b. When the pilot does detect the aircraft, the recognition and reaction time

to avoid collision can be in excess of 10 seconds.

c.. Those practices which require direct pilot-to-pilot communication can

introduce undue distraction to the pilot that can adversely affect his

primary role; to fly the aircraft.

d. A number of initiatives have been instigated to enhance collision

avoidance with new research being directed mainly on the TCAS and

ADS-B systems. With these systems each aircraft broadcasts its

identification and postion up to twice per second and this data is used to

automatically produce collision hazard and avoidance advisories.

However, the ADS-B and TCAS systems are intended for “free flight”
scenarios but have capabilities for other phases of fight.

e. The Extension of the ADS-B and TCAS technology to control aircraft

separation in MBZ and CTAF zones is an avenue to dramatically

improve aviation safety.

Page 3-1

SECTION 3

Review of Agents and Intelligent Systems

3.1 Introduction

From earliest times, Artificial Intelligence (AI) practitioners have been

concerned with the construction of machine and/or computer systems for the application

of their evolving theories and methods on knowledge processing and intelligent

reasoning. AI is difficult to define as it covers a wide scope. Winston (Winston, 1997)

suggests that:

Artificial intelligence is the study of ideas which enable computers to do the

things that make people seem intelligent... to make computers more useful and

to understand the principle which makes intelligence possible.

Closely associated with the design of systems has been a notion of “agents” to

undertake the system tasks. Agents can come in many physical guises: for example,

those that inhabit the physical world, for example, in a factory, are called robots; those

that inhabit computer networks are normally referred to as softbots; those that perform

specific tasks are sometimes called taskbots; and autonomous agents refer typically to

mobile agents or robots which operate in dynamic and uncertain environments. Agents

can play many roles and, due to the multiplicity of roles that agents can play, there is

now a proliferation of adjectives which precede the word 'agent', for example, search

agents, report agents, presentation agents, navigation agents, role-playing agents,

management agents, search and retrieval agents, domain-specific agents, development

agents, analysis and design agents, testing agents, packaging agents and help agents.

At the core of AI are aspects of representation and reasoning, with the practical

applications requiring the use of techniques in perception, problem solving and

communications (Georgeff, 1991). Application development has shown that these

Page 3-2

requirements can be successfully handled by agents, although there is considerable

ongoing research in this domain. Agents are reactive, internally motivated, entities

within a system, and their relationships form the system architecture. While there may

be no universally accepted definition of an agent, it can essentially be described as

something that perceives and acts (Russell et al, no date). This of course gives a wide

scope for the form and capabilities that an agent possesses and facilitates the

development of complex, distributed and fault tolerant systems. A review of agents,

their features and their structure is contained at Annex C.

By its very nature, a conventional air traffic management complex is a multi-

agent system and achieving any kind of effective co-operation is difficult for a number

of reasons (Anon, no date):

a. Each agents internal control system is based on its own local

environment and any decision that it may make may lead to

inappropriate conflicting actions with other agents.

b. Each agent needs to be aware of what results it should transmit to other

agents.

c. Each agent needs to ascertain what information it needs from other

agents.

3.2 Application Of Agent Structures To Air Traffic Control

The prime component of any air traffic management system is that concerning

conflict resolution. Tomlin et al (no date) use conflict resolution algorithms which are

in the spirit of model checking but with use of control theoretic (deductive) techniques

to calculate the reachable region for hybrid systems with general nonlinear dynamics.

Within its safe region of operation, the aircraft may design its trajectory to optimize

over other criteria, such as fuel efficiency or minimal deviation from route. At the

boundary of its safe region, the aircraft must apply the particular control which keeps it

out of the unsafe region.

Page 3-3

Each aircraft is equipped with a hierarchical planning and control algorithm to

resolve potential collision conflicts with other aircraft. Each aircraft follows a nominal

flight path from source aircraft to destination. This nominal path is calculated off line in

consultation with ATC and is designed to be time-optimal and conflict-free. However,

once the aircraft is airborne and outside controlled airspace (OCA), events may cause

conflicts with other aircraft and force the aircraft to deviate from this nominal route. In

the current system, these deviations are calculated by the central ATC and each aircraft

must obtain a clearance from ATC before altering its course. In their proposed system,

the aircraft may plan its own deviations without consulting ATC. This semi-autonomy

is enabled by on-board conflict resolution algorithms, which allows the aircraft to

coordinate among each other.

The models were inspired by research on the control of hierarchical hybrid

systems. Because of the co-ordination and control required, the number of control

decisions to be made and the complexity of the resulting conditions, a hierarchical

system was proposed.

A hybrid control system is a finite state automaton interacting with a set of

control systems (ie the relative aircraft configuration dynamics residing in each flight).

The interaction and information exchange of all aircraft involved in the manoeuvre

results in a multi-agent hybrid control system. There are several approaches to hybrid

system modelling, verification and controller design:

a. The computer science approach (Alur-Dill, 1994) is to extend models of

finite state automata to timed automata.

b. Linear hybrid automata (Alur et al, 1994) which models or abstracts the

continuous dynamics by differential inclusions and verifies properties of

the resulting model system (Henzinger 1996, Puri et al 1994, Pappas et

al 1997). For these models, specifications are verified using either:

Page 3-4

1. model checking which exhaustively checks all system

trajectories; or

2. deductive (ie theoretic) theorem proving techniques (Manna,

1995), which prove the specification by induction on all system

trajectories.

c. Hybrid input/output automata (Lynch et al, 1996).

Conflict prediction could be spatial, temporal or probabilistic. Spatial and

temporal approaches (Krozer et al 1996, Odoni et al 1997) calculate the four

dimensional co-ordinates of a possible conflict. Probabilistic approaches (Yang et al

1997, Paielli 1997) assume stochastic uncertainty in the measured information and

determine the probability of collision.

Prasad (no date) suggests problem multi-agent systems could possibly be

approached by addressing all expertise in the form of explicit constraints and these

constraints should be collected and processed by a centralised constraint-satisfaction

algorithm. Simplified further, all knowledge could be represented as declarative

constraints, all that would be required is a simple look-up of constraint sets. One would

think however, that, realistically, agents must operate locally or independently and these

independent actions or solutions must be integrated into a globally acceptable solution.

Because, within the aerodrome circuit area (ACA), aircraft are bounded by general area

constraints, and to achieve their aim of landing, taking-off or touch-and-go where

specific pathways are required, a form of centralised coordination would deem to be

necessary. The centralised organisation should be responsible for collecting all available

data from each agent (aircraft), processing this data to determine if conflicts exist and,

if so, generating resolutions ensuring that mandatory space constraints are complied

with. The algorithms required for this could be case-base learning which can then be

used to improve solution quality and to augment or replace runtime communication of

conflict feedback.

Page 4- 1

SECTION 4

Existing Air Traffic Management
and Control Systems and Agent Structures

4.1 Introduction

There are many research programmes focusing on conflict resolution and

collision avoidance techniques for air traffic control. Additionally, there are a number

of established models of airspace traffic management which have been or are being

used to assess the feasibility of, or capacity of, or the safety of air traffic. These include:

a. Automatic Radar Control (ARC2000), to assess the feasibility of

automated ground-based separation assurance beyond the year 2015

(MIT, 1996a).

b. The Banc de Test tool (BDT), a support tool in the AGACER project

(Algorithmes Génétiques Appliqués au Contrôle En Route) which uses

aircraft flight plans and simplified dynamics to generate trajectories in a

given airspace (MIT, 1996c).

c. DORATASK, a fast-time simulation for evaluating sector capacity based

on controller workload limits by systematically summing up the time the

controller might spend on observable and non-observable tasks for each

category of traffic in a sector (MIT, 1996d).

d. National Aerospace Laboratory ATC Research Simulator (NARSIM),

an Air Traffic Management (ATM) and Human-Machine Interface

(HMI) research simulator facility used to simulate aircraft, radar, weather

and automated air traffic control (MIT , 1996e).

e. Reorganized ATC Mathematics Simulator (RAMS), a tool for

evaluating proposed changes to airspace structure and sector

Page 4- 2

configuration and includes 4-dimensional flight profiles, conflict

detection and conflict resolution mechanisms, workload models, modern

user interfaces and a data preparation environment (MIT, 1996f).

f. Sector Design Analysis Tool (SDAT), an analytic tool for assisting in

evaluation of changes in airspace design and traffic routing. It takes the

existing airspace and traffic data, reduces it to more manageable form,

and allows the user to select, modify and add to the data interactively for

display (MIT, 1996h).

g. The Robust Air Traffic Situation Generator (RATSG) which allows the

user to design 4D flight plans (position and time) for a number of pseudo

aircraft for use in simulation studies (MIT, 1996g).

h. SIMMOD, an airfield simulator, including runways, taxiways and apron

areas, an airfield and its associated terminal airspace, a regional system

of airports and the associated airspace or a regional volume of airspace

to measure aircraft travel times, flows and throughput capacity per unit

of time, delays and fuel consumption (MIT, 1996i).

i. Traffic Organization and Perturbation Analyzer (TOPAZ), a

safety/capacity assessment tool for evaluation of new route structures in

combination with new ATM concepts for a multitude of ATM

applications (MIT, 1996k).

j. Total Airspace & Airport Modeller (TAAM), a large scale detailed fast-

time simulation package for modeling entire air traffic systems (MIT,

1996j).

k. Airspace Simulator (ASIM), to evaluate the complexity of new airspace

models (new route structures for example) for the period beyond 2015

(MIT, 1996b).

Page 4- 3

l. Complete Air Traffic Simulator (CATS), a general purpose simulator

able to be used as a stable base for the development of various levels of

Air Traffic Control and Air Traffic Management (Elliot et al, 1997).

The characteristics and capabilities of each of these models together with their

suitability for use in full or part as an air traffic control or management system for non-

controlled aerodromes environments are discussed later in this section.

Conflict resolution is primarily a trajectory optimisation problem under

numerous constraints, the complexity of which is so onerous that it has not yet been

solved. Many attempts have been made to solve the problem using classical methods,

such as gradient methods, reactive technics and expert systems. Recent studies have

included use of neural dynamic programming (genetic algorithms and neural networks)

in a real time environment with built-in unsupervised learning to compute optimal

trajectories.

The established models for collision avoidance work on the premise that there is

an acceptable solution and attempt to find this solution through a variety of methods.

However, for this non-controlled airport application, acceptable solutions are not of

particular concern. The most important goal is to predict possible trajectories for the

aircraft within the circuit area, then to ascertain whether conflicts will arise if these

trajectories are followed. If conflicts do exist, the system must provide a form of

warning to advise the aircraft pilot(s) to take evasive action.

As such, the main concern is to investigate methods which are used or could be

used or adapted to:

a. Project aircraft trajectories, for periods of up to 40 seconds, taking into

account the need for aircraft to conform to circuit laneways and the

associated projected deviations in aircraft speed, height and attitude.

Page 4- 4

b. Based on the projected trajectories of each aircraft, ascertain whether

there are any collision hazards. This should take into account a priority

system depending of the location of the aircraft involved.

c. Provide audiovisual hazard alerts to all aircraft involved in the potential

hazard.

4.2 Conflict Resolution

In any conflict resolution plan, three aspects should be guaranteed :

a. any trajectories generated should be capable of achieving the desired

goal;

b. collisions should never occur ; and

c. the trajectories generated should obey aircraft dynamic constraints

expressed in terms of accelerations and velocity.

Conflict resolution scheme should work not only when the aircraft involved

have the ability to communicate with each other, but also when this communication

breaks down. Therefore there is a need to differentiate between two types of conflict

resolution; communicative and noncommunicative.

In communicative conflict resolution, safety is assured by full communication

and coordination among the aircraft. The aircraft follow predefined manoeuvres which

are proven to be safe. The class of manoeuvres must be rich enough to cover all

possible scenarios. Scenarios should consider possible conflicts between two and three

aircraft; for example, two aircraft could have intersecting trajectories and the conflict

resolution between these two could result in new conflict with a third aircraft.

Solutions are safe if the solution results in a safe separation. The solution may

choose any trajectory in its sets of safe states and a control policy from its set of control

Page 4- 5

actions; coordination with the other aircraft is unnecessary. If there is no safe solution,

then partial or full communication between the aircraft is necessary. If an aircraft

detects that a conflict may occur between itself and another aircraft and is not able to

communicate with this aircraft to determine its intentions or to resolve the conflict, then

the safest action that can be taken is to choose a strategy which resolves the conflict for

the worst possible action for the other aircraft.

4.3 Conflict Resolution - Classic Methods

The classic methods are best demonstrated in the TCAS reactive collision

avoidance system (detailed in Section 2). However, the TCAS system cannot cater for

system or communication failures. In an attempt to overcome this, Alliot et al (1998)

present an algorithm for autonomous conflict resolution with a co-ordination

mechanism. The algorithm aims to guarantee a 5 minute conflict free trajectory for each

aircraft. This conflict free period is intended to ensure that a transient communications

failure would not have a disastrous effect. The algorithm employed enforces a global

order for conflict resolution.

Conflict Resolution Order

The TCAS system uses the transponder code to decide which aircraft has to

manoeuvre. This is effective in conflicts of only two aircraft but in multiple aircraft

conflicts, problems arise. Consider a four aircraft conflict as shown in Figure 4-1.

Aircraft 1 is in conflict with aircraft 2 which is in conflict with aircraft 3 which is in

conflict with aircraft 4. However:

a. aircraft 1 can only detect aircraft 2 which can detect aircrafts 1 and 3 ;

and

b. aircraft 3 detects aircrafts 2 and 4 which detects aircraft 3.

Page 4- 6

If a simple priority order between these four aircraft is assumed (ie 1>2>3>4),

then:

a. in conflict (1,2), aircraft 2 will have to manoeuvre;

b. in conflict (2,3), aircraft 3 will have to manoeuvre; and

c. in conflict (3,4), aircraft 4 will have to manoeuvre.

However, aircraft 4 cannot detect aircraft 2 and it cannot known that aircraft 3 has to

manoeuvre because of conflict(2,3). Further, aircraft 3 cannot detect aircraft 1 and does

not know that aircraft 2 has to manoeuvre before it can manoeuvre itself. Accordingly,

any avoidance trajectories that are computed during the resolution set can be

inconsistent and a requirement for a better resolution order can be established.

Figure 4-1. Four Aircraft Cluster

Alliot et al (1997) define a global resolution order so that all aircraft can know

which aircraft it needs to avoid and knows when it can start to build a conflict free

trajectory. Initially every aircraft in the aircraft population is placed in a simple order

based on transponder numbers (for the purposes of this example, these numbers are

from 1 to 8 inclusive) as shown in Figure 4-2, with the priority going in order from 1 to

8. There are a number of resolution steps each with the following strategy:

Page 4- 7

a. Each aircraft receives a token from every conflicting aircraft which has a

higher priority in its detection zone. Aircraft not in conflict do not

receive any tokens.

b. Each conflicting aircraft with no token solves conflicts with every

aircraft, in its detection zone, that has no token.

c. When this trajectory has been computed, the aircraft computes its new

trajectory. All aircraft which have received a token from this aircraft take

this new trajectory into account and cancel the token received from this

aircraft.

d. Steps b. and c. are repeated until no token remains.

Figure 4-2. Multi Aircraft Cluster

For the four aircraft cluster in Figure 4-1, tokens would be allocated as follows:

a. aircraft 1 gives a token to aircraft 2 ;

b. aircraft 2 gives a token to aircraft 3 ;

Page 4- 8

c. aircraft 3 gives a token to aircraft 4 ;

As aircraft 1 has no token, it has no need to amend its trajectory and broadcasts its new

(unmodified) trajectory. Aircraft 2 takes this trajectory into account and cancels the

token received from aircraft 1. Aircraft 2 then solves its conflict with aircraft 1 as

aircraft 1 is in its detection zone and has no token. Aircraft 2 then broadcasts its new

trajectory. Aircraft 3 takes this trajectory into account, cancels the token with aircraft 2,

and broadcasts its new trajectory. Aircraft 4 then repeats the procedure.

With the token allocation system, no bilateral communication is required. Each

aircraft is aware of how many tokens it has and knows its neighbours trajectories.

Aircraft broadcasts require a maximum of 3500 bits for transmission.

Conflict Resolution Algorithm

Once the resolution order is chosen, the problem of conflict resolution needs to

be solved and the problem to be solved is to find the minimum length trajectory for an

aircraft avoiding ‘n’ already fixed aircraft trajectories (obstacles). For this, the classic

A* algorithm was used. The A* algorithm finds the shortest path in a tree, given an

initial state and a set of final states. It uses a best fit strategy to develope each node and

requires:

a. uo : the initial state of the aircraft in terms of position and time .

b. T : the set of terminal states of the aircraft in position and time.

c. P1,P2.........Pn: the set of rules used to build a leaf from a node ; (v ¬
{Pi} u) means that v is built from u using the rule Pi.

d. k(v,u) : if v and u are two nodes, then k is the corresponding trajectory

length.

Page 4- 9

e. h(u) : if u is a node then h is a heuristic1 that estimates the trajectory

length to join the current state to the final state.

The efficiency of the A* algorithm depends on h. For a state u, h(u) tries to approach :

h*(u) = Min(v1,v2,..,vn)[k(u,v1) + (k(v1,v2) + + (k(vn,ut)]

where ut is a terminal state.

An example of an manoeuvre optimisation application is shown in Figure 4-3.

In the application, the initial state is the state of the solving aircraft at time t = 1. The

terminal states are the possible states of the solving aircraft after 5 minutes of flight or

when they have reached their destination. Each branch of the tree represents a possible

trajectory of the solving aircraft.

An aircraft is initially in S0 state. At each time step, each S0 state has 6 possible

deviations (S1 states) to the trajectory (10, 20 or 30 degrees left or right) and one S0

state (the aircraft is not manoeuvred). At each time step, each S1 state generates one S1

state (the manoeuvre is extended) and one S2 state (the aircraft is sent to its destination

state). Every state generates a terminal S3 state after 5 minutes if it has not already

reached its destination.

In the example in Figure 4-3, the S0 state is at t = 1 minute and trajectories are

considered for steps of 15 seconds. If a conflict is detected, the generated trajectory is

based on the lowest estimated cost node (the cost can be based on any number of factors

but must be a “safe” trajectory). In this case, the lowest estimated cost (100) is found to

be no manoeuvre. For time t = 1:15 (node 2), the lowest estimated cost is still no

manoeuvre (100). However, for time t = 1:30 at node 3, a conflict is detected between

time t = 1:30 and t = 1:45 and the lowest estimated cost is found to be 1000. To reduce

this cost, the trajectory from node 2 is reassessed and the next lowest cost branch

examined. A manoeuvre of 30 degrees left gives an estimated cost of 105 to Node 3.

1 A heuristic algorithm is one that efficiently provides good approximate solutions to a given problem (ie
a “best fit” solution).

Page 4- 10

The aircraft moves to S1 state. At the next step, the lowest cost estimate is to extend the

manoeuvre (cost 107) as the alternative choice, to return to the destination or original

track, generates a conflict. At time t = 1:45, the lowest cost estimate is if the aircraft

returns to its original track/destination (S2 state, step 5). At time t = 2:00, only one

state(S2) can be generated.

Page 4- 11

Any aircraft that is manoeuvre free needs to have a lower priority than any

aircraft that has already started a manoeuvre. This is to prevent aircraft involved in a

manoeuvre becoming involved in a new conflict. If it does become involved in a new

conflict, it cannot find a conflict free manoeuvre because the started manoeuvre cannot

be called into contention.

Simulation studies of this algorithm by Alliot et al (1998) showed that:

a. The development of such a system could be relatively cheap. The

majority of available hardware is already available, the 1 to n conflict

resolution algorithms are simple to implement and widely used.

b. Compared to a rule based system the algorithms are mathematically

provable.

c. Compared to purely reactive systems, which require constant heading

changes, the manoeuvre model is classical and easy to implement.

Trajectories are guaranteed conflict free for a period of five minutes.

d. More studies and simulations were required to refine communication

resources. It was unclear whether there was sufficient time for each

aircraft to build its predicted trajectory and broadcast it. After this the

whole loop of the algorithm had to be executed with further conflict

resolutions and trajectory broadcasts etc. Additionally, error conditions

needed to be considered.

4.4 Conflict Resolution - Neural Dynamic Programming

Neuro-dynamic programming (or Reinforcement Learning) is a system that

involves sequential decision making under uncertainty (stochastic control) (Durand,

Alliott Medioni, no date). It is a dynamic system whose evolution is guided by

Page 4- 12

decisions, rules or control actions which may be made at any given time and generally

depend on the state of the system. The aim of the system is to select a decision making

rule that optimizes a certain performance criterion. Such problems can be solved, in

principle, using the classical methods of dynamic programming; however, the suitability

of dynamic programming to large problems is limited by the enormity of the underlying

state spaces.

Neuro-dynamic programming uses genetic algorithms and neural networks to

overcome the enormity of the situation. The methodology allows systems to learn about

their behaviour through simulation, and to improve their performance through iterative

reinforcement. Simulation is used to tune the parameters of a "value function" that

quantifies the relative desirability of different states in the state space.

The main challenge in designing algorithms for stochastic programming

problems arises from the need to calculate conditional expectation and/or probability

associated with multi-dimensional random variables. For all but the smallest of

problems, there is a need to resort to approximations. The study of stochastic

programming algorithms has therefore led to alternative ways of approximating

problems, some of which obey certain asymptotic properties. This reliance on

approximations has prompted researchers to study conditions for the convergence of

approximations, and/or the convergence of solutions of approximate problems (to a

solution of the original).

Genetic Algorithm Studies

Genetic algorithms evolved in attempts to mimic some of the processes that take

place in nature (Anon, 1998), where :

a. evolution is seen as a process operating over a set of chromosomes

which encode the structure in question;

b. natural selection relates chromosomes to the efficiency of the structure

they represent; and

Page 4- 13

c. the most common processes in nature is that of mutation, where

chromosomes of offspring are different than those of the parent, and

recombination, that combines the chromosomes of the parents to

produce the offspring.

Figure 4-4. Genetic Algorithm Principle

The main features of a genetic algorithm (GA) are shown in Figure 4-4 (Durand

Alech Alliot Schoenauer, no date). First a population of points is randomly generated

and each individual in the population represents a potential solution to the problem

being solved. A method called “Stochastic Remainder Without Replacement” is

classically used. For each of these population elements, the value of the function to

optimize (the fitness fi) is computed. This fitness is a measure of the goodness of the

member with respect to the problem under consideration and may:

a. vary depending on whether any criteria needs to be maximized or

minimised;

b. present noise in evaluations;

c. change dynamically as the selection proceeds; and

Page 4- 14

d. consider the constraints of the problem.

The average (a), åfi/n, is computed. Each element is then reproduced p times in the

new population where p equal to truncate(n*fi/a). The population is then computed

using probabilities proportional to pa/n for each element.

Secondly, the best individuals (according to their fitness) are selected. In the

third stage, classical operators of crossover and mutation are applied to diversify the

population (ie they are applied with their respective probabilities). In the final stage, a

new population is created and the process is repeated. This process can be shown by:

Generate [P(0)] ;

t := 0 ;

while not target_criteria [P(t)] do

Evaluate [P(t)] ;

Select [P(t)] ® [P’(t)] ;

Apply_Reproduction_Operators[P’(t)] ® [P’’(t)] ;

Replace [P(t), P’’(t)] ® [P(t+1)] ;

Increment t ;

end ;

return solution ;

To solve the problem, the GA is coded. In the case of Air traffic control, Durnad

et al (no date) suggest a generate random population in the form of chromosomes with

the structure shown in Figure 4-5 The initialization of a population may create 100 to

200 chromosomes. The chromosome matches with an origin and a destination point for

each aircraft. The chromosome parameters may be initialized as:

a. Vertical_Evolution : Goes_down, stays or goes_up .

Page 4- 15

b. Heading : This is set to a random heading based on the actual initial

heading plus the maximum turning angle multiplied by a random

number.

c. Time : The time that the aircraft will fly the previously specified

heading.

d. Vertical_Time : The duration of the vertical evolution (if there is one).

e. Level_Time : The duration that the aircraft will fly at the same level,

after its vertical evolution.

f. Fuel_Consumption.

To compute the fitness, a panel of N different conflict configurations is

randomly created. For each of these configurations, a variable C is defined as the total

number of time steps for which one separation constraint is violated and a variable m as

the quadratic mean of delays. The fitness (fa) is then defined as:

If C > 0 :

fa = 1/(1 + C)

If C = 0 :

fa = 1/(1 + m)

A problem is presented by a set of conflicting aircraft entering airspace and for

each aircraft the following data is known:

a. its type ,

b. its position in terms of latitude, longitude and altitude,

c. its heading , and

Page 4- 16

d. its destination point altitude.

Additionally, global data such as the duration of the study, the simulation time step, the

aircraft horizontal and vertical separation, the aircraft speed error and maximum turning

angles, are available.

Figure 4-5. Structure of the Chromosome

Page 4- 17

In computing the solution, the acceptability or ability of the chromosome in

creating acceptable collision avoidance solutions is computed and rated. This

computation maintains a balance between:

a. the difference in aircraft height at the end of the time step ;

b. the distance remaining for the aircraft to fly once it has changed its

heading ; and

c. the fuel consumption induced by the flight modification.

Neural Networks

Durand et al (no date) have researched use of neural networks, with

unsupervised learning, to compute optimal trajectories for collision avoidance. The

neural network is built by a genetic algorithm. For a situation of say two aircraft, a

neural network is generated when a conflict occurs. Nine inputs are required for the

network. The aircraft are denoted as ai for i Î {1,2}, with speed vi, heading hi and

direct heading hi
d . The direct heading is defined as the heading that the aircraft should

follow to go from its current positon to its destination. The difference between the

direct heading and heading is ai = hi
d - hi. The relative speed of aircraft ai with respect

to aircraft aj is vi,j. These inputs are described for use by the neural network by :

a. sin ai and cos ai to maintain continuity when aircraft cross the 3600

barrier.

b. (v2 - v1)/v1

c. dd
-1 where dd = max(60;abs(d-nh),1) and d is the distance between the

two aircraft and nh is the horizontal separation standard.

d. v2,1/(vmax - vmin) where vmax and vmin are the upper and lower speed bounds

of the aircraft.

Page 4- 18

e. sing2 and cosg2, where g2 = h2 - hi
d

f. b/360 where b is the converging angle of the trajectories.

g. a bias which can be used for network adjustment (but set to 1 i.e. not

used).

The structure of the network is kept simple (Figure 4-6). It consists of a three

layer structure and returns an aircraft heading change of up to 45 degrees for a time step

of 15 seconds. The first layer has eight inputs described above. The second layer holds

25 units and the third layer, the output unit.

Figure 4-6 Neural Network Structure

In coding the GA, the following selection, crossover and mutation processes are

used:

Page 4- 19

a. Selection. Stochastic replacement without replacement was used for

selection. After the raw fitness (fi) of the n elements were computed

(refer paragraph 4.21), the elements were ranked (ri) with the best

element, in terms of fitness) getting a rank of 1 and the worst a rank of n.

Each element is then reproduced pi times in the new population where:

i i j
j

p n f f= å* /

A new ranking was then computed (pi - |pi|) and the population randomly

completed by choosing elements with a probability of:

i j
j

r f/å
A population of 500 was used by Durand et al (no date).

b. Crossover. A crossover operator must produce one or more offsprings

combining information of, usually, two ancestors (Evonet, 1998). An

arithmetic crossover was used with two parents recombining by choosing

randomly a Î [-0.5, 1.5] and creating child1(resp child2) as the

barycentre of a randomly chosen weight of (parent1, a)(resp(parent1, 1-

a)) and (parent2, 1-a)(resp(parent2, a)). The crossover probability was

60 percent.

c. Mutation. Mutation operators perform a secondary but decisive role in

the global functioning of the algorithm in ensuring that the crossover

operator does not produce a degenerate population. In this application,

the operator adds a Gaussian noise to one of the weights of the neural

network. The mutation probability was set to 15 percent.

The neural network was evaluated on a large number (10000) randomly

generated non-learned conflict situations. The network generated a four percent failure

rate. To decrease this rate, a new learning set was used together with a new method of

determining the fitness of the network. A reliability factor was also used which

depended on the number of successes in terms of reliability (ie 67 successes out of 70

may be more reliable than 7 out of 7). The revised network when tested on 10000

Page 4- 20

conflict configurations resulted in a 100 percent success rate in a two aircraft situation;

however, the mean delay of 7.5 seconds in arriving at resolution were less than that

desired.

Durand showed that using simple neural networks to solve conflicts between

two aircraft provided good results and showed that the network could be learned by a

genetic algorithm when the optimal solution was not known. However, extending the

situation to three or more aircraft would greatly increase the network and make learning

more difficult.

4.5 Existing ATM Models

Leading particulars of existing ATM Models (Odoni et al, 1997) are detailed in

Annex C and a summary evaluation of each is contained in the following paragraphs.

ARC2000: Automatic Radar Control for the years beyond 2000

ARC2000 is specifically targeted to the study of ground-based, automated

conflict avoidance based on 4D-FMS availability. The goal is to demonstrate

improvements in capacity that are possible using this method. Resolution success rate is

still too low to consider operational implementation in an automated system. However,

the strategic conflict resolution features of ARC2000 seem to generate very cost

efficient solutions (less than 1% time and fuel penalty) under high traffic load. Those

ARC2000 features could be added to RAMS to model a two-tier ATC with strategic

and tactical conflict resolution.

BDT: Banc De Test

BDT is unsuitable for use in the non-controlled airport environment. It is a

modular program primarily used to test new automated conflict resolution schemes at

the tactical level. It is not a system-wide model, and it could not be readily used to

Page 4- 21

validate Air Traffic Control concepts (e.g. Free Flight). Additionally, it is not useful for

Air Traffic Flow Management, terminal areas, airport capacities and weather.

DORATASK

DORATASK is a fast-time simulation developed by the UK Civil Aviation

Authority (CAA) for evaluating sector capacity, based on controller workload limits, by

systematically summing up the time the controller might spend on observable and non-

observable tasks for each category of traffic in a sector (MIT, 1996d). It allows

prediction of capacity changes resulting from changes in manning levels, route

structures or relative traffic loadings, ATC procedures or equipment, and airspace re-

sectorization. DORATASK defines the capacity of a sector as that which creates a level

of workload equal to a specified level (e.g 48 occupied minutes per hour). Its use is

limited to evaluating controller saturation and does not cater for conflict resolution

predicaments.

NARSIM

NARSIM presently simulates almost all important entities involved in current

air traffic control including the air traffic system, parametrized radar models, several

ATM tools and display software. While it can be used to detect both long and short

range conflict, it cannot be used alone for conflict resolution.

RAMS: Reorganized ATC Mathematical Simulator

RAMS is a new airspace operations simulation tool developed for Eurocontrol.

While currently it has a closed-architecture, RAMS apparently offers enough freedom

to investigate many aspects of future concepts such as flying direct routes. However,

this simulation tool is very recent and extensive usage is necessary to fully assess its

capabilities.

Page 4- 22

SDAT: Sector Design Analysis Tool (FAA)

SDAT has been designed to be user friendly with a GUI interface and on-line

help facilities. Graphical displays of data and analyses results showing user selected

information are available. SDAT takes the actual observed tracks, simplifies them into

linear segments and determines the crossing points. Conflict probabilities for these

points are then determined by assuming the aircraft to be randomly distributed in time

along these tracks. The analysis is performed mathematically in a single run as

compared to simulations which use multiple time-stepping runs with randomization

(Monte-Carlo) to get statistical measures.

RATSG: Robust Air Traffic Situation Generator

The Robust Air Traffic Situation Generator (RATSG) allows the user to design

4D flight plans (position and time) for a number of pseudo aircraft for use in simulation

studies MIT, 1996g). Waypoints can be defined relative to fixed earth coordinates or

relative to a subject aircraft. The pseudo aircraft can automatically change speed,

altitude, or heading in order to assure that a desired air traffic situation occurs regardless

of the actions of a human pilot. While primarily intended for real-time, human-in-the-

loop simulation studies, the tool can be used in fast-time traffic simulations.

The principal application of RATSG is in the development of traffic encounter

situations for human-in-the-loop simulations.

SIMMOD

In the hands of a skilled user, SIMMOD is possibly the most powerful existing

tool for "fine granularity" simulation of airport surface operations, allowing for

arbitrarily high levels of detail (e.g., simulation of push-back operations, gate

occupancies, de-icing procedures, etc.). The principal perceived weakness of SIMMOD

is that it is a "labor intensive" model whose users must undergo a significant amount of

training. Moreover, to avoid several potential pitfalls, SIMMOD users must have a very

Page 4- 23

good understanding of ATM and airport operations. For example, because SIMMOD is

essentially a one-dimensional model (i.e., it can check for conflicts between aircraft

only along the paths traced by the elements of a network) care must be taken so that the

network structure on which the traffic moves is based on sets of nodes and links with

sufficient lateral and vertical separations to avoid the presence of undetected conflicts

during the simulation. Another difficulty in SIMMOD is the modeling of dynamic

rerouting of aircraft to simulate the ATM system's responses to local congestion

problems. For the specific case of evaluating the Free Flight concept in en route,

transitional and terminal area airspace, an important limitation is the pre-specified

underlying network structure on which traffic is restricted to move in the SIMMOD

model.

TOPAZ: Traffic Organization and Perturbation AnalyZer

In order to keep things computationally manageable, the level of detail which

can be handled for each ATM entity is limited. As such the nominal models used within

TOPAZ are less detailed than those commonly used in fast-time air traffic simulation

environments (e.g. TAAM). In return, however, TOPAZ enables a probabilistic

incorporation of rare non-nominal event sequences within the analysis. Another

limitation is that for every instantiation of an operational ATM concept, TOPAZ will

often need an appropriate adaptation of already available high level Petri net modules.

For such adaptation a high level of expertise is required from multiple domains

(stochastic modelling, human factors, air traffic expertise).

TAAM: Total Airspace & Airport Modeller

TAAM is currently the most fully featured ATM simulation available and with

further enhancement could be incorporated into a system of models for the evaluation of

concepts such as Free Flight. TAAM is a 4D flight path simulation and allows greater

realism than mesh based simulations such as SIMMOD. It is possible to simulate

Page 4- 24

dynamic re-routing, e.g. to avoid conflicts with other aircraft although it is not apparent

whether it is sufficient to model complete Free Flight. Hazardous weather can be input

as SIGMETs (severe TAAM is one of the large scale, high level of detail fast-time

simulations for entire weather advisories) and TAAM can determine which aircraft will

be affected by these severe weather areas. Conflict avoidance capabilities are somewhat

limited. Conflicts are detected by ghost aircraft flying the look-ahead time ahead on the

prescribed flight-path. When TAAM evaluates a conflict avoidance action, it checks

that the action resolves the predicted conflict between the given two aircraft, and does

not lead to conflicts with other aircraft in the vicinity. If both requirements are not

fulfilled, TAAM rejects the action and tries another one. TAAM cannot move more

than one aircraft at a time and avoidance of one conflict can result in others that are not

resolved.

ASIM: Airspace SIMulation

ASIM was designed specifically to study the impact of new route structures on the

United Kingdom airspace operations.

The main output of ASIM is a detailed report of close encounters between

aircraft. ASIM assumes a given route structure for the airspace. There is no weather

model included into ASIM, and no attempt to model controller actions. By adequately

introducing random variables in departure times and aircraft altitudes, it is assumed that

a representative sample of air traffic is generated.

CATS:Complete Air Traffic Simulator

The core of the CATS system is an en-route traffic simulation engine (Elliott et

al, 1997). It is based on a discrete, fixed, time-slice execution model where the position

and velocities of aircraft are computed at fixed time steps (5, 10 or 15 seconds). The

system computes and records the following:

a. instantaneous aircraft count per sector ;

Page 4- 25

b. aircraft flow rates through sectors;

c. conflict statistics (aircraft manoeuvres, geometry etc) ;

d. conflict resolution statistics (manoeuvre quantity, duration, delays and

types) ; and

e. airborne separation and collision avoidance system statistics (number,

duration and type) .

Manoeuvres in the horizontal and vertical plane are not done simultaneously.

Limitations are put on aircraft manoeuvres. Speed changes are not allowed and only

lateral manoeuvres are given. To improve conflict resolution between aircraft following

quasi-parallel tracks (pass-over or convergence with a small angle), a repulsive

component is added to the force vector. The repartition between the two components

depends on the conflict geometry. The resulting force is purely tangential if both aircraft

are on a colliding course and purely repulsive if they fly on parallel tracks.

The intensity of the avoidance force is proportional to the inverse of the time

remaining until normal separation will be lost. An attraction towards the aircraft's

destination is added to the total force-vector (the current implementation only allows

straight route navigation). The aircraft then tries to reach the resulting direction, with a

limit of 3o/s on the turning rate.

4.6 Discussion Of Existing ATM Models

Traffic conflicts between aircraft flying under an advanced ATM system will

affect overall system benefit, cost, and safety. To examine both the potential impact of

conflicts and to evaluate conflict resolution strategies, specialized conflict models are

required. These models can be roughly organized into three categories, shown in Figure

4.7. Aircraft trajectories must be generated based on a model of assumed parameters

such as aircraft type, routing logic, etc. A conflict detection model then determines

which of these trajectories result in conflicts. A model for conflict resolution can

Page 4- 26

produce performance metrics based on a given conflict resolution approach. In more

detail, we have:

a. Trajectory Generation: The density (spatial or temporal) of conflicts

predicts the amount of effort that will be required to maintain aircraft

separation. Traffic flow simulations are needed to determine the

frequency and form of conflicts (e.g., the location, geometry, and number

of aircraft involved in a conflict).

Conflict Detection Conflict
Resolution

Accidents / Incidents
False Alarms

Performance Metrics

Workload

Trajectory
Generation

Figure 4-7. Basic Conflict Model Requirements

b. Conflict Detection: Conflict detection probe algorithms need be

developed to alert controllers and pilots that a conflict exists. These

probes should use sensor and datalinked information such as aircraft

position and intended path to determine if intervention is required.

Models are needed here to determine the effectiveness of the methods.

c. Conflict Resolution: Once a conflict is detected, a method of resolving

the conflict is needed. Models are required to determine whether

proposed resolution methods are effective in maintaining separation and

to determine the impact of the conflict on the overall traffic flow.

Additionally, if human intervention is involved, human performance

considerations during conflict resolution may need to be modelled (e.g.,

a controller’s ability to manage several aircraft at once).

Page 4- 27

Different models do, of course, cover some or all of the aspects of conflict

modeling shown in Figure 4-7. For example, one model may only generate trajectories,

while a different model may generate trajectories, estimate the number of conflicts that

will occur in a certain time period, and determine the probability of an accident.

Principal Existing Models

A number of conflict models have been outlined, covering a range of

complexity. Many of these models are situation specific and have only been exercised

in specific studies although they could be generalised for more extensive analyses. Only

major, fairly-well-generalised models are discussed below.

Models can be classified into either “node-link” or “3D” airspace. Node-Link

models divide airspace into a number of nodes and links. Aircraft move from node to

node along the links and conflicts occur when more than one aircraft tries to move to a

single node. Typically, these conflicts are resolved by ‘delaying’ one or more of the

aircraft at a node. By necessity, node-link models are coarse but may provide rough

initial results to identify areas where more detailed study is required. Example node-

link models are:

a. ASIM which has been developed solely for facilitating the approximate

estimation of the frequency of conflicts in en route airspace under

various air route configurations and air traffic control densities; the

model offers little else in terms of capabilities.

b. FLOWSIM, a low-level-of-detail model concerned primarily with

estimating flows and delays.

c. SIMMOD, a general-purpose model for simulating airport and airspace

operations that can also provide preliminary counts of the frequency of

conflicts en route and in terminal airspace.

3D models allow aircraft to fly arbitrary three-dimensional routes. Aircraft can

either follow specified flight plans exactly or use a set of dynamics to simulate aircraft

performance to generate appropriate flight path deviations. Generally, 3D models allow

Page 4- 28

for much more realistic conflict detection and more realistic conflict resolution using a

simplified rule-base to provide avoidance commands. Example 3D models with

conflict resolution components are:

a. ARC2000, designed to evaluate rule-based conflict resolution strategies

in a realistic environment.

b. BDT, a very basic simulator used solely for conflict detection and

resolution.

c. RAMS, a general-purpose tool for airspace simulation with a conflict

detection/resolution feature, among others.

d. TAAM, a general-purpose model for simulating airspace and airport

operations.

Model Comparisons

A comparison of the major conflict models is shown in Table 4-1. The

Trajectory Generation column refers to the requirement that aircraft flight plans be

prespecified. ASIM has the ability to incorporate either predefined flight plans or to

generate flight plans based on a statistical description of flights Similarly, RAMS can

either take predefined flight plans or can generate lateral flight plans based on origin

and destination airports (the vertical path must still be specified). All other models

require that flight plans be completely prespecified through an input file.

The Trajectory Simulation column refers to whether the model uses a Node-Link

airspace structure or a 3D, non-discretized airspace model:

a. In Node-Link models, conflicts are detected only when two aircraft

attempt to move to the same node. The severity of the conflict can not

be determined.

Page 4- 29

b. In 3D models, conflicts are detected using criteria that define a conflict

(e.g., minimum miss distance or the intersection of cylinders around each

aircraft). These criteria are generally prespecified.

Model

Trajectory

Generation

Trajectory

Simulation

Conflict

Resolution

Multi-Aircraft

Conflicts

ARC2000

ASIM

BDT

FLOWSIM

NARSIM

RAMS

SIMMOD

TAAM

TMAC

Req’d as input

Automatic

Req’d as input

Req’d as input

Req’d as input

Automatic

Req’d as input

Req’d as input

Req’d as input

3D

Node-Link

3D

Node-Link

3D

3D

Node-Link

3D

3D

Rule-Based

None

Algorithmic

Delay

Human

Rule-Based

Delay

Rule-Based

None

Pairwise

None

Complex

None

Human

Pairwise

None

Pairwise

None

Table 4-1: Conflict Model Capabilities

The Conflict Resolution column describes the method by which conflicts are

resolved:

a. ‘Rule-Based’ resolution corresponds to the use of a set of rules by which

appropriate resolution manoeuvres are determined and implemented.

b. ‘None’ indicates that the model only counts conflicts and does not

provide resolution.

c. ‘Algorithmic’ resolution describes a model that uses more complex

algorithms to resolve conflicts.

Page 4- 30

d. ‘Delay’ resolution indicates that the model resolves conflicts by simply

delaying one aircraft at a node.

e. ‘Human’ indicates that conflicts are resolved in real time by a human

controller; there is no automated conflict resolution.

The Conflict Multi-Aircraft column indicates the method by which the model

resolves simultaneous conflicts between more than two aircraft.

a. ‘Pairwise’ resolution describes a model that represents these multi-

aircraft conflicts as one-on-one conflicts. Each conflicting aircraft pair is

resolved without regard to a possible global solution.

b. ‘Complex’ resolution capabilities are currently only available in BDT

and include the ability to incorporate complex conflict resolution

modules using genetic algorithms or other methods.

Individual Model Assessment

The node-link models (ASIM, FLOWSIM, SIMMOD) can be used to determine

approximate traffic density and conflict areas, but are unsuitable for determining the

effectiveness of conflict resolution algorithms. Of the three, SIMMOD is the most

flexible and provides the greatest level of detail. However, none of the models is

particularly well-suited to flexible flight environments (e.g., Free Flight). and their use

in connection with conflict frequency estimation in such environments would probably

be time-consuming and not cost-effective.

Of the 3D models, only ARC2000, BDT, RAMS, and TAAM currently have the

capability to detect and resolve conflicts at varying levels of complexity.

Page 4- 31

Collective Model Assessment

The current state of conflict modeling can be summarized as follows:

a. Simple trajectory models are typically used based on prespecified flight

plans or are randomly generated based on desired traffic density.

Aircraft dynamics are simple and generic (i.e., aircraft fly from waypoint

to waypoint at a given speed and altitude).

b. Conflicts are detected and counted based on simple geometrical criteria,

such as miss distance or penetration of safety buffers around each

aircraft.

c. Conflict resolution is typically done through a simple rule-base and is

generally not robust enough to ensure that conflicts are resolved.

The models discussed above generally provide the capability to examine

susceptibility to conflicts and conflict resolution at a gross level. However, no single

model currently provides enough flexibility and capability to perform a complete, in-

depth study of conflict detection and resolution in an uncontrolled airport situation.

4.7 Suggested Model Requirements

As detailed above, there are numerous mathematical models and fast time

simulation facilities in use for air traffic simulation and management. However, none of

these has the flexibility to cope with the complexities of the aircraft circuit area with its

aircraft trajectory uncertainty factors. The established models for collision avoidance

work on the premise that there is an acceptable solution and attempt to find this solution

through a variety of methods. However, for this non-controlled airport application,

acceptable solutions are not of particular concern. The most important goal is to predict

possible trajectories for the aircraft within the circuit area, then to ascertain whether

Page 4- 32

conflicts will arise if these trajectories are followed. If conflicts do exist, the system

must provide a form of warning to advise the aircraft pilot(s) to take evasive action.

As such, the main concern is to investigate methods which are used or could be

used or adapted to:

a. Project aircraft trajectories, for periods of up to 40 seconds, taking into

account the need for aircraft to conform to circuit laneways and the

associated projected deviations in aircraft speed, height and attitude.

b. Based on the projected trajectories of each aircraft, ascertain whether

there are any collision hazards. This should take into account a priority

system depending of the location of the aircraft involved.

c. Provide audiovisual hazard alerts to all aircraft involved in the potential

hazard.

Any agent structure considered should have the flexibility to accept new filters for

changing operation scenarios. Ideally, it should be compact (in code size) and easy to

maintain while providing the practical framework for conflict resolution and collision

avoidance within the confines of the airport circuit boundaries.

While one of the basic tenet of automated systems is that the automated system

must improve the performance of the coupled human/system (Hansmann et all, no

date), this tenet need not be applicable to this proposed agent system. The most critical

factor in Air Traffic Management (ATM) operations is for the controller (of whatever

form) to have a sufficient understanding or picture of all relevant factors to allow well

informed control decisions and actions. As the control environment becomes more

crowded, complex, unstructured and constrained, it will become more difficult to

maintain controller awareness.

Page 4- 33

One of the key performance issues for the controller agent is to determine the

appropriate quantity, format and preprocessing of information that the agent requires to

prevent loss of situation awareness due to information overload. For multitasking

environments, such as ATM, the problem can be compounded by a loss of multitasking

capability as information saturation is approached. This problem has been demonstrated

with the Australian TAAATS where the system needs to be continually rebooted

(Creedy, 2000). The problem with the system is that it slows down over a period of

days. When it is rebooted, it’s quite quick. The delays are only a matter of seconds and

reportedly only concern delays waiting for action after mouse clicks or in waiting for

the proper menu to drop down. The sluggish response has been compounded by the

addition of a new flow management system in Sydney. Some controllers have asked

that the display of flow system at their control be turned off because it is slowing down

computers too much.

Additionally, current ATM models have only crude representations of sensors,

processing, and human performance and could be enhanced to examine the following

issues:

a. Level of detail of aircraft dynamic models

b. Sensor accuracy and update rate

c. Impact of intent information (e.g., knowledge that an aircraft will end its

descent at a given altitude)

d. Impact of “Rules of the Road” or manoeuvring restrictions (e.g., aircraft

on the right has right of way)

e. Differing equipage between aircraft

f. Role of pilot and ground controller in identifying and resolving conflicts

g. Human response to and interaction with conflict alert and resolution

information

Page 5- 1

SECTION 5

Model Requirements and Considerations

5.1 Introduction

As discussed in Section 4, current models have only crude representations of

sensors, processing, and human performance and could be enhanced by examining

the following issues:

a. Level of detail of aircraft and aerodrome dynamic models

b. Sensor accuracy and update rate

c. Impact of intent information (e.g., knowledge that an aircraft will end

its descent at a given altitude)

d. Impact of “Rules of the Road” or manoeuvring restrictions (e.g.,

aircraft on the right has right of way)

e. Differing equipment between aircraft

f. Role of pilot and ground controller in identifying and resolving

conflicts

g. Human response to and interaction with conflict alert and resolution

information

These issues are discussed below.

5.2 Aircraft And Aerodrome Dynamic Models

Aircraft arriving a at a non-controlled airport follow typical route patterns

depicted in Figure 5-1 (Australian Ultralight Foundation, 2002). As aircraft must

Page 5- 2

land into the prevailing wind to maintain maximum lift at low ground speed and

with a low crosswind component to maintain aircraft stability, generally only one

runway is used at any one time.

Specifically, an aircraft arriving at an non-controlled airport for a landing

must join the circuit on the upwind, crosswind or downwind leg (AirServices

Australia, 2003). Under specific circumstances straight-in approaches can be made;

however, an aircraft flying a standard circuit pattern and established on base or final

approach for any runway has priority over an aircraft carrying out a straight-in

approach.

Figure 5-1. Typical Landing Pattern

At controlled aerodromes, the aircraft are sequenced manually once they

enter the control zone; aircraft are required to maintain this sequence. When routes

converge, a manual decision is made to re-assign sequencing. When an aircraft

Page 5- 3

enters the control area in an emergency condition, aircraft are manually rerouted and

rescheduled so that priority can be given to the troubled aircraft.

For designated control zones, automated systems are available to generate

advisories, or suggested trajectories, runway assignments, landing sequences and

schedules which the controller may use in managing air traffic under his/her control.

For these zones, all safety control decisions are taken centrally and distributed to the

local agent (aircraft) for execution. While the implementation of a similar system at

current non-controlled aerodromes may appear to be the ideal solution to guarantee

safe separation problems, the operating costs would be prohibitive. Additionally, it

requires the central human decision making element which is not available.

However, recent technology advances, such as the global positioning system, the

extension of aircraft transponder capabilities and improved communication and

navigating equipment, make it possible for automated advisory systems to be

implemented to provide a level of advice to aircraft approaching airports of any

conflicts that may arise (Tomlin et al, no date).

It should be pointed out that outside controlled airspace, the aircraft captain

(or pilot) is the person solely responsible for the actions of that aircraft and any

safety conflicts that may arise with other aircraft. Therefore, each aircraft, or local

agent, has the decision making responsibility and the actions of that agent may have

an effect on other agents in the area. There needs to be a level of feedback from each

local agent to the automated advisory system so that updated advisories can be

generated as suggested in Figure 5-2.

The concepts and automated systems that allow pilots to choose their own

route, altitude and speed has been termed as "Free Flight" by several agencies

(Tomlin et al, no date; Anon, 1995; Anon, 2000c). In this free flight airspace, each

aircraft is surrounded by both the alert zone and a protected zone shown in Figure 5-

3. The size of the alert zone depends on various influences and factors including

airspeed, altitude, accuracy of sensing equipment, traffic situation, aircraft

performance and average human and system response times.

Page 5- 4

Figure 5-2. Information Flow Sequence

Figure 5-3. Alert and Protection Zones

Within the confines of an aerodrome, manoeuvres are regulated to conform

with the circuit crosswind downwind, base and final legs. For these circuit legs,

normal free flight separation criteria are not applicable; additionally, there is no one

precise circuit pattern to which all pilots comply. Within Australia, requirements for

circuit direction, separation minima for takeoff, aircraft height, approach and landing

and separation minima are detailed by Air Services Australia (refer Annex B). Other

texts suggest specific instructions, such as "do not make your turn onto base leg until

such time as the aircraft immediately preceding you is on final approach and behind

Page 5- 5

your wingtip.” Additionally, for visual circling approaches used by instrument pilots,

each approach is different and is affected by a range of factors including the

alignment of the instrument approach and the runway, the location and height of the

surrounding terrain, the weather around the airport and the aircraft type. For

example, for visual circling approaches, CASA defines (Civil Aviation Safety

Authority, 1998) the circling areas for varying performance aircraft types as shown

in Figure 5-4. The performance categories are defined in AIP Australia and are

determined by aircraft speeds as shown in Figure 5-4. However, the circling area

dimensions detailed do not specify the required aircraft flightpath but rather, define

the area within which the approach is conducted (McColl et al, 2001). For example,

for a Cat B aircraft approaching Portland, Victoria, possible approach paths are

shown in Figure 5-5.

.

Figure 5-4. Visual Circling Approaches

Page 5- 6

Figure 5-5. Possible Approach Paths to Portland Aerodrome

Notwithstanding these published operations, some examples of the variety of

operations at non-controlled aerodromes have been detailed by CASA (Civil

Aviation Safety Authority, 2000b) as follows:

a. skilled pilots will often want to make smaller circuits than pilots

under training or with low recency;

b. larger RPT aircraft prefer straight in approaches to save time and

money;

c. pilots doing instrument (IFR) approaches will often make straight-in

approaches or will elect to join the circuit from overhead a navigation

aid (NAVAID) via the most convenient turn to the runway in use;

d. trainee pilots require relatively large circuits, cannot generally cope

with unusual manoeuvres by other aircraft and can easily be forced to

abandon their preferred flight paths by other aircraft;

e. helicopters are not restricted to normal circuit patterns and generally

operate to stay clear of fixed-wing circuit operations;

Page 5- 7

f. helicopters operating below 500ft above ground level (AGL) may

approach direct to the aerodrome without regard to the circuit

direction in use;

g. agriculture pilots may prefer to do a contra or a low-level circuit, or

make a straight-in approach on a cross runway (to speed up delivery

rates);

h. parachuting and glider tug aircraft may make steep descents into the

circuit area;

i. gliders require winching or towing, often use parallel runways and/or

contra circuits and are committed to land from the time that they enter

the circuit; and

j. ultralight pilots generally prefer to make low, small circuits.

Additionally, conflicts in circuit patterns may arise due to wind direction,

obstructions, topography, local noise sensitivity and the proximity of adjacent

control areas. Wind direction is critical to small aircraft and commonly leads to the

provision of a small secondary runway. Conflicts that can arise then may include the

following scenarios:

a. If a strong wind predicates use of the smaller runway, light aircraft

will use the small runway; however, larger aircraft may be forced to

use larger, out-of-wind runway.

b. In light wind conditions, pilots may not be able to determine the

runway-in-use and will prefer to use a runway which is most suited to

their operation.

Page 5- 8

c. To determine wind direction, incoming aircraft may have to overfly

the aerodrome to see a windsock and may enter the traffic pattern in

conflict with other aircraft.

There are also separation requirements to cater for vortex avoidance. Vortex

or wake turbulence separation standards are based on three aircraft categories; heavy

(maximum take-off weight (MTOW) > 130,000kg), medium (7,000kg < MTOW <

130,000kg) and light (MTOW < 7,000kg). The standards used by air traffic

controllers to separate aircraft in different phases of flight are shown in Table 5-1.

The same standards have been recommended (Flight Safety Australia, 2000) for

pilots operating near heavier aircraft at uncontrolled airports.

Aircraft Separation Minima

Categories

Lead Following Arrival Displaced Opposite Departure

Aircraft Aircraft and Radar Landing Direction Full Intermediate

Threshold Length

nm-min min min nm-min min

Heavy Heavy 4-2 4-2 2

Medium 5-2 2 2 5-2 2

Light 6-3 2 2 6-2 3

Medium Light 5-2.5 2 2 5-2 3

Table 5-1. Separation Minima

Further, to enhance safety at airports where the tower is inactive (eg after

hours), some airports specify the maximum number of aircraft that can be in the

circuit area at any one time (Anon, 2000b). Moorabbin, for example, limit the

number of aircraft to five.

Page 5- 9

Accordingly, any model inuse or to be developed to cater for aircraft control

at non-controlled airports would need to be complex while capable of accepting a

rapid changes to assert qualitative decisions under the myriad of local conditions.

Circuit Zone Definitions

To establish definitions for the circuit zones, the various requirements can be

aligned to provide expected zones of operation. For example, for an aircraft

approaching for landing, the maximum distance from the runway would be the

circling diameter show in Figure 5-4 and would extend from the end of the active

runway to a point past the threshold. The minimum distance to the runway would be

that distance required to complete a rate two turn to align with the runway. The zone

would need to extend to a point to ensure that the aircraft has sufficient altitude on

initiation of the finals leg to permit a proper glide slope. The estimation of this point

varies between users, from an angle of 45 degrees with the runway threshold to an

angle of 60 degrees, and the tightest circuit would be achieved with an angle of 60

degrees as shown in Figure 5-6.

Figure 5-6. Base Turn Criteria

Page 5- 10

As detailed above, there is no precisely defined aircraft circuit area.

However, to be able to predict possible aircraft trajectories to ascertain collision

hazards, there is a need to establish likely aircraft reactions and trajectories and to

place the aircraft in a positional zone (i.e. downwind zone, base zone etc). Primarily,

aircraft arriving at an aerodrome must contain their circuit activities within the

maximum circling diameter for that particular aircraft performance category.

Additionally, the aircraft must maintain a suitable trajectory to be able to safely and

comfortably complete the required turns to align with the runway. The normal

minimum turn radius is that required for a ‘rate 2’ turn (a rate 2 turn equaltes to a

constant rate turn at 6 degrees per second). With this in mind, it is then possible to

establish likely procedures that aircraft will follow in the vicinity of uncontrolled

aerodromes. There are three possible scenarios :

a. arrival,

b. departure, and

c. circuit work.

Arrival

Unlike controlled aerodromes, there is generally no specific lane of entry to

the aerodrome and would generally depend on the direction that the aircraft came

from and the prevailing wind direction. Possible arrival procedures are shown in

Figure 5-7.

In all scenarios, the aircraft completes a minimum of three legs of the circuit

(downwind, base and finals) and these legs are the same for all arrival directions.

Consider an example of a typical uncontrolled runway of length 1500 metres.

For a category A performance aircraft, the expected trajectory would be confined to

Page 5- 11

the shaded area in Figure 5-8 for the downwind, base and finals legs. For an aircraft

at point A, travelling at 100 knots, one could expect that the trajectory could be:

a. continue to the base turn line at 100 knots,

b. initiate a rate 2 turn for base, select 1st stage flap and reduce airspeed

to 70-80 knots.

c. when at the rate 2 turn distance from the runway centerline, initiate a

rate 2 turn to finals.

Figure 5-7 Possible Arrival Trajectories

Page 5- 12

Figure 5-8. Aircraft Arrival

This course is only assumed (but based on practical experience) and

contingencies must be made for estimation errors and pilot inconsistencies. Because

of the unknown intentions of the aircrew, it is not possible to quantify this error.

However, a standard error, as shown in Figure 5-9, based on a probability density

could be applied to the aircraft estimated position at all times; however care should

be taken to ensure that is does not blanket the entire operations area. The error

distance should be included in the separation distance required to allow for pilot

reaction time to initiate any collision avoidance action . (See Sensor Accuracy and

Update Rate below).

.

Figure 5-9. Separation Errors

Page 5- 13

Departure

On departure, aircraft are required to maintain runway heading and climb to a

minimum of 500ft before turning. The direction of turn is dependent on the aircraft

destination.

Circuit Work

In circuit work, aircraft follow a standard take-off, crosswind, downwind,

base and finals pattern and will be completed within an area defined by the

maximum circling diameter and the minimum rate-2 turn radius.

Zone Dimensions

Finals. The finals zone extends back from the threshold at either an angle (j)

of 15 degrees or 30 degrees depending on the performance category of the aircraft.

For Cat A and Cat B aircraft the angle is 15 degrees; for Cat C and Cat D aircraft, it

is 30 degrees. For purposes of simplicity, the finals area can be divided into two;

short finals, extending from the runway to the point where the aircraft is at an

altitude of 300 feet AGL to the runway; and long finals, from the short final limit out

to a suitable limit. An allowance needs to be made to cater for position estimation

errors (see ‘Sensor accuracy and Update Rate’ below). At the runway end of the

zone, the width of the zone should be increased by a position range error as shown in

Figure 5-10. The minimum altitude limit for the zone would be 0 feet at the runway

end. The zone extends to a distance of 5 nm from the runway1. For IFR approaches,

a constant 3 degree approach glide slope is used and the maximum altitude would be

approximately 1600 feet AGL. For VFR approaches, aircraft are nominally at 500

feet AGL on turning to finals.

1 Refer Annex B, paragraph 9.d - “all manoeuvering to establish the aircraft on final approach can
be conducted outside a 5nm radius from the aerodrome”

Page 5- 14

j

Figure 5-10. Finals Zone

Crosswind. There are two crosswind zones that could be considered. Firstly,

that required on the landing circuit where there aircraft progresses from upwind to

crosswind to downwind. In this scenario (Figure 5-11a), the aircraft flight path

usually crosses the runway at altitudes varying from 1000 to 1500 feet. The point of

crossover of the runway varies and the closet point to the runway threshold is taken

as the runway midpoint. Secondly, that required for aircraft on take-off (Figure 5-

11b) where the aircraft initially climbs to an altitude of 500 feet then initiates a rate

one turn to crosswind.

Figure 5-11. Crosswind Areas

To ensure all scenarios are included, the crosswind area should be large and cover all

the area shown in Figure 5-11.

(a) (b)

Standard
Position
Error

Page 5- 15

Downwind and Base. The downwind area extends from the crosswind area

to the point of turn to the base area base area (i.e. the point 45 degrees to the runway

threshold). The downwind zone would extend to the incoming limit maximum

circling diameter. The base zone then includes that area enclosing the region

required to turn from the downwind zone to the finals zone. See Figure 5-12.

Figure 5-12. Zones

Take-Off. As stated above, the only zone that can be predicted is the first

climb to 500 feet. Taking a nominal rate of climb of 500 feet per minute and climb

speed of 60 knots2, the length of the zone would be 1NM or approximately 2000

metres. While aircraft are required to maintain runway heading during this time,

deviations are possible. To align with the approach zone, an angle of 15 degrees for

Cat A and B aircraft and 30 metres for Cat C and above aircraft can be applied. The

altitude limits for the zone would be 0 and 500 feet.

Upwind. The upwind leg definition is imprecise. The only requirement is

that the aircraft must be at a minimum altitude of 1500 feet Therefore, any aircraft

2 Based on Cessna 172 Aircraft performance detailed in Flight Net Africa, Aircraft Performance
Specifications, www.flightnet.co.za

http://www.flightnet.co.za

Page 5- 16

in the upwind area, heading in the same direction as the runway and at an altitude of

1500 feet (± a tolerance) should be considered as an upwind candidate. To cover all

possibilities, the zone should extend from the runway out to the maximum circling

line. A turn to crosswind could be expected after the aircraft has passed the runway

midpoint.

For the purposes of the model, aircraft are classified in performance

categories (A, B, C or D) as per Figure 5-4. To determine the performance category,

the speed and position of the aircraft is considered. If the aircraft is in the upwind,

crosswind or downwind legs, the aircraft velocity is used to correlate to a

performance category. However, as the aircraft turns to completes the base leg and

turns to finals to land, the aircraft speed decreases. Accordingly, the aircraft speed

must be factored to apply the speed/performance correlation per:

Factored speed = actual speed/speed factor

The approximation used in this analysis is

a. Upwind ,Crosswind and Downwind zones, a speed factor of 1.

b. For the turn to Base, a factor of 0.9.

c. For the remainder of Base, 0.81.

d. Finals zone, a factor of 0.648.

To determine which zone (or part thereof) the aircraft is in, basically the

aircraft radial sector, the distance from the runway, the aircraft altitude, the aircraft

heading and the aircraft attitude are considered. Criteria for the zones are based on

the zone dimensions detailed above and are summarize in Table 5-2.

Page 5- 17

Zone Sector Distance Range Altitude Range Attitude Heading Range

Finals 165-195 Cat A,B rlen/2 to (5nm + rlen/2) 0 to 2000 ft neg 345-15 Cat A,B

150-210 Cat c,D 330-30 Cat CD

Takeoff 345-15 Cat ABB Len/2 to (1nm + rlen/2) 0 to 500 ft pos 345-15 Cat A,b

330-30 Cat C,D 330-30 Cat C,D

Downwind 240 to (360 -

ASIN(8.40807v

/dimx))

8.40807v to DIMX 1000 to 1500(+/-

10%)

s&l 180(+/-10%)

Base 180-240 ((rlen/2) + 9.7088v) to

((rlen/2) + DIMX)

1500 to 500 neg 180-15 CAT A,B

180-30 CAT C,D

Crosswind 270 to 90 0 to ((rlen/2) + DIMX) 1500 to 1000 s&l to neg 0 to 180

Upwind 15 to 165 Cat A,B 0 to DIMX 1500 +/- 10% s&l 0 +/-10%

30 to 150 Cat C,D

Runway 0-360 rlen/2 0 s&l 0 or 180

Table 5-2. Zone Criteria

5.3 Sensor Accuracy And Update Rate

Existing GPS System Sensor Accuracy

There are a variety of sensors and equipment available which can be used to

determine the position of aircraft and to relay this information to a processing unit.

These include:

a. Land-based transponder system using spread-spectrum techniques in

the UHF radio band (such as the QuikTrak system).

b. Satellite-based navigation receiver system using the Global

Positioning System (GPS) in conjunction with transmission via

satellite, transponder or by VHF radio (such as the ADB-S system)

Page 5- 18

c. Satellite-based navigation receiver system using the Global

Positioning System (GPS) in conjunction with land-based cellular

mobile telephone.

Land-based Transponder. Aircraft location and identification information can

be transmitted together as a low power spread-spectrum modulated radio signal in

the lower part of the UHF radio frequency band. This signal can be intercepted and

decoded at a number of remote ground-based receiver sites and relayed to a central

processing base where safe separation and collision avoidance computations can be

carried out. Additionally, at the base, information is processed for appropriate further

action. Communications between remote receivers and the central agent would be by

means of a dedicated network. This system requires the provision of a number of

remote receivers around the uncontrolled airport locality. The spread-spectrum

scheme used in this system has three main purposes:

a. It provides a means for the precise acquisition of range [position]

information.

b. It provides ‘processing gain’ for the enhancement of performance in

the presence of interference and of noise. The processing gain of this

system is at least 30 decibels (dB), which means it can operate

comfortably in the presence of interference power one hundred times

stronger than the power of the spread-spectrum signal.

c. Provision of multiple channels for the simultaneous transmission of

many signals (eg. Tracking, altitude and identification data). The use

of the UHF radio band (around 430 MHz) is a significant feature of

this system.

The position accuracy of this system is approximately 5 metres in open air

conditions. In built-up environments the accuracy is degraded to around 30 metres as

a result of scattering and multi-path radio propagation effects. However, systems

Page 5- 19

such as QuikTrak have the capability of enhancing the location algorithm used to

offset a significant number of these interferences and inaccuracies.

GPS - Transponder. GPS accuracy is dependent (Rizos, 1999) on a host of

operational, algorithmic and other factors such as:

a. Whether the user is moving or stationary. Repeat stationary

observations permit an improvement in precision due to the effect of

averaging down random errors overtime.

b. Whether the results are required in real-time, or if post-processing of

the data is possible. Real-time positioning requires a "robust" but less

precise technique to be used. The luxury of post-processing the data

permits sophisticated modelling and processing of GPS data which

minimises the magnitude and impact of residual biases and errors.

Post-processing is not an option for an ATM environment.

c. The level of measurement noise. Low measurement noise would

reasonably be expected to result in high accuracy. Hence carrier phase

measurements are the basis for high accuracy techniques, while

pseudo-range measurements are used for low accuracy applications.

In addition, carrier phase data can be used to "smooth" the relatively

noisy pseudo-range measurements prior to their use in the positioning

algorithm.

d. The degree of redundancy in the measurements. Factors such as the

number of tracked satellites and the number of observations (dual-

frequency carrier phase, dual-frequency pseudo-range data) permits

more sophisticated quality control procedures to remove bias

conditions.

Page 5- 20

e. The algorithm type. Exotic data combinations can be employed (eg

carrier phase plus pseudo-range), including filter solution algorithms

and more sophisticated phase processing algorithms.

GPS - Cellular Telephone. The position of the aircraft is obtained by means

of a GPS receiver. Communication to the surveillance base station is via the cellular

mobile telephone network. The satellite signals are spread-spectrum modulated on a

microwave carrier at 1575 MHz. Using a differential scheme with correction signals,

positioning to approximately 5 metres is achievable in open country. However, this

scheme offers no advantages in the radio scattering environment typical of built-up

areas, where positioning accuracy is of the order of 30 metres. The cellular telephone

transmissions are in the 800 MHz band and utilise conventional modulation (ie. Not

spread spectrum).

Absolute GPS Positioning Accuracy

The source and typical extent of GPS position errors are summarized below

in Table 5-3.

Pseudo Range Error (1s)

Satellite clock and navigation 3.0 m
Satellite perturbations 1.0 m
Satellite ephemeris prediction model 4.2 m
Receiver noise 1.5 m
Ionospheric noise 2.3 m
Tropospheric delay 2.0 m
Multipath 1.2 m
Other 1.2 m
User Estimated Range Error (UERE) 6.6 m

Table 5-3. Source and Extent of GPS PSEUDO Range Error

On 1 May 2000, the U.S. ordered Selective Availability (SA) turned off.

Selective availability added up to 100 metre (approximate 300 feet) random errors to

keep GPS a more powerful tool for the military. Today, commercial GPS units are

Page 5- 21

accurate to within 20 meters (approximately 60 feet); although in good conditions,

units should display an error of less than 10 meters. The combination of these errors

in conjunction with poor satellite geometry can limit GPS accuracy to 100 meters

95% of the time and up to 300 meters 5% of the time. Fortunately, many of these

errors can be reduced or eliminated through a technique known as "Differential" and

this technique is discussed later.

GPS specifications for SPS (Standard Positioning Service) state requirements

to be within 100 meters 95% of the time and within 300 meters 99.99% of the time.

The specifications do not include information about the precise distribution of errors

and, consequently, nothing about the improved accuracy from averaging fixes

obtained over time. GPS errors behave in a very definable way and these errors can

be modelled to enable reasonable estimates of the GPS error to be made. If simple

averaging is considered, i.e., all fixes are counted equally in the average obtained by

finding the arithmetic mean (average) separately of location points, the location

standard deviation, (Root-Mean-Squared error), can be found by:

s
m

=
-å 2

1

()x
N

N
[Eq 5-1]

Values of RMS_Error for GPS’s are quoted in item specifications and these values

can be used to obtain a model of GPS accuracy.

The distribution of GPS position data may be approximated by a bivariate

normal distribution with no correlation between the two variables (Wilson, no date).

This distribution has been referred to as "Gaussian". However, only a "slice' of the

distribution in any direction will be normal (Gaussian). The error distribution can be

described by a very simple equation, which is known as a Weibull distribution with

shape factor b = 2 or Rayleigh distribution:

()Probability(Error Distance) = 1- exp -
2

< æ
è
çç

ö
ø
÷÷

Dist

s [Eq 5-2]

Page 5- 22

For a typical published GPS RMS_Error of 15 metres, the central error

probability (CEP) equates to 12.45 metres; ie there is a 50 percent probability that

the actual aircraft position is within 12.45 metres of the reported position. For a

more confident 99 percent probability (1.96s), the distance is 29.4 metres. The

distribution is shown in Figure 5-13.

Figure 5-13. Distance vs Probability

Differential GPS Accuracy

Differential GPS works by placing a high-performance GPS receiver

(reference station) at a known location. Since the receiver knows its exact location, it

can determine the errors in the satellite signals. The error data for each tracked

satellite is formatted into a correction message and transmitted to GPS users. These

differential corrections are then applied to the GPS calculations, thus removing most

of the satellite signal error and improving accuracy. The level of accuracy obtained is

a function of the GPS receiver. Sophisticated receivers can achieve accuracy on the

order of 1 meter or less.

Page 5- 23

Flight tests have been conducted by AirServices Australia on the GRAS

System (refer Section 2) to determine GPS and associated equipment sensor errors

(Crosby et al, no date). From flight tests over Bass Strait, the VHF datalink had a

range of 110 nautical miles when line-of-sight was maintained. This test was

performed while SA was still active, thus the error was large when the datalink was

absent. The 95% values for the errors are 1.4 meters in the east/west, 2.1 meters in

the north/south and 3.0 meters in the vertical. These statistics include the errors

during the loss of the GRAS datalink. Even with these errors, the results indicate

that the accuracy achievable with GRAS is on the same order as the accuracy

achievable with SBAS directly.

Additionally, 45 approaches flight tests to Point Cook, Victoria, Australia

Runway 35 were conducted. Of these 6 were curved approaches and 39 were

straight-in approaches. They were flown from 10 nautical miles out down to 250 ft

above the threshold. The data from each approach was extracted and the lateral and

vertical statistical error results incorporating all approaches are presented in Table 5-

4.

Component Mean ss
(m) (m)

Lateral 0.33 0.48
Vertical -2.44 2.27

Table 5-4: Navigation Sensor Error Statistics for Point

Cook Approaches

Figures 5-14 and 5-15 show the composite lateral and vertical for the 39

straight-in approaches to Point Cook. With the exception of one segment, all

approaches show consistent navigation performance. The lateral performance is well

within the 95% limits, and the vertical performance is within the specification down

to approximately 300 ft above threshold. Jumps in the vertical error during some of

Page 5- 24

the runs were attributed to loss of the GRAS datalink and correction data, and the

single stand-out run was attributed to a faulty correction in one of the GPS PRNs,

which degraded the entire navigation solution. These tests were conducted in a post-

SA environment.

Based on the error values in Table 5-4 above, 99 percent lateral position

accuracies within 1 metre can be taken as achievable with differential corrections.

Figurer 5-14 Lateral Errors

Page 5- 25

Figure 5-15 Vertical Errors

Relative GPS Positioning Accuracy

The foregoing places emphasis on the absolute positioning of aircraft.

However, for collision avoidance applications, errors common to both aircraft, such

as those due to ephemeris uncertainties, or resulting from tropospheric and

ionospheric propagation delays can be factored out, thus improving the overall GPS

positioning accuracy. GPS relative positioning can be employed. Studies have been

conducted by the Rannoch Corporation (Rudel et al, 1997) on relative navigation

which encompassed all the satellites in view from each user. The corresponding

linear system, solved by using the least squares method, provided the basis for

calculation of the distance between two nearby aircraft. The standard deviation was

then calculated using differential calculus. Experimental results were used to qualify

the theoretical computations and to quantify the improvement in relative versus

absolute positioning.

Page 5- 26

Two receivers located approximately 10 km apart were used to collect

position data with post processing taken over a one hour sample. The relative

position between the GPS receivers was calculated by two methods; first by using

basic GPS equations and differencing the two to obtain the absolute relative

position; and second by the method described above. The initial result showed that :

mabs = 10.583 km sabs = 15.85 m

However, using revised algorithms, the standard deviation was found to be

approximately halved, although the mean was almost identical, as follows:

mrel = 10.587 km srel = 7.55 m

While the range values in these trials exceed those expected in the non-controlled

aerodrome application, the tests show that a marked increase in position accuracy

can be expected using relative positioning algorithms.

Transponder

Field studies have been conducted (Talotta et al , 1997) by the US FAA to

sample the technical health of General Aviation (GA) transponders currently

operating in the National Airspace System (NAS). This study revealed that:

a. Only 4 percent of the sample transponders that were tested were able

to meet performance specifications on all 31 test parameters.

However, of the test parameters that were commonly failed, and the

magnitude of the performance deviations on these parameters,

indicated that many of the detected problems would not materially

affect the transponder’s ability to operate with existing secondary

radar and Traffic Collision Avoidance System (TCAS) processors.

An analysis of the operational implications of some of the failures

showed that approximately 17 percent of the transponders would

Page 5- 27

create functionally significant problems when interacting with ground

Secondary Surveillance Radar (SSR) processors, TCAS, or both.

These problems included 12 percent of the transponders that would

not be detected by an interrogator or would experience intermittent

detection failures.

b. A second notable finding was that a large number of transponders

either exhibited significant altitude errors or failed to report an

altitude during testing. The result indicated that a warmup time was

required for the transponder/altitude encoders to achieve acceptable

response.

Additionally, studies have been conducted by the Eurocontrol Experimental

Centre (Englmeier, 2000) to model the periodicity of transponder squitter emissions.

Nominally, squitter emissions should follow a Gaussian distribution with a normal

value of 1 second. For a sample time of 35 minutes encompassing 250 different

aircraft delivering a total of 16,000 squitters, the frequency distribution was found

to follow a logarithmic Gaussian distribution as shown in Figure 5-16.

Because of the variation in squitter emission rates, any positional and

trajectory computations based on the information contained in the squitters would

need to be carefully considered. The data may need to be time-stamped for

validation.

Altitude Considerations

The accuracy of altitude data is of prime concern. The altimeter data can be

obtained from two sources; from the existing altimeter (as for TCAS systems) and

from a GPS. For GPS sources, accuracies stated above can be expected and collision

hazard and avoidance decisions based on these data present acceptable conclusions.

Page 5- 28

Figure 5-16. Squitter Emission Distribution

Page 5- 29

Altitude Considerations

The accuracy of altitude data is of prime concern. The altimeter data can be

obtained from two sources; from the existing altimeter (as for TCAS systems) and

from a GPS. For GPS sources, accuracies stated above can be expected and collision

hazard and avoidance decisions based on these data present acceptable conclusions.

For TCAS systems, the altitude difference at the closest point of approach is

estimated by TCAS logic. The altitude data for aircraft is taken from the transponder

mode C and S readouts. However, as the transponder altitude is in discrete steps of

100 feet (for Mode C), the aircraft vertical speed can only be estimated and may

present an untrue picture if the resultant vertical speed is used for projected

trajectories. For example, as shown in Figure 5-17, which shows an aircraft

climbing at 500 feet per minute, the transmitted altitude steps incrementally and an

attitude change becomes non-zero only when the transmitted altitude changes. If the

zero attitude were used to project a trajectory, the calculated altitude error would

increase with time depending on the rate of climb/descent of the aircraft. For a climb

rate of 500 feet per minute, the error over a 40 second projected trajectory would be

approximately 335 feet. Within the confines of an airport, the error would be

unacceptable.

To smooth the altitude change, a simple, exponential or weighted moving

average (MA) could be considered. For a simple moving average, the altitude change

in feet per second can be found by:

()()s sAv =169. sin cda feet per second .. [Eq 5-3]

where As = Aircaft velocity in knots

cda = climb or descent angle in degrees

Page 5- 30

Altitude Readings

0

50

100

150

200

250

300

1 4 7 10 13 16 19 22 25 28 31 34

Time

A
lt

it
u

d
e

(f
ee

t)

Real Altitude

Transmitted Alt

Figure 5-17. Transmitted Altitudes

The transponder would then provide an altitude update every:

A T

V
up

i

s
= seconds [Eq 5-4]

where Ti = transponder altitude increment

Therefore to smooth the projected trajectory altitude error, a moving average period

in excess of Aup should be used.

For the initial MA period, the calculated aircraft altitude would not vary. A

variation would only be initiated by a notification, by the transponder, of an altitude

change. For example, for an aircraft with a speed of 70 knots, in a 3 degree descent

and a Mode C transponder altitude increment of 100 feet, the transponder would

initiate an altitude change every :

()()A 100 1.69 *70*sin 3

16 seconds

up =
=

In a worst case scenario, the vertical rate of the aircraft will not be able to be

established for a period of up to 16 seconds. This period may be shorter if a 100 foot

altitude increment is reached during that period. However, once the vertical rate is

Page 5- 31

transmitted by the transponder, the altitude can be estimated, based on a 16 second

moving average and the expected aircraft altitude projected and updated in 16

second increments. If the aircraft was fitted with a Mode S transponder to a

minimum level 1, altitude reporting could, subject to data availability from other

aircraft systems, be transmitted in 25 foot intervals. In this case, the altitude would,

for the above example, be updated every 4 seconds. The effect of applying a simple

moving average is shown in Figure 5-18. As shown in Figure 5-18, the averaged

altitude lags the actual altitude by a considerable margin and errors of up to 50 ft

(15m) an be expected..

An exponential moving average would be of the form:

Value = ax1 + (1 - a)ax2 + (1-a)2ax3 + (1 - a)3ax4 + [Eq 5-5]

where a is normally in the range between 0.1 and 0.3. The effect of applying an

exponential average, for an a of 0.3, is shown in Figure 5-19. For an exponential

average of this form to be true, the number of elements would need to be large and

for this, a large lead-time is required before meaningful result could be obtained.

Figure 5-18. Aircraft Altitude Reporting with Moving Average

Page 5- 32

Figure 5-19. Aircraft Altitude Reporting with Exponential Averaging.

A weighted average can be structured as desired. However, the problem of

the averaged value lagging the actual altitude would still exist .

There is an additional error introduced in transmitting the altitude. Encoders

required to reformat the altitude data for input to the transducer have quoted errors

of ± 20 feet (eg Ameri-King AK 350-30/50). Taking this an RMS Error, the 99

percent (1.96s) error can be stated as 39.2 feet. This error would be placed on top of

the existing error of up to 50 ft.

Update Rate

The distance travelled by aircraft for increments up to four seconds are

shown in Figure 5-20. Because of the limited area of the airport circuit area,

positional updates are required such that the aircraft trajectory can be accurately

monitored and projected with confidence. The normal GPS update rate is 1 second;

accordingly, a minimum one second update rate is used.

Page 5- 33

Figure 5-20. Update Rate Displacements.

5.4 Confirmation Of Intent

For an aircraft in normal free flight, the aircraft projected trajectory can easily

be estimated by assuming that the aircraft will maintain the same heading and

attitude for the projected period (say 40 seconds). Errors in an aircraft future location

can be estimated and appropriate models used in conflict resolution algorithms.

However, for the circuit area, the aircraft is unlikely to maintain the same heading

and attitude and it is required to follow a circuit pattern for approach, landing and

takeoff etc. Additionally, this pattern will vary depending on the aircraft

performance type and current location in the pattern. Accordingly, it is difficult to

predict the intention of the aircraft and assumptions on aircraft trajectory cannot be

made lightly. For example, an aircraft nearing the end of the downwind leg is likely

to execute a rate 2 left turn to base, reduce speed and to start the descend. Aircraft of

a high performance type will be further from the strip when this is done and will be

travelling at a greater speed.

Page 5- 34

Therefore for each aircraft in the circuit area (or nearing the circuit area),

there is a requirement to classify the aircraft by performance type (based on aircraft

speed, location and height), then to set for each aircraft the expected circuit

parameters. From the initial aircraft speed, a performance category (A,B,C or D) can

be determined and, from this, the circuit zone dimensions for that aircraft can be

determined.

Approach Trajectory

For an aircraft to be confirmed on approach (long or short finals) it should:

a. be within the defined circuit long final area;

b. be maintaining the runway heading (+/- a tolerance);

c. be aligned to meet the runway (+/- a tolerance);

(+/- 30 deg for Cat A and B and

+/- 15 deg for Cat C and D aircraft)

d. be in descent (negative attitude) to meet the runway (ie more or less a

constant glide path).

The aircraft in the approach area is most likely to maintain the current heading and

attitude if it is correctly aligned for landing. However, if there are slight

heading/tracking discrepancies, then an estimate of track corrections can be made ;

ie the projected trajectory would be from the current location to the runway

touchdown with the required deviation spread over a (to be defined) time. There is a

need then to define the touchdown point. When the touchdown threshold has

been defined, the projected trajectory to this point can be calculated. As it has

already been established that the agent is a proven long final candidate, ie is on track

for the strip, then a straight line approach to the strip could be assumed. The agent

track correction to threshold can then be projected:

Page 5- 35

x1,y1

q
xth,yth

q = tan-1((xth-x1)/(yth-y1)) [Eq 5-6]

Base Leg Trajectories

Consider an aircraft in the base zone. Its projected trajectory is dependent on

its location within that zone. For example, if the aircraft is in the first half of the

zone, it can be expected to initiate, continue or complete a rate 2 turn to a track of

rdir + 90 degrees (for left hand circuits): as shown in figure 5-21.

Base Zone

Figure 5-21 Base Leg Trajectories

In the second half of the zone, the aircraft needs to be aligned to the runway

by the end of the zone. For this, consider the rate 2 turn dynamics (Hames, 1971). A

rate “2” turn is where the aircraft turns through 90 degrees in 15 seconds. This rate

of turn can be achieved at a slow speed with a small radius or at high speed with a

large radius. The higher the speed, the higher the angle of bank. To determine the

value of “d” (the radius of the turning circle), for a speed of aircraft “v”.

Actual
heading at
time t

Projected trajectory
until projected track =
rdir + 90 degrees

Page 5- 36

For a rate 2 turn the aircraft travels {(2ãd)/ 4} metres in 15 secs. In 15 seconds, the

aircraft will travel 7.723v metres. Therefore:

d = (4 * 7.723v)/(2p)= 4.917v metres

Therefore, if an aircraft is, for example, in the base leg and;

a. is within distance “d” of the runway centerline then a rate 2 turn

could reasonably be expected;

b. will be within distance “d” of the runway centerline during the

projected trajectory, then commencement of a rate 2 turn at that point

should be anticipated.

Page 5- 37

Figure 5-22. Runway Operations

5.5 Rules Of The Road

Allowable operations at non-controlled airports are detailed in Aeronautical

Publication, Enroute 1.1 50-60. and reproduced at Annex A. Based on these

requirements, sets of acceptable conditions can be established. These can be

represented as shown in Figure 5-22 for the aerodrome runway and in Figure 5-23

for the aerodrome circuit area.

If on lineup
* If there is one on short final, advise it to go around.

Hold takeoff until
* the strip is clear to the upwind end of the runway
* If there is a preceding aircraft:

* that aircraft has commenced a turn
* if the runway is > 1800m, that aircraft has become

airborne and is > 1800m from the proposed lift off point
* if both aircraft have a MTOW < 2000kg, the preceding

aircraft is airborne and > 600m ahead of the proposed
takeoff point

If on landing roll
* If any on short final, then calculate closing speed.
If closing speed excessive, then advise the one os
short final
* When it vacates the strip, delete it from the active
data base.

If on takeoff over strip
*If any on crosswind, then
issue a warning

If on taxiway:
* Nil action unless near strip

* If near strip then if aircraft on short
final or base then check closing speed.
If closing speed presents a conflict,
then bar entry

Page 5- 38

Figure 5-23. Aerodrome Circuit Operations

5.6 Aircraft Equipment

For any system to be effective, there must be commonality of equipment

between aircraft, such that all aircraft can transmit the same data and can receive the

traffic information, traffic advisory and collision avoidance advice. However, as

stated in Section 2, this is not readily achievable as, for example, approximately 30

percent of VH registered GA aircraft that operate in non-controlled airports are not

equipped with transponders. Considering this, there is about a 10 percent possibility

that an aircraft in non-controlled airspace may not be detected by TCAS. This may

be due to an aircraft not having a transponder, the transponder not being serviceable

or not being turned on, at any one time. This deficiency would need to be addressed

and transponders made mandatory in all aircraft.

In taken off area
* If any on crosswind,

then check for conflicts.
If any conflicts, then
issue a warning

If on short final:
* If any on collision course, then evasive

action
* If any on strip then tell to go-around.
* If any slower aircraft on sfinal closer to

runway then :
* ensure the slower aircraft can land,

vacate or go-around; else
* abort, climb or go-around

* If any on base in closing conflict then issue
advisory

If on long final:
* check for conflicts

If on base:
* if other aircraft more advanced

then alert to extend base for
separation;

* if any on near long final then
check for conflict

If on downwind:
* check for separation,closing speed,
etc.

If on crosswind:
* check for conflicts

Page 5- 39

To ensure commonality, a minimum level of equipment would need to be

specified and this would need to be co-ordinated with other users and providers of

aircraft traffic information. Airservices Australia has a requirement by 2009 to either

replace the existing enroute radar network or to establish a system that delivers the

same or better result. They believe that the existing ADB-S technology can be

utilised to provide a simple aircraft identification and aircraft tracking system and

perhaps one-tenth of the cost of the existing radar network (Phelan, 2002). Operation

trials of a ADB-S system, using GPS and Mode S transponders are being conducted

by Airservices Australia with the aim to establish whether ADB-S can be used to

provide radar-like representations in areas outside full radar coverage. Additionally,

the aim includes provision of low cost units so make ADB-S affordable to general

aviation. The information transmitted by each aircraft, as a Mode S squitter, is:

a. Airborne or ground position (as appropriate), together with a

goodness indicator, every 0.5 seconds.

b. Barometric altitude.

c. Aircraft identification and type.

d. Airborne velocity, together with a goodness indicator.

e. A 24 bit code, set at avionics installation, for aircraft tracking.

On board aircraft, ADB-S information will be displayed on a multifunction display,

such a CDTI. A typical general aviation aircraft installation would be as shown in

Figure 5-24.

Page 5- 40

Figure 5-24 Typical ADB-S Set up

Any system used for collision avoidance at non-controlled aerodromes

should be integrated into existing and planned ADB-S communication networks and

CDTI.

5.7 Conflict Roles

The roles of pilot and ground controller, in identifying and resolving

conflicts, need to be defined and implemented so that the responsibilities of all

parties are clear and unambiguous. In a normal TCAS/TCAS encounter, each aircraft

transmits interrogations to the other via the Mode S link to ensure the selection of

complimentary resolution advisories. This interrogation system opens an avenue for

error. Any system should have a single controlling operator. Ideally, any system

employed should be a ground based alerting and resolution system to provide

guidance to aircraft to initiate avoidance manoeuvres. The ground based system

would act on data transmitted to it by all aircraft in the area of concern. The system

would then transmit to all aircraft appropriate advisories. To prevent any conflicts,

each aircraft should be presented with only that information and advice directly

related to that aircraft. This could be achieved by filtering in the aircraft receiver.

GPS

Mode S
Transponder

Page 5- 41

5.8 Response Interaction

An area of interest from the point of view of system stability is the

interaction of a ground based alerting system with the aircraft based alerting system

(Corker et al, 1995). In the operational concept illustrated in Figure 5-25, there are

two loops of alert and advisory information. The normal operational mode has the

controlling agent interacting with a conflict detection and resolution tool to provide

positive guidance to aircraft to initiate an avoidance manoeuvre, illustrated in the

outer control loop. The optimal time to alert is a function that depends on the trade

between conflict uncertainty and manoeuvre cost (Paeilli et al, 1997). The second

control loop concerns aircraft -to-aircraft communication and alerting. A concern in

this double loop is the convergence of loop control times.

Figure 5-25 System Stability

Delays t(4), t(5) and t(6) represent communication delays t(c). Delays t(1),

t(2) and t(3) are human automation delays t(a) and can operation in a serial or

parallel mode. This loop alerting structure of air traffic management has many

implications that need to be investigated to assure adequate design:

a. There are control and stability factors implicit in the design. As the

inner loop response time approaches that of the outer loop, stability

Page 5- 42

may be compromised in that controlling agent may be solving a

problem which has already been actioned or changed by the pilot(s).

b. Information exchange and information presentation for both air and

ground must be designed to complement as opposed to compete with

each other.

c. The level of individual and shared awareness in trajectory

modification and flight conformance needs to be defined.

d. The level of required awareness and performance impact of mixed

fleet operations and failed-mode recovery must be explored. for

multiple operators interacting with multiple aiding systems is

illustrated in Figure 5-25.

5.9 Recommended Model Solutions

By use of existing hardware, data can be extracted from aircraft that can

identify the aircraft and establish the aircraft’s 3D position. This data can be

refreshed at the rate of once per second. This data is currently used in TCAS and

ADS-B applications for collision prediction and avoidance. However, currently only

straight line trajectory predictions are made. This study has shown that it is possible

to project aircraft trajectories in the vicinity of aerodromes.

Based on an aircraft position, track and speed as it approaches an aerodrome,

the intention of the aircraft (or pilot) can be established with a degree of confidence.

This degree of confidence has not been established in this study. The intent of the

aircraft can be recalculated once per second to enhance confidence in the prediction

process.

Knowing the projected trajectory of all aircraft within the vicinity of an

aerodrome, a centralised ground based system can be employed to prevent collision

Page 5- 43

hazaeds by the application of a set of currently established rules. The ground based

system would transmit appropriate advisories to all aircraft. To prevent conflicts,

each aircraft would be permitted to receive only that information and advice directly

related to that aircraft.

Page 6- 1

SECTION 6

Appropriate Collision Avoidance Algorithms

6.1 Introduction

There are many techniques in assuring safe separation of aircraft. Schoppers

(1987) views it as an establishing of a set of possible environmental situations

according to what the local agents should produce in achieving their given goal. For

each possible situation that an agent can encounter, a reaction is specified. Normally,

these rules are contained inside a control loop, where the evaluation should be

performed in bounded time. Any resulting action steps should be elementary. The

reaction or behavioural plan can be looked upon as a mathematically motivated

generation where contexts can take an intermediate degree of truth, where desirability

functions are multivalued and where concurrent activation of behaviours is permitted.

In determining whether there is a likely collision conflict between local agents,

there are a number of established algorithms to determine the miss distance and the time

to the closest point of approach (T2CPA). These are encompassed in TCAS logic.

6.2 Time To Closest Approach (T2CPA)

Wolfgang (1995) used the principle that bodies approaching each other along a

straight path collide if the relative angle from one body to the other remains constant.

This approach, commonly referred to as the constant bearing method, uses two accurate

position data for each aircraft to calculate the miss distance and the T2CPA. For the

geometry shown in Figure 6-1, the minimum distance between the two aircraft is shown

to be :

Page 6- 2

()()
()

mindist =
- -

- - æèç
ö
ø÷ -

æ
èç

ö
ø÷

cos . .

.cos

0 1
2

0 1

0 1
0

1

1

0

1

2

peil peil dist dist

peil peil
dist

dist

dist

dist

[Equ 6-1]

Figure 6-1. Geometry for Constant Bearing Method

The distance between the two aircraft at the closest point of approach is

independent to the time between the two measurements. To determine the T2CPA the

time difference between the measurements must be known. Assuming a time difference

of one second, the T2CPA reduces to:

()()
()

t

dist

dist
peil peil

dist

dist

dist

dist
peil peil

min

cos

cos

=
- æèç

ö
ø÷ -

æ
èç

ö
ø÷ - æ

èç
ö
ø÷ - +

1

2 1

1

0
0 1

1

0

2
1

0
0 1

[Equ 6-2]

Derivation of these equations is detailed by Schild (1998).

Page 6- 3

In collision avoidance, to account for aircraft speeds, the T2CPA is more

important than the distance to go the CPA. To further this, the 'tau' concept was

developed in 1956. In the tau concept, the tau is an approximation of the T2CPA in

seconds and is equal to the slant range divided by the closing speed, ie

tu = T2CPA = - r/r' [Equ 6-3]

where tu is equal to T2CPA only if the distance of the aircraft m at the closest point of

approach is zero. In most cases, the distance will not be zero. The difference between

tau and T2CPA increases with miss distance m. When tu equals 2(T2CPA) the simple

tau criteria triggers the issue of an alert (the alerting threshold ta). This criteria does not

cater for low rate closures shown in Figure 6-2, nor does it cater for accelerating

aircraft. For this, the modified tau criteria (tm), in which a distance-threshold (Dm)was

introduced, was developed:

tm = - (r - Dm)/r' [Equ 6-4]

where aircraft with accelerations of up to:

a = 2.Dm/ta2 [Equ 6-5]

are protected. The modified criteria does lead to unnecessary large protected volumes.

For this reason, the Bramson criteria, which was implemented as the range test for the

TCAS standard, was introduced.

The geometry for the Bramson criteria is shown in Figure 6-3. The difference to

the modified tau criteria is that if the distance at the closest point of approach equals the

distance threshold, then the alert time (tb) should be equal to T2CPA. Thus :

tb = - (r - (Dm/r))/r' [Equ 6-6]

Page 6- 4

Figure 6- 2. Examples of Slow Closure Rates between Aircraft

Figure 6-3. Geometry for Bramson Criteria

Page 6- 5

6.3 Conflict Reaction Intensity

With TCAS III systems, aircraft react to others that are within range (nominally

15 nm). The severity of this conflict reaction generated by on-board TCAS system can

vary in intensity. The intensity depends on three factors (Alliott et al, 1997):

a. the reaction time left before the two aircraft loose standard separation,

b. the aircraft relative position and speed, and

c. the time needed to perform evasive manoeuvres.

Reactions are applied in the horizontal plane while aircraft are separated, and

vertically if they loose separation. Horizontal turn rate is limited to 3 degrees per

second. The aircraft are turned under full control of a reactive force, summed over all

neighbour aircraft. The force F exerted by an intruder Q on a reference aircraft P

includes a repulsive and sliding component, and is computed as follows (Figure 6-4):

F = (lv/(pq - hsep - 1)) (J | ((1/cosa)-1)I) [Equ 6-7]

where l = 1 if PQ.V >= 0 else -1

and cosa = -(V.I)/v

I is a unit vector with the same orientation as the reference aircraft, and J the unit vector

directly normal to I. V is the speed vector of Q relative to P (norm v, in kts) and PQ the

position vector of Q relative to P (norm pq, in nm). Let hsep be the horizontal

separation norm (.i.e: 5nm) If the aircraft Q is within ACAS range of P (pq < 15 nm),

and Q is closing on P (PQ.V > 0).

Page 6- 6

Figure 6-4: Model for ACAS III logic

6.4 Applicability Of T2CPA To Aerodrome Circuit Areas

As aircraft in the aerodrome circuit area do not necessarily fly straight line

trajectories, the application of T2CPA to determine closing speed, time to collision and

miss distances is not applicable. Consider the scenario shown in Figure 6-5 where one

aircraft is on a long final while a second is on the downwind leg, both at say 100 knots.

Using the T2CPA approach, while the aircraft paths do not intersect or even converge,

the closing speed is approximately 103 m/sec. If, for example, the two aircraft are at a

range of 2000 metres, with a minimum distance threshold of 1000 metres, the alert

time, using the Bramson criteria would be (using equation 6-6):

tb = -(r - (Dm/r))/r’

Page 6- 7

=-(2000 - (1000/2000))/103

= -1999.5/103

= 19.4 secs

but there is no likelihood of a collision hazard.

Figure 6-5. Aircraft Trajectories

However, if the probable paths of both aircraft are considered, there is a

probability of conflict. The aircraft on downwind is likely to execute a left turn onto the

base leg, followed by a further left turn onto finals. In this case, the aircraft will come

with close proximity to each other. To determine the point of probable closest approach,

the trajectories of each aircraft need be considered.

Predicting the expected trajectories of each aircraft in the circuit area can

introduce a degree of uncertainty into the model. Prediction of the expected trajectory

relies on the premise that the pilot is abiding by the rules of operation at non-controlled

aerodromes. For example, if the aircraft is in the first half of the base zone, the pilot can

be expected to turn until the aircraft is aligned perpendicular to the runway. Then, when

in the second half and within a minimum turning radius of the runway centreline, the

pilot can be expected to turn to finals and to continue this turn until the aircraft is

aligned with the runway.

Page 6- 8

Two trajectories must be assumed for each aircraft. The first is a projection of

the existing aircraft trajectory, ie no change to speed, attitude, rate of turn etc. For

example, if an aircraft is descending, wings level, at a rate of 500ft per minute, then at

the end of one minute, the aircraft can be expected to be one the same track but 500 feet

lower. In a second example, if the aircraft is in the circuit area approaching the base

turn, then the expected turn to base should be factored in the equation.

Minimum Separation Distance

As discussed in Section 2, paragraph 2.11, Krause (1995) showed that the

recognition and reaction time in a see and avoid situation is approximately 10.5

seconds. This includes the time to see the target (0.1 seconds), the time to recognize the

target (1 second) and the time to realize that there is a threat of collision (5 seconds). If

this data is independently ascertained and provided to the aircrew in a concise and

alerting manner, then the reaction time can be substantially reduced. Aircrew can be

positively advised of any threats; however, the reaction time to this advice would be

dependent on the equipment design and integration.

The aircraft speed within the aircraft circuit varies and factors used to estimate

this are detailed in paragraph 5-28 as follows:

a. Upwind ,Crosswind and Downwind zones, a speed factor of 1.

b. For the turn to Base, a factor of 0.9.

c. For the remainder of Base, 0.81.

d. Finals zone, a factor of 0.648.

For an aircraft approaching on downwind at 110 knots and using a minimum reaction

time of 10.5 seconds, the relevant minimum separation distances to stationary targets

would be approximately (for this aircraft) :

a. downwind - 595 metres ;

b. base - from 660 to 735 metres depending on the transition through the

base zone; and

c. finals - 920 metres.

Page 6- 9

However, for closing targets, for example, approaching aircraft, these distances would

be substantially reduced. Conversely, for aircraft travelling in more or less the same

direction, the distances can be extended as the closing speed would be reduced.

Accordingly, in determining minimum separation distances, the aircraft closing speed

is of prime concern.

The other factors to be considered in calculating the minimum separation

distance are the positioning errors introduced by the GPS, transponders and altitude

reporting equipment. As discussed in Section 5, the positioning errors due to the GPS

are minimal and would be exceeded by those changes to aircraft trajectory caused by

wind gusts. The largest errors would be introduced by the variations in squitter interval.

Based on the trials reported by the Eurocontrol Experimental Centre (Englmeier, 2000)

(refer paragraph 5.46), a means of time stamping the squitter of each aircraft would be

required. To ensure that the same time constants are used, the squitter would need to be

stamped on receipt by the central processor (ie time since receipt of previous squitter).

Vortex Separation Minima

Comprehensive vortex spacing requirements have been established by a number

of organisations. Hinton (1996) details requirements for a vortex predictor subsystem

which :

a. provide separations of aircraft from significant vortices along the final

approach path;

b. bases separation on based aircraft type only;

c. estimates the range of expected wake behaviour based on aircraft and

atmospheric uncertainties;

d. accepts feedback from wake sensors to ensure the wake behaviour does

not deviate from predictions - in this event the system would revert to a

default spacing criteria.

Page 6- 10

Vortex separation is estimated by calculating, for landing aircraft, the expected

time to reach the runway threshold. The expected time is estimated by examining the

projected trajectory of the target aircraft, taking into account its current location. For

example, an aircraft on the downwind leg can be expected to turn to base, then later turn

to final. An estimate of time for the aircraft to complete this can be made and this

estimate of time is updated every second as the real-time position of the aircraft is

received.

6.5 Summary

For uncontrolled airports, a minimum or two calculations of time to closest

approach need be made. Firstly, an estimation is required assuming that the aircraft will

maintain its current heading, speed and attitude; and, secondly an estimation needs to be

made assuming that the aircraft will follow the normal circuit pattern. These estimations

are updated every second.

For calculations involving no change of aircraft trajectory, use of the Bramson

criteria has been shown by Schoppers (1987) to provide a “best” estimation. Based on

work undertaken by Krause (1995), the distance threshold (Dm) should be based on a 10

second reaction time . Any conflict reactions would be best served by limiting the

evasion tactic to a normal 3 degrees per second turn rate.

For calculations involving a change in aircraft trajectory, the projected trajectory

of each aircraft needs to be computed and the miss distance at each trajectory point be

calculated. If this miss distance is less than the distance threshold above, then a problem

could assumed to exist.

The benefit to be gained in establishing a wake separation system is

questionable. At an uncontrolled airport, the question is not to maximize aircraft

capacity but to ensure adequate separation between aircraft, Accordingly, the continued

use of standards currently specified (refer Section 5) would appear to be acceptable.

Page 7- 1

SECTION 7

System Structure

7.1 Design Requirements

Any effective collision avoidance system needs position information on all

aircraft within the affected area. In the proposed system, each aircraft’s absolute-

position and heading information are both determined using GPS. The information is

used to transmit (squitter) position to a ground based processing centre or agent and

is used in the traffic alert processing. To minimise the cost of the system, its design

should be oriented toward that of a situational awareness display for the pilot.

Consequently, no controls or pilot selectable functions for the system are required

except that of a simple on/off switch. GPS position coordinates coupled with an

aircraft identification (ID) are periodically transmitted - squittered - using a "Mode-S

look-a-like" message format. Aircraft ID is provided so that the processing can

associate successive position messages emanating from the same aircraft. The traffic

alert function is derived by processing each aircraft’s relative position. Relative

positions computed to be within the alert volume are considered traffic alerts and

generate traffic advisories and warnings to the affected aircraft control/display unit.

The possibility of the proposed system compatibility with future TCAS systems

should be enhanced by the use of a standardized Mode-S type message format. This

will require the next generation of TCAS to be able to process the extended TCAS

squitters, but would require little or no additional hardware since the system radiates

on the Mode-S downlink channel frequency of 1090MHz.

The functional requirements for the proposed system should be derived from

the operational requirements and for similar systems, these have been stated by the

Rannoch Corporation (Smith et al, 1994) as follows:

Page 7- 2

a. The system should provide situational awareness to the pilot in the

form of location and heading trend of nearby aircraft.

b. The system range should be sufficient to provide aircrew with

adequate time to visually acquire targets and change course or altitude

as necessary. Based on existing TCAS performance measures, this

should be no less than 30 seconds .

c. The system should be compatible with the existing TCAS system.

d. The system should a surveillance positioning accuracy (navigation)

performance that is at least as good as the existing TCAS surveillance

accuracy performance. This will ensure compatibility with the logic

and advisory functions of TCAS.

e. The system shall alert the pilot when new, not previously displayed

traffic have encroached upon own-aircraft and are within the airspace

protection volume.

f. The system shall be capable of being installed and used effectively by

small to medium-sized GA aircraft including, single-/multi-engine

propeller, single-/multi-engine turboprop, and light helicopters.

Larger helicopters and large multi-engine turboprop commuter

aircraft are assumed to equip with the more sophisticated TCAS

system.

g. The system performance shall not be adversely affected by variations

in own aircraft speed and attitude. It is expected that typical GA

aircraft will operate with: airspeeds up to 250 kts; continuous bank

angles up to 40°; aircraft pitch angles between 10° nose down and 25°
nose up; and rate 3 turns.

Page 7- 3

h. The system coverage and the position quality of the surveillance

function shall not be adversely affected by weather, e.g., heavy rain.

As far as practical, the design of the display-to-pilot interface shall be

geared toward simplicity and standardization. The system should

provide display information that is easily interpreted by the pilot and

aids visual acquisition of target aircraft.

i. The system shall be capable of tracking and displaying intruder

aircraft position for the maximum number of aircraft that can be

expected to be within the surveillance range at any given instant. This

is estimated to be a maximum of 6 aircraft.

7.2 The Hardware

The prime concern is to acquire accurate aircraft position and identification

information. Many previous analyses in terminal areas have used radar surveillance

data recorded from terminal radar systems (Cohen et al, 1998). These analyses have

required conversion and post processing of radar tapes from air traffic control.

Problems with this type of analysis include a low data update rate (once per 4.8

seconds in the terminal area), sufficient coverage at low levels (below the radar cut-

off), data latency (it can be up to 2 seconds old), and the intensive task of manually

sorting and parsing data from the tapes.

For the proposed system, use of Mode S transponders with extended squitter

is intended. Each aircraft determines its own position using an integrated GPS

receiver1 and continually broadcasts this information. Within the vicinity of an

uncontrolled aerodrome, a ground unit receives and processes the squitter. Following

receipt of a squitter message, the remote system determines the range, relative

bearing, attitude and altitude of the aircraft. These data are provided to collision

avoidance logic for threat detection and resolution. The aircraft attitude is calculated

1 Any such GPS would need to be IFR-certified to reduce possiblitiy of errors.

Page 7- 4

from the altitude changes. If a threat is detected, the system generates an advisory to

the affected aircraft.

Figure 7-1. System Hardware

The detailed specification of the system hardware is not the subject of this

dissertation. What has been recognised is that there is hardware in existence that is

capable and available of being adapted to suit the proposed system. A typical system

is shown in Figure 7-1. The prime concern of this dissertation is the system

intelligence used to generate traffic advisories and collision warnings. There are

numerous questions that need to be resolved concerning aircraft hardware. The most

important point is that all aircraft must be similarly equipped and have must have the

equipment switched on and serviceable at all times during operations near

uncontrolled airports. A method of ensuring this is mandatory. For the installation

of equipment to be inviting, the cost of the system should be kept low.

7.3 The Intelligence

The proposed system would consist of seven modules to prevent conflicts

(refer Figure 7-2):

GPS

Mode S Transponder

Alert Display

Page 7- 5

a. the weather module which monitors the weather conditions,

determines active runway status and formulates an ATIS for

broadcast;

b. the data module which maintains a current knowledge base of aircraft

within the zone of influence and which builds on aircraft

characteristics to obtain a more accurate signature of aircraft

behaviour;

c. the error module to apply error corrections to the GPS aircraft

position data;

d. the detection module to detect whether a conflict exists, or based on

current aircraft trajectories, whether a conflict is likely to exists

within a certain time span;

e. the control module which examines aircraft within the immediate

circuit area to ensure that current operational procedures can are

enforced;

f. the strategic module to compute safe aircraft trajectories to avoid

conflicts;

g. the advisory module to broadcast traffic advisories;

h. the regulation module to ascertain whether advisories are being

actioned and, if not, to advise all stations of ‘blind’ aircraft in the

area.

.

P
age

7-
6

Page 7- 7

Weather Module. The weather module provides, at regular intervals, details

of the local environmental conditions including, wind direction and speed, and air

pressure (QNH). Based on the wind direction and speed, the module determines the

active runway and formulates the ATIS for broadcast by the advisory module. The

ATIS would be simplified and of the format:

R09,QNH1013,W180/23,ClosedXwind [Active runway 09, QNH 1013mm, wind from 180

degrees at 23 knots, runway closed due to crosswind]

or

R09,QNH1020,W260/20,CWS3 [Active runway 09, QNH 1020mm, wind from 260

degrees at 20 knots, crosswind 3 knots from starboard]

Data Module. The data module maintains a database of known aircraft

within the current register and their basic flight characteristics in terms of takeoff,

climb, cruise, landing and stall speeds so that aircraft trajectories can be predicted

during circuit scenarios. Additionally, the module also maintains a database of the

realtime aircraft flight characteristics to enable the current aircraft speed, altitude,

attitude and track to be monitored. The ability of the data module to accurately

identify an aircraft would be dependent upon the accuracy of the database. As new

aircraft are put into service, and as aircraft registrations occasionally change, the

database becomes less reliable. The database would need to be updated and made

available on a regular basis. The module would not be able to determine the

registration number of foreign aircraft unless a databases of their registered aircraft

and corresponding Mode S addresses are made available. The basic structure of the

databases would include the following:

a. Current aircraft register:

TYPE prectype IS RECORD
ident : VString ; -- aircraft identification
ptype : Vstring ; -- aircraft type
cruise : integer -- cruise speed (knots)
climb : integer ; -- climb speed
toff : integer ; -- takeoff speed

END RECORD ;

Page 7- 8

b. Database of realtime flight characteristics:

TYPE pstatstype IS RECORD
ident : VString ; -- aircraft identification
ptype : VString ; -- aircraft type
cruise : integer ; -- cruise speed
climb : integer ; -- climb speed
toff : integer ; -- takeoff speed
cx : float ; -- curent x position
cy : float ; -- current y position
chgt : float ; -- current height
oldx : float ; -- previous x position
oldy : float ; -- previous y position
oldhgt : float ; -- previous height
knots : float ; -- current speed
maxspeed : float ; -- aircraft maximum speed
heading : float ; -- current heading
oldheading : float ; -- previous heading
dheading : float ; -- projected heading change
attitude : attarray ; -- attitudes for last 10 seconds
altitude : attarray ; -- altitudes for last 10 seconds
advicegiven : integer ; -- time since advice given
rgn : VString ; -- current circuit zone
transition : float ; -- transition in current zone

END RECORD;

Data on foreign aircraft registrations are readily available from the relevant

authorities and regular update of the data module database would not present

problems.

Error Module. The error module applies corrections and tolerances where

required to allow for errors introduced through GPS, altimeter and transponder

variances. However, as detailed in Section 5, these corrections, with the exception of

Differential GPS corrections, would be minimal. Greater errors could be introduced

by movement of the aircraft by wind gusts during the landing sequence.

Additionally, the large distance and time thresholds used would be more than

adequate to cater for these variations.

Detection Module. The detection module projects existing aircraft

trajectories to determine whether conflicts are likely to exist within a predefined

period. Two trajectories are considered ; the current heading, speed and attitude and,

secondly, the expected trajectory taking into account the aerodrome landing pattern.

If there is a probability of a collision hazard, the time to the event is provided. For

trajectories involving constant headings, the Bramson criteria is used to provide the

time to closest point of approach. For projected trajectories involving heading

Page 7- 9

changes and circuit area manouvering, the expected location of each aircraft for a

period of the next 40 seconds is examined. Code used to calculate the closest point

of approach for both occurences is shown at Annex E.

Control Module. The control module applies the approved operational

circuit area rules to aircraft within and near the local circuit area. A summary of the

rules applied to each circuit zone are contained at Annex F and sample code (for

checking conflicts on short finals) is shown at Annex G. Additionally, the module

would apply criteria for separation requirements for vortex spacing. Where conflicts

exist or a likely to exist, details are passed to the strategic module.

Strategic Module. The strategic module designs a course trajectory for the all

aircraft in the conflict in the form of a suggested safe heading. The module will

determine a sequence of manoeuvres which will resolve the conflict assuming the

worst possible actions of the other aircraft. The strategic module then passes the

information to the advisory module. Where the offending aircraft is outside of the

defined landing circuit zones, the module calculates and advises, where possible, of

a course correction to avoid the potential collision. Where the aircraft are within the

circuit zones, appropriate evasion advisories are generated to a provide visual and

audible; for example;

a. for an imminent collision -- traffic traffic

b. to abort a procedure -- climb and abort
traffic on finals, climb and abort

other base traffic, climb and abort

c. wing vortex hazards -- vortex hazard - go around

d. to delay by orbiting -- traffic on downwind - orbit

traffic on base - orbit

Sample code is shown at Annex H.

Page 7- 10

Advisory Module. The advisory module packets the traffic advisory solution

for broadcast. A typical data packet is envisaged to be of the format:

#UNX,-1236,2966,1100,270#TBF,-433,3245,1100,270#@TA@EVTBF-1400,@

Regulation Module. For aircraft subject to advisories, the regulation module

compares aircraft positions to that expected post advisory. If no action has been

taken by an aircraft, the module advises all aircraft of the non-communicative

aircraft and to adopt extra caution.

To assess the effectiveness of the proposed intelligence, an evaluation model

was developed and scripted in ADA95 (AdaGIDE v 6.22.10) and using the

Gwindows binding. GWindows, is an Open Source Ada 95 Win32 RAD

Framework, and includes extensive bindings to the Windows GUI. It is tightly

integrated with GNATCOM, the Ada 95 COM/DCOM/COM+ Development

Framework and Tools. The source code for the evaluation model is provided on a

supplementary disk with this thesis and the use of the model is discussed in Section

8. A tool was also compiled to create position data files for aircraft approaching the

aerodrome circuit area. These files provide simulated squitter information to the

intelligent controller.

Position data for
aircraft UNX

Position data for
aircraft TBF

Start tag for
traffic
advisories. Nil
advisories shown
here

Evasion
tactic for
TBF

Page 8- 1

SECTION 8

System Evaluation

8.1 Introduction

To evaluate the effectiveness of the proposed intelligence, a computer model

was developed. The model, ‘FTower’, was designed to:

a. accepted a simulated squitter input from a number of aircraft;

b. from the squitter, interpret the position of all aircraft;

c. maintain a running database on aircraft in the aerodrome area so that

characteristics of aircraft can be learned.

d. knowing the position of all aircraft, apply the “rules for non-controlled

aerodromes” to determine if collision hazards exist.

e. if hazards do exist, then generate collision advice and evasion

suggestions for transmission to the relevant aircraft;

f. maintain a watching brief on all aircraft post advice to ensure that the

advice offered is noted ;

g. to provide a simulated uplink of data to aircraft.

To evaluate the aircraft receiver, a software receiver simulator was developed

to accept, decipher and display the uplink data. The details of the simulated receiver are

provided below.

Page 8- 2

8.2 Model Description

Data Requirements

The graphical user interface to Ftower is shown in Figure 8.1. Ftower has as

inputs:

a. a simulated squitter stream from aircraft,

b. an aircraft database,

c. an aerodrome database, and

d. a environmental data stream feeding current weather data including:

(1) wind speed and direction, and

(2) atmospheric air pressure.

Aircraft Squitter. To generate the aircraft squitter stream, a tool was developed

to calculate aircraft tracks through a typical aircraft landing sequence. The initial input

to the tool is shown in Figure 8-2. Then, for each aircraft to be included in the

immediate simulation, the data required in Figure 8-3; namely; the aircraft start point

(x,y,z), the initial speed and heading and lastly the aircraft ID. The output of the tool is

a data file (*.rad) which contains a simulated squitter from all aircraft. The data

includes:

a. aircraft ID,

b. aircraft squawk code,

c. aircraft vector and range from runway centrepoint, and

Page 8- 3

Figure 8-1. Ftower Graphical User Interface

Figure 8-2. Initial Data Input Figure 8-3. Aircraft Start Point Data

Page 8- 4

d. aircraft altitude.

Aircraft Database. For the model, the aircraft database is minimalist and

contains the basic identification and performance parameters for each aircraft. It is in

the form of a comma-separated (CSV) file which can be edited by any spreadsheet.

The parameters for each aircraft are;

a. Aircraft registration,

b. aircraft type,

c. cruise speed (knots) ,

d. climb speed (knots), and

e. take-off speed (knots).

Aerodrome Database. The aerodrome database is also minimalist and contains

the runway(s) dimensions and location in terms of:

a. runway identification,

b. runway direction (degrees),

c. runway length,

d. runway width,

e. location of runway with respect to the aerodrome reference point, and

f. the height of the runway above mean sea level.

Page 8- 5

The data is contained in a CSV formatted file.

Weather Data. The environmental data stream is fed from a file containing the

atmospheric air pressure (eg 1010 mb) and wind speed and direction (eg 85/10 - wind

from 085 degrees at 10 knots). The weather is sampled every five seconds.

Operation

The controls associated with Ftower are:

a. Log In/Log Out - primarily used for research purposes; access can be

gained using ftower/ftower as the username and password.

b. Airport - used to load the airport runway data.

c. Aircraft - used to load aircraft database files.

d. Squitter - used to initiate squitter input; the squitter is sampled on a

nominal one second interval; however, for the evaluation conducted, this

period was reduced to minimise model run time.

e. Target - used to designate the target aircraft by aircraft identification, ie

the user’s aircraft.

f. Zoom In/Zoom Out - to increase/decrease the scale factor for the ‘radar’
screen.

g. Save/Load CFG - to save/download evaluation aircraft/airport data

configurations.

P
age

8-
6

Page 8- 7

Receiver Simulator

The simulated receiver is shown in Figure 8-4. The receiver provides:

a. A display showing aircraft within the vicinity. The owner aircraft (in

this case TBF) is shown at the bottom centre of the screen. The other

aircraft in the area in UNX at an altitude of 1100 feet. The range circles

are at 1 NM radius and centred on TBF. The runway is shown as the

vertical line approximately 1 NM left of the aircraft.

b. The current aerodrome information in terms of current active runway

(R09), the barometric pressure (QNH1010), the wind direction (degrees

magnetic) and speed (knots) (W85/24), and the runway crosswind

component (CWP2 - 2 knots from port) .

c. Details of any traffic advisories (time to known collisions and with what

aircraft).

d. Details of evasion tactics to required to attain or maintain required

separation between aircraft (TBF advised to orbit to provide separation).

8.3 Evaluation

For non-controlled airports, hazardous conditions exist when aircraft are on

collision course or when the operation of one aircraft adversely affects the safe

operation of one or more aircraft within the vicinity. To assess the ability of a rule

based system to “control” non-controlled airports, several aircraft/aerodrome scenarios,

which cover these circuit area hazardous situations, were evaluated.

Page 8- 8

a. A simulation of two aircraft (UNX and TBF), initially both on

downwind, with UNX as the lead aircraft. The simulation then

progresses with:

(i) one aircraft on downwind and one on base leg;

(ii) both aircraft on base;

(iii) one aircraft on base and one on finals;

(iv) both aircraft on finals; and

(v) one aircraft on finals and one on the runway.

b. Three aircraft (UNX, TBF and GMB) with TBF on finals, UNX on the

runway and GMB outside the circuit area; and

c. Three aircraft (UNX, TBF and GMB) with UNX on downwind, TBF on

long finals and GMB outside the circuit area but approaching for entry to

base.

Simulation #1

The flight paths of both aircraft are shown in Figure 8-5. The output file for the

simulated scenario of two aircraft on downwind is shown in Annex I. The advice

presented to this aircraft was as shown in Table 8-1.

Page 8- 9

Figure 8-5 Simulation #1

The model provided appropriate warnings (evasion tactics) to TBF to avoid

conflicts with UNX. (ie initially orbiting to provide a time separation between aircraft).

In actual scenarios, the pilot of TBF would follow this advice. However, for the

simulation, the aircraft was made to continue its existing course. This then led to the

generation of further tactics to gain separation ending in the tactic to climb and abort

the landing. Throughout the sequence, traffic advisories were issued to advise of

imminent collisions between the two aircraft (i.e. instances where the distance

threshold between the two aircraft was breached) . The advisory issued at the 86 second

mark was based on the actual headings of the aircraft. The remainder were based on the

projected trajectories.

Simulation #2

The flight paths of the three aircraft are shown in Figure 8-6. TBF is stationary

on the runway, UNX is on finals and GMB flying outside the circuit area. The output

file for the simulated scenario of the three aircraft is shown in Annex J. The advice

presented to this aircraft was as shown in Table 8-2

Page 8- 10

Time Evasion Tactic Traffic Advisory
Period UNX TBF

2-34 nil orbit - other aircraft on downwind
35-50 nil orbit - other aircraft on base
51-60 nil climb and abort - other aircraft on

base
61-72 nil climb and abort - other aircraft on

base
UNX/TBF collision in xx
secs

73-85 nil climb and abort - other aircraft on
base

86 nil climb and abort - other aircraft on
base

UNX/TBF collision in xx
secs

87-160 nil climb and abort - other aircraft on
base

161-179 nil nil
180-209 nil climb and abort - traffic on finals
210-233 nil climb and abort - traffic on finals UNX/TBF collision in xx

secs
234-236 nil climb and abort UNX/TBF collision in xx

secs

Table 8-1. Simulation #1 Summary

Page 8- 11

Time Evasion Tactic Traffic Advisory
Period UNX TBF GMB

2-5 Possible vortex hazard - go
around

nil nil nil

6-34 Possible vortex hazard - go
around

nil nil UNX/TBF to collide in xx
secs

35-50 climb and abort nil nil UNX/TBF to collide in xx
secs

Table 8-2. Simulation #2 Summary

Time Evasion Tactic Traffic Advisory
Period UNX TBF GMB

1-38 nil nil nil nil
39,40 nil nil nil TBF/UNX to collide in xx

secs
41-57 climb and abort - traffic on

final
nil nil TBF/UNX to collide in xx

secs
58-60 nil climb and abort - traffic on

base
nil TBF/UNX to collide in xx

secs
61 nil climb and abort - traffic on

base
nil nil

62,63 nil nil nil TBF/UNX to collide in xx
secs

64-121 nil nil nil nil

Table 8-3 Simulation #3 Summary

Page 8- 12

Figure 8-6. Simulation #2

The model predicted a possible vortex hazard to UNX until UNX was

approximately 800 metres from the runway centrepoint. The model then advised UNX

to climb and abort. GMB presented no hazards or conflicts. As TBF was stationary and

as there was no record of any previous movement of the aircraft, there was probably no

vortex hazard to UNX present. However, because of the lack of history, the worst case

scenario was assumed and the hazard treated as real.

Simulation #3

The flight paths of the three aircraft are shown in Figure 8-7. TBF is flying

through the base leg and intersecting the finals zone in close proximity to UNX, UNX

is on finals and GMB overflying the circuit area at 2000 feet altitude. The output file

for the simulated scenario of the three aircraft is shown in Annex K. The advice

presented to this aircraft was as shown in Table 8-3

Page 8- 13

Figure 8-7 Simulation #3

From the 41 second mark to the 60 second mark, the model generated traffic

advisories, to convey that UNX and TBF were on a collision course. The advisory was

based on the predicted trajectories of both aircraft. In the 61 and 62 second time lines,

the basis of the advisory changed to the actual aircraft headings. Between the 41 and

60 second points, initially UNX was advised to climb and abort due to traffic in the

finals zone. The offending aircraft was TBF which was transgressing through the base

zone during the period. The advisory then changed to advise TBF to climb and abort as

UNX entered into the lower limit of the base zone.

Results Summary

The evaluation showed that used of a rule based system as the basis of an

intelligent remote air traffic control system for non-controlled airports is a viable

proposition. In all evaluation cases, collision hazards were identified and evasion

tactics generated. For a full operational system, the application of the rules and

definition of the aircraft circuit area may need refining; however, the results are

certainly encouraging.

Page 9- 1

SECTION 9

Conclusions

Research was undertaken to examine the feasibility of a remote intelligent air

traffic control system for use at uncontrolled airports. The research culminated in

defining requirements for such a system and evaluating the operation of such a

system.

The application of agent structures to air traffic control was investigated. A

conventional air traffic control complex was found to be a multi-agent system and

achieving any kind of effective co-operation between the agents was found to be

difficult. There exists an avenue for uncertainty in achieving effective coordination

and an undesirable expense of significant computational resources in terms of

communication delays, computational and data processing. Thus, it may not be

worthwhile to acquire a complete view of other agent’s activities. Additionally, for

aircraft, not all the required data is readily available for real-time continuous

dissemination to all stations within the local area.

Some researchers suggest that problem multi-agent systems could possibly be

approached by addressing all expertise in the form of explicit constraints which could

be collected and processed by a centralised constraint-satisfaction algorithm. Simply,

all knowledge could be represented as declarative constraints, all that would be

required is a simple look-up of constraint sets. Within the aerodrome circuit area,

aircraft are bounded by general area constraints, and to achieve their aim of landing,

taking-off or touch-and-go where specific pathways are required, a form of centralised

coordination would deem to be necessary. The centralised organisation should be

responsible for collecting all available data from each agent (aircraft), processing this

data to determine if conflicts exist and, if so, generating resolutions ensuring that

mandatory space constraints are complied with. The algorithms required for this could

Page 9- 2

be case-base learning which can then be used to improve solution quality and to

augment or replace runtime communication of conflict feedback.

There are numerous mathematical models and fast time simulation facilities in

use for air traffic simulation and management. However, no model has the flexibility

to cope with the aircraft circuit area with its aircraft trajectory uncertainty factors. The

established models assume that there is an acceptable solution and attempt to find this

solution through a variety of methods. However, for non-controlled airport

applications, acceptable solutions are not of prime concern. The most important goal

is to predict possible trajectories for the aircraft within the circuit area, then to

ascertain whether conflicts will arise if these trajectories are followed. If conflicts do

exist, the system must provide a form of warning to advise the aircraft pilot(s) to take

evasive action. Additionally, it was recognised that system considered should have the

flexibility to accept new filters for changing operation scenarios.

The evaluation of the system proposed by this research showed that used of a

rule based system as the basis of an intelligent remote air traffic control system for

non-controlled airports is a viable proposition. In all evaluation cases, collision

hazards were identified and evasion tactics generated. For a full operational system,

the application of the rules and definition of the aircraft circuit area may need refining;

however, the results are certainly encouraging.

In the proposed system, each aircraft’s absolute-position and heading

information are both determined using GPS. The system is used to transmit (squitter)

position to a ground based processing centre. To minimise the cost of the system, its

design should be oriented toward that of a situational awareness display for the pilot

with little or no selectable functions except that of a simple on/off switch. GPS

position coordinates coupled with an aircraft identification (ID) are periodically

transmitted - squittered - using a "Mode-S look-a-like" message format. Aircraft ID is

provided so that the processing can associate successive position messages emanating

from the same aircraft. The traffic alert function is derived by processing each

aircraft’s relative position. Relative positions computed to be within the alert volume

Page 9- 3

are considered traffic alerts and generate traffic advisories and warnings to the

affected aircraft control/display unit.

The possibility of the proposed system compatibility with future TCAS

systems should be enhanced by the use of a standardized Mode-S type message

format. This will require the next generation of TCAS to be able to process the

extended TCAS squitters , and would require little or no additional hardware.

The system relies on all aircraft being similarly equipped with a GPS, capable

of operating differentially, and a Mode S Transponder. A method of ensuring the

aircraft are suitably equipped would need to be addressed if such a system were to be

adopted.

Page 10-1

Section 10

References

Aeronautical Information Publication Enroute 1.1 50-60

Airservices Australia (1998) Visual Navigationl Chart VNC-11 effective date 16 July
1998

Airservices Australia (1999), Aeronautical Information Service, Canberra, AIP
Supplement H68/99.

AirServices Australia (2000) Implementation of FANS-1/A Datalink Operations Melb
FIR AIRAC H66/99

Airservices Australia (2003) Operation at Non Controlled Aerodromes”,Air Services
Australia, AIP Enroute 1-1, pp50-60

Alliot JM, Bosc JF, Durand N, Maugis L (1997) An Experimental Study of ATM
Capacity

Alliot JM, Durand N, Granger G (1998) FACES: a Free Flight Autonomous and Co-
ordinated Embarked Solve, CENA/ENAC .

Alur R and Dill D (1994) A Theory of Timed Automata, Theoretical Computer
Science, pp126:183-235.

Alur R, Courcoubetis C , Heinzinger TA, Ho P-H, Nicollin X, Olivero A, Sifakis J
and Yovine S (1994) The Algorithmic Analysis of Hybrid Systems ,Proceeding of 11th
International Conference on Analysis and Optimization of systems; Discrete Event
Systems, pp331-351, Springer-Verlag

Anon (no date) NAVMAN GPS System [online]. Available from
http://www.navman.com. Accessed on 7 July 2000.

Anon (1995) Final Report of RTCA Task Force 3: Free Flight Implementation,Radio
Technical Commisson for Aeronautics, Washington Dc, October.

Anon (1998) ,”Introduction to Nature-Inspired Algorithmic Techniques”, EvoNet
Flying Circus, 20 April 1998.

Anon (2000) Fast Forward to Free Flight, Flight Safety Australia,Volume4, Number
3, May-June 2000.

Anon (2000b) Confidential Aviation Incident Reporting Flight Safety
Australia,Australian Transport Safety Bureau,September-October 2000,p56.

http://www.navman.com.

Page 10-2

Anon (2000c) Fast Forward to Free Flight Flight Safety Australia, Civil Aviation
Safety Authority, Vol 4 No 3, May-June 2000, pp28-33.

Anon (2003) IBM Agent Building Environment Developers Toolkit Available from ,
http://rtdcs.hufs.ac.kr/docs/ intelligent_java/abe/ docs/abeov.htm, Accessed January
2003.

Australian Ultralight Federation (2002) Circuit, Landing and Approach. Available
from : www.auf.asn.au/ groundschool/ contents.html

Barnier N, Brissett P (2001), FaCiLe: a Functional Constraint Library, ENAC-CENA
Tououse, France [online]. Available from http//www.cwi.nl/projects/
elpnewsletter/may01/nav/facile.html Accessed 2001.

Bergault DR (No date) 3-D Audio Traffic Alert and Colliion Avoidance System
[online] Available from http://vision.anc.nasa.gov/HST/ Brief/ Auditory.S .T/ 3-
D.A.T.html. Accessed on 19 January 2000.

Brugali D and Sycara K (1998) Agent Technology : a New Frontier for the
Developement of Application Frameworks Carnegia Mellon University, Report
AF1204, Pittsburg, PA.

Bureau of Air Safety Investigation(1999) CAIR Reports,Asia-Pacific Air Safety,
Australia, Issue 22.

Cardelli L (1994) Obliq: A Language with Distributed Scope SRC Research Report
122.

Civil Aviation Safety Authority (1998) Visual Circling Approaches, Civil Aviation
Safety Authority Poster, Issue 1

Civil Aviation Safety Authority (1999) Safety Boost for Regional Airports”, Media
Release, Civil Aviation Safety Authority, 30 April.

Civil Aviation Safety Authority (2000a) Notice of Proposed Rule Making NPRM
0006AS Provision of Aerodrome Radio Services”, p6.

Civil Aviation Safety Authority (2000b) Operation at Non-Controlled Aerodromes,
Advisory Circular AC 91.23(0) Draft, Civil Aviation Safety Authority, Australia.

Cohen B, Smith A (1998) Implementation Of A Low-Cost Ssr/Ads-B Aircraft Receiver
Decoder (Sy-100) IEEE. AIAA 17th Annual Digital Avionics Systems Conference.

Commonwealth Departmewnt of Transport and Regional Services (1999) Collision
Avoidance Procedures at Non-controlled Aerodromes” Asir Safety Interim
Recommendation No IR99079.

http://rtdcs.hufs.ac.kr/docs/
http://www.auf.asn.au/
http://vision.anc.nasa.gov/HST/

Page 10-3

Corker, K. M., & Pisanich, G. M. (1995) Analysis and modeling of flight crew
performance in automated air traffic management systems. Presented at: 6th
IFAC/IFIP/IFORS/IEA Symposium: Analysis, Design, and Evaluation of Man-
Machine Systems. Boston MA.

Craige ID (No Date) A Perspective on Multi-agent systems, University of Warwick,
Research Report 273, Coventry,UK

Creedy S (2000) Kickstarts for air system The Australian, Friday 25 August p1.

Crosby GK, Kraus DK ,Ely WS, Cashin TP, McPherson KW, Bean KW, Stewart JM,
Elrod BD (No Date) A Ground-based Regional Augmentation System (GRAS) – The
Australian Proposal, Airservices Australia ITT Industries, GNSS Program Office
Advanced Engineering & Sciences.

Durand N, Alech N, Alliot JM and Schoenauer M (No Date) Genetic algorithms for
optimal conflict resolution in Air Traffic, CENA/ENSEEIHT/IRIT/CMAPX.

Durand N, Alliot JM and Medioni F (No Date) Neural Nets trained by genetic
algorithms for collision avoidance.

Earl C and Firby J (1996) Combined Execution and Monitoring for Control of
Autonomous Agents ,Artificial Intelligernce Laboratory, Report TR-96-19, University
of Chicago, Chicago, Il.

Elliot JM, Bose JF, Durand N and Maugis I (1997) CATS: A Complete Air Traffic
Simulator”. Available from http:// www.recherche.enac.fr/
opti/pspers/articles/DASC97/ Irvine.html.Accessed 18 January 2001.

Englmeier HP (2000) Squitter Evaluation, Eurocontrol Experimental Centre,
Bruxelles, EEC Note No 04/2000 (Version 2).

Eschenbach (2000) GPS Based augmented realitycollision avoidance system US
Patent 6,064,335 [online] Available from http://patents.uspto. Accessed on 10
September 2000.

Evers C (1997) Surveillance Monitoring of Parallel Precision Approaches in a Free
Flight Environment ,AIAA 16th Annual Digital Avionicvsd System Conference.

Evonet (1998) Genetic Algorithms Evonet Flying Circus, Chapter III, [online].
Available from www.evonet.com. Accessed om 23 September 2000.

Federal Aviation Authority (No date) GPS Squitter Technology [online] . Available
from www.faa.gov/ and/and300/ bdatalink/ navsur/gps.htm. Accesssed on 19 January
2000.

Federal Aviation Authority (No date) Automatic Dependent Surveillance Broadcast
(ADS-B) [online] . Available from www.faa.gov/and/and300/ atalink/ avsur/adsb.htm.
Accessed on 19 January 2000.

http://
http://www.recherche.enac.fr/
http://patents.uspto.
http://www.evonet.com.
http://www.faa.gov/
http://www.faa.gov/and/and300/

Page 10-4

Flight Safety Australia (2000) Nov-Dec 2000, p87.

Franklin S and Graesser A (1996) Is It an Agent or Just A Program?:A Taxonomy for
Autonomous Agents ,Proceeding of the 3rd International Workshop on Agent
Theories, Architectures and Languages, Springer-Verlag.

Fraughton et al (1992) Universal dynamic navigation, surveillance, emergency
location, and collision avoidance system and method US Patent 5,153,836 [online]
Available from http://patents.uspto. Accessed on 10 September 2000.

Georgeff MP (1991) The Role of Artificial Intelligence Industrial Applications
Australian Artificial Intelligence Institute, Tech Note 1-1991, Melbourne Victoria.

Greaves D (No Date) Intelligent Search Agents Available from
http://knapplets.org/report/reports.html. Accessed January 2003.

Hames CS (1971) The Private Pilot Technical Education Division, Education
Department of Western Australia, p65.

Hansman RJ, Kuchar A, Clarke J, Vakil S, Barhydt R, Pritchett A (No Date)
Integrated Human Centered Systems Approach to the Developement of Advanced Air
TrafficManagement USA

Harvey C (2000) Air-Traffic Trial in Games Rush The Australian, Monday July 10,
p5.

Hayden S (1998) Engineering Coordinated Multi-Agent Systems , Report CMPT1998-
20, Simon Frazer University.

Henzinger TA (1996) The Theory of Hybrid Automation Proceeding of the 11th
Annual Symposium on Logic in Computer Science, pp278-292,IEEE Computer
Science Press.

Hinton DA (1996) An Aircraft Spacing Vortex System (AVOSS) for Dynamical Wake
Vortex Spacing Criteria, NASA , Langley Research Centre, VA 23681-000, USA
May

Horling B (1998) A reuseable Component Architecture for Agent Construction ,Tech
Report 1998-49, University of Massachusetts.

ICAO (1997) Rules of the Air and Air Traffic Services (PANS/RAC) 6 November ,
Section 2-14-19.

d’Inverno M, Kinny D, Luck M, Wooldridge M (1998) A Formal Specification for
dMars”, Proceedings of the Foiurth International Workshop in Agent Theories,
Architectures and Languages, Springer-Verlag.

http://patents.uspto.
http://knapplets.org/report/reports.html.

Page 10-5

Kinny D and Georgeff M (1996) Modelling and Design of Multi-Agent Systems,TR-
95, Australian Artificial Intelligence Insttitue, November.

Krause SS (1995) Avoiding Mid-Air Collisions ,TAB Books.

Krozel J, Mueller T and Hunter G (1996) Free Flight Conflict Detection and
Resolution Analysis Proceeding Of the AiAa Guidance, Navigation and Control
Conference, AIAa-96-3763, San diego, CA.

Kuchar JK (1998) White Paper on Multiple Alerting Systems MIT, Cambridge, USA,
13July.

Kuroda et al (1995) Aircraft positioning monitoring system US Patent 5,381,140
[online] Available from http://patents.uspto. Accessed on 2 February 2000.

Lemelson et al (1999) GPS vehicle collision avoidance warning and control system
and method US Patent 5,983,161. [online] Available from http://patents.uspto.
Accessed on 2 February 2000.

Levy M (No Date) The Oz Programming System. Available from
http://www.informkit.uni-trier.de/~levy/db/systems/oz.html. Accessed on December
2002.

Lynch N, Rsegala, Vaandrager F and Weinberg HB (1996) Hybrid I/O Automata
Hybrid system III Lecture Notes 1066,pp496-510,Springer-Verlag.

Lygeros J, Godbole D and Sastry S (No Date) Simulation as a Tool for Hybrid System
design, Intelligent Machines and Robots Laboratory, Department of Electrical
Engindeering and Computer Sciences, University of California, Berkeley, California.

Manna Z and Pnueli A (1995) Tempooral Verification of Reactive systems: Safety.
Springer-Verlag, New York.

Martin DA, Cheyer A and Moran D (1999) The Open Architecture: A Framework for
Building Distributed Software Systems ,Applied Artificial Intelligence, January pp91-
128.

McColl B and Warleand-Browne A (2001) Hard Landing Flight Safety Australia,
Civil Aviation Safety Authority,September October ,pp34-39.

McCabe F, Clark K (No Date) April: Agent Process Interaction Language. Available
from http://www-lp.doc.ic.ac.uk/~kc/april1.html. Accessed January 2003.

MIT (1996a) ARC2000: Automatic Radar Control for the Years beyond 2000, MIT
Site [online]. Available from http://web.mit.edu/aeroastro/www/labs/ AATT/
reviews/arc2000.html. Accessed 10 September 2000

http://patents.uspto.
http://patents.uspto.
http://www.informkit.uni-trier.de/~levy/db/systems/oz.html.
http://www-lp.doc.ic.ac.uk/~kc/april1.html.
http://web.mit.edu/aeroastro/www/labs/

Page 10-6

MIT (1996b) ASIM :Airspace SIMulation , MIT Site, [online]. Available from
http://web.mit.edu/ aeroastro/www/ labs/AATT/ reviews/ asim.html,. Accessed 10
September 2000.

MIT (1996c) BDT: Banc De Test MIT Site. Available from
http://web.mit.edu/aeroastro/www/labs/AATT/reviews/bdt.html. Accessed 10
September 2000.

MIT (1996d) DORATASK MIT Site [online]. Available from
http://web.mit.edu/aeroastro/www/labs/AATT/reviews/doratask.html. Accessed 10
September 2000.

MIT (1996e) NLR ATC Research Simulator. MIT Site [online]. Available from
http://web.mit.edu/aeroastro/ www/labs/ AATT/ reviews/ narsim.html, 18 June 1996.
Accessed on 10 September 2000.

MIT (1996f) Reorganized ATC Mathematical Simulator MIT Site [online]. Available
from http://web.mit.edu/aeroastro/www/labs/ AATT/reviews/rams.html. Accessed on
10 Septemer 2000.

MIT (1995g) Robust Air Traffic Simulator. MIT Site [online]. Available from
http://web.mit.edu/aeroastro/www/ labs/AATT/ reviews/ratsg.html. Accessed on 10
September 2000.
.
MIT (1996h) Sector Design Analysis Tool MIT Site [online]. Available from
http://web.mit.edu/aeroastro/www/labs/AATT/reviews/sdat.html. Accessed on 10
September 2000.

MIT (1996i) SIMMOD MIT Site [online] Available from http://web.mit.edu/
aeroastro/www/labs/AATT/ reviews/ simmod.html. Accessed on 10 September 2000.

MIT (1996j) Total Airspace and Airport Modeller MIT Site [online]. Available from
http://web.mit.edu/aeroastro/www/labs/AATT/ reviews/taam.html. Accessed on 10
September 2000.

MIT (1996k) Traffic Organization and Pertubation Analyser. MIT Site [online].
Available from http://web.mit.edu/aeroastro/www/labs/ AATT/reviews/
topaznew.html Accessed on 10 September 2000.

Montelius J (No Date) AKL, Agents and Penny Intelligent Systems Laboratiry
Available from http://www.sics.sc/isl/akl/ Accessed January 2003.

Oh JH and Feron E (1997) Fast Detection and Resolution of Multiple Conflicts for 3-
Dimensional Free Flight Proceeding of the IEEE Conference on Decision and
Control, San Diego,CA.

http://web.mit.edu/
http://web.mit.edu/aeroastro/www/labs/AATT/reviews/bdt.html.
http://web.mit.edu/aeroastro/www/labs/AATT/reviews/doratask.html.
http://web.mit.edu/aeroastro/
http://web.mit.edu/aeroastro/www/labs/
http://web.mit.edu/aeroastro/www/
http://web.mit.edu/
http://web.mit.edu/aeroastro/www/labs/AATT/
http://web.mit.edu/aeroastro/www/labs/
http://www.sics.sc/isl/akl/

Page 10-7

Prasad MVN and Lesser VR (No Date) Offline Learning over Functionally
Structuree Agents for Distributed Data Processing - Learning Situation Specific
Coordination”. Available from http://mas.cs.umass.edu/ index.shtml. Accessed June
2002.

Prasad MVN, Lander S and Lesser VR (NoDate) Cooperative Learning
overComposite Search Spaces: Experences with Multi-Agent Design. Available from
http://mas.cs.umass.edu/ index.shtml. Accessed June 2001.

Odoni AR, Bowman J, Delahaye D, Deyst JJ, Feron E, Hansman RJ, Kuchar JK,
Pujet N, Simpson RW (1997) Existing and Required Modeling Capabilities for
Evaluating ATM Systems and Concepts International Center For Air Transportation
Massachusetts Institute Of Technology

Paeilli R. A. and Erzberger H. (1997). Conflict probability estimation for free flight.
Journal of Guidance, Control and Dynamics, p588-596.

Paielli RA and Erzberger H (1997b) Conflict Probability and Estimation for Free
Flight ,Proceeding of the 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA
97-0001,Reno,NV.

Pappas G and Sastry S (1997) Towards Continuous Abstractions of Dynamical and
Control Systems ,Hybrid Systems IV Lecture Notes in Computer Science 1273,pp329-
341, Springer-Verlag,New York

Phelan P (2002) Technology for Safer Skies Australian Flying,May/June , p55.

Puri A and Varaiya P (1994) Decidability of Hybrid Systems with Rectangular
Sdifferential Inclusions Proceeding of the 6th International Computer Aided
Verification Conference, Stanford

Rannoch (No date) Traffic Alert andColision Avoidance System [online] Available
from www.rannoch.com/tcasf.html. Accessed on 10 October 1999.

Rich et al (1997) Traffic alert and collision avaoidance system US Patent 5,636,123
[online]. Available from http://patents.uspto. Accessed on 2 February 2000.

Rizos C (1999) GPS Enhancements s, University of New South Wales.

Rudel MP, Baldwin J (1997) GPS Relative Accuracy for Collision Avoidance”
Rannoch Corporation, Institute of Navigation Technical Meeting in Santa Monica,
CA, January .

Russel S and Norvig P (No Date) Artificial Intelligence - A Modern Approach
Prentice Hall, New Jersey, USA

Saffiotti A, Konolige K and Ruspini EH (No Date) A Multivalued Logic Approach to
Integrated Planning and Control ,Artifiicial Intelligence Centre, SRI
International,Mento Park,CA,USA

http://mas.cs.umass.edu/
http://mas.cs.umass.edu/
http://www.rannoch.com/tcasf.html.
http://patents.uspto.

Page 10-8

Schoppers MJ (1987) Universal Plans for Reactive Robots in Unpredictable
Environments In Proceedings IJCAIAO.

Schild RR (1998) Rule Optimization for Airborne Aircrasft Separation”,Technisch
Universitst Wien, Wien, Austria, 26 November.

Smith AE and Baldwin JC (1994) Cockpit Display of Traffic Information Using GPS-
Design of a Low Cost System for General Aviation” ,Rannoch Corporation, Presented
at the 37th Annual Aircraft Electronics Association Convention, Las Vegas, NV.

Sprague et al (1995) Portable peersonal navigation tracking system US Patent
5,422,816 [online] Available from http://patents.uspto. Accessed on 2 February 2000.

Sueyoshi T and Tokoro M (1990) Dynamic Modelling of Agents for Coordination,
Workshop on Modelling Autonomous Agents in a Multi-agent World, MAAMAW90,
1990

Talotta NJ, Wapelhurst L, Shingledecker C (1997) A Field Study of Transponder
Performance in General Aviation Aircraft, Dept of Transport, FAA William J Hughes
Technical Centre, Report DOT/FAA/CT-97/7.

Thomas I (2000) GPS-Revolution ,Flight Safety Australia,Civil Aviation Safelty
Autthority,January February ,pp33-36.

Thornton G (No Date) Automatic Dependent Surveillance Broadcast (ADS-B)
[online]. Available from http://www1.faa.gov/ and/ and300/ datalink/navsur/ads-
b.htm. Accessed on 20 June 2002

Tognazzini (1999) GPS collision avoidance system US Patent 5,872,526 [online]
Available from http://patents.uspto. Accessed on 2 February 2000.

Tomlin C, Pappas GJ and Sastry S (No Date) Conflict Resolution for Air Traffic
Management - A Study in Multi-Agent Hybrid Systems, Dept of Electrical Engineering
and Computer Sacriences, University of California at Berkely.

Venners B (1997) Solve Real Problems with Aglets, a Type of Mobile Agent,
Javaworld, May 1997.

Wagner et al (1999) Investigating Interactions Between Agent Conversation Policies,
Univ Massachusetts,CS-TR-1999-07.

Wilson DL (No Date) Modeling of GPS Horizontal Position Errors And GPS
Horizontal Position Errors from Averaging. Available from
www.erols.com/dlwilson/. Accessed May 2001.

Wilkins D (1997) Multiagent Planning Architecture ,Stanford Research Institute,
Project No 7150.

http://patents.uspto.
http://www1.faa.gov/
http://patents.uspto.
http://www.erols.com/dlwilson/

Page 10-9

Winston PH (1977) Artificial Intelligence, Addison-Wesley Publishing Company,
Reading, Massachesetts.

Wolfgang P (1995),- Seeverkehrsrecht, DSV Verlag.

Wooldridge M and Jennings N (1995) Artificial Agent: Theory and
Practice”,Knowledge Engineering Review, Cambreidge University Press, No2 ,2
June.

Xuan P and V Lesser V (1999) Handling Uncertainty in Multi-agent
Commitments”,University of Massachusetts, TR.

Yang L and Kuchar J (1997) Prototype Conflicting Alerting Logic for Free Flight,
Proceedings of the 35th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 97-
0220,Reno,NV,January.

Zhang X (1999) Integrating High-Level and Detailed Agent Co-ordination into
Layered Architecture University of Massachusetts, Amherst , MA.

Page A-1

ANNEX A

Near Midair Collisions System Reports
For Non-Controlled Airports -

Us Airspace
http://nasdac.faa.gov/asp/fw_nmacs.asp

Introduction

Extracts from reports on near midair collisions (NMACS) for non-controlled

airports within US airspace are detailed in the following paragraphs. The operational

deficiencies that the incidents highlight are listed. No recommendations to correct

these deficiencies are made; however, the existence of the deficiencies are noted and

used in determining requirements for remote intelligent air traffic control systems for

non-controlled airports.

Report Number: NSWRD1099008

On December 11, 1999, at approximately 0800 local CST time, Piper aircraft,

PA-32, N31JW, departed Arlington municipal airport, Arlington, Texas, via runway

16. At 900 feet during the climbout, N31JW observed a Cessna CE-500 aircraft,

N357EC descend from a cloud layer aligned for runway 34. Both aircraft altered

course and landed at Arlington airport without incident. Arlington Municipal Airport

is an uncontrolled airport. Cessna, N357EC was on an IFR flight plan and cleared by

air traffic control (ATC) to execute the VOR/DME runway 34 instrument approach to

Arlington Municipal airport. A review of the air traffic control NTAP record indicates

that the aircraft passed approximately 1/4 sm from each other at the same altitude.

Report Number: NSOTBHM99001

Fast Check 220, a Cessna 210-M entered the traffic pattern on left base and

flew over and behind the reporting aircraft, a BE-36-A36, N1195T, that was turning

http://nasdac.faa.gov/asp/fw_nmacs.asp

Page A-2

base and landed ahead of the reporting aircraft. Fast check 220, a Cessna 210-M

(N9163T), overtook the reporting aircraft, N1195T. The potential of a midair collision

existed because Fast Check 220 entered the traffic pattern on a left base leg 3 to 6

miles out and while on a left base descended while in the vicinity of the traffic pattern.

The situation was aggravated because Fast Check 220 was working Birmingham

approach until approximately 3 to 4 miles from the Bessimer airport and was late

calling Bessimer common traffic airport frequency. Birmingham approach did point

out the traffic to Fast Check 220. A recommendation was made, that at a non-towered

and uncontrolled airports, the pilot enters the traffic pattern on downwind at traffic

pattern altitude. The initial call to advise traffic should be at least 10 miles out. the

pilot should be at a speed that will allow a blending of the traffic.

Report Number: NNMZSLC99001

The reporting aircraft, a CE172 departed runway 13 at Provo, Utah to remain

in the pattern for a touch and go landing. While on downwind the CE172 observed a

PA28 enter the pattern to the right front of him with no radio call. The CE172 pilot

estimated the distance between aircraft to be 300 feet. After discussing the incident

with the pilots of both aircraft it was determined that the CE172 had flown a more

close in pattern than the PA28 which was being flown by a student pilot and an

instructor. This resulted in the CE172 being inside and ahead of the PA28 which was

already on downwind. The PA28 passed the CE172 on its right side and had not cut

the CE172 off in the pattern. The PA28 student had not made a radio call which

helped cause the CE172 pilot not to be aware of the PA28 location. The instructor in

the PA28 did not think the two aircraft came as close as the CE172 pilot reported. The

incident was discussed with the pilots of both aircraft and the importance of vigilance

when operating at an uncontrolled airport was stressed. Both pilots were provided with

advisory circular 90-66a, recommended standard traffic patterns and practices for

aeronautical operations at airports without operating control towers. No further action

was planned.

Page A-3

Report Number: NWPTSNA98001

The incident occurred at Catalina airport on 11/01/98. N3004Y was following

another aircraft while preparing to enter the traffic pattern. Apparently all aircraft were

on the correct frequency. The reporting pilot heard N9372C report "just north of the

airport at 3000 feet." Shortly after, as he was turning from the "45" to the downwind at

2600 feet, he suddenly noticed the other aircraft (N9372C) coming straight toward him

and simultaneously executing an evasive maneuver. The pilot estimates that the

aircraft passed within 50 feet of each other. After landing he approached the other

pilot and asked for his license. The pilot showed him a temporary license and the

reporting pilot wrote down some of the information but concedes that he was upset

and might have inaccurately copied some of it. The reporting pilot did not feel that

there was a violation, only a lack of proper vigilance in a congested traffic pattern. The

investigator attempted to locate the pilot of N9372C, from the information given. He

queried ISIS files for both airman and aircraft, also information for the address given,

but failed to obtain any information. Registration on the aircraft was pending. The

determination was that both aircraft failed to adequately scan and remain vigilant for

other traffic in an uncontrolled airport environment. No further action was intended.

Report Number: NNMTBZN98001

Northwest B-727, FLT1252, taxied across runway 03 on taxiway alpha

(parallel to runway 12-30 and perpendicular to runway 03-21) at Bozeman, MT while

an aircraft was taking off on runway 03. Bozeman (BZN) is an uncontrolled airport.

This runway incursion caused the near midair collision. The reporting aircraft

(N47844, Piper Pawnee PA-25 with glider in tow) was in the process of takeoff on

runway 03. The tow plane pilot announced his intentions on the unicom frequency

twice before beginning his takeoff roll. Flt 1252 did not respond to these unicom calls

and continued to cross runway 03 without stopping. The PA-25 pilot released the

glider, initiated evasive action, and landed safety on runway 21. He reported missing

the B-727 by 25 to 30 feet. The glider made an emergency landing on taxiway alpha,

Page A-4

successfully avoiding other taxiing aircraft. Identities of the crew and pilot statements

were on request but not yet received. Enforcement action was planned.

Report Number: NWPRSCT98004

SWA885 departed BUR runway 15 being vectored to GMN VOR climbing to

5,000 feet. During climb-out, SWA885 encountered uncontrolled VFR traffic at the

same altitude. The controller issued a safety alert to SWA885. The pilot punched off

the auto pilot and began a descent. At which time, he visually sighted the single-

engine v tail Beechcraft Bonanza which passed directly overhead by approximately

100 feet. Neither aircraft was at an illegal altitude. The Bonanza could not be tracked

or found. No comments or recommendations.

Report Number: NNMFDEN96003

At uncontrolled airports, it is the responsibility of each pilot-in-command to

"see and avoid" other air traffic and maintain people spacing in the pattern. The ctaf

(common traffic advisory frequency) is used by pilots in the area to receive advisories

and to broadcast their intentions. There is no far requirement for pilots to

communicate their presence or intentions over the ctaf. The ctaf is only an advisory

frequency. The fact that one of the pilots involved was on a frequency that he thought

was the ctaf frequency, only made things worse. Only after landing did he realize that

he was not on the ctaf frequency.

Report Number: NCERMCK96001

The pilot of Piper N4102Z (reporting pilot) stated he was on an IFR flight from

Millard airport, Omaha, northeast to McCook, ne. Upon arrival at McCook, the pilot

elected to execute the VOR runway 12 approach. The surface weather observation

made prior to the arrival of N4102Z showed light wind from the northeast, visibility 6

statute miles, there was shallow fog and few clouds (less than two eighths cloud

Page A-5

coverage) at 20,000 feet. The observation 15 minutes after the NMAC showed east-

northeast winds at 9 knots, visibility 8 statute miles, scattered clouds (3 to 4 eighths

clouds coverage at 600 feet and broken clouds (5 to 7 eighths cloud coverage) at 2,000

feet. The reporting pilot was communicating on the McCook unicom frequency. The

unicom operator told the pilot she had seen an agricultural aircraft taxi out. The

reporting pilot was on short final and saw the other aircraft taking off on runway 3, at

which time he initiated a go around. Both aircraft crossed at the intersection of

runways 3 and 12 at the same time, with about 150 feet of vertical separation. The

agricultural pilot said when he saw the Piper, it was going around and the wheels were

retracted. He said he was still on the ground when the Piper passed overhead. The

agricultural aircraft departed the area to the northwest and the reporting aircraft

climbed to circling minimum and circled to land on runway 12. McCook municipal

airport is an uncontrolled field. There are two hard surface intersecting runways. There

are three instrument approach procedure. A qualified weather observer also serves as

the unicom operator. The weather before and after the NMAC was VFR.

Report Number: NCEFCOU96001

Description of NMAC and comments with recommendations, if any:

uncontrolled airport NMAC to opposing runways. Reporting aircraft N6754Y

canceled IFR clearance with ZME and entered left downwind traffic reporting as

number 2 behind Cherokee for runway 36. Other aircraft N91966 completed ag sweep

at nearby field and landed runway 18 prior to reporting aircraft which was on short

final to opposite runway. Reporting aircraft conducted missed approach. Other aircraft

according to statements from both pilots contradict each other. No additional

witnesses available to substantiate report.

Page A-6

Report Number: NALFENA96001

Reporting aircraft approaching uncontrolled airport from the west said that he

did not see other aircraft until it passed overhead only 30 feet away and that the other

aircraft did not have lights on or make radio calls. Other aircraft said that he did have

his lights on and that he made a radio call for back-taxi onto the runway and again on

the roll for takeoff. He also said that he and his passengers had the reporting aircraft in

sight from takeoff until after passage, that they were more that 200' away at the closest

point and that at no time did he feel there was a problem.

Report Number: NSWFMLC95001

Aircraft one and aircraft two operated by the same air taxi company taxied onto

the only runway at Boise City Municipal airport. Neither aircraft used the run-up area

next to the runway or did a 360 degree clearing turn prior to departure from this small

uncontrolled airport. Aircraft one started his takeoff roll when the company plane on

the runway behind him said "cut,cut,cut,stop" over the radio. Aircraft one applied

maximum braking, cut the engine and stopped. Aircraft two (a yellow Ayres s-2 crop

dusting aircraft) flew over the top of aircraft one and landed on the runway ahead of

him. According to aircraft two, who was not radio equipped, the two other aircraft

appeared to be parked on the end of the end of the runway when he entered the traffic

pattern on a base leg. The aircraft still had not moved when aircraft two turned final

approach so he flew above and to the right of both aircraft and landed on the runway.

The pilot of aircraft two said he did not see aircraft two start his takeoff roll.

Report Number: NNMRS5695001

Aircraft one was in traffic pattern at Tooele Valley airport. Aircraft two was

also in the traffic pattern. Both aircraft were on downwind leg. Aircraft two was

outside aircraft one and turned left onto base leg in front of aircraft one. Aircraft one

Page A-7

made a climbing right turn and re-entered the traffic pattern and landed. (actively use

ctaf at uncontrolled airports.)

Report Number: NWPFRNO95001

Aircraft one, while on final approach to an uncontrolled airport, runway 18 at

Henderson Skyharbor, was allegedly approached by a 400 series Cessna belonging to

King Airlines from the right while it was on a right base leg for landing. No

communication was heard from aircraft one while three other aircraft were in the

pattern to land. No information from the pilot flying aircraft one has been received.

Report Number: NSORDAB94001

On December 12, 1994 aircraft one and aircraft two experienced a near midair

collision while operating in the vicinity of an uncontrolled airport located within class-

e airspace. Aircraft one was on an instrument flight plan while aircraft two was

operating on vfr. Marginal VFR flight conditions prevailed at the time of the incident.

Aircraft one was advised by atc of the presence of aircraft two in the area.

Report Number: NWPFSAN94004

Both aircraft in VFR uncontrolled traffic pattern for runway 27 at l39. Aircraft

one passed on final landing approach. Aircraft two denied making a straight in

approach. Aircraft two stated he flew a standard entry from "Mt Woodson" with a

wider pattern than some of the touch and go traffic normally use, and he stated making

a downwind call. Aircraft two is a certified flight instructor and a/c pilot.

Report Number: NEACZDC93002

FAR 135 departed uncontrolled airport under IFR clearance. Approximately

four miles northeast of SHD, aircraft one had to be maneuvered to avoid collision with

Page A-8

aircraft two. ZDC reported no observed traffic. Aircraft two flight instructor came on

frequency and advised he saw aircraft one. No name, base, or call sign available.

Aircraft two was apparently instructional with student under the hood.

Report Number: NNMFMMV93001

While conducting touch and go landing operations at an uncontrolled airport,

aircraft one was climbing through 900' on crosswind to 1055' altitude for a downwind

leg of the traffic pattern. Aircraft two was entering the traffic pattern on a straight

downwind leg at 900'. Aircraft one took evasive action by initiating an early turn to the

downwind. Aircraft two took no evasive action since he believed he had the right of

way. Subsequent investigation revealed aircraft two was using old and outdated charts

and airport directories.

Report Number: NWPRHNL93001

Aircraft one was in contact with Honolulu approach control, on request, he

reported his altitude as 1000' and was cleared into the HNL TCA to the post office via

the golf course. He descended through the traffic pattern of Ford Island which has a

published crossing altitude of 1500'. Aircraft two was in the traffic pattern at Ford

Island (NPS) which is an uncontrolled airport with radio communication on 122.8

mandatory.

Report Number: NSWTOKC92A01

Aircraft1 was involved in a training operation at an uncontrolled airport. He

did not observe aircraft2 land in the opposite direction. Aircraft2 was not radio

equipped. The winds were light, but did favor the rwy that aircraft2 (a tail-dragger)

landed on. The vertical separation was never less than 500'.

Page A-9

Report Number: NSOFTYS92001

Traffic flow had just changed at the uncontrolled Knoxville Downtown Island

airport from rwy8 to rwy26 when aircraft2 turned from base leg to final for rwy8 and

conflicted with aircraft1, who was on upwind leg following departure from rwy26.

Aircraft1 indicated that rwy8 had been in use previously, but traffic had re-adjusted to

rwy26 because of a wind shift. Aircraft1 also stated that no radio calls were heard

from aircraft2. The reporting pilot's recommendation was for pilot of aircraft2 to be

more alert.

Comments

These incidents highlight a number of serious deficiencies in operations at non-

controlled airports, including :

a. aircraft operating on opposing runways (NSWRD1099008,

NCERMCK96001 and NWPRHNL93001);

b. breakdown of “see and avoid” procedures (NWPRSCT98004,

NCEFCOU96001, NWPFRNO95001, NSORDAB94001,

NWPFSAN94004);

c. non-standard circuit operations and practices (NSOTBHM99001,

NNMZSLC99001, NSWFMLC95001, NNMRS5695001,

NSORDAB94001, NEACZDC93002);

d. aircraft operating on intersecting runways (NWPTSNA98001,

NNMFDEN96003) ;

Page A-10

e. breakdown of communication procedures (NCEFCOU96001,

NNMRS569001, NSORDAB94001, NWPFSAN94004); and

f. conflicting clearances (NNMFMMV93001) .

Page B-1

ANNEX B

Operations At Non-Controlled Aerodromes
(Aeronautical Information Publication-

Enroute 1.1 50-60)

Circuit Direction

1. Unless otherwise specified, left hand circuits must normally be made. An aircraft

is permitted to execute a turn opposite to the circuit direction on to course if :

a. it has climbed straight ahead to 1500ft AGL; or

b. it is at least 3nm from the aerorome.

Separation Minima For Take-off

2. An aircraft cannot commence take-off until:

a. a preceding departing aircraft using the same runway has:

(1) crossed the upwind end of the runway;

(2) commenced a turn;

(3) if the runway is longer than 1800m, become airborne and is

atleast 1800m ahead of the proposed point of of lift-off; or

(4) if both aircraft have a maximum take-off weight (MTOW) below

2000kg, the proceeding aircraft is airborne and is at least 600m

ahead of the proposed point of liftoff

Page B-2

b. a preceding landing aircraft using the same runway, has vacated it and is

taxiing away from the aircraft.

c. a preceding aircraft, using another runway, has crossed or stopped short of

the take-off aircraft's runway.

Circuit Height

4. By convention, the following circuit heights are flown:

a. jets, 1500ft AGL;

b. piston/turbo prop, 1000ft AGL; and

c. helicopters, 800ft AGL.

5. Where there are special requirements for aerodromes, these are published in

ERSA.

Approach and Landing Manoeuvres

6. An aircraft joning a non-controlled aerodrome for a landing must join on the

upwind, crosswind or downwind leg of the circuit unless it is:

a. following an instrument approach procedure in IMC;

b. conducting a visual circling procedure in IMC after completion of an

instrumented approach procedure; or

c. conducting a straight in approach.

Page B-3

7. The runway used for landing must be serviceable and cleared of ground

maintenance equipment and personnel and ;:

a. the most into wind runway; or

b. when operational reasons justify, any other availablelanding direction

provided it is executed without conflict with operations on the most into

wind runway.

8. When approaching for a landing, and within 3nm of the aerodrome, all turns are

made to the left except;

a. where right hand circuits are specified for the aerodrome; or

b. when entering the upwind, crosswind or downwind leg; or

c. when following an intrument approach in IMC ;or

d. when conducting a visual approach procedure in IMC after completion of

an instrumented approach procedure.

9. Straight-in aproaches can only be conducterd if;

a. the aerodrome has an associated MBZ ;

b. the aircraft is equipped with a VHF radio and is able to communicate on

the MBF frequency ;

Page B-4

c. the pilot in command is able to determine the wind direction and runway

in use;

d. all manoeuvering to establish the aircraft on final approach can be

conducted outside a 5nm radius from the aerodrome (within 5nm only

minor corrections can be made - this enables those conforming to the

normal circuit pattern to optimize their visual scan for traffic along the

final approach path);

e. as close as practicable to 5nm from the aerodrome, the pilot in command

broadcasts that the aircraft in on final approach and identifies the runway

to be used;

f. the aircraft's landing lights, anti-collision lights and strobe lights, when

fitted, are illuminated when within 5nm from the aerodrome.

10. An aircraft flying a standard circuit pattern and established on base or final

approach for any runway has priority over an aircraft carryning out a straight-in approach.

Separation Minima for Landing

11. An aircraft cannot continue its approach to land until;

a. a preceding departing aircraft using the same runway is airborne and has

commenced a turn or is beyond the point on the runway at which the

landing aircraft could be expected to complete its landing roll and there is

sufficient distance to manoeuver safely in the event of a missed approach;

b. a predecing aircraft using the same runway has vacated it and is taxiing

away from it;

Page B-5

c. a preceding aircraft using another runway has crossed or stopped short of

the landing aircraft's runway.

C-1

ANNEX C

Review of Agents

C.1 Agent Features

The important features that can be expected of an agent operating with an AI

System include (Wooldridge et al, 1995) :

a. autonomy : can operate without direct intervention and have control

over their internal state and actions.

b. Social ability : can interact with other agents via an agent

communication language.

c. Reactivity : can perceive the environment and respond.

d. Pro-activeness : can take the initiative and exhibit goal directed

behaviour (can include being driven by rules).

e. Rationality : can act consistently with its objectives. (This may also

need to include group objectives.)

f. mobility : can move around a network to operate more efficiently, say

on a large distributed database (Martin et al, 1999).

g. adaptive : can change their behaviour based on previous experience.

The types of agents identified are shown in Figure C-1.

C-2

Figure C.1. A Classification of Software Agents

C.2 Agent Structure

Agents, as well as usually being a part of a larger organisation, require some

structure and capability of their own. This internal architecture will vary between

agents, but to ensure that they can fit in with their environment and do the required job

there are several features that they need. These are summarised as follows:

a. A knowledge base (KB) to store their precepts, their knowledge about

the world and their rules and plans for acting. They may draw on the

knowledge of other agents; the existence of and their understanding of

others is an important part of their KB.

b. A reasoning ability to make inferences, predictions and plans based on

their knowledge and given their intended functions and goals.

Reasoning about coordination and cooperation with other agents is

included in this process.

c. A learning ability so that it can learnt from the changing environment

in which it operates, particularly the changes which result from its own

actions.

An Agent
Typology

Collaborative
Agents

Interface
Agents

Mobile
Agents

Information
Agents

Reactive
Agents

Hybrid
Agents

Heterogeneous
Agent systems

Smart Agents

C-3

d. A method of communicating to be able to receive input, exchange

information, make commitments and output results.

An outline of the concept of an agent and the environment in which it is set is shown

diagrammatically in Figure C.2.

As previously stated, the internal structure of an agent is dependent on the

functions it has to perform and its inherent capabilities. Hence, agents need to have a

well defined functionality and coherent interface specifications (Wilkins, 1997).

Different frameworks have been proposed to achieve the functionality required. Zhang

(1999) has a layered model starting with a ‘Domain Problem Solver’ which is

responsible for the higher level objectives and goal formation for the agent; a middle

level coordination module for negotiation with other agents and proposing feasible

actions; then a scheduler at the lower level to evaluate and carry out the required

actions. In effect, the higher layers maintain a group perspective and decide what to

do, while the lower layers are more local and decide how and when to act.

Figure C.2. Basic Outline of an Autonomous Agent.

Lygeros et al (No date) provide an example of an intelligent vehicle highway

system, where the aim was to design a system that could significantly increase safety

C-4

and highway capacity without having to build new roads. In this system there were

five layers; the network layer to prevent congestion and maximize throughput by

dynamic routing of traffic; the link layer to maximize throughput while maintaining

safe conditions of operation; the coordination layer to coordinate group of linked cars

with their neighbours; the regulation layer to receive coordination layer commands

and translate them into input car control; and the physical layer (while not a part of the

control hierarchy) contains the actual car with its sensors, actuators and

communications equipment. A key feature of their proposed design is the fact that the

vehicles operate as semi-autonomous agents. Each agent has its own control

objectives and implements its own strategies, but at the same time, cooperates with its

neighbours and the roadside.

Others propose highly interconnected modules for the internal functions such

as task assessment, data bases, problem solving, coordination, scheduling, execution

and monitoring (Wagner et al, 1999), also there are interpreter styles - with the various

functional modules linked to a central reasoner (Earl et al, 1996) and the

belief/desires/intentions approach where modules covering knowledge base, goals and

proposed actions are linked through an interpreter (Kinny et al, 1996).

The performance of different structures will depend on the functional outputs

required, the capabilities programmed into the agent and how it relates to the other

agents. Agents could be generally self contained, or have more specialist functions

and rely on others for some services. Examples of agents which have some specialist

capabilities are (Brugali et al, 1998) : Interface agents which manage a graphical user

interface; information agents which are tightly coupled to actively monitored external

information sources, and ; middle agents which could act as brokers or facilitators for

a service. It is, however, the flexibility of agents in an agent system that provides the

power in these systems, they are not tied to some pre-specified sequence of commands

but act independently or cooperatively and react to changes in their environment as

necessary (Greaves, no date).

C-5

An agent can be expected to use these capabilities to achieve the goals set, to

at least some acceptable level and in a rational manner. However, it should be kept

in mind that the extent of an agent and the resources available to it are finite (Craige,

no date) and its functions and outputs may not be optimal. There are limits in its

ability to communicate, reason and act and such limitations should be understood in

the design of a workable system.

Agents also face uncertainty in performance Each agent has only a partial

view of the external environment and the actions of other agents, as well as any

uncertainty arising from its own reasoning processes. To cater for this, there is a

requirement for structures that allow agents to interact predicably and to allow for the

uncertainty (Xuan et al, 1999). This can be achieved by the use of contingency

analysis and other methods of artificial intelligence to provide for uncertainty in local

reasoning and in collaboration between agents. Uncertainty information can be

exchanged in the form of probability values connected with data or commitments and,

in turn, these can be associated with utility scales and marginal costs or gains on

performance. The significant feature is that errors or failures are expected at some

predicted or estimated rate of occurrence and can be appropriately allowed for in the

system structure.

Agents can be expected to have dynamic qualities (Sueyoshi et al, 1990).

Changes in the agent can occur in response to perceived changes in the environment

in which it works (these could occur through variations in hardware, programming

instructions or sensor inputs). Ideally, it should adapt so that it can continue to provide

the service required even though external conditions change. In turn the dynamic

agent needs to inform other agents of changes it has made, particularly with reference

to input or output responses.

Agent technologies are now applied to a range of large scale commercial and

industrial software systems, including air traffic control, resource management,

spacecraft management, data mining, financial transaction management and

communications They present many benefits particularly in their adaptability for

C-6

problem solving, code reuse, concurrent operations and cost reduction (Wilkins,

1997).

Agent systems can be regarded as a modern concept with their development

drawing on a number of approaches from Artificial Intelligence and Computer

Science; for example, AI planning and expert systems, distributed AI systems and

object-oriented programming and modelling techniques (Brugali, 1998). Agents can

offer additional capabilities, particularly through their flexibility and collaboration;

and as well can integrate or interface with older systems. The reuse of software is an

important consideration when developing agent systems as this can result in cost

savings and add reliability from tried and tested programs. There are three methods

suggested for adapting legacy software for a newly developed agent system. Firstly,

rewrite the code in agent form (usually too expensive), secondly, use an interface

agent to translate and interpret the agent interface language (not efficient, but may be

necessary if source code is not available) and thirdly, modify the original code with a

wrapper that allows direct communication in the agent language (efficient, but may

lead to debugging costs) (Hayden, 1998).

C.3 Software Agents

As part of the modularity feature of agent systems, many researchers have

adopted the concept of Agent-Oriented (or Component-Oriented) technology as an

extension of the successful Object-Oriented software design widely used in

programming (Horling, 1998 ; Kinny et al, 1996; Martin et al, 1999). Although the

various researchers present different arrangements for the agent oriented approach

they seek to adapt the ideas of encapsulation, inheritance, abstraction, modularity,

polymorphism etc. from the Object-Oriented practices.

To facilitate the interoperation of agents in an agent-oriented software

environment, there are a number of agent and scripting languages. Some of these are:

C-7

a. LALO, in which an agent is determined by its beliefs, its capabilities

and its commitments . A program written in LALO is translated into

C++ source code. The agents communicate with KQLM (Knowledge

Query Manipulation Language) (Greaves, no date).

b. IBM Agent Building Environment where the intelligent agent watches

for certain conditions, decides what to do on the rules you have given

it, then triggers an action as a result. The central intelligence for the

agent is based on a reasoning engine and adaptor technologies.

Adaptors (or interfaces) allow the agent to interact with the rest of the

world. It is generally for task-specific agents (Anon, 2003).

c. Facile is a high level, higher order programming language for systems

that require a combination of complex data manipulation and

concurrent and data manipulation (Barnier et al, 2001).

d. The Oz Programming system offers a concurrent constraint

programming language designed for applications that require complex

symbolic computations, organization into multiple agents and soft real-

time control (Levy, no date).

e. The Agents Kernel Language (AKL), a concurrent constraint

programming language, developed at the Swedish Institute of

Computer Sciences (Montelius, no date).

f. April (Agent Process Interaction Language) for building DAI and other

types of distributed applications requiring the transmission of complex

symbolic data (McCabe et al , no date).

g. Obliq, a lexically-scoped untyped interpreted language that supports

distributed object-oriented computation (Cardelli, 1994).

C-8

h. dMARS, an agent oriented development and implementation

environment for building complex, distributed, time-critical systems

(d’Inverno et al, 1998).

The structure of the agents and software environment are varied. For example,

the dMARS system, designed and developed by the Australian Artificial Intelligence

Institute in Melbourne, Australia, as an agent oriented, distributed, realtime reasoning

system, provides a representational framework and reasoning mechanisms for

implementing agents reasoning entities capable of pursuing goals and accomplishing

objectives in dynamic, uncertain environments. Each agent is composed of a set of

beliefs, goals, plans, and intentions:

a. The beliefs provide information on the state of the environment as

perceived by the agent and are represented in a firstorder logic.

b. The goals are descriptions of desired tasks or behaviours.

c. The plans are declarative procedural specifications that represent

knowledge about how to accomplish given goals or react to certain.

Each plan consists of a body, an invocation condition, and a context

condition.

(i) The body of a plan can be viewed as a procedure or a tactic.

(ii) The invocation condition describes the events that must occur

for the plan to be executed.

(iii) The context condition describes contextual information relevant

for the execution of the plan.

d. The intention list contains all those tasks that the system has chosen for

execution, either immediately or at some later time. An intention

C-9

consists of some initial plan, together with all the subplans that are

being used in attempting to execute that plan successfully. At any given

moment, the intention list of an agent may contain a number of such

intentions, some of which may be suspended or deferred, some of

which may be waiting for certain conditions to hold prior to activation,

and some of which may be metalevel intentions. Only one intention

can be executed at any given moment and the choice of that intention

depends on the perceived state of the world and the priority of that

intention.

In some applications, it is necessary to monitor and process many sources of

information at the same time, e.g., simulating a number of pilots. To facilitate this,

dMARS was designed to allow several agents to run in parallel. Although the

perceptual input received by each agent may come from the same physical world, each

agent has its own database, goals, and plans, and reasons asynchronously relative to

other agents, communicating with them by sending messages.

The advent of software agents has given rise to much discussion of just what

such an agent is, and how they differ from programmes in general. All software agents

are, by definition, programmes, but not all programmmes are agents (Franklin et al,

1996). A programme must have several capabilities to be an agent. The essence of

being a software agent involves :

a. Sensing its environment and acting autonomously upon it.

b. Pursuing goals designed in by an external entity.

c. Acting so that its current actions may effect its later sensing (ie its

actions effect its environment).

d. Typically, running until it decides not to (or some human pulls the

plug).

C-10

These requirements conjure a definition for a autonomous agent as a system

situated within and a part of an environment that senses that environment and acts on

it, over time, in pursuit of its own agenda and so as to effect what it senses in the

future. Autonomous agents are so called because once you start them, they decide

where they will go and what they will do. They can receive requests from external

sources, but each individual agent decides whether or not to comply with external

requests. Also, they can decide to perform actions independent of any external request.

Software agents can be mobile. For example, an aglet is a Java-based

autonomous software agent (Venners, 1997). As used here, a software agent is a

program that can halt itself, ship itself to another computer on the network, and

continue execution at the new computer. The key feature of this kind of software

agent is that both its code and state are mobile. There are many applications for which

mobile agents are claimed to be well-suited. Most of these applications tend to involve

searching for information on behalf of a user and possibly performing some kind of

transaction when appropriate information is encountered. Some of the more common

applications for mobile agents are:

a. Data collection from many places. Mobile agents can have an itinerary

and can travel sequentially to many sites. One natural application of

mobile agents, therefore, is collecting information spread across many

computers hooked to a network.

b. Searching and filtering. On behalf of a user, a mobile agent could visit

many sites, search through the information available at each site, and

build an index of links to pieces of information that match a search

criterion. Here, an agent is given knowledge of user preferences in

terms of a search criterion and an itinerary, and sent out into the

network on the user's behalf. It sifts through huge amounts of data for

those pieces of information of particular interest to the user. At some

point, it returns to the user to report its findings.

C-11

c. Monitoring. Sometimes information is spread across time. New

information constantly is being produced and published on the

network. Agents can be sent out to wait for certain kinds of

information to become available then report back when relevant

information becomes available.

d. Targeted information dissemination. Another potential use of mobile

agents is to distribute data to nominated parties.

e. Negotiating. Besides searching databases and files, agents can gain

information by interacting with other agents. For example, each agent

can contain information about its user's schedule. To agree upon a

meeting time, the agents exchange information.

f. Bartering. Electronic commerce is another good fit for mobile agent

technology where electronic commerce can take place between agents.

For example, there could be an agent host dedicated to the buying and

selling of automobiles. If you wanted to buy a car, you could give an

agent knowledge of your preferences, including a price range and

potentially a negotiation strategy. You would send your agent to the

dedicated host, where it would mingle and haggle with agents seeking

to sell a car and report back as required.

g. Parallel processing. Given that mobile agents can move from node to

node and can spawn subagents, one potential use of mobile agent

technology is as a way to administer a parallel processing job. If a

computation requires so much CPU time as to require breaking up

across multiple processors, an infrastructure of mobile agent hosts

could be an easy way to get the processes out there.

h. Entertainment One last example of a potential application for mobile

agents is entertainment. In this scenario, agents represent game players.

The agents compete with one another on behalf of the players.

C-12

Software agents may also be classed as reactive. Reactive agents represent a

special category of agents which do not possess internal, symbolic models of their

environments; instead they act or respond in a stimulus-response manner to the

present state of the environment in which they are embedded. The agents are relatively

simple and they interact with other agents in basic ways. Complex patterns of

behaviour can emerge from these interactions when the collection of agents in the

system is viewed globally. There are three key aspects which underpin reactive agents:

a. The dynamics of the agent interaction leads to the emergent

complexity. Hence, there is no set specification for the behaviour of the

set-up of reactive agents.

b. A reactive agent is viewed as a collection of modules which operate

autonomously and are responsible for specific tasks. Communication

between the modules is minimised and of quite a low-level nature. No

global model exists within any of the agents and, hence, the global

behaviour has to emerge.

c. Thirdly, reactive agents tend to operate on representations which are

close to raw sensor data.

The combination of autonomous and reactive descriptions for one agent invokes the

category hybrid which combine of two or more agent philosophies in a single agent.

There is some argument that intelligence forms an integral part of all agents;

there is also the field that consider that not all software agents possess the key element

to AI in the form of learning, planning and other traditional AI techniques.

Expert systems do not meet the preconditions of agenthood, as do most

knowledge-based system applications. Modules in distributed computing applications

do not constitute agents either. Such modules are rarely 'smart', and, as a result, are

much less robust than agents. Additionally, in agent-based systems generally, the

communication involves high-level messaging in contrast to the low-level messaging

C-13

in distributed computing. The use of high-level messaging leads to lower

communication costs, easy re-use and concurrency. Lastly, and perhaps most

importantly, agent-based applications operate typically at the knowledge level and not

at the symbol level as is the case in distributed computing applications. In any case,

modules in distributed computing applications are not autonomous in the same sense

as described earlier for agent applications. The majority of software applications may

be ruled out from the set of agent-based applications on the same grounds that are

expert systems or distributed computing applications.

References:

Anon (2003) IBM Agent Building Environment Developers Toolkit Available from ,
http://rtdcs.hufs.ac.kr/docs/ intelligent_java/abe/ docs/abeov.htm, Accessed January
2003.

Barnier N, Brissett P (2001), FaCiLe: a Functional Constraint Library, ENAC-CENA
Tououse, France [online]. Available from http//www.cwi.nl/projects/
elpnewsletter/may01/nav/facile.html Accessed 2001.

Brugali D and Sycara K (1998) Agent Technology : a New Frontier for the
Developement of Application Frameworks Carnegia Mellon University, Report
AF1204, Pittsburg, PA.

Cardelli L (1994) Obliq: A Language with Distributed Scope SRC Research Report
122.

Craige ID (No Date) A Perspective on Multi-agent systems, University of Warwick,
Research Report 273, Coventry,UK

Earl C and Firby J (1996) Combined Execution and Monitoring for Control of
Autonomous Agents ,Artificial Intelligernce Laboratory, Report TR-96-19, University
of Chicago, Chicago, Il.

Franklin S and Graesser A (1996) Is It an Agent or Just A Program?:A Taxonomy for
Autonomous Agents ,Proceeding of the 3rd International Workshop on Agent
Theories, Architectures and Languages, Springer-Verlag.

Georgeff MP (1991) The Role of Artificial Intelligence Industrial Applications
Australian Artificial Intelligence Institute, Tech Note 1-1991, Melbourne Victoria.

Greaves D (No Date) Intelligent Search Agents Available from
http://knapplets.org/report/reports.html. Accessed January 2003.

http://rtdcs.hufs.ac.kr/docs/
http://knapplets.org/report/reports.html.

C-14

Hayden S (1998) Engineering Coordinated Multi-Agent Systems , Report CMPT1998-
20, Simon Frazer University.
Horling B (1998) A reuseable Component Architecture for Agent Construction ,Tech
Report 1998-49, University of Massachusetts.

d’Inverno M, Kinny D, Luck M, Wooldridge M (1998) A Formal Specification for
dMars”, Proceedings of the Foiurth International Workshop in Agent Theories,
Architectures and Languages, Springer-Verlag.

Kinny D and Georgeff M (1996) Modelling and Design of Multi-Agent Systems,TR-
95, Australian Artificial Intelligence Insttitue, November.

Levy M (No Date) The Oz Programming System. Available from
http://www.informkit.uni-trier.de/~levy/db/systems/oz.html. Accessed on December
2002.

Lygeros J, Godbole D and Sastry S (No Date) Simulation as a Tool for Hybrid System
design, Intelligent Machines and Robots Laboratory, Department of Electrical
Engindeering and Computer Sciences, University of California, Berkeley, California.

Martin DA, Cheyer A and Moran D (1999) The Open Architecture: A Framework for
Building Distributed Software Systems ,Applied Artificial Intelligence, January pp91-
128.

McCabe F, Clark K (No Date) April: Agent Process Interaction Language. Available
from http://www-lp.doc.ic.ac.uk/~kc/april1.html. Accessed January 2003.

Montelius J (No Date) AKL, Agents and Penny Intelligent Systems Laboratiry
Available from http://www.sics.sc/isl/akl/ Accessed January 2003.

Sueyoshi T and Tokoro M (1990) Dynamic Modelling of Agents for Coordination,
Workshop on Modelling Autonomous Agents in a Multi-agent World, MAAMAW90,
1990

Venners B (1997) Solve Real Problems with Aglets, a Type of Mobile Agent,
Javaworld, May 1997.

Wagner et al (1999) Investigating Interactions Between Agent Conversation Policies,
Univ Massachusetts,CS-TR-1999-07.

Wilkins D (1997) Multiagent Planning Architecture ,Stanford Research Institute,
Project No 7150.

Wolfgang P (1995),- Seeverkehrsrecht, DSV Verlag.

Xuan P and V Lesser V (1999) Handling Uncertainty in Multi-agent
Commitments”,University of Massachusetts, TR.

http://www.informkit.uni-trier.de/~levy/db/systems/oz.html.
http://www-lp.doc.ic.ac.uk/~kc/april1.html.
http://www.sics.sc/isl/akl/

C-15

Zhang X (1999) Integrating High-Level and Detailed Agent Co-ordination into
Layered Architecture University of Massachusetts, Amherst , MA.

Page D-1

ANNEX D

Existing Atm Models

ARC2000: Automatic Radar Control Beyond 2000

ARC2000 is a tool developed at Eurocontrol Experimental Center (EEC) to

assess the feasibility of automated ground-based separation assurance at a target date

beyond 2015 [ARC96]. The ARC2000 project began in 1989, and is based on ideas

that emerged from older projects such as ASTA (ATM Strategic and Tactical

Adviser). The use of ARC2000 assumes the availability of a four dimension flight

management system (4D-FMS) and the ability of aircraft to maintain trajectories

projected 25 minutes in advance. The ARC2000 environment virtually eliminates

manual controllers and sectors . Conflict resolution clearances are generated

automatically on the ground and sent to aircraft using a data-link. Consequently,

ARC2000 does not provide Human Machine Interface for controllers to manually

exercise Air Traffic Control, even though the simulation is displayed on a high-

resolution 29 inch screen used in ATC. A significant element resulting from the

ARC2000 project is the Highly Interactive Problem Solver, developed by the EEC.

This is an interactive conflict resolution aid based on 4D-FMS capabilities that may be

used either by controllers, or by pilots in the case of a decentralized conflict resolution

scheme.

The major features of ARC2000 are:

a. Automatic preparation of control instructions and delivery of these

instructions by the system to aircraft via data-link.

b. Handling of direct flights from zone entry to exit, although it can

accommodate non-direct routings.

Page D-2

c. Navigation based on pseudo flight plans where constraints are specified

in lieu of a formal flight plan (RNAV traffic) where:

(i) most of the traffic is overflying;

(ii) a significant proportion of flights depart from or enter pseudo-

terminal areas with metering down to predefined levels over

specified points.

d. Catering for disturbances including :

(i) activation/deactivation of Temporary Reserved Areas (TRAs);

(ii) flight path deviations using either the Multi-aircraft Cockpit

Simulator (MCS) or predefined data for specific aircraft.

e. All aircraft are assumed to be equipped with a 4D Flight Management

System. Possible degradation of aircraft capability or air-ground

exchange are not taken into consideration for the first demonstration.

However, the decision-aid derivative HIPS can account for degraded

aircraft capabilities.

The following inputs are required to run an ARC2000 suimulation:

a. The simulated airspace consisting of two main elements:

(i) the en-route area where ARC2000 technology is implemented

(the dimensions of this area must provide sufficiently long

flying times (greater than one hour) permitting a strategic

approach of air traffic control);

(ii) the adjacent airspaces (below and around).

Page D-3

The area currently simulated is delimited by the Northern part of Spain

and Portugal, the Western part of France and the southern part of Great

Britain and Ireland.

b. The traffic sample. In EEC (Eurocontrol Experimental Centre)

simulations the traffic samples come from a recorded period of a peak

day of 1989. The recorded flights were concentrated with respect to

start time (and also cloned when necessary) within a period of 2 hours

in order to create two different traffic samples of respectively 508 and

750 aircraft, allowing the possibility of simulating in real-time two

different types of traffic densities and complexities.

c. The manoeuver priorities and associated parameters.

d The sequencing points and associated parameters (sequencing can only

be done at waypoints or arrival/departure routes).

e. The deviation thresholds (the ARC2000 system monitors the aircraft

positions, in order to verify that the aircraft fly their predicted

trajectories, and, if not, to take actions).

f. The lateral separations that apply between aircraft. The separation

standards are aircraft- and speed- dependent and were adapted to take

in account the real-life imperfections of 4D-FMS and may result in

separation standards that are higher than the ones currently in use.

g. The vertical separations.

h. The time horizon for conflict resolution.

i. The alteration to apply on the air system positions.

Page D-4

During a ARC2000 simulation each action is recorded and it is possible to

obtain a variety of statistical results including :

a. the aircraft density in the airspace,

b. the conflict density in the airspace,

c. trajectory deviations,

d. unsolved conflicts, and

e. extra route distance.

ARC2000 is specifically oriented towards the study of ground-based,

automated conflict avoidance based on 4D-FMS availability. Improvement in capacity

is being sought, however, the current resolution success rate is too low to consider

operational implementation in automated system. However, the strategic conflict

resolution features of ARC2000 are reported to generate very cost efficient solutions

(less than 1% time and fuel penalty) under high traffic load.

BDT: Banc De Test

The Banc de Test tool [BDT97] (BDT) was developed at Centre d'Etudes de la

Navigation Aérienne (CENA) as a support tool in the AGACER project (Algorithmes

Génétiques Appliqués au Contrôle En Route). BDT uses aircraft flight plans and

simplified dynamics to generate trajectories in a given airspace. It can be used alone to

detect and count conflicts (i.e. horizontal or vertical separation violations), or used as

a testbench for an independent conflict resolution module. The aircraft trajectories are

simplified where:

a. aircraft are assumed to climb directly to the cruise flight level at a

constant speed and rate of climb;

Page D-5

b. airspeed and altitude are constant during the cruise segment; and

c. aircraft are assumed to descend directly to their destination at a

constant speed and rate of descent; Terminal areas and airport capacity

are not modelled.

The input required for BDT are:

a. the location of navigation beacons in the airspace,

b. basic aircraft performance data for each aircraft type, and

c. flight plans containing a list of navaids and the requested flight level.

The standard outputs of the model are:

a. the departure time, arrival time and delay for each flight;

b. the number of airplanes in the air and their altitudes, at 5 minutes

intervals; and

c. for each conflict: the miss distance, the aircraft involved and their

positions, speeds, altitudes, just before and just after the separation

violation.

DORATASK

DORATASK is a fast-time simulation developed by the UK Civil Aviation

Authority (CAA) for evaluating sector capacity, based on controller workload limits,

by systematically summing up the time the controller might spend on observable and

non-observable tasks for each category of traffic in a sector [DOR96]. It allows

prediction of capacity changes resulting from changes in manning levels, route

Page D-6

structures or relative traffic loadings, ATC procedures or equipment, and airspace re-

sectorization. DORATASK defines the capacity of a sector as that which creates a

level of workload equal to a specified level (e.g 48 occupied minutes per hour).

The DORATASK model has been calibrated against many sectors in the UK

with other capacity methods or empirical data. CAA urge caution in application of the

model to sectors which it hasn't been calibrated for, as unexpected interactions may

arise. DORATASK requires inputs such as sector geometry, routes and task timings

(determined from video, microphone recordings or otherwise).

The DORATASK method models workload by summing the times spent on

elemental activities such as communicating with aircraft, writing on flight strips,

communicating with neighbouring sectors, etc. The capacity of a sector is then the

maximum number of aircraft which would cause the controller to be saturated for no

more than a specified percentage of time. This works well for predicting sector

capacity in today's system where many fine details of the system are known, but there

are difficulties in applying it to future systems where such details are not yet known.

NARSIM

NARSIM is an Air traffic Management (ATM) and Human-Machine

Interface (HMI) research simulator facility used to simulate aircraft, radar, weather

and automated air traffic control [NAR96]. NARSIM has been used for research and

development of advanced automated tools and the development integration of ground

and air based systems. The advanced automated tools aid in prediction of aircraft

trajectories, conflicts, and excessive deviations from the planned routes. Research in

Human-Machine Interfaces is intended to aid in Air traffic controllers' workload

reduction.

NARSIM has also been used in international research projects such as PHARE

for 4D ATM concepts which is the research part of the European Air Traffic Control

Harmonisation and Integration Program (EATCHIP) conducted by Eurocontrol for the

development of next decade's European Air Traffic Management System (EATMS).

Page D-7

While complete simulation of an air traffic control system typically require

comprehensive data on the environment and agents, NARSIM premodels the basic

ATC system so modifications or new concepts can be incrementally added for

evaluation. NARSIM operates in near-real time and recordings of the entire modelled

and real state can be made for post analysis of events and agent or system

performance. Additionally computer generated traffic with pseudopilot (human

blipdrivers on computer consoles) assistance may be utilized.

NARSIM includes the following tools:

a. The Trajectory Predictor(TP) tool which, based on an aircraft's

flightplan, flight progress, current position and meteorological data,

computes and stores the expected 4D-trajectory.

b. The ACOD (Area Conflict Detection) tool which supports the air

traffic controller by detecting conflicts between aircraft using both

planning data and actual radar data,and can therefore be considered as a

medium term planning conflict detection tool.

c. The STCA (Short Term Conflict Alert) tool supports the executive air

traffic controller by detecting future separation infringements between

aircraft from data supplied by the radar data processing system, and can

therefore be considered as a safety net tool for short term periods.

d. The FPM (Flight Position Monitor) supports the air traffic controller by

monitoring flight progress, detecting deviations from the planned route

and possibly suggesting corrective actions.

For evaluation of controller assistance tools on NARSIM, there is a facility to

play back recorded traffic. These recordings include radar, flightplan and meteo data

as available in the current SARP system. NARSIM can also play back traffic

Page D-8

recordings from the Maastricht Eurocontrol centre. The collection of recorded live-

traffic (approximately 30 hours) includes average and most special circumstances to

appear in every-day air traffic control. Special recordings include high traffic loads

due to diverted traffic from surrounding airports and bad weather conditions. To

create extreme conditions several recordings can be mixed to increase the amount of

traffic.

The simulation scenarios for the air system are based on a set of initial flight-

plans. The scenario generator has parameters to select certain types of flight and the

number of flights per minute (continuous or with randomized intervals) for each type.

The output of the scenario generator is editable, and final manual adjustments are

made to get things `just right'.

RAMS: Reorganized ATC Mathematical Simulator

RAMS is a fast-time simulation tool developed by the Eurocontrol

Experimental Center (EEC) at Bretigny (France) and CACI Inc [RAM96]. RAMS is a

major upgrade of EAM (Eurocontrol Airspace Model) which for the past 15 years has

been Eurocontrol's principal simulation tool for evaluating proposed changes to

airspace structure and sector configuration in EC member states. RAMS deals with all

segments of flights starting from take-off till just before landing. However, runway

interactions with airborne operations may be modelled, such as for parallel or

intersecting runways.

RAMS provides a flexible airspace simulation environment where a broad

variety of new concepts may be tested at the desired level of detail. Due to the flexible

design of RAMS, the system is capable of carrying out planning, organizational, high-

level, or in-depth studies of a wide range of ATC concepts. This design includes 4-

dimensional flight profiles, conflict detection and conflict resolution mechanisms,

workload models, modern user interfaces and a data preparation environment.

Page D-9

The input required for RAMS include;

a. Airspace description: The format used for sector definition is based on

a list of corner points, 2D boundaries (a list of connected points), and

the airspace definition (to add the third dimension and ATC

information). RAMS has an integrated database facility which allows

the extraction of data from a number of sources including the Jeppesen

database of Europe, Eurocontrol or CFMU. If it is required to parse

another, unsupported format, RAMS offers the possibility for users to

define BNF style parsing facilities without a requirement to modify the

RAMS code. FAA users have reported temporary difficulties because

of the unusual airspace definition format leading sometimes to

overlapping sectors when corner points are redundant.

b. Rule-based resolution system: RAMS may work with or without

automatic conflict resolution. It may also run in real- time, and a

human controller can then interact with the software. When running in

automatic mode, each controller in RAMS may be attributed a specific

set of rules (the basic ATC conflict resolution rulebase contains over

100 rules) that RAMS will use for automatic conflict resolution. These

rules may be defined sectorwise to account for local habits and

working conditions. Conflict probes can use a variety of conflict alert

zone shapes. The basic shapes are rectangles, circles, ellipsoids,

diamonds and users are required to select one of these only. The

separation values applied to aircraft are defined by any one of a number

of sources, including the required controller separation, wake

turbulence, oceanic flight metering fixes and the relative geometry of

the flights in a conflict. All these features are optional and may be

modified by the user.

c. Flight plan description: RAMS offers the capability of simulating the

entire flight plan in as much detail as desired. It can also generate flight

Page D-10

plans automatically: Given a cruising altitude, the origin and the

destination of a flight, RAMS can generate a flight plan with a climb

path and a descent path based on specific aircraft performance. Aircraft

performance is currently coded on lookup tables.

d. Workload analysis: A virtually unlimited number of tasks may be

defined for workload analysis purposes.

e. Weather patterns - Special use airspace: Convective weather patterns

and Special Use Airspace can be accounted for via time- varying

forbidden zones.

By carrying out comparative analyses between different simulated scenarios,

the effects of proposed changes can be expressed in terms of:

a. Distribution of workload over centers, sectors, and individual control

positions;

b. Traffic loads within each sector/center overall and per route, level

band, point, classified according to cruise, climb and descent;

c. Penalties imposed upon traffic resulting from imposing ATFM

measures, flight level changes, en-route/ground delays, and arrival

holding.

d. Frequency distribution based on many iterations of a given scenario

(Monte-Carlo simulations).

The principal aplications of RAMS include:

a. ATC workload.

Page D-11

b. Free Routing investigation.

c. Free Flight investigations.

d. Airspace capacity and density.

RAMS has been tested by FAA to evaluate the effects of direct routing on

airspace operations in New England where it was reported as "the best available

airspace simulation tool". The tool concentrates on airspace operations and, while

being a closed-architecture tool, RAMS apparently offers enough degrees of freedom

to investigate many aspects of future concepts such as flying direct routes..

SDAT: Sector Design Analysis Tool (FAA)

SDAT was developed by the US FAA as an analytic tool for assisting in the

evaluation of changes in airspace design and traffic routing [SDA96]. SDAT takes the

existing airspace and traffic data, reduces it to more manageable form, and allows the

user to select, modify and add to the data interactively for display. Various

customizable analyses based on conflict probabilities can then be run to provide

metrics such as conflicts, traffic loading, impacts on users and sector controller task

loads.

SDAT can import standard airspace data:

a. Airspace data: sector boundaries, NAVAIDSs, fixes, routes etc. from

ACES & Adaptation data.

b. Traffic data: from Automated Radar Tracking System (ARTS), System

Analysis Recordings (SAR), Continuous Data Record (CDR) or the

Enhanced Traffic Management System (ETMS).

Page D-12

c. Supplemental data: e.g. Special Use Airspace (SUA)

These inputs are combined for display, analysis and raw traffic data reduced to show

changes only in direction, climb rate, speed or controlling sector. Interactive or text

mode modifications of airspace and traffic data can be performed for the problem at

hand.

The principal outputs are:

a. 3D conflict analysis:

(i) potential hotspots for crossing or merging paths where need for

increased separation exists

(ii) locations, frequencies and expected per sector and per flight

conflict potential

(iii) on screen and text output

b. Traffic volumes in sectors: counts, durations and throughputs

determined from sector boundary crossings

c. Impacts on users from changes:

(i) flight time: based on average speed on each route segment

(ii) Total flight distance

(iii) sectors traversed

(iv) DOC based on average hourly cost for aircraft

Page D-13

d. Sector controller task loads: actions, messages, time required etc.

calculated from exchanges of HOST data.

RATSG: Robust Air Traffic Situation Generator

A Graphical User Interface is used to develop scenarios and flight plans. The

user can specify the number and type of aircraft, aircraft call sign, transponder status,

and whether the aircraft has TCAS. Additionally, aircraft initial states (position,

altitude, heading, speed) and the 4D waypoints are defined either through a text input

or graphically. Voice messages can be recorded and scripted to play at predetermined

times to simulate VHF communications. When running, RATSG outputs pseudo

aircraft state data in either real time or in fast time.

The aircraft model uses simple performance numbers as parameters (e.g., best

rate of climb, gross weight, roll rate). The values of these parameters are based on

published aircraft performance data but have not been otherwise validated.

SIMMOD

SIMMOD is designed to simulate in detail: a full individual aerodrome

(including runways, taxiways and apron areas); an aerodrome and its associated

terminal airspace; a regional system of airports and the associated airspace; or, a

regional volume of airspace. Its principal measures of performance (and outputs) are

aircraft travel times, flows and throughput capacity per unit of time, delays and fuel

consumption [SIM96].

The model relies on high-level-of-detail network representations of airfields

and airspace. Traffic moves along a network of links and nodes with each link or node

(depending on whether airspace or airport surface operations are being modelled)

being able to accommodate a single aircraft at a time. Whenever two aircraft converge

on the same node or link, the operating strategies programmed into the model

determine which of the two candidates will occupy that node or link first and which

Page D-14

will incur delay. Aircraft paths on the network are either specified by the user for

every origin-destination pair or determined internally by the model according to a

shortest-path (Dijkstra) algorithm.

Much of the effort associated with setting up a SIMMOD simulation is, in fact,

expended in developing the airspace and/or airfield network on which the traffic will

move. For example, if a fan or trombone pattern is to be utilized to increase the

efficiency of approach spacing and sequencing, all the possible alternative paths in the

fan or trombone must be explicitly "programmed" as part of the network

representation.

SIMMOD provides highly detailed statistics on each aircraft simulated.

Outputs can be obtained on: aircraft travel times; traffic flows past specified points;

throughput capacity per unit of time; delays by time of day and location on the airfield

or in airspace, along with the immediate reason for each delay; and fuel consumption.

The principal restrictive assumption in SIMMOD is that traffic must move on a pre-

specified network of nodes and links according to pre-specified operating strategies or

"rules of the road". In terms of conflicts between aircraft paths, SIMMOD is

essentially a 1-dimensional model, checking for conflicts along the aircraft’s
longitudinal path only, with no possibility of checking for lateral or vertical separation

violations.

SIMMOD has been described as the most powerful existing tool for "fine

granularity" simulation of airport surface operations, allowing for arbitrarily high

levels of detail (e.g., simulation of push-back operations, gate occupancies, de-icing

procedures, etc.). However, the major weakness of SIMMOD is that it is a "labour

intensive" model whose users must undergo a significant amount of training.

Moreover, to avoid several potential pitfalls, SIMMOD users must have a very good

understanding of ATM and airport operations. For example, because SIMMOD is

essentially a one-dimensional model (i.e., it can check for conflicts between aircraft

only along the paths traced by the elements of a network) care must be taken so that

the network structure on which the traffic moves is based on sets of nodes and links

Page D-15

with sufficient lateral and vertical separations to avoid the presence of undetected

conflicts during the simulation. Another difficulty in SIMMOD is the modeling of

dynamic rerouting of aircraft to simulate the ATM system's responses to local

congestion problems.

TOPAZ: Traffic Organization and Perturbation AnalyZer

TOPAZ is a tool designed to evaluate the safety/capacity for (new)

operational ATM concepts for single or multiple flight phases [TOP96]. TOPAZ

consists of a suite of analytical model based software modules, the main of which are:

a. High level Petri net based simulation environment, to evaluate

frequencies of non-nominal event sequences. The main numerical

packages are:

(i) Data base of high level Petri net modules for human,

environment and systems in ATM

(ii) Data base of ATM related hazard types, frequencies and

probability densities

(iii) User interface for the modular development of an application

dedicated high level Petri net

(iv) User interface for the execution of Monte Carlo simulations

b. Various mathematical models to evaluate fatal ATM related accidents

(collision between aircraft or uncontrolled flight into terrain due to

crossing a wake vortex of a preceding aircraft). There are numerical

packages for the following evaluation types:

(i) Numerical evaluation of probability density functions of aircraft

evolution with time

Page D-16

(ii) Fitting Gaussian mixtures to empirical, Monte Carlo or

numerical distributions

(iii) Evaluating a generalised version of the Reich collision risk

model.

(iv) Evaluating a probabilistic risk model of crossing the wake

vortex of a preceding aircraft.

The execution of a safety/capacity evaluation exercise consists of three

corresponding steps:

a. Assess the frequency of safety-critical non-nominal event sequences

through running Monte Carlo simulations with the High level Petri net

simulator.

b. Evaluate the probability of fatal ATM related accidents (collisions

between aircraft, or collision into terrain due to crossing a wake vortex

of a preceding aircraft), through a subsequent use of the various

packages.

c. Through a spreadsheet, combine the results obtained into relevant

ATM safety measures (fatal accident risks, economic risk, individual

risk and societal risk).

In order to execute an operationally truly relevant safety/capacity evaluation of

a given (new) operational ATM concept, a significant amount of input material has to

be collected:

a. Description of the operational ATM concept to be evaluated. This

might be done up to the level of human controller tasks (air and

ground), air traffic procedures and technical ATM/CNS systems.

Page D-17

Starting from a less detailed description is possible, however, the safety

evaluation results will be less precise (when comparing conceptual

designs this even may be an advantage).

b. Statistical characterisation of the air traffic scenarios to be evaluated;

i.e. traffic flow(s), aircraft types, etc.

c. Identification of all relevant hazards, including a qualitative evaluation

of their effects. This is accomplished through executing a preliminary

hazard analysis which pays proper attention to all possible sources of

non-nominal events (human, procedures and technical systems).

d. Develop a high level Petri net model for the operational concept to be

evaluated. This high level Petri net model should be of sufficient detail

to represent all event sequences which may play a critical influence on

the safety/capacity assessment.

e. Identification of parameters or parameter ranges for all elements which

may have a critical influence on the safety/capacity assessment. This is

accomplished through collecting statistical data from appropriate data

bases, and through assessing the allowable ranges of the design

parameters.

The outputs provided consist of frequencies for the occurrence of non-nominal

event sequences, conditional probabilities of collision (or hull loss) for different types

of non-nominal event sequences. The practical interpretation of these figures is

supported by a tree- wise representation, with at the top an overall risk measure. If

desired, TOPAZ executes safety assessments as a function of scenario parameters, e.g.

traffic flow.

TAAM: Total Airspace & Airport Modeller

Page D-18

TAAM is a large scale detailed fast-time simulation package for modeling

entire air traffic systems, developed in cooperation with the Australian Civil Aviation

Authority (CAA) and can be used as a planning tool or to conduct analysis and

feasibility studies of ATM concepts [TAA96]. TAAM can simulate most ATM

functions in detail and can provide scenario generation for real-time ATC simulators.

The simulations cover the entire gate to gate ATM process, generally in more detail

than competing models.

The factors considered in a TAAM simulation include:

a. Weather conditions: local weather at an airport including IFR or VFR

conditions and respective procedures and minima; severe weather;

precipitation, wind velocity, and temperature, as well as winds aloft.

b. Separation standards, including radar, procedural, wake turbulence,

runway separation; special (staggered) separation for parallel

dependent runways; in-trail separation; Land-and-hold- short (LAHSO)

provisions; and any additional user-specified rules.

c. Conflict detection and prevention or resolution, both on ground and in

the air.

d. Airline, operation type or aircraft type specific gate or stand allocation,

gate service times, flight characteristics of aircraft, pushback

procedures, taxi patterns and other procedures, flight linking for multi-

leg flights, hub operations.

e. Airport operation specifics, including all types of gates and remote

parking stands, hangars, stand-off positions; also clearance requests,

runway crossing patterns, restricted use of runways or taxiways,

runway queue balancing, departure sequence optimisation, curfew and

noise abatement procedures, optimised taxi flow to runway entry

points, the use of rapid-exit taxiways etc. The system shall feature

Page D-19

different aircraft shapes, built to scale, so that correct wingtip

clearances can be simulated.

f. It is desirable that the system be capable of modelling de-icing

operations, including the use of specified de-icing pads and stations,

“on-ramp” or remote de-icing, prevailing weather conditions (e.g.

freezing rain, snow, temperature etc.), limited number of de-icing

trucks, different de-icing times, holdover times depending on the type

of fluid used.

g. ATC sector and controller workload related factors. These include

complex 3D ATC sector structures, special-use airspace, co-ordination

with neighbouring sectors, altitude and speed clearances given to

aircraft, position reports, aircraft proximity monitoring, conflict

prediction and resolution. The latter includes level changes, radar

vectoring, speed changes, and delaying the aircraft. The system shall

also model dynamic sectorisation, whereby the shape and size of a

sector can change during the day, also shall be supported by the system.

A TAAM simulation consists of a collection of user provided data relevant to

the problem at hand and its modeling requirements. TAAM takes as input the air

traffic schedule, environment description, aircraft flight plans, air traffic control and

output control rules. It uses them in performing airport and airspace usage, conflict

detection and resolution, and aggregate metrics calculations with its internal

algorithms and user defined rulebases.

Page D-20

Figure D1. Example of a TAAM Simulation

TAAM modules include an interactive graphical fast-time simulation tool

which provides the user with a 2D or 3D view of the airspace or airport; a real-time air

traffic monitoring tool with simulation capability; and a reporting tool which can be

used to generate graphs and tables from data generated by the simulation. Simulations

can be interrupted and restarted and key aspects of the model, such as conflict

resolution and airport resource usage are controlled by rulebases which may be edited

by the user during a simulation run. 'Live' graphical display of the simulation can be

selected and customizable reporting is available. The simulation can also be run

unattended in batch mode, with no graphics. During the simulation, statistics are

gathered by the reporting program and written to a report file. This file is used by the

Report Presentation Facility to construct the text and graphical reports desired by the

user.

As TAAM is a large scale simulation of an Air Traffic system, comprehensive

input data files describing the entire Air Traffic system are needed. The level of detail

can be varied for better modeling of critical areas. The inputs required are:

a. Airport Descriptions

b. Airspace Route and Sector Layouts

c. Geographical Features

d. Air Traffic Control Rules

e. Airport Usage Rules

(i) wake turbulence and other standards

(ii) SIDs/STARs/route selections etc.

Page D-21

f. Traffic Timetables

g. Aircraft Trajectories and Routes

h. Aircraft Performance Characteristics

I. Conflict Detection and Resolution strategies

Default input files for a large proportion of these are available. Most data entry

for building the environment model and operation rules is interactive and various data

entry tools are available:

a. 2D/3D graphical editor (CAD tool) for entering and editing graphical

data such as airport layouts, airspace sectors, etc.

b. Data entry and validation tool for entering and maintaining data such as

waypoints, routes, etc.

c. Other data entry tools e.g. a digitizer for digitizing paper maps, and an

external data converter for importing maps in AutoCAD(TM) format

and Jeppesen(TM) data.

Model outputs are, in general, aggregated metrics and can be reported on

system or sector wide basis:

a. System delays

b. Conflicts: counts by degree of severity, whether successfully resolved

or not

c. Airport movements, delays, operations on taxiways and runways,

runway occupancy

Page D-22

d. Airspace operation metrics such as usage of routes, sectors, fixes and

coordination

e. Noise contours

f. Total fuel burnt

g. Costs: aggregate, fuel, non-fuel

h. Controller workloads

i. Individual Aircraft flight profiles

j. Scenario generation e.g. for real-time ATC simulators or other

playback

k. "Show Logic" diagnostics which gives the operator an insight into

TAAM's decision making process

l. Text messages (extent and content user selectable) which contain

further details of TAAM events

m. Errors

A 2D or 3D graphical visualization of the simulation can also be generated. The

graphical output can be viewed in several windows simultaneously, each window

having an independent 2D or 3D view with the scale ranging from 30 m to 40,000 km.

Hazardous weather, or special use airspace cannot yet be modelled

dynamically. Weather modeling was limited to winds aloft in sectors, but according to

TPG the user can now input SIGMETs and TAAM can determine which aircraft, and

Page D-23

when, will be affected by these severe weather areas. Conflict detection and resolution

is selectable but may not resolve all conflicts.

TAAM has been used extensively in recent years to assist with the

resectorization of Australia's airspace. It was also used to check and, where necessary,

adjust sector boundaries when new routes were planned to ensure that routes did not

infringe upon another sector for very short periods of time. The methodology

consisted of creating a series of timetables from actual flight plan data, taken directly

from the Automatic Fixed Telecommunications Network (AFTN), for the busiest day

of the month. The final timetable consisted of all IFR flights and a limited amount of

VFR traffic. The flights were run through TAAM using a series of sectorizations that

reflected both the existing ATC and Flight Service sectors, as well as future

sectorizations expected to be operated under The Australian Advanced Air Traffic

System (TAAATS).

Statistical outputs were generated to show the effective number of aircraft in

each sector for each minute of the day. Locally written computer programs were also

used to extract the aircraft call-signs and the exact number of aircraft that operated

through each sector or sub-sector. This usually covered a full 24-hour period with

more detailed analyses done for the busiest 2 to 3 hour period. The list of call-signs

was used to extract, from the timetable, the relevant flight plans for a specific sector

and period of time. These flight plans were then used in the real-time ATC simulators

for controller training purposes and to check controller workload and other

characteristics in a more realistic live environment.

In terms of risk analysis, TAAM was used to generate aircraft conflict pair

data for OCTA or Class G airspace, and Class C, D and E controlled airspace.. These

conflict pairs along with extensive risk weightings were input to a risk analysis

program which generated a risk assessment chart for each location and area under

study. The project methodology comprised a number of stages:

a. The transcription of tower flight progress strips into electronically

readable form.

Page D-24

b. The processing of these files to detect and correct invalid data, to

convert bearing and distances to latitudes and longitudes where

required, to generate the waypoint and airport files and to clone the

timetable files required by TAAM.

c. The timetables were passed through TAAM's Interactive Data Input

System for a final format check, sort and to calculate TAAM flight

times.

d. 24 TAAM runs were undertaken to identify IFR/VFR and VFR/VFR

conflicts for each runway configuration, at each location, at each level

of traffic.

e. The output files from each run were processed to extract the conflict

pair data for input to the risk model which then generated the risk

analysis charts.

The risk charts provide a measure customized to specific locations and areas which

management can use as a basis for objective decisions on the provision or removal,

upgrading or downgrading of Air Traffic Services

Page D-25

ASIM: Airspace SIMulation

ASIM is a tool developed in UK at the Defence Research Agency (DRA) for

the Civil Aviation Authority / National Air Traffic Services (CAA/NATS) [ASI96].

To date, it has been used to evaluate the complexity of new airspace models (new

route structures for example) for the period 2015+. At the current stage of its

development, RAMS does not fully replicate Terminal Area operations. Thus,

operations under 10,000ft are currently filtered out.

The input to ASIM consists of aircraft characteristics, and the desired route

structure. The output mainly consists of a count of the number of close proximities

among aircraft and points out which aircraft are involved. It is used to study overall

ATC complexity. ASIM also has limited traffic management capabilities.

Sectors may be defined under ASIM. Aircraft characteristics need to be

entered. Each aircraft is assumed to have a preferred height bound and flight levels are

assigned randomly from a distribution which depends upon the aircraft type. Aircraft

may climb either according to specified climb schedules or follow ATC rules. The

aircraft are simply flown from origin to destination. While flight plans are pre-defined,

actual flight times may be modelled by injecting randomness. No specific delays are

modelled within ASIM. Traffic is generated probabilistically based on statistical

information about the number and frequency of flights across city pairs. Each city pair

has a specific routing link-node structure. In that sense, it is “similar” to SIMMOD.

CATS:Complete Air Traffic Simulator

The CATS model assumes that there is an error about the aircraft's future

location because of ground speed prediction uncertainties . The uncertainties on

climbing and descending rates are even more important. To cater for this, an aircraft is

Page D-26

represented by a point at the initial time ; the point becomes a line segment in the

uncertainty direction (Figure D2).

Figure D2: Modeling of speed uncertainties.

When changing direction (t=4), the segment becomes a parallelogram that

increases in the speed direction. When changing a second time direction (t=7), the

parallelogram becomes an hexagon that increases in the new speed direction, and so

on. To check a conflict at time t, the distance between the two polygons modeling the

aircraft positions is computed.

In the vertical plane, a cylindrical modeling is used (figure 1). Each aircraft has

a maximal altitude and a minimal altitude. To check if two aircraft are in conflict, the

minimal altitude of the higher aircraft is compared to the maximal altitude of the

lower aircraft.

The current aircraft positions and flight plans are sent by CATS to a process

DC (Detection Clustering) that builds trajectories forecast for Tw minutes, does

conflict detection by pairs and transforms 1-to-1 conflicts in n-aircraft conflict called

clusters. Then, the problem solver solves in parallel each cluster, as aircraft in each

cluster are independent from aircraft in the other clusters. The problem solver sends to

Page D-27

DC new orders and DC builds new trajectories forecast based on these orders. Once

again DC runs a conflict detection process to check that modified trajectories for

aircraft do not interfere with aircraft in another cluster, or with new aircraft. If no

interference is found, new flight orders are sent to CATS. If there are interferences,

interfering clusters are joined and the problem solver is used again on that (these)

cluster(s). The process is iterated until no interference between clusters remains, or no

new aircraft is concerned by modified trajectories. The new orders are sent back to the

traffic simulator.

The process is repeated and trajectories optimized each d minutes. However,

during the computation time, aircraft are flying and must know if they must change

their route or not. d should be large enough to compute a solution, send it to the pilot

and let him time enough to begin the maneuver. Consequently, for each aircraft, at the

beginning of the current optimization, trajectories are determined by the previous run

of the problem solver and cannot be changed for the next d min (3 min in the

applications).

In the horizontal plane, aircraft are given turning point maneuvers (Figure D3).

The turning point angles are 10, 20 or 30 degrees.

Figure D3. Horizontal Maneuver Modelling

A maneuver is determined by the maneuver starting time t0, the turning point

time t1 and the deviation angle s.

Turning Point Model

t=0 t0 t1

s

Page D-28

In the vertical plane, aircraft trajectories are divided in 4 periods (figure D4).

During the climbing period, aircraft can be leveled at a lower than requested flight

level during a moment to resolve a conflict. When aircraft have reached their desired

flight level, they may be moved to the nearest lower level to resolve a conflict. When

aircraft are about 50 nautical miles from beginning their descent to destination, they

may be moved to a lower level to resolve a conflict. During the descent no vertical

maneuver is possible.

Figure D4: Vertical Maneuver Modeling.

Climbing Cruising Period End of Cruising Descending

t0 t1 t0

t1

t0 t1

Page E-1

ANNEX E

Sample Detection Module Code

FUNCTION Time_to_Collision(air1,air2 : pstatstype ;
apt : runway) RETURN integer IS

-- Calculates the time to collision between two aircraft taking into account
-- the expected projected trajectory of the aircraft according to its current
-- position in the aerodrome circuit

r1,r2,x11,y11,x21,y21,z21,z11 : float ;
md,md2,missdist,missdist2,dtrack : float ;
time2 : integer ;
xn1,xn2,yn1,yn2,zn1,zn2 : float ;
TA_required : boolean ;
cx1,cx2,cy1,cy2,ch1,ch2 : float ;
heading1,heading2,trans1,trans2:float ;
rgn1,rgn2 : vstring ;

BEGIN
time2 := 0 ;
TA_required := false ;
-- co-ords of aircraft 1
heading1 := air1.heading ;
r1 := 0.515 * air1.knots ; -- metres travelled in 1 sec by aircraft1
xn1 := air1.oldx ;
yn1 := air1.oldy ;
zn1 := air1.oldhgt ;
z11 := air1.attitude(0) ;

-- aircraft2
heading2 := air2.heading ;
r2 := 0.515 * air2.knots ; -- metres travelled in 1 sec by aircraft2
xn2 := air2.oldx ;
yn2 := air2.oldy ;
zn2 := air2.oldhgt ;
z21 := air2.attitude(0) ;

LOOP
EXIT WHEN ((time2 >= 40) OR (TA_required = true)) ;

-- update x,y and z for aircraft 1

Page E-2

polartoxy(r1,heading1,x11,y11) ;
cx1 := xn1 ;
xn1 := xn1 + x11;
cy1 := yn1 ;
yn1 := yn1 + y11 ;
ch1 := zn1 ;
zn1 := zn1 + z11 ;
-- update heading1 for next loop
-- dtrack := air1.heading ;

inshortcontrol(xn1,yn1,zn1,air1,apt,rgn1,trans1) ;

case rgn1.stringpart(1) is
-- calc expected trajectory
when 'r' => dtrack := 0.0 ;

heading1 := apt.rdir ;
when 'd' => dtrack := 0.0 ;
when 's' => ShortFinalTrajectory(apt,heading1,trans1,air1) ;
when 'l' => shortfinaltrajectory(apt,heading1,trans1,air1) ;
when 'o' => dtrack := 0.0 ;
when 'b' => BaseTrajectory(apt,heading1,trans1,air1) ;
when 'c' => CrosswindTrajectory(apt,heading1,trans1,air1) ;
when 'u' => dtrack := 0.0 ;
when OTHERS => dtrack := 0.0 ;

end case;
polartoxy(r2,heading2,x21,y21) ;
cx2 := xn2 ;
xn2 := xn2 + x21 ;
cy2 := yn2 ;
yn2 := yn2 + y21 ;
ch2 := zn2 ;
zn2 := zn2 + z21 ;
-- update heading2 for next loop ;
-- dtrack := air2.heading ;
inshortcontrol(xn2,yn2,zn2,air2,apt,rgn2,trans2) ;
case rgn2.stringpart(1) is
when 'r' => dtrack := 0.0 ;

heading2 := apt.rdir ;
when 'd' => dtrack := 0.0 ;
when 's' => ShortFinalTrajectory(apt,heading2,trans2,air2) ;
when 'l' => ShortFinalTrajectory(apt,heading2,trans2,air2) ;
when 'o' => dtrack := 0.0 ;
when 'b' => BaseTrajectory(apt,heading2,trans2,air2) ;
when 'c' => CrossWindTrajectory(apt,heading2,trans2,air2) ;
when OTHERS => dtrack := 0.0 ;

Page E-3

end case;

--calc orig miss distance
md := sqrt(((cx1 - cx2) * (cx1 - cx2)) + ((cy1 - cy2) * (cy1 - cy2))) ;
-- include height into calc
missdist := sqrt((((ch1 - ch2) * (ch1 - ch2))/10.76) + (md * md)) ;
-- calc new missdist
md2 := sqrt(((xn1 - xn2) * (xn1 -xn2)) +

((yn1 - yn2) * (yn1 - yn2))) ;
-- include height
missdist2 := sqrt((((zn1 - zn2) * (zn1 - zn2))/10.76) +

(md2 * md2)) ;

--if miss dist is increasing then moving apart -
--end it here ; else repeat until time > 40 secs
IF (missdist2 <= 500.0) THEN --if projected missdist2 < 500 metres (10sec @ 100

knots)
IF (missdist2 < missdist) THEN
IF ((zn1-zn2) <= 500.0) THEN
TA_required := true ;

ELSE
time2 := time2 + 1 ;

END IF ;
else
time2 := time2 + 1 ;

END IF ;
ELSE
time2 := time2 + 1 ;

END IF ;
END LOOP ;

return time2 ;
END Time_to_collision ;

-- ***

FUNCTION Time2CPA(air1,air2 : pstatstype ;
apt : runway) RETURN integer IS

-- calculates Bramson criteria T2CPA
-- for a 500 feet vertical and 500 metre horizontal separation
r1,r2, heading1, heading2 : float ;
x11,y11,z11, x12,y12,z12,zi1 : float ;
x21,y21,z21, x22,y22,z22,zi2 : float ;
time2 : integer ;
dist0,dist1,peil0,peil1 : float ;

Page E-4

xi,yi : float ;

BEGIN
time2 := 0 ;
-- co-ords of aircraft 1
heading1 := air1.heading ;
r1 := 0.515 * air1.knots ; -- metres travelled in 1 sec by aircraft1
x11 := air1.oldx ;
y11 := air1.oldy ;
z11 := air1.oldhgt ;
zi1 := air1.attitude(0) ;
-- get new projected position of air1 after 1 sec
polartoxy(r1,heading1,xi,yi) ;
x12 := x11 + xi;
y12 := y11 + yi ;
z12 := z11 + zi1 ;

-- aircraft2
heading2 := air2.heading ;
r2 := 0.515 * air2.knots ; -- metres travelled in 1 sec by aircraft2
x21 := air2.oldx ;
y21 := air2.oldy ;
z21 := air2.oldhgt ;
zi2 := air2.attitude(0) ;
-- get new projected position of air2 after 1 sec
polartoxy(r2,heading2,xi,yi) ;
x22 := x12 + xi;
y22 := y21 + yi ;
z22 := z21 + zi2 ;

-- calc dist0 and dist1
dist0 := sqrt(((x11-x12)*(x11-x12)) + ((y11-y12)*(y11-y12))) ;
dist1 := sqrt(((x21-x22)*(x21-x22)) + ((y21-y22)*(y21-y22))) ;
--calc peilo and peil1
if y11 = y12 then
peil0 := heading2 - 90.0 ;

else
peil0 := heading2 - ((arctan((x11-x12)/(y11-y12)))/0.01754) ;

end if ;
if y21 = y22 then

peil1 := heading2 - 90.0 ;
else
peil1 := heading2 - ((arctan((x21-x22)/(y21-y22)))/0.01754) ;

end if ;
-- check if closing

Page E-5

if dist1 < dist0 then
--apply the Bramson criteria (for a minimum 500 horizontal separation)
if (dist0 = dist1) or (dist0 = 0.0) then
time2 := 999 ;

else
time2 := integer((dist0 - (500.0/dist0))/(dist0-dist1)) ;

end if ;

-- check vertical separation at this time
z12 := z11 + (float(time2) * zi1) ;
z22 := z21 + (float(time2) * zi2) ;
-- check to see if there is a vertical separation problem
-- if so then time2 is the T2CPA
-- else no problem exists
if (z12 - z22) > 500.0 then
time2 := 999 ;

end if ;
else
time2 := 999 ;

end if ;
return time2 ;

end Time2CPA ;

Page F- 1

ANNEX F

Rules Summary

Primary A/C Secondary A/C ACTION

Short Final OACA1 If any collision predicted with 20 seconds
then seconadary to detour. Provide suggested
safe heading.

Runway Primary to Abort landing and go-around

Short Final Check to see whether difference in the time
to fly is less than the vortex separation
minimum. Check which aircraft is closest
and let that aircraft proceed; the other to
abort finals and go-around.

Base, Long Final, If the difference in times to reach the
Downwind. hold is less than the vortex minimum,

then the aircraft on base to go-around.

Base OACA If any collision predicted with 20 seconds
then seconadary to detour. Provide suggested
safe heading.

Runway Nil action until primary on Short Final

Short Final If Primary gaining on Secondary then
Primary to abort.

Base Aircraft closest to threshold (in time) to
continue. Other to abort.

Downwind If (time to fly Secondary) - (Time to fly
Primary) < 60 seconds, the Secondary to orbit
extend downwind.

Long Final If time to fly Secondary < time to fly Primary
then primary to abort base and go around;
else if time to fly Primary < time to fly
Secondary - 120 seconds, then OK else primary
to abort.

1 Outside Aerodrome Circuit Area

Page F- 2

Primary A/C Secondary A/C ACTION

DownWind OACA If any collision predicted with 20 seconds
then seconadary to detour. Provide suggested
safe heading.

Base If (time to fly Secondary) - (Time to fly
Primary) < 60 seconds, the Secondary to orbit
extend downwind.

Long Final If time to fly Primary - time to fly Secondary
< 120 seconds, then if time to fly Primary <

time to fly Secondary to abort else Primary
to abort.

Downwind Aircraft on outside to orbit.

Crosswind If separation < 60 seconds, then Secondary
to orbit or extend.

Others Nil

Long Final OACA If any collision predicted with 20 seconds
then seconadary to detour. Provide suggested
safe heading.

Runway If the diffference in times to reach the ruway
threshold is less than the vortex mimimum, then
Primary to abort.

Short Final If the diffference in times to reach the ruway
threshold is less than the vortex mimimum, then
Primary to abort.

Base Long Final, If the diffference in times to reach the ruway
Downwind. threshold is less than the vortex mimimum, then

aircraft with longest time to abort.

Runway OACA If any collision predicted with 20 seconds
then seconadary to detour. Provide suggested
safe heading.

Short Final. Base, If the time to reach the ruway threshold is less
Long Final. than the vortex mimimum, then Secondary

to abort.

Others Nil

Page F- 3

Primary A/C Secondary A/C ACTION

CrossWind OACA If any collision predicted with 20 seconds
then seconadary to detour. Provide suggested
safe heading.

Downwind If separation < 60 secs, then primary to
orbit/extend.

Upwind If separartion < 60 secs, then Secondary to
extend/orbit.

Crosswind If separation < 60 secs, then last in line to
extend/orbit.

Others Nil

Upwind OACA If any collision predicted with 20 seconds
then seconadary to detour. Provide suggested
safe heading.

Upwind Last in line to extend/orbit

Crosswind If separation < 60 secs, then Primary to
extend/orbit.

Others Nil.

Page G-1

ANNEX G

Sample Control Module Code

procedure checkshortfinal(ysam : in runway ;
numplanes : integer ;
pstats: in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check short final conflicts between air1 and air2 if air1 on short final

t2cpa,t2cpa2 : integer ;
air1,air2 : pstatstype ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
if air1.rgn.stringpart(1) = 's' then
case air2.rgn.stringpart(1) is
when 'o' =>
-- if there are any not in azone then check for conflicts
t2cpa := time_to_collision(air1,air2,ysam) ;
t2cpa2 := Time2cpa(air1,air2,ysam) ;
if (t2cpa < 20) or (t2cpa2 < 20) then
-- collision predicted within 20 seconds
-- get air2 to detour
Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when 'r' =>
-- issue advisory for aircraft on final to go around
-- abort final
Getoutoftheway(2,numplanes,pstats,i,j,detour,ysam) ;

when 's' =>
-- both aircraft on short final..
-- check which aircraft is closer and let the closest proceed.
-- the other to abort and go around.
if abs(TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then
if air2.transition <= air1.transition then
--air1 to go-around
Getoutoftheway(3,numplanes,pstats,i,j,detour,ysam) ;

else
--air2 to go around
Getoutoftheway(3,numplanes,pstats,j,i,detour,ysam) ;

Page G-2

end if ;
end if ;

when 'b' =>
-- if the difference in times to reach the threshold
-- is less than the vortex separation minima then air2
-- abort and go-around
-- [climb and abort]
if (TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then
Getoutoftheway(4,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when 'l' =>
-- if the difference in times to reach the threshold
-- is less than the vortex separation minima then air2
-- abort and go-around
-- [climb and abort]
if (TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then
Getoutoftheway(5,numplanes,pstats,j,i,detour,ysam) ; -- air2 to abort finals and go

around
end if ;

when 'd' =>
-- if the difference in times to reach the threshold
-- is less than the vortex separation minima then air2
-- abort and go-around
-- [climb and abort]
if (TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then
Getoutoftheway(10,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when others =>
null ;

end case ;
end if ;

end Checkshortfinal ;

H-1

ANNEX H

Sample Strategic Module Code

function GetAcceptableCorrection(numplanes : in integer ;
pstats : in pbase ;
i,j : in integer;
direction : veer_direction ;
att_change : float ;
ysam : runway) return integer is

-- where there is a conflict between aircraft
-- pstats(i) and pstats (j), the function calculates an acceptable course correction
-- for aircraft pstats(j). It then ensures that for this course correction, there
-- is no new hazard conflict with other aircraft
-- INPUT : numplanes - number of aircraft in the area
-- pstats - the aircraft working data
-- i,j - two prime aircraft of initial concern
-- direction - required turn direction {L,R,S}
-- att_change - attitude change +/- degrees
-- ysam - airfield data
-- OUTPUT -1 - if no solution
-- >0 - required course correction (+/-)

t2cpa : integer ;
air1,air2 : pstatstype ;
ps : pbase ;
correction : integer ;
solution : boolean ;
turn_increment : integer ;

begin
ps := pstats ;
air1 := ps(i) ;
air2 := ps(j) ;
correction := 0 ;
air2.attitude(0) := att_change ;
-- air2 initiate a rate 1 turn to direction
-- with a att_change degree climb ie air2.attitude(0) := att_change ;
case direction is
when 'L' => turn_increment := -1 ;
when 'l' => turn_increment := -1 ;
when 'R' => turn_increment := 1 ;

H-2

when 'r' => turn_increment := 1 ;
when others => turn_increment := 0 ;

end case ;
-- find what turn is required to ensure that there is no
-- collision hazard between air2 and any aircraft.
solution := true ;
for counter in 1..60 loop
correction := correction + turn_increment ;
for counter2 in 1..numplanes loop
if counter2 = j then
null ;

else
t2cpa := time_to_collision(air2, pstats(counter2),ysam) ;
if t2cpa < 40 then
solution := false ;

end if ;
end if ;

end loop ;
exit when solution = true or counter = 60 ;

end loop ;
if solution = false then
return -1 ;

else
return correction ;

end if ;
end ;

-- **

procedure Getoutoftheway(tactic : in integer ;
numplanes : integer ;
pstats : in pbase ;
i : integer ;
j : integer ;
evasion : in out vstring ;
ysam : runway) is

done : boolean ;
air2sector,correction,ev1 : integer ;
air2head : float ;
air1,air2 : pstatstype ;
evt : vstring ;

-- 01 climb ben07
-- 02 veer right

H-3

-- 03 crash
-- 04 clear area
-- 05 abort final
-- 06 abort base

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
case tactic is
-- ***
when 0 =>
done := false ;
-- both aircraft not in control zone
-- standard collision avoidance
-- altitude alteration or turn
if air1.oldhgt > air2.oldhgt then
-- air1 to climb
evasion := evasion & air1.ident & makevstring("-0100,") ; -- ben-07
done := true ; -- climb, climb now

end if ;
if air2.oldhgt > air1.oldhgt then
-- air2 to climb
evasion := evasion & air2.ident & makevstring("-0100,") ; -- ben-07
done := true ; -- climb, climb now

end if ;
if air2.oldhgt = air1.oldhgt then
-- air1 and air2 to veer right
evasion := evasion & air1.ident & makevstring("-0200,") ; -- ben xx
done := true ; -- veer right now

end if ;
-- or for example :
if done = false then
-- collision imminent -- ben xx
evasion := evasion & air1.ident & makevstring("-0300,") ; -- colllision

-- imminent
end if ;

-- **
when 1 =>
-- air2 not in circuit area in conflict with air1 on short final
-- normalize air2.heading wrt air1.heading
air2head := air2.heading - air1.heading ;
checkangle(air2head) ;
air2sector := integer((air2head/45.0) + 0.5) ;

H-4

-- in all cases, air1 has priority
-- in all cases, air2 to climb
case air2sector is
when 1 =>
correction := GetAcceptableCorrection(numplanes,pstats,i,j,'L',8.3,ysam) ;
if correction > 0 then
-- acceptable safe new heading is correction
ev1 := integer(air2.heading) - correction ;
--make this a multiple of 10
ev1 := ev1/10 ;
evasion := evasion & air2.ident & makevstring("-04") ; -- climb and veer left
int_to_str(ev1 ,evt) ; -- 'correction' degrees
evasion := evasion & evt & makevstring(",") ;

else
-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision

-- imminent
end if ;

-- **
when 2 =>

evasion := evasion & air2.ident & makevstring("-0500,") ; -- climb
-- **
when 3 =>

correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then
-- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ; -- climb and veer right

'correction' degrees
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

else
-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision

imminent
end if ;

-- **
when 4 =>

correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then

H-5

-- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ; -- climb and veer right

'correction' degrees
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

else
-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision

imminent
end if ;

-- **
when 5 =>

correction := GetAcceptableCorrection(numplanes,pstats,i,j,'L',8.3,ysam) ;
if correction > 0 then
-- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-04") ; -- climb and veer left
ev1 := integer(air2.heading) - correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

else
-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ;

end if ;
-- ***
when 6 =>

correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then
-- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ;
-- climb and veer right 'correction' degrees
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

else
-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ;

H-6

end if ;
-- ***
when 7 =>

correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then
-- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ;
-- climb and veer right 'correction' degrees
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

else
-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ;

end if ;
-- ***
when 8 =>

correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then
-- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ;
-- climb and veer right 'correction' degrees
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",");

else
-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ;

end if ;
-- ***
when others =>
null ;

-- ***
end case ;

when 2 =>
-- air1 on sfinal
-- air2 on the strip
-- air1 to abort sfinal

H-7

evasion := evasion & air1.ident & makevstring("-0900,") ; -- climb and abort

when 3 =>
-- both aircraft on short final
-- air1 to abort, climb and go-around
evasion := evasion & air1.ident & makevstring("-0900,") ; -- climb and abort

when 4 =>
-- air1 on sfinal
-- air2 on base
-- evasion tactic for air2 to avoid air 1
if air2.knots > air1.knots then
evasion := evasion & air2.ident & makevstring("-1000,") ;

-- traffic on finals, climb and abort
else
evasion := evasion & air2.ident & makevstring("-1200,") ;
-- warning - traffic on sfinals

end if ;
when 5 =>
--air1 and air2 on base
--air1 to abort and go around
evasion := evasion & air1.ident & makevstring("-1100,") ;

-- other base traffic, climb and abort

null ;
when 6 =>
-- air 1 on Sfinal and air2 on longfinal
-- time separation < 2 mins
-- air 2 to go round
evasion := evasion & air1.ident & makevstring("-1300,") ;

-- possible vortex hazard - go around
when 7 =>
-- both aircraft on downwind
-- if time separation < 2 mins
-- air 2 to orbit
evasion := evasion & air1.ident & makevstring("-1400,") ;

-- traffic on downwind - orbit
when 8 =>
--air1 and air2 on longfinal
--air1 to abort and go around
evasion := evasion & air1.ident & makevstring("-1000,") ;

-- traffic on finals, climb and abort
when 9 =>
-- air1 on longfinal
-- air2 on base
-- air1 to abort and go around

H-8

evasion := evasion & air1.ident & makevstring("-1500,") ; -- traffic on base - orbit
when 10 =>
-- air1 on downwind
-- air2 on longfinal
-- air1 to abort and go around
evasion := evasion & air1.ident & makevstring("-1000,") ; -- traffic on finals

when 11 =>
-- air1 on downwind
-- air2 on longfinal
-- air1 to abort and go around
evasion := evasion & air2.ident & makevstring("-1400,") ; -- traffic on downwind

when OTHERS =>
null ;

end case ;
end getoutoftheway ;

Page I- 1

ANNEX I

ADVISORY DATA PACKETS - SIMULATION #1 (SIM1.rad) - AIRCRAFT DATA CONTENT

Time Advisory Data Packet

1 #UNX,0,2966,1100,0#TBF,926,3245,1100,16#@TA@EV@
2 #UNX,-52,2966,1100,270#TBF,869,3245,1100,270#@TA@EVTBF-1400,@
3 #UNX,-103,2966,1100,270#TBF,813,3245,1100,270#@TA@EVTBF-1400,@
4 #UNX,-154,2966,1100,270#TBF,756,3245,1100,270#@TA@EVTBF-1400,@
5 #UNX,-206,2966,1100,270#TBF,699,3245,1100,270#@TA@EVTBF-1400,@
6 #UNX,-257,2966,1100,270#TBF,643,3245,1100,270#@TA@EVTBF-1400,@
7 #UNX,-309,2966,1100,270#TBF,586,3245,1100,270#@TA@EVTBF-1400,@
8 #UNX,-360,2966,1100,270#TBF,529,3245,1100,270#@TA@EVTBF-1400,@
9 #UNX,-412,2966,1100,270#TBF,473,3245,1100,270#@TA@EVTBF-1400,@
10 #UNX,-463,2966,1100,270#TBF,416,3245,1100,270#@TA@EVTBF-1400,@
11 #UNX,-515,2966,1100,270#TBF,360,3245,1100,270#@TA@EVTBF-1400,@
12 #UNX,-567,2966,1100,270#TBF,303,3245,1100,270#@TA@EVTBF-1400,@
13 #UNX,-618,2966,1100,270#TBF,246,3245,1100,270#@TA@EVTBF-1400,@
14 #UNX,-670,2966,1100,270#TBF,190,3245,1100,270#@TA@EVTBF-1400,@
15 #UNX,-721,2966,1100,270#TBF,133,3245,1100,270#@TA@EVTBF-1400,@
16 #UNX,-772,2966,1100,270#TBF,76,3245,1100,270#@TA@EVTBF-1400,@
17 #UNX,-824,2966,1100,270#TBF,20,3245,1100,270#@TA@EVTBF-1400,@
18 #UNX,-876,2966,1100,270#TBF,-36,3245,1100,270#@TA@EVTBF-1400,@
19 #UNX,-927,2966,1100,270#TBF,-93,3244,1100,270#@TA@EVTBF-1400,@
20 #UNX,-978,2966,1100,270#TBF,-149,3244,1100,270#@TA@EVTBF-1400,@
21 #UNX,-1030,2966,1100,270#TBF,-206,3244,1100,270#@TA@EVTBF-1400,@
22 #UNX,-1082,2966,1100,270#TBF,-263,3244,1100,270#@TA@EVTBF-1400,@
23 #UNX,-1133,2966,1100,270#TBF,-319,3244,1100,270#@TA@EVTBF-1400,@
24 #UNX,-1184,2966,1100,270#TBF,-376,3245,1100,270#@TA@EVTBF-1400,@
25 #UNX,-1236,2966,1100,270#TBF,-433,3245,1100,270#@TA@EVTBF-1400,@
26 #UNX,-1288,2966,1100,270#TBF,-489,3244,1100,270#@TA@EVTBF-1400,@
27 #UNX,-1339,2966,1100,270#TBF,-546,3245,1100,270#@TA@EVTBF-1400,@
28 #UNX,-1391,2966,1100,270#TBF,-603,3244,1100,270#@TA@EVTBF-1400,@
29 #UNX,-1442,2966,1100,270#TBF,-659,3244,1100,270#@TA@EVTBF-1400,@
30 #UNX,-1494,2966,1100,270#TBF,-716,3245,1100,270#@TA@EVTBF-1400,@

Page I- 2

Time Advisory Data Packet

31 #UNX,-1545,2966,1100,270#TBF,-772,3245,1100,270#@TA@EVTBF-1400,@
32 #UNX,-1596,2966,1100,270#TBF,-829,3244,1100,270#@TA@EVTBF-1400,@
33 #UNX,-1648,2966,1100,270#TBF,-886,3245,1100,270#@TA@EVTBF-1400,@
34 #UNX,-1700,2966,1100,270#TBF,-942,3244,1100,270#@TA@EVTBF-1400,@
35 #UNX,-1751,2966,1100,270#TBF,-999,3244,1100,270#@TA@EVTBF-1500,@
36 #UNX,-1802,2966,1100,270#TBF,-1056,3245,1100,270#@TA@EVTBF-1500,@
37 #UNX,-1854,2966,1100,270#TBF,-1112,3245,1100,270#@TA@EVTBF-1500,@
38 #UNX,-1905,2966,1100,270#TBF,-1169,3244,1100,270#@TA@EVTBF-1500,@
39 #UNX,-1957,2966,1100,270#TBF,-1226,3245,1100,270#@TA@EVTBF-1500,@
40 #UNX,-2009,2966,1100,270#TBF,-1282,3244,1100,270#@TA@EVTBF-1500,@
41 #UNX,-2060,2966,1100,270#TBF,-1339,3244,1100,270#@TA@EVTBF-1500,@
42 #UNX,-2111,2966,1100,270#TBF,-1396,3244,1100,270#@TA@EVTBF-1500,@
43 #UNX,-2163,2966,1100,270#TBF,-1452,3244,1100,270#@TA@EVTBF-1500,@
44 #UNX,-2214,2966,1100,270#TBF,-1509,3244,1100,270#@TA@EVTBF-1500,@
45 #UNX,-2266,2966,1100,270#TBF,-1566,3245,1100,270#@TA@EVTBF-1500,@
46 #UNX,-2318,2966,1100,270#TBF,-1622,3245,1100,270#@TA@EVTBF-1500,@
47 #UNX,-2369,2966,1100,270#TBF,-1679,3244,1100,270#@TA@EVTBF-1500,@
48 #UNX,-2421,2966,1100,270#TBF,-1736,3244,1100,270#@TA@EVTBF-1500,@
49 #UNX,-2472,2966,1100,270#TBF,-1792,3245,1100,270#@TA@EVTBF-1500,@
50 #UNX,-2523,2966,1100,270#TBF,-1849,3245,1100,270#@TA@EVTBF-1500,@
51 #UNX,-2575,2966,1100,270#TBF,-1906,3244,1100,270#@TA@EVTBF-1100,@
52 #UNX,-2626,2966,1100,270#TBF,-1962,3244,1100,270#@TA@EVTBF-1100,@
53 #UNX,-2678,2966,1100,270#TBF,-2019,3244,1100,270#@TA@EVTBF-1100,@
54 #UNX,-2729,2966,1100,270#TBF,-2075,3245,1100,270#@TA@EVTBF-1100,@
55 #UNX,-2781,2966,1100,270#TBF,-2132,3244,1100,270#@TA@EVTBF-1100,@
56 #UNX,-2833,2966,1100,270#TBF,-2189,3244,1100,270#@TA@EVTBF-1100,@
57 #UNX,-2884,2966,1100,270#TBF,-2245,3245,1100,270#@TA@EVTBF-1100,@
58 #UNX,-2935,2966,1100,270#TBF,-2302,3245,1100,270#@TA@EVTBF-1100,@
59 #UNX,-2987,2966,1100,270#TBF,-2359,3245,1100,270#@TA@EVTBF-1100,@
60 #UNX,-3039,2966,1100,270#TBF,-2415,3244,1100,270#@TA@EVTBF-1100,@
61 #UNX,-3090,2966,1100,270#TBF,-2472,3244,1100,270#@TA,UNX,TBF,39p#@EVTBF-1100,@
62 #UNX,-3142,2966,1100,270#TBF,-2529,3244,1100,270#@TA,UNX,TBF,38p#@EVTBF-1100,@
63 #UNX,-3193,2966,1100,270#TBF,-2585,3245,1100,270#@TA,UNX,TBF,37p#@EVTBF-1100,@
64 #UNX,-3245,2966,1100,270#TBF,-2642,3244,1100,270#@TA,UNX,TBF,36p#@EVTBF-1100,@
65 #UNX,-3296,2966,1100,270#TBF,-2699,3245,1100,270#@TA,UNX,TBF,35p#@EVTBF-1100,@

Page I- 3

Time Advisory Data Packet

66 #UNX,-3347,2966,1100,270#TBF,-2755,3244,1100,270#@TA@EVTBF-1100,@
67 #UNX,-3394,2966,1089,270#TBF,-2812,3245,1100,270#@TA@EVTBF-1100,@
68 #UNX,-3440,2962,1078,264#TBF,-2869,3244,1100,270#@TA,UNX,TBF,13p#@EVTBF-1100,@
69 #UNX,-3485,2952,1067,258#TBF,-2925,3245,1100,270#@TA@EVTBF-1100,@
70 #UNX,-3529,2938,1056,252#TBF,-2982,3244,1100,270#@TA,UNX,TBF,11p#@EVTBF-1100,@
71 #UNX,-3572,2919,1044,246#TBF,-3038,3245,1100,270#@TA@EVTBF-1100,@
72 #UNX,-3612,2896,1033,240#TBF,-3095,3244,1100,270#@TA,UNX,TBF,12p#@EVTBF-1100,@
73 #UNX,-3649,2868,1022,234#TBF,-3152,3245,1100,270#@TA@EVTBF-1100,@
74 #UNX,-3684,2837,1011,228#TBF,-3208,3245,1100,270#@TA@EVTBF-1100,@
75 #UNX,-3715,2803,1000,222#TBF,-3265,3244,1100,270#@TA@EVTBF-1100,@
76 #UNX,-3742,2765,1000,216#TBF,-3322,3244,1100,270#@TA@EVTBF-1100,@
77 #UNX,-3765,2725,1000,210#TBF,-3378,3244,1100,270#@TA@EVTBF-1100,@
78 #UNX,-3784,2683,1000,204#TBF,-3435,3244,1100,270#@TA@EVTBF-1100,@
79 #UNX,-3798,2639,1000,198#TBF,-3492,3244,1100,270#@TA@EVTBF-1100,@
80 #UNX,-3808,2593,1000,192#TBF,-3548,3245,1100,270#@TA@EVTBF-1100,@
81 #UNX,-3813,2547,1000,186#TBF,-3605,3244,1100,270#@TA@EVTBF-1100,@
82 #UNX,-3813,2506,1000,180#TBF,-3656,3244,1089,270#@TA@EVTBF-1100,@
83 #UNX,-3813,2464,1000,180#TBF,-3707,3239,1078,264#@TA@EVTBF-1100,@
84 #UNX,-3813,2422,1000,180#TBF,-3757,3229,1063,258#@TA@EVTBF-1100,@
85 #UNX,-3813,2381,1000,180#TBF,-3805,3213,1043,252#@TA@EVTBF-1100,@
86 #UNX,-3813,2339,1000,180#TBF,-3852,3192,1000,246#@TA,UNX,TBF,2h#@EVTBF-1100,@
87 #UNX,-3813,2297,1000,180#TBF,-3896,3167,1033,240#@TA@EVTBF-1100,@
88 #UNX,-3813,2255,1000,180#TBF,-3937,3137,1000,234#@TA@EVTBF-1100,@
89 #UNX,-3813,2214,1000,180#TBF,-3975,3103,1022,228#@TA@EVTBF-1100,@
90 #UNX,-3813,2172,1000,180#TBF,-4009,3065,1000,222#@TA@EVTBF-1100,@
91 #UNX,-3813,2130,1000,180#TBF,-4039,3023,1011,216#@TA@EVTBF-1100,@
92 #UNX,-3813,2089,989,180#TBF,-4065,2979,1000,210#@TA@EVTBF-1100,@
93 #UNX,-3813,2047,978,180#TBF,-4085,2933,1000,204#@TA@EVTBF-1100,@
94 #UNX,-3813,2005,967,180#TBF,-4101,2884,1000,198#@TA@EVTBF-1100,@
95 #UNX,-3813,1963,956,180#TBF,-4112,2834,1000,192#@TA@EVTBF-1100,@
96 #UNX,-3813,1922,944,180#TBF,-4117,2784,1000,186#@TA@EVTBF-1100,@
97 #UNX,-3813,1880,933,180#TBF,-4117,2738,1000,180#@TA@EVTBF-1100,@
98 #UNX,-3813,1838,922,180#TBF,-4117,2692,1000,180#@TA@EVTBF-1100,@
99 #UNX,-3813,1797,911,180#TBF,-4117,2646,1000,180#@TA@EVTBF-1100,@
100 #UNX,-3813,1755,900,180#TBF,-4117,2600,1000,180#@TA@EVTBF-1100,@

Page I- 4

Time Advisory Data Packet

101 #UNX,-3813,1713,900,180#TBF,-4117,2554,1000,180#@TA@EVTBF-1100,@
102 #UNX,-3813,1671,900,180#TBF,-4117,2509,1000,180#@TA@EVTBF-1100,@
103 #UNX,-3813,1630,900,180#TBF,-4117,2463,1000,180#@TA@EVTBF-1100,@
104 #UNX,-3813,1588,900,180#TBF,-4117,2417,1000,180#@TA@EVTBF-1100,@
105 #UNX,-3813,1546,900,180#TBF,-4117,2371,1000,180#@TA@EVTBF-1100,@
106 #UNX,-3813,1505,900,180#TBF,-4117,2325,1000,180#@TA@EVTBF-1100,@
107 #UNX,-3813,1463,900,180#TBF,-4117,2279,989,180#@TA@EVTBF-1100,@
108 #UNX,-3813,1421,900,180#TBF,-4117,2234,978,180#@TA@EVTBF-1100,@
109 #UNX,-3813,1379,900,180#TBF,-4117,2188,963,180#@TA@EVTBF-1100,@
110 #UNX,-3813,1338,900,180#TBF,-4117,2142,943,180#@TA@EVTBF-1100,@
111 #UNX,-3813,1296,900,180#TBF,-4117,2096,900,180#@TA@EVTBF-1100,@
112 #UNX,-3813,1254,900,180#TBF,-4117,2050,933,180#@TA@EVTBF-1100,@
113 #UNX,-3813,1213,900,180#TBF,-4117,2004,900,180#@TA@EVTBF-1100,@
114 #UNX,-3813,1171,900,180#TBF,-4117,1959,922,180#@TA@EVTBF-1100,@
115 #UNX,-3813,1129,900,180#TBF,-4117,1913,900,180#@TA@EVTBF-1100,@
116 #UNX,-3813,1087,900,180#TBF,-4117,1867,911,180#@TA@EVTBF-1100,@
117 #UNX,-3813,1046,889,180#TBF,-4117,1821,900,180#@TA@EVTBF-1100,@
118 #UNX,-3813,1004,878,180#TBF,-4117,1775,900,180#@TA@EVTBF-1100,@
119 #UNX,-3813,962,867,180#TBF,-4117,1729,900,180#@TA@EVTBF-1100,@
120 #UNX,-3813,921,856,180#TBF,-4117,1684,900,180#@TA@EVTBF-1100,@
121 #UNX,-3813,879,844,180#TBF,-4117,1638,900,180#@TA@EVTBF-1100,@
122 #UNX,-3813,837,833,180#TBF,-4117,1592,900,180#@TA@EVTBF-1100,@
123 #UNX,-3813,795,822,180#TBF,-4117,1546,900,180#@TA@EVTBF-1100,@
124 #UNX,-3813,754,811,180#TBF,-4117,1500,900,180#@TA@EVTBF-1100,@
125 #UNX,-3813,712,800,180#TBF,-4117,1454,900,180#@TA@EVTBF-1100,@
126 #UNX,-3814,670,800,180#TBF,-4117,1409,900,180#@TA@EVTBF-1100,@
127 #UNX,-3814,629,800,180#TBF,-4117,1363,900,180#@TA@EVTBF-1100,@
128 #UNX,-3814,587,800,180#TBF,-4117,1317,900,180#@TA@EVTBF-1100,@
129 #UNX,-3814,545,800,180#TBF,-4117,1271,900,180#@TA@EVTBF-1100,@
130 #UNX,-3814,503,800,180#TBF,-4117,1225,900,180#@TA@EVTBF-1100,@
131 #UNX,-3814,462,800,180#TBF,-4117,1179,900,180#@TA@EVTBF-1100,@
132 #UNX,-3814,420,800,180#TBF,-4118,1134,889,180#@TA@EVTBF-1100,@
133 #UNX,-3814,378,800,180#TBF,-4118,1088,878,180#@TA@EVTBF-1100,@
134 #UNX,-3809,337,800,174#TBF,-4118,1042,863,180#@TA@EVTBF-1100,@
135 #UNX,-3801,296,800,168#TBF,-4118,996,843,180#@TA@EVTBF-1100,@
136 #UNX,-3788,256,800,162#TBF,-4118,950,800,180#@TA@EVTBF-1100,@

Page I- 5

Time Advisory Data Packet

137 #UNX,-3771,218,800,156#TBF,-4118,904,833,180#@TA@EVTBF-1100,@
138 #UNX,- 3750,182, 800,150#TBF,-4118,859,800,180#@TA@EVTBF-1100,@
139 #UNX,-3725,148,800,144#TBF,-4118,813,822,180#@TA@EVTBF-1100,@
140 #UNX,-3697,117,800,138#TBF,-4118,767,800,180#@TA@EVTBF-1100,@
141 #UNX,-3666,89,800,132#TBF,-4118,721,811,180#@TA@EVTBF-1100,@
142 #UNX,-3633,65,800,126#TBF,-4118,675,800,180#@TA@EVTBF-1100,@
143 #UNX,-3596,44,789,120#TBF,-4118,629,800,180#@TA@EVTBF-1100,@
144 #UNX,-3558,27,778,114#TBF,-4118,584,800,180#@TA@EVTBF-1100,@
145 #UNX,-3519,14,767,108#TBF,-4118,538,800,180#@TA@EVTBF-1100,@
146 #UNX,-3478,6,756,102#TBF,-4118,492,800,180#@TA@EVTBF-1100,@
147 #UNX,-3436,1,744,96#TBF,-4118,446,800,180#@TA@EVTBF-1100,@
148 #UNX,-3403,1,733,90#TBF,-4118,400,800,180#@TA@EVTBF-1100,@
149 #UNX,-3369,1,722,90#TBF,-4113,355,800,174#@TA@EVTBF-1100,@
150 #UNX,-3336,1,711,90#TBF,-4103,310,800,168#@TA@EVTBF-1100,@
151 #UNX,-3303,1,700,90#TBF,-4089,266,800,162#@TA@EVTBF-1100,@
152 #UNX,-3269,1,700,90#TBF,-4071,224,800,156#@TA@EVTBF-1100,@
153 #UNX,-3236,1,700,90#TBF,-4048,185,800,150#@TA@EVTBF-1100,@
154 #UNX,-3202,1,700,90#TBF,-4021,148,800,144#@TA@EVTBF-1100,@
155 #UNX,-3169,1,700,90#TBF,-3990,114,800,138#@TA@EVTBF-1100,@
156 #UNX,-3135,1,700,90#TBF,-3956,83,800,132#@TA@EVTBF-1100,@
157 #UNX,-3102,1,700,90#TBF,-3919,56,789,126#@TA@EVTBF-1100,@
158 #UNX,-3068,1,700,90#TBF,-3879,33,778,120#@TA@EVTBF-1100,@
158 #UNX,-3035,1,700,90#TBF,-3837,14,763,114#@TA@EVTBF-1100,@
160 #UNX,-3001,1,700,90#TBF,-3794,0,743,108#@TA@EVUNX-1100,@
161 #UNX,-2968,1,700,90#TBF,-3749,-9,700,102#@TA@EV@
162 #UNX,-2934,1,689,90#TBF,-3703,-14,733,96#@TA@EV@
163 #UNX,-2901,1,678,90#TBF,-3667,-14,700,90#@TA@EV@
164 #UNX,-2867,1,667,90#TBF,-3630,-14,722,90#@TA@EV@
165 #UNX,-2834,1,656,90#TBF,-3594,-14,700,90#@TA@EV@
166 #UNX,-2800,1,644,90#TBF,-3557,-14,711,90#@TA@EV@
167 #UNX,-2767,1,633,90#TBF,-3520,-14,700,90#@TA@EV@
168 #UNX,-2733,1,622,90#TBF,-3484,-14,700,90#@TA@EV@
169 #UNX,-2700,1,611,90#TBF,-3447,-14,700,90#@TA@EV@
170 #UNX,-2666,1,600,90#TBF,-3411,-14,700,90#@TA@EV@
171 #UNX,-2633,1,600,90#TBF,-3374,-14,700,90#@TA@EV@
172 #UNX,-2600,1,600,90#TBF,-3338,-14,700,90#@TA@EV@

Page I- 6

Time Advisory Data Packet

173 #UNX,-2566,1,600,90#TBF,-3301,-14,689,90#@TA@EV@
174 #UNX,-2533,1,600,90#TBF,-3264,-14,678,90#@TA@EV@
175 #UNX,-2499,1,600,90#TBF,-3228,-14,663,90#@TA@EV@
176 #UNX,-2466,1,600,90#TBF,-3191,-14,643,90#@TA@EV@
177 #UNX,-2432,1,600,90#TBF,-3155,-14,600,90#@TA@EV@
178 #UNX,-2399,1,600,90#TBF,-3118,-14,633,90#@TA@EV@
179 #UNX,-2365,1,600,90#TBF,-3082,-14,600,90#@TA@EV@
180 #UNX,-2332,1,589,90#TBF,-3045,-14,622,90#@TA@EVTBF-1000,@
181 #UNX,-2298,1,578,90#TBF,-3009,-14,600,90#@TA@EVTBF-1000,@
182 #UNX,-2265,1,567,90#TBF,-2972,-14,611,90#@TA@EVTBF-1000,@
183 #UNX,-2231,1,556,90#TBF,-2935,-14,600,90#@TA@EVTBF-1000,@
184 #UNX,-2198,1,544,90#TBF,-2899,-14,600,90#@TA@EVTBF-1000,@
185 #UNX,-2164,1,533,90#TBF,-2862,-14,600,90#@TA@EVTBF-1000,@
186 #UNX,-2131,1,522,90#TBF,-2826,-14,589,90#@TA@EVTBF-1000,@
187 #UNX,-2097,1,511,90#TBF,-2789,-14,578,90#@TA@EVTBF-1000,@
188 #UNX,-2064,1,500,90#TBF,-2753,-14,563,90#@TA@EVTBF-1000,@
189 #UNX,-2030,1,500,90#TBF,-2716,-14,543,90#@TA@EVTBF-1000,@
190 #UNX,-1997,1,500,90#TBF,-2679,-14,500,90#@TA@EVTBF-1000,@
191 #UNX,-1963,1,500,90#TBF,-2643,-14,533,90#@TA@EVTBF-1000,@
192 #UNX,-1930,1,500,90#TBF,-2606,-14,500,90#@TA@EVTBF-1000,@
193 #UNX,-1897,1,500,90#TBF,-2570,-14,522,90#@TA@EVTBF-1000,@
194 #UNX,-1863,1,500,90#TBF,-2533,-14,500,90#@TA@EVTBF-1000,@
195 #UNX,-1830,1,500,90#TBF,-2497,-14,511,90#@TA@EVTBF-1000,@
196 #UNX,-1796,1,500,90#TBF,-2460,-14,500,90#@TA@EVTBF-1000,@
197 #UNX,-1763,1,500,90#TBF,-2423,-14,500,90#@TA@EVTBF-1000,@
198 #UNX,-1729,1,489,90#TBF,-2387,-14,500,90#@TA@EVTBF-1000,@
199 #UNX,-1696,1,478,90#TBF,-2350,-14,489,90#@TA@EVTBF-1000,@
200 #UNX,-1662,1,467,90#TBF,-2314,-14,478,90#@TA@EVTBF-1000,@
201 #UNX,-1629,1,456,90#TBF,-2277,-14,463,90#@TA@EVTBF-1000,@
202 #UNX,-1595,1,444,90#TBF,-2241,-14,443,90#@TA@EVTBF-1000,@
203 #UNX,-1562,1,433,90#TBF,-2204,-14,400,90#@TA@EVTBF-1000,@
204 #UNX,-1528,1,422,90#TBF,-2168,-14,433,90#@TA@EVTBF-1000,@
205 #UNX,-1495,1,411,90#TBF,-2131,-14,400,90#@TA@EVTBF-1000,@
206 #UNX,-1461,1,400,90#TBF,-2094,-14,422,90#@TA@EVTBF-1000,@
207 #UNX,-1428,1,400,90#TBF,-2058,-14,400,90#@TA@EVTBF-1000,@

Page I- 7

Time Advisory Data Packet

208 #UNX,-1394,1,400,90#TBF,-2021,-14,411,90#@TA@EVTBF-1000,@
209 #UNX,-1361,1,400,90#TBF,-1985,-14,400,90#@TA@EVTBF-1000,@
210 #UNX,-1327,1,400,90#TBF,-1948,-14,400,90#@TA,UNX,TBF,39p#@EVTBF-1000,@
211 #UNX,-1294,1,400,90#TBF,-1912,-14,389,90#@TA@EVTBF-1000,@
212 #UNX,-1261,1,400,90#TBF,-1875,-14,378,90#@TA,UNX,TBF,36p#@EVTBF-1000,@
213 #UNX,-1227,1,400,90#TBF,-1838,-14,363,90#@TA,UNX,TBF,36p#@EVTBF-1000,@
214 #UNX,-1194,1,400,90#TBF,-1802,-14,343,90#@TA,UNX,TBF,35p#@EVTBF-1000,@
215 #UNX,-1160,1,400,90#TBF,-1765,-14,300,90#@TA,UNX,TBF,34p#@EVTBF-1000,@
216 #UNX,-1127,1,389,90#TBF,-1729,-14,333,90#@TA@EVTBF-1000,@
217 #UNX,-1093,1,378,90#TBF,-1692,-14,300,90#@TA,UNX,TBF,32p#@EVTBF-1000,@
218 #UNX,-1060,1,367,90#TBF,-1656,-14,322,90#@TA,UNX,TBF,31p#@EVTBF-1000,@
219 #UNX,-1026,1,356,90#TBF,-1619,-14,300,90#@TA,UNX,TBF,30p#@EVTBF-1000,@
220 #UNX,-993,1,344,90#TBF,-1582,-14,311,90#@TA,UNX,TBF,29p#@EVTBF-1000,@
221 #UNX,-959,1,333,90#TBF,-1546,-14,300,90#@TA,UNX,TBF,28p#@EVTBF-1000,@
222 #UNX,-926,1,322,90#TBF,-1509,-14,300,90#@TA,UNX,TBF,27p#@EVTBF-1000,@
223 #UNX,-892,1,311,90#TBF,-1473,-14,300,90#@TA,UNX,TBF,26p#@EVTBF-1000,@
224 #UNX,-859,1,300,90#TBF,-1436,-14,289,90#@TA@EVTBF-1000,@
225 #UNX,-825,1,300,90#TBF,-1400,-14,278,90#@TA,UNX,TBF,24p#@EVTBF-1000,@
226 #UNX,-792,1,300,90#TBF,-1363,-14,263,90#@TA,UNX,TBF,23p#@EVTBF-1000,@
227 #UNX,-758,1,300,90#TBF,-1327,-14,243,90#@TA,UNX,TBF,22p#@EVTBF-1000,@
228 #UNX,-725,1,300,90#TBF,-1290,-14,200,90#@TA,UNX,TBF,21p#@EVTBF-1000,@
229 #UNX,-691,1,300,90#TBF,-1253,-14,233,90#@TA,UNX,TBF,20p#@EVTBF-1000,@
230 #UNX,-658,1,300,90#TBF,-1217,-14,200,90#@TA,UNX,TBF,19p#@EVTBF-1000,@
231 #UNX,-625,1,300,90#TBF,-1180,-14,222,90#@TA,UNX,TBF,18p#@EVTBF-1000,@
232 #UNX,-591,1,300,90#TBF,-1144,-14,200,90#@TA,UNX,TBF,17p#@EVTBF-1000,@
233 #UNX,-558,1,300,90#TBF,-1107,-14,211,90#@TA,UNX,TBF,16p#@EVTBF-1000,@
234 #UNX,-524,1,289,90#TBF,-1071,-14,200,90#@TA@EVTBF-0900,@
235 #UNX,-491,1,278,90#TBF,-1034,-14,200,90#@TA,UNX,TBF,14p#@EVTBF-0900,@
236 #UNX,-457,1,267,90#TBF,-997,-14,200,90#@TA,UNX,TBF,13p#@EVTBF-0900,@

Page J- 1

ANNEX J

ADVISORY DATA PACKETS - SIMULATION #2 (SIM2.rad) - AIRCRAFT DATA CONTENT

Time Advisory Data Packet

1 #UNX,-1854,0,500,270#TBF,0,0,0,0#GMB,3707,3709,2000,45#@TA@EV@
2 #UNX,-1823,0,499,90#TBF,0,0,0,0#GMB,3655,3709,2001,270#@TA@EVUNX-1300,@
3 #UNX,-1792,0,498,90#TBF,0,0,0,0#GMB,3604,3706,2003,267#@TA@EVUNX-1300,@
4 #UNX,-1761,0,496,90#TBF,0,0,0,0#GMB,3553,3701,2006,264#@TA@EVUNX-1300,@
5 #UNX,-1730,0,493,90#TBF,0,0,0,0#GMB,3502,3693,2009,261#@TA@EVUNX-1300,@
6 #UNX,-1700,0,490,90#TBF,0,0,0,0#GMB,3452,3682,2014,258#@TA,UNX,TBF,39p#@EVUNX-1300,@
7 #UNX,-1669,0,486,90#TBF,0,0,0,0#GMB,3402,3669,2019,255#@TA,UNX,TBF,38p#@EVUNX-1300,@
8 #UNX,-1638,0,481,90#TBF,0,0,0,0#GMB,3353,3653,2026,252#@TA,UNX,TBF,37p#@EVUNX-1300,@
9 #UNX,-1607,0,476,90#TBF,0,0,0,0#GMB,3305,3634,2033,249#@TA,UNX,TBF,36p#@EVUNX-1300,@
10 #UNX,-1576,0,470,90#TBF,0,0,0,0#GMB,3258,3613,2042,246#@TA,UNX,TBF,35p#@EVUNX-1300,@
11 #UNX,-1545,0,464,90#TBF,0,0,0,0#GMB,3212,3590,2050,243#@TA,UNX,TBF,34p#@EVUNX-1300,@
12 #UNX,-1514,0,458,90#TBF,0,0,0,0#GMB,3167,3564,2058,240#@TA,UNX,TBF,33p#@EVUNX-1300,@
13 #UNX,-1483,0,452,90#TBF,0,0,0,0#GMB,3124,3536,2066,237#@TA,UNX,TBF,32p#@EVUNX-1300,@
14 #UNX,-1452,0,446,90#TBF,0,0,0,0#GMB,3082,3506,2075,234#@TA,UNX,TBF,31p#@EVUNX-1300,@
15 #UNX,-1421,0,440,90#TBF,0,0,0,0#GMB,3042,3474,2083,231#@TA,UNX,TBF,30p#@EVUNX-1300,@
16 #UNX,-1391,0,434,90#TBF,0,0,0,0#GMB,3004,3439,2091,228#@TA,UNX,TBF,29p#@EVUNX-1300,@
17 #UNX,-1360,0,428,90#TBF,0,0,0,0#GMB,2968,3403,2100,225#@TA,UNX,TBF,28p#@EVUNX-1300,@
18 #UNX,-1329,0,422,90#TBF,0,0,0,0#GMB,2933,3364,2108,222#@TA,UNX,TBF,27p#@EVUNX-1300,@
19 #UNX,-1298,0,416,90#TBF,0,0,0,0#GMB,2901,3324,2116,219#@TA,UNX,TBF,26p#@EVUNX-1300,@
20 #UNX,-1267,0,410,90#TBF,0,0,0,0#GMB,2871,3283,2125,216#@TA,UNX,TBF,25p#@EVUNX-1300,@
21 #UNX,-1236,0,404,90#TBF,0,0,0,0#GMB,2842,3240,2133,213#@TA,UNX,TBF,24p#@EVUNX-1300,@
22 #UNX,-1205,0,398,90#TBF,0,0,0,0#GMB,2817,3195,2141,210#@TA,UNX,TBF,23p#@EVUNX-1300,@
23 #UNX,-1174,0,392,90#TBF,0,0,0,0#GMB,2793,3149,2149,207#@TA,UNX,TBF,22p#@EVUNX-1300,@
24 #UNX,-1143,0,386,90#TBF,0,0,0,0#GMB,2772,3102,2158,204#@TA,UNX,TBF,21p#@EVUNX-1300,@
25 #UNX,-1112,0,380,90#TBF,0,0,0,0#GMB,2754,3054,2166,201#@TA,UNX,TBF,20p#@EVUNX-1300,@
26 #UNX,-1082,0,374,90#TBF,0,0,0,0#GMB,2738,3005,2174,198#@TA,UNX,TBF,19p#@EVUNX-1300,@
27 #UNX,-1051,0,368,90#TBF,0,0,0,0#GMB,2725,2955,2183,195#@TA,UNX,TBF,18p#@EVUNX-1300,@
28 #UNX,-1020,0,362,90#TBF,0,0,0,0#GMB,2714,2905,2191,192#@TA,UNX,TBF,17p#@EVUNX-1300,@
29 #UNX,-989,0,356,90#TBF,0,0,0,0#GMB,2706,2854,2199,189#@TA,UNX,TBF,16p#@EVUNX-1300,@

Page J- 2

Time Advisory Data Packet

30 #UNX,-958,0,350,90#TBF,0,0,0,0#GMB,2701,2803,2208,186#@TA,UNX,TBF,15p#@EVUNX-1300,@
31 #UNX,-927,0,344,90#TBF,0,0,0,0#GMB,2698,2751,2216,183#@TA,UNX,TBF,14p#@EVUNX-1300,@
32 #UNX,-896,0,338,90#TBF,0,0,0,0#GMB,2698,2700,2224,180#@TA,UNX,TBF,13p#@EVUNX-1300,@
33 #UNX,-865,0,332,90#TBF,0,0,0,0#GMB,2701,2648,2232,177#@TA,UNX,TBF,12p#@EVUNX-1300,@
34 #UNX,-834,0,326,90#TBF,0,0,0,0#GMB,2706,2597,2241,174#@TA,UNX,TBF,11p#@EVUNX-1300,@
35 #UNX,-803,0,320,90#TBF,0,0,0,0#GMB,2714,2546,2249,171#@TA,UNX,TBF,10p#@EVUNX-0900,@
36 #UNX,-773,0,314,90#TBF,0,0,0,0#GMB,2725,2496,2257,168#@TA,UNX,TBF,9p#@EVUNX-0900,@
37 #UNX,-742,0,308,90#TBF,0,0,0,0#GMB,2738,2446,2266,165#@TA,UNX,TBF,8p#@EVUNX-0900,@
38 #UNX,-711,0,302,90#TBF,0,0,0,0#GMB,2754,2397,2274,162#@TA,UNX,TBF,7p#@EVUNX-0900,@
39 #UNX,-680,0,296,90#TBF,0,0,0,0#GMB,2773,2349,2282,159#@TA,UNX,TBF,6p#@EVUNX-0900,@
40 #UNX,-649,0,290,90#TBF,0,0,0,0#GMB,2794,2302,2291,156#@TA,UNX,TBF,5p#@EVUNX-0900,@
41 #UNX,-618,0,284,90#TBF,0,0,0,0#GMB,2817,2256,2299,153#@TA,UNX,TBF,4p#@EVUNX-0900,@
42 #UNX,-587,0,278,90#TBF,0,0,0,0#GMB,2843,2212,2307,150#@TA,UNX,TBF,3p#@EVUNX-0900,@
43 #UNX,-556,0,272,90#TBF,0,0,0,0#GMB,2871,2168,2315,147#@TA,UNX,TBF,2p#@EVUNX-0900,@
44 #UNX,-525,0,266,90#TBF,0,0,0,0#GMB,2901,2127,2324,144#@TA,UNX,TBF,1p#@EVUNX-0900,@
45 #UNX,-494,0,260,90#TBF,0,0,0,0#GMB,2934,2087,2332,141#@TA,UNX,TBF,0p#@EVUNX-0900,@
46 #UNX,-464,0,254,90#TBF,0,0,0,0#GMB,2968,2049,2340,138#@TA,UNX,TBF,0p#@EVUNX-0900,@
47 #UNX,-433,0,248,90#TBF,0,0,0,0#GMB,3004,2012,2349,135#@TA,UNX,TBF,0p#@EVUNX-0900,@
48 #UNX,-402,0,242,90#TBF,0,0,0,0#GMB,3043,1978,2357,132#@TA,UNX,TBF,0p#@EVUNX-0900,@
49 #UNX,-371,0,236,90#TBF,0,0,0,0#GMB,3083,1945,2365,129#@TA,UNX,TBF,0p#@EVUNX-0900,@
50 #UNX,-340,0,230,90#TBF,0,0,0,0#GMB,3124,1915,2374,126#@TA,UNX,TBF,0p#@EVUNX-0900,@

Page K- 1

ANNEX K

ADVISORY DATA PACKETS - SIMULATION #3 (SIM3.rad) - AIRCRAFT DATA CONTENT

Time Advisory Data Packet
1 #TBF,-3246,3089,875,314#UNX,-6335,0,1375,270#GMB,3709,3707,2000,45#@TA@EV@
2 #TBF,-3246,3038,875,180#UNX,-6283,0,1374,90#GMB,3647,3646,2000,225#@TA@EV@
3 #TBF,-3246,2987,875,180#UNX,-6232,0,1372,90#GMB,3585,3584,2000,225#@TA@EV@
4 #TBF,-3246,2936,875,180#UNX,-6180,0,1369,90#GMB,3523,3522,2000,225#@TA@EV@
5 #TBF,-3246,2885,875,180#UNX,-6129,0,1366,90#GMB,3462,3461,2000,225#@TA@EV@
6 #TBF,-3246,2834,875,180#UNX,-6078,0,1361,90#GMB,3400,3399,2000,225#@TA@EV@
7 #TBF,-3246,2783,875,180#UNX,-6026,0,1356,90#GMB,3338,3337,2000,225#@TA@EV@
8 #TBF,-3246,2732,875,180#UNX,-5975,0,1349,90#GMB,3276,3275,2000,225#@TA@EV@
9 #TBF,-3246,2681,875,180#UNX,-5924,0,1342,90#GMB,3215,3214,2000,225#@TA@EV@
10 #TBF,-3246,2630,875,180#UNX,-5872,0,1333,90#GMB,3153,3152,2000,225#@TA@EV@
11 #TBF,-3245,2579,875,180#UNX,-5821,0,1325,90#GMB,3091,3090,2000,225#@TA@EV@
12 #TBF,-3245,2528,875,180#UNX,-5770,0,1317,90#GMB,3029,3028,2000,225#@TA@EV@
13 #TBF,-3245,2477,875,180#UNX,-5718,0,1308,90#GMB,2968,2967,2000,225#@TA@EV@
14 #TBF,-3245,2426,875,180#UNX,-5667,0,1300,90#GMB,2906,2905,2000,225#@TA@EV@
15 #TBF,-3245,2375,875,180#UNX,-5616,0,1292,90#GMB,2844,2843,2000,225#@TA@EV@
16 #TBF,-3245,2324,875,180#UNX,-5564,0,1283,90#GMB,2782,2782,2000,225#@TA@EV@
17 #TBF,-3245,2273,875,180#UNX,-5513,0,1275,90#GMB,2721,2720,2000,225#@TA@EV@
18 #TBF,-3245,2222,875,180#UNX,-5462,0,1267,90#GMB,2659,2658,2000,225#@TA@EV@
19 #TBF,-3245,2171,875,180#UNX,-5410,0,1258,90#GMB,2597,2596,2000,225#@TA@EV@
20 #TBF,-3245,2120,875,180#UNX,-5359,0,1250,90#GMB,2535,2535,2000,225#@TA@EV@
21 #TBF,-3245,2069,875,180#UNX,-5307,0,1242,90#GMB,2474,2473,2000,225#@TA@EV@
22 #TBF,-3245,2018,875,180#UNX,-5256,0,1233,90#GMB,2412,2411,2000,225#@TA@EV@
23 #TBF,-3245,1967,875,180#UNX,-5205,0,1225,90#GMB,2350,2349,2000,225#@TA@EV@
24 #TBF,-3245,1916,875,180#UNX,-5153,0,1217,90#GMB,2288,2288,2000,225#@TA@EV@
25 #TBF,-3245,1865,875,180#UNX,-5102,0,1208,90#GMB,2227,2226,2000,225#@TA@EV@
26 #TBF,-3245,1815,875,180#UNX,-5051,0,1200,90#GMB,2165,2164,2000,225#@TA@EV@
27 #TBF,-3245,1764,875,180#UNX,-4999,0,1192,90#GMB,2103,2102,2000,225#@TA@EV@
28 #TBF,-3245,1713,875,180#UNX,-4948,0,1183,90#GMB,2041,2041,2000,225#@TA@EV@
29 #TBF,-3245,1662,875,180#UNX,-4897,0,1175,90#GMB,1980,1979,2000,225#@TA@EV@

Page K- 2

Time Advisory Data Packet

30 #TBF,-3245,1611,875,180#UNX,-4845,0,1167,90#GMB,1918,1917,2000,225#@TA@EV@
31 #TBF,-3245,1560,875,180#UNX,-4794,0,1158,90#GMB,1856,1856,2000,225#@TA@EV@
32 #TBF,-3245,1509,875,180#UNX,-4743,0,1150,90#GMB,1794,1794,2000,225#@TA@EV@
33 #TBF,-3245,1458,875,180#UNX,-4691,0,1141,90#GMB,1733,1732,2000,225#@TA@EV@
34 #TBF,-3245,1407,875,180#UNX,-4640,0,1133,90#GMB,1671,1670,2000,225#@TA@EV@
35 #TBF,-3245,1356,875,180#UNX,-4588,0,1125,90#GMB,1609,1609,2000,225#@TA@EV@
36 #TBF,-3245,1305,875,180#UNX,-4537,0,1116,90#GMB,1547,1547,2000,225#@TA@EV@
37 #TBF,-3245,1254,875,180#UNX,-4486,0,1108,90#GMB,1486,1485,2000,225#@TA@EV@
38 #TBF,-3245,1203,875,180#UNX,-4434,0,1100,90#GMB,1424,1423,2000,225#@TA@EV@
39 #TBF,-3245,1152,875,180#UNX,-4383,0,1091,90#GMB,1362,1362,2000,225#@TA,TBF,UNX,16p#@EV@
40 #TBF,-3245,1101,875,180#UNX,-4332,0,1083,90#GMB,1300,1300,2000,225#@TA,TBF,UNX,14p#@EV@
41 #TBF,-3245,1050,875,180#UNX,-4280,0,1075,90#GMB,1239,1238,2000,225#@TA,TBF,UNX,12p#@EVUNX-1000,@
42 #TBF,-3245,999,875,180#UNX,-4229,0,1066,90#GMB,1177,1177,2000,225#@TA,TBF,UNX,11p#@EVUNX-1000,@
43 #TBF,-3245,948,875,180#UNX,-4178,0,1058,90#GMB,1115,1115,2000,225#@TA,TBF,UNX,10p#@EVUNX-1000,@
44 #TBF,-3245,897,875,180#UNX,-4126,0,1050,90#GMB,1053,1053,2000,225#@TA,TBF,UNX,9p#@EVUNX-1000,@
45 #TBF,-3245,846,875,180#UNX,-4075,0,1041,90#GMB,992,991,2000,225#@TA,TBF,UNX,8p#@EVUNX-1000,@
46 #TBF,-3245,795,875,180#UNX,-4024,0,1033,90#GMB,930,930,2000,225#@TA,TBF,UNX,7p#@EVUNX-1000,@
47 #TBF,-3245,744,875,180#UNX,-3972,0,1025,90#GMB,868,868,2000,225#@TA,TBF,UNX,6p#@EVUNX-1000,@
48 #TBF,-3245,693,875,180#UNX,-3921,0,1016,90#GMB,806,806,2000,225#@TA,TBF,UNX,6p#@EVUNX-1000,@
49 #TBF,-3245,642,875,180#UNX,-3869,0,1008,90#GMB,745,744,2000,225#@TA,TBF,UNX,5p#@EVUNX-1000,@
50 #TBF,-3245,591,875,180#UNX,-3818,0,1000,90#GMB,683,683,2000,225#@TA,TBF,UNX,4p#@EVUNX-1000,@
51 #TBF,-3245,541,875,180#UNX,-3767,0,991,90#GMB,621,621,2000,225#@TA,TBF,UNX,3p#@EVUNX-1000,@
52 #TBF,-3245,490,875,180#UNX,-3715,0,983,90#GMB,559,559,2000,225#@TA,TBF,UNX,2p#@EVUNX-1000,@
53 #TBF,-3245,439,875,180#UNX,-3664,0,975,90#GMB,498,498,2000,225#@TA,TBF,UNX,1p#@EVUNX-1000,@
54 #TBF,-3245,388,875,180#UNX,-3613,0,966,90#GMB,436,436,2000,225#@TA,TBF,UNX,0p#@EVUNX-1000,@
55 #TBF,-3245,337,875,180#UNX,-3561,0,958,90#GMB,374,374,2000,225#@TA,TBF,UNX,0p#@EVUNX-1000,@
56 #TBF,-3245,286,875,180#UNX,-3510,0,950,90#GMB,312,312,2000,225#@TA,TBF,UNX,0p#@EVUNX-1000,@
57 #TBF,-3245,235,875,180#UNX,-3459,0,941,90#GMB,251,251,2000,225#@TA,TBF,UNX,0p#@EVUNX-1000,@
58 #TBF,-3245,184,875,180#UNX,-3407,0,933,90#GMB,189,189,2000,225#@TA,TBF,UNX,0p#@EVTBF-1100,@
59 #TBF,-3245,133,875,180#UNX,-3356,0,925,90#GMB,127,127,2000,225#@TA,TBF,UNX,0p#@EVTBF-1100,@
60 #TBF,-3245,82,875,180#UNX,-3305,0,916,90#GMB,65,65,2000,225#@TA,TBF,UNX,0p#@EVTBF-1100,@
61 #TBF,-3245,31,875,180#UNX,-3253,0,908,90#GMB,4,4,2000,225#@TA@EVTBF-1100,@
62 #TBF,-3244,-20,875,180#UNX,-3202,0,900,90#GMB,-58,-58,2000,225#@TA,TBF,UNX,1h#@EV@
63 #TBF,-3245,-71,875,180#UNX,-3151,0,891,90#GMB,-120,-120,2000,225#@TA,TBF,UNX,5h#@EV@

Page K- 3

Time Advisory Data Packet

64 #TBF,-3245,-122,875,180#UNX,-3099,0,883,90#GMB,-182,-181,2000,225#@TA@EV@
65 #TBF,-3245,-173,875,180#UNX,-3048,0,875,90#GMB,-243,-243,2000,225#@TA@EV@
66 #TBF,-3245,-224,875,180#UNX,-2996,0,866,90#GMB,-305,-305,2000,225#@TA@EV@
67 #TBF,-3245,-275,875,180#UNX,-2945,0,858,90#GMB,-367,-367,2000,225#@TA@EV@
68 #TBF,-3245,-326,875,180#UNX,-2894,0,850,90#GMB,-429,-428,2000,225#@TA@EV@
69 #TBF,-3245,-377,875,180#UNX,-2842,0,841,90#GMB,-490,-490,2000,225#@TA@EV@
70 #TBF,-3245,-428,875,180#UNX,-2791,0,833,90#GMB,-552,-552,2000,225#@TA@EV@
71 #TBF,-3245,-479,875,180#UNX,-2740,0,825,90#GMB,-614,-613,2000,225#@TA@EV@
72 #TBF,-3245,-530,875,180#UNX,-2688,0,816,90#GMB,-676,-675,2000,225#@TA@EV@
73 #TBF,-3245,-581,875,180#UNX,-2637,0,808,90#GMB,-737,-737,2000,225#@TA@EV@
74 #TBF,-3245,-631,875,180#UNX,-2586,0,800,90#GMB,-799,-799,2000,225#@TA@EV@
75 #TBF,-3245,-682,875,180#UNX,-2534,0,791,90#GMB,-861,-860,2000,225#@TA@EV@
76 #TBF,-3245,-733,875,180#UNX,-2483,0,783,90#GMB,-923,-922,2000,225#@TA@EV@
77 #TBF,-3245,-784,875,180#UNX,-2432,0,775,90#GMB,-985,-984,2000,225#@TA@EV@
78 #TBF,-3245,-835,875,180#UNX,-2380,0,766,90#GMB,-1046,-1045,2000,225#@TA@EV@
79 #TBF,-3245,-886,875,180#UNX,-2329,0,758,90#GMB,-1108,-1107,2000,225#@TA@EV@
80 #TBF,-3245,-937,875,180#UNX,-2277,0,750,90#GMB,-1170,-1169,2000,225#@TA@EV@
81 #TBF,-3245,-988,875,180#UNX,-2226,0,741,90#GMB,-1232,-1231,2000,225#@TA@EV@
82 #TBF,-3245,-1039,875,180#UNX,-2175,0,733,90#GMB,-1293,-1292,2000,225#@TA@EV@
83 #TBF,-3245,-1090,875,180#UNX,-2123,0,724,90#GMB,-1355,-1354,2000,225#@TA@EV@
84 #TBF,-3223,-1141,875,180#UNX,-2072,0,716,90#GMB,-1417,-1416,2000,225#@TA@EV@
85 #TBF,-3245,-1192,875,180#UNX,-2021,0,708,90#GMB,-1479,-1477,2000,225#@TA@EV@
86 #TBF,-3245,-1243,875,180#UNX,-1969,0,699,90#GMB,-1540,-1539,2000,225#@TA@EV@
87 #TBF,-3245,-1294,875,180#UNX,-1918,0,691,90#GMB,-1602,-1601,2000,225#@TA@EV@
88 #TBF,-3245,-1345,875,180#UNX,-1867,0,683,90#GMB,-1664,-1662,2000,225#@TA@EV@
89 #TBF,-3245,-1396,875,180#UNX,-1815,0,674,90#GMB,-1726,-1724,2000,225#@TA@EV@
90 #TBF,-3245,-1447,875,180#UNX,-1764,0,666,90#GMB,-1787,-1786,2000,225#@TA@EV@
91 #TBF,-3245,-1498,875,180#UNX,-1713,0,658,90#GMB,-1849,-1848,2000,225#@TA@EV@
92 #TBF,-3245,-1549,875,180#UNX,-1661,0,649,90#GMB,-1911,-1909,2000,225#@TA@EV@
93 #TBF,-3245,-1600,875,180#UNX,-1610,0,641,90#GMB,-1973,-1971,2000,225#@TA@EV@
94 #TBF,-3245,-1651,875,180#UNX,-1558,0,633,90#GMB,-2035,-2033,2000,225#@TA@EV@
95 #TBF,-3245,-1702,875,180#UNX,-1507,0,624,90#GMB,-2096,-2094,2000,225#@TA@EV@
96 #TBF,-3245,-1753,875,180#UNX,-1456,0,616,90#GMB,-2158,-2156,2000,225#@TA@EV@
97 #TBF,-3245,-1804,875,180#UNX,-1404,0,608,90#GMB,-2220,-2218,2000,225#@TA@EV@

Page K- 4

Time Advisory Data Packet

98 #TBF,-3245,-1855,875,180#UNX,-1353,0,599,90#GMB,-2282,-2280,2000,225#@TA@EV@
99 #TBF,-3245,-1905,875,180#UNX,-1302,0,591,90#GMB,-2343,-2341,2000,225#@TA@EV@
100 #TBF,-3245,-1956,875,180#UNX,-1250,0,583,90#GMB,-2405,-2403,2000,225#@TA@EV@
101 #TBF,-3245,-2007,875,180#UNX,-1199,0,574,90#GMB,-2467,-2465,2000,225#@TA@EV@
102 #TBF,-3245,-2058,875,180#UNX,-1148,0,566,90#GMB,-2529,-2526,2000,225#@TA@EV@
103 #TBF,-3245,-2109,875,180#UNX,-1096,0,558,90#GMB,-2590,-2588,2000,225#@TA@EV@
104 #TBF,-3245,-2160,875,180#UNX,-1045,0,549,90#GMB,-2652,-2650,2000,225#@TA@EV@
105 #TBF,-3245,-2211,875,180#UNX,-994,0,541,90#GMB,-2714,-2712,2000,225#@TA@EV@
106 #TBF,-3245,-2262,875,180#UNX,-942,0,533,90#GMB,-2776,-2773,2000,225#@TA@EV@
107 #TBF,-3245,-2313,875,180#UNX,-891,0,524,90#GMB,-2838,-2835,2000,225#@TA@EV@
108 #TBF,-3245,-2364,875,180#UNX,-839,0,516,90#GMB,-2899,-2897,2000,225#@TA@EV@
109 #TBF,-3245,-2415,875,180#UNX,-788,0,508,90#GMB,-2961,-2958,2000,225#@TA@EV@
110 #TBF,-3245,-2466,875,180#UNX,-737,0,499,90#GMB,-3023,-3020,2000,225#@TA@EV@
111 #TBF,-3245,-2517,875,180#UNX,-685,0,491,90#GMB,-3085,-3082,2000,225#@TA@EV@
112 #TBF,-3246,-2568,875,180#UNX,-634,0,483,90#GMB,-3146,-3144,2000,225#@TA@EV@
113 #TBF,-3246,-2619,875,180#UNX,-583,0,474,90#GMB,-3208,-3205,2000,225#@TA@EV@
114 #TBF,-3246,-2670,875,180#UNX,-531,0,466,90#GMB,-3270,-3267,2000,225#@TA@EV@
115 #TBF,-3246,-2721,875,180#UNX,-480,0,458,90#GMB,-3332,-3329,2000,225#@TA@EV@
116 #TBF,-3246,-2772,875,180#UNX,-429,0,449,90#GMB,-3393,-3390,2000,225#@TA@EV@
117 #TBF,-3246,-2823,875,180#UNX,-377,0,441,90#GMB,-3455,-3452,2000,225#@TA@EV@
118 #TBF,-3246,-2874,875,180#UNX,-326,0,433,90#GMB,-3517,-3514,2000,225#@TA@EV@
119 #TBF,-3246,-2925,875,180#UNX,-275,0,424,90#GMB,-3579,-3576,2000,225#@TA@EV@
120 #TBF,-3246,-2976,875,180#UNX,-223,0,416,90#GMB,-3640,-3637,2000,225#@TA@EV@
121 #TBF,-3246,-3027,875,180#UNX,-172,0,408,90#GMB,-3702,-3699,2000,225#@TA@EV@

FILE NAME: air_receiver.adb

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

with GWindows.Windows.Main; use GWindows.Windows.Main;

with GWindows.Buttons; use GWindows.Buttons;

with GWindows.Edit_Boxes; use GWindows.Edit_Boxes;

with GWindows.Static_Controls; use GWindows.Static_Controls;

with GWindows.Base;

with GWindows.Application; use GWindows.Application ;

with GWindows.Buttons; use GWindows.Buttons;

with GWindows.Constants; use GWindows.Constants;

with GWindows.Windows; use GWindows.Windows;

with Gwindows ; use GWindows ;

with text_IO ; use Text_IO ;

with GWindows.Base;

with Ada.Calendar ; use Ada.Calendar ;

with Vstrings ; use VStrings ;

with GWindows.GStrings ; use GWindows.GStrings ;

WITH ada.numerics.Elementary_functions ; USE ada.numerics.elementary_functions ;

with ada.characters.handling ; use ada.characters.handling ;

with GWindows.message_boxes ;

with GBTarget ;

with GWindows.List_Boxes ; use GWindows.List_Boxes ;

with GWindows.Drawing_Panels; use GWindows.Drawing_Panels;

with GWindows.Drawing_Objects; use GWindows.Drawing_Objects;

with GWindows.Colors; use GWindows.colors ;

with GWindows.Types;

with Gwindows ; use GWindows ;

with GWindows.Drawing; use GWindows.drawing ;

with ftowerlib ; use ftowerlib ;

with ftowersounds; use ftowersounds ;

with myfont ; use myfont ;

with serial ; use serial ;

procedure air_receiver is
 pragma Linker_Options ("-mwindows");

 Main_Window : GWindows.Windows.Main.Main_Window_Type;

 type gui_ac is record

ac : vstring ;

xgui,ygui,hgui,tgui : integer ;

end record ;

 type

gui_planes is array(1..50) of gui_ac ;

X_start : GWindows.Edit_Boxes.Edit_Box_Type ;

 OK_Button : Default_Button_Type ;

Cancel_Button : Cancel_Button_Type ;

Target_Button : Default_Button_Type ;

Zoomin_Button : Default_Button_Type ;

Zoomout_Button : Default_Button_Type ;

 Atis_List, TAs_list, EVs_List,AC_List : GWindows.List_Boxes.List_Box_Type;
Atis_Title, TA_Title, EV_Title,AC_Title : GWindows.Static_Controls.Label_Type ;

 ID_MORE : constant := 101 ;

ID_OK : constant := 102 ;

ID_TARGET : constant := 103 ;

ID_ZoomIN : constant := 104 ;

ID_ZoomOUT : constant := 105 ;

 target_aircraft : vstring ;

warning_light1, warning_light2, target_selected : boolean ;

gui_array : gui_planes ;

gui_index: integer ;

scale_factor : float ;

rlen,rwid,rdir : integer ;

flashcolor : integer ;

portopen, port_set : boolean ;

-- **************************************
procedure drawplane(canvas : in out GWindows.drawing.Canvas_Type ;

xs : in integer ;
ys : in integer ;
track : in float) is

type ppoint is record

x, y : integer ;

end record ;

 head,tail,port,star,stabport,stabstar : ppoint ;

begin
head.x := 0 ;
head.y := 4 ;
tail.x := 0 ;
tail.y := -8 ;
port.x := -8 ;
port.y := 0 ;
star.x := 8 ;
star.y := 0 ;
stabport.x := -3 ;
stabport.y := -8 ;
stabstar.x := 3 ;
stabstar.y := -8 ;
rotate(float(head.x),float(head.y),track,0.0,0.0) ;
head.x := head.x + xs ;
head.y := -head.y + ys ;
rotate(float(tail.x),float(tail.y),track,0.0,0.0) ;

 tail.x := tail.x + xs ;

tail.y := -tail.y + ys ;

rotate(float(port.x),float(port.y),track,0.0,0.0) ;

port.x := port.x + xs ;

port.y := -port.y + ys ;

rotate(float(star.x),float(star.y),track,0.0,0.0) ;

star.x := star.x + xs ;

star.y := -star.y + ys ;

rotate(float(stabport.x),float(stabport.y),track,0.0,0.0) ;

stabport.x := stabport.x + xs ;

stabport.y := -stabport.y + ys ;

rotate(float(stabstar.x),float(stabstar.y),track,0.0,0.0) ;

stabstar.x := stabstar.x + xs ;

stabstar.y := -stabstar.y + ys ;

line(canvas, head.x,head.y,tail.x,tail.y) ;

line(canvas, port.x,port.y,star.x,star.y) ;

line(canvas, stabport.x,stabport.y,stabstar.x,stabstar.y) ;

end drawplane ;

-- ************************************
 procedure Write_Text(Canvas : in out Gwindows.Drawing.Canvas_Type ;

x, y : integer ;
thetext : VString) is

 textrect : GWindows.types.Rectangle_Type ;

tempstr : vstring ;

 begin

tempstr := thetext ;

tempstr := tempstr & makevstring(" ") ;

textrect.left := x ;

textrect.top := y + 4 ;

textrect.right := x + ((tempstr.currentlength-1)* 8) ;

--textrect.right := x + 30;

textrect.bottom := y + 29 ;

Put(Canvas,x,y + 4,To_string(tempstr.stringpart),textrect) ;

end ;
-- ***********************************
procedure Draw_Lights(Canvas : in out Gwindows.drawing.Canvas_type) is
 begin

-- TAs
 if warning_light1 then

Rectangle_3D(Canvas,555,120,585,150,Dark_red,red,5) ;

Rectangle_3D(Canvas,560,125,580,145,orange,orange,10) ;

end if ;
if not warning_light1 then

Rectangle_3D(Canvas,555,120,585,150,Dark_green,green,5) ;

Rectangle_3D(Canvas,560,125,580,145,cyan,cyan,10) ;

end if ;

-- EVs

 if warning_light2 then

Rectangle_3D(Canvas,555,200,585,230,Dark_red,red,5) ;
Rectangle_3D(Canvas,560,205,580,225,orange,orange,10) ;

end if ;

if not warning_light2 then

 Rectangle_3D(Canvas,555,200,585,230,Dark_green,green,5) ;
Rectangle_3D(Canvas,560,205,580,225,cyan,cyan,10) ;

end if ;

-- do receive flasher

 if flashcolor < 0 then

 Rectangle_3D(Canvas,670,20,690,40,Dark_green,green,5) ;

Rectangle_3D(Canvas,675,25,685,35,cyan,cyan,10) ;

else

 Rectangle_3D(Canvas,670,20,690,40,Dark_red,red,5) ;

Rectangle_3D(Canvas,675,25,685,35,orange,orange,10) ;

end if ;
flashcolor := flashcolor * (-1) ;

end ;

 --**
 procedure Action_Packet(Canvas : in out GWindows.Drawing.Canvas_Type ;

packet_content : vstring ;

called_vocals : in out vocalrecordarray) is

 goout,index,counter,xint,yint,ifeet,x1,y1,x2,y2 : integer ;

aircraftID : string := "TBF" ;

--aircraftID : String := "UNX" ;

acident : array(1..6) of vstring ;

xmetres,ymetres,hfeet,headpos,ts,xf,yf : vstring ;

ident1,ident2,time1, message1,evpart1 : vstring ;

refx,refy,refh,reft,xt,yt: integer ;

stripx,stripy, sx, sy : array(1..4) of integer ;

tempstr , ATIS1, ATIS2, ATIS3, ATIS4 : vstring ;

TAS : array(1..50) of vstring ;

num_tas ,num_evs: integer ;

evs : array(1..5) of natural ;

drawstrip : boolean ;

evpart2 : array(1..5) of VString ;

 begin

-- decode for all aircraft

 if packet_content.currentlength > 1 then

--first find data for aircraftID

 gui_index:= 1 ;

counter := 2;

num_tas := 0 ;

loop

gui_array(gui_index).ac := makevstring("") ;
loop
exit when packet_content.stringpart(counter) = ',';
gui_array(gui_index).ac := gui_array(gui_index).ac & makeVString(packet_content.stringpart(counter)) ;
counter := counter + 1 ;

end loop ;

counter := counter + 1 ;

 --get xmetres as a vstring

xmetres := makevstring("") ;

loop

 exit when packet_content.stringpart(counter) = ',' ;

xmetres := xmetres & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(xmetres,gui_array(gui_index).xgui) ;

counter := counter + 1 ;

--get ymetres as a vstring

ymetres := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

ymetres := ymetres & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(ymetres,gui_array(gui_index).ygui) ;

counter := counter + 1 ;

--get hfeet as a vstring

hfeet := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

hfeet := hfeet & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(hfeet,gui_array(gui_index).hgui) ;

counter := counter + 1 ;

--get headpos as a vstring

headpos := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = '#' ;

headpos := headpos & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(headpos,gui_array(gui_index).tgui) ;

 counter := counter + 1 ;

 exit when packet_content.stringpart(counter) = '@' ;
gui_index := gui_index + 1 ;

end loop ;
counter := counter + 1 ;

 -- then rip out TA's and EV'S

--extract the first "TA"

 counter := counter + 2 ;

if packet_content.stringpart(counter) = ',' then

counter := counter + 1 ;

num_tas := 0 ;

loop

-- extract aircraft1.ident

 ident1 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

ident1 := ident1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

-- extract aircraft2.ident

 counter := counter + 1 ;

ident2 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

ident2 := ident2 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

-- extract time

 counter := counter + 1 ;

time1 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = '#' ;

time1 := time1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

counter := counter + 1 ;

 if ident1 = target_aircraft then
num_tas := num_tas + 1 ;
tas(num_tas) := makevstring("TA-") & ident2 & makevstring("-") & time1 & makevstring(" ");

end if ;

 if ident2 = target_aircraft then
num_tas := num_tas + 1 ;
tas(num_tas) := makevstring("TA-") & ident1 & makevstring("-") & time1 & makevstring(" ");

end if ;

 -- debug - display TAs

-- tempstr := makevstring("aad..TAs-") & tas(num_tas) ;

-- GWindows.List_Boxes.Add(Notes_List, tempstr.stringpart) ;

exit when packet_content.stringpart(counter) = '@' ;
counter := counter + 1 ;
end loop ;

end if ;

 warning_light1 := false ;

warning_light2 := false ;

 -- then the EV's

 counter := counter + 1 ;

if packet_content.stringpart(counter) = 'E' then

counter := counter + 2 ;

num_evs := 0 ;

loop

exit when packet_content.stringpart(counter) = '@' ;

-- extract aircraft1.ident

 ident1 := makevstring("") ;

message1 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = '-' ;

ident1 := ident1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

 end loop ;
--extract message number

counter := counter + 1 ;

loop

exit when packet_content.stringpart(counter) = ',' ;

message1 := message1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

 -- convert ident1 & message1 to visual and audio

if ident1 = target_aircraft then

--if ident1 = makevstring("UNX") then

num_evs := num_evs + 1 ;

-- convert message1 to an integer and place it in evs array

evpart1 := substring(message1,1,2) ;

evpart2(num_evs) := substring(message1,3,2) ;

str_to_int(evpart1,evs(num_evs)) ;

end if ;
counter := counter + 1 ;

end loop ;
end if ;

 -- extract ATIS and runway dimensions/direction

counter := counter + 1 ;

loop

exit when packet_content.stringpart(counter) = '#' ;

ATIS1 := ATIS1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

counter := counter + 1 ;

loop

exit when packet_content.stringpart(counter) = '#' ;

ATIS2 := ATIS2 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

counter := counter + 1 ;

loop

exit when packet_content.stringpart(counter) = '#' ;

ATIS3 := ATIS3 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

counter := counter + 1 ;

loop

exit when packet_content.stringpart(counter) = '#' ;

ATIS4 := ATIS4 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(ATIS2,rdir) ;

str_to_int(ATIS3,rlen) ;

str_to_int(ATIS4,rwid) ;

GWindows.List_Boxes.Add(ATIS_List, atis1.stringpart) ;

 -- display the TAs

-- and give audible warning <<traffic, traffic>>

 if num_tas > 0 then
 warning_light1 := true ;
tempstr := makevstring("") ;
for counter in 1..num_tas loop
tempstr := tempstr & tas(counter) ;
tempstr := tempstr & makevstring("+") ;

end loop ;

GWindows.list_boxes.Clear(TAs_list) ;

GWindows.List_Boxes.Add(TAs_List, tempstr.Stringpart) ;

else
 GWindows.list_boxes.Clear(TAs_list) ;
GWindows.List_Boxes.Add(TAs_List, "Nil TA's") ;

end if ;

 -- display the EVs
-- and give audible warning

 if (num_evs = 0 and num_tas = 0) then
evs(1) := 0 ;
evpart2(1) := makevstring("00") ;
num_evs := 1 ;
ident1 := target_aircraft ;

end if ;

 if (num_evs = 0 and num_tas > 0) then
evs(1) := 3 ;
evpart2(1) := makevstring("00") ;
num_evs := 1 ;
ident1 := target_aircraft ;

end if ;

 if num_evs > 0 then
 warning_light2 := true ;
for counter in 1..num_evs loop
do_vocals(ident1,evs(counter),evpart2(counter), called_vocals) ;

case evs(counter) is

when 0 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "clear of conflict") ;
warning_light2 := false ;

when 1 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "climb,climb now") ;

 when 2 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "veer right") ;

when 3 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "collision imminent") ;

when 4 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and turn left x degrees") ;

when 5 => 	 GWindows.list_boxes.Clear(Evs_list) ;

GWindows.List_Boxes.Add(EVs_List, "climb") ;

 when 6 => 	 GWindows.list_boxes.Clear(EVs_list) ;

 GWindows.List_Boxes.Add(EVs_List, "climb and veer right x degrees") ;

when 7 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and turn right to rdir") ;

when 8 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and turn right to rdir + 90") ;

when 9 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and abort") ;

when 10 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "traffic on finals, climb and abort") ;

when 11 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "other base traffic, climb and abort") ;

when 12 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "warning - traffic on sfinals") ;

when 13 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "possible vortex hazard - go around") ;

when 14 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "warning - traffic on downwind - orbit") ;

 when 15 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "warning - traffic on base - orbit") ;

 when others => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "nil warning registered") ;
warning_light2 := false ;

end case ;

end loop ;

else

 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "nil warning") ;

end if ;

 Redraw(Main_Window, false) ;

 end if ;
end ;

-- ***
 PROCEDURE DrawScaleLines(Canvas : in out GWindows.Drawing.Canvas_Type;

rr : integer) is
-- draw dircle with centre at xc,yc, and radius rr

xp,yp : integer ;

rscaled : float ;

 begin rscaled := float(rr)/scale_factor ;
for counter in 1..360 loop

polartoxy(rscaled, float(counter),float(xp),float(yp)) ;

if (xp+145) > 10 and (xp+145) < 280 then

if (220-yp) > 10 and (220-yp) < 260 then

point(canvas,xp+145,220-yp,Red) ;

end if ;

 end if ;
end loop ;

end drawscalelines ;
-- ***
 procedure Draw_Screen(Canvas : in out GWindows.Drawing.Canvas_Type;

gui_array : in out gui_planes ;
gui_index : integer ;
aircraftID : vstring) is

 refx,refy,refh,reft : integer ;

xt,yt,x1,y1 : integer ;

newrdir : integer ;

runtheta,rundiag : integer ;

rx1,rx2,rx3,rx4,ry1,ry2,ry3,ry4 : integer ;

ts : vstring ;

 begin

refx := 0 ;

refy := 0 ;

refh := 0 ;

reft := 0 ;

-- find aircraftID record

 for counter in 1..gui_index loop

-- if value(gui_array(counter).ac) = aircraftID.stringpart then
if gui_array(counter).ac = aircraftID then

refx := gui_array(counter).xgui ;

refy := gui_array(counter).ygui ;

refh := gui_array(counter).hgui ;

reft := gui_array(counter).tgui ;

end if ;

end loop ;

 -- plot all except target aircraft
for counter in 1..gui_index loop
-- if value(gui_array(counter).ac) = aircraftID.stringpart then
if gui_array(counter).ac = aircraftID then

 null ; -- nil action
else
 -- plot it wrt UNX ; data in gui_array is wrt aerodrome reference
-- only plot the plane if - 7000 < x < 7000 wrt UNX
-- and - 500 < y < 12500 wrt UNX
gui_array(counter).tgui:= gui_array(counter).tgui - reft ;
if gui_array(counter).tgui < 0 then
gui_array(counter).tgui := gui_array(counter).tgui + 360 ;

end if ;
xt := gui_array(counter).xgui - refx ;
yt := gui_array(counter).ygui - refy ;
rotate(float(xt), float(yt),-float(reft),0.0,0.0) ;
x1 := integer(145.0 + (float(xt)/scale_factor)) ;
y1 := integer(220.0 - (float(yt)/scale_factor)) ;
if x1 > 20 and x1 < 270 then
 if y1 > 20 and y1 < 240 then

drawplane(canvas,x1,y1,float(gui_array(counter).tgui)) ;

 --Write_text(canvas,x1+3,y1-3,gui_array(counter).ac) ;
int_to_str(gui_array(counter).hgui,ts) ;
--Write_text(canvas, x1+3,y1+10,ts) ;
writelinetext(canvas,gui_array(counter).ac,x1+10,y1-7) ;
writelinetext(canvas,ts,x1+10,y1+6) ;

end if ;

end if ;

end if ;
end loop ;
-- **
 -- draw strip (given rdir,rlen and rwid taking runway mid point as 0,0) ;
rx1 := integer(float(rlen)/2.0) - refx ;
ry1 := integer(float(rwid)/2.0) - refy ;
rotate(float(rx1),float(ry1),float(rdir)-float(reft)- 90.0,0.0,0.0) ;
rx1 := integer(145.0 + (float(rx1)/scale_factor)) ;
ry1 := integer(220.0 - (float(ry1)/scale_factor)) ;

 rx2 := integer(float(rlen)/2.0) - refx ;
ry2 := integer(float(-rwid)/2.0) - refy ;
rotate(float(rx2),float(ry2),float(rdir)-float(reft) - 90.0 ,0.0,0.0) ;
rx2 := integer(145.0 + (float(rx2)/scale_factor)) ;
ry2 := integer(220.0 - (float(ry2)/scale_factor)) ;

 rx3 := integer(float(-rlen)/2.0) -refx ;
ry3 := integer(float(-rwid)/2.0) -refy ;
rotate(float(rx3),float(ry3),float(rdir)-float(reft) - 90.0 ,0.0,0.0) ;
rx3 := integer(145.0 + (float(rx3)/scale_factor)) ;
ry3 := integer(220.0 - (float(ry3)/scale_factor)) ;

 rx4 := integer(float(-rlen)/2.0) - refx;
ry4 := integer(float(rwid)/2.0) - refy ;
rotate(float(rx4),float(ry4),float(rdir)-float(reft)- 90.0,0.0,0.0) ;
rx4 := integer(145.0 + (float(rx4)/scale_factor)) ;
ry4 := integer(220.0 - (float(ry4)/scale_factor)) ;

 if rx1 > 20 and rx1 < 270 then
 if rx2 > 20 and rx2 < 270 then
 if rx3 > 20 and rx3 < 270 then
 if rx4 > 20 and rx4 < 270 then
 if ry1 > 50 and ry1 < 240 then

if ry2 > 50 and ry2 < 240 then
if ry3 > 50 and ry3 < 240 then
if ry4 > 50 and ry4 < 240 then
line(canvas,rx1,ry1,rx2,ry2) ;
line(canvas,rx2,ry2,rx3,ry3) ;
line(canvas,rx3,ry3,rx4,ry4) ;
line(canvas,rx4,ry4,rx1,ry1) ;

end if ;

end if ;

end if ;

end if ;

end if ;

end if ;

end if ;

 end if ;

-- **

 -- draw scale lines

 DrawScaleLines(canvas,3040) ;

DrawScaleLines(canvas,6080) ;

DrawScaleLines(canvas,9120) ;

DrawScaleLines(canvas,12060) ;

-- **

end Draw_Screen ;

 -- **
procedure Do_Paint
(Window : in out GWindows.Base.Base_Window_Type'Class;
Canvas : in out GWindows.Drawing.Canvas_Type;
Area

is
: in GWindows.Types.Rectangle_Type)

 Pen : GWindows.Drawing_Objects.Pen_Type;

 begin
-- Radar Screen
 Fill_Rectangle (Canvas,

(10, 10, 280,260),

color_window);

-- draw a recangle

 Create_Stock_Pen (Pen, black_pen);

Select_Object (Canvas, Pen);

drawplane(canvas,145,220,0.0) ;

 -- Rectangle (Canvas,100, 100,200,200);

if gui_index > 0 then

Draw_Screen(Canvas, gui_array ,gui_index,target_aircraft) ;

end if ;
Draw_lights(Canvas) ;

end Do_Paint;

-- **********************************

 procedure Do_Display

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 indata : text_Io.File_Type;

packet_line : vstring ;

called_vocal : vocalrecordarray ;

Canvas : GWindows.Drawing.Canvas_Type;

 begin
-- if port not open
-- then open port
if portopen = false then
open("COM2") ;

end if ;

-- and set port

set_up_port(9600 , port_set) ;

 if target_selected then

-- open file

Text_Io.Open(File => Indata, Mode => Text_Io.In_File,

Name => "uplink.dat") ;

-- while not end of file

 -- read a line of data

 while not Text_Io.End_Of_File(File => indata) loop

 vstrings.Get_line(File => Indata,

Item => packet_line) ;

 -- then action it

 Action_Packet(canvas,packet_line,called_vocal) ;

for counter3 in 1..99000 loop

GWindows.application.message_check ;

end loop ;

 end loop ;

-- at end of file, close it

Text_Io.Close(File => Indata) ;

GWindows.Message_Boxes.Message_Box("File End", "End of uplink file") ;

 else
 GWindows.Message_Boxes.Message_Box("Procedure Error", "Enter Aircraft ID First") ;
end if ;

 -- close port

close ;

 exception

when Name_Error =>

 GWindows.Message_Boxes.Message_Box("Uplink Error", "No uplink data found") ;

 end Do_Display;

 -- *********************************
 procedure Do_Display2

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 begin
-- if port open then close it

-- close application
close(Main_Window) ;

end Do_Display2;
-- **********************************
 procedure Do_ZoomIN

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 begin

 scale_Factor := Scale_Factor -10.0 ;

if scale_factor <= 0.0 then

 scale_factor := 10.0 ;

end if ;

end Do_ZoomIN;

-- **********************************

procedure Do_ZoomOUT

(Window : in out GWindows.Base.Base_Window_Type'Class)

is

 begin

scale_Factor := Scale_Factor + 10.0 ;

 end Do_ZoomOUT;

-- **********************************

Procedure Do_Target

(Window : in out GWindows.Base.Base_Window_Type'Class)

is

 indata : text_Io.File_Type;

 begin

GBTarget ;

Text_Io.Open(File => Indata, Mode => Text_Io.In_File,

Name => "targetin.tmp") ;

vstrings.Get_line(File => Indata,

Item => target_aircraft) ;

Text_Io.Close(File => Indata) ;

if target_aircraft.stringpart(1) = '#' then

target_selected := false ;

GWindows.list_boxes.clear(AC_list);

else

GWindows.list_boxes.Clear(AC_list) ;

GWindows.List_Boxes.Add(AC_List, target_aircraft.stringpart) ;

target_selected := true ;

end if ;

end Do_Target ;

-- ***********************************

begin
Create (Main_Window, "Air_Receiver", Width => 700, Height => 300);
Center(Main_Window) ;
Visible (Main_Window, True);
Keyboard_Support (Main_Window, True);
warning_light1 := false ;
warning_light2 := false ;
target_selected := false ;
gui_index := 0 ;
scale_factor := 70.0 ;
flashcolor := 1 ;
portopen := false ;
Create (OK_Button, Main_Window, "&ON",610, 50, 80, 25, ID => IDOK);
Create (Cancel_Button, Main_Window, "O&FF",610, 75 ,80, 25, ID => ID_MORE);
Create (Target_Button, Main_Window, "&Target",610,200 , 80, 25, ID => ID_TARGET);
Create (ZoomIN_Button, Main_Window, "Zoom &In",610, 125,80, 25, ID => ID_ZoomIN);

 Create (ZoomOUT_Button, Main_Window, "&Zoom Out",610, 150, 80, 25, ID => ID_ZoomOUT);

Create(AC_Title , Main_Window, "Aircraft ID:", 440, 10,90,25) ;

Create (AC_List , Main_Window, 530,10,60,35) ;

 Create(Atis_Title , Main_Window, "ATIS", 300, 20,50,35) ;

Create (Atis_List , Main_Window, 300, 45, 250, 40) ;

Create(TA_Title , Main_Window, "TAs", 300, 100,50,35) ;

Create (TAs_List, Main_Window, 300,125,250,40) ;

Create(EV_Title , Main_Window, "EVs", 300, 180,50,35) ;

Create (EVs_List, Main_Window,300,205,250,40) ;

 On_Click_Handler (OK_Button, Do_Display'Unrestricted_Access);

On_Click_Handler (Cancel_Button, Do_Display2'Unrestricted_Access);

On_Click_Handler (Target_Button, Do_Target'Unrestricted_Access);

On_Paint_Handler (Main_Window, Do_Paint'Unrestricted_Access);

On_Click_Handler (ZoomIN_Button, Do_ZoomIN'Unrestricted_Access);

On_Click_Handler (ZoomOUT_Button, Do_ZoomOUT'Unrestricted_Access);

 GWindows.Application.Message_Loop;
end air_receiver ;

FILE NAME: ftower.adb

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

with GWindows.Windows.Main; use GWindows.Windows.Main;

with GWindows.Menus; use GWindows.Menus;

with GWindows.Application ; use GWindows.Application ;

with GWindows.Base;

with GWindows.message_boxes ;

with GWindows.Drawing; use GWindows.drawing ;

with GWindows.Colors; use GWindows.colors ;

with GWindows.Types;

with GWindows.Drawing_Panels; use GWindows.Drawing_Panels;

with GWindows.Drawing_Objects; use GWindows.Drawing_Objects;

with GWindows.Buttons; use GWindows.Buttons;

with GWindows.Static_Controls; use GWindows.Static_Controls;

with GWindows.Constants; use GWindows.Constants;

with GWindows.Windows; use GWindows.Windows;

with GWindows.Edit_Boxes; use GWindows.Edit_Boxes;

with Gwindows ; use GWindows ;

with GWindows.GStrings ; use GWindows.GStrings ;

with GBPassword ;

with GBAbout ;

with text_IO ; use Text_IO ;

with GBInt_IO ; use GBInt_Io ;

with GBFlt_IO ; use GBFlt_IO ;

with GWindows.common_dialogs ; use GWindows.common_dialogs ;

With VStrings ; Use VStrings ;

with ftowerlib ; use ftowerlib ;

with ada.calendar; use ada.calendar ;

WITH ada.numerics.Elementary_functions ;

USE ada.numerics.elementary_functions ;

with GWindows.List_Boxes ; use GWindows.List_Boxes ;

with Gwindows.Multi_Media ; use GWindows.Multi_media ;

with gbdebug ; use gbdebug ;

with GBTarget ;

with ftowersounds; use ftowersounds ;

procedure ftower is
pragma Linker_Options ("-mwindows");

 Main_Window : Main_Window_Type;

Main_Menu : Menu_Type := Create_Menu;

File_Menu : Menu_Type := Create_Popup;

File_Menu2 : Menu_Type := Create_Popup;

File_Menu3 : Menu_Type := Create_Popup ;

File_Menu4 : Menu_Type := Create_Popup ;

User1 : Edit_boxes.Edit_Box_Type ;

 LOGin_Button : Default_Button_Type;

 LOGout_Button : Default_Button_Type;

Spare1_Button : Default_Button_Type;

Spare2_Button : Default_Button_Type;

Spare3_Button : Default_Button_Type;

Spare4_Button : Default_Button_Type;

Spare5_Button : Default_Button_Type;

Spare6_Button : Default_Button_Type;

Save_Button : Default_Button_Type;

Load_Button : Default_Button_Type;

About_Button : Default_Button_Type;

Exit_Button : Default_Button_Type;

 IDLogin : constant := 201 ;

IDLogout : constant := 202 ;

IDButton1 : constant := 203 ;

IDButton2 : constant := 204 ;

IDButton3 : constant := 205 ;

IDButton4 : constant := 206 ;

IDButton5 : constant := 207 ;

IDButton6 : constant := 208 ;

IDButton7 : constant := 209 ;

IDButton8 : constant := 210 ;

IDButton9 : constant := 211 ;

IDButton10 : constant := 212 ;

 vet_user : integer ;

target_aircraft : vstring ;

Atis_List, TAs_list, EVs_List, Notes_List, AC_List : GWindows.List_Boxes.List_Box_Type;

Atis_Title, TA_Title, EV_Title, Notes_Title, AC_Title : GWindows.Static_Controls.Label_Type ;

file_to_open1 , file_to_open2 : VString ;

 Ats_content : VString ;

planedat, arec ,numstrips ,active_strip, numplanes,filenum : integer ;

acpos : radar_sweep ;

pacs : planes ;

aport : aerodrome ;

pstats : pbase ;

packet : vstring ;

advice : vstring ;

evasiontactic : vstring ;

striploaded : boolean := false ;

planeloaded : boolean := false ;

useraccess : vstring ;

scale : float ;

warning_light1, warning_light2 : boolean ;

 ID_Login : constant := 100 ;

ID_Logout : constant := 101 ;

ID_Exit : constant := 102 ;

ID_Open_Strip : constant := 103 ;

ID_Open_Aircraft : constant := 104 ;

ID_Save : constant := 105 ;

 ID_About : constant := 106 ;

ID_Radar : constant := 107 ;

ID_Access : constant := 108 ;

ID_Target : constant := 109 ;

ID_Load : constant := 110 ;

ID_ZoomOut : constant := 111 ;

ID_ZoomIn : constant := 112 ;

 indata : text_Io.File_Type;

-- ***
 procedure Initialize_PStats is
begin
for c in 1..100 loop

pstats(c).ident := makevstring("") ;

pstats(c).ptype := makevstring("") ;

pstats(c).cruise := 0 ;

pstats(c).climb := 0 ;

pstats(c).toff := 0 ;

pstats(c).cx := 0.0 ;

pstats(c).cy := 0.0 ;

pstats(c).chgt := 0.0 ;

pstats(c).oldx := 0.0 ;

pstats(c).oldy := 0.0 ;

pstats(c).oldhgt := 0.0 ;

pstats(c).knots := 0.0 ;

pstats(c).maxspeed := 0.0 ;

pstats(c).heading := 0.0 ;

pstats(c).oldheading := 0.0 ;

pstats(c).dheading := 0.0 ;

for g in 1..20 loop

pstats(c).attitude(g) := 0.0 ;

end loop ;

pstats(c).advicegiven := 0 ;

pstats(c).rgn := makevstring("") ;

pstats(c).transition := 0.0 ;

end loop ;
end ;

-- **
procedure Write_Text(Canvas : in out Gwindows.Drawing.Canvas_Type ;

x, y : integer ;
thetext : VString) is

 textrect : GWindows.types.Rectangle_Type ;

tempstr : vstring ;

 begin
tempstr := thetext ;
tempstr := tempstr & makevstring(" ") ;
textrect.left := x ;
textrect.top := y + 4 ;
textrect.right := x + ((tempstr.currentlength-1)* 8) ;
--textrect.right := x + 30;
textrect.bottom := y + 29 ;
Put(Canvas,x,y + 4,To_string(tempstr.stringpart),textrect) ;

 end ;
-- ***
 procedure Action_Packet(Canvas : in out GWindows.Drawing.Canvas_Type ;

packet_content : vstring ;
called_vocals : in out vocalrecordarray) is

 type gui_ac is record

ac : vstring ;

xgui,ygui,hgui,tgui : integer ;

end record ;

 gui_array : array(1..50) of gui_ac ;

gui_index: integer ;

goout,index,counter,xint,yint,ifeet,x1,y1,x2,y2 : integer ;

aircraftID : string := "TBF" ;

--aircraftID : String := "UNX" ;

acident : array(1..6) of vstring ;

xmetres,ymetres,hfeet,headpos,ts,xf,yf : vstring ;

ident1,ident2,time1, message1,evpart1 : vstring ;

refx,refy,refh,reft,xt,yt: integer ;

stripx,stripy, sx, sy : array(1..4) of integer ;

tempstr : vstring ;

TAS : array(1..50) of vstring ;

num_tas ,num_evs: integer ;

evs : array(1..5) of natural ;

drawstrip : boolean ;

evpart2 : array(1..5) of VString ;

 begin

-- debug - show packet content and target aircraft

GWindows.List_Boxes.Add(Notes_List, "aaa..Actioning Packet") ; -- ********debug**********

tempstr := makevstring("aab..packet-") & packet_content ;

GWindows.List_Boxes.Add(Notes_List, tempstr.stringpart) ;

tempstr := makevstring("aac..target-") & target_aircraft ;

GWindows.List_Boxes.Add(Notes_List, tempstr.stringpart) ;

 -- decode for all aircraft
 if packet_content.currentlength > 1 then

--first find data for aircraftID

 gui_index:= 1 ;

counter := 2;

num_tas := 0 ;

loop

gui_array(gui_index).ac := makevstring("") ;
loop
exit when packet_content.stringpart(counter) = ',';
gui_array(gui_index).ac := gui_array(gui_index).ac & makeVString(packet_content.stringpart(counter)) ;
counter := counter + 1 ;

end loop ;

counter := counter + 1 ;

 --get xmetres as a vstring

xmetres := makevstring("") ;

 loop
exit when packet_content.stringpart(counter) = ',' ;
xmetres := xmetres & makevstring(packet_content.stringpart(counter)) ;
counter := counter + 1 ;

end loop ;

str_to_int(xmetres,gui_array(gui_index).xgui) ;

counter := counter + 1 ;

--get ymetres as a vstring

ymetres := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

ymetres := ymetres & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(ymetres,gui_array(gui_index).ygui) ;

counter := counter + 1 ;

--get hfeet as a vstring

hfeet := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

hfeet := hfeet & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(hfeet,gui_array(gui_index).hgui) ;

counter := counter + 1 ;

--get headpos as a vstring

headpos := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = '#' ;

headpos := headpos & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

str_to_int(headpos,gui_array(gui_index).tgui) ;

 counter := counter + 1 ;

 exit when packet_content.stringpart(counter) = '@' ;
gui_index := gui_index + 1 ;

end loop ;
counter := counter + 1 ;

 -- then rip out TA's and EV'S

--extract the first "TA"

 counter := counter + 2 ;

if packet_content.stringpart(counter) = ',' then

counter := counter + 1 ;

num_tas := 0 ;

loop

-- extract aircraft1.ident

 ident1 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

ident1 := ident1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

 -- extract aircraft2.ident

 counter := counter + 1 ;

ident2 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = ',' ;

ident2 := ident2 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

-- extract time

 counter := counter + 1 ;

time1 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = '#' ;

time1 := time1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

counter := counter + 1 ;

 if ident1 = target_aircraft then
num_tas := num_tas + 1 ;
tas(num_tas) := makevstring("TA-") & ident2 & makevstring("-") & time1 & makevstring(" ");

end if ;

 if ident2 = target_aircraft then
num_tas := num_tas + 1 ;
tas(num_tas) := makevstring("TA-") & ident1 & makevstring("-") & time1 & makevstring(" ");

end if ;

 -- debug - display TAs

tempstr := makevstring("aad..TAs-") & tas(num_tas) ;

GWindows.List_Boxes.Add(Notes_List, tempstr.stringpart) ;

exit when packet_content.stringpart(counter) = '@' ;
counter := counter + 1 ;
end loop ;

end if ;

 warning_light1 := false ;

warning_light2 := false ;

 -- then the EV's

 counter := counter + 1 ;

if packet_content.stringpart(counter) = 'E' then

counter := counter + 2 ;

num_evs := 0 ;

loop

exit when packet_content.stringpart(counter) = '@' ;

-- extract aircraft1.ident

 ident1 := makevstring("") ;

message1 := makevstring("") ;

loop

exit when packet_content.stringpart(counter) = '-' ;

ident1 := ident1 & makevstring(packet_content.stringpart(counter)) ;

 counter := counter + 1 ;

end loop ;

--extract message number

counter := counter + 1 ;

loop

exit when packet_content.stringpart(counter) = ',' ;

message1 := message1 & makevstring(packet_content.stringpart(counter)) ;

counter := counter + 1 ;

end loop ;

 -- debug display EVs

tempstr := makevstring("aae..EVs-") & ident1 & makevstring(" - ") & message1;

GWindows.List_Boxes.Add(Notes_List, tempstr.stringpart) ;

-- convert ident1 & message1 to visual and audio

if ident1 = target_aircraft then

--if ident1 = makevstring("UNX") then

num_evs := num_evs + 1 ;

-- convert message1 to an integer and place it in evs array

evpart1 := substring(message1,1,2) ;

evpart2(num_evs) := substring(message1,3,2) ;

str_to_int(evpart1,evs(num_evs)) ;

end if ;
counter := counter + 1 ;

end loop ;
end if ;

 -- display the TAs

-- and give audible warning <<traffic, traffic>>

if num_tas > 0 then

 warning_light1 := true ;

tempstr := makevstring("") ;

for counter in 1..num_tas loop

tempstr := tempstr & tas(counter) ;
tempstr := tempstr & makevstring("+") ;

end loop ;

GWindows.list_boxes.Clear(TAs_list) ;

GWindows.List_Boxes.Add(TAs_List, tempstr.Stringpart) ;

else
 GWindows.list_boxes.Clear(TAs_list) ;
GWindows.List_Boxes.Add(TAs_List, "Nil TA's") ;

end if ;

 -- display the EVs
-- and give audible warning

 if (num_evs = 0 and num_tas = 0) then
evs(1) := 0 ;
evpart2(1) := makevstring("00") ;
num_evs := 1 ;
ident1 := target_aircraft ;

end if ;

 if (num_evs = 0 and num_tas > 0) then
evs(1) := 3 ;

 evpart2(1) := makevstring("00") ;

num_evs := 1 ;

ident1 := target_aircraft ;

end if ;

 if num_evs > 0 then
 warning_light2 := true ;
for counter in 1..num_evs loop
do_vocals(ident1,evs(counter),evpart2(counter), called_vocals) ;

case evs(counter) is

when 0 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "clear of conflict") ;

warning_light2 := false ;

when 1 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "climb,climb now") ;

 when 2 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "veer right") ;

when 3 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "collision imminent") ;

when 4 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and turn left x degrees") ;

when 5 => 	 GWindows.list_boxes.Clear(Evs_list) ;

GWindows.List_Boxes.Add(EVs_List, "climb") ;

 when 6 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and veer right x degrees") ;

when 7 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and turn right to rdir") ;

when 8 => 	 GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "climb and turn right to rdir + 90") ;

when 9 => 	 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "climb and abort") ;

when 10 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "traffic on finals, climb and abort") ;

when 11 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "other base traffic, climb and abort") ;

when 12 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "warning - traffic on sfinals") ;

when 13 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "possible vortex hazard - go around") ;

when 14 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "warning - traffic on downwind - orbit") ;

 when 15 => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "warning - traffic on base - orbit") ;

 when others => GWindows.list_boxes.Clear(EVs_list) ;
GWindows.List_Boxes.Add(EVs_List, "nil warning registered") ;
warning_light2 := false ;

end case ;

end loop ;

else

 GWindows.list_boxes.Clear(EVs_list) ;

GWindows.List_Boxes.Add(EVs_List, "nil warning") ;

end if ;

 if warning_light1 and warning_light2 then

-- display flashing 1 and 2

null;

else
if warning_light1 then

 -- display red light1

null ;

else
 if warning_light2 then

-- display red light2

null ;

end if ;

end if ;

end if ;

end if ;

end ;

-- ***
 procedure GetRadarTitle(thefile : out VString) is

 Filename,filetitle : Gstring_Unbounded ;

gbfiltarray : Filter_array(1..4) ;

goodie : boolean ;

 begin

Initialize_PStats ;

numplanes := 0 ;

GWindows.list_boxes.Clear(Atis_list) ;

GWindows.list_boxes.Clear(EVs_list) ;

GWindows.list_boxes.Clear(TAs_list) ;

gbfiltarray(1).name := To_GString_Unbounded("Squitter (*.rad)") ;

gbfiltarray(1).filter := To_GString_Unbounded("*.rad") ;

Open_File(Main_Window,"Open File",Filename,gbfiltarray,"ttt",filetitle,goodie) ;

thefile := makevstring(To_GString(Filename)) ;

end ;

-- ***************************************
procedure drawplane(canvas : in out GWindows.drawing.Canvas_Type ;

xs : in integer ;
ys : in integer ;
track : in float) is

type ppoint is record

x, y : integer ;

end record ;

 head,tail,port,star,stabport,stabstar : ppoint ;

begin
head.x := 0 ;
head.y := 4 ;
tail.x := 0 ;
tail.y := -8 ;
port.x := -8 ;
port.y := 0 ;
star.x := 8 ;
star.y := 0 ;
stabport.x := -3 ;
stabport.y := -8 ;
stabstar.x := 3 ;
stabstar.y := -8 ;
rotate(float(head.x),float(head.y),track,0.0,0.0) ;
head.x := head.x + xs ;
head.y := -head.y + ys ;
rotate(float(tail.x),float(tail.y),track,0.0,0.0) ;
tail.x := tail.x + xs ;
tail.y := -tail.y + ys ;
rotate(float(port.x),float(port.y),track,0.0,0.0) ;
port.x := port.x + xs ;
port.y := -port.y + ys ;
rotate(float(star.x),float(star.y),track,0.0,0.0) ;
star.x := star.x + xs ;
star.y := -star.y + ys ;
rotate(float(stabport.x),float(stabport.y),track,0.0,0.0) ;
stabport.x := stabport.x + xs ;
stabport.y := -stabport.y + ys ;
rotate(float(stabstar.x),float(stabstar.y),track,0.0,0.0) ;
stabstar.x := stabstar.x + xs ;
stabstar.y := -stabstar.y + ys ;
line(canvas, head.x,head.y,tail.x,tail.y) ;
line(canvas, port.x,port.y,star.x,star.y) ;
line(canvas, stabport.x,stabport.y,stabstar.x,stabstar.y) ;

end drawplane ;
--************************************8
 procedure Draw_Lights(Canvas : in out Gwindows.drawing.Canvas_type) is
 begin

-- TAs
 if warning_light1 then

Rectangle_3D(Canvas,745,85,775,115,Dark_red,red,5) ;

Rectangle_3D(Canvas,750,90,770,110,orange,orange,10) ;

end if ;
if not warning_light1 then

Rectangle_3D(Canvas,745,85,775,115,Dark_green,green,5) ;

Rectangle_3D(Canvas,750,90,770,110,cyan,cyan,10) ;

end if ;

-- EVs

 if warning_light2 then

Rectangle_3D(Canvas,745,165,775,195,Dark_red,red,5) ;
Rectangle_3D(Canvas,750,170,770,190,orange,orange,10) ;

end if ;

if not warning_light2 then

 Rectangle_3D(Canvas,745,165,775,195,Dark_green,green,5) ;

Rectangle_3D(Canvas,750,170,770,190,cyan,cyan,10) ;

end if ;

 end ;
-- ***********************************
procedure Draw_Radar(Canvas : in out Gwindows.drawing.Canvas_type ;

 -- pstats , numplanes
acdata: in pbase ; nplanes : in integer) is

 x1,y1, x2,y2 : integer ;

ts,ts1 : vstring ;

xs,ys : float ;

begin

if nplanes > 0

then

 for counter in 1..nplanes loop

-- oldx and oldy are in metres
-- screen is 500 * 500 pixels
-- make total screen width 10,000 metres
-- ie 1 pixel := 20 metres
x1 := integer(255.0 + acdata(counter).oldx/scale) ; -- oldx and y in metres
y1 := integer(260.0 - acdata(counter).oldy/scale) ;
if x1 > 20 and x1 < 420 and y1 > 20 and y1 < 420 then
drawplane(canvas, x1,y1,acdata(counter).heading) ;
-- add ID and height details
Write_text(canvas,x1+3,y1-3,acdata(counter).ident) ;
int_to_str(integer(acdata(counter).oldhgt),ts) ;
Write_text(canvas, x1+3,y1+10,ts) ;
-- debug info *****************************
ts := ts & makevstring(" ") & acdata(counter).ident ;
GWindows.List_Boxes.Add(Notes_List, ts.Stringpart) ;
-- **

 end if ;
end loop ;
-- draw strip
polartoXY(aport(active_strip).rlen/2.0,aport(active_strip).rdir-180.0,xs,ys) ;
x1 := integer(255.0 + (xs/scale)) ;
y1 := integer(260.0 - (ys/scale)) ;
polartoXY(aport(active_strip).rlen/2.0,aport(active_strip).rdir,xs,ys) ;
x2 := integer(255.0 + (xs/scale)) ;
y2 := integer(260.0 - (ys/scale)) ;

 if x1 > 20 and x1 < 420 and y1 > 20 and y1 < 420 then

if x2 > 20 and x2 < 420 and y2 > 20 and y2 < 420 then

line(canvas,x1,y1,x2,y2) ;

end if ;

end if ;

end if ;

end Draw_Radar ;

-- ***************************************
-- Key provides the synchronization for the simulator

-- it will regulate one radar sweep per second

 -- and one enviro reading every 5 seconds

 procedure GBKey(Canvas : in out Gwindows.Drawing.Canvas_Type) is

 rdata, wdata : text_io.File_type ;

mmhg, direction, speed ,downwind: integer ;

xwind : integer ;

Ts : Vstring;

min_cross, crossw : float ;

radarfilename,atisrdir,atisrlen,atisrwid : vstring ;

xpos,ypos,hpos,headpos : vstring ;

tempstr : vstring ;

zairangle, zdimx , zairrange : float ;

zper_cat : character ;

starttime, endtime : float ;

called_vocal : vocalrecordarray ;

atis : text_IO.File_Type ;

pacdata : text_Io.file_type ;

atisFile : Text_IO.File_type ;

 -- ***** debug files ************8

outdata : Text_IO.File_Type ;

tacdata : text_IO.file_type ;

-- ******************************

begin

 -- open debug files ************************
text_IO.Create(File => outdata,

Mode => Text_Io.Append_File,

Name => "BugData.csv") ;

text_IO.Create(File => tacdata,

Mode => Text_Io.Append_File,

Name => "tactics.dat") ;

-- **

-- open data output files

text_IO.Create(File => pacdata,

Mode => Text_Io.Append_File,

Name => "Packets.dat") ;

 text_IO.Create(File => atisfile,

Mode => TexT_IO.append_File,

Name => "ATIS.dat") ;

-- **

 --initialize vocalrecordarray type variable (called_vocal)

for i in 1..10 loop

called_vocal(i).planeident := makevstring("xxx") ;

called_vocal(i).currentvocal := 0 ;

end loop;

numplanes := 0 ;

initialize_pstats ;

GWindows.list_boxes.Clear(Notes_list) ;

-- get radar file name and open it

GetRadarTitle(radarfilename) ;

Text_Io.Open(File => rdata, Mode => Text_Io.In_File,

 Name => radarfilename.stringpart) ;

-- open enviro file
TS := makevstring("") ;
Text_Io.Open(File => Wdata, Mode => Text_Io.In_File,

Name => "weather.dat") ;

 while not Text_Io.End_Of_File(File => wdata) loop
-- read an entry from environmental file;
GBInt_IO.Get(File => WData,

Item => mmhg) ;
GBInt_IO.Get(File => Wdata,

Item => Direction) ; -- direction wind is blowing from
GBInt_IO.Get(File => Wdata,

Item => Speed) ;

text_io.skip_line(file => wdata) ;

-- act on environmental entry ;

downwind := direction ;

min_cross := 360.0 ;

active_strip := 1 ;

for Counter in 1..numstrips loop

crossw := abs(float(downwind) - Aport(Counter).Rdir) ;
if crossw < min_cross then

 min_cross := crossw ;

Active_Strip := Counter ;

if float(downwind) > aport(counter).rdir then

xwind := 0 ;

else

 xwind := 1 ;

end if ;

end if ;

end loop ;

 -- ensure that the crosswind component < 20 knots

crossw := abs(float(speed) * sin(min_cross * 0.01754)) ;

 -- update atis content for active strip

Ats_Content := Makevstring("R") & Aport(Active_Strip).Ident ;

Ats_Content := Ats_Content & Makevstring(",") ;

-- update atis_content for qnh, wind direction and speed ;

Ats_Content := Ats_Content & MakeVString("QNH") ;

int_to_str(mmhg,Ts) ;

ATS_Content := Ats_Content & Ts ;

Ats_Content := Ats_Content & Makevstring(",W") ;

int_to_str(direction,Ts) ;

Ats_Content := Ats_Content & Ts ;

Ats_Content := Ats_Content & Makevstring("/") ;

int_to_str(speed,Ts) ;

Ats_Content := Ats_Content & Ts ;

if crossw >= 20.0 then

 Ats_content := Ats_content & MakeVString(",Closed XWind") ;
else

 int_to_str(integer(crossw),Ts) ;

if xwind = 0 then

 Ats_content := Ats_content & MakeVString(",CWS") ;

 else
 Ats_content := Ats_content & MakeVString(",CWP") ;

end if ;

ATS_Content := Ats_content & Ts ;

end if ;

-- and add runway data

-- rdir ,rlen and rwid as part of ATIS vstring

-- first convert to integer then vstring

int_to_str(integer(aport(active_strip).rdir),atisrdir) ;

int_to_str(integer(aport(active_strip).rlen),atisrlen) ;

int_to_str(integer(aport(active_strip).rwid),atisrwid) ;

ats_content:= ats_content & makevstring("#") & atisrdir ;

ats_content:= ats_content & makevstring("#") & atisrlen ;

ats_content:= ats_content & makevstring("#") & atisrwid ;

ats_content:= ats_content & makevstring("#") ;

-- save atis to ATIS file (five entries) for uplink

for atiscount in 1..5 loop

vstrings.put_line(File => atisfile,

Item => ats_content) ;

end loop ;

-- display ATIS in listbox

 GWindows.list_boxes.Clear(Atis_list) ;

GWindows.List_Boxes.Add(Atis_List, ats_content.Stringpart) ;

 -- now get five entries from radar file and act on those

 for rcounter in 1..5 loop

 if not Text_IO.End_of_File(File => rdata) then

Planedat := 0 ;

loop

Planedat := Planedat + 1 ;

Vstrings.Get_Line(File => rdata,

Item => Acpos (Planedat).Ident) ;

exit when Vstrings.Head(Acpos(Planedat).Ident) = '#' ;

Vstrings.Get_Line(File => rdata,

Item => Acpos(Planedat).Squawk) ;

GBFlt_IO.Get(File => rdata,

Item => Acpos(Planedat).rad) ;

GBFlt_IO.Get(File => rdata,

Item => Acpos(Planedat).Dst) ;

GBFlt_IO.Get(File => rdata,

Item => Acpos(Planedat).Hgt) ;

Acpos(Planedat).Rgn := Vstrings.Makevstring("uk") ;

Text_Io.Skip_Line(File => rdata) ;

 end loop ;

 planedat := planedat - 1 ;

 --Updateplane(gp_acpos : in radar_sweep ;

-- gp_planedat : in integer ;

-- gp_pacs : in out planes ;

-- radar data
-- number planes in radar data

-- plane database

 -- gp_arec : in out integer ; -- number of planes in database
-- gp_pstats : in out pbase ; -- active area
 -- gp_numplanes : in out integer) is -- number of planes in active area

-- **
-- GWindows.Message_Boxes.Message_Box ("Message to You", " debug pre update plane");
-- **

 --updateplane id details in pstats

Updateplane(acpos, planedat, pacs, arec, pstats, numplanes) ;

-- **
-- GWindows.Message_Boxes.Message_Box ("Message to You", " debug post update plane");
-- **

 --update plane location data in pstats ;
-- 1. define circuit paramaters for the aircraft performance type
-- and update aicraft position data
if numplanes > 0 then
for counter in 1..numplanes loop

-- **
-- GWindows.Message_Boxes.Message_Box ("Message to You", " debug - pre getzone") ;
-- **

 Getzone(pstats(counter),aport(active_strip),zairangle,zdimx,zper_cat,zairrange) ;

 -- ***** append data to debug file ***************
text_IO.put(File => outdata,

Item => pstats(counter).ident.stringpart(1)) ;
text_IO.put(File => outdata,

Item => ",") ;
GBInt_IO.put(File => outdata,

Item => integer(pstats(counter).heading)) ;
text_IO.put(File => outdata,

Item => ",") ;
GBInt_IO.put(File => outdata,

Item => integer(pstats(counter).knots)) ;
text_IO.put(File => outdata,

Item => ",") ;
GBFlt_IO.put(File => outdata,

Item => (pstats(counter).oldx)) ;
text_IO.put(File => outdata,

Item => ",") ;
GBFlt_IO.put(File => outdata,

Item => (pstats(counter).oldy)) ;
text_IO.put(File => outdata,

Item => ",") ;

 GBInt_IO.put(File => outdata,

Item => integer(zairangle)) ;

text_IO.put(File => outdata,

Item => ",") ;

GBInt_IO.put(File => outdata,

 Item => integer(zdimx)) ;

text_IO.put(File => outdata,

Item => ",") ;

Text_IO.put(File => outdata,

Item => zper_cat) ;

text_IO.put(File => outdata,

Item => ",") ;

GBInt_IO.put(File => outdata,

Item => integer(zairrange)) ;

text_IO.put(File => outdata,

Item => ",") ;

GBInt_IO.put(File => outdata,

Item => integer(aport(active_strip).rdir)) ;

text_IO.put(File => outdata,

Item => ",") ;

text_IO.put(File => outdata,

Item => pstats(counter).rgn.stringpart(1)) ;

text_IO.put(File => outdata,

Item => ",") ;

GBFlt_IO.put(File => outdata,

Item => pstats(counter).transition) ;

text_IO.new_line(File => outdata) ;

-- ***

 end loop ;

end if ;

-- 2. check separation etc and formulate packet data;

advice := makevstring("") ;

evasiontactic := makevstring("") ;

 if numplanes > 1 then

for i in 1..numplanes loop

for j in 1..numplanes loop

if (i >= j) then

 --same aircraft - no action

 --or already covered

null ;

 else
 -- *********** next three lines for debugging only *********************
tempstr := makevstring("") ;

 tempstr := tempstr & pstats(i).ident & makevstring(" ") & pstats(i).rgn & makevstring(" ") & pstats(j).ident & makevstring(" ") &
pstats(j).rgn ;

GWindows.list_boxes.Clear(Notes_list) ;
GWindows.List_Boxes.Add(Notes_List, tempstr.Stringpart) ;
-- *********** end of debugging lines **********************************

 -- check time to collision with all aircraft

 checkall(numplanes,pstats,i,j,aport(active_strip),evasiontactic,advice) ;

 -- check short final conflicts

 checkshortfinal(aport(active_strip),numplanes,pstats,i,j,evasiontactic) ;

 -- check base conflicts
 checkbase(aport(active_strip),numplanes,pstats,i,j,evasiontactic) ;

 -- check long final
checklongfinal(aport(active_strip),numplanes,pstats,i,j,evasiontactic) ;

 -- check downwind
 checkdownwind(aport(active_strip),numplanes,pstats,i,j,evasiontactic) ;

 -- check strip
checkstrip(aport(active_strip),numplanes,pstats,i,j,evasiontactic) ;

 -- check crosswind
 checkcrosswind(aport(active_strip),numplanes,pstats,i,j,evasiontactic) ;

 -- check upwind
checkupwind(aport(active_strip),numplanes,pstats,i,j,evasiontactic) ;

 end if ;
end loop ;

end loop ;
end if ;

 -- save debug file

 packet := makevstring("#") ;

-- add plane data

for counter in 1..numplanes loop

packet := packet & pstats(counter).ident ;

int_to_str(integer(pstats(counter).oldx),xpos) ;

int_to_str(integer(pstats(counter).oldy),ypos) ;

int_to_str(integer(pstats(counter).oldhgt),hpos) ;

int_to_str(integer(pstats(counter).heading),headpos);

packet := packet & makevstring(",") ;

packet := packet & xpos ;

packet := packet & makevstring(",") ;

packet := packet & ypos ;

packet := packet & makevstring(",") ;

packet := packet & hpos ;

packet := packet & makevstring(",") ;

packet := packet & headpos ;

packet := packet & makevstring("#") ;

end loop ;

packet := packet & makevstring("@") ;

-- add traffic advisories (TA's)

packet := packet & makevstring("TA") ;

packet := packet & advice ;

packet := packet & makevstring("@") ;

-- add evasion tactics

 packet := packet & makevstring("EV") ;

packet := packet & evasiontactic ;

packet := packet & makevstring("@") ;

 -- add atis to squitter
packet := packet & ats_content ;

 -- save packet to debug file
vstrings.put_line(File => pacdata,

Item => packet) ;

 -- 3. plot screen
Redraw(Main_Window, false) ;

 -- 4. transmit packet data
action_Packet(canvas,packet,called_vocal) ;

 --insert a pause

 for counter3 in 1..99000 loop
GWindows.application.message_check ;

end loop ;

 end if ;

end loop ;

 end loop ;

 --close envirofile

 text_io.close(file => rdata) ;

text_io.close(file => wdata) ;

text_io.close(file => outdata) ;

text_io.close(file => pacdata) ;

text_IO.close(file => tacdata) ;

text_IO.close(file => atisfile) ;

end ;

-- **
procedure Do_Paint
(Window : in out GWindows.Base.Base_Window_Type'Class;
Canvas : in out GWindows.Drawing.Canvas_Type;
Area

is
: in GWindows.Types.Rectangle_Type)

 Pen : GWindows.Drawing_Objects.Pen_Type;

 begin
-- Radar Screen
 Fill_Rectangle (Canvas,

(10, 20, 500, 500),
color_window);

-- draw a recangle

 Create_Stock_Pen (Pen, black_pen);
Select_Object (Canvas, Pen);
-- Rectangle (Canvas,100, 100,200,200);

 if numplanes > 0 then
Draw_Radar(Canvas, pstats, numplanes) ;

end if ;

draw_lights(Canvas) ;

end Do_Paint;
-- ***

procedure Go_Radar(Canvas : in out GWindows.Drawing.Canvas_Type) is
begin
--if vet_user = 1 then

 GBkey(Canvas) ;

-- Redraw (Main_Window, False);

--end if ;

GWindows.Message_Boxes.Message_Box ("Message to You", " Squitter File finished");

 end ;
-- **************************************8
 procedure GetStripTitle(thefile : out VString) is
 Filename,filetitle : Gstring_Unbounded ;

 gbfiltarray : Filter_array(1..4) ;

goodie : boolean ;

 begin
GWindows.list_boxes.Clear(Atis_list) ;
GWindows.list_boxes.Clear(EVs_list) ;
GWindows.list_boxes.Clear(TAs_list) ;
gbfiltarray(1).name := To_GString_Unbounded("aerodrome (*.asv)") ;
gbfiltarray(1).filter := To_GString_Unbounded("*.asv") ;
Open_File(Main_Window,"Open File",Filename,gbfiltarray,"ttt",filetitle,goodie) ;
thefile := makevstring(To_GString(Filename)) ;

end ;
-- ***************************************
 procedure GetPlaneTitle(thefile : out VString) is

 Filename,filetitle : Gstring_Unbounded ;

 gbfiltarray : Filter_array(1..4) ;

goodie : boolean ;

begin
GWindows.list_boxes.Clear(Atis_list) ;
GWindows.list_boxes.Clear(EVs_list) ;
GWindows.list_boxes.Clear(TAs_list) ;
gbfiltarray(1).name := To_GString_Unbounded("aircraft (*.psv)") ;
gbfiltarray(1).filter := To_GString_Unbounded("*.psv") ;
Open_File(Main_Window,"Open File",Filename,gbfiltarray,"ttt",filetitle,goodie) ;
thefile := makeVString(To_GString(Filename)) ;

end ;
-- ***************************************
 procedure GetSavedConfigFileTitle(thefile : out VString) is

 Filename,filetitle : Gstring_Unbounded ;

gbfilter : Filter_Type ;

gbfiltarray : Filter_array(1..4) ;

goodie : boolean ;

begin

gbfiltarray(1).name := To_GString_Unbounded("Scenario Data (*.fls)") ;

gbfiltarray(1).filter := To_GString_Unbounded("*.fls") ;

 Open_File(Main_Window,"Open Scenario Data File",Filename,gbfiltarray,"ttt",filetitle,goodie) ;
thefile := makeVString(To_GString(Filename)) ;

end ;

-- *******************************

 procedure SaveConfigFileTitle(thefile : out VString) is

 Filename,filetitle : Gstring_Unbounded ;

gbfiltarray : Filter_array(1..4) ;

goodie : boolean ;

begin
gbfiltarray(1).name := To_GString_Unbounded("Scenario Data (*.fls)") ;
gbfiltarray(1).filter := To_GString_Unbounded("*.fls") ;
Open_File(Main_Window,"Save Scenario Data File",Filename,gbfiltarray,"ttt",filetitle,goodie) ;
thefile := makeVString(To_GString(Filename)) ;

end ;

-- ********************************

 procedure Logout is

logdata : text_IO.File_Type ;

logger : integer := 0 ;

begin

Text_Io.Open(File => logdata, Mode => Text_Io.In_File,

Name => "tutin.tmp") ;

GBInt_IO.Get(File => logdata,

Item => logger) ;
Text_Io.Close(File => logdata) ;

end ;
-- ***************************************
procedure Do_Menu_Select

(Window : in out GWindows.Base.Base_Window_Type'Class;
Item : in Integer)

is

 indata : text_Io.File_Type;

udata : text_Io.File_Type;

configdata : text_IO.File_Type ;

Canvas : GWindows.Drawing.Canvas_Type;

vlast : natural ;

thefile :Vstring ;

 begin
if vet_user = 0 then

 GBPassword ;

-- get OK from temp file

Text_Io.Open(File => Indata, Mode => Text_Io.In_File,

Name => "tutin.tmp") ;

GBInt_IO.Get(File => Indata,

Item => vet_user) ;

Text_Io.Close(File => Indata) ;

end if ;

 if vet_user = 1 then

 case Item is

 when ID_Exit =>

 logout ;

GWindows.Application.End_Application;

when ID_save =>

 SaveConfigFileTitle(thefile) ;

 Text_Io.create(File => configdata, Mode => Text_Io.Out_File,
Name => thefile.stringpart) ;

VStrings.Put_line(File => configdata,
Item => target_aircraft) ;

VStrings.Put_line(File => configdata,
Item => file_to_open1) ;

VStrings.Put_line(File => configdata,
Item => file_to_open2) ;

Text_Io.Close(file => configdata) ;
when ID_Load =>
 GetSavedConfigFileTitle(thefile) ;
Text_Io.Open(File => configdata, Mode => Text_Io.In_File,

Name => thefile.stringpart) ;

 -- get target_aircraft, file_to_open1 , file_to_open

VStrings.Get_line(File => configdata,

Item => target_aircraft) ;

VStrings.Get_line(File => configdata,

Item => file_to_open1) ;

VStrings.Get_line(File => configdata,

Item => file_to_open2) ;

Text_Io.Close(File => configdata) ;

 -- target aircraft <target_aircraft>

GWindows.list_boxes.Clear(AC_list) ;

GWindows.List_Boxes.Add(AC_List, target_aircraft.stringpart) ;

 --stripdata

GetStripData(file_to_open1, aport, numstrips) ;

striploaded := true ;

GWindows.List_Boxes.Add(Notes_List, file_to_open1.stringpart) ;

 -- aircraft data

 getplanedata(file_to_open2,pacs,arec);

planeloaded := true ;

GWindows.List_Boxes.Add(Notes_List, "Database Aircraft") ;

for kk in 1..arec loop

GWindows.List_Boxes.Add(Notes_List, pacs(kk).ident.Stringpart) ;

end loop ;

 when ID_Open_Strip =>
GetStripTitle(file_to_open1) ;
GetStripData(file_to_open1, aport, numstrips) ;
striploaded := true ;
-- debug *********************************
GWindows.List_Boxes.Add(Notes_List, file_to_open1.stringpart) ;
-- ***************************************

 When ID_Open_Aircraft =>
GetPlaneTitle(file_to_open2) ;
getplanedata(file_to_open2,pacs,arec);
planeloaded := true ;
-- debug ************************************
GWindows.List_Boxes.Add(Notes_List, "Database Aircraft") ;
for kk in 1..arec loop
GWindows.List_Boxes.Add(Notes_List, pacs(kk).ident.Stringpart) ;

 end loop ;

-- **

 when ID_About =>
 GBAbout ;
-- GWindows.Message_Boxes.Message_Box ("About", "About GB_ATC");

when ID_Radar =>
 if striploaded then

if planeloaded then
Go_Radar(Canvas) ;

else
 GWindows.Message_Boxes.Message_Box ("Message to you", "Load Aircraft database first");
end if ;

else
 GWindows.Message_Boxes.Message_Box ("Message to you", "Load Aerodrome database first");
end if ;

when ID_Login =>
if vet_user = 0 then

 GBPassword ;

Text_Io.Open(File => Indata, Mode => Text_Io.In_File,

Name => "tutin.tmp") ;

GBInt_IO.Get(File => Indata,

Item => vet_user) ;

Text_Io.Close(File => Indata) ;

end if ;

when ID_Logout =>

logout ;
vet_user := 0 ;
GWindows.Message_Boxes.Message_Box ("GB ATC User", "Log Out Completed");

when ID_Access =>
 -- list users in Notes_list
 GWindows.list_boxes.Clear(Notes_list) ;
Text_Io.Open(File => udata, Mode => Text_Io.In_File,

Name => "GB_ATC_User.dat") ;
while not Text_Io.End_Of_File(File => udata) loop

useraccess := makevstring("") ;

TEXT_IO.Get_line(File => udata, Item => useraccess.stringpart, last => vlast) ;

GWindows.List_Boxes.Add(Notes_List, useraccess.stringpart) ;

-- Text_Io.Skip_line(File => UData) ;

end loop ;

Text_Io.Close(File => udata) ;

when ID_Target =>
GBTarget ;
Text_Io.Open(File => Indata, Mode => Text_Io.In_File,
Name => "targetin.tmp") ;
vstrings.Get_line(File => Indata,

Item => target_aircraft) ;

Text_Io.Close(File => Indata) ;

GWindows.list_boxes.Clear(AC_list) ;

GWindows.List_Boxes.Add(AC_List, target_aircraft.stringpart) ;

 null ;
when ID_ZoomIn =>
 Scale := Scale - 5.0 ;
if scale < 5.0 then
scale := 5.0 ;

 end if ;
when ID_ZoomOut =>
 Scale := Scale + 5.0 ;

when others =>
 null;

end case;
else
GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;
end Do_Menu_Select;

-- ***
 procedure Do_Context_Menu

(Window : in out GWindows.Base.Base_Window_Type'Class;
X : in Integer;
Y : in Integer)

is

 begin

Display_Context_Menu (Main_Window_Type (Window), File_Menu, 0, X, Y);
end Do_Context_Menu;

-- **
 procedure Do_LogOn

(Window : in out GWindows.Base.Base_Window_Type'Class)
is
 indata : text_IO.File_Type ;

 begin
if vet_user = 0 then

 GBPassword ;

Text_Io.Open(File => Indata, Mode => Text_Io.In_File,

Name => "tutin.tmp") ;

GBInt_IO.Get(File => Indata,

Item => vet_user) ;

Text_Io.Close(File => Indata) ;

end if ;

end Do_LogOn;

-- **
 procedure Do_LogOut

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 begin
LogOut ;
vet_user := 0 ;
GWindows.Message_Boxes.Message_Box ("GB ATC User", "Log Out Completed");

 end Do_LogOut;
-- **
 procedure Do_Spare1

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 begin

if vet_user = 1 then

 null ;

 GetStripTitle(file_to_open1) ;

GetStripData(file_to_open1, aport, numstrips) ;

striploaded := true ;

-- debug *********************************

GWindows.List_Boxes.Add(Notes_List, file_to_open1.stringpart) ;

-- ***************************************

 else

GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;

end Do_Spare1;

-- **
 procedure Do_Spare2

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 begin
if vet_user = 1 then

 null ;

GetPlaneTitle(file_to_open2) ;

getplanedata(file_to_open2,pacs,arec);

planeloaded := true ;

-- debug ************************************

GWindows.List_Boxes.Add(Notes_List, "Database Aircraft") ;

for kk in 1..arec loop

GWindows.List_Boxes.Add(Notes_List, pacs(kk).ident.Stringpart) ;

end loop ;

else

GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;

end Do_Spare2;

-- **
 procedure Do_Spare3

(Window : in out GWindows.Base.Base_Window_Type'Class)

is

 -- radar

 Canvas : GWindows.Drawing.Canvas_Type;

 begin
if vet_user = 1 then

 null ;

if striploaded then

if planeloaded then
Go_Radar(Canvas) ;

else
 GWindows.Message_Boxes.Message_Box ("Message to you", "Load Aircraft database first");
end if ;

else
 GWindows.Message_Boxes.Message_Box ("Message to you", "Load Aerodrome database first");
end if ;

else
GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;
end Do_Spare3;

-- **
 procedure Do_Spare4

(Window : in out GWindows.Base.Base_Window_Type'Class)

is

 -- select target aircraft

indata : text_IO.File_type ;

begin

if vet_user = 1 then

 GBTarget ;

Text_Io.Open(File => Indata, Mode => Text_Io.In_File,

Name => "targetin.tmp") ;

vstrings.Get_line(File => Indata,

Item => target_aircraft) ;
Text_Io.Close(File => Indata) ;
GWindows.list_boxes.Clear(AC_list) ;
GWindows.List_Boxes.Add(AC_List, target_aircraft.stringpart) ;

else
GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;
end Do_Spare4;

-- **
 procedure Do_Spare5

(Window : in out GWindows.Base.Base_Window_Type'Class)

is

 -- zoom out

begin

if vet_user = 1 then
 Scale := Scale + 5.0 ;
else

GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");
end if ;

end Do_Spare5;

-- **
 procedure Do_Spare6

(Window : in out GWindows.Base.Base_Window_Type'Class)

is

 -- zoom in

begin

if vet_user = 1 then

 scale := scale - 5.0 ;

if scale < 5.0 then

 scale := 5.0 ;
end if ;

else
GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;
end Do_Spare6;

-- **
 procedure Do_Save

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 configdata : text_IO.File_Type ;

thefile :Vstring ;

 begin
if vet_user = 1 then
 SaveConfigFileTitle(thefile) ;
Text_Io.create(File => configdata, Mode => Text_Io.Out_File,

Name => thefile.stringpart) ;
VStrings.Put_line(File => configdata,

Item => target_aircraft) ;
VStrings.Put_line(File => configdata,

Item => file_to_open1) ;
VStrings.Put_line(File => configdata,

Item => file_to_open2) ;
Text_Io.Close(file => configdata) ;

else
GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;
end Do_Save;

-- **
 procedure Do_Load

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 configdata : text_IO.File_Type ;

thefile :Vstring ;

 begin
if vet_user = 1 then

 GetSavedConfigFileTitle(thefile) ;

Text_Io.Open(File => configdata, Mode => Text_Io.In_File,

Name => thefile.stringpart) ;

 -- get target_aircraft, file_to_open1 , file_to_open

VStrings.Get_line(File => configdata,

Item => target_aircraft) ;

VStrings.Get_line(File => configdata,

Item => file_to_open1) ;

VStrings.Get_line(File => configdata,

Item => file_to_open2) ;

Text_Io.Close(File => configdata) ;

 -- target aircraft <target_aircraft>
GWindows.list_boxes.Clear(AC_list) ;
GWindows.List_Boxes.Add(AC_List, target_aircraft.stringpart) ;

 --stripdata

GetStripData(file_to_open1, aport, numstrips) ;

striploaded := true ;

GWindows.List_Boxes.Add(Notes_List, file_to_open1.stringpart) ;

 -- aircraft data

 getplanedata(file_to_open2,pacs,arec);

planeloaded := true ;

GWindows.List_Boxes.Add(Notes_List, "Database Aircraft") ;

 for kk in 1..arec loop

GWindows.List_Boxes.Add(Notes_List, pacs(kk).ident.Stringpart) ;

end loop ;

else

GWindows.Message_Boxes.Message_Box ("Entry Control", "Log in Please");

end if ;

end Do_Load;

-- **
 procedure Do_About

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 begin

GBAbout ;

end Do_About;

-- **
 procedure Do_Exit

(Window : in out GWindows.Base.Base_Window_Type'Class)
is

 begin

logout ;

GWindows.Application.End_Application;

end Do_Exit;

-- **

begin
numplanes := 0 ;
vet_user := 0 ;
scale := 20.0 ;
warning_light1 := false ;
warning_light2 := false ;
Text_Io.Open(File => Indata, Mode => Text_Io.Out_File,

Name => "tutin.tmp") ;

GBInt_IO.Put(File => Indata,

Item => vet_user) ;

Text_Io.Close(File => Indata) ;

 Create (Main_Window, "GB_ATC : GWindows", top => 10, left => 10, width => 800 , Height => 600);

Center(Main_Window) ;

Visible (Main_Window, True);

Keyboard_Support (Main_Window, True);

 Append_Item (File_Menu3, "Lo&g In", ID_Login) ;

Append_Item (File_Menu3, "Log &Out", ID_Logout) ;

Append_Item (File_Menu3, "Lis&t User Access", ID_Access) ;

Append_Menu (Main_Menu, "Us&er", File_Menu3) ;

 Append_Item (File_Menu, "S&quitter", ID_Radar) ;

Append_Item (File_Menu, "&Load Aerodrome Data", ID_Open_Strip);

Append_Item (File_Menu, "Load &Aircraft Database", ID_Open_Aircraft) ;

Append_Item (File_Menu, "&Select Target Aircraft", ID_Target) ;

 Append_Separator (File_Menu) ;

Append_Item (File_Menu, "&Save Data Config", ID_Save);

Append_Item (File_Menu, "Load Data &Config", ID_Load) ;

Append_Separator (File_Menu);

Append_Item (File_Menu, "E&xit", ID_Exit);

Append_Menu (Main_Menu, "&Data Select", File_Menu);

 Append_Item (File_Menu4, "Zo&om Out", ID_ZoomOut) ;

Append_Item (File_Menu4, "Zoo&m In", ID_ZoomIn) ;

Append_Menu (Main_Menu, "&Tools", File_Menu4) ;

 Append_Item (File_Menu2, "&About", ID_About) ;

Append_Menu (Main_Menu, "&Help", File_Menu2) ;

 Menu (Main_Window, Main_Menu);

 Create(AC_Title , Main_Window, "Aircraft", 640, 5,90,35) ;

Create (AC_List , Main_Window, 700, 5, 60, 40) ;

Create(Atis_Title , Main_Window, "ATIS", 525, 20,50,35) ;

Create (Atis_List , Main_Window, 525, 45, 250, 40) ;

Create(TA_Title , Main_Window, "TAs", 525, 100,50,35) ;

Create (TAs_List, Main_Window, 525,125,250,40) ;

Create(EV_Title , Main_Window, "EVs", 525, 180,50,35) ;

Create (EVs_List, Main_Window,525,205,250,40) ;

Create(Notes_Title , Main_Window, "Notes", 525, 260,50,35) ;

Create (Notes_List, Main_Window,525,285,250,200) ;

 Create (LOGin_Button, Main_Window, "&Log In",10, 505,
80, 25, ID => IDLogin);

On_Click_Handler (LOGin_Button, Do_LogOn'Unrestricted_Access);

 Create (LOGout_Button, Main_Window, "&Log Out",10, 530,
80, 25, ID => IDLogout);

On_Click_Handler (LOGout_Button, Do_LogOut'Unrestricted_Access);

 Create (Spare1_Button, Main_Window, "Airport",90, 505,
80, 25, ID => IDButton1);

On_Click_Handler (Spare1_Button, Do_Spare1'Unrestricted_Access);

 Create (Spare2_Button, Main_Window, "Aircraft",90, 530,
80, 25, ID => IDButton2);

On_Click_Handler (Spare2_Button, Do_Spare2'Unrestricted_Access);

 Create (Spare3_Button, Main_Window, "Squitter",170, 505,
80, 25, ID => IDButton3);

On_Click_Handler (Spare3_Button, Do_Spare3'Unrestricted_Access);

 Create (Spare4_Button, Main_Window, "Target",170, 530,
80, 25, ID => IDButton4);

On_Click_Handler (Spare4_Button, Do_Spare4'Unrestricted_Access);

 Create (Spare5_Button, Main_Window, "Zoom Out",250, 505,
80, 25, ID => IDButton5);

On_Click_Handler (Spare5_Button, Do_Spare5'Unrestricted_Access);

 Create (Spare6_Button, Main_Window, "Zoom In",250, 530,

80, 25, ID => IDButton6);

On_Click_Handler (Spare6_Button, Do_Spare6'Unrestricted_Access);

 Create (Save_Button, Main_Window, "Save CFG",330, 505,

80, 25, ID => IDButton7);

On_Click_Handler (Save_Button, Do_Save'Unrestricted_Access);

 Create (Load_Button, Main_Window, "Load CFG",330, 530,

80, 25, ID => IDButton8);

On_Click_Handler (Load_Button, Do_Load'Unrestricted_Access);

 Create (About_Button, Main_Window, "About",410, 505,

80, 25, ID => IDButton9);

On_Click_Handler (About_Button, Do_About'Unrestricted_Access);

 Create (Exit_Button, Main_Window, "Exit",410, 530,

80, 25, ID => IDButton10);

On_Click_Handler (Exit_Button, Do_exit'Unrestricted_Access);

 -- **

 -- **

 On_Menu_Select_Handler (Main_Window, Do_Menu_Select'Unrestricted_Access);

On_Context_Menu_Handler (Main_Window, Do_Context_Menu'Unrestricted_Access);

On_Paint_Handler (Main_Window, Do_Paint'Unrestricted_Access);

 GWindows.Application.Message_Loop;
end ftower;

FILE NAME: ftoweradvice.adb

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

-- Package Body for ftoweradvice

-- file ftowerAdvice.adb

WITH TEXT_IO ; use text_IO ;

WITH GBInt_IO ; use GBInt_Io ;

WITH GBFlt_IO ; use GBFlt_Io ;

WITH ada.calendar ; use ada.calendar ;

WITH ada.numerics.Elementary_functions ;

USE ada.numerics.elementary_functions ;

WITH VStrings ; use VStrings ;

with adagraph ; use adagraph ;

with mcc.sounds ;use mcc.sounds ;

with Gwindows.Multi_Media ; use GWindows.Multi_media ;

with GWindows.message_boxes ;

with GWindows.list_boxes ;

with gbdebug ; use gbdebug ;

with ftowersounds ; use ftowersounds ;

with ftowerlib ; use ftowerlib;

PACKAGE body ftoweradvice is

-- **************************************8

procedure TA(advice : in out vstring ;

aircraft1, aircraft2 : in vstring ;

time : in integer) is

timestr : vstring ;

begin
advice := advice & makevstring(",") ;
advice := advice & aircraft1 ;
advice := advice & makevstring(",") ;
advice := advice & aircraft2 ;
advice := advice & makevstring(",") ;
int_to_str(time,timestr) ;
advice := advice & timestr ;
advice := advice & makevstring("p") ;
advice := advice & makevstring("#") ;

end TA ;
-- **
procedure TA2(advice : in out vstring ;

aircraft1, aircraft2 : in vstring ;

time

timestr : vstring ;
: in integer) is

begin
advice := advice & makevstring(",") ;
advice := advice & aircraft1 ;
advice := advice & makevstring(",") ;
advice := advice & aircraft2 ;
advice := advice & makevstring(",") ;

 int_to_str(time,timestr) ;

advice := advice & timestr ;

advice := advice & makevstring("h") ;

advice := advice & makevstring("#") ;

end TA2 ;

-- **
procedure Getoutoftheway(tactic : in integer ;

numplanes : integer ;
pstats : in pbase ;
i : integer ;

j : integer ;

evasion : in out vstring ;

ysam : runway) is

 done : boolean ;

air2sector,correction,ev1 : integer ;

air2head : float ;

air1,air2 : pstatstype ;

evt : vstring ;

 -- 01 climb ben07

 -- 02 veer right

-- 03 crash

 -- 04 clear area

 -- 05 abort final

 -- 06 abort base

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
case tactic is
 -- **
 when 0 =>
 done := false ;
-- both aircraft not in control zone
 -- standard collision avoidance
 -- altitude alteration or turn
 if air1.oldhgt > air2.oldhgt then

-- air1 to climb
 evasion := evasion & air1.ident & makevstring("-0100,") ;
done := true ;

end if ;
if air2.oldhgt > air1.oldhgt then
-- air2 to climb

-- ben-07
-- climb, climb now

 evasion := evasion & air2.ident & makevstring("-0100,") ;
done := true ;

end if ;
if air2.oldhgt = air1.oldhgt then
-- air1 and air2 to veer right
evasion := evasion & air1.ident & makevstring("-0200,") ;
done := true ;

end if ;
-- or for example :
if done = false then

-- ben-07
-- climb, climb now

-- ben xx
-- veer right now

 -- collision imminent -- ben xx

 evasion := evasion & air1.ident & makevstring("-0300,") ; -- colllision imminent

 end if ;

-- **
when 1 =>
 -- air2 not in circuit area in conflict with air1 on short final
 -- normalize air2.heading wrt air1.heading
air2head := air2.heading - air1.heading ;
checkangle(air2head) ;
air2sector := integer((air2head/45.0) + 0.5) ;

 -- in all cases, air1 has priority

-- in all cases, air2 to climb

case air2sector is

 when 1 =>

 correction := GetAcceptableCorrection(numplanes,pstats,i,j,'L',8.3,ysam) ;

if correction > 0 then

 -- acceptable safe new heading is correction

ev1 := integer(air2.heading) - correction ;

--make this a multiple of 10

ev1 := ev1/10 ;

evasion := evasion & air2.ident & makevstring("-04") ; -- climb and veer left

 int_to_str(ev1 ,evt) ; -- 'correction' degrees

evasion := evasion & evt & makevstring(",") ;

 else

 -- no acceptable solution

-- collision imminent

evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision imminent

 end if ;

-- **

 when 2 =>

 evasion := evasion & air2.ident & makevstring("-0500,") ; -- climb

 -- **

when 3 =>

 correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then
 -- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ; -- climb and veer right 'correction' degrees
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

else

 -- no acceptable solution

-- collision imminent

evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision imminent

 end if ;

-- **

 when 4 =>

 correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;

if correction > 0 then

 -- acceptable safe new heading is correction

 evasion := evasion & air2.ident & makevstring("-06") ;
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

-- climb and veer right 'correction' degrees

else
 -- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ;

end if ;
-- colllision imminent

 -- **
when 5 =>

 correction := GetAcceptableCorrection(numplanes,pstats,i,j,'L',8.3,ysam) ;
if correction > 0 then

 -- acceptable safe new heading is correction

evasion := evasion & air2.ident & makevstring("-04") ; -- climb and veer left

 ev1 := integer(air2.heading) - correction ;

ev1 := ev1/10 ;

int_to_str(ev1 ,evt) ;

evasion := evasion & evt & makevstring(",") ;

else

 -- no acceptable solution

-- collision imminent

evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision imminent

 end if ;

-- ***

 when 6 =>

 correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;

if correction > 0 then

 -- acceptable safe new heading is correction

evasion := evasion & air2.ident & makevstring("-06") ; -- climb and veer right 'correction' degrees

ev1 := integer(air2.heading) + correction ;

ev1 := ev1/10 ;

int_to_str(ev1 ,evt) ;

evasion := evasion & evt & makevstring(",") ;

else

 -- no acceptable solution

-- collision imminent

evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision imminent

 end if ;

-- ***

when 7 =>

 correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then
 -- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ; -- climb and veer right 'correction' degrees
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",") ;

else

 -- no acceptable solution

-- collision imminent

evasion := evasion & air2.ident & makevstring("-0300,") ; -- colllision imminent

 end if ;
-- ***
when 8 =>
 correction := GetAcceptableCorrection(numplanes,pstats,i,j,'R',8.3,ysam) ;
if correction > 0 then
 -- acceptable safe new heading is correction
evasion := evasion & air2.ident & makevstring("-06") ;
ev1 := integer(air2.heading) + correction ;
ev1 := ev1/10 ;
int_to_str(ev1 ,evt) ;
evasion := evasion & evt & makevstring(",");

else

-- climb and veer right 'correction' degrees

-- no acceptable solution
-- collision imminent
evasion := evasion & air2.ident & makevstring("-0300,") ;

end if ;
-- colllision imminent

 -- ***
when others =>

 null ;

-- ***

end case ;

 when 2 =>
 -- air1 on sfinal
 -- air2 on the strip
-- air1 to abort sfinal
 evasion := evasion & air1.ident & makevstring("-0900,") ; -- climb and abort

 when 3 =>
 -- both aircraft on short final
 -- air1 to abort, climb and go-around
evasion := evasion & air1.ident & makevstring("-0900,") ; -- climb and abort

 when 4 =>
 -- air1 on sfinal
 -- air2 on base
 -- evasion tactic for air2 to avoid air 1
 if air2.knots > air1.knots then
 evasion := evasion & air2.ident & makevstring("-1000,") ; -- traffic on finals, climb and abort
else
 evasion := evasion & air2.ident & makevstring("-1200,") ; -- warning - traffic on sfinals
end if ;

when 5 =>
 --air1 and air2 on base
 --air1 to abort and go around
evasion := evasion & air1.ident & makevstring("-1100,") ; -- other base traffic, climb and abort

 null ;
when 6 =>
 -- air 1 on Sfinal and air2 on longfinal
-- time separation < 2 mins
-- air 2 to go round
evasion := evasion & air1.ident & makevstring("-1300,") ; -- possible vortex hazard - go around

when 7 =>

 -- both aircraft on downwind
 -- if time separation < 2 mins
 -- air 2 to orbit
 evasion := evasion & air1.ident & makevstring("-1400,") ; -- traffic on downwind - orbit
when 8 =>
 --air1 and air2 on longfinal
--air1 to abort and go around
evasion := evasion & air1.ident & makevstring("-1000,") ; -- traffic on finals, climb and abort

when 9 =>
 -- air1 on longfinal
-- air2 on base
 -- air1 to abort and go around
evasion := evasion & air1.ident & makevstring("-1500,") ; -- traffic on base - orbit

 when 10 =>
 -- air1 on downwind
 -- air2 on longfinal
-- air1 to abort and go around
evasion := evasion & air1.ident & makevstring("-1000,") ; -- traffic on finals

 when 11 =>
 -- air1 on downwind
 -- air2 on longfinal
-- air1 to abort and go around
evasion := evasion & air2.ident & makevstring("-1400,") ; -- traffic on downwind

 when OTHERS =>
 null ;

end case ;
end getoutoftheway ;

-- ************************
end ftowerAdvice ;

FILE NAME: ftoweradvice.ads

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

-- package spec for ftoweradvice

-- file ftoweradvice.ads

WITH VStrings ;

with calendar ;

with ftowerlib ; use ftowerlib ;

PACKAGE ftoweradvice IS

 use VStrings ;

use calendar ;

 procedure TA(advice : in out vstring ;

aircraft1, aircraft2 : in vstring ;

time : in integer) ;

-- calculates the time to collision assuming constant heading

 procedure TA2(advice : in out vstring ;

aircraft1, aircraft2 : in vstring ;

time : in integer) ;

-- caculates time to collision using projected trajectory

 procedure Getoutoftheway(tactic : in integer ;

numplanes : integer ;

pstats :in pbase ;

i : integer ;

j : integer ;

evasion : in out vstring;

ysam : in runway) ;

end ftoweradvice ;

FILE NAME: ftowerlib.adb

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

-- Package Body for ftowerlib

-- file ftowerlib.adb

WITH TEXT_IO ;

WITH GBInt_IO ;

WITH GBFlt_IO ;

WITH calendar ;

WITH ada.numerics.Elementary_functions ;

USE ada.numerics.elementary_functions ;

WITH VStrings ;

with adagraph ;

with mcc.sounds ;use mcc.sounds ;

with Gwindows.Multi_Media ; use GWindows.Multi_media ;

with GWindows.message_boxes ;

with GWindows.list_boxes ;

with gbdebug ; use gbdebug ;

with ftowersounds ; use ftowersounds ;

with ftoweradvice ; use ftoweradvice ;

PACKAGE body ftowerlib is

 use text_IO ;

use VStrings ;

use GBInt_IO ;

use calendar ;

use adagraph ;

 procedure getplanedata(datafile : vstring ;

pac : IN OUT planes ;

numrecs : IN OUT integer) IS

-- .csv file input

-- to call : getplanedata(filename,pacs,arec)

 Indata : Text_IO.File_Type ;

char : character ;

 begin

numrecs := 0 ;

-- open selected file etc

Text_IO.Open(File=>Indata,Mode=>Text_IO.In_File,Name=> datafile.stringpart) ;

WHILE NOT Text_IO.End_of_File(File => Indata) LOOP

numrecs:= numrecs + 1 ;

pac(numrecs).ident := MakeVString("") ;

LOOP

 Text_IO.Get(File => Indata , Item => char) ;

EXIT WHEN char = ',' ;

pac(numrecs).ident := pac(numrecs).ident & char ;

END LOOP ;

 -- put_line(pac(numrecs).ident.stringpart) ; -- debug line

pac(numrecs).ptype := makeVString("") ;

LOOP

 Text_IO.Get(File => Indata , Item => char) ;

EXIT WHEN char = ',' ;

pac(numrecs).ptype := pac(numrecs).ptype & char ;

END LOOP ;

GBInt_IO.Get(File => Indata, Item => pac(numrecs).cruise) ;

Text_IO.Get(File => Indata , Item => char) ;

GBInt_IO.get(File => Indata, Item => pac(numrecs).climb) ;

Text_IO.Get(File => Indata , Item => char) ;

GBInt_IO.get(File => Indata, Item => pac(numrecs).toff) ;

-- numrecs := numrecs + 1 ;

Text_IO.Skip_Line(File => Indata) ;

END LOOP ;

numrecs := numrecs - 1 ;

Text_IO.Close(File => Indata) ;

 exception
WHEN Text_IO.Name_Error =>
 Text_IO.put_line("File Error - file not located") ;

end getplanedata;
-- ***************************************
 procedure GetStripData(datafile : vstring ;

aeroport : IN OUT aerodrome ;

nstrips : IN OUT integer) is

 Indata : Text_IO.File_Type ;

char : character ;

 begin

nstrips := 1 ;

-- open selected file etc

Text_IO.Open(File=>Indata,Mode=>Text_IO.In_File,

Name=> datafile.stringpart) ;
WHILE NOT Text_IO.End_of_File(File => Indata) LOOP

aeroport(nstrips).ident := MakeVString("") ;

LOOP

 Text_IO.Get(File => Indata , Item => char) ;

EXIT WHEN char = ',' ;

aeroport(nstrips).ident := aeroport(nstrips).ident & char ;

END LOOP ;

GBFlt_IO.Get(File => Indata, Item => aeroport(nstrips).rdir) ;

Text_IO.Get(File => Indata , Item => char) ;

GBFlt_IO.get(File => Indata, Item => aeroport(nstrips).rlen) ;

Text_IO.Get(File => Indata , Item => char) ;

GBFlt_IO.get(File => Indata, Item => aeroport(nstrips).rwid) ;

Text_IO.Get(File => Indata , Item => char) ;

GBFlt_IO.get(File => Indata, Item => aeroport(nstrips).cpointx) ;

Text_IO.Get(File => Indata , Item => char) ;

GBFlt_IO.get(File => Indata, Item => aeroport(nstrips).cpointy) ;

Text_IO.Get(File => Indata , Item => char) ;

GBFlt_IO.get(File => Indata, Item => aeroport(nstrips).hgt) ;

nstrips := nstrips + 1 ;

Text_IO.Skip_Line(File => Indata) ;

 END LOOP ;

nstrips := nstrips - 1 ;

Text_IO.Close(File => Indata) ;

 exception
WHEN Text_IO.Name_Error =>
 Text_IO.put_line(" File Error - File not located") ;

end getstripdata;
-- ***************************************
 procedure GetRefTime(TimeRef : OUT calendar.day_duration) IS

-- returns the system time as a long int

time : Calendar.Time ;

begin

time := calendar.clock ;

timeref := calendar.seconds(time) ;

 end getreftime;
-- ***************************************

 function digit(c : integer) return VString IS
-- |ERR002 - error in procedure digit : in integer out of range|

 begin
case c is

 when 0 => return MakeVstring("0") ;

when 1 => return MakeVstring("1") ;

when 2 => return MakeVstring("2") ;

when 3 => return MakeVstring("3") ;

when 4 => return MakeVstring("4") ;

when 5 => return MakeVstring("5") ;

when 6 => return MakeVstring("6") ;

when 7 => return MakeVstring("7") ;

when 8 => return MakeVstring("8") ;

when 9 => return MakeVstring("9") ;

when others => return MakeVstring("?") ;

end case ;
end digit ;

-- ***************************************
 PROCEDURE GetVector(pvector : IN OUT float ; xs,ys,xf,yf :float) IS

 x,y : FLOAT ;

gotit : boolean ;

BEGIN
 gotit := false ;
x := xf - xs ;
x := abs(x) ;
y := yf - ys ;
y := abs(y) ;
IF ((yf = ys) AND (xf > xs)) THEN
pvector := 90.0 ;
gotit := true ;

END IF ;

IF ((yf = ys) AND (xf < xs)) THEN

 pvector := 270.0 ;
gotit := true ;

END IF ;

IF ((xf = xs) AND (yf > ys)) THEN

pvector := 0.0 ;
gotit := true ;

END IF ;

IF ((xf = xs) AND (yf < ys)) THEN

pvector := 180.0 ;
gotit := true ;

END IF ;

IF ((yf = ys) AND (xf = xs)) THEN

 pvector := 0.0 ;

gotit := true ;

END IF ;

 IF ((x = 0.0) AND (y = 0.0)) THEN

pvector := 0.0 ;

gotit := true ;

end if ;

if gotit = false then

IF ((xf < xs) AND (yf > ys)) THEN

pvector := 270.0 + ((arctan(y/x))/0.01745) ;

END IF ;
IF ((xf < xs) AND (yf < ys)) THEN
pvector := 180.0 + ((arctan(x/y))/0.01745) ;

END IF ;
IF ((xf > xs) AND (yf > ys)) THEN
pvector := (arctan(x/y))/0.01745 ;

END IF ;

IF ((xf > xs) AND (yf < ys)) THEN

pvector := 90.0 + ((arctan(y/x))/0.01745) ;

END IF ;
END IF ;

END getvector ;
-- ***********************************8
PROCEDURE PolartoXY (dst1 , rad1 : float ;

x1,y1 : OUT float) IS
-- converts from polar to x,y coords
rad2 : float ;
BEGIN
 if rad1 < 0.0 then

 rad2 := rad1 + 360.0 ;

else

 rad2 := rad1 ;

end if ;

IF (rad1 >= 360.0) THEN

rad2 := rad1 - 360.0 ;

else

 rad2 := rad1 ;

END IF ;

IF (rad2 >= 0.0) AND (rad2 < 90.0) THEN

y1 := dst1 * cos(rad2 * 0.01745) ;

x1 := dst1 * sin(rad2 * 0.01745) ;

END IF;

 IF ((rad2 >= 90.0) AND (rad2 < 180.0)) THEN

y1 := dst1 * sin((rad2-90.0) * 0.01745) * (-1.0) ;

x1 := dst1 * cos((rad2-90.0) * 0.01745) ;

END IF;
IF ((rad2 >= 180.0) AND (rad2 < 270.0)) THEN

y1 := dst1 * sin((270.0 - rad2) * 0.01745) * (-1.0) ;

x1 := dst1 * cos((270.0 - rad2) * 0.01745) * (-1.0) ;

END IF;
IF ((rad2 >= 270.0) AND (rad2 < 360.0)) then

y1 := dst1 * sin((rad2 - 270.0) * 0.01745) ;

x1 := dst1 * cos((rad2 - 270.0) * 0.01745) * (-1.0) ;

END IF;
END PolartoXY ;
-- *******************************8
Procedure Updateplane(gp_acpos : in radar_sweep ; -- radar data

 gp_planedat : in integer ; -- number planes in radar data
gp_pacs : in out planes ; -- plane database
gp_arec : in out integer ; -- number of planes in database
gp_pstats : in out pbase ; -- active area
 gp_numplanes : in out integer) is

-- check to see if new plane - if so, then get details from
-- number of planes in active area

 -- database.

 -- Then update plane position,vel and heading.}

 p,MA_period :integer ;

planeknown : boolean;

vector,x1,x2,y1,y2,speed,total : float ;

 begin
for i in 1..gp_planedat loop

planeknown := false ;

if gp_numplanes > 0 then

for j in 1..gp_numplanes loop
if value(gp_pstats(j).ident) = value(gp_acpos(i).ident) then

planeknown := true ;

p := j ;

end if ;
end loop;

end if;

-- is it a new plane in the radar area

if planeknown = false then

if gp_arec > 0 then

-- if there are any planes in the register database

for g in 1..gp_arec loop

if value(gp_pacs(g).ident) = value(gp_acpos(i).ident) then

-- if the plane is in the register database

-- get type,details from database and put

-- in gp_pstats

gp_numplanes := gp_numplanes + 1 ;

gp_pstats(gp_numplanes).ident := gp_pacs(g).ident ;

gp_pstats(gp_numplanes).ptype := gp_pacs(g).ptype ;

gp_pstats(gp_numplanes).cruise := gp_pacs(g).cruise ;

gp_pstats(gp_numplanes).climb := gp_pacs(g).climb ;

gp_pstats(gp_numplanes).toff := gp_pacs(g).toff ;

gp_pstats(gp_numplanes).knots := float(gp_pacs(g).cruise) ;

 gp_pstats(gp_numplanes).oldx := 0.0 ;
gp_pstats(gp_numplanes).oldy := 0.0 ;
gp_pstats(gp_numplanes).heading := 0.0 ;
gp_pstats(gp_numplanes).maxspeed := 0.0 ;
gp_pstats(gp_numplanes).rgn := makevstring("x") ;
for h in 0..20 loop
gp_pstats(gp_numplanes).attitude(h) := 0.0;
gp_pstats(gp_numplanes).altitude(h) := gp_acpos(i).hgt ;

end loop ;
-- gp_pstats(gp_numplanes).oldhgt := gp_acpos(i).hgt ;
gp_pstats(gp_numplanes).advicegiven := -1 ;
planeknown := true ;
p := gp_numplanes ;

else
 -- unknown plane in area -
-- build a database and put in gp_pstats}
gp_numplanes := gp_numplanes + 1 ;
gp_pstats(gp_numplanes).ident := gp_acpos(i).ident ;
gp_pstats(gp_numplanes).heading := 0.0 ;
gp_pstats(gp_numplanes).oldx := 0.0 ;
gp_pstats(gp_numplanes).oldy := 0.0 ;
gp_pstats(gp_numplanes).rgn := makevstring("y") ;
gp_pstats(gp_numplanes).maxspeed := 0.0 ;

 for h in 0..20 loop
gp_pstats(gp_numplanes).attitude(h) := 0.0;
gp_pstats(gp_numplanes).altitude(h) := gp_acpos(i).hgt ;

end loop ;
-- gp_pstats(gp_numplanes).oldhgt := gp_acpos(i).hgt ;
gp_pstats(gp_numplanes).advicegiven := -1 ;

 -- and the rest

 p := gp_numplanes ;

planeknown := true ;

--then add it to gp_pacs

gp_arec := gp_arec + 1 ;

gp_pacs(gp_arec).ident := gp_acpos(i).ident ;

gp_pacs(gp_arec).ptype := makevstring("UK") ;

gp_pacs(gp_arec).cruise := 0 ;

gp_pacs(gp_arec).climb := 0 ;

gp_pacs(gp_arec).toff := 0 ;

 end if ;

exit when planeknown = true ;

end loop ;

else
 -- unknown plane in area
-- build a database and put in gp_pstats}
gp_numplanes := gp_numplanes + 1 ;
gp_pstats(gp_numplanes).ident := gp_acpos(i).ident ;
gp_pstats(gp_numplanes).heading := 0.0 ;
gp_pstats(gp_numplanes).oldx := 0.0 ;
gp_pstats(gp_numplanes).oldy := 0.0 ;
gp_pstats(gp_numplanes).rgn := makevstring("z") ;
gp_pstats(gp_numplanes).maxspeed := 0.0 ;

 -- and the rest
 for h in 0..20 loop

gp_pstats(gp_numplanes).attitude(h) := 0.0;
gp_pstats(gp_numplanes).altitude(h) := gp_acpos(i).hgt ;

end loop ;

-- gp_pstats(gp_numplanes).oldhgt := gp_acpos(i).hgt ;

gp_pstats(gp_numplanes).advicegiven := -1 ;

p := gp_numplanes ;

planeknown := true ;

--then add it to gp_pacs

gp_arec := gp_arec + 1 ;

gp_pacs(gp_arec).ident := gp_acpos(i).ident ;

gp_pacs(gp_arec).ptype := makevstring("UK") ;

gp_pacs(gp_arec).cruise := 0 ;

gp_pacs(gp_arec).climb := 0 ;

gp_pacs(gp_arec).toff := 0 ;

 end if ;
end if ;
-- if not before then now an existing plane in radar area
-- update position,vel,heading in gp_pstats ;
PolartoXY(gp_acpos(i).dst,gp_acpos(i).rad,x1,y1) ; -- {x1,y1 in nm}
x1 := x1 * 1854.0 ; -- {metres}
y1 := y1 * 1854.0 ; -- {metres}
x2 := gp_pstats(p).oldx ;
y2 := gp_pstats(p).oldy ;
GetVector(vector,x2,y2,x1,y1) ;
gp_pstats(p).heading := vector ;
-- {assuming 1 second updates}
speed := sqrt(((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2))) ;
speed := 1.942 * speed ; -- {knots}
if speed > 350.0 then
speed := 50.0 ;

end if ;
-- ***
-- Debug_DisplayResult(gp_numplanes, makevstring("Numplanes ")) ;
-- ***

gp_pstats(p).knots := speed ;

 --update maxspeed data

if gp_pstats(p).knots > gp_pstats(p).maxspeed then

-- if speed = 350.0 then

-- gp_pstats(p).maxspeed := 100.0 ;

-- else

gp_pstats(p).maxspeed := gp_pstats(p).knots ;

-- end if ;

end if ;

gp_pstats(p).oldx := x1 ;

gp_pstats(p).oldy := y1 ;

 -- get moving average period

if (gp_pstats(p).cruise = 0) then

MA_Period := 9 ;

 else
 MA_Period := integer((12.0 * abs(float(gp_acpos(i).hgt) - gp_pstats(p).oldhgt))/float(gp_pstats(p).cruise)) ;
end if ;
if ((MA_Period <= 0) or (MA_Period > 9))then
MA_Period := 9 ;

-- debug only ***************

-- MA_Period := 9 ;

-- **************************

 end if ;

 -- update height on a moving average

for h in 0 .. (MA_Period-1) loop

gp_pstats(p).altitude(MA_Period - h) := gp_pstats(p).altitude(MA_Period - h - 1) ;

end loop ;

gp_pstats(p).altitude(0) := gp_acpos(i).hgt ;

total := 0.0 ;

for h in 0..(MA_period-1) loop -- simple moving average

total := total + gp_pstats(p).altitude(h) ;

end loop ;

gp_pstats(p).oldhgt := total/float(MA_period) ;

gp_pstats(p).attitude(0) := gp_pstats(p).altitude(0) - gp_pstats(p).altitude(1) ;

 end loop;
end updateplane ;

-- ************************************
 procedure GetPerformanceType(speed : in pstatstype ;

DIMX : out float ;
Performance_Cat : OUT character) is

 begin

 Performance_Cat := 'A' ;

if speed.maxspeed < 100.0 then

Performance_Cat := 'A' ;

end if ;

if speed.maxspeed >= 100.0 and speed.knots < 135.0 then

Performance_Cat := 'B' ;

end if ;

if speed.maxspeed >= 135.0 and speed.knots < 180.0 then

Performance_Cat := 'C' ;

end if ;

if speed.maxspeed >= 180.0 then

 Performance_Cat := 'D' ;

end if ;

CASE Performance_cat is

 when 'A' =>

 DIMX := 3115.0 ;

when 'B' =>

 DIMx := 4930.0 ;

when 'C' =>

 DimX := 7785.0 ;

when 'D' =>

 DIMX := 9790.0 ;

when others =>

 DIMX := 3115.0 ;
end case ;

end GetPerformancetype ;
-- **

procedure GetZone(aircheck : in out pstatstype ;
YSAM : in runway;
airangle : out float ;
DIMX : out float ;
per_cat : out character;
airrange : out float) is

-- in relation to the runway, which sector is the aircraft in:
-- that is update .rgn and .transition

 -- input : aircheck - pstatstype

--TYPE pstatstype IS RECORD

-- ident : VString ;

-- ptype : VString ;

-- cruise : integer ;

-- climb : integer ;

-- toff : integer ;

-- cx : float ;

 -- cy : float ;

-- chgt : float ;

-- oldx : float ;

 -- oldy : float ;

-- oldhgt : float ;

-- knots : float ;

 -- maxspeed : float ;

-- heading : float ;

-- oldheading : float ;

-- dheading : float ;

-- attitude : attarray ;

-- altitude : attarray ;

-- advicegiven : integer ;

-- rgn : VString ;

-- transition : float ;

--END RECORD;

 -- input : YSAM - runway

--TYPE runway IS RECORD

-- ident : VString ;

-- rdir : float ;

 -- rlen : float ;

 -- rwid : float ;

 -- cpointx : float ;

-- cpointy : float ;

-- hgt : float ;

--END RECORD ;

 --subtype stripon IS POSITIVE RANGE 1..10 ;
--TYPE aerodrome IS ARRAY(stripon) OF runway ;

 upperlimit, lowerlimit, test, headstat : float ;

begin
aircheck.rgn := makevstring("o") ;
-- given aircheck,cx and cy, find the angle wrt runway centrepoint:
XYtoPolar(aircheck.oldx,aircheck.oldy,airangle, airrange) ;
-- normalize airangle to runway direction
airangle := airangle - ysam.rdir ;
-- make sure angle is in range 0 to 360
checkangle(airangle) ;
-- normalize aircraft heading to runway direction
headstat := aircheck.heading - ysam.rdir ;
checkangle(headstat) ;
-- find aircraft performance category
GetPerformanceType(aircheck,DIMX,per_cat) ;

 -- apply circuit zone criteria to determine aircraft zone(update aircheck.region)

-- takeoff Cat A or Cat B

 if airangle < 345.0 and airangle > 15.0 then

null;
else
if (per_cat = 'A' or per_cat = 'B') then
if airrange >= (YSAM.rlen/6.56) and airrange <= (1850.0 + (YSAM.rlen/6.56)) then
if aircheck.altitude(0) > 0.0 and aircheck.altitude(0) <= 500.0 then
if aircheck.attitude(0) >0.0 then
if headstat < 345.0 and headstat > 15.0 then
 null ;
else
if (per_cat = 'A' or per_cat = 'B') then
aircheck.rgn := makevstring("t") ;
aircheck.transition := airrange ;

end if ;

end if ;

end if ;

end if ;

end if ;

end if ;

end if ;

-- takeoff Cat C or Cat D
 if airangle >= 330.0 and airangle <= 30.0 and (per_cat = 'C' or per_cat = 'D') then

if airrange >= (YSAM.rlen/6.56) and airrange <= (1850.0 + (YSAM.rlen/6.56)) then
if aircheck.altitude(0) > 0.0 and aircheck.altitude(0) <= 500.0 then
if aircheck.attitude(0) >0.0 then
if headstat < 330.0 and headstat > 30.0 then
 null ;
else
if (per_cat = 'C' or per_cat = 'D') then

aircheck.rgn := makevstring("t") ;

aircheck.transition := airrange ;

end if ;

end if ;

end if ;

end if ;

 end if ;
end if ;

 -- upwind Cat 'A' and Cat 'B'
if airangle >= 15.0 and airangle <= 165.0 and (per_cat = 'A' or per_cat = 'B') then
if airrange >= 0.0 and airrange <= DIMX then
if aircheck.altitude(0) > 1400.0 and aircheck.altitude(0) <= 1600.0 then
if aircheck.attitude(0) = 0.0 then
if headstat < 345.0 and headstat > 15.0 then
 null ;
else

aircheck.rgn := makevstring("u") ;

aircheck.transition := (165.0 - airangle)/(165.0-15.0) ;

end if ;
end if ;

end if ;
end if ;

end if ;

 -- upwind Cat 'C' and Cat 'D'
if airangle >= 30.0 and airangle <= 150.0 and (per_cat = 'C' or per_cat = 'D') then
if airrange >= 0.0 and airrange <= DIMX then
if aircheck.altitude(0) > 1400.0 and aircheck.altitude(0) <= 1600.0 then
if aircheck.attitude(0) = 0.0 then
if headstat < 345.0 and headstat > 15.0 then
 null ;
else

aircheck.rgn := makevstring("u") ;

aircheck.transition := (150.0 - airangle)/(150.0 -30.0) ;

end if ;
end if ;

end if ;
end if ;

end if ;

 -- crosswind
 if airangle >= 270.0 and airangle <= 90.0 then

null ;
else
 if airrange >= 0.0 and airrange <= ((YSAM.rlen/6.56) + DIMX) then

if aircheck.altitude(0) > 1000.0 and aircheck.altitude(0) <= 1500.0 then
if aircheck.attitude(0) <= 0.0 then
if headstat >= 0.0 and headstat <= 180.0 then

 aircheck.rgn := makevstring("c") ;

aircheck.transition := (275.0- airangle)/(275.0 - 90.0) ;

end if ;
end if ;

end if ;
end if ;

end if ;

 -- downwind

 upperlimit := 360.0 - (ArcSIN((8.40807 * aircheck.knots)/DIMX)/0.01754) ;

if airangle >= 240.0 and airangle <= upperlimit then

if airrange >= (8.40807 * aircheck.knots) and airrange <= DIMX then

 if aircheck.altitude(0) > 900.0 and aircheck.altitude(0) <= 1650.0 then
if headstat >= 160.0 and headstat <= 200.0 then

 aircheck.rgn := makevstring("d") ;

aircheck.transition := (upperlimit - airangle)/(upperlimit - 135.0) ;

end if ;
end if ;

end if ;
end if ;

 -- finals Cat A or Cat B
if (((airangle >= 165.0) and (airangle <= 195.0)) and (per_cat = 'A' or per_cat = 'B')) then
if airrange >= (YSAM.rlen/6.56) and airrange <= (9268.0 + (YSAM.rlen/6.56)) then
if aircheck.altitude(0) > 0.0 and aircheck.altitude(0) <= 2000.0 then
if aircheck.attitude(0) <= 0.0 then
if headstat < 345.0 and headstat > 15.0 then
 null ;
else
 if (per_cat = 'A' or per_cat = 'B') then

aircheck.rgn := makevstring("f") ;

aircheck.transition := airrange ;

if aircheck.altitude(0) < 300.0 then

aircheck.rgn := makevstring("s") ;

else
 aircheck.rgn := makevstring("l") ;
end if ;

end if ;
end if ;

end if ;
end if ;

end if ;
end if ;

 -- finals Cat C or Cat D
 if airangle >= 150.0 and airangle <= 210.0 and (per_cat = 'C' or per_cat = 'D') then

if airrange >= (YSAM.rlen/6.56) and airrange <= (9268.0 + (YSAM.rlen/6.56)) then
if aircheck.altitude(0) > 0.0 and aircheck.altitude(0) <= 2000.0 then
if aircheck.attitude(0) < 0.0 then
if headstat < 330.0 and headstat > 30.0 then
 null ;
else
if (per_cat = 'C' or per_cat = 'D') then

aircheck.rgn := makevstring("f") ;

aircheck.transition := airrange ;

if aircheck.altitude(0) < 300.0 then

aircheck.rgn := makevstring("s") ;

else
 aircheck.rgn := makevstring("l") ;
end if ;

end if ;
end if ;

end if ;
end if ;

end if ;
end if ;

 -- base Cat 'A' and Cat 'B'

 lowerlimit := (YSAM.rlen/6.56) + (8.40807 * aircheck.knots) ;

upperlimit := ((YSAM.rlen/6.56)+ DIMX) ;

if airangle >= 180.0 and airangle <= 240.0 then

if airrange >= lowerlimit and airrange <= upperlimit then
if aircheck.altitude(0) > 500.0 and aircheck.altitude(0) <= 1500.0 then
if aircheck.attitude(0) <= 0.0 then
if headstat > 180.0 and headstat < 15.0 then
 null;
else
 if (per_cat = 'A' or per_cat = 'B') then

aircheck.rgn := makevstring("b") ;
aircheck.transition := (240.0 - airangle)/(240.0 - 180.0) ;

end if ;

end if ;

end if ;

end if ;

end if ;

end if ;

 --base Cat 'C' and Cat'D'
 if airangle >= 180.0 and airangle <= 240.0 then

if airrange >= lowerlimit and airrange <= upperlimit then
if aircheck.altitude(0) > 500.0 and aircheck.altitude(0) <= 1500.0 then
if aircheck.attitude(0) < 0.0 then
if headstat > 180.0 and headstat < 30.0 then
 null ;
else
if (per_cat = 'C' or per_cat = 'D') then
aircheck.rgn := makevstring("b") ;
aircheck.transition := (240.0 - airangle)/(240.0 - 180.0) ;

end if ;

end if ;

end if ;

end if ;

end if ;

end if ;

 -- runway

if airrange <= YSAM.rlen/2.0 then

if (aircheck.altitude(0) < 50.0) then

aircheck.rgn := makevstring("r") ;

aircheck.transition := (YSAM.rlen/2.0) + aircheck.oldx ;

end if ;

end if ;

end GetZone ;

--**
PROCEDURE Rotate (x,y :IN OUT float ; dir : float ;

xcc , ycc : float) IS
-- to rotate wrt aerodrome reference point (xcc,ycc)

 dist : float ;

ang : float ;

BEGIN
 x := x - xcc ;
y := y - ycc ;
xytopolar(x,y,ang,dist) ;
--ang := ang + dir + 90.0 ;
ang := ang + dir ;
checkangle(ang) ;
polartoxy(dist,ang,x,y) ;

END Rotate ;

-- ***
-- ***
PROCEDURE XYtoPolar (x,y : float ;

vector,dst : OUT float) IS
-- converts from x,y to polar coords
-- returns pointers to updated vector and dst
BEGIN
 dst := sqrt((x * x)+(y * y)) ;

IF ((y = 0.0) AND (x > 0.0)) THEN

vector := 90.0 ;

END IF;

IF ((y = 0.0) AND (x < 0.0)) THEN

vector := 270.0 ;

END IF;

IF ((x = 0.0) AND (y > 0.0)) THEN

vector := 0.0 ;

END IF;

IF ((x = 0.0) AND (y < 0.0)) THEN

vector := 180.0 ;

END IF;

IF ((x < 0.0) AND (y > 0.0)) THEN

vector := 270.0 + ((arctan(abs(y)/abs(x)))/0.01745) ;

END IF;
IF ((x < 0.0) AND (y < 0.0)) THEN
vector := 270.0 - ((arctan(abs(y)/abs(x)))/0.01745) ;

END IF;
IF ((x > 0.0) AND (y > 0.0)) THEN
vector := 90.0 - ((arctan(abs(y)/abs(x)))/0.01745) ;

END IF;
IF ((x > 0.0) AND (y < 0.0)) THEN
vector := 90.0 + ((arctan(abs(y)/abs(x)))/0.01745) ;

END IF ;
END XYtoPolar ;
--************************************
procedure str_to_flt(strnum : in vstring ;

intnum : out float) is

 negnum : boolean ;

index : integer ;

pointindex : integer ;

multiplier, digit : float ;

begin
pointindex := locate('.',strnum) ;
intnum := 0.0 ;
negnum:= false ;
if strnum.stringpart(1) = '-' then
negnum := true ;

index := 2 ;

else

 index := 1 ;

end if ;

multiplier := 0.1 ;

for counter in 1..(pointindex - index) loop

multiplier := multiplier * 10.0 ;

end loop ;
for counter in index ..strnum.currentlength loop
case strnum.stringpart(counter) is

when '0' => digit := 0.0 ;

when '1' => digit := 1.0 ;

when '2' => digit := 2.0 ;

when '3' => digit := 3.0 ;

when '4' => digit := 4.0 ;

when '5' => digit := 5.0 ;

when '6' => digit := 6.0 ;

when '7' => digit := 7.0 ;

when '8' => digit := 8.0 ;

when '9' => digit := 9.0 ;

when '.' => digit := 99.0 ;

when OTHERS => digit := 0.0 ;

end case ;
if digit < 99.0 then
intnum := intnum + (digit * multiplier) ;
multiplier := multiplier/10.0 ;

end if ;

end loop ;

 if negnum = true then
intnum := intnum * (-1.0) ;

end if ;
end str_to_flt;

 -- **8

procedure int_to_str(intnum : in integer ;
strnum : out vstring) is

 tempnum, onenum, newnum ,posn,newposn: integer ;

intarray: vstring ;

negnum : boolean ;

begin
negnum := false ;
if intnum >= 0 then
 tempnum:= intnum ;

else

 tempnum := abs(intnum) ;

 negnum := true ;

end if ;

intarray:= makevstring("") ;

strnum := makevstring("") ;

posn := 1 ;

loop

onenum := tempnum rem 10 ;

newnum := integer(float(tempnum)/10.0 - 0.5) ;

intarray := intarray & digit(onenum) ;

exit when newnum <= 0 ;

posn:= posn + 1 ;

tempnum := newnum ;

end loop ;
if negnum then

intarray := intarray & makevstring("-") ;

posn := posn + 1 ;

end if ;

newposn := posn ;

for counter in 1..posn loop

strnum.stringpart(newposn) := intarray.stringpart(counter) ;
newposn := newposn - 1 ;

end loop ;

strnum.currentlength := posn ;

end int_to_str ;
--*************************************
procedure drawplane(xs : in integer ;

ys : in integer ;

track : in float) is

type ppoint is record

x, y : integer ;

end record ;

 head,tail,port,star,stabport,stabstar : ppoint ;

begin
head.x := 0 ;
head.y := 4 ;
tail.x := 0 ;
tail.y := -8 ;
port.x := -8 ;
port.y := 0 ;
star.x := 8 ;
star.y := 0 ;
stabport.x := -3 ;
stabport.y := -8 ;
stabstar.x := 3 ;
stabstar.y := -8 ;
rotate(float(head.x),float(head.y),track,0.0,0.0) ;
head.x := head.x + xs ;
head.y := -head.y + ys ;
rotate(float(tail.x),float(tail.y),track,0.0,0.0) ;
tail.x := tail.x + xs ;
tail.y := -tail.y + ys ;
rotate(float(port.x),float(port.y),track,0.0,0.0) ;
port.x := port.x + xs ;

 port.y := -port.y + ys ;

rotate(float(star.x),float(star.y),track,0.0,0.0) ;

star.x := star.x + xs ;

star.y := -star.y + ys ;

rotate(float(stabport.x),float(stabport.y),track,0.0,0.0) ;

stabport.x := stabport.x + xs ;

stabport.y := -stabport.y + ys ;

rotate(float(stabstar.x),float(stabstar.y),track,0.0,0.0) ;

stabstar.x := stabstar.x + xs ;

stabstar.y := -stabstar.y + ys ;

draw_line(head.x,head.y,tail.x,tail.y,white) ;

draw_line(port.x,port.y,star.x,star.y,white) ;

draw_line(stabport.x,stabport.y,stabstar.x,stabstar.y,white) ;

end drawplane ;
--************************************8
procedure str_to_int(strnum : in vstring ;

intnum : out integer) is

 negnum : boolean ;

index ,digit,multiplier: integer ;

begin
intnum := 0 ;
negnum:= false ;
if strnum.stringpart(1) = '-' then
negnum := true ;

index := 2 ;

else

 index := 1 ;

end if ;

for counter in index ..strnum.currentlength loop

case strnum.stringpart(counter) is

when '0' => digit := 0 ;

when '1' => digit := 1 ;

when '2' => digit := 2 ;

when '3' => digit := 3 ;

when '4' => digit := 4 ;

when '5' => digit := 5 ;

when '6' => digit := 6 ;

when '7' => digit := 7 ;

when '8' => digit := 8 ;

when '9' => digit := 9 ;

when OTHERS => digit := 0 ;

end case ;

multiplier := 1 ;

if strnum.currentlength > counter then

for counter2 in 1..(strnum.currentlength - counter) loop
multiplier := multiplier * 10 ;

end loop ;

end if ;

intnum := intnum + (digit * multiplier) ;

end loop ;

if negnum = true then

intnum := intnum * (-1) ;

end if ;

end ;
--*************************************
procedure Inshortcontrol(x,y, h: in float ;

ap : in pstatstype ;
YSAM : in runway ;
rgn : out vstring ;
trans : out float) is

-- determines which region the aircraft is in

-- and rgn to that region

-- and outputs (trans) the aircraft progress

-- in the region (0.0 = start 1.0 = end)

 airrange,airangle, upperlimit, lowerlimit,DIMX : float ;

begin
per_cat : character ;

 rgn := makevstring("o") ;

-- given aircheck,cx and cy, find the angle wrt runway centrepoint:

XYtoPolar(x,y,airrange,airangle) ;

-- normalize airangle to runway direction

airangle := airangle - ysam.rdir ;

-- make sure angle is in range 0 to 360

checkangle(airangle) ;

-- find aircraft performance category

GetPerformanceType(ap,DIMX,per_cat) ;
-- apply circuit zone criteria to determine aircraft zone(update aircheck.region)
-- takeoff Cat A or Cat B

 if airangle < 345.0 and airangle > 15.0 then
null ;

else
if (per_cat = 'A' or per_cat = 'B') then
if airrange >= (YSAM.rlen/2.0) and airrange <= (1850.0 + (YSAM.rlen/2.0)) then
if h > 0.0 and h <= 500.0 then

 rgn := makevstring("t") ;

trans := airrange ;

end if ;

end if ;

end if ;

end if ;

 -- takeoff Cat C or Cat D
 if airangle < 330.0 and airangle > 30.0 then

null ;
else
 if (per_cat = 'C' or per_cat = 'D') then

if airrange >= (YSAM.rlen/2.0) and airrange <= (1850.0 + (YSAM.rlen/2.0)) then
if h > 0.0 and h <= 500.0 then

 rgn := makevstring("t") ;

trans := airrange ;

end if ;

end if ;

end if ;

end if ;

 -- upwind Cat 'A' and Cat 'B'

 if airangle >= 15.0 and airangle <= 165.0 and (per_cat = 'A' or per_cat = 'B') then
if airrange >= 0.0 and airrange <= DIMX then
if h > 1400.0 and h <= 1600.0 then

 rgn := makevstring("u") ;

trans := (165.0 - airangle)/(165.0 - 15.0) ;

end if ;
end if ;

end if ;

 -- upwind Cat 'C' and Cat 'D'
if airangle >= 30.0 and airangle <= 150.0 and (per_cat = 'C' or per_cat = 'D') then
if airrange >= 0.0 and airrange <= DIMX then
if h > 1400.0 and h <= 1600.0 then

 rgn := makevstring("u") ;

trans := (150.0 - airangle)/(150.0 -30.0) ;

end if ;
end if ;

end if ;

 -- crosswind
 if airangle < 270.0 and airangle > 90.0 then

null ;
else
 if airrange >= 0.0 and airrange <=

if h > 1000.0 and h <= 1500.0 then
((YSAM.rlen/2.0) + DIMX) then

 rgn := makevstring("c") ;
trans := (275.0 - airangle)/(275.0 - 90.0) ;

end if ;
end if ;

end if ;

 -- downwind
 upperlimit := 360.0 - (ArcSIN((8.40807 * ap.knots)/DIMX)/0.01754) ;
if airangle >= 240.0 and airangle <= upperlimit then
if airrange >= ((8.40807 * ap.knots) + (YSAM.rwid/2.0)) and airrange <= DIMX then
 if h > 900.0 and h <= 1650.0 then

 rgn := makevstring("d") ;

trans := (upperlimit - airangle)/(upperlimit - 240.0) ;

end if ;
end if ;

end if ;

 -- finals Cat A or Cat B
if airangle >= 165.0 and airangle <= 195.0 and (per_cat = 'A' or per_cat = 'B') then
if airrange >= (YSAM.rlen/2.0) and airrange <= (9268.0 + (YSAM.rlen/2.0)) then
if h > 0.0 and h <= 2000.0 then

 rgn := makevstring("f") ;

trans := airrange ;

if ap.altitude(0) < 300.0 then

rgn := makevstring("s") ;

else

 rgn := makevstring("l") ;

end if ;

end if ;

end if ;

 end if ;

 -- finals Cat C or Cat D
 if airangle >= 150.0 and airangle <= 210.0 and (per_cat = 'C' or per_cat = 'D') then

if airrange >= (YSAM.rlen/6.56) and airrange <= (9268.0 + (YSAM.rlen/6.56)) then
if h > 0.0 and h <= 2000.0 then

 rgn := makevstring("f") ;

trans := airrange ;

if ap.altitude(0) < 300.0 then

rgn := makevstring("s") ;

else
 rgn := makevstring("l") ;
end if ;

end if ;
end if ;

end if ;

 -- base Cat 'A' and Cat 'B'
 lowerlimit := ((YSAM.rlen/2.0)+(9.7088 * ap.knots)) ;
upperlimit := ((YSAM.rlen/2.0)+ DIMX) ;
if airangle >= 180.0 and airangle <= 240.0 then
if airrange >= lowerlimit and airrange <= upperlimit then
if h > 500.0 and h <= 1500.0 then

 rgn := makevstring("b") ;

trans := (240.0 - airangle)/(240.0 - 180.0) ;

end if ;
end if ;

end if ;

 --base Cat 'C' and Cat'D'
 if airangle >= 180.0 and airangle <= 240.0 then

if airrange >= lowerlimit and airrange <= upperlimit then
if h > 500.0 and h <= 1500.0 then

 rgn := makevstring("b") ;

trans := (240.0 - airangle)/(240.0 - 180.0) ;

end if ;
end if ;

end if ;

 -- runway
if airrange <= YSAM.rlen/2.0 then
if h < 50.0 then

 rgn := makevstring("r") ;

trans := (YSAM.rlen/2.0) + ap.oldx ;

end if ;
end if ;

end InShortControl ;

-- ***
FUNCTION Time_to_Collision(air1,air2 : pstatstype ;

apt : runway) RETURN integer IS

 r1,r2,x11,y11,x21,y21,z21,z11 : float ;

md,md2,missdist,missdist2,dtrack : float ;

time2 : integer ;

xn1,xn2,yn1,yn2,zn1,zn2 : float ;

TA_required : boolean ;

cx1,cx2,cy1,cy2,ch1,ch2 : float ;

heading1,heading2,trans1,trans2:float ;

rgn1,rgn2 : vstring ;

BEGIN
 time2 := 0 ;
TA_required := false ;
-- co-ords of aircraft 1
 heading1 := air1.heading ;
r1 := 0.515 * air1.knots ; -- metres travelled in 1 sec by aircraft1
xn1 := air1.oldx ;
yn1 := air1.oldy ;
zn1 := air1.oldhgt ;
z11 := air1.attitude(0) ;

 -- aircraft2

 heading2 := air2.heading ;

r2 := 0.515 * air2.knots ; -- metres travelled in 1 sec by aircraft2

xn2 := air2.oldx ;

yn2 := air2.oldy ;

zn2 := air2.oldhgt ;

z21 := air2.attitude(0) ;

 LOOP

 EXIT WHEN ((time2 >= 40) OR (TA_required = true)) ;

 -- update x,y and z for aircraft 1

polartoxy(r1,heading1,x11,y11) ;

cx1 := xn1 ;

xn1 := xn1 + x11;

cy1 := yn1 ;

yn1 := yn1 + y11 ;

ch1 := zn1 ;

zn1 := zn1 + z11 ;

-- update heading1 for next loop

-- dtrack := air1.heading ;

 inshortcontrol(xn1,yn1,zn1,air1,apt,rgn1,trans1) ;

-- **
-- GWindows.Message_Boxes.Message_Box ("Message to You", " debug post short control in TTC");
-- **

 case rgn1.stringpart(1) is

when 'r' => dtrack := 0.0 ;

heading1 := apt.rdir ;

when 'd' => dtrack := 0.0 ;

when 's' => ShortFinalTrajectory(apt,heading1,trans1,air1) ;

when 'l' => shortfinaltrajectory(apt,heading1,trans1,air1) ;

when 'o' => dtrack := 0.0 ;

 when 'b' => BaseTrajectory(apt,heading1,trans1,air1) ;

when 'c' => CrosswindTrajectory(apt,heading1,trans1,air1) ;

when 'u' => dtrack := 0.0 ;

when OTHERS => dtrack := 0.0 ;

end case;

polartoxy(r2,heading2,x21,y21) ;

cx2 := xn2 ;

xn2 := xn2 + x21 ;

cy2 := yn2 ;

yn2 := yn2 + y21 ;

ch2 := zn2 ;

zn2 := zn2 + z21 ;

-- update heading2 for next loop ;

-- dtrack := air2.heading ;

inshortcontrol(xn2,yn2,zn2,air2,apt,rgn2,trans2) ;

case rgn2.stringpart(1) is

when 'r' => dtrack := 0.0 ;

heading2 := apt.rdir ;

when 'd' => dtrack := 0.0 ;

when 's' => ShortFinalTrajectory(apt,heading2,trans2,air2) ;

when 'l' => ShortFinalTrajectory(apt,heading2,trans2,air2) ;

when 'o' => dtrack := 0.0 ;

when 'b' => BaseTrajectory(apt,heading2,trans2,air2) ;

when 'c' => CrossWindTrajectory(apt,heading2,trans2,air2) ;

when OTHERS => dtrack := 0.0 ;

end case;

--calc orig miss distance

md := sqrt(((cx1 - cx2) * (cx1 - cx2)) + ((cy1 - cy2) * (cy1 - cy2))) ;

-- include height into calc

missdist := sqrt((((ch1 - ch2) * (ch1 - ch2))/10.76) + (md * md)) ;

-- calc new missdist

 md2 := sqrt(((xn1 - xn2) * (xn1 -xn2)) +

((yn1 - yn2) * (yn1 - yn2))) ;

-- include height

missdist2 := sqrt((((zn1 - zn2) * (zn1 - zn2))/10.76) +

(md2 * md2)) ;

 --if miss dist is increasing then moving apart
--end it here ; else repeat until time > 40 secs
IF (missdist2 <= 500.0) THEN --if projected missdist2 < 500 metres (10sec @ 100 knots)
IF (missdist2 < missdist) THEN

IF ((zn1-zn2) <= 500.0) THEN

TA_required := true ;

ELSE

 time2 := time2 + 1 ;

END IF ;

else

 time2 := time2 + 1 ;

END IF ;

ELSE

 time2 := time2 + 1 ;

END IF ;

-- **8
-- Debug_DisplayResult(time2,makevstring("TimetoCrash")) ;

-- ***
END LOOP ;
return time2 ;

END Time_to_collision ;
-- ***
FUNCTION Time2CPA(air1,air2 : pstatstype ;

apt : runway) RETURN integer IS

-- calculates Bramson criteria T2CPA

 -- for a 500 feet vertical and 500 metre horizontal separation

r1,r2, heading1, heading2 : float ;

x11,y11,z11, x12,y12,z12,zi1 : float ;

x21,y21,z21, x22,y22,z22,zi2 : float ;

time2 : integer ;

dist0,dist1,peil0,peil1 : float ;

xi,yi : float ;

BEGIN
 time2 := 0 ;
-- co-ords of aircraft 1
 heading1 := air1.heading ;
r1 := 0.515 * air1.knots ; -- metres travelled in 1 sec by aircraft1
x11 := air1.oldx ;
y11 := air1.oldy ;
z11 := air1.oldhgt ;
zi1 := air1.attitude(0) ;
-- get new projected position of air1 after 1 sec
polartoxy(r1,heading1,xi,yi) ;
x12 := x11 + xi;
y12 := y11 + yi ;
z12 := z11 + zi1 ;

 -- aircraft2

 heading2 := air2.heading ;

r2 := 0.515 * air2.knots ; -- metres travelled in 1 sec by aircraft2

x21 := air2.oldx ;

y21 := air2.oldy ;

z21 := air2.oldhgt ;

zi2 := air2.attitude(0) ;

-- get new projected position of air2 after 1 sec

polartoxy(r2,heading2,xi,yi) ;

x22 := x12 + xi;

y22 := y21 + yi ;

z22 := z21 + zi2 ;

 -- calc dist0 and dist1

 dist0 := sqrt(((x11-x12)*(x11-x12)) + ((y11-y12)*(y11-y12))) ;

dist1 := sqrt(((x21-x22)*(x21-x22)) + ((y21-y22)*(y21-y22))) ;

--calc peilo and peil1

if y11 = y12 then

peil0 := heading2 - 90.0 ;

else

peil0 := heading2 - ((arctan((x11-x12)/(y11-y12)))/0.01754) ;

end if ;
if y21 = y22 then

peil1 := heading2 - 90.0 ;

 else
peil1 := heading2 - ((arctan((x21-x22)/(y21-y22)))/0.01754) ;

end if ;

-- check if closing

if dist1 < dist0 then

 --apply the Bramson criteria (for a minimum 500 horizontal separation)

if (dist0 = dist1) or (dist0 = 0.0) then

time2 := 9999 ;

else

 time2 := integer((dist0 - (500.0/dist0))/(dist0-dist1)) ;

end if ;

 -- check vertical separation at this time

z12 := z11 + (float(time2) * zi1) ;

z22 := z21 + (float(time2) * zi2) ;

-- check to see if there is a vertical separation problem

-- if so then time2 is the T2CPA

 -- else no problem exists

if (z12 - z22) > 500.0 then

time2 := 999 ;

end if ;

else

 time2 := 999 ;

end if ;

return time2 ;

-- **

 -- Debug_DisplayResult(time2,makevstring("TimetoCrash")) ;

-- ***

end Time2CPA ;

-- **
procedure BaseTrajectory(apt : in runway ;

heading : in out float ;
trans : in float ;
air : in pstatstype) is

-- base leg trajectory projection

-- for left hand circuits

 rdir, dimx,dtrack : float ;

pointone,pointtwo : float ;

perfcat : character ;

centre_trans : float ;

begin

-- alter heading by rate 2 turn if required

dtrack := 0.0 ;

rdir := apt.rdir ;

pointone := rdir + 180.0 ;

pointtwo := rdir + 90.0 ;

--centre_trans := 1.0 - ((arctan((8.405 * air.knots)/((dimx/2.0) + (12.605 * air.knots)))/0.01754)/45.0) ;

centre_trans := 0.5 ;

if (trans < centre_trans) then

if heading < pointone and heading > pointtwo then

 dtrack := -6.0 ;

end if ;

heading := heading + dtrack ;

else

 if heading > rdir then

dtrack := -6.0 ;

end if ;

heading := heading + dtrack ;

if heading < rdir then

heading := rdir ;

end if ;

end if ;

checkangle(heading) ;

end BaseTrajectory ;

-- **

procedure CheckAngle(angle : in out float) is

begin

if angle > 360.0 then
angle := angle - 360.0 ;

end if ;

if angle < 0.0 then

angle := angle + 360.0;

end if ;
end checkangle ;
-- ***
procedure Getthreshold (acd : IN pstatstype ;

YSAM : IN runway ;
xth,yth : OUT float) is

begin
polartoXY((360.0 - YSAM.rdir), YSAM.rlen/2.0, xth, yth) ;

end Getthreshold ;

-- **
 procedure CrosswindTrajectory(apt : in runway ;

heading : in out float ;

trans : in float ;

air : in pstatstype) is

 rdir, pointone, pointtwo, pointthree ,dtrack : float ;

begin
-- alter heading by rate 1 or rate 2 turn if required
dtrack:= 0.0 ;
rdir := apt.rdir ;
pointone := rdir - 45.0 ;
checkangle(pointone) ;
pointtwo := rdir - 90.0 ;
checkangle(pointtwo) ;
pointthree := rdir + 180.0 ;
checkangle(pointthree) ;

 if heading > pointone and heading < pointthree then

 dtrack := -6.0 ;

end if ;

if heading < rdir and heading < pointtwo then

dtrack := -6.0 ;

end if ;

heading := heading + dtrack ;

end ;
-- **
procedure ShortFinalTrajectory(apt : in runway ;

heading : in out float ;

trans : in float ;

air : in pstatstype) is

-- short final leg trajectory projection

 xth,yth : float ;

dist_to_threshold : float ;

begin
GetThreshold(air,apt,xth,yth) ;
dist_to_threshold := sqrt(((air.oldx - xth) * (air.oldx - xth)) + ((air.oldy - yth) * (air.oldy - yth))) ;
XYtoPolar((xth - air.oldx),(yth - air.oldy), heading , dist_to_threshold) ;
checkangle(heading) ;

end ;
--***
procedure checkall(numplanes: integer ;

pstats : in pbase ;
i : integer ;
j : integer ;

apt : in runway ;

evasiontactic : in out vstring ;

advice : in out vstring) is

-- check all aircraft for the standard collision hazard
-- evasiontactic ident - 0

time, time2 : integer ;

air1,air2 : pstatstype ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
time := time2cpa(air1,air2,apt) ;
time2 := time_to_collision(air1,air2,apt) ;
-- if time < 40 then issue a TA
 -- first for the aircraft maintaining its current heading
if time < 40 then
 -- issue a TA
 TA2(advice,air1.ident,air2.ident,time) ;

end if ;

-- then for projecting the expected aircraft trajectory

if time2 < 40 then

 -- issue a TA

 TA(advice,air1.ident,air2.ident,time2) ;

end if ;

end checkall ;
-- **
procedure checkshortfinal(ysam : in runway ;

numplanes : integer ;
pstats: in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check short final conflicts between air1 and air2 if air1 on short final

 t2cpa,t2cpa2 : integer ;

air1,air2 : pstatstype ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
if air1.rgn.stringpart(1) = 's' then
case air2.rgn.stringpart(1) is
when 'o' =>
-- if there are any not in azone then check for conflicts
t2cpa := time_to_collision(air1,air2,ysam) ;
t2cpa2 := Time2cpa(air1,air2,ysam) ;
if (t2cpa < 20) or (t2cpa2 < 20) then
-- collision predicted within 20 seconds
-- get air2 to detour
Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when 'r' =>

 -- issue advisory for aircraft on final to go around

-- abort final

 Getoutoftheway(2,numplanes,pstats,i,j,detour,ysam) ;

when 's' =>
 -- both aircraft on short final..
 -- check which aircraft is closer and let the closest proceed.
-- the other to abort and go around.
if abs(TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then
if air2.transition <= air1.transition then
 --air1 to go-around
Getoutoftheway(3,numplanes,pstats,i,j,detour,ysam) ;

else
 --air2 to go around
Getoutoftheway(3,numplanes,pstats,j,i,detour,ysam) ;

end if ;

end if ;

when 'b' =>
-- if the difference in times to reach the threshold
 -- is less than the vortex separation minima then air2
-- abort and go-around
-- [climb and abort]
if (TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then
Getoutoftheway(4,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when 'l' =>

 -- if the difference in times to reach the threshold

 -- is less than the vortex separation minima then air2

 -- abort and go-around

-- [climb and abort]

if (TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then

Getoutoftheway(5,numplanes,pstats,j,i,detour,ysam) ; -- air2 to abort finals and go around

end if ;
when 'd' =>

-- if the difference in times to reach the threshold

 -- is less than the vortex separation minima then air2

-- abort and go-around

-- [climb and abort]

if (TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then

Getoutoftheway(10,numplanes,pstats,j,i,detour,ysam) ;

end if ;

 when others =>
 null ;

end case ;
end if ;

end Checkshortfinal ;

-- **
procedure checkbase(ysam : in runway ;

numplanes : integer ;
pstats : in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check base conflicts between air1 and air2 if air1 on base

 xth,yth : float ;

dist_to_threshold1 , dist_to_threshold2 : float ;

t2cpa, t2cpa2 : integer ;

air1,air2 : pstatstype ;

slant_range : float ;

timediff : integer ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
if air1.rgn.stringpart(1) = 'b' then
-- now a confirmed valid aircraft

 -- check for conflicts with air2

case air2.rgn.stringpart(1) is

when 'o' =>

-- if there are any not in azone then check for conflicts

t2cpa := time_to_collision(air1,air2,ysam) ;

t2cpa2 := Time2cpa(air1,air2,ysam) ;

if (t2cpa < 20) or (t2cpa2 < 20) then

-- collision predicted

-- get aircraft not in zone(counter2) to detour

Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when 'r' =>

 -- nil action until air1 is on short final

 null ;

 when 's' =>

 -- check to see if the air1 is closing the gap with air2

-- if so, then get air2 to abort and go-around

-- [climb and abort]

if air1.knots > air2.knots then

 Getoutoftheway(5,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when 'b' =>

 -- if air2 closer to threshold in time than air1 then air1 to go-around

-- else air2 to abort and go-around

-- if timetofly(ysam,air1) >= timetofly(ysam,air2) then

if air1.transition < air2.transition then

 Getoutoftheway(5,numplanes,pstats,i,j,detour,ysam) ; -- air1 to abort base and go around
else
 Getoutoftheway(5,numplanes,pstats,j,i,detour,ysam) ; -- air2 to abort base and go around
end if ;

when 'd' =>
 -- if timetofly air2 - timetofly air1 < 60 secs then air2 to orbit/extend downwind
if (timetofly(ysam,air2) - timetofly(ysam,air1)) < 60 then
Getoutoftheway(9,numplanes,pstats,j,i,detour,ysam) ; -- air2 to orbit

end if ;

when 'l' =>

 if timetofly(ysam,air1) > timetofly(ysam,air2) then

timediff := timetofly(ysam,air1) - timetofly(ysam,air2) ;

if timediff < 120 then

Getoutoftheway(10,numplanes,pstats,i,j,detour,ysam) ; -- air1 to abortbase and go around

end if ;
else

 timediff := timetofly(ysam,air2) - timetofly(ysam,air1) ;

if timediff < 120 then

Getoutoftheway(10,numplanes,pstats,j,i,detour,ysam) ; -- air2 to abortbase and go around

end if ;
end if ;

when others =>
 null ;

end case ;
end if;

end Checkbase ;
-- **

procedure checkdownwind(ysam : in runway ;
numplanes : integer ;
pstats: in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check downwind conflicts between air1 and air2 if air1 on downwind

 rdir : float ;

t2cpa : integer ;

air1,air2 : pstatstype ;

slant_range : float ;

begin
air1 := pstats(i) ;

 air2 := pstats(j) ;

if air1.rgn.stringpart(1) = 'd' then

case air2.rgn.stringpart(1) is

when 'o' =>

-- if there are any not in azone then check for conflicts

t2cpa := time_to_collision(air1,air2,ysam) ;

if t2cpa < 20 then

-- collision predicted within 20 seconds

-- get air2 to detour

Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when 'r' =>

 null ;

when 's' =>

 null ;

when 'b' =>

 -- if timetofly air2 - timetofly air1 < 60 secs then air2 to orbit/extend downwind

if (timetofly(ysam,air1) - timetofly(ysam,air2)) < 60 then

Getoutoftheway(9,numplanes,pstats,i,j,detour,ysam) ; -- air1 to orbit

end if ;

when 'l' =>

 -- if abs(timetofly air1(d) - timetofly air2(l)) < 120 then

-- if timetofly air1(d) < timetofly air2(l) then

-- air2(l) to abort

-- else air1(d) to abort

if abs(timetofly(ysam,air1) - timetofly(ysam,air2)) < 120 then

if timetofly(ysam,air1) < timetofly(ysam,air2) then

Getoutoftheway(11,numplanes,pstats,i,j,detour,ysam) ; -- traffic on downwind - abort

else

 Getoutoftheway(10,numplanes,pstats,i,j,detour,ysam) ; -- traffic on longfinal - abort

end if ;

end if ;

when 'd' =>

 -- aircraft on outer to orbit

 if air1.oldy > air2.oldy then

Getoutoftheway(7,numplanes,pstats,i,j,detour,ysam) ;

else

 Getoutoftheway(7,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when 'c' =>
 -- if separation < 60 secs then air2 to orbit/extend
slant_range := sqrt(((air1.oldx-air2.oldx)*(air1.oldx-air2.oldx))+((air1.oldy-air2.oldy)*(air1.oldy-air2.oldy))) ;
if (slant_range/(air2.knots * 0.515)) < 60.0 then
Getoutoftheway(7,numplanes,pstats,j,i,detour,ysam) ; -- air2 to orbit

end if ;

when others =>

 null ;

end case ;

end if ;

end Checkdownwind ;
-- **

procedure checklongfinal(ysam : in runway ;
numplanes : integer ;

 pstats: in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check longfinal conflicts between air1 and air2 if air1 on longfinal

 rdir : float ;

t2cpa : integer ;

air1,air2 : pstatstype ;

timediff : integer ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
if air1.rgn.stringpart(1) = 'l' then
case air2.rgn.stringpart(1) is
when 'o' =>

-- if there are any not in azone then check for conflicts

t2cpa := time_to_collision(air1,air2,ysam) ;

if t2cpa < 20 then

-- collision predicted within 20 seconds

-- get air2 to detour

Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when 'r' =>

 -- if the difference in times to reach the threshold

 -- is less than the vortex separation minima then air2

-- abort and go-around

-- [climb and abort]

if (TimetoFly(ysam,air2) < 120) then

Getoutoftheway(6,numplanes,pstats,i,j,detour,ysam) ; -- air1 to abort finals and go around

end if ;
when 's' =>

 -- if the difference in times to reach the threshold

 -- is less than the vortex separation minima then air2

-- abort and go-around

-- [climb and abort]

if (TimetoFly(ysam,air2) - TimetoFly(ysam,air1)) < 120 then

Getoutoftheway(8,numplanes,pstats,j,i,detour,ysam) ; -- air2 to abort finals and go around

end if ;
when 'b' =>

-- if timediff < 120 then the longest to abort

timediff := abs(timetofly(ysam,air1) - (timetofly(ysam,air2))) ;

if timediff < 120 and timediff > 0 then

 if timetofly(ysam,air1) > timetofly(ysam,air2) then

Getoutoftheway(5,numplanes,pstats,i,j,detour,ysam) ; -- air 1 abort traffic on finals
else
 Getoutoftheway(10,numplanes,pstats,j,i,detour,ysam) ; -- air 2 abort traffic on base

 end if ;
end if ;

 when 'l' =>

 -- if the difference in times to reach the threshold

 -- is less than the vortex separation minima then air2

-- abort and go-around

 -- [climb and abort]

timediff := abs(timetofly(ysam,air2) - timetofly(ysam,air1)) ;

if timediff < 120 then

 if timetofly(ysam,air1) > timetofly(ysam,air2) then

Getoutoftheway(8,numplanes,pstats,i,j,detour,ysam) ; -- air1 to abort finals and go around
else
 Getoutoftheway(8,numplanes,pstats,j,i,detour,ysam) ; -- air2 to abort finals and go around
end if ;

end if ;

 when 'd' =>
 -- if timediff < 120 then the longest to abort

timediff := abs(timetofly(ysam,air1) - (timetofly(ysam,air2))) ;

if timediff < 120 then

 if timetofly(ysam,air1) < timetofly(ysam,air2) then

Getoutoftheway(10,numplanes,pstats,j,i,detour,ysam) ; -- air 2 abort traffic on finals
else
 Getoutoftheway(11,numplanes,pstats,i,j,detour,ysam) ; -- air 1 abort traffic on downwind

 end if ;
end if ;

 when others =>

 null ;

end case ;

end if ;

end Checklongfinal ;
-- **

procedure checkstrip(ysam : in runway ;
numplanes : integer ;
pstats: in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check strip conflicts between air1 and air2 if air1 on strip

 rdir : float ;

t2cpa : integer ;

air1,air2 : pstatstype ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
if air1.rgn.stringpart(1) = 'r' then
case air2.rgn.stringpart(1) is
when 'o' =>

-- if there are any not in azone then check for conflicts

t2cpa := time_to_collision(air1,air2,ysam) ;

if t2cpa < 20 then

-- collision predicted within 20 seconds

-- get air2 to detour

Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when 'r' =>

 null ;

 when 's' =>

 --if timetofly air2 < 120 then vortex etc

if timetofly(ysam,air2) < 120 then

Getoutoftheway(6,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when 'b' =>

-- if time to fly air2 < 120 then vortex etc

if timetofly(ysam,air2) < 120 then

Getoutoftheway(6,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when 'l' =>

 -- if timeto fly air2 < 120 then abort

if timetofly(ysam,air2) < 120 then

Getoutoftheway(6,numplanes,pstats,j,i,detour,ysam) ;

end if ;
when others =>
 null ;

end case ;
end if ;

end Checkstrip ;
-- **

procedure checkcrosswind(ysam : in runway ;
numplanes : integer ;
pstats: in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check crosswind conflicts between air1 and air2 if air1 on crosswind

 rdir : float ;

t2cpa : integer ;

air1,air2 : pstatstype ;

slant_range : float ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
if air1.rgn.stringpart(1) = 'c' then
case air2.rgn.stringpart(1) is
when 'o' =>
-- if there are any not in azone then check for conflicts
t2cpa := time_to_collision(air1,air2,ysam) ;
if t2cpa < 20 then
-- collision predicted within 20 seconds
-- get air2 to detour
Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when 'r' =>

 null ;

when 's' =>

 null ;

when 'b' =>

null ;

when 'l' =>

 null ;
when 'd' =>
-- if separation < 60 secs then air1 to orbit/extend
slant_range := sqrt(((air1.oldx-air2.oldx)*(air1.oldx-air2.oldx))+((air1.oldy-air2.oldy)*(air1.oldy-air2.oldy))) ;
if (slant_range/(air1.knots * 0.515)) < 60.0 then
Getoutoftheway(7,numplanes,pstats,i,j,detour,ysam) ; -- air1 to orbit

end if ;

when 'u' =>
 -- if separation < 60 secs then air1 to orbit/extend
slant_range := sqrt(((air1.oldx-air2.oldx)*(air1.oldx-air2.oldx))+((air1.oldy-air2.oldy)*(air1.oldy-air2.oldy))) ;
if (slant_range/(air2.knots * 0.515)) < 60.0 then
Getoutoftheway(7,numplanes,pstats,i,j,detour,ysam) ; -- air1 to orbit

end if ;

when 'c' =>
 -- if separation < 60 secs then air2 or air2 to orbit/extend
slant_range := sqrt(((air1.oldx-air2.oldx)*(air1.oldx-air2.oldx))+((air1.oldy-air2.oldy)*(air1.oldy-air2.oldy))) ;
if (slant_range/(air2.knots * 0.515)) < 60.0 then
if air1.transition > air2.transition then

 Getoutoftheway(7,numplanes,pstats,j,i,detour,ysam) ; -- air2 to orbit

else

 Getoutoftheway(7,numplanes,pstats,i,j,detour,ysam) ; -- air1 to orbit

end if ;

end if ;

when others =>

 null ;

end case ;

end if ;

end Checkcrosswind ;
-- **

procedure checkupwind(ysam : in runway ;
numplanes : integer ;
pstats: in pbase ;
i : integer ;
j : integer ;
detour : in out vstring) is

-- check upwind conflicts between air1 and air2 if air1 on upwind

 rdir : float ;

t2cpa : integer ;

air1,air2 : pstatstype ;

slant_range : float ;

begin
air1 := pstats(i) ;
air2 := pstats(j) ;
if air1.rgn.stringpart(1) = 'u' then
case air2.rgn.stringpart(1) is
when 'o' =>

-- if there are any not in azone then check for conflicts

t2cpa := time_to_collision(air1,air2,ysam) ;

if t2cpa < 20 then

-- collision predicted within 20 seconds

 -- get air2 to detour

Getoutoftheway(1,numplanes,pstats,j,i,detour,ysam) ;

end if ;

when 'u' =>
 slant_range := sqrt(((air1.oldx-air2.oldx)*(air1.oldx-air2.oldx))+((air1.oldy-air2.oldy)*(air1.oldy-air2.oldy))) ;
if (slant_range/(air2.knots * 0.515)) < 60.0 then
if air1.transition > air2.transition then

 Getoutoftheway(7,numplanes,pstats,j,i,detour,ysam) ; -- air2 to orbit

else

 Getoutoftheway(7,numplanes,pstats,i,j,detour,ysam) ; -- air1 to orbit

end if ;

end if ;

when 'c' =>
 slant_range := sqrt(((air1.oldx-air2.oldx)*(air1.oldx-air2.oldx))+((air1.oldy-air2.oldy)*(air1.oldy-air2.oldy))) ;
if (slant_range/(air1.knots * 0.515)) < 60.0 then
Getoutoftheway(7,numplanes,pstats,i,j,detour,ysam) ; -- air1 to orbit

end if ;

when 'b' =>

null ;

when 'l' =>

 null ;
when others =>
 null ;

end case ;
end if ;

end Checkupwind ;

-- **
function checksolution(air1,air2 : in pstatstype;

ysam : runway) return boolean is
t2cpa : integer ;

begin
-- check time to collision
 -- if time < 40 secs, then
-- return false else true
 t2cpa := time_to_collision(air1,air2,ysam) ;
if t2cpa < 40 then
return false ;

else

 return true ;

end if ;

end ;
-- ***
function GetAcceptableCorrection(numplanes : in integer ;

pstats : in pbase ;

i,j : in integer;

direction : veer_direction ;

att_change : float ;

ysam : runway) return integer is

 -- where there is a conflict between aircraft

 -- pstats(i) and pstats (j), the function calculates an acceptable course correction

-- for aircraft pstats(j). It then ensures that for this course correction, there

-- is no new hazard conflict with other aircraft

 -- INPUT : numplanes - number of aircraft in the area

 -- pstats - the aircraft working data
-- i,j - two prime aircraft of initial concern
-- direction - required turn direction {L,R,S}
-- att_change - attitude change +/- degrees
-- ysam - airfield data
 -- OUTPUT -1 - if no solution
 -- >0 - required course correction (+/-)

 t2cpa : integer ;

air1,air2 : pstatstype ;

ps : pbase ;

correction : integer ;

solution : boolean ;

turn_increment : integer ;

begin
ps := pstats ;
air1 := ps(i) ;
air2 := ps(j) ;
correction := 0 ;
air2.attitude(0) := att_change ;
-- air2 initiate a rate 1 turn to direction
 -- with a att_change degree climb ie air2.attitude(0) := att_change ;
case direction is
 when 'L' => turn_increment := -1 ;

when 'l' => turn_increment := -1 ;

when 'R' => turn_increment := 1 ;

when 'r' => turn_increment := 1 ;

when others => turn_increment := 0 ;

end case ;

-- find what turn is required to ensure that there is no

-- collision hazard between air2 and any aircraft.

solution := true ;

for counter in 1..60 loop

correction := correction + turn_increment ;

for counter2 in 1..numplanes loop

if counter2 = j then

null ;

else
 t2cpa := time_to_collision(air2, pstats(counter2),ysam) ;
if t2cpa < 40 then
solution := false ;

end if ;

end if ;

end loop ;

exit when solution = true or counter = 60 ;

end loop ;
if solution = false then
return -1 ;

else
 return correction ;
end if ;

end ;

-- **

function TimetoFly(ysam : in runway ;
plane : in pstatstype) return integer is

 -- calculate time for plane to reach the runway threshold if on landing
-- else if on takeoff, calculate time since takeoff

 ttf : integer ;

turn_segments, first_segments : float ;

xth,yth,airangle,airrange,DIMX, xn,yn: float ;

dist_to_threshold, radius, y_change, x_change, basetime : float ;

normheading, normspeed : float ;

per_cat : character ;

vs, td: float ;

d1,d2,d3: float ;

time, time1 : integer ;

time_to_threshold : float ;

begin
case plane.rgn.stringpart(1) is
when 'c' =>
 null ;

 when 'd' =>
 XYtoPolar(plane.oldx,plane.oldy,airangle, airrange) ;
-- normalize airangle to runway direction
airangle := airangle - ysam.rdir ;
-- make sure angle is in range 0 to 360
checkangle(airangle) ;
-- find normalised x and y
PolartoXY(airrange,airangle,xn,yn) ;
vs := plane.knots * 0.515 ;
ttf := 0 ;
d1 := (vs * 0.9 * 4.917)/1854.0 ;
d2 := (vs * 0.81 * 4.917)/1854.0 ;
d3 := yn - d1 - d2 ;
td := (d3/(0.81 * vs)) * 3600.0 ;
time := integer(((xn + (ysam.rlen/6.28) + (yn)) * 3600.0) / vs) ;
xn := xn - ((yn) + (ysam.rlen/6.28)) ;
ttf := ttf+ time ;
vs := 0.9 * vs ;
-- now at start of base
 -- Execute rate 2 turn (15 secs)}
-- ***********************************
 ttf := ttf + 15 ;
vs := vs * 0.9 ;
--***********************************}
-- Go straight for td secs at ',trunc(vs),' knots')}
-- go straight for d3 nm}
-- ***********************************}
time1 := integer(td) ;
ttf := ttf + time1 ;
xn := xn - d1;
yn := yn - d1 - d3 ;

 -- ***********************************}

-- then execute a rate 2 turn

 -- ***********************************}

xn := xn + d2 ;

yn := 0.0 ;

vs := vs * 0.8 ;

ttf := ttf + 15 ;

-- Reduce speed to ',trunc(vs),' knots'}

-- Go straight for 'time_to_threshold, 'secs to threshold.}

-- ***********************************}

dist_to_threshold := abs(xn + (ysam.rlen/6.28)) ;

time_to_threshold := (dist_to_threshold/vs) * 3600.0 ;

ttf := ttf + integer(time_to_threshold) ;

when 'b' =>
 XYtoPolar(plane.oldx,plane.oldy,airangle, airrange) ;
-- normalize airangle to runway direction
airangle := airangle - ysam.rdir ;
-- make sure angle is in range 0 to 360

checkangle(airangle) ;

-- find normalised x and y

PolartoXY(airrange,airangle,xn,yn) ;

-- normalize aircraft heading to runway direction

normheading := plane.heading - ysam.rdir ;

checkangle(normheading) ;

normspeed := plane.knots * 0.515 ; -- metres/sec

turn_segments := normheading/6.0 ;

basetime := 0.0 ;

if turn_segments >= 15.0 then

first_segments := turn_segments - 15.0 ;

radius := 9.55 * normspeed ; -- metres

 x_change := radius * cos(first_segments * 6.0 * 0.01754) ;

y_change := radius * sin(first_segments * 6.0 * 0.01754) ;

yn := yn - y_change ;

basetime := first_segments ;

normspeed := normspeed * 0.8 ;

if yn > (9.55 * normspeed) then

basetime := basetime + ((yn - (9.55 * normspeed))/normspeed) ;

end if ;
basetime := basetime + 15.0 ;
xn := xn + x_change - (9.55 * normspeed) ;
normspeed := normspeed * 0.8 ;
xn := xn + (9.55 * normspeed) ;
if abs(xn) > ysam.rlen/6.56 then
basetime := basetime + ((abs(xn) - (ysam.rlen/6.56))/normspeed) ;

end if ;
else
 if yn > (9.55 * normspeed) then

basetime := basetime + ((yn - (9.55 * normspeed))/normspeed) ;
end if ;
basetime := basetime + turn_segments ;
x_change := (9.55 * normspeed) * sin(turn_segments * 6.0 * 0.01754) ;
xn := xn + x_change ;
normspeed := normspeed * 0.8 ;
if abs(xn) > ysam.rlen/6.56 then
basetime := basetime + ((abs(xn) - (ysam.rlen/6.56))/normspeed) ;

 end if;

end if ;

ttf := integer(basetime) ;

when 'l' =>
 GetThreshold(plane,YSAM,xth,yth) ;
dist_to_threshold := sqrt(((plane.oldx - xth) * (plane.oldx - xth)) + ((plane.oldy - yth) * (plane.oldy - yth))) ;
ttf := integer(dist_to_threshold/(plane.knots*0.515)) ;

when 's' =>
 GetThreshold(plane,YSAM,xth,yth) ;
dist_to_threshold := sqrt(((plane.oldx - xth) * (plane.oldx - xth)) + ((plane.oldy - yth) * (plane.oldy - yth))) ;
ttf := integer(dist_to_threshold/(plane.knots*0.515)) ;

when 'r' =>

 ttf := 0 ;

when 't' =>
 GetThreshold(plane,YSAM,xth,yth) ;
dist_to_threshold := sqrt(((plane.oldx - xth) * (plane.oldx - xth)) + ((plane.oldy - yth) * (plane.oldy - yth))) ;
ttf := integer(dist_to_threshold/(plane.knots*0.515)) ;

when others =>
 null ;

end case ;

return ttf ;

end TimetoFly ;
-- *********************
end ftowerlib ;

FILE NAME: ftowerlib.ads

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

-- package spec for etowerlb
-- file etowerlb.ads
WITH VStrings ;
with calendar ;

PACKAGE ftowerlib IS

 use VStrings ;

use calendar ;

 toffwidth : CONSTANT Integer := 100 ;

tofflength : CONSTANT Integer := 5560 ;

sfinalwidth : CONSTANT Integer := 200 ;

sfinalminhgt : CONSTANT Integer := 0 ;

sfinalmaxhgt : CONSTANT Integer := 1500 ;

lfinallength : CONSTANT Integer := 7000 ;

lfinalminhgt : CONSTANT Integer := 500 ;

lfinalmaxhgt : CONSTANT Integer := 8000 ;

baseminhgt : CONSTANT Integer := 500 ;

basemaxhgt : CONSTANT Integer := 1500 ;

dwindwidth : CONSTANT Integer := 1000 ;

dwindminhgt
dwindmaxhgt

: CONSTANT Integer := 1000 ;
: CONSTANT Integer := 1500 ;

cwindminhgt
cwindmaxhgt

: CONSTANT Integer := 500 ;
: CONSTANT Integer := 1500 ;

 TYPE runway IS RECORD

ident : VString ;

rdir : float ;

rlen : float ;

rwid : float ;

cpointx : float ;

cpointy : float ;

hgt : float ;

END RECORD ;

 TYPE cornertype is ARRAY(1..4) of float ;

 TYPE areacoords IS RECORD
 x : cornertype ;
y : cornertype ;

END RECORD;

 TYPE airarea IS RECORD

 m12 : float ;

 b12 : float ;

b34 : float ;

m23 : float ;

b23 : float ;

b14 : float ;

lowhgt : float ;

highhgt : float ;

xycorner : areacoords ;

END RECORD ;

 subtype stripon IS POSITIVE RANGE 1..10 ;
TYPE aerodrome IS ARRAY(stripon) OF runway ;

 type attarray is array(0..50) of float ;
type intarray is array(1..4) of integer ;

 -- planes in area register record
TYPE pstatstype IS RECORD
ident : VString ;
ptype : VString ;
cruise : integer ;
climb : integer ;
toff : integer ;
cx : float ;

cy : float ;

chgt : float ;

oldx : float ;

oldy : float ;

oldhgt : float ;

knots : float ;

maxspeed : float ;

heading : float ;

oldheading : float ;

dheading : float ;

attitude : attarray ;

altitude : attarray ;

advicegiven : integer ;

rgn : VString ;

transition : float ;

END RECORD;

 TYPE pbase IS ARRAY(1..100) OF pstatstype ;

 -- plane register datafile record
TYPE prectype IS RECORD
ident : VString ;
ptype : Vstring ;
cruise : integer ;
climb : integer ;
toff : integer ;

END RECORD ;

 TYPE planes IS ARRAY(0..50) OF prectype ;

 TYPE thepos is record

ident : VString ;

squawk : VString ;

rad,dst,hgt : float ;

rgn : VString ;

end record ;

 TYPE radar_sweep is ARRAY(1..50) of thepos ;

 type veer_direction is ('L','l','R','r') ;

 type vocalrecord is record

planeident : vstring ;

currentvocal : natural ;

end record ;

type vocalrecordarray is array(1..10) of vocalrecord ;

 --horizontal in metres vertical in feet

 procedure getplanedata(datafile : vstring ;

pac : IN OUT planes ;

numrecs : IN OUT integer) ;

procedure GetStripData(datafile : vstring ;

aeroport : IN OUT aerodrome ;

nstrips : IN OUT integer) ;

procedure GetRefTime(TimeRef : OUT calendar.day_duration) ;

function digit(c : integer) return VString ;

PROCEDURE GetVector(pvector : IN OUT float ; xs,ys,xf,yf :float) ;

PROCEDURE PolartoXY (dst1 , rad1 : float ;

x1,y1 : OUT float) ;
Procedure Updateplane(gp_acpos : in radar_sweep ;

gp_planedat : in integer ;

gp_pacs : in out planes ;

gp_arec : in out integer ;

gp_pstats : in out pbase ;

gp_numplanes : in out integer) ;

procedure GetZone(aircheck : in out pstatstype ;

YSAM : in runway ;

airangle : out float ;

DIMX : out float ;

per_cat : out character;

airrange : out float) ;

procedure GetPerformanceType(speed : in pstatstype ; DIMX : out float ; Performance_Cat : OUT character) ;

 PROCEDURE Rotate (x,y :IN OUT float ; dir : float ;

xcc , ycc : float) ;

PROCEDURE XYtoPolar (x,y : float ;

vector,dst : OUT float) ;

procedure str_to_flt(strnum : in vstring ;

intnum : out float) ;

 procedure int_to_str(intnum : in integer ;

 strnum : out vstring) ;
procedure drawplane(xs : in integer ;

ys : in integer ;
track : in float) ;

procedure str_to_int(strnum : in vstring ;
intnum : out integer) ;

procedure Inshortcontrol(x,y, h: in float ;
ap : in pstatstype ;
YSAM : in runway ;
rgn : out vstring ;
trans : out float) ;

 FUNCTION Time_to_Collision(air1,air2 : pstatstype ;
apt : runway) RETURN integer ;

FUNCTION Time2CPA(air1,air2 : pstatstype ;
apt : runway) RETURN integer ;

-- calculates Bramson criteria T2CPA
 -- for a 500 feet vertical and 300 metre horizontal separation

 procedure BaseTrajectory(apt : in runway ;
heading : in out float ;
trans : in float ;
air : in pstatstype) ;

procedure CheckAngle(angle : in out float) ;
procedure Getthreshold (acd : IN pstatstype ;

YSAM : IN runway ;
xth,yth : OUT float) ;

procedure CrosswindTrajectory(apt : in runway ;
heading : in out float ;
trans : in float ;
air : in pstatstype) ;

procedure ShortFinalTrajectory(apt : in runway ;
heading : in out float ;
trans : in float ;
air : in pstatstype) ;

procedure checkall(numplanes : integer ;
pstats : in pbase ;
i : integer ;

j : integer ;

apt : in runway ;

evasiontactic : in out vstring ;

advice : in out vstring) ;

 procedure checkshortfinal(ysam : in runway ;
numplanes : integer ;
pstats : in pbase ;
i : integer ;

j : integer ;

detour : in out vstring) ;

procedure checkbase(ysam : in runway ;
numplanes : integer ;
pstats : in pbase ;
i : integer ;

j : integer ;

detour : in out vstring) ;

 procedure checklongfinal(ysam : in runway ;

numplanes : integer ;

pstats : in pbase ;

i : integer ;

j : integer ;

detour : in out vstring) ;

procedure checkstrip(ysam : in runway ;

numplanes : integer ;

pstats : in pbase ;

i : integer ;

j : integer ;

detour : in out vstring) ;

procedure checkdownwind(ysam : in runway ;

numplanes : integer ;

pstats : in pbase ;

i : integer ;

j : integer ;

detour : in out vstring) ;

procedure checkcrosswind(ysam : in runway ;

numplanes : integer ;

pstats : in pbase ;

i : integer ;

j : integer ;

detour : in out vstring) ;

procedure checkupwind(ysam : in runway ;

numplanes : integer ;

pstats : in pbase ;

i : integer ;
j : integer ;

detour : in out vstring) ;

function checksolution(air1,air2 : in pstatstype;

ysam : runway) return boolean ;

function GetAcceptableCorrection(numplanes : in integer ;
pstats : in pbase ;
i,j : in integer;
direction : veer_direction ;
att_change : float ;
ysam : runway) return integer ;

 function TimetoFly(ysam : in runway ;

plane : in pstatstype) return integer ;

end ftowerlib ;
-- ***

FILE NAME: ftowersounds.adb

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

-- Package Body for ftowersounds
-- file ftowersounds.adb
WITH VStrings ; use vstrings ;
with Gwindows.Multi_Media ; use GWindows.Multi_media ;

PACKAGE body ftowersounds is

procedure Speak_Heading(To_Speak : Vstring) is

 s1,s2 : vstring ;
sc1,sc2: character ;

begin
s1 := SubString(to_speak,1,1) ;
s2 := SubString(to_speak,2,1) ;
sc1 := s1.stringpart(1) ;
sc2 := s2.stringpart(1) ;

 case sc1 is
 when '0' =>

 -- head 0 to 90 deg

case sc2 is

when '1' =>

 play_sound_from_file("head010.wav") ;

when '2' =>

 play_sound_from_file("head020.wav") ;

when '3' =>

 play_sound_from_file("head030.wav") ;

when '4' =>

 play_sound_from_file("head040.wav") ;

when '5' =>

 play_sound_from_file("head050.wav") ;

when '6' =>

 play_sound_from_file("head060.wav") ;

when '7' =>

 play_sound_from_file("head070.wav") ;

when '8' =>

 play_sound_from_file("head080.wav") ;

when '9' =>

 play_sound_from_file("head090.wav") ;

when others =>

 null ;

end case ;

when '1' =>

 -- head 100 to 190 deg
case sc2 is
 when '0' =>
 play_sound_from_file("head100.wav") ;
when '1' =>
 play_sound_from_file("head110.wav") ;
when '2' =>
 play_sound_from_file("head120.wav") ;
when '3' =>
 play_sound_from_file("head130.wav") ;
when '4' =>
 play_sound_from_file("head140.wav") ;
when '5' =>
 play_sound_from_file("head150.wav") ;
when '6' =>
 play_sound_from_file("head160.wav") ;
when '7' =>
 play_sound_from_file("head170.wav") ;
when '8' =>
 play_sound_from_file("head180.wav") ;
when '9' =>
 play_sound_from_file("head190.wav") ;
when others =>
 null ;

end case ;
when '2' =>
 -- head 200 to 290 deg
case sc2 is
 when '0' =>
 play_sound_from_file("head200.wav") ;
when '1' =>
 play_sound_from_file("head210.wav") ;
when '2' =>
 play_sound_from_file("head220.wav") ;
when '3' =>
 play_sound_from_file("head230.wav") ;
when '4' =>
 play_sound_from_file("head240.wav") ;
when '5' =>
 play_sound_from_file("head250.wav") ;
when '6' =>
 play_sound_from_file("head260.wav") ;
when '7' =>
 play_sound_from_file("head270.wav") ;
when '8' =>
 play_sound_from_file("head280.wav") ;
when '9' =>
 play_sound_from_file("head290.wav") ;
when others =>
 null ;

end case ;
when '3' =>
 -- head 300 to 360 deg
case sc2 is
 when '0' =>

 play_sound_from_file("head300.wav") ;

when '1' =>

 play_sound_from_file("head310.wav") ;

when '2' =>

 play_sound_from_file("head320.wav") ;

when '3' =>

 play_sound_from_file("head330.wav") ;

when '4' =>

 play_sound_from_file("head340.wav") ;

when '5' =>

 play_sound_from_file("head350.wav") ;

when '6' =>

 play_sound_from_file("head360.wav") ;

when others =>

 null ;

end case ;

when others =>

 -- null

 null ;

end case ;

end speak_Heading ;
-- ***
procedure play_it(vocal : natural ;

turn_correction : vstring) is

 begin
case vocal is

 when 0 => play_sound_from_file("ben_12.wav",true) ; -- clear of conflict

 when 1 => play_sound_from_file("ben_07.wav",true) ; -- climb,climb now

when 2 => --play_sound_from_file("ben_xx.wav",true) ; -- veer right now

null ;
when 3 => play_sound_from_file("ben_13.wav",true) ; -- collision imminent (traffic, traffic)

null ;
when 4 => --play_sound_from_file("ben_xx.wav",true) ; -- climb & veer left nn degrees

speak_heading(turn_correction) ;
when 5 => play_sound_from_file("ben_01.wav",true) ; -- climb
 when 6 => play_sound_from_file("ben_07.wav",true) ; -- climb & veer right nn degrees

speak_heading(turn_correction) ;
when 7 => play_sound_from_file("ben_07.wav",true) ; -- climb,climb now ?

null ;
when 8 => play_sound_from_file("ben_07.wav",true) ; -- climb,climb now ?

null ;
when 9 => play_sound_from_file("ben_07.wav",true) ; -- climb and abort now

 null ;
when 10 => play_sound_from_file("ben_07.wav",true) ; -- traffic on finals - climb and abort

null ;
when 11 => play_sound_from_file("ben_07.wav",true) ; -- other base traffic- climb and abort

null ;
when 12 => play_sound_from_file("ben_07.wav",true) ; -- warning - traffic on sfinals

null ;
when 13 => play_sound_from_file("ben_07.wav",true) ; -- possible vortex hazard - go around

null ;
when 14 => play_sound_from_file("ben_07.wav",true) ; -- traffic on downwind

null ;

 when 15 => play_sound_from_file("ben_07.wav",true) ; -- traffic traffic - orbit
null ;

 when others =>

 null ;

end case ;
end play_it ;
--*******************************
procedure do_vocals(theplane : vstring ;

vocal : natural ;

turn_correction :vstring ;

cur_vocals : in out vocalrecordarray) is

j,i : integer ;

now_current,played, found : boolean ;

searchmedium : vstring ;

begin
played := false ;
found := false ;
i := 1 ;
searchmedium := makevstring("xxx") ;
loop
if cur_vocals(i).planeident = theplane then
--Debug_DisplayResult(makevstring("old plane - old vocal"), makevstring("vocals")) ;
found := true ;
played := false ;
-- if new vocal is the same as the preceding then nil action
-- else updata current vocal and play it
if cur_vocals(i).currentvocal = vocal then
played := true ;

else

 --Debug_DisplayResult(makevstring("old plane - new vocal"), makevstring("vocals")) ;
cur_vocals(i).currentvocal := vocal ;
-- play the sound
play_it(vocal,turn_correction) ;
played := true ;

 end if ;

end if ;

i := i + 1 ;

exit when found = true or i > 10 ;

end loop ;

 if not played then

-- register new aircraft/vocal if first slot with an aircraft of "xxx"

j := 1 ;

now_current := false ;

loop

if cur_vocals(j).planeident = searchmedium then

cur_vocals(j).planeident := theplane ;
cur_vocals(j).currentvocal := vocal ;
play_it(vocal,turn_correction) ;
now_current := true ;
played := true ;
--Debug_DisplayResult(makevstring("new plane - new vocal"), makevstring("vocals")) ;

 end if ;

j := j + 1 ;

exit when now_current or j > 10 ;

end loop ;
end if ;
end do_vocals ;
-- ************************

end ftowersounds ;

FILE NAME: ftowersounds.ads

appendix to:

Brown, Glenn. Remote Intelligent Air Traffic Control Systems for Non-controlled Airports.

Thesis (Ph.D.)--Griffith University, 2003.

-- package spec for ftowersounds
-- file ftowersounds.ads
WITH VStrings ; use vstrings ;
with ftowerlib ; use ftowerlib ;

PACKAGE ftowersounds IS

procedure Speak_Heading(To_Speak : Vstring) ;

procedure play_it(vocal : natural ;
turn_correction : vstring) ;

procedure do_vocals(theplane : vstring ;
vocal : natural ;
turn_correction :vstring ;
cur_vocals : in out vocalrecordarray) ;

end ftowersounds ;

	Text4:

