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Abstract

This thesis demonstrates that agent-based modelling offers a viable com-
patriot to traditional experimental methodologies for criminology scholars,
that can be applied to explore the divide between micro-level criminolog-
ical theory and macro-level observations of crime; and in turn, aid in the
assessment of those theories which aim to describe the crime event.

The following overarching research question is addressed:

Are the micro-level mechanisms of the opportunity theories generatively suf-
ficient to explain macroscopic patterns commonly observed in the empirical
study of crime?

Drawing on the approach of generative social science (Epstein, 1999), this
thesis presents a systematic assessment of the generative sufficiency of three
distinct mechanisms of offender movement, target selection and learning de-
rived from the routine activity approach (Cohen & Felson, 1979), rational
choice perspective (Clarke, 1980; Cornish & Clarke, 1986) and crime pattern
theory (Brantingham & Brantingham, 1978, 1981). An agent-based model
of offending is presented, in which an artificial landscape is inhabited by
both potential victims and offenders who behave according to several of the
key propositions of the routine activity approach, rational choice perspective
and crime pattern theory. Following a computational laboratory-based ap-
proach, for each hypothetical mechanism studied, control and experimental
behaviours are developed to represent the absence or presence of a proposed
mechanism within the virtual population.

Using this model, a series of simulated experiments were performed, in which
the crime patterns produced by virtual offenders operating under several
distinct combinations of these mechanisms were examined and compared to
three macroscopic regularities of crime derived from empirical study: spa-
tial clustering, repeat victimisation, and the journey to crime curve. Each
experiment was replicated 500 times, each replication exploring the same
hypothetical decision calculus within a unique simulation environment in-
habited by unique target and offender populations. Furthermore, two model
variants were explored: the first simulating crimes against spatially static
targets (e.g. residential burglary) and the second simulating crimes against
spatially dynamic targets (e.g. street robbery).

In doing so the following focused research questions are addressed:

• Are the mechanisms of the opportunity theories generatively sufficient
to explain the spatial concentration of crime commonly observed in em-
pirical study?



• Are the mechanisms of the opportunity theories generatively sufficient
to explain patterns of repeat victimisation commonly observed in em-
pirical study?

• Are the mechanisms of the opportunity theories generatively sufficient
to explain the characteristic journey to crime curve commonly observed
in empirical study?

• Do the mechanisms of the routine activity approach, rational choice
perspective and crime pattern theory have differential impacts on com-
monly observed patterns of crime?

• Do these results differ by crimes that occur against static or dynamic
targets?

Results from this research demonstrate that the identified mechanisms of
the opportunity theories provide a candidate generative explanation for why
crime against both static and dynamic targets tends to be spatially clustered,
experienced by a relatively small number of repeat victims, and why the
aggregate journey to crime curve exhibits a characteristic distance decay.
Furthermore, model findings suggest that the three mechanisms formalised
are likely to have differential impacts on the regularities of crime studied. A
number of ramifications of this study for theory, methodology and policy are
discussed.



This work has not previously been submitted for a degree or diploma in any
university. To the best of my knowledge and belief, the thesis contains no
material previously published or written by another person except where due
reference is made in the thesis itself.
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1
Introduction

Much of criminology has traditionally focused on explaining criminality, that
is, how do those people who commit crime differ from those who do not. By
contrast, environmental criminology and crime science focus on understand-
ing the crime event itself, and in particular, the proximal circumstances
which contribute to the emergence of criminal opportunities that are ex-
ploited by the motivated offender. A fundamental remit of these approaches
is to identify, quantify and understand these patterns of criminal opportunity
to facilitate the reduction and prevention of victimisation.

Current understanding within environmental criminology and crime science
has been heavily influenced by three theoretical perspectives: the routine
activity approach (Cohen & Felson, 1979), the rational choice perspective
(Cornish & Clarke, 1986) and crime pattern theory (Brantingham & Brant-
ingham, 1993a). These approaches, often described as the opportunity the-
ories (Wortley & Mazerolle, 2008), concern themselves with how the spatio-
temporal activities of individuals dictate where and when criminal opportuni-
ties arise, how the motivated offender reasons about those opportunities pre-
sented to them, and the role that the ever-changing environmental backcloth
plays in situating them. Acknowledging the complexity of these interactions,
environmental criminology and crime science are inherently multidisciplinary
fields, drawing insight from psychology, geography, mathematics, urban plan-
ning, computer science, economics and a wealth of other disciplines.

The research presented in this thesis represents one such multidisciplinary
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1.1. RESEARCH RATIONALE

effort, applying computational agent-based models (ABM1) to assess the
explanatory power of several key micro-level mechanisms2 described by the
opportunity theories.

1.1 Research Rationale

Environmental criminology and the opportunity theories provide a number
of hypothetical micro-level mechanisms considered significant to the crime
event itself. These mechanisms describe the cognition and subsequent ac-
tion of both potential victims and offenders, and, in turn, the influences that
the local environment place upon them. As environmental criminologists we
hypothesise that these mechanisms are operating, interacting, combining,
exciting, inhibiting and subsuming one-another in complex and dynamic
ways which influence the spatio-temporal distribution of criminal opportu-
nities.

Unfortunately, several problems endemic throughout the social sciences dic-
tate that we often struggle to directly observe how, and in what ways, such
processes actually take place, and instead are left to observe only their out-
put – the patterning of crime. As a result, theorists and practitioners can
be forced to make a leap of faith in ascribing observed aggregate crime pat-
terns to proposed individual-level behaviour, and visa versa. This divide
between theory and observation dictates that the propositions of the oppor-
tunity theories can be difficult to empirically verify to the degree that would
be desirable for both theory and policy development.

This thesis explores this divide between micro-theory and macro-observation
by applying computational ABM of the crime event. It presents an explana-
tory ABM of crime in which a virtual landscape is constructed and inhabited
by populations of potential victims and offenders whose behaviour is derived
from several propositions of the opportunity theories. Using this model, the
crime patterns produced by virtual offenders operating under a number of
hypothetical decision calculi are examined and compared to several known

1For the sake of parsimony the acronym ABM will refer to both agent-based model
and agent-based modelling.

2Here I appropriate Hedström’s definition of a mechanism as “a constellation of entities
and activities that are linked to one another in such a way that they regularly bring about
a particular type of outcome” (Hedström, 2005, 11)
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regularities of crime. In doing so, this thesis addresses the following overar-
ching research question:

Are the micro-level mechanisms of the opportunity theories generatively suf-
ficient to explain macroscopic patterns commonly observed in the empirical
study of crime?

ABMs allow researchers to create artificial societies in which populations of
virtual agents act and interact according to behaviours specified by the re-
searcher. Operating from the bottom-up, the ABM then permits exploration
of the divide between micro-level individual behaviour and the macro-level
patterns that result from its interactions within society. By constructing
these artificial societies researchers create the analogue to a petri-dish for
the social scientist, in which the viability of theoretical proposition can be
explored free from the ethical and logistical constraints of empirical experi-
mentation.

Following the work of Schelling (1971, 1978) and Epstein and Axtell (1996)
amongst others, the field of generative social science (Epstein, 1999) ap-
plies the ABM as its primary scientific instrument in identifying generative
explanations of known phenomena. The statistical explanation, commonly
employed within the social sciences, establishes an association between two
or more observed characteristics – but without necessarily exposing a mech-
anism through which such characteristics are causally linked. By contrast,
the generative explanation aims to identify those micro-level mechanisms
which, when enacted by a population of virtual agents, are sufficient to gen-
erate macro-level patterns congruent with those observed in empirical study
of the target system. If an individual level behaviour consistently produces
aggregate outcomes similar to those observed in the real world it is deemed
generatively sufficient, and as such, confidence in its validity is increased.
Thus, the ABM allows researchers to identify candidate, generatively suffi-
cient explanations of known phenomena, and in turn, provides a complimen-
tary method to those commonly used in the study of social systems which
can act as an additional point of triangulation when exploring the validity
of theory.

Building on the observations and findings of several recent endeavours that
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have applied ABM in building explanatory models of the crime event(Birks,
Donkin, & Wellsmith, 2008; Brantingham, Glasser, Jackson, Kinney, & Va-
jihollahi, 2008; Eck & Liu, 2004; Groff, 2007b, 2007a, 2008; Liu, Wang,
Eck, & Liang, 2005; Wang, Liu, & Eck, 2008), this thesis provides a sys-
tematic study of the generative sufficiency of mechanisms described by the
opportunity theories in explaining three independent macroscopic regulari-
ties of crime. Developing a generative ABM of offending, three key micro-
level mechanisms of offender movement, decision-making and learning de-
rived from the routine activity approach, rational choice perspective, and
crime pattern theory are identified, formalised and explored. For each mech-
anism, a theoretical model is described, a conceptual model distilling the key
propositions of this theoretical model set out; and a computational model
formalising this conceptual model as a series of behavioural algorithms for
inclusion within the ABM specified. Furthermore, applying a computational
laboratory-based approach, control and experimental behaviours are devel-
oped for each mechanism, representing the absence or presence of a proposed
mechanism within the virtual population; in turn, providing an appropriate
counterfactual through which the impacts of specific mechanisms can be as-
sessed.

Using this model, a series of controlled computational experiments are per-
formed to explore the impacts of these micro-level mechanisms on simulated
aggregate patterns of crime. The crime patterns generated during these ex-
periments are then compared to three empirically derived macroscopic regu-
larities of crime: spatial clustering, patterns of repeat victimisation and the
journey to crime curve. Using a number of commonly applied analytical tech-
niques, the generative sufficiency of each theoretical mechanism in explaining
these known macro-regularities of crime is then assessed. Furthermore, two
distinct model variants are explored: the first simulating offending against
spatially static targets, such as personal residences targeted for residential
burglary; and the second, spatially dynamic targets, such as pedestrians
targeted in street robbery.

In doing so, this thesis explores the following focused research questions:

• Are the mechanisms of the opportunity theories generatively sufficient
to explain the spatial concentration of crime commonly observed in
empirical study?
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• Are the mechanisms of the opportunity theories generatively sufficient
to explain patterns of repeat victimisation commonly observed in em-
pirical study?

• Are the mechanisms of the opportunity theories generatively sufficient
to explain the characteristic journey to crime curve commonly observed
in empirical study?

• Do the mechanisms of the routine activity approach, rational choice
perspective and crime pattern theory have differential impacts on com-
monly observed patterns of crime?

• Do these results differ by crimes that occur against static or dynamic
targets?

An overview of the research undertaken in this thesis, and the findings of
Study 1 (see chapter 6) which concerns spatially static targets are presented
in: Birks, D., Townsley, M., & Stewart, A. (Forthcoming 2012). Generative
Models of Crime: Using Simulation to Test Criminological Theory. Crimi-
nology, Wiley.

1.2 Chapter Overview

The thesis is divided into seven chapters. This, the first chapter, provides an
overview of the research presented in the thesis, outlines its underlying ratio-
nale, and states the overarching research questions it aims to answer.

The criminological theories that underpin the thesis are described in chapter
two, which begins by identifying several key hypothetical micro-mechanisms
proposed by the routine activity approach, rational choice perspective and
crime pattern theory. The interdependence of these mechanisms is high-
lighted, suggesting that the depiction of crime they provide is best described
as a complex dynamic system. Subsequently, a number of consistently ob-
served macroscopic regularities of crime are discussed. In doing so, their
salient macroscopic features are highlighted, and hypotheses suggested by
the opportunity theories proposing how they might be generated from the
decentralised interactions of society discussed. The gap that exists between
the micro-level propositions provided by the opportunity theories and the
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scale at which crime is commonly observed is then discussed. In turn, it
is argued that such a divide dictates that both academics and practitioners
alike are often forced to make a leap of faith in ascribing observed crime
pattern to proposed individual-level behaviour and visa versa; dictating that
the propositions of the opportunity theories are difficult to empirically verify.
The chapter concludes by arguing for the application of ABM to explore this
divide, thus providing an additional point of triangulation in the the study
of the opportunity theories.

Chapter three begins by providing readers with a brief primer for simulation
within the social sciences. The rationale behind the simulation methodol-
ogy is explained and its main scientific applications for theory testing and
prediction are discussed. An overview of ABM is presented, its key com-
ponents outlined, and a number of salient features that make it well suited
for exploring the macro-level ramifications of micro-level mechanisms, such
as those described by the opportunity theories, discussed. Subsequently, a
discussion relating to the validity of simulation is provided, and a number
of techniques through which simulation models can be assessed for valid-
ity identified. Next, an overview of several previous research efforts that
have applied the agent-based methodology within the field of environmental
criminology are discussed. Describing these existing endeavours, a number of
strengths and weaknesses associated with each are highlighted. Drawing on
these observations, several goals are set out for the development of an ABM
of crime which aims to both extend and capitalise on the findings of previ-
ous models. Subsequently, an introduction to the emerging interdisciplinary
field of generative social science is provided. The concept of the generative
explanation is discussed and briefly compared to other forms of explanation.
The chapter concludes by reiterating several micro-level hypotheses of the
opportunity theories and discussing how they are well aligned to the devel-
opment of a generative ABM of crime, which can then be used to assess the
generative sufficiency of such mechanisms in explaining those macroscopic
regularities of crime observed in empirical study.

Chapter four provides a summary of the previous chapters and sets out how
the research proceeds through the development of a generative ABM of crime.
The research questions are reiterated, and the methods through which they
are addressed summarised.
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Chapter five outlines the development of the ABM which forms the primary
scientific instrument of the thesis. The choices made in its development are
identified, the key mechanisms of theory it aims to formalise set out, and
the methods through which these hypotheses are translated into a series of
computational formalisms specified.

In chapter six the experimental method and findings are presented. The ex-
perimental design is defined, model configurations outlined, and the outcome
measures used to analyse simulated crime data described. Subsequently, the
results of these experiments are presented in two distinct studies, each ex-
ploring one of the two model variants which simulate offending against static
and dynamic targets respectively.

Chapter seven provides a discussion of the findings presented in the previ-
ous chapter, summaries the research presented, and in turn, addresses each
of the research questions of the thesis. Subsequently, the ramifications of
these findings for theory, policy and practice are discussed. The chapter
concludes by highlighting several general observations concerning the use of
simulation models in the study of the crime event, describes a number of lim-
itations of the research presented, and highlights potential paths for future
enquiry.
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2
Micro-specifications and Macro-structures

of the Crime Event

This chapter provides an overview of the three theoretical frameworks that
underpin this thesis. The key assertions of the routine activity approach,
rational choice perspective and crime pattern theory are outlined, and a
number of hypothesised micro-level mechanisms of crime provided by each
are identified and described. Subsequently, several methodological critiques
of these depictions of the crime event are presented. These critiques focus
predominantly on the difficulties associated with observing the mechanisms
of crime, and in turn, empirically verifying the propositions made by the
opportunity theories. Subsequently, a number of commonly observed salient
macroscopic regularities of crime are summarised. These regularities include
the spatial and temporal concentration of crime, patterns of repeat victimi-
sation, and the journey to crime curve. Drawing on Brantingham and Brant-
ingham’s (1993b) depiction of the crime event as a patterned activity that
produces patterned outcomes, it is argued that such regularities represent
some of the more predictable emergent outcomes of the mechanisms of crime
operating in-situ1.

Having identified both the hypothetical micro-level mechanisms put forward
by the opportunity theories, and a number of observed macroscopic regu-
larities of crime, a discussion of how we might attempt to link micro-theory
to macro-observation, and in turn, provide assessments of the sufficiency

1Throughout this thesis real world mechanisms are referred to as occuring in-situ, and
those that occur in a silicon-based computer simulation as in-silico.
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of theory is presented. In summarising methods through which such links
are commonly made, it is argued that two fundamental problems limit our
ability to make generalizable causal inferences about the proximal mecha-
nisms of the crime event, and in turn, their causal links to those patterns
of crime we commonly observe. These are (1) a relative scarcity of reliable
and representative micro-level data concerning the offence process and (2)
a number of fundamental difficulties associated with undertaking controlled
experimentation in the study of crime.

As a result of these problems, it is argued that a gap still exists between
the level at which crime is commonly observed, and the level at which in-
ferences concerning its underlying mechanisms must be made. This divide
requires researcher, and practitioner alike to make a ‘leap of faith’ in ascrib-
ing observed crime pattern to proposed offending behaviour (and visa versa).
Consequently, dictating that rigorous empirical validation of the propositions
of the routine activity approach, rational choice perspective and crime pat-
tern theory is difficult to undertake – a task that offers considerable utility to
those who aim to implement opportunity-based crime prevention interven-
tions. Additionally, it is argued that the interconnectedness of these theories
further confounds problems of verification. In turn, highlighting the need for
diverse analytical techniques aimed at exploring the complex and dynamic
interactions from which the crime event emerges.

The chapter concludes by proposing the development of a simulation model
that aims to explore this micro-macro divide, and in doing so provide a
distinct but complimentary approach to those existing methods of study
discussed previously.

2.1 Micro-specifications of the Opportunity Theo-
ries

Environmental criminology proposes that macro-level patterns of crime are
best described as the aggregation of numerous micro-level interactions be-
tween potential offenders, victims, crime controllers, and the environment
they inhabit. Contemporary understanding in this field has been heavily
influenced by three theoretical perspectives: the routine activity approach
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(Cohen & Felson, 1979), the rational choice perspective (Clarke, 1980; Cor-
nish & Clarke, 1986) and crime pattern theory (Brantingham & Branting-
ham, 1978, 1981, 1993a). These three approaches, commonly referred to
as the opportunity theories (Wortley & Mazerolle, 2008) provide proximal
descriptions of the criminal event that are tangible, intuitive and mutu-
ally supportive (Clarke & Felson, 1993) and in application have demon-
strated considerable utility in reducing crime through the application of sit-
uational crime prevention (SCP) (Clarke, 1997), problem oriented policing
(POP) (Goldstein, 1990) and crime prevention through environmental design
(CPTED) (Jeffrey & Zahm, 1993).

Unlike many traditional criminological theories, the opportunity theories fo-
cus on the criminal event, not the offender and their associated criminality.
In doing so, each approach operates under the premise that the crime event
is the result of a specific criminal opportunity. Focusing predominantly on
developing an understanding of the crime event that fosters practical util-
ity for crime prevention, each approach aims to identify suitable ‘handles’
through which crime can be reduced by altering the criminal opportunity. In
identifying such handles and understanding how they might be manipulated,
each approach provides a number of key propositions which it considers sig-
nificant to explaining why crime opportunities are situated when and where
they are, and in turn, why some are exploited by potential offenders. As
such, the opportunity theories concern themselves with the proximal causes
for crime rather than the potential myriad of distal causes for criminality. In
doing so, proponents assert that while concepts such as criminal propensity
are difficult to measure, predict and tackle, the criminal event itself can be
more easily, and justifiably, identified and manipulated to remove the crime
opportunity (Clarke, 1983).

Considering the overall scope of these three perspectives, the routine activity
approach describes the crime event as a spatio-temporal convergence of three
essential elements: a motivated offender, a suitable target and the absence of
capable crime controllers, each in turn influenced by the spatial and temporal
constraints of everyday activity. Crime pattern theory concentrates on where
and when these convergences take place and, in particular, the role that the
dynamic backcloth of criminal and non-criminal activities plays in influencing
their occurrence. When such convergences do occur, the rational choice
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perspective provides a framework for thinking about the decision calculus
employed by the offender and the proximal cues drawn upon to assess the
suitability of a given criminal opportunity.

In approaching the study of crime, each perspective then focuses on a differ-
ent element that contributes to the criminal event in some way: society, the
local environment and the individual (Rossmo, 2000). These elements, how-
ever, are intrinsically interconnected at a multitude of scales, each impacting
upon the other. The crime event as described by the opportunity theories is
the result of numerous spatial and temporal interactions of a vast number of
interconnected heterogeneous entities whose actions are both dynamic and
interdependent.

This observation dictates that the crime event can be viewed as the output
of a complex system. This is certainly not the first time this observation has
been made of social systems in general (see for example (Sawyer, 2005)), or
more specifically in describing the crime event (see for example (Brantingham
et al., 2008; Brantingham & Brantingham, 1993a, 1993b; Eck, Clarke, &
Guerette, 2007; Ekblom, 2008; Wang et al., 2008)). It is however, a point
that will remain of significant importance throughout this thesis and is the
premise that underlies the research presented throughout.

Complex systems theory aims to describe and understand the nature of com-
plex systems. While there is no definitive consensus on what makes up a
complex system, Cilliers (2000) succinctly summarises a number of salient
features commonly exhibited by complex systems, all of which to varying
degrees apply to the crime event as depicted by the opportunity theories. A
summary of these follows (Cilliers, 2000, 24):

1. Complex systems contain large numbers of entities that may, in them-
selves, be simple;

2. The entities of complex systems interact dynamically and in rich non-
linear ways;

3. Complex systems also contain direct and indirect feedback loops; as
such, the actions of some system entities are interdependent on the
actions of others;

4. Complex systems are open systems – the interactions that take place
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between entities do so within some environment and cannot be de-
scribed by static equilibria;

5. Complex systems exhibit collective memory, previous states of the sys-
tem impact on new states of the system;

6. The behaviour of a complex system is derived from the interactions of
entities within it – not by properties of the constituent entities. As
such, system behaviour cannot be predicted by simple examination of
the entities;

7. Complex systems are adaptive.

The aim of this thesis is to explore the complex system of the crime event
through use of the simulation methodology, and permit the systematic study
of likely macro-level ramifications of a number of the micro-level mechanisms
proposed by the opportunity theories.

In the following sections a description of each of the three theoretical per-
spectives provided by the opportunity theories is presented. As discussed,
these approaches are commonly described as acting at different levels of
description: micro – the rational choice perspective, meso – crime pattern
theory, and macro – the routine activity approach (Clarke & Felson, 1993).
This distinction is however dictated by the proposed ramifications of asser-
tions associated with each approach, which, for the most part, describe the
micro-level actions and interactions of individual actors involved in the crime
event.

For each of the three perspectives a key micro-level mechanism of interest
is identified. These mechanisms are: the spatio-temporal activities of in-
dividuals described by the routine activity approach; the offender expected
utility calculus outlined by the rational choice perspective; and the offender
awareness space learning mechanic proposed by crime pattern theory. These
three mechanisms of movement, decision making and learning then form the
underlying assumptions from which entities within the simulation model de-
veloped in this thesis derive their behaviour. Thus, permitting the systematic
exploration of the macro-level ramifications of these micro-level hypotheses,
and in turn, a further assessment of their viability as crime event explana-
tions.
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In focusing on these mechanisms it is acknowledged that each approach offers
a considerably richer account of the crime event than is covered here. The
interested reader is directed to a thorough and insightful treatment of the
opportunity based explanations of crime provided in Wortley and Mazerolle
(2008).

2.1.1 The Routine Activity Approach

Drawing heavily from theories of human ecology (see (Hawley, 1950)) the
routine activity approach describes the influence that day-to-day spatial and
temporal constraints have on legal and illegal activities, and in turn, how
the former provides opportunities for the latter. Cohen and Felson (1979)
propose that where and when offenders and potential victims interact as they
go about their day-to-day routines dictates their relative risks of victimiza-
tion.

Thus, the routine activity approach aims to understand how the spatial and
temporal patterns of societal routine activities influence the occurrence of
crime. This approach relies on the premise that the crime event is the ex-
ploitation of a criminal opportunity that is generated by the convergence
of particular circumstances. The routine activity approach states that di-
rect contact offending2 requires the spatio-temporal convergence of three
essential elements: a motivated offender, a suitable target and the absence
of a capable guardian (Cohen & Felson, 1979). A motivated, or likely, of-
fender is considered anyone inclined to commit a crime. A suitable target is
something considered both vulnerable and rewarding by the likely offender
(Felson, 1983). Guardianship then refers to the presence or proximity of
some individual or implement that in some way dissuades or disrupts the
likely offender (Felson, 2002). Guardians are considered capable if they are
in some way able to protect the target or, more specifically, are perceived by
the motivated offender as capable of doing so. However, guardians are not
commonly police officers or security guards catching an offender red-handed.
Instead, they are more likely to be security devices or ordinary citizens going
about their daily routine, such as a neighbour or bystander (Felson, 2002).
To illustrate, those who stay home on a Friday night will have much lower

2Any crime that is perpetrated physically and intentionally against person or property.
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rates of personal victimization than those who frequent bars or nightclubs
where the likelihood of offender/victim convergence is much greater. Simi-
larly, the homes of college students that are commonly left unoccupied until
the early hours of the morning are likely to suffer greater levels of victim-
ization than those occupied throughout the day by young families – who in
turn provide guardianship.

The routine activity approach describes routine activities specifically as “any
recurrent and prevalent activities which provide for basic population and in-
dividual needs, . . . including formalized work, leisure, social interaction, . . .
which occur (1) at home, (2) in jobs away from home, and (3) in other ac-
tivities away from home” (Cohen & Felson, 1979, 593). Most people travel
between work and home on a regular basis, at regular times and via famil-
iar routes. Similarly, a discrete number of other locations are also visited
regularly. These routine activity nodes, as they are commonly referred to
(Brantingham & Brantingham, 1981), might include the homes of friends and
family, shopping malls and entertainment districts. Such activity nodes are
often also temporally specific, in that they are visited at particular times.
For instance, entertainment locations are frequented on weekend evenings
and work locations during daylight hours Monday through Friday.

Therefore, it is the routine activities of all individuals - potential victims,
offenders and guardians that bring together the essential components of the
theory and dictate when and where an individual may commit, become the
victim of, or provide guardianship against crime. It is these routine activities
that lead to the intersection of large groups of potential victims and offenders
at sporting venues on game day; crowds and pickpockets in city squares on
public holidays; and unoccupied homes and burglars who are travelling home
from the local shopping mall.

In describing this confluence of essential elements and their impact on crime
Cohen and Felson (1979, 589) state that “structural changes in routine activ-
ity patterns can influence crime rates by affecting the convergence in space
and time of the three minimal elements of direct-contact predatory viola-
tions”. Considering this assertion, it is important to note that while the
routine activity approach is commonly described as a macro-level theory of
crime (Clarke & Felson, 1993), its fundamental propositions are derived from
actions that wholly take place at the micro-level: that is the activities an

15



2.1. MICRO-SPECIFICATIONS OF THE OPPORTUNITY THEORIES

individual takes part in. The routine activity approach is then, in reality,
a micro-level theory that is often described in terms of its macro-level ram-
ifications (Eck, 1995). Given that the approach describes how the spatial
and temporal activities of individuals influence the occurrence of crime, this
assertion is the first that the simulation model developed in this thesis aims
to explore the ramifications of, that is:

What are the likely crime impacts of individual routine activities?

Given its ultimate aim to permit reductions in crime, the routine activity
approach argues that crime is prevented through the removal of any one
of the offender, target or lack of guardian from the aforementioned con-
vergence. Initially the routine activity approach considered only one actor
capable of crime control – the guardian. Subsequent revisions however iden-
tified two further crime controllers – the handler and manager. Embrac-
ing concepts from control theory (Hirschi, 1969), handlers are persons with
whom the offender has some effective tie and whose presence is sufficient
to dissuade offending (Felson, 1986). Examples of handlers might include
teachers, spouses, relatives, and peers. Eck (1994) then proposed a further
crime controller, this time focused on the place rather than the target or of-
fender – the manager. Place managers prevent crime by preventing offender
access to a location, or undermining offender’s abilities to offend within it.
Such place managers might include shopkeepers, cinema ushers, bar owners
or landlords. In incorporating these additional dimensions Felson (2008, 74)
states that “[a] crime occurs when the offender escapes handlers, finds targets
free from guardians in settings not watched by managers”. This interaction
of offender, victim and place, and the associated crime control agents that
may in turn act upon them is often depicted by the crime triangle (Figure
2.1).

In applying this approach to the study of observed crime patterns, routine
activities have been used to explain a range of crime characteristics from
wide scale changes in crime trends observed over time, to the formation of
particular crime patterns. In asserting that crime rates need not necessarily
be dependant on the absolute numbers of potential offenders, Cohen and
Felson attribute changes in national crime trends to changes in widespread
societal activities that put people and places at greater risk of victimisation.
Increases in residential burglaries, for instance, resulting from the reduced
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Figure 2.1: The Crime Triangle (Clarke & Eck, 2005)

guardianship of homes during daylight hours as more women entered the
workforce post World War II (Cohen & Felson, 1979).

The dynamics of routine activities also provide explanations of micro- and
meso-level crime patterns and have been applied to explain the concentration
of crime in particular places (Sherman, Gartin, & Buerger, 1989). Concen-
trations of crime in particular hot spots can be described as the aggregation
of numerous individual routine activities. In other words, hot spot areas
are those locations that give host to a high number of offender-target-lack
of guardian/handler/manager convergences, whilst cool areas do not. In
application the routine activity approach has been used to understand a
wide range of criminal activities including both property (Cohen & Cantor,
1980, 1981; Mustaine & Tewksbury, 1998; Rengert & Wasilchick, 1985) and
interpersonal crime (Caywood, 1998; Clarke, Ekblom, Hough, & Mayhew,
1985; Cohen, Cantor, & Kluegel, 1981; Lynch, 1987; Mustaine & Tewksbury,
1999).

Whilst the routine activity approach is widely accepted amongst criminolo-
gists, a number of critiques have been levelled against it. Perhaps the most
significant of these concerns the difficulties associated with direct measure-
ment of the individual components it describes – that is, the routine activities
of individuals and the suitability and capability of targets and controllers.
In acknowledging the limitations of the original data used to describe the
key elements of theory, Cohen and Felson (1979, 600) state that “annual
time series data do not allow construction of direct measures of changes in

17



2.1. MICRO-SPECIFICATIONS OF THE OPPORTUNITY THEORIES

hourly activity patterns”. Thus, in the absence of reliable data concern-
ing these characteristics, aggregate demographic data are employed as proxy
measures of activity. Cohen and Felson utilise indicators including marital
and employment status to estimate likely routine activity characteristics.
Similarly, other studies employing the approach have used measurements of
television viewing, number of nights spent away from home per week and
VCR ownership to infer the likely lifestyles of individuals (Clarke et al.,
1985; Gottfredson, 1984; Messner & Blau, 1987; Sampson & Wooldredge,
1987).

The ramification of this limitation is substantial. As has been discussed, the
hypothesised mechanisms described by the routine activity approach specify
the actions and interactions of individuals, that is – where people go, when
they go there, and who/what do they encounter/interact with as they do.
Data concerning these activities are difficult not only to collect, but also to
appropriately quantify in a systematic fashion. Unfortunately, a reliance on
aggregate data to describe such activities obfuscates much of the underlying
complexity, which, to those who aim to verify the propositions of the routine
activity, is of great use. Furthermore, by applying aggregate indicators to
infer individual characteristics, such methods are vulnerable to the ecological
fallacy (Durkheim, 1897; Robinson, 1950).

In discussing the implications of this weakness Eck (1995) highlights that
a reliance on macro-level data precludes rigorous testing of the micro-level
propositions outlined by the routine activity approach. Furthermore, consid-
ering how these weaknesses have impacted the application of the approach
in general Pease (1997) notes that studies applying the routine activity ap-
proach are invariably post-hoc and descriptive in nature, thus limiting their
ability to test the underlying propositions of the approach, and in turn re-
stricting its predictive capacity.

Additionally, and of considerable relevance to this study, Jeffrey (1993, 492)
states that the routine activities approach provides a “description of [crime]
events and not an explanation”. This thesis will contest this assertion,
and in doing so follow the approach laid out by generative social science
(Epstein, 1999) - proposing that a systematic micro-level description of crime
events does constitute an explanation – a generative explanation (see sec-
tion 3.8).
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2.1.2 The Rational Choice Perspective

When victim and offender do converge, the potential offender must make the
decision to exploit the opportunity presented. The rational choice perspec-
tive deals with how offenders make such decisions (Clarke, 1983). Providing
an ideal compliment to the routine activity approach, the rational choice
perspective provides a hypothetical offender calculus operating at the con-
vergence of potential target and motivated offender.

The rational choice perspective portrays the offender as a rational decision-
maker who applies some level of preparation and foresight to their criminal
activity. This notion of offender rationality implies a form of cost-benefit
analysis undertaken by the offender (consciously or unconsciously) with re-
gard to criminal opportunities presented to them. Potential offenders, it is
suggested, weigh up the risks, rewards, and required effort associated with
engaging in criminal activity. However, such rationality is not absolute and
instead must draw upon restricted and localised information relating to both
proximal cues and previous experience, and as such can be described as
bounded (Simon, 1990). The assertion of the rational choice perspective
then is that offenders are capable of adapting their behaviours to unforeseen
or altering external influences in an attempt to minimise both risk and effort
while maximising reward – that is, the optimisation of expected utility.

This approach to understanding the crime event is underpinned by several
important premises outlined by Cornish and Clarke (1986). First, offend-
ers are self-interested parties who are in some way out to profit from their
criminal endeavours, be it through money, status or excitement. Second,
the choices associated with one type of offence are distinct from the choices
associated with another. Thus, a crime-specific focus is required if one is to
adequately explain criminal choices. Finally, the rational choice perspective
calls for the development of distinct decision-making models for the crim-
inal involvement process and that of the criminal event. In this regard,
both Cornish and Clarke (1986) and Gottfredson and Hirschi (1990) point
out that decisions about criminal involvement are determined by multiple
choices made over considerable periods of time. Event decisions, on the
other hand, which dictate specifically when and where criminal opportuni-
ties are encountered and assessed for viability, are often based on restricted
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information, which usually relates to the immediate situation an offender
finds themselves in. It is these pre-crime situations that determine the vari-
able perceptions of risk, reward and effort associated with a given criminal
opportunity (Cusson, 2002). Suggested factors that contribute to crime-
attractive situations are: with respect to victims - negligence, provocation,
vulnerability; targets - interesting objects, CRAVED – Concealable, Remov-
able, Available, Valuable, Enjoyable, Disposable (Clarke, 1999); facilitators
- weapons, alcohol, drugs, vehicles; and the physical environment - obscurity
(Cusson, 2002).

Given this proposed criminal event calculus operated by offenders, a funda-
mental tenet of the rational choice perspective is that some opportunities
for offending are deemed more attractive to offenders than others, and it
is these opportunities that are most likely to be targeted. Here it is hy-
pothesised that those targets deemed most suitable by this expected utility
function are those proximal, known opportunities that are deemed to offer
the greatest rewards while minimising risk and effort. This proposition is
the second explored in this thesis:

What are the likely crime impacts of an expected utility calculus employed by
offenders?

While the rational choice perspective initially implied an expected utility
calculus utilised by all offenders prior to committing an offence, more re-
cent research has suggested that offenders do not always assess risks and
rewards associated with committing an offence, and may instead be influ-
enced directly by specific localised situational factors (Wortley, 2002). These
situational precipitators provide cues that in turn may prompt individuals to
offend, put pressure on individuals to offend, permit individuals to offend or
provoke individuals into offending (Wortley, 2002). In response, recent revi-
sions to the rational choice perspective suggest a typology that categorises
offenders by their readiness to offend (Cornish & Clarke, 2003). This typol-
ogy proposes three classes of offender: the ‘anti social predator’, who is ready
to offend and may actively seek out viable opportunities to do so; the ‘mun-
dane offender’, who will only offend if presented with a viable opportunity;
and the ‘provoked offender’, who reacts to those situational precipitators
previously described.
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A considerable breadth of research is consistent with the proposition that of-
fenders employ some form of rationality in their offending strategies (Clarke,
1997). For example, burglars favour unoccupied homes (Bernasco & Nieuw-
beerta, 2005), and further, those which are not overlooked by neighbours
(Wiesel, 2002); violent offenders avoid victims who may be armed (Wright,
Rossi, & Daly, 1983); and sex offenders undertake actions that aim to reduce
their risk of detection (Beauregard, Rossmo, & Proulx, 2007). In addition,
reductions in offending are observed given the introduction of effort/risk in-
creasing and reward reducing interventions provided by SCP (Clarke, 1997).
Thus, providing further support for the underlying assertion that offenders
are rational in their criminal endeavours.

The rational choice perspective has always situated its efforts in providing
a pragmatic tool for crime prevention underpinned by what it describes as
‘good-enough theory’ (Cornish & Clarke, 2008). As such, it does not aim
to offer a holistic explanation of criminal behaviour. However, an important
critique of the approach lies in the difficulties associated with empirically
verifying the mechanisms it does suggest are operating at the individual
level, that is, the expected utility calculus. While Fattah (1993) proposes
that the simple observation that target selection is not random suggests that
some form of rationality is employed by offenders, Jeffrey and Zahm (1993,
339) contend that such choices are “neither observable nor empirical”, sug-
gesting that it is only possible to infer choice when some external action
takes place. Notwithstanding this criticism, numerous studies remain con-
sistent with the assertions of the rational choice perspective, and SCP has
been demonstrated to be effective in a wide variety of contexts. However, it
is generally acknowledged that data at the appropriate resolution to permit
rigorous testing of the rational choice perspective is difficult to obtain.

2.1.3 Crime Pattern Theory

Whilst focusing on the offender decision-making process, the rational choice
perspective also draws significantly on event and environmental information.
It is this that informs much of the offender’s perceptions concerning the rel-
ative risk, reward, and effort associated with a given criminal opportunity,
and in turn their previous experience of criminal opportunities within an
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environment. Furthermore, the routine activity approach describes the con-
vergence of victim and offender constrained by patterns of activity that are
both influenced by, and exert influence on, the environment. Consequently,
in any analysis of the crime event the significance of the environment should
not be overlooked.

Rudimentarily, Brantingham and Brantingham’s (1993a) pattern theory of
crime3 focuses on the mechanics of how offenders find suitable targets and
crime places within their environment. By concentrating on when and where
convergences between victim and offender take place, crime pattern theory
includes the environment in opportunity-based explanations of crime; thus
providing the backcloth for both offender movement and the supply of crimi-
nal opportunities which help to explain target selection (Hearnden & Magill,
2004).

Drawing on Jeffrey’s initial work on CPTED (Jeffrey, 1976, 1977), Brant-
ingham and Brantingham’s early theoretical endeavours proposed a hypo-
thetical model of crime site selection, setting out a number of propositions
concerning the person-environment interaction and its influence on crime
commission (Brantingham & Brantingham, 1978). The geometry of crime
theory which subsequently followed extended these efforts by exploring the
likely ramifications of such selection strategies on the spatial patterning
of crime (Brantingham & Brantingham, 1981). In doing so, the authors
present a series of hypothetical offender-target-environment configurations
which begin at the most abstract (single offender, uniform distribution of
targets, single activity node) and move towards the more realistic (multi-
ple offenders, non-uniform distribution of targets, multiple activity nodes),
in turn examining the likely offender search strategies and crime patterns
that will result given these varying initial conditions. These scenarios are
of particular relevance here as the simulation model presented in this thesis
offers a formalised tool through which the likely ramifications of such hy-
pothetical offender-target-environment configurations can be systematically
explored.

Brantingham and Brantingham’s (1993a) pattern theory of crime provides a
meta-theory for environmental criminology (Andresen, 2010). Uniting sev-
eral analogous and complementary propositions from both their own research

3Or crime pattern theory as it has become commonly known
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(Brantingham & Brantingham, 1978, 1981, 1982, 1984) and a range of others
including the routine activity approach (Cornish & Clarke, 1986), rational
choice perspective (Cohen & Felson, 1979), strategic analysis (Cusson, 1983)
and lifestyle theory (Hindelang, Gottfredson, & Garafalo, 1978), crime pat-
tern theory operates under a number of common interconnected propositions
concerning the crime event. Crime is the output event of a multi-staged se-
quence of conscious or unconscious decisions. These decisions which bring
offender to crime opportunity and, in turn, affect its assessment are “nei-
ther random nor unpredictable” (Brantingham & Brantingham, 1993a, 261).
Such decision sequences are rational, crime specific (Brantingham & Brant-
ingham, 1978) and involve an offender who is sufficiently motivated. The po-
tential sources of such motivation are diverse, but understandable. Offenders
going about their day-to-day activities, or through purposeful searches in and
around such activity spaces (Brantingham & Brantingham, 1984) encounter
opportunities for crime. The suitability of a given opportunity is a function
of both the target itself and its proximal environment. Offenders develop
cognitive maps, or awareness spaces (Brantingham & Brantingham, 1984)
in and around their activity spaces. These awareness spaces are influenced
by a multitude of cues that the physical, social and cultural environment
provide to the offender about the suitability of potential crime targets at
specific times, locations and under specific circumstances. Over time, offend-
ers learn which of these cues differentiate good and bad targets, and in turn
develop templates for successful offending which are applied and reinforced
(Brantingham & Brantingham, 1984; Cornish, 1994). As a result, the distri-
butions of motivated offenders, suitable crime opportunities and ultimately
victimisation are influenced by the activity patterns of both offenders and
victims, the dynamic environmental backcloth upon which they take place,
and the multidimensional interactions that occur between them.

Importantly, the interconnectedness of the above axioms dictates that crime
is complex. However, Brantingham and Brantingham (1993a) suggest that
such complexity does yield patterned trace effects that allow for the under-
standing of the criminal event as a complex patterned system. In discussing
this patterning of crime Brantingham and Brantingham state that “[c]rimes
are patterned; decisions to commit crime are patterned; and the process
of committing a crime is patterned” (Brantingham & Brantingham, 1993a,
264). This concept is of considerable importance to this study, as it is this

23



2.1. MICRO-SPECIFICATIONS OF THE OPPORTUNITY THEORIES

complex system that the simulation developed in this thesis aims to explore,
and in turn, such emergent patterns which its application aims to identify
candidate explanations for.

A fundamental tenet of both the crime pattern and geometry of crime the-
ories is that potential offenders are most likely to target crime opportuni-
ties that are deemed suitable and are encountered within their own personal
awareness spaces (Brantingham & Brantingham, 1993b; Clarke & Eck, 2003)
(see Figure 2.2). These awareness spaces reflect the knowledge of a given lo-
cality built up over time as an offender becomes more familiar with locations
that are frequented on a regular basis. As such, awareness spaces are likely
formed around the common activity nodes of an individual and the paths
between them (Brantingham & Brantingham, 1984; Eck et al., 2007). As
previously described, such routine activity nodes are likely to be related to
non-criminal activity such as the home, workplace and entertainment ar-
eas. As an individual spends more time in these areas, both their awareness
of, and ability to exploit, opportunities for crime that exist within them
increase.

It is this micro-level assertion that is the last of the three to be explored in
this thesis:

What are the likely crime impacts of offender awareness spaces?

Figure 2.2: The Geometry of Crime (adapted from Brantingham & Brant-
ingham, (1981))
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Crime pattern theory also provides a number of specific hypotheses con-
cerning the underlying mechanisms that generate observed distributions of
crime: crime attractors, crime generators, and crime enablers. Each of these
hypotheses describe the spatio-temporal interaction of offenders, victims,
controllers and their environment and how these interactions lead to the
development of locations which are subject to disproportionate levels of of-
fending (Brantingham & Brantingham, 1995; Clarke & Eck, 2003).

Crime generators are locations that attract large numbers of individuals for
non-criminal reasons, such as shopping malls, transportation hubs, down-
town intersections, theme parks, and hospitals. These locations bring to-
gether large numbers of potential victims and offenders, in turn increasing
the number of victim-offender convergences that take place, and as a result,
increasing the likelihood of offending occurring within them.

Crime attractors describe locations that are known to offenders due to the
wealth of criminal opportunities they offer. Given their potential rewards,
these locations attract offenders. At first, offenders might travel to these
locations to commit crime, however, over time offenders may relocate closer
to them in order to more readily take advantage of the opportunities they
provide. Examples of crime attractors might be locations used for open drug
markets or street prostitution.

Crime enablers describe locations which lack adequate place management
and in turn both guardianship and handling. These locations ‘permit’ more
offences to occur, as targets within them are not as well protected and the
behaviour of potential offenders is less well regulated. Examples of crime en-
ablers might include unsecured and unattended car parks or poorly managed
bars or nightclubs.

While these three hypotheses specify different mechanisms that may cause
the emergence of disproportionate levels of offending, they need not be mutu-
ally exclusive. Instead, locations may be described as both crime attractors
and generators or enablers, or alternatively, locations may evolve from one
type to another. To illustrate, Clark and Eck (2003) describe a new shopping
mall that may initially begin as a crime generator attracting large numbers of
shoppers, and, in doing so bring together large numbers of potential victims
and offenders. As offenders become aware of this concentration of potential
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criminal opportunities they may be attracted to the location in greater num-
bers, leading to the development of a crime attractor. Over time, greater
concentrations of offending may lead to a decline in shoppers visiting the lo-
cation, which in turn may influence shops and other facilities to relocate to
other areas. This withdrawal of both potential guardians and place managers
may then lead to further increases in offending and the development of the
location as a crime enabler. Alternatively, some locations may function as a
crime generator during daylight hours but convert to an attractor at night.
Thus, all or some of the underlying mechanisms described may influence one
another and the distribution of crime occurring in an area over time. Such
processes through which specific facilities or locations can facilitate a mul-
titude of crime related interactions further highlights the complexity of the
crime event as described by crime pattern theory.

Much like the routine activity approach and rational choice perspective, a
key criticism of crime pattern theory focuses on the difficulties associated
with establishing its empirical validity in a rigorous fashion. To illustrate,
consider the concept of the awareness space. Understandably, our ability
to empirically verify the presence of a cognitive map that aids in offending
is limited. Such a structure may well not be apparent to the offender as
an identifiable entity, never mind anyone external who aims to ascertain its
existence and significance in relation to offending. Indeed, the only way one
might aim to explore the notion of such a cognitive map which aids in offend-
ing is through asking offenders, yet such discussions are unlikely to reveal
its actual characteristics. Such a map is likely unconsciously represented
as a complex interplay of memories and experience. Therefore, quantifying
individual offenders awareness spaces at the level that would be desirable to
rigorously test their impacts on the occurrence of crime is a difficult endeav-
our. Thus, again a lack of reliable micro-level data concerning the proposed
mechanisms limit our abilities to rigorously explore their validity and likely
impacts on crime.

2.1.4 Summary

The routine activity approach, rational choice perspective and crime pattern
theory are compatible and mutually supportive (Clarke & Felson, 1993),
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each describing a different component of the crime commission process. The
rational choice perspective focusing on the decision-making process of the
offender; the routine activity approach providing the framework from which
hangs the backcloth of choices; and crime pattern theory concentrating on
where and when such choices take place, and hence, where and when both
offenders and opportunities for offending are distributed.

In discussing these approaches it was noted that while each of the three
theories are commonly depicted as operating at different levels of explanation
(see Figure 2.3) this distinction is predominantly framed around the level at
which the ramifications of the mechanisms they describe are discussed. The
mechanisms of environmental criminology operate at the micro-level – that
is, they describe actions and interactions of individuals and their internal
cognitive processes.

Figure 2.3: Levels of Crime Event Description provided by the Opportunity
Theories

In focusing on these micro-level hypotheses provided by the opportunity the-
ories – three micro-level mechanisms of interest were then identified.

1. The spatial and temporal activity patterns outlined by the routine
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activity approach;

2. The expected target utility calculus described by the rational choice
perspective;

3. The awareness space spatial learning mechanic suggested by crime pat-
tern theory.

Figure 2.4 depicts these micro-mechanisms of movement (routine activities),
learning (awareness spaces), and decision-making (rational choice). In con-
sidering these three hypothesised mechanisms, a number of critiques asso-
ciated with their empirical verification were then outlined. These critiques
focused on the difficulties associated with observing the crime event at an
appropriate resolution in order to empirically verify the existence of such
mechanisms. Given these problems associated with observing and measur-
ing the micro-level mechanisms of the crime event, the following section now
describes some of the more salient findings from the study of those charac-
teristics of crime that we can, and do, commonly observe. And which the
opportunity theories propose are the emergent outcomes of the micro-level
hypotheses they provide – that is, the macro-structures of crime.

Figure 2.4: Micro-Mechanisms of the Opportunity Theories (adapted from
Brantingham & Brantingham, (1981))

2.2 Macro-structures of Crime

Having described several micro-level crime event mechanisms suggested by
the routine activity approach, rational choice perspective and crime pattern
theory, this section highlights a number of salient macroscopic regularities
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of crime that are commonly observed in its empirical study. These macro-
scopic regularities of crime are observed across a wide variety of offence types,
localities and contexts and include the non-uniform spatial and temporal dis-
tribution of crime, patterns of repeat victimisation and the journey to crime
curve. Through induction, hypotheses proposing these regularities as the ob-
servable trace-effects of the mechanisms of the opportunity theories can be
generated. A number of these regularities and several associated hypotheses
provided by the opportunity theories that relate to their formation are now
described. Subsequently, it will be argued that through the use of simulation
these hypotheses can be tested, assessing if the micro-mechanisms of the op-
portunity theories described previously are indeed sufficient to produce such
macroscopic regularities of crime.

2.2.1 Non-Uniform Spatial & Temporal Distributions of Crime

Spatial Clustering

Crime is not uniformly distributed across the landscape. Instead, the spa-
tial patterning of crime conforms to a Pareto law of concentration, with
the majority of crime concentrating in a minority of geographic areas often
referred to as crime hot spots or hot places (Block & Block, 1995; Braga,
2005; Brantingham & Brantingham, 1982; Eck, Chainey, Cameron, Leitner,
& Wilson, 2005; Sherman, 1995; Sherman et al., 1989; Weisburd, Maher, &
Sherman, 1992).

Crime hot spots are best thought of as a method for conceptualising the
distributions of crime across space. It is important to note that there is no
definitive quantity of crime required within an area for it to be considered
hot. Rather, hot spots are delineated as such when examined relative to
their surroundings; hence, a hot spot within a low crime area may have less
crime than a cool spot within a high crime area. What is significant is that
within some area of study some locations experience disproportionate levels
of victimisation relative to others. Hot spots can be identified at varying
scales of aggregation (Brantingham, Brantingham, Vajihollahi, & Wuschke,
2009; Rengert & Lockwood, 2009; Weisburd, Bruinsma, & Bernasco, 2009)
(see Figure 2.5). Thus, the term ‘crime hot-spot’ can be used to describe a
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wide variety of geographical units of analysis, from individual hot locations
or addresses, streets, blocks or intersections to hot neighbourhoods, towns
or cities.

Figure 2.5: Crime Hotspots at Varying Scales of Aggregation

A number of different mechanisms proposed by the opportunity theories
offer potential explanations for these observed distributions of crime. Rou-
tine activity theory suggests that specific hot addresses experiencing dis-
proportionate levels of crime are those which lack adequate guardianship,
or more specifically, place managers, whose aim it is to regulate behaviour
within them. This assertion is derived from the analysis and comparison
of crime and non-crime locations (Eck & Weisburd, 1995; Homel & Clark,
1995).

Crime pattern theory and the routine activity approach also suggest that the
distribution of criminal events is a function of the intersections of potential
offender, victim and guardian routine activities (Brantingham & Branting-
ham, 1993b) (see for instance the depictions of crime generator, attractors,
and enablers discussed in section 2.1.3). Thoroughfares bring together high
numbers of people, including potential victims and offenders. Thus, block
and street or intersection concentrations of crime can be described as loca-
tions where comparatively large numbers of offender activity and awareness
spaces intersect with locations which contain desirable, vulnerable and/or
rewarding targets or victims. For example, consider pick-pocketing in inner
city locations where large numbers of potential victims congregate whilst
going about their daily routines and offenders are offered reasonable levels
of anonymity. Similarly, hot neighbourhoods can be explained by examining
the intersection of aggregate offender and victim routines at a neighbourhood
level.
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Temporal Clustering

Much in the same way that crime is not uniformly distributed in space,
neither is it over time. Very few locations experience constant levels of
victimisation. Instead, crime hot-times where the level of victimisation is
disproportionate relative to other times are often observed (Brantingham &
Brantingham, 1981; Bromley & Nelson, 2002; Nelson, Bromley, & Thomas,
2001; Ratcliffe, 2002, 2006; Townsley, Homel, & Chaseling, 2000). Similar
to spatial hot spots, this temporal clustering of crime is observed at sev-
eral levels of granularity. At the lowest level, crime concentrations vary by
hour throughout a single day. The assertion of the opportunity theories is
that such clustering is intrinsically linked to the temporal nature of both
available criminal opportunities and the routine activities of potential of-
fenders, victims and controllers. For example, more residential burglaries
occur throughout the day when people are working and guardianship of the
home is reduced (Felson, 2002). Similarly, criminal damage committed by
youth offenders clusters not only around the paths between potential offend-
ers’ homes and schools, but also at the times students travel to and from
school. In considering these patterns, Ratcliffe (2006) proposes a temporal
constraint theory that describes how the targeting strategies of potential of-
fenders are restricted by temporal requirements of their everyday non-crime
activities.

In addition to hourly trends, crime also clusters in daily patterns dictated
by the changes in routine activities that occur over the course of a week.
For instance, alcohol-related disorders are more likely to occur on Friday
and Saturday nights when more people frequent bars and nightclubs, thus
bringing together more potential victims and offenders. Crime is also subject
to seasonal trends, where a disproportionate number of offences occur within
certain months of a year. In examining such seasonal variations, Hird and
Ruparel (2007) demonstrated that 25 of 29 crime types examined experienced
some kind of seasonal trend. Such seasonal trends can be attributed to wide
scale changes in the routine activities that occur throughout the year. For
example, reduced daylight hours during winter dictating that more people
travel home at night, or increased numbers of young people in public places
during semester breaks.
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Thus, it is the assertion of the opportunity theories that the observed non-
uniformity of both spatial and temporal concentrations of crime are a func-
tion of the spatial and temporal characteristics of offender, victim, and con-
troller activities, and their subsequent interactions.

2.2.2 Patterns of Victimisation

Repeat Victimisation

Following the same Pareto distribution described previously, crime not only
concentrates spatially and temporally, but also with respect to a small num-
ber of individuals. These individuals commonly referred to as ‘repeat victims’
experience disproportionate levels of victimisation (Farrell, 1995; Farrell &
Pease, 2001; Hindelang et al., 1978; Pease, 1998) as depicted in Figure 2.6.
More generally, the term repeat victimisation describes any person, place, or
target that is subject to repeated criminal victimisation.

Figure 2.6: The distribution of victimisation

This observed concentration of victimisation might imply that there is a level
of consistency in what makes a target attractive to offenders, be it the most
rewarding, least risky, most easily exploited or any combination of the above.
Consequently, suggesting a consistency in the mechanisms used by offenders
to evaluate potential targets. However, in studying the risk of residential
burglary re-victimisation, Johnson, Bowers, and Hirschfield (1997) empiri-
cally demonstrate that while the risk of victimisation for previous victims is
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greatly increased directly after an initial victimisation, this risk decays over
time, implying that the temporal diffusion of crime risks is dynamic.

Existing theory provides two potential and compatible explanations for this
diffusion of crime risk; event dependence: often referred to as the boost hy-
pothesis, and event heterogeneity: the flag hypothesis (Pease, 1998; Tseloni
& Pease, 2003). Briefly, the boost hypothesis suggests that by successfully
victimising a property, the offender learns about the suitability of the se-
lected target. This increase in an offender’s awareness of a particular target
permits minimisation of both the effort and risk associated with any conse-
quent victimisation. In addition, offenders returning to a target have more
complete information about the rewarding goods it offers, and are also aware
that those they originally targeted are likely to have been replaced by in-
surance (Farrell & Pease, 1993). Hence, previous victimisation boosts the
likelihood of subsequent victimisation. On the other hand, the flag hypothe-
sis proposes that victimisation flags the enduring risk of a victimised target,
be it an inherent weakness that makes victimisation easy or less risky, or
alternatively, some aspect that makes the rewards a target offers especially
desirable. Therefore, while repeat victimisation of a target may not imply
the return of a previously successful offender, other offenders may identify
the same characteristics that made the target desirable and victimise it them-
selves.

Near Repeat Victimisation

By extension of the boost and flag explanations of repeat victimisation, re-
cent research concentrating on the occurrence of residential burglary has
demonstrated that when victimisation occurs at a property, it is not only
the initially victimised property that is at a heightened risk of victimisation
for a finite amount of time, but also those within close proximity (Johnson
& Bowers, 2004; Townsley, Homel, & Chaseling, 2003). Using methodologies
developed within the field of epidemiology, a number of international studies
have demonstrated that the risk of residential burglary victimisation clusters
both spatially and temporally (Johnson et al., 2007). Likening this spatial
and temporal spread to that of a communicable disease, offences that occur
within close spatial and temporal proximity of an initial victimisation have
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been termed near-repeats.

This research theorises that such patterns of victimisation are the trace ef-
fects of the way in which offenders search for potential targets. In keeping
with crime pattern theory, it is suggested that offenders become familiar
with certain areas that overlap their existing routine activity spaces and of-
fer suitable criminal opportunities. Over time, offenders develop templates
for successful offending which allow them to generalise to targets with similar
characteristics to those initially victimised. The law of spatial dependence
states that things which are spatially proximate are likely characteristically
similar (Tobler, 1970), thus implying that properties within close proximity
to the initially victimised one will have similar layouts, weaknesses, residents,
target goods and so on. Thus, targeting other properties in close proximity
to some initial victimisation minimises effort – providing offenders with op-
portunities that are perceived as a known quantity with respect to potential
risks and rewards.

2.2.3 The Journey to Crime Curve

Journey to crime research concerns itself with the spatial distribution of
offenders and the offences they commit. By examining the distances and
directions over which offenders travel to commit offences, journey to crime
studies attempt to increase understanding of offender mobility. The general
observation of a significant number of studies within this area is that of-
fenders do not commonly travel long distances to commit crime. As such,
numerous studies examining crime trips have demonstrated the presence of a
distance decay function where the majority of crime trips, after some initial
buffer zone (Rossmo, 2000), lie within a short distance of offenders’ homes as
depicted in Figure 2.7. Such observations have been made across a range of
different crime types including residential burglary (Barker, 2000; Costello &
Wiles, 2001; Rengert, Piquero, & Jones, 1999; Rengert & Wasilchick, 1985;
Reppetto, 1974; Snook, 2004), robbery (Nichols, 1980; Pettiway, 1982; Rep-
petto, 1976) and rape (Amir, 1971; Canter & Larkin, 1993; LeBeau, 1987;
Rossmo, 2004).

It is often suggested that the presence of this distance decay function re-
flects the use of some form of cost-benefit calculus on behalf of the offender
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Figure 2.7: The Characteristic Journey to Crime Curve

(Rossmo, 2000). Briefly, offenders are looking for viable and rewarding tar-
gets, yet as distance and travel time from the home increases, so does the
effort required in, and cost associated with reaching these targets. Therefore,
if offenders attempt to minimise effort, viable targets close to the home are
more likely to be selected than those further away. This observation pro-
vides further support for the rational choice approach to crime occurrence.
Further, it is also suggested that the observed ‘buffer zone’ of few very short
crime trips can be explained by offenders’ reluctance to commit offences
within the direct vicinity of their own homes where they are more likely
to be recognised and thus are at a heightened risk of detection (Rossmo,
2000).

Recent research however has suggested that the ubiquity of these observa-
tions may only extend to aggregate journey to crime curves, where multiple
offenders’ crime trips are collated and analysed. While this approach may
often be necessitated by the relatively low numbers of identified crime trips,
a recent large-scale empirical study has highlighted the dangers of commit-
ting the ecological fallacy by ascribing the typical distance decay curve to
individual offender activities (Townsley & Sidebottom, 2010). Studying just
over twenty thousand journeys to burglary the authors demonstrate exten-
sive variation in distances travelled by individual offenders; and furthermore,
that the characteristic distance decay curve is most commonly observed in
only a small proportion of the offending population, and typically by those

35



2.3. LINKING MICRO-THEORY AND MACRO-OBSERVATION

who are most prolific.

2.3 Linking Micro-theory and Macro-observation

The first sections of this chapter outlined a number of micro-level proposi-
tions concerning the crime event provided by the routine activity approach,
rational choice perspective and crime pattern theory. These three theo-
ries were shown to be compatible and mutually supportive, providing a
holistic view of the offence process that can be applied to many types of
crime (Felson & Clarke, 1998). They are well established and a substantial
amount of empirical evidence appears consistent with the environmental and
opportunity-based explanations for crime they provide (Clarke, 1997). Fur-
thermore, in application, the ‘handles’ identified by the opportunity theories
have provided significant reductions in offending through crime prevention
approaches such as SCP, POP and CPTED.

For these reasons, much place and event-focused research tends to take a uni-
fied approach to the three theories, each describing a different component of
the crime commission process. The rational choice perspective focusing on
the decision-making process of the offender; the routine activity approach
providing the framework from which hangs the backcloth of choices; and
crime pattern theory concentrating on where and when such choices take
place, and hence, where and when both offenders and opportunities for of-
fending are distributed.

Many of these concepts draw upon, and are influenced by one another. As a
result it can often be difficult to delineate between where one theory should
end and another begin. Indeed, several key concepts of each of the theories
discussed are analogous. To illustrate, the rational choice perspective dis-
cusses the search process undertaken by offenders in choosing a suitable crime
opportunity. While such a process is not explicitly spatial, both spatial and
temporal characteristics of potential criminal opportunities can be seen to
impact on both the availability and suitability of offending choices. Similarly,
while Cohen & Felson’s routine activity approach predominantly discusses
the macro level ramifications of changes to societal activity patterns, such
activity patterns are inherently occurring at the individual level and it these
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patterns of activity (and their subsequent interaction with the environmen-
tal backcloth) that are discussed throughout Brantingham & Brantingham’s
theoretical endeavours (1981, 1993a, 1993b). This overlap amongst theo-
retical approaches is in fact an appropriate reflection of the interconnected
nature of the phenomena being studied. Crime is the result of a complex
dynamical system. Crime patterns such as those discussed in section 2.2
are the direct result of numerous micro-level spatio-temporal interactions
of multiple heterogeneous actors who are connected at multiple scales, and
whose actions are interdependent.

While direct observation of these mechanisms and their interactions is rare
(see the critiques of the opportunity theories discussed in section 2.1), their
outputs are routinely observed – crime. The last 25 years have seen signifi-
cant advances in both the quantity and quality of data collected concerning
the crime event. In analysing these data a number of salient macro-level
crime patterns have been consistently observed (see section 2.2). For ex-
ample, crime concentrates in specific places at specific times; a few victims
experience a lot of victimisation; property crimes cluster in both space and
time; and the journey to crime curve follows a characteristic distance de-
cay.

Following the assertions of crime pattern theory that depict the crime event
as a patterned activity that produces patterned outcomes, these regularities
can be thought of as some of the more predictable emergent outcomes of
those complex interactions operating in-situ. It is a fundamental remit of
environmental criminology to identify, describe and understand such patterns
((Wortley & Mazerolle, 2008), so that methods for addressing them can be
devised and in turn, crime reduced. Indeed, the opportunity theories have
proposed a number of mechanism-based explanations for these regularities,
many of which have demonstrated considerable utility in reducing crime
through the targeted application of crime prevention intervention.

Given this reliance on understanding these mechanisms – there is obvious
utility in ascertaining the sufficiency of our descriptions of them, which in
turn should facilitate the incremental refinement of theory. Hence, if we are
to develop hypotheses about how the interactions of society generate pat-
terns of offending, so that they might be subverted, we must also employ
techniques for assessing the validity of theory. Unfortunately this endeavour
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is difficult to undertake. Ascertaining the validity of such hypotheses often
requires that we bridge the divide between those micro-level hypotheses pro-
posed by theory and the macro-level descriptions of crime commonly used in
its analysis – overcoming this gap is difficult for a number of reasons.

While intuitive in isolation, the mechanisms proposed by the opportunity
theories quickly become intractable to traditional analytic methods as they
interact with one another. For instance, considering only those three micro-
level mechanisms of interest identified in section 2.1 – that is, the spatio-
temporal activity of victims and offenders described by the routine activity
approach; the expected utility calculus outlined by the rational choice per-
spective; and the awareness space cognitive map proposed by crime pattern
theory, problems quickly arise when attempting to quantify how these mech-
anisms might combine and give rise to observed patterns.

Most importantly, the routine activity approach describes the crime event
as an inherently nonlinear process (Eck, 1995). The prerequisites for crime
described by the approach are dictated by the dynamic spatial and temporal
activities of numerous interdependent actors. Capitalising on the routine ac-
tivity approach’s depiction of the crime event requires quantification of where
and when these elements converge and where and when they do not. This is
not a simple task. For one, all of the actors described by the routine activity
approach are different, and there are lots of them. The routine activities of
victims, offenders, guardians, handlers and managers are each specific to an
individual’s lifestyle, which in turn is impacted by numerous factors includ-
ing employment status, social connectivity, personal preferences, and in turn
the spatial and temporal constraints these individual characteristics impose
on behaviour. Furthermore, such routine activities are not only influenced
by the nature and form of the environment – they also exact influence upon
that environment. In the attempt to quantify such complexity, traditional
analytical techniques such as logistic regression are likely to be of limited use
in estimating the nonlinear relations of all these potential correlates.

By extension, the two remaining mechanisms of decision-making and learn-
ing proposed by the rational choice perspective and crime pattern theory
must also necessarily operate within the nonlinear system of routine activ-
ities. Offenders make choices about targets they converge with throughout
such activities, and their accumulated awareness and experience of the local
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environment and criminal choices is dictated by previous activity. Thus, in
considering the validity of the mechanisms described by the routine activ-
ity approach, rational choice perspective and crime pattern theory, another
problem arises. That is, these mechanisms do not purport to act in isola-
tion, and instead are embedded within, or alongside one another in a complex
system. This interconnectedness dictates that even with substantial insight
into the offence process it would likely be difficult to estimate the impacts of
individual theoretical processes, and, by extension, interrogate hypotheses
that link individual-level behaviour to observed macro-level crime pattern
(and visa versa). One important ramification of such interconnectedness is
that if one of the hypothesised mechanisms is erroneous it is almost impos-
sible to eliminate as a potential explanation without adequately quantifying
the interactions that are occurring in-situ. Hence, even if the crime event
is observed in all of its complexity, and indeed these three mechanisms are
significant, it is still difficult to disentangle the respective effects of each. Put
another way, there is no appropriate method to ”turn off” offender learning
and rationality and observe simply the impact of routine activity, or any
combination of the above.

The following section briefly discusses a number of methods through which
the validity of theory may be explored, and a number of associated weak-
nesses which encumber empirical investigation of the micro-level properties
of the crime event.

2.3.1 Evaluation as a Test of Theory

In the natural sciences, experiments are utilised to assess the impact of spe-
cific mechanisms – experimental conditions are manipulated in a controlled
fashion, the resulting outputs observed and inferences made. Hence, the
ultimate test of the opportunity theories may well lie in the design and
implementation of interventions which aim to manipulate purported mech-
anisms. For those interested in the underlying mechanisms of crime, the
evaluation of intervention can provide a sufficient but sub-optimal analogue
to the scientific experiment. In an ideal world, if an intervention aimed at
deterring offending produces desired outcomes, some inference can be made
about the causal link between the mechanism manipulated by intervention
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(the independent variable), and crime occurrence (the dependant variable).
If interventions are designed to manipulate one or more of the purported
mechanisms of the opportunity theories (for example, the expected utility
calculus suggested by the rational choice perspective), they rely not only
on the presence of these mechanisms, but also a sufficient understanding of
them to facilitate their manipulation. For this reason, intervention evalua-
tion provides valuable feedback that can be used to correct and refine not
only policy and practice, but also theory (Tilley, 2002). Unfortunately, the
process by which theoretical insight might be gained through the evaluation
of intervention is fraught with potential problems endemic throughout the
social sciences. A number of these problems are now discussed.

2.3.2 Units of Analysis and Inference

A number of problems stem from the resolutions at which data concerning
the crime event are commonly collected and subsequently used. Where the
hard sciences have developed considerable tools in the observation of specific
phenomena (thermometers, Geiger counters, telescopes, particle accelerators
etc.), social scientists have invested heavily into the development of theory,
and as a result possess toolkits that by comparison are sub-optimal at best.
To illustrate, evaluations of individual level interventions (i.e. those which
aim to affect individual decisions) such as those provided by SCP often rely
on aggregate or small sample data. Studies of prolific offenders and crimi-
nal careers remain at the individual level and are rarely linked to area-level
patterns (see Townsley and Pease (2001) for a notable exception). Con-
versely, area-based evaluations that dominate much enforcement-led crime
analysis concentrate on retrospective descriptions of small-scale crime pat-
terns. These evaluations often utilise aggregate geo-demographic data sets
and consequently may be vulnerable to the ecological fallacy. Most im-
portantly, such analysis fails to focus on the individual level decisions that
wholly contribute to aggregate patterns observed (Brantingham & Brant-
ingham, 2004; Liu et al., 2005) and are the very mechanisms intervention
attempts to manipulate. As a result, evaluations of individual level interven-
tions are usually inherently defined at the area level, data about which are
unsuitable for testing the micro-level mechanisms proposed by theory (Eck,
1995).
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2.3.3 The Frailties of Crime Data

Data commonly collected concerning crime are inherently error prone. Con-
sidering first those data that describe the output of the complex system –
crime, the reliability of recorded crime data is uncertain. Behaviours con-
sidered criminal can become non-criminal, and conversely, previously legal
activities may be criminalised. Similarly, the crime categories in which cer-
tain types of behaviour are placed can change over time (Maguire, 2007).
Series of incidents may initially be recorded separately but then combined
into a single more serious offence (Maguire, 2007). Furthermore, only some
offences are reported to the police, and subsequently only some of these are
recorded (Biderman & Reiss, 1967). In addition, such recording is not always
accurate (Maguire, 2007). To further confound these problems, disparities
in recording and reporting are also unsystematic and can vary according
to a range of factors including crime type (Nicholas, Kershaw, & Walker,
2007), seriousness (Gove, Hughes, & Geerken, 1985), and location (Maguire,
2002).

Similarly, where offender self report methods are employed to establish what
micro-level mechanisms might be operating and in turn provide contribu-
tory or contradictory evidence for those proposed by theory, a host of po-
tential problems become apparent. Speaking generally, individuals may not
be conscious of the decision-making strategies they utilise in certain situa-
tions (Schelling, 1978). Offenders in particular may also perceive a vested
interested in not portraying their behaviours accurately to investigators, or
may portray their ability, knowledge, reasoning or opinions in a positive light
(Cook & Campbell, 1979). In addition, hypothetical scenarios, in which of-
fenders are asked to describe how they might act in particular circumstances
can lack a richness of overt and covert cues which may otherwise greatly
influence behaviour in real pre-crime situations (Cornish & Clarke, 1986).
Similarly, a lack of real consequences for actions may lead offenders to sug-
gest their behaviours to be more casual than those they would employ in
reality (Cornish & Clarke, 1986).

Furthermore, when surveys are used to assess decision-making processes,
potential problems relating to item representativeness or specificity can also
arise. Surveys may emphasise particular decision-making preferences over
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others or not provide adequate options for response. Conversely, in research
projects where subjects are interviewed about their decision-making pro-
cesses, researcher interpretation may be highly subjective. In addition sur-
veys and interviews often struggle to capture data relating to the interactions
of individuals (Hedström, 2005), which are of key importance when exploring
the validity of theoretical perspectives such as the routine activity approach.
Finally and perhaps most importantly, the threat of sampling bias in meth-
ods of subject selection must also be considered when attempting to study
representative groups of offenders from which generalisations about offending
behaviour in general are to be made.

In summary, while numerous sources of data are available to those who wish
to better understand both the decision-making strategies of those involved
in crime, or characteristics of the crime event itself, a series of acknowledged
problems dictate that the ‘signal-to-noise ratio’ within such data is often less
than desirable.

2.3.4 The Weaknesses of Statistical Explanation

Once data have been collected the process of ascribing cause to effect is also
exceedingly difficult. In the social sciences, inferences about the association
of two or more characteristics are typically supported by inferential statistics,
which are used to quantify the goodness of fit between the hypothesised inde-
pendent variable (the IV) and the target dependant variable (the DV). While
these methods quantify the extent to which variance in one characteristic is
associated with variance in another, they in no way reveal a process through
which this relationship may manifest, i.e. the mechanism (Hedström, 2005).
Yet within criminology, the mechanism should be of most interest to scholars
who in turn wish to manipulate it with the aim of reducing crime.

Furthermore, a fundamental problem of causal inference within the social sci-
ences is that of confounders – that is, establishing that A did indeed cause
B and not that some other unmeasured construct C in fact causes both A
and B. The world in which criminological experiments take place is not sim-
ple and potential confounders abound. Crime prevention interventions are
implemented in a complex and dynamic context (Pawson & Tilley, 1997),
and a multiplicity of interactions beyond those which are apparent upon sur-
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face observation are constantly influencing the ebb and flow of all activities,
criminal or otherwise.

In discussing the problems faced by those who aim to make generalised causal
inferences within the social sciences Shadish, Cook, and Campbell (2002)
highlight a number of issues relating to the methodological quality of ex-
periments. These include statistical conclusion validity (the extent to which
presumed cause and effect are related); internal validity (the ability to ac-
curately ascribe changes in the observed DVs to experimental manipulations
of the IV); construct validity (the extent to which measurement of both in-
tervention and outcome are representative of the characteristics they aim to
capture); and external validity (the extent to which an observed causal rela-
tionship holds across different configurations of units, treatments, outcomes
and settings).

Thus, in order to maximise the utility of their findings, experiments require
effective design. Current doctrine provides three overarching types of exper-
iments utilised within the social sciences: experimental, quasi-experimental
and non-experimental designs. Experimental designs are characterised by
pre and post intervention measurements of statistically equivalent treatment
and control groups. Equivalence of groups is obtained through the ran-
dom assignment of units to treatment or control conditions. Randomised
experiments rely on the assumption that the sample used to produce both
treatment and control groups is sufficiently large in order to be representa-
tive of the population about which generalisations aim to be made, and that
the allocation of units to each group is sufficiently random. If these two con-
ditions are met both treatment and control groups are considered sufficiently
equivalent to ascribe any differences in outcome measure to the treatment
administered. Thus, minimising potential confounding effects, and in turn,
maximising internal validity and the reliability of any causal inferences gen-
erated.

Despite being viewed as the ‘gold standard of evidence’, within the field of
criminology randomised experiments have been performed rather sparingly
(Farrington & Welsh, 2005). This is due to a number of problems associated
with their implementation. Many consider that considerable ethical issues
are associated with the assignment of treatment (often perceived as advan-
tage) through chance (Weisburd, 2003). Practically speaking, the method
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through which one can randomly allocate treatment to areas rather than
people, as is often the focus of crime prevention, is also a point of consider-
able contention (Farrington, 2003). Further, the requirement of a sufficiently
large sample of experimental units often does not fit well within problem-
oriented crime prevention approaches, which aim to identify relatively small
numbers of high-crime areas / individuals. Hence, establishing a valid coun-
terfactual can be difficult. In addition, when assessing the effectiveness of
intervention, control groups rarely receive no treatment, instead receiving
the original treatment that was present pre-intervention (Pawson & Tilley,
1997).

Due to these issues, quasi-experimental designs are often more popular within
criminology. Quasi-experimental designs utilise pre and post test measure-
ments for both treatment and control groups, but lack the random assign-
ment of experimental units to treatment and control groups. Instead, con-
trol and treatment groups are commonly selected on the basis of statistical
similarity. Such experiments are easier to implement both practically and
ethically; but also produce less robust evaluations of cause and effect and,
in turn, are less generalizable.

Finally, non-experimental designs refer to experiments that take the form of
simple pre and post intervention measurement without the use of a control
group. Such experiments offer the least in terms of their ability to gener-
ate causal inferences and as such can offer little insight into the validity of
theory.

2.3.5 The Control of Experimental Conditions

Further confounding these problems, the control of experimental conditions
within the social sciences is an exceedingly difficult enterprise. The labo-
ratory conditions in which experiments are performed within the natural
sciences afford considerable experimental control. Within the social sciences
however such control is simply unobtainable, be it for logistical, ethical or
monetary reasons. While hypotheses may propose that some characteristic
influences the occurrence of crime, it is often logistically or ethically im-
possible to directly manipulate. For example, many of the propositions of
environmental criminology relate to the impact that the environment might
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have on the crime event. For instance, consider the spatial distribution
of mass transit nodes or entertainment districts, or the morphology of the
transport network itself – all of which one might hypothesise influence the
occurrence of crime – and all of which it would be difficult to systematically
manipulate. Similarly, the ethical implications of administering intervention
to some individuals / areas and not others are questionable – yet such alloca-
tion is likely required if one is to attempt to assess the efficacy of treatment,
and moreover gain insight into the validity of theory. While such issues
raise interesting questions their ramifications are still that such endeavours
have commonly been difficult to undertake (see Ratcliffe, Taniguchi, Groff,
& Wood, (Forthcoming) as a recent exception). Finally, monetary expendi-
ture associated with intervention can be considerable. Longitudinal designs,
measurement of pre and post intervention and control areas, all require high
levels of interagency cooperation and considerable resources. Furthermore
when considering the application of evaluation for theory refinement, evalu-
ation scope, comprehensiveness and robustness are, at least in part, propor-
tionate to financial expenditure.

2.3.6 Replication

While the results of a single evaluation study may quantify the impact of a
given intervention, the level of certainty one can have in any causal inference
made about the underlying mechanisms it aims to manipulate is extremely
limited. Thus, even when experiments are robust they must be replicated.
A key component of the scientific method is reproducibility (Popper, 1959)
– for the findings of an experiment to be considered valid, its results must be
reproducible through replication. By comparing the results of replications
to those presented by the original investigator, scientists attempt to rule out
any hidden factors that may have been specific to a previous experiment, es-
tablishing whether the originally observed outputs were an exceptional case
or indeed representative of the phenomena being studied. It is in this way
that hypotheses move from the realm of educated proposition to verified and
accepted ‘fact’, and moreover, how science in general proceeds. Further,
varying the context in which interventions are implemented aids in deter-
mining the extent to which observed causal relationships hold in different
settings, allowing causal inferences to move from the specific to the general
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(Cronbach, 1982).

When interventions are associated with reductions in offending it is not hard
to understand why others often wish to adopt similar strategies. Thus, while
often unsystematic in nature, replications of crime prevention interventions
are relatively common. However, when they do occur, substantially differ-
ent effects are often observed even given seemingly similar implementations
(Pawson & Tilley, 1997). Such variability in outcome only serves to highlight
the complexity of the system in which crime prevention interventions must
operate. Differences in context and outcome may be considerable and while
their presence may lead to the generation of novel hypotheses concerning the
occurrence of crime, they limit the confidence with which one can make infer-
ences about the purported mechanisms an intervention aims to manipulate.
Where differences in impact are observed, what might they be caused by? A
different mechanism influencing offending; the different setting in which the
intervention was employed; differences in experimental units; differences in
implementation or evaluation practices; or a combination of all or some of
the above?

2.3.7 Realistic Evaluation

In response to some of these problems, Pawson and Tilley (1997) suggest an
approach of ‘Realistic Evaluation’ where the focus of evaluation is shifted
from simply ‘what works’ to ‘what works for whom in what circumstances’,
given that the former may assume a consistency in mechanism manipula-
tion rarely observed in real world experimentation. Given this focus on
mechanism context, realistic evaluation concerns itself with specific problem
analysis, in order to first define the context in which interventions are im-
plemented. As such, it is well placed to compliment SCP and POP method-
ologies that focus on highly specific crime problems. Advocates suggest that
realistic evaluation may provide substantial advances to the evidence base of
interventions by characterising their applicability at a finer level of granular-
ity than other evaluation methodologies. However, this specificity can limit
the generalised causal inferences that can be drawn from such evaluations
about the presence and influence of specific mechanisms.
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2.3.8 Summary

When evaluating the effectiveness of intervention, crime prevention practi-
tioners are, for good reason, often most interested in the relative direction of
outcome, i.e. a reduction or increase in crime. For those interested in theory
however, an understanding of the mechanisms through which the observed
outcomes come about is most appealing. It is this knowledge that allows
theory to be refined and in turn, intervention efficiency increased. Establish-
ing how offending declined, moved to a new location or took on a new target
consists of identifying the causal mechanisms which influence the occurrence
of crime. However, in the pursuit of such knowledge researchers must go to
great lengths if they aim to gain insight into the validity of theory through
the evaluation of intervention. In order to be effective at increasing the un-
derstanding of the underlying mechanisms of crime, interventions rely on the
constellation of a number of factors. These include well-specified theory, its
effective translation into intervention and high competence of intervention
implementation and evaluation design (Ekblom & Pease, 1995). The debate
over how evaluations should be conducted in order to maximise their utility
is on going, both in terms of its ability to aid intervention and subsequently
theory. Sherman (1998) describes high rates of variability in methodological
quality observed amongst crime prevention evaluation studies. Similarly, in
discussing the quality of evaluation in crime prevention initiatives, Ekblom
and Pease (1995) suggest that standards are generally low. The most com-
mon types of evaluation being measures of crime pre and post intervention
or interrupted time series, in some cases with the use of a control area to
account for confounding effects.

In summary, two key weaknesses endemic within the social sciences encumber
the investigation of the crime event and moreover adequate assessments of
the validity of theories describing it. These are (1) a relative scarcity of
reliable and representative micro-level data concerning the offence process,
and (2) a number of fundamental difficulties associated with undertaking
controlled experiments in the study of crime.

As a result of these two problems a ’leap of faith’ is often required in ascribing
observed crime patterns to proposed individual-level behaviour. This gap be-
tween theorised micro-level mechanism and observed macro-level crime phe-
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nomena confounds the observation and verification of proposed mechanisms,
and as a result, dictates that it is often difficult to accurately test theory
to the extent that would be desirable for both theory and policy develop-
ment. Furthermore, the complexity of mechanism interaction dictates that
the identification of salient macro-level patterns or significant micro-level
processes does not necessarily reveal the interactions through which one is
causally linked to the other. Yet, it is the interplay of mechanisms leading
to the commission of an offence that are of most interest to those who aim
to refine theory, and in turn, develop more effective intervention strategies
aimed at manipulating such mechanisms.

Figure 2.8 depicts this divide. The left most image outlines how the mecha-
nisms of the opportunity theories portray the behaviour of a single offender
– undertaking a number of routine activities, developing an awareness of the
nodes and paths commonly visited, and in doing so victimising those known
targets which offer sufficient utility. The centre image then depicts the hy-
pothesised reality of numerous individuals operating under some or all of
these mechanisms. The rightmost image then represents what we commonly
observe as an output of whatever mechanisms are operating. As such, in
order to explore the validity of micro-level theory, environmental criminolo-
gists are often required study the crime event from the right hand side and
work back via a process of induction.

Figure 2.8: The Divide between Theory and Observation
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2.3.9 Simulation for Triangulation

In considering how such complexity might be best understood, Branting-
ham and Brantingham (1993a) highlight that a wide variety of analytical
methodologies from both within and outside criminology are likely required
(and have applied a number themselves). To this end, advances in the quan-
titative analysis of crime data demonstrate considerable promise, techniques
such as geographic information systems, multi-level and discrete choice mod-
elling and time series analysis offer tools to those interested in the spatial
and temporal distribution of crime and moreover, the inferences that can be
made from its analysis.

Recently a number of authors have also highlighted the potential utility of
creating artificial worlds and inhabiting them with virtual populations who
act according to criminological theory (Birks et al., 2008; Bosse, Elffers, &
Gerritsen, 2010; Brantingham & Tita, 2008; Brantingham & Brantingham,
2004; Brantingham et al., 2008; Brantingham, Glasser, Kinney, Singh, &
Vajihollahi, 2005a, 2005b; Eck & Liu, 2004; Groff, 2007b, 2007a, 2008; Groff
& Birks, 2008; Johnson, 2008; Liang, 2001; Liu et al., 2005; Malleson &
Brantingham, 2009; Malleson, Evans, & Jenkins, 2009; Malleson, Heppen-
stall, & See, 2010; Malleson, See, Evans, & Heppenstall, 2010; Van Baal,
2004; Wang et al., 2008). In applying these computational models, the field
of computational criminology (Brantingham et al., 2008) aims to gain insight
into the potential interactions and ramifications of proposed individual level
behaviour. Such explanatory simulation models differ significantly from the
existing inductive approaches discussed previously, in that they trade pre-
dominantly in theory and aim to explore its ramifications. Thus, while they
are unlikely to be able to predict where the next burglary or robbery will
occur they may provide insight into the validity of micro-level hypotheses
by assessing their sufficiency in generating plausible crime patterns. One
particular type of simulation – the agent-based model (ABM) provides con-
siderable utility here. ABM allow researchers to study the decentralised
spatio-temporal interactions of autonomous heterogeneous actors without
the need to transform non-linearity or suppress unit heterogeneity (Epstein
& Axtell, 1996). While such models need not purport to mimic any par-
ticular locality, they empower the social scientist with an analogue to the
petri dish in which controlled experiments aimed at exploring novel and in-
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teresting questions can be performed without the need for ethical approval
or significant logistical or monetary investment (Birks et al., 2008; Branting-
ham & Brantingham, 2004; Groff, 2007b; Liu et al., 2005; Van Baal, 2004).
By imbuing a virtual population with behaviours developed to mirror those
micro-mechanisms suggested by theory the macro-ramifications of such hy-
potheses can be systematically explored. Moreover, through the systematic
application of controlled simulation experimentation it is possible to explore
the likely contributions of different mechanisms, thus allowing the propo-
sitions of theory to be untangled in a way that is almost impossible with
the use of traditional experimentation. As such, the simulation model pro-
vides a significantly different but viable compatriot to existing methods of
enquiry. And, in doing so, furnishes the environmental criminologist with a
further point of triangulation in studying the crime event and its underlying
dynamics.

This thesis builds on those efforts of previous authors that have explored the
use of ABM in furthering our understanding of the crime event, and in doing
so provides a systematic test of the sufficiency of the three micro-mechanisms
derived from the opportunity theories outlined in section 2.1. In undertaking
this research an ABM of offending as described by the opportunity theories
is developed. Capitalising on a number of strengths of the simulation ap-
proach in systematic control, observation, and replication the model is then
used to perform a series of computational experiments. Applying the ap-
proach of generative social science (Epstein, 1999) (see section 3.8), these
experiments assess if the key assertions of the opportunity theories identified
in section 2.1 are indeed sufficient to generate the macroscopic regularities
of crime outlined in section 2.2. Thus, providing a systematic test of the
viability of the opportunity theories as an explanation for the crime patterns
commonly observed in empirical study.

In the next chapter an outline of the simulation methodology and in particu-
lar the ABM approach undertaken in this thesis is provided. An overview of
several existing studies that have applied ABM within environmental crimi-
nology is then presented, and the differences between such previous endeav-
ours and the one discussed here outlined. Subsequently, the approach of
generative social science undertaken in this thesis is described.
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Computational Modelling & Simulation

This chapter provides an overview of the simulation methodology applied in
this thesis. Focusing primarily on the application of simulation within the so-
cial sciences, the rationale behind simulation is specified, and its application
in building explanatory models of complex systems discussed. Subsequently,
the simulation methodology applied in this thesis – the agent-based model
(ABM) is described. The key components of ABMs are specified, and a
number of features that make them ideally suited to the study of complex
social systems outlined. In addition, a discussion relating to the validity of
simulation models and their findings is provided.

These initial sections provide a brief primer in the simulation methodol-
ogy and ABM in general. Readers familiar with these techniques may wish
to skip directly to section 3.5 (p 67) where the strengths of the ABM ap-
proach are directly aligned to the features of the crime event as described by
the opportunity theories. Thus, highlighting the utility of ABM in further-
ing understanding of the crime event by providing a means through which
the micro-propositions of the opportunity theories can be systematically ex-
plored.

Subsequently, a review of several previous endeavours that have employed
explanatory ABMs in the study of crime is provided. In doing so a number
of existing ABMs of crime are discussed and their strengths and weaknesses
identified. Drawing on several discussions relating to the different uses of
simulation within environmental criminology the approach of generative so-
cial science as set out by Epstein (1999) is then described. The notion of
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the generative explanation discussed, and the premises under which ABMs
can permit the identification of generatively sufficient explanations of known
phenomena outlined.

The chapter concludes by proposing the development of a generative ABM
of crime. Thus, providing a platform to systematically test the generative
sufficiency of mechanisms described by the routine activity approach, ratio-
nal choice perspective and crime pattern theory in explaining several known
regularities of crime. In turn, linking the micro and macro divide previ-
ously highlighted, and addressing the overarching research questions of the
thesis.

3.1 Building Models

The concept of building models of complex systems has been around since
the advent of modern science. Through the process of modelling we hope to
increase our understanding of the things we model. A model is an abstraction
of some entity or system, often referred to as the target (Edmonds, 2005;
Gilbert & Troitzsch, 2005). The underlying aim of modelling is to capture
the key attributes of the target system at a manageable level of complexity,
thus providing an appropriate analogue to the object of interest, which is
easier to both manipulate and study than the target system itself.

Models can take a number of forms. Within most disciplines, verbal models
are commonplace. Verbal models distil some process into a coherent descrip-
tion or discussion of how a system works (see for instance the opportunity
theories depiction of crime as discussed in section 2.1). It is typical for verbal
models to be translated into written models and included in journal articles
or books. While verbal and written models can be exceedingly useful, they
lack formalisation, can be difficult to empirically verify, and may be more
open to interpretation by the reader than more formal models. Furthermore,
depending upon the complexity of the target, the ramifications of the con-
cepts they discuss can be difficult to adequately envisage at higher orders
than those initially described.

Mathematical and statistical models are popular in a number of fields such as
physics, chemistry and economics. Both mathematical and statistical models
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employ equation-based descriptions of the target phenomena. When com-
pared to verbal or written models, such models allow for more formalised and
explicit descriptions of the target system. However, when dealing with com-
plex systems, equation-based models can be forced to implement undesirable
levels of abstraction in order to provide mathematical equivalencies for what
are often intricate dynamic processes. Depending upon the intended use of
the model, this in turn may reduce the utility of model outputs.

3.2 Computational Models

One specific type of mathematical model aimed at modelling complex sys-
tems is the use of computer programs as models, or more specifically, compu-
tational models and simulations. Drawing from a number of fields including
mathematics, computer science, artificial intelligence, cognitive science, and
complexity theory, computational models attempt to capture the dynamics
of the target system by formalising it as a series of algorithms and data ob-
jects. The use of computer simulation has become popular in a wide range of
disciplines including both the natural and human sciences and a number of
engineering fields. In this capacity simulation models are now used to exam-
ine a wide breadth of complex phenomena including protein folding (Levitt
& Warshel, 1975), consumer behaviour (Schenk, Löffler, & Rauh, 2007), traf-
fic flow (Cremer & Ludwig, 1986) and urban sprawl (Shoufan, Gertner, &
Anderson, 2005).

This increase in the popularity of computational modelling is primarily the
result of two distinct implications of Moore’s law1 (Moore, 1965). These are
(1) a rapid increase in the computational capacity available to researchers
to create and run simulation models, and (2) the relative ease with which
vast quantities of data describing a system of interest can be both collected
and stored, and in turn used to calibrate and validate models of that sys-
tem.

The logic of the simulation method as proposed by Gilbert & Troitzsch (2005)
is outlined in Figure 3.1. The approach begins with some target system that

1Moore’s law states that every two years the number of transistors that can be fit onto
an integrated circuit doubles – thus capturing the increasing rate at which computational
capacity becomes readily available.
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the simulation aims to emulate. A model of that system is built through a
process of abstraction, and then ‘run’. When a simulation is run it proceeds
through a number of simulated time steps. At each time step, entities within
the simulation process data and perform actions that aim to mirror those
observed in the target system. By repeatedly applying these steps in an iter-
ative fashion, simulations predict longitudinal patterns of system behaviour.
Simulation output data describing the modelled system behaviour is then
referred to as simulated data. Once a simulation has been run, the simu-
lated data it produces is compared to collected data about the target system.
Similarities between simulated and collected data can suggest that the simu-
lation model may be sufficient to describe the target system. However, such
similarities can mean a number of different things that are dependant on the
underlying approach taken in the development of the model and its aims (be
they explanatory or predictive). Correctly interpreting these similarities is
of key importance and a number of different approaches to this process are
discussed later in this chapter.

Figure 3.1: The Logic of Simulation as a Method (Gilbert & Troitzsch, 2005)

In the study of complex systems, the application of computer simulation
as described above offers a number of distinct advantages over other model
types. An overview of these strengths follows:

• Managing Complexity: While equation-based models are well suited to
modelling in certain scenarios, when examining complex systems that
contain large numbers of entities that interact in nonlinear and nonde-
terministic ways, mathematical equivalencies of some target processes
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can be very difficult to derive (Axelrod, 2006). Thus, equation-based
models may require levels of abstraction that limit utility in specific
applications (Epstein & Axtell, 1996). Conversely, the programming
languages used to construct computer simulations are commonly less
abstract and more expressive than their mathematical counterparts,
and as such allow complex system elements to be decomposed into
manageable sub-processes which are represented through algorithms
and data objects. Additionally, computational models can be parame-
terised with empirical data (Hedström, 2005), deal well with nonlinear-
ity (Bonabeau, 2002), and allow researchers to perform vast numbers
of simulations (Epstein, 2006), thus providing estimations of the ex-
tent to which certain relationships may hold within nondeterministic
systems.

• Hierarchical Decomposition: Computational models allow for the ex-
ploration of target systems at multiple levels of abstraction. Compu-
tational models may initially be built from high orders of abstraction
only to subsequently explore further complexity at a later date. This
is especially useful in the study of complex systems, as capturing all
elements of a system at fine levels of granularity may initially be over-
whelming (Gilbert & Troitzsch, 2005). Once an initial model has been
built, lower orders of abstraction can be incrementally added to replace
those initially devised higher order concepts, thus allowing effective
management of model complexity (Jennings, 2001). This process is
often referred to as hierarchical decomposition.

• Modelling Dynamics: Equation-based models are often best suited to
describing the current state of a given system. However, questions
that often interest researchers concern what if? scenarios, that is, the
modelling of change. Another strength of the simulation approach lies
in its ability to develop dynamic models in which endogenous processes
can be examined (Bonabeau, 2002; Epstein, 1999). Thus, simulations
can be used to explore scenarios where both influential factors, and as
a result system behaviour, change over time.
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3.3 Explanation vs. Prediction: Types of Simulation
Models

Simulations models can be applied to address a wide variety of different goals,
providing those who utilise them with entertainment, education, scientific
insight, or the capacity to predict target outcomes. Within the scientific
discipline, simulation models can be rudimentarily divided into two distinct
categories – explanatory models, which aim to increase our understanding
of how a particular system might function, and predictive models that aim
to predict the likely outcome of a particular system given some initial con-
ditions. These approaches to modelling play critical but distinct roles in
advancing scientific knowledge, a brief description of both follows.

3.3.1 Explanatory Simulation Models

Explanatory models are commonly exploratory in nature, acting as for-
malised thought experiments. They explore what types of mechanisms might
be viable explanations of observed outcomes, or under what circumstances
certain outcomes might arise. In such models, parsimonious definitions of
theory are often formalised as simulation constructs and the ramifications of
these theories on the system as a whole explored. The process of building an
explanatory model can itself be of great benefit to the development of the-
ory. Building a simulation and formalising theoretical concepts for inclusion
forces the researcher to be explicit about their theories and the concepts,
entities and relationships that they propose exist between them. Thus, the
construction of explanatory models can often highlight potential ambigu-
ity, inconsistencies and problems in the underlying theories being examined
(Gilbert & Troitzsch, 2005). This process is commonly referred to as theory
formalisation.

Using explanatory models theories can be interrogated by comparing the
output of computational models to observed real world phenomena. If the
output of a simulation model bares no resemblance to the phenomena ob-
served in the real world, the validity of theory is called into question. If,
on the other hand, simulation output shares characteristics with real world
observation, theoretical hypotheses are strengthened. Similarly, if several ri-
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val theories exist which purport to explain a particular phenomenon; several
competing formalisms can be evaluated alongside one another in simulation.
Thus, allowing researchers to eliminate explanations which are not suffi-
cient to produce results observed in real world experimentation (this use of
computational models for interrogating theory has recently been promoted
within the social sciences by Joshua Epstein and peers under the banner of
generative social science (Epstein, 1999, 2005, 2006; Hedström, 2005) and is
discussed in more detail in section 3.8).

3.3.2 Predictive Simulation Models

In addition to furthering our understanding of particular systems, compu-
tational models can also be used for prediction. It is in this capacity that
computational models are often most commonly known(Gilbert & Troitzsch,
2005). Predictive models aim to accurately forecast future characteristics of
the target system given some initial conditions. For example, given data
describing current air temperatures, pressure distributions and wind speeds,
simulations can be built to forecast likely future weather conditions. While
such models do not necessarily provide absolute predictions, they have been
shown to produce sufficiently reliable results for use within a wide variety of
applications (Gilbert & Troitzsch, 2005).

While the research presented in this thesis concentrates on the application of
simulation for explanatory purposes, an important point to note concerning
the relationship between explanatory and predictive models is that one is
not necessary for the other (Epstein, 2006). Predictive models may produce
empirically valid predictions, but may do so in a black-box manner, that is,
where it is impossible to infer how some input data is mapped to an output
prediction – correct or otherwise. Alternatively, predictive models may also
transparently produce accurate predictions, but do so using vastly different
mechanisms to those that are observed operating in the real world. While
such models may provide considerable predictive capacity, they do little for
increasing understanding of the target systems mechanisms.

Similarly, explanatory models may offer little in terms of prediction. For
example, Epstein (2006) highlights that while electrostatic models can ade-
quately explain the formation and occurrence of lightning, they cannot pre-
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dict when and where it will strike. Instead, they help us to understand under
what circumstances certain processes take place and the sufficient conditions
for their formation.

The following section discusses one particular type of simulation applied in
this thesis – the ABM, and highlights a number of strengths it offers in
developing explanatory models of complex systems, such as the crime event
described by the opportunity theories.

3.4 Agent-based Modelling

In section 2.1 several mechanisms of the crime event proposed by environ-
mental criminology were presented. A key assertion of the concluding dis-
cussion was that, while conceptually simple, the theoretical descriptions of
these mechanisms give rise to a number of complex and not easily quanti-
fied interactions between victims, offenders, controllers and the environment
they inhabit.

Such complexity is not unique to criminological theory. By definition, the
social sciences deal with the functions and interactions of human society;
thus, complexity is inherent in almost all phenomena they aim to study.
In relation to this issue, Herbert Simon called for the so-called ‘soft’ social
sciences to be relabelled the hard sciences, due to a range of issues that
encumbered investigation (Simon, 1987). Simon asserted that the laboratory
conditions used by those who deal with the natural sciences permit a much
clearer observation of cause and effect than is ever possible within the social
sciences. In a similar vein, Epstein and Axtell (1996, 1-2) discuss a number of
methodological difficulties that have limited the productivity of traditional
equation-based models applied within the social sciences for the purposes of
theory testing. A summary of these observations follows:

• Social systems are rarely characterised by discrete, easily decomposable
sub-processes, instead most social phenomena encompass mechanisms
which are spatial, cultural, economic, demographic and so on;

• Controlled experiments that aim to test hypotheses within the social
sciences are often very difficult to perform due to a number of ethical
and logistical constraints;
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• Traditional social science models often assume that entities are perfect
rational actors who have access to perfect information;

• In order to manage computational requirements, typical social science
models suppress unit heterogeneity through the use of ‘representative
agent’ methods which dictate that all actors within a system are as-
sumed to be homogenous;

• Heterogeneity is inherent in social systems; however, within the social
sciences ”there has been no natural methodology for systematically
studying highly heterogeneous populations” [p2];

• Models within the social sciences often assume social systems can be
characterised as static equilibria, and as such ignore the importance of
temporal dynamics.

In the attempt to overcome some of these problems, research within the social
sciences over the last two decades has begun to embrace the application of
computational modelling techniques drawn from a number of disciplines.
The ABM is one particular technique that offers considerable promise to
those who aim to build explanatory models of complex social systems. ABM
is a well-established method of computer simulation with many real and
promising applications across a range of disciplines. Although technically
straightforward, its concept is considered profound (Bonabeau, 2002).

Rudimentarily, ABMs simulate the interactions that occur between multi-
ple autonomous entities with the aim of analysing how the decentralised
behaviour of constituent units impact on the behaviour of the system as a
whole. ABM have been applied in a vast range of applications that include
the design and development of mobile robot control paradigms (Matarić,
1997), investigating the dynamics of pedestrian flow in emergency situa-
tions (Helbing, Farkas, & Vicsek, 2000), exploring youth subcultures (Holme
& Grönlund, 2005), the study of financial markets (Gou, 2006), and un-
derstanding consumer purchasing behaviour (North et al., 2009; Zhang &
Zhang, 2007). While a thorough treatment of the ABM literature is well
beyond the scope of this thesis, the following discussion concentrates on a
number of strengths ABMs offer to better understand the interactions of
society; subsequently highlighting the utility of these features in providing
a method to explore the interactions proposed by the opportunity theories
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depiction of crime. The interested reader is directed to the many books and
papers that have described the agent-based methodology in greater detail
than space permits here (see, for example Bonabeau (2002), Jennings and
Wooldridge (1998), and Weiss (1999)).

Within the social sciences, ABM allows researchers to create virtual societies
and inhabit them with simulated populations of heterogeneous autonomous
actors. Using these models, the societal level impacts of differing individual-
level behaviours can be examined (Epstein & Axtell, 1996). In this way,
ABMs provide a platform to explore how the decisions people make on a
day-to-day basis translate into observable phenomena. Advocates of the
approach suggest that it is this ability to capture the links between micro-
action and macro-outcome that place ABM as a ’natural’ methodology for
the study of human systems (Axelrod, 1997b; Bonabeau, 2002; Epstein,
1999; Hedström, 2005). The observed behaviour of complex societal systems
often arises from the interactions of relatively simple micro-level behaviours
(Schelling, 1978), and it is in exploring this micro-macro divide amongst
complex social systems that ABM offer considerable promise. By manip-
ulating the initial conditions of the ABM and scrutinising data collected
about virtual populations researchers gain insight into the likely dynam-
ics of certain societal configurations. Within the social sciences ABM have
demonstrated considerable promise in a variety of research areas including
demography, economics, geography, anthropology and sociology (see Billari,
Fent, Prskawetz, and Scheffran (2006); Epstein (2006); Gilbert and Troitzsch
(2005); Trajkovski and Collins, (2009) for a range of applications).

Fundamentally, ABMs are made up of two key components: a population of
agents and a simulated environment in which they are situated. A description
of these key model elements follows.

3.4.1 Simulation Agents

In an ABM each member of the population is represented by an autonomous
decision making entity, commonly referred to as an agent. Just like the
members of a real population, agents exhibit individual characteristics, pref-
erences and behaviours; for example each agent might have an age, home
location and preferred social group etc. Within an ABM agents execute a
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variety of behaviours that govern how they perceive, reason and act in a
given situation. These behaviours define how agents interact with one an-
other, how they observe and analyse their surroundings, and how they might
alter that environment or their internal state by performing certain actions.
Such agent behaviour is commonly defined by a series of condition-action
rules outlining how agents act in certain circumstances. In the case of ex-
planatory ABM this decision calculus is often inspired by the formalisation
of theory, such that rules, algorithms and heuristics are developed to reflect
the mechanisms theory suggest are operating at the individual level. By ex-
ploring the macro-level ramifications of particular individual level theoretical
constructs and comparing them to known output characteristics of the real
world system, social scientists can use ABM to interrogate the validity of
social science theories.

3.4.2 Simulation Environment

The environment in which agents are situated may take on a wide variety of
forms depending upon the purpose of the model being built. A model envi-
ronment may represent some form of abstract physical or social space, where
proximity relates to the convergence of entities in space, or their ideals, opin-
ions and connectivity, respectively. Conversely, model environments may be
developed to closely mirror real environments, be they individual floor plans,
neighbourhoods or cities. The significant notion is that agents are situated in
an explicit space, abstract or otherwise, thus allowing the concept of localised
interaction to be appropriately modelled (see below for further detail). The
level of realism suitable for particular simulation environments, and more-
over ABM in general, is subject to much debate (Edmonds & Moss, 2005).
What is a necessary requirement however is that it is sufficiently detailed to
encapsulate any features that are drawn upon by agents which reside within
it. For instance, if an ABM of flower pollination dictates that the behaviour
of a simulated worker bee relies on flower colour for selection purposes, the
environment model must provide not only the location of flowers but also
their colour. In considering model complexity in general Gilbert (2004, 9)
states that “[t]he art of modelling is to simplify as much as possible, but
not to oversimplify to the point where the interesting characteristics of the
phenomenon are lost.”.
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3.4.3 Agent-Based Interactions

Given these two key components a number of interactions may be mod-
elled within an ABM. Agent-agent interactions are those where agents re-
ceive information or resources from one another, develop social links with
other agents, or compete for some entity within the simulation, be it ter-
ritory, resources or status. Agent-environment interactions are those where
agents draw information or resources from the world in which they are sit-
uated. Environment-agent interactions characterise those situations where
the environment influences an agent, perhaps by constraining movement or
defining the locations in which certain activities can and cannot take place.
Environment-environment interactions may also occur, for instance, a re-
source within some environment may spread over time from its initial lo-
cation to those adjacent. In reality, the types and ways in which elements
of ABMs may interact are almost limitless and it is this level expressive-
ness that allows ABMs to be used to represent an unprecedented number of
systems, processes and mechanisms.

3.4.4 The Temporal Dynamics of ABM

Another important feature of the ABM is its inherent ability to capture the
temporal dynamics of a system. ABMs simulate the progression of time via
discrete increments, often referred to as cycles. During each cycle agents
within the environment perceive, reason and act based upon their speci-
fied behaviours that in turn draw on an agent’s local circumstances and
individual characteristics. Many thousands of these cycles may occur as a
simulation progresses. Thus, ABM is performed in a recursive fashion, per-
mitting the longitudinal examination of time dependant phenomena and the
formation, interaction and separation of system elements over time. Such
temporal dynamics are especially important for the modelling of phenomena
such as tipping points, where the accumulation of individual action over time
can lead to rapid and significant diversions in system behaviour (Grodzins,
1958).
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3.4.5 Common Characteristics of ABM

Demonstrating the utility of ABM within the social sciences, Epstein and
Axtell (1996) and Epstein (1999) succinctly highlight a number of key char-
acteristics that, while not requisite, are often exhibited by ABMs. These
characteristics, they suggest, make ABM ideal tools for the study of com-
plex social systems, and provide a number of strengths that overcome some
of the weaknesses associated with more traditional attempts to understand
complex dynamic social systems. A summary of these characteristics fol-
lows.

• Autonomy: ABMs are devoid of overarching top-down control mecha-
nisms. Rather, each agent within the simulation perceives, reasons and
acts individually. While exchanges of information between agents may
occur directly or indirectly through the environment, no centralised
controller regulates behaviour. Thus, micro, meso and macro-level
patterns emerge and coexist within any ABM – it is only in the eye of
the beholder that these are examined as distinct phenomena.

• Heterogeneity: ABMs often simulate large numbers of entities as agents,
which may differ both within and between groups. For instance, agents
may operate using different decision-making strategies; for instance,
probabilistic vs. deterministic reasoning. Agents may also differ by
characteristics, with all agents utilising the same decision calculus but
drawing on different internal characteristics. This ability to capture
unit heterogeneity is of great importance, especially when attempting
to investigate real world phenomena where unit homogeneity is rare.

• Explicit Space: ABMs represent entities embodied in some abstract or
realistic space, allowing the concept of localised interactions to be well
formed.

• Local Interactions: Equation-based models often assume system enti-
ties possess complete knowledge of both the world they inhabit and
the other entities within it. This is often an unrealistic assumption.
ABMs, on the other hand, predominantly deal with localised interac-
tions occurring between entities that are spatially or socially proximate
within the simulation environment.
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• Bounded Rationality: The concept of bounded rationality relates di-
rectly to that of local interactions. While agents are often bestowed
with rational decision-making behaviours, these behaviours can be de-
veloped to draw only from localised, limited information. Thus, ratio-
nality is limited by the information available at the time a decision is
made. In addition, agent behaviours can be designed to utilise limited
processing power - bounded computation - and therefore do not ex-
haustively search all possible actions in order to determine an optimal
solution. Such representations of rationality are much closer to those
employed by human actors in the real world.

• Non-Equilibrium Systems: ABMs concern themselves with phase tran-
sitions, tipping points and generally, how macroscopic phenomena are
generated from numerous local decentralised micro-level interactions
between multiple heterogeneous agents. Thus, they deal equally well
with equilibrium and non-equilibrium systems, and where equilibrium
does exist, the importance of its formation through non-equilibrium
dynamics is often of most interest to agent-based modellers.

3.4.6 Epistemological Benefits of ABM

In addition to these inherent strengths in modelling social systems, the ap-
plication of ABM within the social sciences also confers a number of distinct
epistemological benefits when compared to other approaches.

• Accessibility: Agent-based approaches are often very effective at demon-
strating complex concepts to both researchers and a wider audience.
They offer a parsimonious, minimal, elegant and intuitive method to
examine complex systems (Epstein, 2006). ABM elements are most
commonly specified at the individual level – that is as the decision-
making strategies of individuals. Specifying model concepts at this
level means that model assumptions and propositions can be much
more easily understood than models which require complex mathe-
matical abstractions (Bonabeau, 2002). For instance, if an ABM aims
to model consumer behaviour, the rules employed by consumer agents
can reflect human decision-making strategies (e.g. if y is more expen-
sive than x, purchase x), and need not be expressed as complex price
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differentials and cross-elasticity coefficients that lack transparency to
all but the most seasoned of economists. This dictates that the ABM
audience need not be highly skilled in the field of ABM in order to
both inform and interpret simulations. As a result, simulations can
often be interrogated by domain experts who may well ask more perti-
nent questions of models than those whose interests lie predominantly
in their development (Gilbert & Troitzsch, 2005).

• Aiding Scientific Discourse: Further to the previous point, ABM’s in-
tuitive depiction of complex phenomena dictates that they can often
better scientific debate concerning the target system they examine.
As discussed previously the process of theory formalisation forces re-
searchers to be explicit about their theories. Furthermore, the results of
ABM can lead to the development of new questions and the generation
of novel hypotheses, some of which may have seemed counterintuitive
prior to the observation of ABM.

• Simulation Experimentation: ABMs allow for experiments to be per-
formed that would otherwise be impossible due to ethical or logistical
constraints (Gilbert & Troitzsch, 2005). Furthermore, simulation ex-
periments can be performed en-masse easily and quickly. Once a model
is built minor adjustments are simple to perform (Gilbert & Troitzsch,
2005; Townsley & Birks, 2008). In essence, the number of experiments
that can be performed is only limited by the computing power and
the time available to researchers. This assertion links directly to the
remaining characteristics of simulation outlined below.

• Absolute Control: ABM offers an analogue to controlled experiments
for examining social phenomena. Researchers can manipulate any
number of influencing factors otherwise outside their control in tra-
ditional experimentation (Eck & Liu, 2008). Thus allowing the explo-
ration of dose-response relationships in endless configurations (Townsley
& Birks, 2008; Townsley & Johnson, 2008). Furthermore, simulation
experiments can manipulate single characteristics of a model while
holding all other characteristics static.

• Absolute Observation: ABMs provide synthesis of real-world systems
in which perfect observation and measurement can occur (Townsley
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& Birks, 2008). Data sets can be collected to describe every action
undertaken by all agents. Furthermore the internal calculus employed
by every agent in every action can be systematically recorded. Thus,
it is possible to not only observe when some decision-making calculus
lead to the commission of a certain action, but also when it did not.

• In-situ and In-silico experimentation: ABM research often identifies
potential new lines of empirical enquiry. In turn, this external exper-
imentation may lead to the development of better simulations. This
iterative interaction of in-situ and in-silico experimentation can offer
substantial advances in the way phenomena are investigated.

3.4.7 An Example Explanatory ABM – Schelling’s Segrega-
tion Model

To illustrate a number of these features and strengths of ABM, one of the first
and perhaps most famous applications of the approach undertaken within
the social sciences is now outlined. In 1971 Thomas Schelling employed
the agent-based methodology to explore how racial segregation might occur
within urban environments (Schelling, 1971). While Schelling did not use a
computer to create his model (due to the computational limitations of com-
puters available at the time), the experiments he performed wholly embody
the concepts of ABM, examining the macro-level patterns that could emerge
from numerous micro-level interactions between autonomous agents.

Schelling’s thought experiment envisioned a world inhabited by two types
of households. Representing this environment as a two dimensional grid,
households were initially positioned at random, leaving 10% of cells unoc-
cupied. At each cycle of the model, a household was selected at random;
if that household had two or more neighbours of the same type in its eight
immediately adjacent cells, it was considered content and performed no ac-
tion. If alternatively, it had fewer than two like neighbours, it was said to
be unhappy and moved to a randomly selected unoccupied cell. Following
these simple rules the experiment was run over numerous cycles and the
output macro-patterns of household distribution observed. Over a relatively
short number of cycles the model demonstrated that high degrees of seg-
regation could emerge from this simple and seemingly conservative desire
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for neighbourhood integration (see Figure 3.2). These results are indicative
of the nonlinear interdependency of household actions, which, as discussed
previously, are difficult to capture using traditional analytic methods. In
summary, when one household becomes unhappy with their surroundings
and moves to a new location this action impacts on both the neighbour-
hood of origin and destination, these patterns of decisions can then lead to
a domino-like effect where one household’s movement, leads to another and
so on.

Figure 3.2: The Emergence of a Segregated Society

The results of Schelling’s models encouraged people to think differently
about what factors might influence the emergence of segregated neighbour-
hoods. Challenging the assumption that segregation was the by-product of
high levels of discrimination, and demonstrating that the segregation phe-
nomenon could persist even when households preferred predominantly inte-
grated neighbourhoods.

Having highlighted the utility of explanatory ABM in studying complex so-
cial systems, the following section identifies how the strengths of the ap-
proach align well with the propositions of the opportunity theories described
in section 2.1. And, in turn, demonstrates how ABM may provide a method
through which the divide between micro-level crime theory and macro-level
crime pattern might be more thoroughly explored.

3.5 Agent-based Models of the Crime Event

The previous sections of this chapter have provided an overview of the sim-
ulation methodology. The logic underpinning the use of simulation within
the social sciences was outlined, and two key applications of simulation – to
predict and explain were discussed. Subsequently one particular type of sim-
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ulation, the ABM was described. The key components and characteristics
of ABM were outlined and the strengths of the approach in exploring the
dynamics of complex social systems were discussed. This section reiterates
a number of these key attributes of ABM and aligns them with the theo-
retical hypotheses of the opportunity theories. Thus highlighting how they
are well suited to the study of the crime event as depicted by environmental
criminology.

As discussed, ABM are made up of two key elements, a population agents
and a simulation environment in which they operate. Considering an ABM
of crime occurrence, agents are an ideal fit to represent each of the individ-
ual actors portrayed by the opportunity theories. Agents can be used to
represent victims, offenders, guardians, handlers and managers, and in turn
the individual characteristics and behaviours exhibited by each. Such actors
are all intrinsically autonomous entities – while the actions of some may
draw upon or influence other actors, directly or through the environment,
no overarching entity controls all human behaviour.2

Furthermore, the actors portrayed by the opportunity theories are inherently
heterogeneous. Individuals undertake unique routine activities dictated by
the spatial and temporal constraints of their unique day-to-day existence.
Furthermore, individual characteristics such as motivation, capability, suit-
ability and awareness are likely to change over time, space and context.
Furthermore, the rational choice perspective views offender decision mak-
ing as bounded – offenders rely on imperfect, localised knowledge of their
environment – a process that could be captured through the study of local
agent interactions. As such, ABM’s ability to capture boundedly rational,
heterogeneous, autonomous entities is well positioned to represent the key
actors portrayed by the opportunity theories depiction of crime.

In considering a suitable simulation environment, direct contact predatory
offences described by the routine activity approach take place within an
explicit spatially referenced environment – the real world. A simulation
environment could be developed within which these interactions play out on a
virtual landscape that aims to mimic the environmental backcloth described
by crime pattern theory. Such an environment might contain a representation

2This precludes both God and aliens, neither of which I have been able to find sufficient
empirical support for.
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of the transport network around which agents must navigate, key routine
activity nodes representing locations commonly visited by individuals, and
potential targets for crime such as homes, shops and vehicles.

Mirroring the distinct types of interactions ABMs are capable of modelling
(see section 3.4.3) the opportunity theories describe a multitude of interac-
tions that occur between potential offenders, victims, crime controllers and
their environment. These individual level interactions, which traditional
methods of enquiry often struggle to adequately capture, can be formalised
relatively easily within an ABM. Crime event interactions might include the
spatial and temporal constraints on actors provided by routine activity pat-
terns; the victim, offender, lack of guardian convergences prerequisite in the
commission of crime; the constraints imposed on actor movement by the envi-
ronmental backcloth; the development of a localised knowledge as suggested
by crime pattern theory; and the assessment of potential targets encountered
within the environment as described by the rational choice perspective. Fur-
thermore, when considering the direct contact predatory offences described
by the routine activity approach, these interactions occur within an explicit
space and are almost exclusively dependant on the proximity of actors and
the particular local features of an environment.

Finally, in considering the epistemological benefits of building ABM (as dis-
cussed in section 3.4.6) the utility of building explanatory ABMs of crime is
also considerable. The routine activity approach, rational choice perspective
and crime pattern theory all outline a number of individual level mechanisms
which can be used to define agent behaviour in an ABM of crime. These
mechanisms are intuitively defined at the individual level – in that they
describe the actions undertaken by individual offender, victims and crime
controllers. Thus, agent behaviours can be derived to mirror these hypoth-
esised mechanisms of crime, and in turn, explore their ramifications.

Furthermore, ABM permit controlled experiments to be performed that
would otherwise be logistically or ethically impossible in real world settings.
For instance, using ABM the transport network, target and offender distri-
butions, or even the decision calculus employed by offenders can be system-
atically manipulated and the resulting impact on simulated crime observed.
By doing so the potential impact of particular individual or environmental
configurations can be explored in a systematic and rigorous fashion. In ad-
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dition, given absolute observation provided by simulation models, all crimes
that are committed by a virtual population can be recorded with complete
accuracy. Furthermore, it is possible to scrutinise the internal structure of
offender agents and identify for instance, how an individual offender’s aware-
ness space develops over time or when and where the expected utility calculus
described by the rational choice perspective is employed. Such experiments
aid scientific discourse within the field of environmental criminology by al-
lowing systematic examination of the likely macro-level impacts of proposed
individual level behaviours, and further by highlighting interesting patterns
or observations which may in turn lead to development of new hypotheses
concerning the proximal causes of both the crime event and particular crime
patterns.

In summary, the features of ABM provide a number of distinct strengths
over more traditional forms of modelling in examining the individual level
interactions between those actors considered significant to the crime event
and the environment they inhabit. By building models of these interactions
and undertaking controlled simulation experiments the underlying dynamics
of theoretical processes can be examined and the theories from which they
are derived explored.

The previous sections of this chapter have provided a description of the simu-
lation method and in particular the explanatory ABM. A number of distinct
advantages the ABM approach offers over other methodologies in examin-
ing complex systems such as those often studied by the social scientist have
been outlined. It is important however to consider the validity of simulation
– that is, to establish what can and cannot be reliably inferred from the re-
sults of what are, in essence, wholly artificial experiments. Given the recent
groundswell in simulation approaches within the social sciences a number of
prominent authors within the field have considered the validity of simulation
approaches in the study of social systems. The following section now outlines
several key issues.
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3.6 The Validity of Simulation

Like any other scientific instrument, simulation models must be appropri-
ately validated in order for their findings to be of use. This section provides
a discussion of simulation validity and outlines a stratified approach through
which simulation models and their outcomes may be validated with respect
to several criteria.

Explanatory simulation models offer a unique means of theorising about the
formation of observed phenomena. With a new method however, comes new
problems, and in turn, new approaches which aim to minimise their impact
on the integrity of experimental findings. Once a model has been developed
it should be validated. This process frames the interpretation of simulation
results so that the investigator can make appropriate inferences within the
scope of a model’s intended use. The requirements for the validation of
simulation models are, for the most part, defined by its intended application.
As discussed above, simulation models intended for predictive purposes need
only be capable of producing empirically accurate predictions of the target
system’s output for them to be considered valid. Thus, an accurate depiction
of the underlying elements of the target is not required.

Conversely, the validation of simulation models used for explanatory pur-
poses (like the one presented in this thesis) predominantly relates to a sim-
ulation’s ability to adequately reflect the theory being examined through
simulation. Thus, to assess the validity of an explanatory model, the inves-
tigator must evaluate whether the theoretical model has been appropriately
translated into conceptual and computational models. This mapping of the-
oretical model to conceptual and computational constructs can be seen as
simulation construct validity (Townsley & Johnson, 2008).

When assessing the construct validity of an explanatory simulation model,
the translation from theoretical to computational mechanism is verified and
validated. In contrast to predictive models, validation of the output of ex-
planatory models is then utilised to assess the ability of theoretical mech-
anisms to describe the target phenomena. As such, if the theories being
studied are translated into validated and verified computational constructs,
the output of a simulation model is used to make inferences about theory.
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This idea is further expanded upon in section 3.8 where the concept of gen-
erative sufficiency (Epstein, 1999) is described. Briefly, generative social
science suggests that given an appropriately validated and verified model of
theory, the output of explanatory models can be compared to empirical data
to assess whether theoretical constructs are sufficient to generate observed
regularities of the target system, thus providing a method through which
theory can be tested in terms of its viability, and in some cases falsified
(Epstein, 1999).

While there seems no definitive consensus regarding the validation and veri-
fication of simulation models, here the work of Schlesinger (1980) is adapted,
presenting a three-tiered approach to the process. This approach offers
considerable utility by providing measures of model validity at a number
of stages throughout the model development process; appropriately strat-
ifying verification and validation to the different stages of the simulation
method, from theoretical model to conceptual model and then to computa-
tional model. Figure 3.3 depicts this process of model qualification, verifica-
tion and validation.

Figure 3.3: Verification and Validation of Simulation (adapted from
Schlesinger (1980)

First, a theoretical model of some phenomenon is selected. From this the-
ory, a number of formalisations are derived, together forming a conceptual
model of the simulation to be developed. Such formalisms encompass the
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key propositions of a given theoretical model, and in essence provide a for-
malised verbal model of some theory. This conceptual model is validated in
terms of its ability to provide an adequate representation of the original, and
often ‘fuzzy’ theoretical model – this process is known as model qualification.
Model qualification poses the question: do these conceptual formalisations
and the proposed interactions amongst them adequately capture the theories
they aim to simulate and subsequently examine? Model qualification occurs
through observation. Where discrepancies between the theoretical and con-
ceptual models are identified, conceptual formalisations are refined to reflect
more accurately the theoretical constructs of interest. If ambiguity exists in
the existing theoretical model, a number of candidate formalisations may be
produced, each to be tested through simulation.

Once the investigator is satisfied that the conceptual model has been ade-
quately qualified, a series of computational algorithms representing that con-
ceptual model are implemented. Model verification assesses whether these
algorithms sufficiently represent the conceptual model upon which they are
based. This process often takes place by examining the output of specific
algorithms in relation to particular scenarios. For instance, if theoretical and
conceptual models suggest individuals are attracted to some characteristic
of their environment, the observation of simulation test scenarios should
demonstrate entities gravitating to locations that present this characteris-
tic.

While the emergent properties of simulation are often beyond the scope of
model verification (as they are often inherently unexpected), these tech-
niques of model qualification and verification allow simulation components
to be examined individually with respect to the results expected by theory.
This is of considerable use as the verification of interacting simulation com-
ponents can be much more difficult. Given a sufficient number of test cases
where model outputs are consistent with the results expected by both theo-
retical and conceptual models, the computational model may be considered
appropriately verified.

After both conceptual and computational models have been assessed, model
validation aims to assess a model’s ability to adequately capture the output
behaviour of the target system as a whole. This is done by comparing the
output of simulation models (i.e. simulated data) to empirical data. Con-
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Table 3.1: Levels of Equivalence between simulated and empirical data
(Source: Axtell & Epstein, 1994)
Level of Equivalence Description

Level 0
The model is a caricature of reality, as established through the
use of simple graphical devices (e.g., allowing visualisation of
agent motion);

Level 1
The model is in qualitative agreement with empirical macro-
structures, as established by plotting, say, distributional prop-
erties of the agent population;

Level 2
The model produces quantitative agreement with empirical
macro-structures, as established through on-board statistical
estimation routines; and finally,

Level 3
The model exhibits quantitative agreement with empirical
micro-structures, as determined from cross-sectional and lon-
gitudinal analysis of the agent population.

sidering how such comparisons should take place it is obvious that various
levels of equivalence between simulated and empirical data can be observed.
Speaking specifically about how the output of ABM of social systems can
be compared to empirical data known of the target system, Axtell and Ep-
stein (1994) propose four cumulative levels of in-situ and in-silico system
equivalence (see Table 3.1).

Obviously, models offering the greatest equivalence are the most desirable,
but that is not to say that those which only provide lower levels of equiva-
lence are not of use. In discussing this issue Axtell and Epstein consider that
what is currently known about the target system – that is, the state of the
field in which models are to be used, is perhaps the most significant factor
in determining at what level model-empirical equivalence should highlight
interest from fellow scholars. In essence, the better understood the target
system is, the greater the level of equivalence required to provide novel in-
sight. To illustrate, they suggest that economic models will likely require
quantitative micro- and macro-equivalence, as much is already known about
both the micro- and macro-characteristics of many economic systems.

Relating this to the study of crime through simulation, as applied in this
thesis, what might we infer about suitable levels of equivalence in simula-
tions of crime? Here I believe it is fair to say that, due to those previously
highlighted problems of observation and experimentation, relatively little is
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definitively known about the underlying dynamics of the crime event. Thus,
it would seem that with respect to crime simulation, a relatively underdevel-
oped area of research, equivalence at any of the levels would be of interest
to criminological scholars.

Epstein and Axtell suggest that in developing models researchers should
consider the level of equivalence they aim to achieve, as this will influence
the data collection and analytical procedures that are devised to analyse
simulation output. Furthermore, model complexity may also dictate the
likely attainable levels of equivalence. Highly abstract models for instance
are unlikely to attain quantitative equivalence, but instead may demonstrate
qualitative equivalence with a broader range of target regularities. Drawing
on the observations of Eck and Liu (2008), who suggest that quantitative
equivalence between simulated and empirical crime patterns may be difficult
to determine given the inherently error prone nature of crime data, the model
presented in this thesis aims to achieve qualitative equivalence with multiple
macroscopic regularities of interest.

Having discussed issues relating directly to the validity of simulation models
as analytical tools, the following section describes how the outputs of a suf-
ficiently validated model should be scrutinised to maximise the confidence
one can have in the insights gained from it.

3.6.1 Assessing Model Outcomes

Given a sufficiently qualified, verified and validated simulation model, a num-
ber of methods may be employed in assessing the overall validity of the re-
sults it produces. These tests aim to ensure that the inferences drawn from
a model are reliable and truly indicative of the computational mechanisms
under study, and in turn, maximise insight into those hypotheses from which
they are derived.

Simulation Replication

Simulations, like all experimental methods, require that their findings be
reproducible for them to be considered valid (Axelrod, 1997a; Edmonds &
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Hales, 2003). In the same way as they are used in traditional experimen-
tation, replications of simulation aim to highlight implementation-specific
factors which may have influenced the observed results. In fact, simulation
models may be more susceptible to these implementation-specific factors
due to their relative complexity and the skill set required in examining them
(Axelrod, 2005; Galán et al., 2009). Therefore, without systematic and rig-
orous methods for scrutinising simulation, factors unbeknownst to onlookers,
and in some cases even the investigator, may influence simulation outcomes
and hence, the inferences being drawn from them. For example, in discussing
their attempts to replicate a published simulation model, Edmonds and Hales
(2003) highlighted that seemingly subtle differences in the temporal order in
which simulation entities performed actions lead to substantially different
outcomes from those observed in the original study.

Given the potential impact of these problems, replication of simulation exper-
imentation is of considerable importance (Edmonds & Hales, 2005; Townsley
& Birks, 2008; Townsley & Johnson, 2008). Simulation replications can be
rudimentarily divided into two categories: within- and between- model repli-
cation. Within-model replication describes a process where the outputs of
simulation experiments are averaged over numerous ’runs’ using the same
simulation model and configuration. As simulations often contain stochastic
elements the results of one simulation run may differ from the next (Ax-
elrod, 1997a). Within-model replication is an important method through
which the range and consistency of possible simulation outputs can be ex-
plored, assessing simulation statistical-conclusion validity (Townsley & John-
son, 2008). Thankfully, the nature of development environments used in
simulation development dictates that within-model replication is relatively
easy to perform, requiring little investment other than time and computing
power.

Between-model replication, on the other hand, refers to the replication of
original simulation experiments using different simulation models. Between-
model replications take the theoretical and conceptual models of an original
model and attempt to transfer them into another model in order to assess
whether similar results are observed. This process may highlight weaknesses
in simulation construct validity. In order to facilitate between-model repli-
cation, simulations should strive to provide transparency in their documen-
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tation. Usefully, the process of formalisation required in the development
of simulation necessitates explicit definitions that can be utilised by those
who aim to perform subsequent between-model replication. For example,
conceptual algorithms can be included in research documentation, critical
parameters identified, and the range of values used for each simulation ex-
periment specified. Thus, while the process of between-model replication can
be time consuming, such explicit definitions make replication easier to per-
form and increase the likelihood that subsequent replications are equivalent
to the original experiment.

Model Robustness

When simulation models are developed it is commonplace for a number of
significant model parameters to be specified. These parameters often dic-
tate the initial conditions of the simulation model and the entities that re-
side within it. With respect to ABM, such parameters might describe the
size and form of the simulation environment, agent populations, or the spe-
cific thresholds at which agents within the model undertake certain actions.
While the results of a particular simulation are of interest, the mapping
between input parameters and output behaviour should also be scrutinised
(Axelrod, 1997a; Gilbert & Troitzsch, 2005). Model robustness tests seek to
examine the influence that these initial model parameters have on outcome
patterns. The aim of this process is to ensure that the results observed are
not unique to a specific set of selected parameters. Robustness tests com-
monly involve selecting a number of significant model parameters (ideally
reflecting both model initial conditions and behavioural parameters (Fung
& Vemuri, 2003)), manipulating each in isolation, performing a number of
within-model replications, and examining changes in model outcomes. In this
way robustness tests are akin to sensitivity analysis performed in a number
of statistical models.

However, given the dynamic, nonlinear, and nondeterministic nature of the
systems simulation models commonly aim to emulate it is unlikely that re-
sults from such robustness tests will not differ somewhat given parameter
manipulation. Indeed, a lack of impact may indicate that model parameters
do not act as they are intended. When variations in outcomes are observed
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the evaluation of robustness testing often looks for distributional equiva-
lence. That is, do the same types of macro-patterns remain given changes
in initial parameters?, is the magnitude of effect from specific mechanisms
similar? etc. Such tests ensure that the model’s plausibility does not com-
pletely break down when seemingly innocuous changes in input parameters
are performed (Fung & Vemuri, 2003).

Similarly, if the results of parameter manipulation are highly implausible
further investigation into the underlying model structure is required. For
instance, if an expanding population leads to a lower density of individuals
throughout the environment; or a decrease in agent income levels leads to
an increase in model-wide wealth. In these cases the underlying structures
of the model should be scrutinised (returning to the methods of qualification
and verification described previously), ensuring that the observed results
are indeed indicative of unforeseen but plausible interactions, rather than an
indication of underlying errors in the model formalisation, or the presentation
of the data it produces. While it is often impractical to sweep an entire
range of possible input parameters, it is reasonable to explore a number of
key model parameters within the computational constraints of a proposed
study.

In addition to testing the robustness of model results to differing initial
parameters, models that incorporate stochastic elements should also be sub-
jected to robustness testing with respect to selected random number seeds3

(Axelrod, 1997a). In such tests the random number seed used in generating
all random numbers are systematically manipulated to ensure that observed
results are not unique to a particular seed. Such tests are undertaken by run-
ning numerous within-model replications of a model under the same initial
parameters but each using a different random number seed.

In summary, the answers to questions such as ‘is your model valid?’ are
likely best met in terms of probabilities (Axtell & Epstein, 1994) – there
are however a number of techniques which can minimise potential threats to
the validity of both models themselves and, in turn, the inferences derived
from their outcomes. Furthermore, it is worth noting that the uncertainty of
validity in this analytical technique is, in broad terms, no different from the

3Random number seeds are a programming construct used to initialise pseudorandom
number generation.
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uncertainty associated with other widely used methods that are forced to
make assumptions in order to aid our understanding of complex real world
processes.

The following section describes a number of previous endeavours that have
applied ABM within the field of environmental criminology. Subsequently,
the differences between these previous approaches and the one presented
in this thesis are outlined, and the approach of generative social science
undertaken here discussed.

3.7 Criminology & Simulation: Existing Research

The notion of building ABMs of the crime event is not novel. While cur-
rently in its infancy, research relating to the use of ABM within criminology
has recently gained considerable momentum. Recent publications edited by
Liu and Eck (2008) and Groff and Mazerolle (2008) present considerable ev-
idence of the growing interest in computational modelling within the field of
criminology. The research presented in these volumes cover a wide variety of
topics relating to both the implementation of simulation techniques within
criminology and criminal justice, their ramifications for both theoretical and
policy development, as well as a number of issues associated with their use
in general.

While acknowledging the wide range of applications for computational mod-
elling within environmental criminology, this section focuses on the most rel-
evant existing studies that have applied explanatory ABM specifically with
the aim of exploring the mechanisms proposed by environmental criminol-
ogy. In addition, a number of significant foundational issues with respect to
the use of crime simulations are discussed. It is through this body of existing
work, and discussions with several of its authors that the work in this thesis
has drawn insight and inspiration. In concluding this section, the important
differences between these previous endeavours and the research presented in
this thesis, which aims to extend efforts within this burgeoning field, are
then highlighted.

In considering the general suitability of computational modelling within en-
vironmental criminology, Brantingham and Brantingham (2004) make a call
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for the use of ABM in understanding the crime event, suggesting that its
application could be well used to aid in the validation of crime patterns and
theories. The authors propose a framework for developing such ABM pri-
marily focusing on the routine activity approach but also drawing from the
rational choice perspective and crime pattern theory. The culmination of
these discussions has led to the development of the Mastermind simulation
model, an interdisciplinary modelling platform which aims to provide a tool
for criminologists, policing agencies and city planners interested in the spatial
and temporal characteristics of crime in urban areas (Brantingham, Brant-
ingham, & Glasser, 2005; Brantingham et al., 2008; Brantingham, Glasser,
et al., 2005a, 2005b). Employing a mathematical framework known as ab-
stract state machines, which permit the “mathematical modelling of discrete
dynamic systems” ((Brantingham et al., 2008, 255), Mastermind provides
distributed asynchronous ABM of the key actors and entities involved in the
crime event. Brantingham et al. (2008) present an example application of
the Mastermind modelling platform, focusing specifically on motor vehicle
theft and exploring the impacts that individual awareness spaces might have
on target selection, and in turn, the distribution of crime. In performing a
series of experiments using the model, Brantingham et al. present results of
a sample simulation of two offenders situated within an environment drawn
from real road network data of Vancouver, British Columbia. In this exam-
ple offenders differ only by their navigational preferences. The model itself is
run through ten within-model replications and results describing the activity
patterns and target selection of each agent scrutinised. Analysis of this data
demonstrates the impact that differing activity and awareness spaces can
have on the occurrence of offending, and moreover the clear utility of using
ABM in considering the complex interactions which occur between offender,
target, environment and their individual characteristics. In discussing the
utility of the approach, Brantingham et al. state that the specific outputs
of the model are less important than the underlying ‘trace’ that generates
them. However, they do suggest that model validity can be assessed by com-
paring outputs with those expected by theory, and by the model’s ability to
produce crime patterns that are characteristically similar to those observed
in empirical research.

In one of the most sophisticated approaches to date, Groff (2007a, 2007b,
2008) presents an explanatory ABM of street robbery. Groff’s model aims
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primarily to explore a core assertion of the routine activity approach – as
time spent away from home increases, so does the likelihood of victimisa-
tion (Cohen & Felson, 1979). Groff (2007a) presents an initial model in
which agents representing both police and potential offenders, victims and
guardians move randomly between intersections in an environment derived
from GIS data describing the road network of Seattle, Washington. Using
this model a number of experiments are performed where the time agents
spend away from home is systematically manipulated and the resulting levels
of street robbery observed. Results of these experiments are congruent with
those predicted by theory – as time spent away from home increases signifi-
cant increases in street robberies are observed, and furthermore the spatial
patterns of street robberies change. Results of a series of robustness tests
demonstrate also that the observed relationship between time spent away
from home and risk of victimisation are robust to both changes in initial
parameters and changes in random number seeds.

Extending this work, Groff (2007b) presents a modified version of the original
model in which the spatial activities of agents are more developed. In this
variant the impact of differing conceptualisations of agent activity spaces are
examined. Firstly, a directed movement behaviour is compared to the initial
random movement presented in (2007a). Agents operating under the ‘street
directed’ movement behaviour are allocated a number of routine activity
nodes and a series of intersection paths that connect them via predetermined
shortest routes. In addition, a further model variant is presented in which
agents again utilise the random movement behaviour but do so in an abstract
environment in which the Seattle street network is replaced by a uniform
grid of intersections. In comparing these three model variants, time spent
away from home is held static and resulting crime trends are observed under
each of the three conceptualisations of activity spaces (grid random, street
random, street directed). Results of these experiments demonstrate that the
presence of the real street network versus the abstract grid impacts on the
incidence and concentration of offending. In the grid model lower numbers
of victim-offender convergences and actual crimes are observed and crime is
generally more dispersed compared to the real street network. Groff suggests
this is likely “due to the funneling effect of the street network on human
activity; it increases the number of times people converge” (2007b, 522).
In comparing the street directed to the street random model (as presented
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in Groff (2007a)) further differences are observed. Under the street directed
model variant an overall reduction in offending is observed but an increase in
both convergences and spatial concentration of offending is apparent. Each
scenario is run through five within-model replications, each time utilising a
different random number seed.

Groff (2008) then presents a further model extension which incorporates tem-
poral constraints into the routine activities of agents. The study provides
a comparison of three further conceptualisations of activity spaces - simple,
temporal, and spatio-temporal. In the simple condition, agents move ran-
domly throughout the street network for some proportion of each day and
stay at home for the remainder; in the temporal variant, movement remains
random but time away from home is specified by a series of temporal con-
straints; finally in the spatio-temporal variant offenders are allocated routine
activity nodes, specified paths to those nodes, and a schedule of when such
activities should take place. As in the initial study, a series of experiments
are then performed where the average time spent away from home is manipu-
lated and the resulting crime examined across all three model configurations.
By comparing the simple model to the temporal and spatio-temporal vari-
ants an appropriate counterfactual is established permitting the examination
of the effects of each type of hypothesised activity space as compared to the
null model. Results demonstrate that temporal and spatial constraints have
differential effects on both the overall amount and spatial distribution of rob-
bery events within the model. In considering the limitations of the study the
author states that the model should be extended to explore further environ-
ments with the hope of increasing the generalizability of its findings.

Using a similar approach, Wang, Liu and Eck (2008) presents the latest
endeavour of an interdisciplinary research program undertaken by scholars
from the departments of geography and criminal justice at the University of
Cincinnati (Liang, 2001; Liu et al., 2005). The authors present a simula-
tion model of street robbery underpinned by the routine activity approach
and crime pattern theory. The model utilises a hybrid of ABM and cellular
automata and situates agents within a realistic environment drawn from a
subsection of the Cincinnati street network. Agents within the model repre-
sent three key entities involved in the criminal event: offenders, targets and
places. Offender agents operate under a number of key behaviours that allow
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them to navigate their environment, choose suitable targets and learn from
past experience about good crime places. Similarly, target agents are capa-
ble of traversing the simulation environment and adapting their behaviour
to avoid locations where previous victimisation has occurred. Place agents
then represent the locations at which crimes can occur and are represented
as cells on the street network modelled. Each place agent is associated with
a place manager designed to represent the crime controller initially described
by Eck (1994). The management effectiveness of a place is then reflected in
a measure of a place’s ability to control crime within it. Drawing on the
routine activity approach, when offender and target agents converge at a
given place, offenders then assess their current motivation, the desirability
of a target, the capability of any present guardians and the management
effectiveness of the current place in their decision to offend.

Having established that the routine activity mechanism formalised produces
results congruent with those expected by theory, two key scenarios are pre-
sented. The first demonstrates that providing agents with temporally con-
strained routine activities leads to hourly patterns of offending much like
those observed in the empirical study of crime. The second explores the im-
pact of providing both offender and target agents with the ability to adapt
to what is known about ‘good’ crime places (to either gravitate towards, or
away, from them respectively). Results of these experiments demonstrate
that activating the adaptation mechanism leads to greater levels of repeat
victimisation, and the presence of a power curve in describing high crime
places much like that observed in empirical study (Spelman, 1995).

The research presented by these authors again demonstrates the utility of
ABM in exploring the macro-ramifications of micro-level propositions out-
lined by theory. Demonstrating that ABM are well suited to explore the
dynamic nature of individual level interactions that are difficult to capture
through traditional analytical techniques. Furthermore, the application of
controlled experimentation within a simulation laboratory, and, in particular,
Groff’s use of a null model against which competing activity space concep-
tualisations can be compared shows considerable promise, highlighting the
strength of simulation in performing experiments that would otherwise be
impossible in-situ.

Finally, Birks (2006, 2005); Birks, Johnson and Bowers (2005); and Birks,
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Donkin and Wellsmith (2008) outline the initial efforts of the author in de-
veloping ABM of crime. Birks, Donkin and Wellsmith (2008) presents two
illustrative ABMs of crime - an initial abstract model of crime against the
person, and a second more complex model of residential burglary, incorporat-
ing mechanisms of the routine activity approach, rational choice perspective
and crime pattern theory. Agents within this second model are again sit-
uated on a real road network drawn from GIS data describing a suburb in
the United Kingdom. While the analysis of simulated crime patterns is only
illustrative, initial findings demonstrate that agents operating under the for-
malised mechanisms of the opportunity theories produce patterns of burglary
victimisation that are spatially and temporally clustered in a similar way to
those observed in empirical study. This work served as a learning exercise in
dealing with the practicalities of developing ABM of crime, and formed the
initial inspiration for this thesis.

Having described the key models that have provided insight for the model
presented in this thesis, the following discussion now highlights a number
of foundational issues discussed within the crime simulation literature that
have also informed a number of decisions made in the development of the
model presented here.

Capitalising on previous research efforts within the field of crime simula-
tion (Van Baal, 2004), Elffers and Van Baal (2008) provide a significant
discourse concerning the current movement towards incorporation of realis-
tic environmental data in simulation models (see for example (Birks et al.,
2008; Groff, 2007b; Wang et al., 2008)). Elffers and Van Baal express con-
cerns that rather than increasing the utility of ABM, such endeavours may
instead obfuscate the fundamental dynamics of the crime event that simula-
tion is so well positioned to examine. Suggesting that the causal effects of
the mechanisms of interest may be difficult to unpick from the impacts of
environmental conditions specific to the location being simulated. In con-
sidering this issue the authors remind us that "real world correspondence is
not the kernel of a simulation model" (Elffers & Van Baal, 2008, 22). In-
stead proposing that the utility of simulations is derived by the systematic
examination of model mechanisms and parameter changes on output. Thus,
increasing understanding of the ramifications of the underlying mechanisms
formalised within the model, and in turn the theories from which they are
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derived.

Similarly, in presenting an abstract model of offender movement, Brant-
ingham and Tita (2008) demonstrate that simplistic reductionist models of
offending are capable of generating plausible spatial concentrations of crime.
Utilising only a random walk behaviour that derives trip distance from a levy
probability distribution, Brantingham and Tita’s model of offender move-
ment produces hot spots that bear a striking resemblance to those observed
in empirical study. Much like Elffers and Van Baal (2008), in advocating
their reductionist approach, Brantingham and Tita express overarching con-
cerns regarding the use of overly complex models, suggesting that simple
models provide “a degree of analytical and quantitative tractability that are
not available in more “holistic” approaches” (Brantingham & Tita, 2008,
204).

The observations of both these studies have influenced the author’s concep-
tualisations of ABM environments (given previous endeavours presented in
Birks (2006) and Birks et al. (2008)), and have resulted in a shift in direction
from the realistic – to the more synthetic environmental representations that
are utilised in this thesis (see section 5.4.1 for further discussion).

With regard to the validity of crime simulations a number of insightful papers
have also recently been published. Townsley and Johnson (2008) outline a
number of threats to simulation validity – many of which relate to the need
for model qualification, validation and verification outlined in section 3.6.
Furthermore the authors also highlight the important role of replication
within simulation-based research, asserting the significance of both within-
and between-model replications discussed in section 3.6.1. Importantly, they
also propose that models may be best empirically verified by assessing their
ability to produce multiple commonly observed crime patterns. Similarly,
Berk (2008) proposes that crime simulations aimed at providing insight must
be appropriately validated against known crime data, outlining a typology of
model and target equivalence similar to that proposed by Axtell and Epstein
(1994) and depicted in Table 3.1.

Of considerable importance to this thesis, Eck and Liu (2008) provide a in-
sightful discussion of the similarities and differences between simulated and
empirical experiments. Drawing on Epstein’s concept of the generative ex-
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planation (Epstein, 1999) (described in further detail in the next section),
Eck and Liu examine the simulation methodology from a traditional exper-
imental standpoint. Contrasting the use of simulation against more tradi-
tional forms of explanation, the authors propose that the ability of simulation
to identify generative explanations of specific crime phenomena (i.e. those
micro-mechanisms that are generatively sufficient to produce macroscopic
regularities congruent with the target system) positions the simulation model
as a substantive scientific instrument. It is this approach that the ABM de-
veloped in this thesis follows, providing a test of the generative sufficiency of
a number of core premises outlined by the opportunity theories in producing
several crime patterns commonly observed in empirical research.

3.7.1 Specific Contributions of This Thesis

The model developed for this thesis aims to extend the previous efforts dis-
cussed above. Much like Eck and Liu (2004) state (cited in Groff (2007a,
80)) the approach presented in this thesis does not aim to compete with pre-
vious endeavours, but instead complement and capitalise on previous efforts.
In doing so, this thesis contributes to the newly emerging evidence base of
what hypothesised crime event mechanisms are capable of generating plau-
sible crime patterns.

The approach presented in this thesis does however differ from previous stud-
ies in several ways, and as such makes a number of distinct contributions to
the field of computational criminology. Primarily, drawing on Epstein’s no-
tion of the generative explanation, the model presented in this thesis provides
a systematic test of the generative sufficiency of all three opportunity theo-
ries in generating multiple independent regularities of crime, across multiple
crime types. The model presented in this thesis formalises and examines the
macro-level ramifications of three core micro-mechanisms of the opportunity
theories identified in section 2.1 – movement (routine activities), decision
making (rational choice) and learning (crime pattern theory). Following
Groff’s (2007b) implementation of the null activities model condition, the
model developed implements experimental and control conditions for each
mechanism – such that, in the experimental condition agents within the sim-
ulation exhibit behaviour representative of the theoretical mechanism, and in
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the control condition its absence. Using these conditions in conjunction with
a computational laboratory-based approach advocated by previous authors,
a series of controlled experiments are performed in which the crime patterns
that are generated by offender populations acting under distinct behavioural
configurations are systematically explored and compared. Using this ap-
proach, the model is used to estimate the likely impacts on crime patterns
of the three core micro-mechanisms in both isolation and interaction.

Second, in examining the generative sufficiency of these mechanisms, three
independent outcome measures - each relating to a given regularity of crime
identified in section 2.2 are used. By analysing the outputs of the same
simulations against multiple regularities, the equivalence of simulated and
empirical data is assessed across multiple dimensions, thus strengthening
the confidence (or lack thereof) one can have in the sufficiency of a given
mechanism. This approach is consistent with the suggestions of (Berk, 2008;
Brantingham et al., 2008; Eck & Liu, 2008; Townsley & Johnson, 2008)
who all suggest that the ability to generate patterns congruent with those
observed in empirical research is an appropriate step toward establishing the
validity of crime event models.

Third, considering the concerns of Elffers and Van Baal (2008) and Branting-
ham and Tita (2008) an abstract model environment is used. However, in ac-
knowledging the potential importance of the spatial constraints a street net-
work confers on agent activity, as highlighted by Groff (2007b), an abstract
representation of a street network is developed. Importantly, where previ-
ous efforts have focused predominantly on exploring crime patterns within
a single sample environment, the model presented in this thesis permits the
exploration of multiple environmental configurations. In doing so, the model
environment aims to encapsulate the potential impact a street network may
have on the spatial activities of agents, and in turn, the distribution of crime;
yet, by examining outcomes over multiple environments, also control for po-
tential environmental effects that might be imposed by the use of a single
environment.

In addition, a focus on model simplicity permits the number of within-model
replications performed to be orders of magnitude greater than those pre-
sented in previous studies. Furthermore, in undertaking large numbers of
within-model replications, distributions of outcome measures are generated,
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thus allowing the statistical significance and magnitude of differences be-
tween model outcomes resulting from different mechanisms to be assessed
- two important but distinct measurements of simulated data (Axelrod,
2005).

Finally, where previous efforts have focused on models of a single offence
type, the model framework presented here applies two variants that permit
assessment of the generative sufficiency of the opportunity theories for crimes
that occur both against spatially static targets (e.g. residential burglary) and
spatially dynamic targets (e.g. street robbery).

Having outlined how the model presented in this thesis differs from and
compliments existing applications of computational modelling within envi-
ronmental criminology, the final section of this chapter outlines the notion
of the generative explanation that underpins the research presented.

3.8 Generative Social Science

In this section the rationale of generative social science, the approach applied
in this thesis, is discussed. Propositions of the approach that suggest that the
computational ABM provides a new kind of scientific instrument capable of
falsifying theory are outlined, and the notion of the generative explanation is
discussed and compared to more traditional forms of explanation. The con-
cept of generative sufficiency is discussed and the ability of ABM to identify
candidate micro-specifications capable of generating known macro-structures
is outlined. Finally, it is argued that the generative social science approach
provides an ideal framework through which the propositions of the oppor-
tunity theories can be explored, and moreover their sufficiency as candidate
explanations for commonly observed regularities of crime assessed.

3.8.1 The Generative Explanation

Recent advances in the application of ABM within the social sciences have
seen advocates propose that ABM permits a new “third way of doing science”
alternate to traditional forms of inductive and deductive reasoning (Axelrod,
2005, 5). This approach sees the agent-based computational model or ar-
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tificial society, as it has become known (Epstein & Axtell, 1996), as a new
scientific instrument that permits a unique experimental method through
which social macro-structures of interest can be “computed” (Epstein, 1999,
2006; Hedström, 2005). A branch of analytical sociology, the approach fo-
cuses on mechanisms as explanations, and in doing so advocates suggest
that such artificial societies allow researchers to systematically establish
which micro-level mechanisms can and cannot be viable explanations for
observed macroscopic phenomena: “Agent-based models provide computa-
tional demonstrations that a given microspecification is in fact sufficient to
generate a macrostructure of interest” (Epstein, 1999, 42)

More generally, the generativist4 views society itself as a form of distributed
computational device through which macro-structures are computed from
micro-action. The generativist proposes that complex social science phe-
nomena can be understood through the synthesis of their emergence from
lower order action and interaction. The central premise of generative so-
cial science is as follows: ”If you didn’t grow it, you didn’t explain its
emergence” (Epstein, 2006, 8). Consequently, the generativist approaches
observed macro-phenomena by attempting to identify what combination
of micro-conditions are capable of generating them. Or more specifically,
”How could the decentralised local interactions of heterogeneous autonomous
agents generate the given regularity?” (Epstein, 2006, 5).

In attempting to answer this question the ABM is employed. Therefore, in
addressing the above question the following course of action is proposed: “Sit-
uate an initial population of autonomous heterogeneous agents in a relevant
spatial environment; allow them to interact according to simple rules and
thereby generate – or “grow” – the macroscopic regularity from the bottom
up” (Epstein, 1999, 42).

In following this approach it is suggested that theory about unexplained so-
cial science phenomena can be tested by building ABMs of the proposed
micro-level mechanisms of a system and testing if these mechanism are suf-
ficient to produce observed macroscopic regularities of the target. Such reg-
ularities describe those salient macro-level patterns that are consistently ob-
served in the empirical study of the target system. For instance, these might
include right skewed wealth distributions, price equilibria, segregation pat-

4i.e. he or she who undertakes generative social science
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terns, or in the case of this thesis the spatial clustering of crime.

Whereas traditional statistical or equation-based explanations operate in
a top-down manner, with the identification of associations between aggre-
gate observations used to make inferences about underlying mechanisms;
generative social science operates from the bottom-up, identifying genera-
tive explanations as those hypothesised micro-level mechanisms that produce
macro-level output patterns consistent with observed regularities of the tar-
get (Epstein, 1999). Applying ABM as its principal scientific instrument,
generative social science assesses the generative sufficiency of theory. Gen-
eratively sufficient mechanisms are those that when employed by an agent
population are sufficient to generate macro-level patterns congruent with
the target. The more regularities a mechanism is capable of generating, the
greater the confidence one can have in its validity. Importantly, if a mech-
anism cannot produce such regularities, confidence is reduced, and it may
be eliminated as a potential explanation of the target phenomena. Thus,
the use of ABM provides a method through which theory can be falsified, a
principal requirement of any scientific proposition (Popper, 1963).

Drawing parallels to Mackie’s theory of causation (Mackie, 1974), hypotheses
deemed generatively sufficient are those which are made up of INUS condi-
tions of the phenomenon being studied. Thus, each condition is in itself
insufficient, as it alone cannot cause the observed phenomenon; yet non-
redundant, as it is required in this set of conditions for the phenomenon;
unnecessary, as it may be replaced by a number of other sets of conditions;
but sufficient, as in combination with other conditions will cause the phe-
nomenon.

An important observation regarding this form of investigation is that while
generative sufficiency is a prerequisite of causal explanation, the converse is
not necessarily the case. Returning to Mackie’s theory of causation, clusters
of causes or INUS conditions are sufficient to bring about the observed ef-
fect, but are not necessary. Thus, while ABMs may identify hypotheses that
are generatively sufficient, they cannot be used to infer causal explanation
(Epstein, 1999; Hedström, 2005). In discussing this issue, Epstein (2005, 3)
succinctly states that “generative sufficiency is a necessary, but not sufficient
condition for explanation”. This is obviously the case. It is highly probable
that a number of different micro-level mechanisms may produce output phe-
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nomena consistent with that observed of the target. This is no different from
the scientific discipline as a whole – there is no finite limit of the number
of potential explanations one can conjure up for a given phenomena. Gen-
erative social science aims to use ABM to identify which of those potential
explanations are viable candidates. It is only through further empirical ex-
perimentation that the most tenable candidate mechanisms can be identified
(Epstein, 1999; Hedström, 2005).

The initial task of the generativist, then, is to eliminate those theories that
are generatively insufficient, leaving only generatively sufficient candidate
explanations. This ability to identify insufficient hypothetical constructs
is where the strength of the generative approach lies. Having identified
a number of candidate explanations, each should be examined in further
detail, considering its plausibility and identifying other potential metrics
that may be used to test for the presence of the mechanisms purported
using empirical experimentation. As such, the development of generative
models guides further empirical observation of the target phenomena, which
in turn may identify further potential explanations that can subsequently
be assessed for generative sufficiency (Epstein, 1999). While this process is
not guaranteed to produce a single viable explanation of a phenomenon, it
has eliminated those that are insufficient, implausible or have been falsified
through empirical observation, in effect separating the theoretical wheat from
the chaff.

To illustrate this approach an example is now provided. Consider three rival
hypotheses about how some macro-phenomenon x occurs in the target sys-
tem T ; denoted Ah, Bh and Ch. Each of these hypotheses consists of a series
of assumptions about how micro-level interactions of individuals combine
to generate the regularity x. Drawing on each of these hypotheses, three
ABMs are built; models Am, Bm and Cm. In each model, agent behaviour
is formalised from the three respective hypotheses Ah, Bh and Ch. Once
developed, each of the three models are used to perform a series of simulated
experiments and their outputs examined in comparison to observed phenom-
ena x. The results of these analyses demonstrate that the output patterns
produced by agents operating in Am differ substantially from those observed
in T . However, both Bm and Cm produce outputs that are consistent with
the empirical observation of T . Given these results, Ah is considered gener-
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atively insufficient and is eliminated as a potential explanation of x. Both
Bh and Ch are generatively sufficient and as such, are identified as candidate
explanations of phenomena x.

Given these two candidate explanations, we may continue to experiment
with a wider range of parameters (for which we have corresponding em-
pirical observations) in an attempt to eliminate either of these hypotheses.
Alternatively, we may look for other regularities of T and assess if both Bm
and Cm are sufficient to generate them as well as x. In addition, we might
attempt to identify meso-level interactions or regularities exposed by models
Bm and Cm and generate new corresponding hypotheses; establishing equiv-
alent empirical experiments which can be used to test whether or not they
are observed in the target system T .

Extending this initial example, consider that the target system T exhibits
several macroscopic regularities; Tr1, Tr2 and Tr3. In examining the three
proposed explanations of T , model Am may not produce any of the observed
regularities whereas model Bm may only be capable of generating Tr2 and
not Tr1 and Tr3. Conversely, model Cm produces output patterns consistent
with all three identified regularities Tr1, Tr2 and Tr3. In this example, again
model Am may be eliminated as a likely explanation of Tr1, Tr2 and Tr3.
Subsequently, both models Bm and Cm are generatively sufficient for Tr2 but
model Cm can also produce patterns similar to those of Tr1 and Tr3 as well.
In this case while model Bm should not be eliminated, as a there may be
other unknown mechanisms not modelled operating that are responsible for
Tr1 and Tr3, in isolation it can be eliminated as a candidate explanation for
Tr1 and Tr3. At this point it would seem a sensible course of action to assume
that model Cm and the associated hypothesis Ch currently offer the most
parsimonious and plausible explanation of the target system T . Again, while
the above process in no way is making definitive judgements about the actual
in-situ mechanisms, it is providing a technique through which competing
hypotheses can be prioritised in terms of their plausibility. This in turn may
optimise the allocation of real world resources in the empirical investigation
of those hypotheses deemed sufficient through simulation.

In application, generative social science has demonstrated its utility in ex-
ploring a number of social science phenomena. Epstein (2006) provides a
review of a number of these endeavours, which include exploring the dy-
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namics of civil violence (Epstein, 2002), potential strategies for controlling
epidemics (Epstein, Cummings, Chakravarty, Singham, & Burke, 2006), and
the impacts of cultural change within indigenous communities (Dean et al.,
2006).

Having outlined the underlying rationale behind the application of ABM in
assessing the generative sufficiency of theory, the following section describes
how this approach is applied to assess the viability of the opportunity theories
- the task undertaken in this thesis.

3.8.2 Testing the Generative Sufficiency of the Opportunity
Theories

Given the approach described above, this thesis applies the methods of gener-
ative social science to determine if the micro-level mechanisms of the oppor-
tunity theories outlined in section 2.1 offer a viable generative explanation
of the macroscopic regularities of crime discussed in section 2.2.

The Micro-level Propositions of the Opportunity Theories

The opportunity theories offer a number of micro-level propositions con-
cerning the crime event (see section 2.1). The routine activity approach
describes how offenders and victims traverse their environment and how in
turn these spatial and temporal patterns of activity lead to the convergence
of the prerequisite elements of crime. Once encountered the rational choice
perspective sets out a decision calculus which allows offenders to evaluate the
suitability of a given target. In addition, crime pattern theory describes a
cognitive mapping mechanism through which offenders develop knowledge of
their local environment, which in turn aids in the commission of crime.

The Macroscopic Regularities of Crime

In addition to these hypothetical propositions, a number of known macro-
scopic regularities of crime exist (see section 2.2). To reiterate, research has
shown that crime is both spatially and temporally clustered; that a small
number of victims experience a disproportion amount victimisation; and
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further when aggregate journey to crime curves are observed they follow a
characteristic distance decay. These regularities represent the trace effects of
the complex system that the crime event is the output of, and thus are those
that the micro-level propositions described above purport to explain.

Exploring the Micro-Macro Divide with a Generative Agent-Based
Model of Crime

Given the proposed micro-mechanisms of the opportunity theories and the
observed macro-regularities of crime, the approach of generative social sci-
ence seems ideally placed to explore if the former is indeed capable of gener-
ating the latter. If the propositions of the opportunity theories do reflect the
proximal in-situ mechanisms that are significant in the commission of crime,
we would expect a virtual population of offenders operating according to
them to generate patterns of crime congruent with those observed in empiri-
cal study. Thus, in this thesis a generative ABM is developed and populated
with virtual victims and offenders. Offender behaviour is derived from a
number of propositions of the opportunity theories, dictating how offenders
traverse the environment, make decisions about the suitability of potential
targets they encounter, and learn about their local environment. Running
this model a series of controlled experiments are performed whereby the
mechanisms under which virtual offenders operate are systematically manip-
ulated. Subsequently, the simulated crime data produced by virtual offend-
ers are then compared to the macroscopic regularities of crime previously
described. From this analysis conclusions are drawn about the generative
sufficiency of the mechanisms formalised, and moreover the validity of the
opportunity theories from which they are derived as candidate crime event
explanations.

3.9 Conclusion

In this chapter an overview of the simulation methodology applied in this
thesis was provided. The logic underpinning the use of simulation within
the social sciences was outlined, and two key applications of simulation – to
predict and explain were discussed. Subsequently one particular type of sim-
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ulation, the ABM, was described. The key components and characteristics
of ABM were outlined, and the strengths of the approach in exploring the
crime event as depicted by the opportunity theories discussed. Furthermore,
a number of suggestions concerning both model and simulation outcome va-
lidity were then set out.

Subsequently, several recent studies that have utilised ABM in exploring the
crime event as depicted by environmental criminology were described, and
the insights gained from them in developing the model presented in this
thesis highlighted. Finally, the emerging field of generative social science
applied in this thesis was described. The notion of the generative explana-
tion outlined, and the strengths of the approach in assessing the viability of
potential micro-level explanations of observed macroscopic phenomena dis-
cussed. To conclude, section 3.8.2 set out how the generative approach aligns
well with both the micro-mechanisms provided by opportunity theories and
the macro-regularities of crime commonly observed in empirical study – as
such, providing a tool through which the sufficiency of the former in explain-
ing the latter can be systematically assessed. The next chapter now briefly
summarises the research presented thus far and outlines how the remainder
of the thesis proceeds.
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4
Research Overview

This chapter briefly summarises the research presented, reiterates the key
research questions, and specifies the methods through which they will be
addressed.

4.1 Research Context

Section 2.1 provided a summary of the opportunity theories depiction of
the crime event. In examining three key theoretical perspectives, a number
of micro-level hypotheses regarding the proximal mechanisms of crime were
discussed. These included the spatial and temporal constraints of day-to-
day activities described by the routine activity approach; the expected utility
calculus outlined by the rational choice perspective; and the awareness space
proposed by crime pattern theory. In discussing these theories a number of
problems associated with obtaining data at a suitable resolution to test their
validity, and in turn their likely impacts on crime, were highlighted.

In section 2.2 a number of consistently observed macroscopic regularities of
crime were described. These regularities, which constitute the predictable
emergent outcomes of the proximal mechanisms of crime, included the spatial
and temporal clustering of crime, patterns of repeat and near-repeat victim-
isation, and the characteristic journey to crime curve. In discussing these
regularities a number of hypothetical explanations for each, as proposed by
the opportunity theories were outlined.

Section 2.3 highlighted a number of issues endemic within the social sci-
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ences that confound efforts to explore this divide between micro-theory and
macro-observation. It was suggested that researchers must go to consider-
able lengths to rigorously test the validity of the micro-mechanisms provided
by the opportunity theories in describing the crime event and furthermore,
the macroscopic regularities of crime discussed in section 2.2. The chapter
concluded by highlighting the emerging field of crime event simulation and
proposing the development of an ABM aimed at exploring the viability of
theoretical mechanisms put forward by the opportunity theories.

Chapter 3 then began by providing a brief introduction to the simulation
methodology and the development of explanatory models aimed at explor-
ing macro-ramifications of micro-behaviour. The ABM methodology, used
extensively in the emulation of complex social systems, was then described.
Aligning the characteristics and strengths of ABM with the propositions of
the opportunity theories, it was argued that the ABM offered a more holis-
tic approach to the formalisation of such theories than traditional analytical
methods; allowing exploration of the complex dynamic interactions proposed
by the opportunity theories without the need to suppress unit heterogeneity
or simplify nonlinearity. As a result, it was suggested that the application
of ABM could overcome some of the problems associated with the ethical,
logistical and monetary requirements of empirical observation and exper-
imentation, thus providing additional insight into the micro-macro divide
previously highlighted.

Section 3.7 then provided an overview of several previous studies that have
applied the agent-based methodology in the study of crime. Drawing on the
findings of these studies, the utility of ABM in examining the complex inter-
actions outlined by the opportunity theories was highlighted. Furthermore,
in discussing these previous efforts, several key strengths and weaknesses of
existing models were identified. In doing so, a systematic test of the genera-
tive sufficiency of the opportunity theories in explaining multiple regularities
of crime across multiple crime types was proposed. The chapter concluded
by describing the field of generative social science that is applied in this
thesis with the aim of providing such a test.
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4.2 Research Aim and Overarching Research Ques-
tion

The aim of this research is to apply the approach of generative social science
to systematically assess if the micro-level propositions of the routine activity
approach, rational choice perspective and crime pattern theory outlined in
section 2.1 offer a candidate generative explanation for a number of com-
monly observed crime patterns. In doing so, the research presented in this
thesis answers the following overarching research question:

Are the micro-level mechanisms of the opportunity theories generatively suf-
ficient to explain macroscopic patterns commonly observed in the empirical
study of crime?

To address this question a generative ABM of crime is developed. In this
model a population of virtual offenders and victims are created, and a num-
ber of behavioural formalisms derived from the identified micro-level propo-
sitions of the opportunity theories used to dictate their actions. The crime
patterns these virtual offenders generate are then compared to several known
regularities of crime discussed in section 2.2. In comparing the patterns pro-
duced by these virtual offenders to those observed in the empirical study
of crime, conclusions are drawn relating to the generative sufficiency of the
mechanisms formalised, and moreover the validity of the theories from which
they are derived.

4.3 Selection of Micro-specifications and Macro-structures

The following section specifies the micro-specifications and macro-structures
of interest – that is, the hypothetical mechanisms to be explored through
the virtual population, and the salient macroscopic patterns against which
simulated crime data will be compared. In order to focus the research and
keep it manageable, the number of mechanisms to be modelled, and the num-
ber of regularities the emergent outcomes of such mechanisms are compared
against is limited to three of each.
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The three offender agent behaviours employed within the model are derived
from the three key micro-level mechanisms identified in section 2.1. These be-
haviours define how agents traverse their environment and encounter poten-
tial targets (routine activities); assess those targets for suitability (rational
choice); and build up cognitive maps of their activity spaces and the poten-
tial targets within them (crime pattern theory). Following a computational
laboratory approach, for each of these three mechanisms an experimental
and control agent behaviour is developed. The experimental behaviour re-
flects the presence of the proposed mechanism, and the control behaviour its
absence; thus providing an appropriate counterfactual state against which
the experimental behaviour can be compared.

In examining the crime patterns produced by virtual offenders operating ac-
cording to these mechanisms, simulated crime data collected from the model
is analysed with respect to three regularities of crime: spatial clustering,
repeat victimisation and the journey to crime curve. The selection of these
regularities reflects a desire to capture characteristics of the three key com-
ponents of offending as described by the opportunity theories and depicted
in the crime triangle (see Figure 2.1) – that is, the crime place (spatial clus-
tering), the victim (repeat victimisation), and the offender (the journey to
crime curve).

Thus, extending the overarching research question, the research presented
initially addresses the following three focused research questions:

Focused Research Question 1: Are the mechanisms of the opportunity
theories generatively sufficient to explain the spatial concentration of crime
commonly observed in empirical study?

Focused Research Question 2: Are the mechanisms of the opportunity
theories generatively sufficient to explain patterns of repeat victimisation
commonly observed in empirical study?

Focused Research Question 3: Are the mechanisms of the opportunity
theories generatively sufficient to explain the characteristic journey to crime
curve commonly observed in empirical study?

Subsequently, having addressed these questions, focused research question
four assesses if the three theoretical mechanisms formalised from the op-

100



4.4. THE COMPUTATIONAL LABORATORY

portunity theories have differential effects on each of the regularities stud-
ied.

Focused Research Question 4: Do the mechanisms of the routine ac-
tivity approach, rational choice perspective and crime pattern theory have
differential impacts on commonly observed patterns of crime?

Examining the outputs of two model variants, the final focused research
question then assesses if the answers to all of the above questions differ when
considering crimes that occur against spatially static targets (e.g. residential
burglary) and crimes that occur against spatially dynamic targets (e.g. street
robbery).

Focused Research Question 5: Do these results differ by crimes that
occur against static or dynamic targets?

The computational experiments performed in addressing these questions are
now described.

4.4 The Computational Laboratory

Drawing on the strengths of the simulation approach discussed in section 3.4.6,
the ABM developed is used to perform a series of controlled experiments
exploring the impacts of each of the formalised mechanisms on the three
selected regularities of crime.

Having outlined the three experimental agent behaviours (movement – rou-
tine activities, decision-making – rational choice perspective, learning –
crime pattern theory) and the experimental and control states for each, a tra-
ditional 2 by 2 by 2 experimental design is employed. In doing so, the model
is used to explore the crime patterns produced by the virtual offending popu-
lation operating under eight distinct combinations of the three hypothesised
offender mechanisms.

In each of these experiments all simulation model parameters are held static
except those relating to the current active offender agent behaviours. Fur-
thermore, in keeping with the discussion of simulation replication presented
in section 3.6.1, a series of within-model replications are performed for each
of the eight experimental model configurations. In each replication, while
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the size of the environment and agent populations remain fixed, a unique
transport network and offender and target population are used; thus, min-
imising environment specific effects and increasing the generalizability of
model findings.

Subsequently, to address focused research question five all simulation experi-
ments are performed using two distinct model variants. The first, simulating
crimes that occur against spatially static targets; and the second, crimes
occurring against spatially dynamic targets. The simulated crime data gen-
erated in each of these experiments are then analysed in a number of distinct
ways detailed in the following section.

4.5 Methods of Analysing Simulated Crime Data

In examining simulated crime data, three distinct phases of analysis are un-
dertaken. Each phase addresses a given empirical regularity of crime against
which model results are compared. In line with the discussions of simula-
tion and empirical equivalence presented in section 3.6, analysis of simulated
crime data aims to assess the qualitative equivalence of simulation and em-
pirical macro-structures of interest (i.e. level 1 of Table 3.1 (Axtell & Ep-
stein, 1994)). To evaluate the extent of each of the three selected regularities
the following output metrics are used to analyse simulated crime data. In
addition, FRQ4 is addressed through the use of inferential and descriptive
statistics that establish the significance and magnitude of differences in such
regularities under each configuration of hypothetical mechanisms.

4.5.1 Spatial Clustering Output Measure

In addressing FRQ1 the level of spatial clustering observed in simulated crime
data is analysed using the Nearest Neighbour Index (NNI). This method of
quantifying spatial clustering is described in further detail in section 6.5.1.
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4.5.2 Repeat Victimisation Output Measure

In addressing FRQ2 the distributions of victimisation observed in simulated
crime data are examined using the Gini coefficient. This method is described
in further detail in section 6.5.2.

4.5.3 Journey to Crime Output Measure

Finally, in addressing FRQ3 the skewness of aggregated journey to crime
curves observed in each simulation are analysed using Pearson’s coefficient
of skewness. This method is discussed in further detail in section 6.5.3.

4.5.4 Assessing Model Robustness

Following the observations made in section 3.6.1 a series of model robustness
tests are also performed to ensure that model outcomes are robust to changes
both in initial parameters and random number seeds.

4.6 Summary

This chapter has reviewed the research context underlying this thesis. It
has set out the aims of the research and reiterated both the overarching and
focused research questions. Subsequently, it has specified the methods un-
dertaken in addressing these questions. In doing so, the development of an
ABM of crime aimed at exploring the generative sufficiency of the opportu-
nity theories has been proposed. Describing this model, the key micro-level
propositions to be formalized have been outlined and the macroscopic regu-
larities against which model outputs are assessed defined. Subsequently, the
experimental approach undertaken using the model has been specified, and
the output measures through which simulated crime data are analysed have
been presented. In the following chapter the ABM developed is described
and the decisions made in its development discussed.
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5
Model Development

This chapter outlines the development of the primary scientific instrument
used in this research - the generative ABM of crime. This model was used
assess the generative sufficiency of the identified micro-mechanisms of the
routine activity approach, rational choice perspective and crime pattern the-
ory in explaining (1) the spatial concentration of crime, (2) patterns of repeat
victimisation, and (3) the journey to crime curve. The underlying decisions
made in the development of the model are outlined. The selected level of
model complexity is discussed and the justifications for this approach pro-
vided. Each of the model elements is described in detail, including the envi-
ronment and agent specifications. These specifications include a description
of the objects contained within the model, namely offenders, targets and the
transport network. The parameters associated with each are then outlined
and their initialisation conditions specified.

Subsequently, three experimental offender agent behaviours are specified.
These behaviours emulate a proposed mechanism derived from each of the
three theoretical approaches under study. For each mechanism the underly-
ing theoretical propositions are outlined, a series of conceptual equivalencies
are derived, and the computational formalisms developed to represent these
conceptual models described. In specifying each of these agent behaviours a
control and experimental state are specified. In the experimental state the
agent behaviour aims to represent the presence of a given mechanism, in the
control state an appropriate counterfactual behaviour, representing the ab-
sence of a given mechanism is outlined, thus allowing the impact of specific
mechanisms on crime patterns to be explored.
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Having described the key model elements and the behaviours employed by
the offender agents, the subsequent sections of this chapter outline the simu-
lation logic. This description specifies how the model progresses over time –
the simulation cycle, and within it, the order in which all agents take actions
– the agent cycle. The chapter concludes by outlining how the model is used
to perform computational experiments.

5.1 Modelling Offences against Static and Dynamic
Targets

Two variants of the model presented are developed. The first, which is de-
scribed in detail in this chapter, simulates crimes that occur against static
targets, in this case using an example of residential burglary. The sec-
ond model variant aims to emulate crimes that occur against dynamic (i.e.
mobile) targets (e.g. street robbery). This variant differs from the first
model only by activating the movement behaviours discussed in sections 5.6.1
and 5.6.4 within the target population, thus allowing targets to move around
the environment in the same way that offenders do. Subsequently, all ex-
periments performed are done so with both model variants and presented in
two distinct studies in the next chapter.

5.2 The Model

The ABM used in this research approximates a geographical region popu-
lated by both potential offenders and targets. When a simulation is run
using the model1, offenders utilise a transport network to undertake their
own unique spatial activities, moving from different parts of the environ-
ment to work, socialise and so forth. As offenders traverse the simulation
landscape they encounter potential opportunities for offending. When this
occurs, offenders make judgements about whether or not to offend based on

1At this stage it is prudent to clarify the usage of two key terms throughout this
chapter – model and simulation. Here the term model describes the ABM itself – that is,
the agents and environment; the data-structures, algorithms and logical constructions used
to represent them; and the interface used to manipulate and observe them. Simulation is
what the model does – a simulation is the emulation of a particular set of circumstances
as played out using the model.
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both characteristics of the target in question, and their own current motiva-
tions and knowledge of the local environment. As the simulation progresses
multiple heterogeneous offenders explore the environment, making decisions
about where and when to offend, and in turn generating unique patterns of
crime.

Using this model, a series of controlled computational experiments are per-
formed that explore the generative sufficiency of three hypothetical offender
mechanisms proposed by environmental criminology. These mechanisms de-
scribe offender movement (routine activity approach), reasoning (rational
choice perspective) and learning (crime pattern theory). In examining these
hypotheses the decision calculus employed by a virtual offending population
is systematically manipulated to reflect the propositions of theory, and the
patterns of crime that emerge as a result examined and analysed. By focusing
specifically on the sufficiency of these hypothetical mechanisms in produc-
ing three known regularities of crime, conclusions are then drawn about their
ability to provide viable candidate explanations for three commonly observed
crime phenomena.

The model is developed using NetLogo, a freely available cross-platform
”multi-agent programmable modeling environment” (Wilensky, 1999) devel-
oped at the Center for Connected Learning and Computer-Based Modeling
at Northwestern University.

5.3 Model Complexity

Before describing the model it is important to reiterate the ethos that un-
derlies all model development presented here: following Axelrod’s (1997a)
mantra of ”keep it simple stupid” (KISS), the initial model developed in this
thesis aims represent everything as parsimoniously as possible. The model
presented aims to provide a simplistic emulation of direct contact preda-
tory offending. It is made up of simple entities that, in turn, employ simple
rules governing behaviour. While there is no doubt a wealth of other ele-
ments that could be added to the model, the research presented here follows
the rationale of Schelling (1971, 1978) and Epstein and Axtell (1996) and
does not purport to closely mimic any particular locality or reality. Instead,
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it provides a simple set of robust explanatory tools, with which otherwise
untestable hypotheses linking micro-offending behaviour to macro-crime pat-
terns can be explored. Thus, it aims to provide insight by permitting levels
of observation and manipulation that are otherwise impossible in traditional
empirical research – reducing the complexity and noise of the real world and
removing the ethical, logistical and monetary implications associated with
empirical experimentation. In essence, the model presented provides a toy
world in which appropriately specified mechanisms of theory can be tinkered
with in a controlled fashion. By means of inspiration Schelling’s Micromo-
tives and Macrobehavior (1978) and Epstein and Axtell’s Growing Artificial
Societies (1996) provide compelling examples of how such simple models can
tell us something novel and interesting about the complex systems we aim
to understand.

Given that the opportunity theories propose a number of micro-mechanisms
that purport to explain the distribution of crime, and several regularities
are commonly observed in the study of such crime distributions, the goal is
to assess if these mechanisms are sufficient to explain such regularities. In
developing this model the aim is to imbue a virtual offending population with
behaviours that sufficiently formalise a particular hypothetical micro-level
mechanism so that its macro-level ramifications can be explored. As such,
it is acknowledged that these behaviours do not encompass all hypotheses
proposed by a particular theory. While complex models may indeed provide
unparalleled insight into certain real world processes, they can also lead to a
combinatorial explosion in degrees of freedom, making the exploration and
interpretation of model outcomes, and moreover the ability to generalise from
them to real world outcomes difficult at best, and impossible at worst.

Considering such simple mechanisms it may be reasonable to assume that
the macro-impact of a single micro-mechanism is relatively predictable, es-
pecially with respect to a single output phenomenon. It is a considerably
bolder claim however to suggest one can predict how multiple interconnected
mechanisms (simple or otherwise) might act together in unison across mul-
tiple individuals, and moreover how these interconnected mechanisms might
influence several independent outcome phenomena. While one could assume
that opportunity-based depictions of offending provide explanations for the
clustering of crime, patterns of repeat victimisation, and the characteristic
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journey to crime curve – one might equally well assume that alternative
depictions provided by anomie or social disorganisation theory were also ca-
pable of generating the very same observations. The model presented here
provides a means to test (in a systematic fashion) if indeed those macro-
scopic structures can be generated by a specific micro-specification. Thus,
while the entities and actions of the model presented may be simple - their
interaction is not necessarily so, and it is in exploring this interaction that
the approach presented provides insight.

Furthermore, a focus on model simplicity also aims to explore the possibility
of a Pareto distribution underlying the mechanisms of the crime event. That
is, exploration of the notion that perhaps a small number of mechanisms may
be capable of explaining a large proportion of observed crime phenomena.
This study aims to contribute one component to this effort – by presenting a
method through which the viability of purported offender level mechanisms
as explanations for commonly observed crime phenomena can be explored.
In considering such investigation it may be appropriate to draw an analogy to
logistic regression, a technique commonly utilised in the study of both crime
and criminality. In applying logistic regression to explore the relationship
between two or more observed characteristics, the researcher may include a
vast number of independent variables in an attempt to explain variation in
the dependant variable. However, the ultimate aim of such an approach is
always to explain the greatest amount of variance from the smallest number
of variables – in this regard the explanatory ABM presented here aims to
be no different. Beyond this epistemological goal, concentrating on model
parsimony also provides a number of other distinct advantages:

• Development Practicality: Focusing on model parsimony has direct
and significant practical benefits. Put simply, models with simple un-
derlying constructs are more easily developed, tested, interpreted and
understood than their more complex equivalents. This observation has
been stated by several authors within computational criminology, and
it is under this rationale that the model presented here proceeds. Fur-
thermore, the ABM approach can be particularly sensitive to uninten-
tional development decisions that unknowingly impact on the observed
output behaviour of the model. Such ‘ghosts in the machine’ can in
turn lead to inappropriate inferences relating micro-specification and
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macro-structure. While the development of simple models does not
preclude such problems, the more complex a model becomes, the more
difficult such influential but unintentional model assumptions are to
identify, isolate and remove.

• Transparency: Another goal of the selected approach is to ensure that
all model elements can be easily understood and considered by fellow
scholars. Transparency aids in replication, a key requirement of exper-
imental progress that applies as much in-silico as it does in traditional
empirical enquiry. Providing transparent depictions of the mechanisms
of interest also promotes critical and novel thinking about how not only
the model functions, but also the real world system it aims to emulate,
which in turn may lead to the generation of new theory and hypotheses
that can be examined through traditional empirical means. In contrast,
the application of overly complex models often dictates that the inter-
actions of model elements can quickly become cognitively intractable
to all, even those who have developed the model. Such complexity can
make it very difficult to use the model as a means to inspire discussion,
and instead, may lead to models being used to simply explore and anal-
yse vast parameter spaces – the theoretical and practical implications
of which are not always readily apparent.

• Incremental Complexity: The above observations do not preclude the
development of more complex models, they do however highlight the
advantages of staged model development – here it is argued that sim-
ple models should precede complex ones (Townsley & Birks, 2008). It
is only when simple models are understood that further complexity
should be considered. This approach allows new model elements (or
replacements for existing ones) to be adequately examined, tested and
their impacts on model outcomes to be systematically analysed. Fur-
thermore, the development of simple initial models, and in turn, their
outcomes, can be used as a counterfactual against which an incremen-
tally developed can be compared; thus, allowing the impacts of new
model elements to be assessed.

Having outlined the rationale behind the model, its purpose, and the underly-
ing approach taken in selecting and representing its constituent components,
the model developed is now specified. Description of the model is divided
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into two sections, mirroring the key components of ABM discussed in sec-
tion 3.4: the first outlining the virtual environment in which simulations take
place; and the second describing the intelligent agents which inhabit it, and
make up the population of virtual offenders through which the hypotheti-
cal mechanisms of interest are explored. In presenting each of these model
elements, a discussion of both the rationale underlying its inclusion in the
model, and a description of the methods through which it is conceptualised
in-silico are provided.

5.4 The Simulation Environment

The simulation environment specifies the virtual landscape in which all sim-
ulations take place. In keeping with the aim of developing a tractable model
of offending, and drawing on the observations of previous research discussed
in section 3.7, an abstract simulation environment is adopted. This environ-
ment is represented as a simple two-dimensional lattice. When a simulation
is initialised, the experimenter specifies the dimensions of the environment,
for instance creating a 100x100 environment containing 10,000 distinct loca-
tions. This environment contains three key types of object: offender agents,
potential targets and transport nodes. The following sections outline both
the transport network around which offender agents navigate and the po-
tential targets that are encountered within it. Figure 5.1 depicts a typical
simulation environment containing transport nodes, potential targets and a
single offender agent.

5.4.1 Transport Network

The first model element considered is that of the transport network that
permits movement of agents throughout the environment. When individuals
move around their environment navigation can rarely be characterised as Eu-
clidian or ‘as-the-crow-flies’. Instead, human movement is greatly influenced
by the transport network; paths link origin and destination via footways,
bike tracks, roads, streets, intersections, motorways, rivers and even flight
paths. These strata of the transport network impose constraints on spatial
behaviour, in essence dictating that only a finite number of (plausible) paths

111



5.4. THE SIMULATION ENVIRONMENT

Figure 5.1: The Simulation Environment

exist between any two locations. Moreover, some origin-destination pairs
have greater or fewer paths linking them than others, and some of these are
more travelled than others. Such spatial constraints lead to queues outside
football stadiums, city centre gridlock on Friday afternoons, and tailbacks
at motorway on-ramps.

Given that the model presented here aims to explore how the spatial activ-
ities of offenders might affect trends and patterns of offending, the model
presented aims to approximate a transport network of some form. While
this representation may not require a complex hierarchy of pedestrian, pri-
vate vehicle, and mass transit networks as observed in reality, it is important
that it imposes these spatial constraints on the activities of individuals that
move around it.

Appropriate Complexity

In developing a simulation environment, two distinct approaches can be
utilised in the representation of a transport network. The first option is
for a model to make use of one or more GIS data sets to replicate an envi-
ronment from some locality in the real world. In such models, offenders move
around transport networks dictated by real street and intersection data. In
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implementing these environments, researchers need not worry whether the
representation of a transport network sufficiently reflects transport networks
in the real world, as it is from these that they are directly derived. Real
world environments have been utilised in a number of simulation models
of offending to varying degrees. Birks, et al. (2008), Brantingham, et al.
(2008), Groff (2007b), Wang, et al. (2008), for example all integrate real
transport network data to generate simulation environments, coupling GIS
with ABMs of offending.

The alternative approach is for a model to utilise a hypothetical transport
network. Commonplace within much ABM research, artificial environments
are generated by the simulation experimenter and aim to offer appropriate
simplifications of complex infrastructures found in the real world. Like many
of the decisions that must be made in developing a computational model of
any kind, both approaches have their strengths and weaknesses. These are
often dependant upon the ultimate aims of the model, and the framework
around which its results are to be interpreted. For the purposes of the ex-
planatory model presented here, an abstract transport network is proposed.
This choice reflects a want to avoid a number of potential problems a study
of this type might experience as a result of making use of a real environment.
A summary of these follows2.

1. When real GIS data are used to generate simulation environments, it
is often the case that only a single environment is used. This is un-
derstandable - the ‘digitisation’ process of real GIS data sets can be
difficult, time consuming and relies on the availability of good quality
data. By focusing on a single or few environments it can be difficult to
make inferences that the patterns of crime being observed in a specific
simulation are indicative of the mechanisms under study and not an
artefact of a specific environment (Elffers & Van Baal, 2008). Indeed,
this is a problem commonly encountered in traditional experimenta-
tion. One of the distinct advantages of simulation is that it offers
absolute manipulation and thus the ability to manipulate the envi-
ronment and examine the extent to which observed relationships are
consistent over differing environmental settings.

2While the following comments relate to the use of GIS data to specify a transport
network within the model, the majority could be equally well applied to other complex
environmental features drawn from real data.

113



5.4. THE SIMULATION ENVIRONMENT

2. If models are to use real GIS data sets to represent a transport network,
appropriately specified agent behaviours that can read, parse and nav-
igate such a network must be developed. Such wayfinding algorithms
are not insignificant and can be difficult to design and test.

3. As a direct result of the above observation, the use of real environmen-
tal data can also be computationally very demanding, limiting both
the number of simulations a model can be used to explore in a rea-
sonable amount of time, and the software packages that can be used
to develop such models, which will most likely require some explicit
support for GIS linkage3.

4. The notion of a predictive crime computer is one that is understandably
alluring. It is suggested that the use of real environmental data may
encourage the examination of simulation outputs through the lens of
prediction. The ability to view simulated crime hotspots in real hous-
ing estates, neighbourhoods and cities and compare them to empirical
patterns is of considerable utility. However, the presence of one re-
alistic element (albeit a highly visible one) does not make a realistic
model. In order to derive actionable predictive value from model out-
puts all other model assumptions must be equally well specified and
often such verification is difficult or impossible to undertake.

Having outlined the rationale behind the transport network developed, we
now describe its characteristics, constituent components and the constraints
it imposes on agents within the model.

Transport Network – Computational Specification

In attempting to approximate the spatial constraints the transport network
exacts on a population, the model developed provides a simplistic transport
network around which all agents must navigate in order to move from one
location to another within the environment. This transport network is repre-
sented as a series of discrete transport nodes. These nodes can be thought of
as the intersections of some hypothetical road network, such that whenever
an agent moves from one location to another it does so from one transport

3This observation is rapidly becoming less important as agent-based development en-
vironments mature.
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node to another. In navigating this transport network, all agents follow a
principle of least effort in reaching their destination and all proximal nodes
are considered connected (this wayfinding behaviour employed by agents is
described in section 5.6.1).

Transport Network Initialisation Conditions

When a simulation is initialised, the user specifies the number of transport
nodes required to make up the transport network. Transport nodes are
then randomly distributed throughout the environment, thus permitting the
model to explore the impact of specific mechanisms over a range of different
environments. Only a single transport node can be located at any position on
the environmental lattice. Figure 5.2 depicts an example transport network
made up of 10 transport nodes.

Figure 5.2: Example Transport Network

Having outlined the transport network around which offender agents nav-
igate, a description of the potential targets they encounter is now pro-
vided.

115



5.4. THE SIMULATION ENVIRONMENT

5.4.2 Potential Targets

The first model variant described in this chapter aims to emulate offending
against targets that do not move. In this case we assume that such tar-
gets represent potential opportunities for residential burglary.4 The targets
for residential burglary are residential dwellings. Dwellings offer a range of
overt and covert cues about their suitability as targets for crime (Bernasco
& Nieuwbeerta, 2005). For instance, some dwellings may lack appropriate
security, offer little natural surveillance or be perceived as containing desir-
able rewards. Conversely, other dwellings may be difficult for an offender to
access, or to do so without being detected, or may simply not be perceived
as offering sufficient rewards to expend the effort associated with victimising
them. Thus, in modelling offending the model must contain potential targets
for offenders to evaluate. Furthermore, such representations must permit the
characterisation of different target properties, dictating that some targets are
more attractive to offenders than others.

Potential Targets – Computational Specification

Within the first model variant potential targets for offending, i.e. residen-
tial dwellings are represented as spatially static agents. As offender agents
navigate the environment these dwellings are encountered and assessed for
suitability as targets for crime. Each target stores a number of parame-
ters relating to its characteristics and current state. A description of these
follows.

Target Location: Targets are located at a specific location within the
environment, this location is described as a simple co-ordinate pair (x, y)

describing the target’s position on the environmental lattice.

Target Utility: In addition to its location in the environment, each target
stores a parameter relating to its relative suitability as a criminal opportu-
nity. This multivariate indicator is expressed as a target’s utility and aims to

4Although these targets might equally well approximate other static opportunities for
crime, such as parked vehicles.
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combine the measures of risk, reward and effort associated with its victimi-
sation as outlined by the rational choice perspective. It is this utility value
that offender agents employing the rational choice behaviour (described in
section 5.6.5) draw upon to assess the suitability of a given target. Utility
is represented as a floating point number ranging between zero and one. In
conceptualising target utility in this fashion, as target utilities tend towards
one targets offer the greatest rewards to offenders while presenting little ef-
fort or risk in exploiting them. Conversely, as target utility approaches zero
the rewards associated with a target become minimal and/or the effort and
risks associated with obtaining them considerable.

Target Victimisation History: Each target stores a record of all victim-
isation it has experienced during the current simulation. This record includes
the simulation time at which victimisation occurred and data pertaining to
the offender responsible and their associated characteristics.

Target Initialisation Conditions

When a simulation is initialised, the user specifies the number of targets to
be modelled. In the same way that transport nodes are randomly distributed
throughout the environment, so are targets. However unlike transport nodes,
when targets are initially distributed multiple targets may be located at the
same location. This conceptualisation aims to emulate the fact that some
locations may offer multiple offending opportunities – these might include
flats, apartment complexes or attached dwellings in which several distinct
residences exist in the same location. Once targets have been placed within
the environment a randomly generated utility value is associated with each.
Figure 5.3 below illustrates an example spatial distribution of residential
dwellings.

Having described both the transport network that facilitates movement within
the environment, and the characteristics of potential targets found within it,
the following section provides a description of the agents that make up the
model’s population of potential offenders and through which the mechanisms
of the opportunity theories are explored.

117



5.5. OFFENDERS AS AGENTS

Figure 5.3: Example Target Distribution

5.5 Offenders as Agents

As previously discussed, traditional empirical approaches that aim to gain
insight into individual-level offender behaviours may employ a wide range
of analytical approaches, these include the analysis of recorded crime data
and victimisation surveys; interviews and surveys of known offenders; and
evaluations of those interventions which aims to manipulate such purported
mechanisms.

In contrast, the ABM approach allows the researcher to synthesise a pop-
ulation of potential offenders, specifying their defining characteristics, pref-
erences and behaviours in order to examine the potential ramifications of
these hypothesised constructs. Following this approach, the model repre-
sents a discrete population of potential offenders5 as agents. Each offender
agent has its own unique characteristics and acts autonomously based on a
series of behaviours defined by the opportunity theories. Given some initial
conditions these offender agents then travel around the model environment
assessing potential opportunities for offending as they are presented and vic-

5While it is acknowledged that it may be acceptable to describe every member of the
population as a potential offender, much in the same way one might also be described as
a potential vegetarian, for parsimony’s sake the model simulates a discrete group of active
offenders.
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timising those targets deemed sufficiently suitable. Following Cornish and
Clarke’s (2003) typology of offenders, these offender agents aim to mimic the
characteristics of the ”mundane” offender who targets those victims that are
opportunistically encountered.

Offender agents are made up of three distinct elements, (1) a series of pa-
rameters describing their pervasive characteristics - i.e. those which remain
fixed throughout a simulation; (2) a series of variables describing their cur-
rent internal state – i.e. those data which change to reflect the current state
of an offender agent; and (3) a series of behavioural algorithms which define
how an offender agent acts in particular circumstances. Figure 5.4 below
provides an overview of these key offender agent components.

Characteristics

Motivation

Home Node

Routine Activity Space

Behavioural Configuration

State Variables

Current Position

Destination Node

Distance from Home Node

Path Node

Awareness Space

Offender Agents

Offender Decision Making:
Rational Choice

Control or Experimental State

Offender Activities:
Routine Activities

Control or Experimental State

Offender Learning:
Crime Pattern Theory

Control or Experimental State

Movement

Offending

Behaviours

Offending History

Figure 5.4: Offender Agent Architecture

The following section specifies each of these offender agent characteristics,
states and behaviours.

5.5.1 Offender Characteristics

Offender agents store a number of parameters describing their characteris-
tics, these denote features of an offender agent which are set at simulation
initialisation and do not change over time as the simulation progresses.
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Motivation: The motivation characteristic represents an offender’s pre-
disposition to offend at any given time. This value is used in all calculations
relating to the decision to offend. Given the probabilistic nature of the
model, motivation is simply represented as a probability that an offender is
currently motivated to offend p(motivated). As motivation increases offend-
ers are more likely to offend when presented with suitable opportunities. In
order to separate the impact of motivation from the fundamental mecha-
nisms studied, in the initial model presented motivation is held static across
all offender agents and does not change over time.

Home Node: An offender’s home location as allocated at simulation ini-
tialisation. It is from this node that an offender begins activities, and in
turn, returns to after activities are completed. Furthermore, it is from the
home node that all journey to crime distances are calculated.

Routine Activity Space: Each offender’s routine activity space defines
a series of commonly visited locations. These might encompass an agents
place of work, preferred commercial establishments and commonly visited
recreational venues. Such routine activity nodes are represented as a list
of transport nodes. It is these routine activity nodes that the routine ac-
tivity behaviour (section 5.6.4) draws on to set out spatial activities for an
agent.

Behavioural Configuration: The behavioural configuration of an of-
fender agent denotes the state of each of the three key experimental be-
haviours (see section 5.6.3). The behavioural configuration of an offender
agent is represented as a three digit binary code in the form of 111 or 010
etc., each digit referring the (1) experimental or (0) control state of the
three experimental behaviours: routine activities, rational choice and aware-
ness spaces respectively. In combination, the configuration of these three
key behaviours describes a single hypothetical offender agent decision calcu-
lus.
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5.5.2 Offender State Variables

In addition to the static characteristics, each offender agent stores a series
of variables that reflect their current state, and change as the simulation
progresses. These state variables keep track of an offender agent’s current
goals, perceptions, awareness and a record of previous actions undertaken
within the simulation.

Current Position: An offender agent’s current location on the environ-
mental lattice. This is stored as a pair of co-ordinate values (x,y).

Destination Node: The destination transport node of the offender agent’s
current spatial activity, as specified by the wayfinding behaviour currently
employed.

Path Node: The current way-finding destination of an offender agent.
The current path node reflects the next transport node an offender agent
must travel to in order to reach the destination node of their current spatial
activity. To illustrate, if an offender agent’s ultimate destination is transport
node 12 but must travel through nodes 3, 6 and 22 to reach this location the
path node variable keeps track of the current way-finding destination – i.e.
3 then 6 then 22 then 12.

Distance from Home Node: The Euclidian distance between an offender
agent’s home node and their current location within the environment. When
an offence occurs this variable is used to calculate the journey to crime
distance.

Awareness Space: A simple representation of an offender agent’s aware-
ness of the environment. This awareness space mirrors the environmental
lattice, such that each cell within the lattice has an associated awareness
described by a probability that an offender is sufficiently aware of that lo-
cation to exploit targets for offending within it p(aware). The awareness
of a given location is proportional to the time spent at that location (this
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learning mechanic is described by the awareness space behaviour discussed
in section 5.6.6).

Offending History: A record of all offences committed by the offender
agent within the current simulation. This includes data relating to targets
victimised, their location, associated utility and the cycle at which victimi-
sation occurred.

Having outlined the key characteristics and variables that both describe our
offender agents and allow them to keep track of their current state within
a specific simulation, the following sections provide a description of the be-
haviours that draw upon both these data and cues from the local environment
to determine how offender agents act as a simulation progresses.

5.6 Offender Agent Behaviours

The actions offender agents take within the simulation are defined by a num-
ber of key behavioural formalisms. These behaviours outline an offender
agent’s decision calculus and the actions offender agents take in particu-
lar circumstances during a simulation. The model implements five key of-
fender agent behaviours, two general behaviours employed by all offender
agents: (1) a wayfinding behaviour which describes how offender agents use
the transport network to go about their spatial activities, and (2) an offend-
ing behaviour that outlines the circumstances under which offender agents
choose to commit crime. In addition to these two behaviours a further three
experimental behaviours are employed by offender agents. In attempting to
assess the generative sufficiency of the opportunity theories, these behaviours
aim to approximate the three distinct hypothetical mechanisms discussed in
section 2.1, outlining how offender agents choose appropriate spatial activi-
ties to undertake (routine activities), reason about potential targets encoun-
tered (rational choice) and learn about their environment (awareness spaces).
When offender agents are initialised each of these experimental behaviours
can be set in one of two states; an experimental state in which the hypo-
thetical mechanism of interest is enabled and thus employed by an agent;
and a control state where the mechanism is disabled and an appropriate
counterfactual mechanism is employed.
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The following sections outline these behaviours, beginning with a description
of the wayfinding behaviour that describes how all agents utilise the transport
network in undertaking spatial activities.

5.6.1 Agent wayfinding behaviour

As previously discussed, the model environment includes a series of trans-
port node objects that emulate a transport network around which agents
must navigate in order to go about their day-to-day activities. These trans-
port nodes impose spatial constraints on agent wayfinding typical of a real
world transport network. The wayfinding behaviour employed by all agents
describes the decision-making process associated with proceeding between
an agent’s current location and their ultimate destination in the simula-
tion environment6. In designing and implementing a suitable wayfinding
behaviour three rudimentary observations regarding human navigation were
considered:

1. Navigation between origin and ultimate destination is not typically Eu-
clidian in nature – instead, paths between locations are dictated by the
available transport network linking origin and destination;

2. The principle of least effort – in general people attempt to minimise
the distance travelled in reaching their destination;

3. Human wayfinding is not deterministic – i.e. the above application
should not become an absolute optimisation problem - from time to
time people are likely to take different (but plausible) routes between
locations.

To illustrate Figure 5.5 depicts four potential navigational paths linking
transport nodes 1 and 2 in a simple environment. Path A violates obser-
vation 1 – in that navigation is purely Euclidian; both paths B and C are
congruent with the above observations; path D contains unnecessary back-
tracking and as such does not conform to a principle of least effort.

6The movement behaviour presented here simply describes how agents move between
any two transport nodes within the environment, and not how an appropriate destination
node is selected – this behaviour is outlined by the routine activity mechanism described
in section 5.6.4.
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Figure 5.5: Example Agent Wayfinding

While there is considerable research within the field of human wayfinding,
and in turn its computational simulation (see for example (Torrens et al.,
2012) for a recent review of several implementations), here, in an attempt
to reflect the abstract nature of the model developed a simple but novel
wayfinding behaviour is presented, permitting dynamic agent wayfinding be-
tween any two locations within the environment via the transport network.
In operating this behaviour, agents continually survey their local environ-
ment and select how best to proceed towards their ultimate destination by
designating transport nodes, found to be both close and in the general di-
rection of their ultimate destination, as temporary path nodes. Wayfinding
between the current location and ultimate destination is then made up of
a series of discrete trips between local transport nodes. This wayfinding
behaviour is defined by a series of simple actions:

1. Face ultimate destination node;

2. Perceive local transport nodes in cone-of-vision;

3. Select a transport node from cone-of-vision as the current path node (if
multiple nodes exist - select one at random, if no nodes exist - extend
cone-of-vision);

4. Move towards current path node by one increment per cycle until the
current path node is reached;

5. Repeat cycle until destination node is reached.

To illustrate, Figure 5.6 depicts a single offender agent applying this be-
haviour over multiple simulation cycles to move from transport node 1 to
2.

124



5.6. OFFENDER AGENT BEHAVIOURS

2

4
3

5

2

4
3

5

1

2

3

6

1

3

6

1

5
6

4

2

ORIGIN - Transport Node 1
DESTINATION - Transport Node 2 
PATH NODE SELECTED - Transport Node 6

ORIGIN - Transport Node 6
DESTINATION - Transport Node 2 
PATH NODE SELECTED - Transport Node 5

ORIGIN - Transport Node 5
DESTINATION - Transport Node 2 
PATH NODE SELECTED - Transport Node 4

ORIGIN - Transport Node 4
DESTINATION - Transport Node 2 
PATH NODE SELECTED - Transport Node 2

Direction of Destination
Proposed path
Path taken

Figure 5.6: Agent Wayfinding Behaviour Example

Testing

Having implemented this behaviour a series of simulation vignettes were
run allowing offender agent wayfinding to be scrutinised under a number
of different conditions. This process of model verification ensured that the
wayfinding behaviour produced ecologically plausible results in keeping with
the observations previously discussed. Such vignettes constituted creating
a simple environment, inhabiting it with a single or multiple offender(s),
specifying both origin and destination nodes, and then examining the path
selected by that agent in moving between these two locations.

Having described the offender agent wayfinding behaviour, the following sec-
tion outlines the circumstances under which offending can occur within a
simulation.

5.6.2 Agent Offending Behaviour

As offender agents navigate the environment, they come across potential
targets for offending represented by the target objects previously described
in section 5.4.2. The following section outlines an offending behaviour em-
ployed by all offender agents that draws both its key mechanisms, and logi-
cal construction, from the opportunity theory’s depiction of offending. This
behaviour draws on three further experimental behaviours employed by of-
fender agents, each dictating a component of the proposed offending decision
calculus. These experimental behaviours, that are subsequently described,
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constitute the “theoretical switches” that can be thrown by the researcher
(Axelrod, 1995), thus exploring the crime impacts of several differing hypo-
thetical offender strategies.

Returning to our theoretical approach, the offender agent’s offending be-
haviour aims to provide a mechanistic equivalent of the following opportunity-
based depiction of the crime event. The routine activity approach states that
for a crime to occur a spatio-temporal convergence of motivated offender,
suitable target and lack of capable guardian is required. Further, suggest-
ing that rather than searching for potential targets in unfamiliar areas, the
majority of offenders commit crime as and when opportunities for offending
present themselves during day-to-day activities. The rational choice perspec-
tive then proposes that in assessing the suitability of potential opportunities
for offending, offenders attempt to maximise some expected utility. This
utility is dictated by both an offender’s own motivations and the percep-
tions of risk, effort and reward associated with a given criminal opportunity.
However, for a target to be assessed it must first be known. Crime pattern
theory describes the awareness space, a cognitive construct that defines how
offenders learn about their local environment, suggesting that as knowledge
of the local environment increases so does an offenders ability to take advan-
tage of criminal opportunities found within it. From this depiction of the
crime event the following key premises are derived:

1. Crime can only occur when an offender is in the same location as a
target;

2. The likelihood of crime occurring is influenced by:

(a) An offender’s current motivation to offend;

(b) The perceived utility associated with a target (encompassing risk,
reward and effort);

(c) An offender’s knowledge of the local environment.

Given this logical assembly of theoretical approaches, a simplified but equiv-
alent offender agent decision calculus that estimates the suitability of a given
criminal opportunity7 is developed. This model can be formally expressed

7In this abstraction the assumption is that increases in motivation, target attractiveness
and local knowledge all increase the likelihood of offending.
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as follows:

O(x,y,t,α,β) = m
b1
β

(
w
b2
α

s
b3
α f

b4
α

)
kb5(x,y,t) (5.1)

Where O is some measure of the criminal opportunity found at a convergence
of target α and offender β at location (x,y) and time t ; m is a measure of
offender motivation; w the reward; s the risk; and f the effort expected in
victimising target α; k an offenders knowledge of the local environment; and
weightings bi the importance that each of these constituent components play
in the decision to offend.

For the model developed, the above method is further simplified into a like-
lihood function8. Firstly, metrics of reward, risk and effort are collapsed
into a single measure of target utility congruent with the target character-
istic previously described in section 5.4.2. Furthermore, given the rational
choice perspective’s proposition that the presence of a potential guardian in-
creases the risks of detection perceived by offenders, the presence or absence
of guardianship is assumed to be captured by the measure of target utility.
Thus, targets that have a low utility may do so due to the presence of a
potential guardian or place manager9. Finally, we assume that weights bi
are all equal.10

Each of the above elements of motivation, utility and awareness are then
represented as a probability that each criterion is sufficiently met. Thus, the
likelihood of victimisation, given a convergence of offender agent and target
is expressed as a product of the probabilities that (1) a suitably motivated
offender p(m); (2) finds a target of sufficient utility p(u); (3) of which they
are sufficiently aware p(k).

p(victimisation) = p(m) · p(u) · p(k) (5.2)

This proposed model of victimisation can be used to examine the influence
8Here we make the assumption that the decision to offend is probabilistic and given

the same set of circumstances offenders will not always choose the same course of action.
9It is acknowledged that this representation of guardianship fails to capture its dynamic

qualities (in that some targets may be guarded at some times and not at others) future
studies aim to explore this mechanism in further detail.

10While this may well not be the case, it is a logical starting point from which to explore
these mechanisms.
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of four distinct mechanisms on the occurrence of crime:

1. The spatio-temporal convergence of victim and offender;

2. An offender’s motivation to offend;

3. An offender’s reasoning regarding target utility;

4. An offender’s awareness of their local environment.

5.6.3 Experimental Offender Agent Behaviours Overview

With the above overarching offending behaviour in place and these four el-
ements in mind, a series of experimental behaviours were developed, each
formalising a theoretical mechanism as described by the opportunity the-
ories. From which the probabilities described in the equation above are
derived.

• A movement behaviour that outlines spatial activities for all offender
agents, and thus dictates where and when offenders and targets con-
verge;

• A reasoning behaviour derived which describes how offender agents
estimate the utility associated with a presented target;

• A learning behaviour that describes how offender agents gain awareness
of the locations they visit.

The following sections present a description of each of these behaviours fur-
ther explicating a theoretical model – the mechanism described by theory
from which it is derived; a conceptual model – a number of key premises de-
rived from the theoretical model; and a computational model – the methods
through which these key premises are implemented within the ABM. Fur-
thermore, an experimental model condition where the behaviour is enabled,
and a control model condition where it is disabled are described.
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5.6.4 Offender Agent Behaviour: Routine Activities

Theoretical Model

A key tenet of the routine activity approach states that it is the spatial and
temporal characteristics of everyday activities which dictate when and where
both offenders and victims are found, when they converge with one another,
and as a result when and where crime tends to occur. These day-to-day
activities are focused around a number of commonly frequented locations,
often referred to as routine activity nodes, which form an individual’s activity
space. Routine activity nodes include an individual’s home, place of work
and other commonly visited locations such as recreational venues and/or the
homes of friends, family etc.

While all of these locations are visited on a regular basis it is unlikely that
such routine spatial activity occurs in an arbitrary order. For instance, most
individuals do not travel between work and recreational nodes repeatedly
without at some point returning home. In considering human spatial be-
haviour Golledge and Spector (1978) characterise environmental knowledge
acquisitions and, in turn, navigation as ‘anchor-point’ based, in that many
activities start and end at a single node, commonly the home. Furthermore,
people tend to either live near to their current activity nodes or develop new
activity nodes near to their home location.

Conceptual Model

Given these observations the routine activity behaviour developed aims to
formalise the following conceptual model:

1. Human movement is for the most part characterised by a small number
of routine spatial activities that are undertaken repeatedly;

2. Most spatial activities are anchor-point based at the home;

3. Routine activity nodes are typically located relatively near to home.
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Computational Model

Given these hypotheses the key micro-level action the model aims to emulate
is that of the routine activity. In doing so the model allocates all offender
agents both a home node and a series of routine activity nodes. A routine
activity behaviour is then employed which allows agents to plan routine
activities between these nodes in an ecologically plausible fashion.

Experimental Condition - Routine Activities: Enabled

When the routine activity behaviour is enabled all offenders are allocated
both a home node and a series of routine activity nodes. These nodes are
selected as follows: each agent is first initialised at a random lattice location
p within the environment. In reflecting premise 3 of the conceptual model,
five transport nodes within distance d of p are randomly selected (d here
represents the maximum extent of an individuals activity space within the
environment). From these five transport nodes one is randomly selected
as an agent’s home location. The remaining nodes denote the routinely
visited locations of that agent – the agent’s routine activity space. Figure 5.7
illustrates the selection of routine activity nodes from some initial location
p.

Navigation Node Activity Node

d

p

Figure 5.7: Activity Space – Routine Activities Experimental Condition

When a simulation begins all offender agents begin at their home location and
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plan spatial activities using the following simple rules outlined in Figure 5.8
which aim to capture the conceptual model described above.

Begin at Home Node

Select Routine Activity 
Node as Destination

Navigate to Destination

Navigate Home (p=0.8) Navigate to another Routine 
Activity Node (p=0.2)

Reach Destination Node

Routine Activity Behaviour 
(Experimental Condition)

1. Begin at home node

2. Randomly select a routine 
activity node as destination

3.  Navigate to destination node 
via the transport network 
(using movement behaviour)

4. Return home (p = 0.8) or select
another routine activity node to visit
(p = 0.2)

5. Repeat steps 2-5

Figure 5.8: Routine Activity Behaviour – Experimental Condition

Control Condition - Routine Activities: Disabled

The control condition of the routine activity behaviour provides a counter-
factual behavioural state, in which offenders do not undertake routine spatial
activities. In this state offender agent’s are again initialised at a randomly
selected lattice p and select a home node at random. Subsequently, agents
move randomly between all transport nodes within their activity space as
defined by d11 (see Figure 5.9).

11Note that d is the same distance that those agents with the routine activity behaviour
enabled choose transport nodes from within. This ensures that the maximum extents of
offender activity spaces under both experimental and control conditions are the same, thus
permitting direct comparison between behavioural configurations.
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Navigation Node Activity Node

d

p

Figure 5.9: Activity Space – Routine Activities Control Condition

Agents operating under the control condition plan activities using the fol-
lowing rules detailed in Figure 5.10.

Begin at Home Node

Select Transport Node as 
Destination Node

Navigate to Destination 
Node

Reach Destination Node

Routine Activity Behaviour 
(Control Condition)

1. Begin at home node

2. Randomly select a transport 
node as destination from within 
activity space

3.  Navigate to destination node 
via the transport network 
(using movement behaviour)

4. Repeat steps 2-4

Figure 5.10: Routine Activity Behaviour – Control Condition

To further illustrate the resultant impact of these behaviours on agent activ-
ities, Figure 5.11 depicts the respective movement paths of a single offender
operating under both the experimental and control conditions.
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Figure 5.11: Movement Paths of a Single Offender Operating under Routine
Activities Control (a) and Experimental (b) Conditions.

Having described the routine activity behaviour that dictates the spatial
activities agents undertake within the environment, the following section
outlines an agent behaviour derived from the rational choice perspective that
allows offender agents to reason about the suitability of potential targets they
encounter.

5.6.5 Offender Agent Behaviour: Rational Choice

Theoretical Model

The rational choice perspective describes a decision calculus employed by
offenders to assess the suitability of potential targets. This calculus encom-
passes assessments of the effort required by the offender in victimising a given
target, the risks of detection involved in doing so, and the rewards likely ob-
tained as a result. Applying this calculus the rational choice perspective
proposes that offenders attempt to optimise expected utility by maximising
reward while minimising effort and risk.

Thus, a fundamental implication of the rational choice perspective is that
some targets are more attractive to offenders than others. Indeed, given the
application of such selection mechanisms we would expect to observe that
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offenders are most likely to select those targets which are deemed least risky,
require least effort and result in the greatest rewards. Given this hypothesis
the offender agent rational choice behaviour aims to formalise the following
key premises of the rational choice perspective:

Conceptual Model

1. Target utility is heterogeneous;

2. Offenders perceive the rewards, risks and effort associated with victim-
ising a given target in an attempt to maximise utility;

3. Those targets that offer the greatest utility are most likely to be vic-
timised.

Computational Model

Formalising the above conceptual model, a single multivariate parameter is
exhibited by all targets characterising the rewards, risks and effort associated
with their victimisation. As above, we denote this parameter as a target’s
utility (see section 5.4.2). As utility increases targets offer substantial re-
wards while presenting little effort and/or risk, and visa versa. When an
offender agent converges with a target its utility is perceived and then used
in the offending behaviour equation described in section 5.6.2. Ranging be-
tween zero and one, target utility is defined as the probability an offender
agent will find a target sufficiently attractive. To illustrate, given a relatively
attractive target (utility = 0.8) there is a high probability (p = 0.8) that the
offender in question will find it sufficiently attractive.

Experimental Model Condition – Rational Choice: Enabled

Under the experimental condition all targets within the environment are
randomly allocated a utility score between zero and one at simulation ini-
tialisation. Thus target utility is heterogeneous.
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Control Model Condition – Rational Choice: Disabled

Under the control model condition offenders agents do not assess the relative
merits of a given target. Thus, target utility is homogenous and consequently
all targets offer equal utility to all offender agents (default = 0.5).

To illustrate Figure 5.12 depicts an example environment under both exper-
imental and control conditions.

High Attractiveness

Low Attractiveness
...

(a) Control Condition (b) Experimental Condition

Figure 5.12: Perceived Target Utility under Rational Choice Control (a) and
Experimental (b) Conditions

The previous two behaviours have outlined how offender agents within the
model move and encounter targets, and subsequently how they perceive their
suitability as criminal opportunities. The next section outlines a final be-
haviour drawn from crime pattern theory’s depiction of the awareness space
that allows offender agents to learn about their local environment, and, in
turn, gain an advantage in offending within those areas that are cognitively
known.
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5.6.6 Offender Agent Behaviour: Awareness Spaces

Theoretical Model

Crime pattern theory proposes that crime is most likely to occur in areas
known to offenders that contain attractive opportunities for offending. Fur-
thermore such cognitively known areas, commonly referred to as an offender’s
awareness space, are typically located in close proximity to the routine ac-
tivity nodes of an individual and the paths travelled between them. As an
offender spends more time in an area, their awareness of that locality and
the opportunities for crime within it increase, reinforcing certain decisions
and developing localised templates for successful offending. Given these hy-
potheses the awareness space behaviour employed by offender agents aims
to capture the following key premises.

Conceptual Model

1. Offenders learn about their environment;

2. Knowledge of the local environment increases with time spent there;

3. Knowledge of the local environment aids in the commission of crime.

Computational Model

The model explores the impacts of this cognitive mapping mechanism by
providing each offender agent with an awareness of their environment that
develops with experience. This awareness space is represented as a spatially
referenced two-dimensional matrix of awareness scores ranging from zero to
one, mapping directly to the environmental lattice. Such awareness values
describe the likelihood that an offender agent will be sufficiently aware of
criminal opportunities found at a given location to take advantage of them.
For example, given a 3x3 environmental lattice, each offender agent stores
an awareness space consisting of nine awareness values. To illustrate, Fig-
ure 5.13 depicts such an environment, a spatially orientated depiction of a
single offender agent’s awareness of it, and the equivalent internal represen-
tation stored by the offender agent as an array of awareness scores.
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Figure 5.13: Example Offender Awareness Representation

Experimental Model Condition – Awareness Spaces: Enabled.

Under the experimental model condition, as offender agents move across the
environment their awareness of visited locations increases. The relationship
between time spent at a location and agent’s awareness of it is modelled by a
common logistic function. Thus, an agent’s awareness of any given location
can be expressed as:

Awareness(x,y) =

 1

1 + e
−
(

t(x,y)
b

)
 (5.3)

Where t(x,y) is the time spent at location (x, y) and b is the rate at which
offender agents learn about the locations they visit.12

Control Model Condition - Awareness Spaces: Disabled.

Under the control model condition, offender agents do not build up expe-
rience of previously visited location – thus, awareness is static. All agents
begin the simulation with a uniform awareness of all locations (default =
0.5). Figure 5.14 graphically depicts the awareness space of a single offender
agent under (a) the control and (b) experimental conditions.

Having specified the individual components that make up the model, the
following section provides a description of how these model elements interact
as a simulation progresses – the simulation logic.

12The learning rate of offenders was held static over all simulation configurations, but
could be manipulated in further experiments.
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Figure 5.14: Awareness Spaces of a Single Offender Operating under Aware-
ness Spaces Control (a) and Experimental (b) Conditions

5.7 Running Simulations with the Model

The ability to examine systems whose behaviour develops over time is a key
attribute of the ABM methodology. Within an ABM time progresses in a
series of discreet increments referred to as simulation cycles. At each simula-
tion cycle the model emulates the actions of all agents (which involves each
agent undertaking its own cycle of actions – discussed below), and updates
a number of internal data structures that record the state of the simulation
for both real time visualisation and further analysis once a simulation is
complete. A simulation continues until its termination conditions have been
met – when this occurs all data relating to the longitudinal action of model
elements is then exported to a simulation output data file. Given that the
simulation progresses via a sequence of repeated cycles in which all agents
perform a further cycle of actions which describe their behaviour for a sin-
gle artificial time step, the model itself can be seen as a series of iterative
embedded cycles. Figure 5.15 provides an illustration of this overarching
simulation cycle.
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Concurrent Agent Cycles

SIMULATION CYCLE t 
STARTS

Data Recording Model Visualization 
Update

Increment Simulation 
Cycle Counter t+1

Output Simulation 
Data

Termination Condition 
Met?Agent1

Cycle
Agent2
Cycle

Agentn
Cycle

Simulation EndsYES

NO

Figure 5.15: The Simulation Cycle

5.7.1 The Simulation Cycle

A simulation cycle consists of the following steps:

1. At the start of each simulation cycle t all agents within the model
concurrently perform their agent action cycle (see section 5.7.2).

2. Once all agent activity is complete, output data from the current cycle
is collated and where appropriate output to real time simulation output
plots and the graphical window.

3. The model checks to see if the simulation termination criteria have
been met. For instance if a simulation is to be run for 2000 cycles and
t = 2000 the simulation ends and outputs all relevant data.

4. The model then increments the cycle count (t+ 1)

5.7.2 The Agent Cycle

At each simulation cycle every agent concurrently undertakes their own agent
cycle - moving, checking for potential offending opportunities, and (when the
awareness spaces behaviour dictates) learning about their local environment.
Figure 5.16 provides a stylised overview of the key elements of this cycle and
the order in which they occur. Subsequently a description of each of the
stages of action is provided.

1. Movement – All offender agents begin their agent cycle by moving.
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Evaluate Potential Target

Check for Convergence
Available Target?

YES

AGENT CYCLE STARTS

Movement

Offend Sufficient Utility?

Sufficiently Motivated?

Sufficiently Aware?

Update Awareness Space

YES

YES

YES

NO

NO

NO

NO

Figure 5.16: The Agent Cycle

As previously described, offender agent movement is specified by two
key behaviours: the routine activity behaviour (section 5.6.4) which
establishes the overall destination of an offender agent’s current activ-
ity; and the offender agent wayfinding behaviour (section 5.6.1) which
performs real-time way-finding in moving to this selected destination
via the transport network. Dependant upon an offender agent’s cur-
rent location the movement element of the cycle involves either moving
a single increment towards the current path node, or selecting a new
path / destination node and then moving a single increment towards
it. What is important is that the first action an offender agent takes
at each cycle is to move.

2. Check for Convergence – Having moved, an offender agent’s next
course of action is to check to see if a potential target is present at their
new location. If there is no target present, the offender agent skips to
step 5 of the agent cycle. Similarly, if a target is present but is being
victimised by another offender the offender agents skips to step 513.
If an available target is present at the current location the offender
agent moves onto the next step in the agent cycle in which the target
is assessed for suitability.

13This check ensuring that no target can be victimised at the same time by more than
one offender (subsequent models may use this mechanism to explore co-offending).
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3. Evaluate potential target – Having identified a potential target the
offender agent activates the offending behaviour to estimate the prob-
ability that an offence will occur. Using this behaviour the offender
agent evaluates its current motivation p(m) and awareness of the cur-
rent location p(k) and perceives the associated utility of the target
itself p(u). Using the offending model described in equation 5.2 (sec-
tion 5.6.2) the likelihood of victimisation is calculated as follows.

p(victimisation) = p(m) · p(u) · p(k)

4. Offending – Given p(victimisation), a random number generator is
then used to probabilistically determine if victimisation occurs. In
cases where the offender agent does choose to victimise the given tar-
get a number of internal representations are updated to reflect that
offending has occurred. These include updating the offender agent’s
offending history, the target’s victimisation history, and incrementing
the global victimisation counter. In addition, a row of data describing
all features of the victimisation is written to a simulation output data
file.

5. Learning – Depending upon the state of the awareness spaces be-
haviour the final stage of the agent cycle involves each offender agent
updating its internal awareness space (described section 5.6.6) to reflect
knowledge gained of the current location.

6. Cycle ends

Agent Concurrency

The agent cycle described above sets out the actions undertaken by a single
offender agent at each simulation cycle. However, the model presented emu-
lates a population of multiple offender agents. In the real world, behaviour is
inherently parallel in its execution – i.e. independent individuals do not wait
for other individuals to perform actions before they do so. However, given
the inherent limitations of current computational architectures14 the model

14This is dictated by the fact that all current CPUs operate in serial – processing one
instruction at a time. While computers with multiple CPU cores are widely available –
in order to implement true agent concurrency the system would require a CPU core for
every agent in the model (which becomes infeasible very quickly), furthermore such im-
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implements all agent activity as a pseudo-parallel process. Such concurrency
of action is provided by the Netlogo development environment where a func-
tion simulates parallel action amongst all agents via a process of turn taking.
This implementation allows all agents to proceed through the above agent
cycle at (effectively) the same time. In operation this turn taking mechanism
divides all agent activities into a series of computable sub-steps, the model
then randomly orders all agents and each agent computes a single sub-step
in turn, such that once the agent portion of the simulation cycle is complete
all agents have performed all sub-steps of their agent cycle. It is important
to note that the order in which agents takes turns is randomised at every
cycle so that no advantage is conveyed to any agent in the order in which
action occurs15.

5.7.3 Simulation Initialisation & Iteration

Having described the key elements of the model developed and set out the
way in which a simulation proceeds over time, the following section provides
an outline of how the environment and objects within it are initialised each
time the model is used to perform a simulation. Here a specific run of the
model (i.e. a single sequence of set parameters, run model until termination
condition, analyse output data) is referred to as a single (within-model)
replication (see section 3.6.1).

Initialising a simulation requires that the researcher specify a number of
model parameters that describe characteristics of the simulation environ-
ment, the agents and objects it contains, and how the offender agents within
it will behave. The first step in this process involves setting the size of the
environment in which the simulation will take place; this is simply speci-
fied by the dimensions of the environmental lattice to be used. Once the
environmental lattice is generated, the size of the offender agent popula-
tion and total numbers of targets and transport nodes that it will contain
are set. Having specified these parameters, the model randomly distributes

plementations introduce considerable computational overheads in synchronising multiple
CPU cores.

15In addition to the order of action described by the agent cycle above (move, offend,
learn), the agent cycle was tested in a number of other permutations (offend, learn, move
etc.) to ensure that the order of agent action did not have unintended impacts on be-
haviour. In all of these tests no discernible impacts on model outputs were observed.
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both targets and transport nodes throughout the environment. At this point
each target is then allocated an associated utility value (at a default value
if the rational choice behaviour is in the control state, or at random in the
experimental state). The final parameter the user specifies is to select a be-
havioural configuration for all offender agents within the simulation; this is
done by setting each of the three experimental behaviours (see section 5.6.3)
to either the experimental (enabled) or control (disabled) states described
previously. Once the offender agent behavioural configuration has been set
a population of offender agents is created and each is randomly allocated a
home location within the environment and a series of routine activity nodes
(see section 5.6.4 for further detail on how such activity spaces are selected
depending upon the state of the routine activity behaviour).

Thus, while the numbers of offender agents, targets and transport nodes, and
the behavioural configuration of offender agents remain static across within-
model replications, in each replication the spatial distribution of transport
nodes and targets, the utility associated with each target, and the home
locations and activity spaces of offender agents are different. Furthermore,
to ensure that model outputs are not reflective of a particular random num-
ber seed, for each replication a different random number seed is used16. This
variability combined with the probabilistic nature of the model then dictates
that in order to examine the impact of a specific behavioural configuration
the model is used to run multiple simulation replications. This approach is
analogous to placing a population of (behaviourally) similar offenders in a
series of different environmental circumstances and examining the range of
crime patterns they produce. Running the model multiple times in this way
is common practice in ABM research where the outputs of a single proba-
bilistic simulation can often be atypical (Axelrod, 2005). Furthermore, by
manipulating the simulation environment at each replication it aims to min-
imise results being overfit to specific environmental circumstances (Elffers
& Van Baal, 2008). In addition, multiple replications permit distributions
of outcome measures to be generated, thus providing measures of the vari-
ability of outcomes and permitting the estimation of effect sizes between the
outcomes of differing behavioural configurations.

16The Netlogo random number generator provides an implementation of the Mersenne
Twister algorithm, commonly recognised as the most robust random number generator
(Matsumoto & Nishimura, 1998).
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To illustrate, the model might be used to explore the impact that the routine
activity mechanism has on patterns of repeat victimisation. In this example
the model would first be initialised with some set size environment and of-
fender agent, target, and transport node populations. In the first series of
replications (say 100) all offender agents operate under the routine activities
experimental model condition, in the second set the world and object pop-
ulations remain the same size, but the behavioural configuration of offender
agents is altered to reflect non-routine activity (control state) – the model is
then run again over a further 100 replications. For each replication a mea-
sure of the number of repeat victims is calculated, doing so across all 200
replications produces a distribution of 100 repeat victimisation observations
for each of the two behavioural configurations. These distributions can then
be analysed and the statistical differences between them, given routine or
non-routine activities, identified and quantified.

5.8 Summary

This chapter has provided a description of the key components of the ex-
planatory ABM developed to provide the primary scientific instrument for
the studies undertaken in this thesis. An abstract model environment has
been described which contains three key types of object – transport nodes
that permit travel throughout the simulation environment; potential tar-
gets that represent potential opportunities for offending; and a population
of offender agents that traverse this environment seeking out viable crim-
inal opportunities. In specifying the offender agent population, a number
of individual offender agent characteristics (a) describing the unique per-
vasive characteristics of each offender agent, and (b) outlining several data
structures that allow offender agents to keep track of their current state
and goals within a simulation, have been specified. Furthermore, a series of
behaviours defining offender agent action have been presented. These en-
compass a way-finding behaviour that describes how the transport network
is used to dynamically route agents between any two locations within the en-
vironment, and an offending behaviour that sets out the circumstances under
which crime can occur within a simulation. This offending behaviour then
draws on three other experimental offender agent behaviours, each inspired
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by a micro-mechanism proposed by the opportunity theories and identified in
section 2.1 – a routine activity behaviour that outlines the spatial activities
agents undertake as a simulation progresses; a reasoning behaviour derived
from the rational choice perspective that allows offender agents to make de-
cisions about the suitability of a presented target; and a learning behaviour
derived from crime pattern theory’s depiction of the awareness space, that
allows offender agents to learn about their local environment over time, in
turn increasing their ability to exploit the targets that exist within it. For
each of these behaviours an appropriate counterfactual behaviour has also
been presented, thus allowing the model to explore the influence each be-
haviour might play in the influencing the crime event. Finally, specifying
how the model is used to perform simulations, a description of both the
simulation and agent cycles have been provided. The following chapter now
outlines a number of computational experiments performed using this model
which address the key research questions of the thesis, and in turn, their
findings.
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6
Methods and Findings

The following chapter provides a description of the computational experi-
ments performed using the generative ABM of crime developed, and their
key findings. These experiments test several hypotheses concerning the gen-
erative sufficiency of the opportunity theories. The results of two key studies
are presented, the first utilises an initial model variant that simulates crimes
occurring against static targets – that is, those who do not move (e.g. res-
idential burglary), the second study then applies a second model variant
to simulate crimes occurring against spatially dynamic targets (e.g. street
robbery).

In both of these studies analyses of simulated crime data are identical and
divided into three discrete phases. Each explores the generative sufficiency
of the identified mechanisms of the routine activity approach (movement),
the rational choice perspective (target selection) and crime pattern theory
(learning) formalised within the model in explaining one of three commonly
observed macroscopic regularities of crime. Drawing from the focused re-
search questions of the thesis, the following hypotheses are derived and tested
using each model variant.

Focused Research Question 1 (FRQ1): Are the mechanisms of the oppor-
tunity theories generatively sufficient to explain the spatial concentration of
crime commonly observed in empirical study?

Hypothesis 1 (H1): Crime will become more spatially concentrated as the
mechanisms of the opportunity theories are activated.

Focused Research Question 1 (FRQ2): Are the mechanisms of the opportu-
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nity theories generatively sufficient to explain patterns of repeat victimisation
commonly observed in empirical study?

Hypothesis 2 (H2): Greater levels of repeat victimisation will be observed
as the mechanisms of the opportunity theories are activated.

Focused Research Question 1 (FRQ3): Are the mechanisms of the opportu-
nity theories generatively sufficient to explain the characteristic journey to
crime curve commonly observed in empirical study?

Hypothesis 3 (H3): The journey to crime curve will become more posi-
tively skewed as the mechanisms of the opportunity theories are activated.

In testing these hypotheses, the model was used to enact a series of simula-
tions where all model parameters were held static aside from those describing
the behavioural configuration of agents. The crime patterns produced by of-
fender populations operating under these different behavioural configurations
were then examined and compared with respect to the three macroscopic
regularities of interest, in turn addressing a respective hypothesis - spatial
concentration (H1), patterns of repeat victimisation (H2) and the journey to
crime curve (H3).

To answer focused research question 4 (FRQ4): Do the mechanisms of the
routine activity approach, rational choice perspective and crime pattern the-
ory have differential impacts on commonly observed patterns of crime?, de-
scriptive and inferential statistics were then used to quantify the relative
impacts of each behavioural configuration.

Finally, in addressing focused research question 5 (FRQ5): Do these results
differ by crimes that occur against static or dynamic targets?, the results of
experiments performed using both model variants are then compared.

6.1 Model Experimental Configurations

In specifying the hypothetical offender calculi to be manipulated, an of-
fender’s behavioural configuration is described by the state of the three ex-
perimental agent behaviours: routine activities, rational choice and aware-
ness spaces, each of which can be employed in both a control (disabled) and
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experimental (enabled) state. Applying a traditional 2 by 2 by 2 experimen-
tal design, 500 within-model replications were run for each of these eight
distinct model configurations. These experiments were duplicated for both
model variants. Table 6.1 provides a summary of each of these configura-
tions. In each replication a simulation was run until the offender population

Table 6.1: Model Experimental Configurations
Model Configuration

Theoretical Model Computational Model 000 100 010 001 110 011 101 111

Routine Activity
Approach

Routine Activity
Movement Behaviour

C E C C E C E E

Rational Choice
Perspective

Rational Choice
Offending Behaviour

C C E C E E C E

Crime Pattern
Theory

Awareness Space
Learning Behaviour

C C C E C E E E

E = Experimental Condition C = Control Condition

had committed 1,000 crimes. Additionally, given the initialisation conditions
of the model it is important to remember that while the size of the offender
agent, target and transport node populations remained fixed across all repli-
cations, both the spatial distribution of model entities, and in turn, their
characteristics were unique to each. Thus, for each within-model replication
a new spatial distribution of targets, transport nodes and offender activity
spaces were explored. Furthermore, to ensure robustness to changes in ran-
dom number seeds, for each replication a different random number seed was
used.

For parsimony’s sake in describing these model configurations a 3-digit binary
code denotes model configuration, each digit relating to the state of one of
the three behavioural conditions bestowed upon agents: routine activities,
rational choice, and awareness spaces, respectively. To illustrate, the control
model configuration where all behaviours operate under the control state is
denoted by 000, while the model configuration in which routine activity and
rational choice operate under the experimental state, but awareness spaces
are disabled by 110. These model configurations are briefly summarised
below:

Model Configuration 000 acts as a base level comparator for all other
model configurations. In this model all offenders move randomly around
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their activity space, consider all potential targets equally attractive, and do
not learn about their environment.

Model Configuration 100 tests the impact of the routine activities mech-
anism in isolation. In this model offenders follow routine activities in nav-
igating their environment, consider all potential targets equally attractive,
and do not learn about their environment.

Model Configuration 010 tests the impact of the rational choice mecha-
nism in isolation. In this model all offenders move randomly around their
activity space, consider the utility of potential targets in assessing their suit-
ability, and do not learn about their environment.

Model Configuration 001 tests the impact of the awareness space mecha-
nism in isolation. In this model all offenders move randomly around their
activity space, consider all potential targets equally attractive, but do learn
about their environment.

Model Configuration 110 In this model offenders follow routine activities
in navigating their environment, consider the utility of potential targets in
assessing their suitability, but do not learn about their environment.

Model Configuration 011 In this model all offenders move randomly around
their activity space, consider the utility of potential targets in assessing their
suitability, and learn about their environment.

Model Configuration 101 In this model offenders follow routine activities
in navigating their environment, consider all potential targets equally attrac-
tive, and learn about their environment.

Model Configuration 111 In the final configuration offenders operate un-
der all three mechanisms proposed by the opportunity theories. Offenders
follow spatial routine activities in navigating their environment, consider the
utility of potential targets in assessing their suitability, and learn about their
environment.
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6.2 Model Parameters

An overview of the selected model parameters used in the simulations per-
formed is provided in Table 6.2. Given both the exploratory nature of the
model presented and an absence of reliable consistent empirical data, the se-
lection of these parameters reflects common-sense estimations – in that there
are likely more targets than active offenders, but less road intersections than
targets. To ensure that model results were not specific to the particular
parameters selected a series of robustness tests were also performed where
several key parameters are manipulated in isolation and the experiments run
again (see section 3.6.1).

6.3 Model Output Data

For each within-model replication, data pertaining to all crimes were col-
lected. Table 6.3 summarises the key elements of this data that includes the
location and time of each offence, and the characteristics of both target and
offender.

6.4 Processing Model Output Data

Given that in each study 4000 simulations were performed (500 within-model
replications by 8 model configurations), each capturing data relating to 1,000
crimes, a substantial amount of data were generated by the experiments per-
formed – in total describing four million simulated crime events1. In dealing
with such large quantities of output data the R statistical package (R De-
velopment Core Team, 2011) was used to develop a number of automated
analysis scripts, which were used to (1) collate, process and analyse the pat-
terns of crime observed in each replication, (2) aggregate and summarise the
results for each set of replications per model configuration and (3) identify
and quantify the differences between results observed across differing model

1This total does not include robustness tests which explore a further five model variants,
including these data brings the running total for study 1 to 24 million distinct crime events
analysed. Section 6.9 provides a discussion of the ramifications of such vast quantities of
simulation output data that must be appropriately managed.
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Table 6.2: Initial Model Parameters

Parameter Description Value

World Size The size of the simulation environment lattice. 100 x 100

Number of Potential
Offenders

Number of active offender agents. 25

Number of Potential
Targets

The number of potential targets. 2500

Number of Transport
Nodes

The number of transport nodes. 1000

Model Terminating
Condition

The condition under which the model terminates
and the next within-model replication begins.

1000
crimes

Offender Motivation
p(m)

The probability an offender is sufficiently moti-
vated to offend (see sections 5.5.1 and 5.6.2)

0.1

Number of Routine
Activity Nodes

The number of routine activity nodes (includ-
ing the home) allocated to offenders under the
routine activities experimental condition (see sec-
tion 5.6.4).

5

Radius of offender
activity space (d)

Distance from the initialisation location within
which activity nodes are selected (see sec-
tion 5.6.4).

25

Offender Learning
Rate (b)

The learning rate applied in the logistic function
under the awareness spaces experimental condi-
tion (see section 5.6.6).

4°

Return home proba-
bility

Probability an offender will return home after vis-
iting a routine activity node under the routine ac-
tivity experimental condition (see section 5.6.5).

0.8

° The learning rate was selected such that offender awareness of a given environmental
lattice approaches 1 after it has been visited 50 times.

configurations. These analyses were divided into three distinct phases, each
aimed at quantifying the presence of one of the previously discussed macro-
scopic regularities of crime, and in turn, testing an associated hypothesis.
First, model output data were analysed with respect to spatial clustering;
second, the distribution of victimisation amongst targets; and third, the
characteristics of journeys to crime. An overview of the output measures
used in this analysis follows.
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Table 6.3: Model Output Data

Variable Description Data Type

Crime Location The location at which a crime occurs Coordinate
pair (x, y)

Crime Time Simulation cycle when the crime occurred Integer

Victim A unique identifier associated with the target
victimized

Alphanumeric
ID

Offender A unique identifier associated with the of-
fender agent.

Alphanumeric
ID

Journey to Crime
Distance

The Euclidian distance between the crime lo-
cation and the offender agents home location

Floating point
number

Target Utility The utility value associated with the target
victimized

Floating point
number (0-1)

Offender Aware-
ness

The offender agent’s awareness of the location
at which the crime occurred

Floating point
number (0-1)

6.5 Outcome Measures

6.5.1 Spatial Clustering Outcome Measure

In addressing hypothesis 1, the location of all simulated offences were collated
for each within-model replication and analysed using the nearest neighbour
index (NNI), a summary measure of spatial clustering.

The Nearest Neighbour Index (NNI)

When relative comparisons of the spatial clustering observed in multiple
crime data sets are required the nearest neighbour index (NNI) offers a vi-
able solution (Chainey & Ratcliffe, 2005). Briefly, the nearest neighbour
index of some spatially referenced dataset is calculated by first measuring
the mean distance between all closest pairs of points (nearest neighbours).
This calculation can be expressed as follows:

d =
n∑
i=1

dij
n

(6.1)
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Where d is the mean nearest neighbour distance, d the distance between
nearest neighbours i and j, and n the total number of data points. Subse-
quently, this mean nearest neighbour distance is compared to that expected
in a theoretical random distribution. This value is calculated as a function
of the size of the study area from which the original data is drawn, and the
number of points within that area, and is expressed as:

δ =
1

2

√
A

n
(6.2)

Where δ is the expected mean distance between nearest neighbours in a
theoretically random distribution, A is the size of the study from which
the empirical distribution is drawn, and n is the number of points within
the original dataset. Having calculated both these values the NNI is then
represented as a ratio of the two, such that:

R(NNI) = (d/δ) (6.3)

The NNI ratio is capable of delineating between three types of spatial distri-
bution: clustered, random and uniform (see Figure 6.1). Ranging between 0
and 2.15, as the NNI tends towards zero clustering increases, with an NNI
of zero representing absolute clustering (i.e. all data are located at the same
point in space). NNIs below one indicate clustered distributions. An NNI
of one indicates a random distribution, and values greater than one varying
degrees of uniformity.

Clustered Random Uniform

Figure 6.1: Classifications of Spatial Distribution

Having calculated the NNI for all crimes occurring in each simulation repli-
cation, a distribution of 500 NNI observations for each of the eight model
configurations was generated and the statistical differences between each
examined using a one-way analysis of variance (ANOVA). Furthermore, ef-
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fect sizes (Cohen’s D) were calculated to assess the magnitude of differ-
ence between each model configuration and the control model configuration
(000).

6.5.2 Repeat Victimisation Outcome Measure

In addressing hypothesis 2, the Gini coefficient was used to quantify the
distribution of victimisation amongst victims.

The Gini Coefficient

For each within-model replication the count of victimisations per target was
collected and the concentration of victimisation measured using the Gini
coefficient, a measure of inequality (Gini, 1912). The Gini coefficient is
derived from a Lorenz curve that depicts the cumulative proportion of entities
receiving the cumulative proportion of some attribute. Briefly, the Gini
coefficient G is expressed as the following ratio:

G =
a

a+ b
(6.4)

where a is the area between the line of equality and the observed Lorenz
curve, and (a+b) is the total area below the of line equality (see Figure 6.2).
In this case, the Gini coefficient is used to describe the proportion of victims
experiencing some proportion of victimisation. When the Gini coefficient
is equal to zero victimisation is spread evenly amongst all victims, such
that each victim has received an equal number of victimisations. As the
Gini coefficient tends towards one, victimisation becomes more concentrated
and fewer victims are subject to increasingly disproportionate numbers of
victimisations. The Gini coefficient as a measure of victimisation inequality
has been used or advocated in a number of criminological studies (Barr &
Pease, 1990; Johnson & Bowers, 2010; Trickett, Ellingworth, Hope, & Pease,
1995; Tseloni & Pease, 2005).

Having calculated the Gini coefficient of victimisation occurring in each
within-model replication, a distribution of 500 Gini coefficient observations
for each model configuration were generated and the statistical differences
between each examined using a one-way ANOVA. Furthermore, effect sizes
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Figure 6.2: Calculating the Gini Coefficient

(Cohen’s D) were calculated to assess the magnitude of difference between
each model configuration and the control model configuration (000).

6.5.3 Journey to Crime Skewness Outcome Measure

In addressing hypothesis 3, Pearson’s coefficient of skewness was used to
quantify the skew of journey to crime distributions.

Pearson’s Coefficient of Skewness

The Euclidian distance between the crime location and home location of
the offender was calculated for each crime occurring in each within-model
replication. In keeping with research concerning journeys to crime (see sec-
tion 2.2.3), a distribution of these distances was then generated for all crimes
occurring in each within-model replication as depicted in Figure 6.3.

For each within-model replication the Pearson’s coefficient of skewness for
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Figure 6.3: Example Journey to Crime Distribution

this journey to crime distribution was then calculated using the following
formula.

Skewness =

(
µ−Mo

s

)
(6.5)

where µ is the mean distance travelled by offenders, Mo the mode, and s

the standard deviation of distances. Subsequently, each model configuration
generated a distribution of 500 skewness coefficients and the statistical differ-
ences between each were examined using a one-way ANOVA. Furthermore,
effect sizes (Cohen’s D) were calculated to assess the magnitude of differ-
ence in skewness between each model configuration and the control model
configuration (000).

6.6 Assessing Model Robustness

In keeping with discussions concerning model validity presented in section 3.6.1
a series of model robustness tests were also performed to ensure that observed
results were not unique to initial model parameters (as seen in Table 6.2).
In these tests a number of key model parameters were selected (reflecting
both model initial conditions and behavioural parameters) – total number
of offenders, total number of targets, total number of navigational nodes, of-
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fender motivation, and number of routine activity nodes – and each, in turn
doubled holding all other parameters fixed. For each of these five modified
models the entire experimental schedule described above was then re-run
and analyses repeated for each modified model.

The rest of this chapter presents findings of the experiments described above.
For each of the two model variants (simulating static and dynamic targets –
studies 1 and 2 respectively), the focused research questions are addressed,
and the derived hypotheses tested.

6.7 Study 1 Findings – Static Targets

6.7.1 Study 1.1 – Spatial Clustering

Hypothesis 1: Crime will become more spatially concentrated as the mecha-
nisms of the opportunity theories are activated.

The location of all simulated offences were collated for each replication and
analysed using the nearest neighbour index (NNI). Having calculated the
NNI for each replication, a distribution of 500 NNI observations for each of
the eight model configurations was generated (see Figure 6.4) and the sta-
tistical differences between each examined. Table 6.4 summarises the mean
NNI and associated standard deviation for each model configuration. A one-
way ANOVA detected significant differences between model configurations,
F (7, 3992) = 17242, p<.001.

The relative impacts on spatial clustering of each behavioural configuration
can be observed by comparing the differences in mean NNIs between each
model configuration and the control model (000)2 (see Table 6.5). First, the
greatest increases in spatial clustering are observed when all three mecha-
nisms are enabled (model configuration 111) with a difference in means of
0.383. These results support Hypothesis 1.

2Given the acknowledged abundance of statistical power provided by the high number
of replications performed, analysis of the magnitude of difference in output measures
replaces conventional post-hoc tests of statistical difference.
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Table 6.4: Mean and Standard Deviation of Nearest Neighbour Index by
Model Configuration (n=500 per model configuration) – Static Targets
Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Mean Nearest
Neighbour Index*

000 Control Control Control 0.51 (0.03)

010 Control Experimental Control 0.48 (0.03)

001 Control Control Experimental 0.27 (0.03)

011 Control Experimental Experimental 0.26 (0.02)

100 Experimental Control Control 0.19 (0.02)

110 Experimental Experimental Control 0.18 (0.02)

101 Experimental Control Experimental 0.128° (0.02)

111 Experimental Experimental Experimental 0.127° (0.02)
* Significant Differences (p<.001) between one or more model configurations
° Values reported at 3 decimal places to illustrate differences

Observing the magnitude of differences given the activation of each mecha-
nism in isolation it is clear that routine activities and awareness spaces play
a substantially greater role in the concentration of crime than rational choice
(differences in mean NNI of 0.32, 0.24, 0.03 respectively). Furthermore the
combination of routine activities and awareness spaces (model configuration
101) produces a difference in mean from the control model that is equivalent
to that of all three mechanisms (model configuration 111) with differences in
mean NNIs of 0.382 and 0.383 respectively, reinforcing the observation that
the rational choice mechanism plays a minimal role in spatial clustering.
While the activation of the rational choice mechanism does increase spatial
clustering in all model configurations, the magnitude of this increase is sub-
stantially less when compared to routine activities and awareness spaces. In
examining the magnitude of differences between the control model config-
uration and all other model configurations, effect sizes (Cohen’s D) were
also calculated (see Table 6.5). Results of these analyses demonstrate that
all model configurations produce large effect sizes from the control model
configuration.
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Table 6.5: Differences in Mean NNI from control model configuration 000 by
model configuration (n=500 per model configuration) – Static Targets

Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Differences
in Mean
NNI from
model 000

Effect Size
(Cohens D)
from model
000

000 Control Control Control 0 0

010 Control Experimental Control 0.03 0.81

001 Control Control Experimental 0.24 7.87

011 Control Experimental Experimental 0.25 8.54

100 Experimental Control Control 0.32 10.92

110 Experimental Experimental Control 0.33 11.29

101 Experimental Control Experimental 0.38 14.48

111 Experimental Experimental Experimental 0.38 15.01

Histogram of NNI co−efficient by Simuation Configuration
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Figure 6.4: Distributions of NNI by Model Configuration (as NNI tends
toward 0 greater levels of spatial clustering are observed) – Static Targets

To illustrate the differences in spatial clustering under different model con-
figurations Figure 6.5 depicts kernel density estimation maps (equal grid size
and bandwidths) of the spatial distribution of 1000 crimes from two sample
simulations, the first using model configuration 000 and the second under
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model configuration 111.

Figure 6.5: Example Spatial Distributions of Crimes Against Static Targets
for Model Configurations 000 and 111

6.7.2 Study 1.2 – Repeat Victimisation

Hypothesis 2: Greater levels of repeat victimisation will be observed as the
mechanisms of the opportunity theories are activated.

The Gini coefficient of victimisation was calculated for each replication. Sub-
sequently, a distribution of 500 Gini coefficients for each of the eight model
configurations was generated (see Figure 6.6) and the statistical differences
between each examined. Table 6.6 summarises the mean Gini coefficient and
associated standard deviations for each model configuration. Using a one-
way ANOVA significant differences in repeat victimisation were detected
between model configurations F (7, 3992) = 8206, p = <.001.

In establishing the impacts of each model configuration, differences in mean
Gini coefficients between each model configuration and the control model
000 were examined (see Table 6.7). Results of this analysis again demon-
strate that the greatest difference was observed between model configuration
000 (mean Gini coefficient of 0.27) and model configuration 111 (mean Gini
coefficient of 0.47, which equates to around 25% of victims experiencing 65%
of victimisations). These results support Hypothesis 2.
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Table 6.6: Mean and Standard Deviation of Gini Coefficient by Model Con-
figuration (n = 500 per model configuration) – Static Targets
Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Mean Gini
Coefficient*

000 Control Control Control 0.27 (0.02)

010 Control Experimental Control 0.30 (0.02)

100 Experimental Control Control 0.39 (0.02)

001 Control Control Experimental 0.41 (0.02)

110 Experimental Experimental Control 0.42 (0.02)

101 Experimental Control Experimental 0.43 (0.02)

011 Control Experimental Experimental 0.45 (0.02)

111 Experimental Experimental Experimental 0.47 (0.02)
* Significant Differences (p<.001) between one or more model configurations

In assessing the differential impacts of each mechanism the activation of
awareness spaces and routine activities results in reasonably sizeable changes
in repeat victimisation but much more modest changes result from the ra-
tional choice mechanism. To illustrate, comparing the control configuration
000 with activating rational choice (model 010), routine activities (model
100), and awareness spaces (model 001) in isolation results in differences in
means of 0.03, 0.12 and 0.14 respectively. Subsequent examination of the
impacts of each possible combination of two mechanisms sees small mono-
tonic increases in repeat victimisation with routine activities and rational
choice (model 110); routine activities and awareness spaces (model 101);
and rational choice and awareness spaces (model 011) producing differences
in mean Gini coefficients of 0.15, 0.16 and 0.18 respectively. Again, effect
sizes between all model configurations and the control model are large (see
Table 6.7).
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Table 6.7: Differences in Mean Gini Coefficient and Effect Sizes from con-
trol model configuration 000 by model configuration (n = 500 per model
configuration) – Static Targets

Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Differences
in Mean
Gini Coef
from model
000

Effect Size
(Cohen’s D)
from model
000

000 Control Control Control 0 0

010 Control Experimental Control 0.03 1.73

100 Experimental Control Control 0.12 7.46

001 Control Control Experimental 0.14 8.31

110 Experimental Experimental Control 0.15 9.19

101 Experimental Control Experimental 0.16 9.73

011 Control Experimental Experimental 0.18 10.14

111 Experimental Experimental Experimental 0.20 11.14

Histogram of GINI co−efficient by Simuation Configuration
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Figure 6.6: Distributions of Gini Coefficients by Model Configuration (as
Gini tends toward 1 greater levels of repeat victimisation are observed) –
Static Targets
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6.7.3 Study 1.3 – Journey To Crime

Hypothesis 3: The journey to crime curve will become more positively skewed
as the mechanisms of the opportunity theories are activated.

Trip distances for each crime committed in each replication were calculated
and an aggregate journey to crime curve plotted for each replication. Sub-
sequently, Pearson’s coefficient of skewness was calculated for each journey
to crime curve, a distribution of 500 skewness coefficients for each of the
eight model configurations generated (see Figure 6.7), and the statistical dif-
ferences between each examined. Table 6.8 summarises the mean Pearson’s
coefficient of skewness and associated standard deviation for each model con-
figuration. A one-way ANOVA detected significant differences in skewness
between model configurations F (7, 3992) = 2341, p = <.001.

Table 6.8: Mean and Standard Deviation of Pearson’s Coefficient of Skewness
for Journey to Crime Curves by Model Configuration (n=500 per model
configuration) – Static Targets

Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

JTC
Skewness*

000 Control Control Control 0.31 (0.11)

010 Control Experimental Control 0.31 (0.10)

011 Control Experimental Experimental 0.31 (0.13)

001 Control Control Experimental 0.32 (0.12)

100 Experimental Control Control 0.75 (0.13)

110 Experimental Experimental Control 0.75 (0.13)

101 Experimental Control Experimental 0.89 (0.14)

111 Experimental Experimental Experimental 0.91 (0.16)
* Significant Differences (p<.001) between one or more model configurations

In establishing the impact of each behavioural configuration the differences
in mean skewness coefficients between each model configuration and the con-
trol model 000 were examined (see Table 6.9). Results of this analysis again
demonstrate that the greatest difference in mean skewness was observed
between model configuration 000 (mean skewness of 0.31) and model con-
figuration 111 (mean skewness of 0.91). These results support Hypothesis
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3.

Examining the relative contributions of each mechanism in isolation demon-
strates that routine activities generate the most substantial increases in the
skewness of journey to crime distributions. Comparing configuration 100 to
the control model configuration 000 highlights a difference in mean skewness
of 0.44. Moreover, visual inspection further illustrates the primary signif-
icance of the routine activity mechanism, demonstrating that in all model
configurations where routine activities were enabled journey to crime curves
markedly resembled the characteristic distance decay curve observed in em-
pirical journey to crime research (to illustrate Figure 6.8 depicts the journey
to crime curves observed for model configurations 000 and 111).

Table 6.9: Differences in Mean Pearson’s Coefficient of Skewness from control
model configuration 000 by model configuration (n=500 per model configu-
ration) – Static Targets

Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Differences
in Mean
Skewness
Coefficient
from model
000

Effect Size
(Cohens D)
from model
000

000 Control Control Control 0 0

010 Control Experimental Control 0.00 0.01

011 Control Experimental Experimental 0.00 0.05

001 Control Control Experimental 0.01 0.06

100 Experimental Control Control 0.44 3.73

110 Experimental Experimental Control 0.44 3.62

101 Experimental Control Experimental 0.58 4.68

111 Experimental Experimental Experimental 0.60 4.47

With respect to the influence of awareness spaces, when enabled in isolation
little discernible effect on skewness is observed (comparing configuration 000
to 001 – difference in mean skewness of 0.01), however in combination with
routine activities meaningful increases in skewness are observed - comparing
100 to 101 and 110 to 111 highlighting differences in mean skewness of 0.14
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Histogram of Pearson's Coefficient of Skewness by Simulation Configuration
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Figure 6.7: Distributions of Pearson’s Skewness Coefficient by Model Con-
figuration (n=500) – Crimes against Static Targets

Figure 6.8: Journey to Crime Curves for Model Configurations 000 and 111
(all model replications grey lines (n=500), mean black line) – Static Targets

166



6.7. STUDY 1 FINDINGS – STATIC TARGETS

and 0.16 respectively. Again, activation of the rational choice mechanism
does increase skewness (comparing model configuration 101 to 111), but such
increases are minimal in comparison to those conferred by routine activities
and awareness spaces. Calculating effect sizes (Cohen’s D) between the
control model configuration and each subsequent model configuration (see
Table 6.9) demonstrated large effects in all models where the routine activity
mechanism was enabled.

6.7.4 Model Robustness

Examining the robustness of the model presented, several tests of model ro-
bustness were performed. Following an approach similar to Groff (2007a)
five key model parameters (reflecting both model initial conditions and be-
havioural parameters as suggested by Fung and Vemuri (2003)) were selected
– total number of offenders, total number of targets, total number of navi-
gational nodes, offender motivation, and number of routine activity nodes
– and each in turn doubled holding all other parameters fixed. All experi-
ments and analyses were then repeated for each of the five modified models.
Table 6.10 summarises the results of these experiments, presenting the dif-
ferences in mean output measures between each model configuration and the
control model configuration 000 for the original experiments and all modified
models. Analyses of these results demonstrate that significant differences are
consistently observed between one or more model configurations across all
output measures for all modified models. Furthermore, while the relative
importance of routine activities and awareness spaces did swap for a small
number of the modified models, the magnitude of contribution of each of
the respective mechanisms remained consistent across all – such that for all
experiments performed routine activities and awareness spaces continued to
confer substantially greater impacts on the formation of spatial clustering,
repeat victimisation, and the journey to crime curve than rational choice.
Furthermore, the mean differences between model configuration 000 and 111
remained consistently the greatest. Thus, it can be deduced that model
results are robust to changes in initial parameters.
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Table 6.10: Results of Model Robustness Testing. Difference in Mean Output
Measure between each Model Configuration and Control Model Configura-
tion 000 across all Modified Models (n=500 per model configuration) – Static
Targets
Output
Measure

Model
Config

Original
Experi-
ment*

Double
Offend-

ers*

Double
Targets*

Double
Naviga-
tional

Nodes*

Double
Offender
Motiva-

tion*

Double
Routine
Activity
Nodes*

Nearest 000 0 0 0 0 0 0

Neighbour 010 0.03 0.04 0.03 0.03 0.02 0.03

Index 001 0.24 0.27 0.31 0.24 0.26 0.24

011 0.25 0.28 0.33 0.25 0.27 0.25

100 0.32 0.25 0.36 0.35 0.32 0.21

110 0.33 0.27 0.37 0.36 0.32 0.23

101 0.38 0.36 0.46 0.42 0.39 0.32

111 0.38 0.37 0.47 0.42 0.39 0.33

Gini 000 0 0 0 0 0 0

Coefficient 010 0.03 0.03 0.03 0.03 0.03 0.03

100 0.12 0.09 0.13 0.13 0.12 0.09

001 0.14 0.17 0.17 0.13 0.17 0.15

110 0.15 0.12 0.16 0.16 0.15 0.12

101 0.16 0.16 0.20 0.17 0.18 0.17

011 0.18 0.19 0.20 0.17 0.21 0.18

111 0.20 0.19 0.23 0.21 0.22 0.20

JTC 000 0 0 0 0 0 0

Skewness 010 0.00 0.01 0.00 0.01 0.01 0.00

011 0.00 0.02 0.00 0.02 0.03 0.01

001 0.01 0.02 0.01 0.02 0.02 0.01

110 0.44 0.45 0.44 0.45 0.44 0.42

100 0.44 0.45 0.44 0.44 0.45 0.42

101 0.58 0.67 0.58 0.58 0.64 0.66

111 0.60 0.67 0.59 0.58 0.65 0.66

* Significant Differences (p<.001) between one or more model configurations
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6.8 Study 2 Findings – Dynamic Targets

Having explored the initial model of crimes against static targets one logical
extension is to explore the same model and hypotheses but instead simulate
crimes occurring against spatially dynamic targets – that is, targets that
move. Study 2 uses a variant of the model used in Study 1 that models
crimes against such dynamic targets (i.e. street robbery). All experiments
and analyses from study 1 are replicated and the same hypotheses (H1, H2,
H3) tested. A brief description of the model modifications made in emulating
crimes against dynamic targets follows.

6.8.1 Model Modifications

Given the simplicity of the model presented, to simulate crimes against dy-
namic targets the second model variant differs from the first in only one key
way – targets are provided with the same routine activities and wayfind-
ing behaviours previously only used for offender agents (see sections 5.6.1
and 5.6.4). Other than this modification, the model is identical to that
described in chapter 5.

Thus, all targets are allocated a home location in the same way as offend-
ers. Subsequently, when the routine activities mechanism operates under
the control condition targets navigate randomly within the bounds of their
activity space, under the experimental condition targets are allocated five
routine activity nodes that are visited frequently. The offending calculus is
again operated when an offender comes into the same location as a (now
mobile) target. While the implementation of this model variant is relatively
trivial its computational implications are considerable (see section 6.9). Re-
sults of the experiments performed using the second model variant are now
presented.

6.8.2 Study 2.1 – Spatial Clustering

Hypothesis 1: Crime will become more spatially concentrated as the mecha-
nisms of the opportunity theories are activated.
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Again, the location of all simulated offences were collated for each replica-
tion and analysed using the NNI. A distribution of 500 NNI observations
for each model configuration was then generated (see Figure 6.9) and the
statistical differences between each examined using a one-way ANOVA. Ta-
ble 6.11 summarises the mean NNI and associated standard deviation for
each model configuration. Significant differences between model configura-
tions were again detected, F (7, 3992) = 11425, p<.001.

Table 6.11: Mean and Standard Deviation of Nearest Neighbour Index by
Model Configuration (n=500 per model configuration) – Dynamic Targets
Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Mean Nearest
Neighbour Index*

000 Control Control Control 0.78 (0.03)

010 Control Experimental Control 0.78 (0.03)

100 Experimental Control Control 0.57 (0.03)

110 Experimental Experimental Control 0.57 (0.02)

001 Control Control Experimental 0.54 (0.03)

011 Control Experimental Experimental 0.54 (0.03)

101 Experimental Control Experimental 0.43 (0.02)

111 Experimental Experimental Experimental 0.42 (0.03)
* Significant Differences (p<.001) between one or more model configurations

The relative impacts on spatial clustering of each behavioural configuration
were observed by comparing the differences in mean NNIs between each
model configuration and the control model (000) (see Table 6.12). Similar
to crimes against static targets, the greatest increases in spatial clustering
were observed when all three mechanisms were enabled (model configuration
111) with a difference in mean NNI of 0.36. These results provide further
support for Hypothesis 1.

Furthermore, observing the magnitude of differences from the activation of
each mechanism in isolation demonstrated that the routine activities and
awareness spaces mechanisms again play a substantially greater role in the
concentration of crime than rational choice (differences in mean NNI of 0.21,
0.24, and 0 comparing model 000 to models 100, 001 and 010 respectively).
The combination of routine activities and awareness spaces (model configu-
ration 101) produces a mean difference from the control model that is again
equivalent to that of all three mechanisms (model configuration 111) with
differences in mean NNIs of 0.35 and 0.36 respectively, further reinforcing
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the observation that the rational choice mechanism plays a minimal role in
spatial clustering within the model. Further, mirroring the results of the first
model variant the awareness space mechanism confers the greatest impact of
all mechanisms when considered in isolation.

In examining effect sizes (Cohen’s D) between the control model configu-
ration and all other model configurations (see Table 6.12) all model con-
figurations except the model in which only the rational choice mechanism
was enabled (model 010) produced large effect sizes from the control model
configuration.

Table 6.12: Differences in Mean NNI from control model configuration 000
by model configuration (n=500 per model configuration) – Dynamic Targets

Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Differences
in Mean
NNI from
model 000

Effect Size
(Cohens D)
from model
000

000 Control Control Control 0 0

010 Control Experimental Control 0 0

100 Experimental Control Control 0.21 7.59

110 Experimental Experimental Control 0.21 7.48

001 Control Control Experimental 0.24 8.07

011 Control Experimental Experimental 0.24 7.94

101 Experimental Control Experimental 0.35 13.53

111 Experimental Experimental Experimental 0.36 13.05
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Histogram of NNI co−efficient by Simuation Configuration
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Figure 6.9: Distributions of NNI by Model Configuration (as NNI tends
towards 0 greater levels of spatial clustering are observed) – Dynamic Targets

Illustrating the differences in spatial clustering under different model config-
urations Figure 6.10 depicts kernel density estimation maps (equal grid size
and bandwidth) of the spatial distribution of 1000 crimes against dynamic
targets from two sample simulations, the first under model configuration 000
and the second under model configuration 111.
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Figure 6.10: Example Spatial Distributions of Crimes Against Dynamic Tar-
gets for Model Configurations 000 and 111

6.8.3 Study 2.2 – Repeat Victimisation

Hypothesis 2: Greater levels of repeat victimisation will be observed as the
mechanisms of the opportunity theories are activated.

Again the Gini coefficient of victimisation was calculated for each replication,
a distribution of 500 Gini coefficients generated (see Figure 6.11) and the
differences examined using a one-way ANOVA. Table 6.13 summarises the
mean Gini coefficient and associated standard deviations for each model
configuration. Significant differences in repeat victimisation between model
configurations were again detected F (7, 3992) = 1649, p = <.001.

Establishing the impacts of each behavioural configuration, differences in
mean Gini coefficients between each model configuration and the control
model 000 were examined (see Table 6.14). Results of this analysis demon-
strate that while changes in the level of repeat victimisation were relatively
modest between model configurations the greatest difference was observed
between model configuration 000 (mean Gini coefficient of 0.17) and model
configuration 111 (Gini coefficient of 0.25, which equates to around 25% of
victims experiencing 50% of victimisations). Therefore, again the presence
of all three mechanisms leads to the greatest level of repeat victimisation.
These results further support Hypothesis 2.
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Table 6.13: Mean and Standard Deviation of Gini Coefficient by Model
Configuration (n = 500 per model configuration) – Dynamic Targets
Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Mean Gini
Coefficient*

000 Control Control Control 0.17 (0.01)

001 Control Control Experimental 0.19 (0.02)

100 Experimental Control Control 0.19 (0.01)

010 Control Experimental Control 0.21 (0.01)

101 Experimental Control Experimental 0.21 (0.01)

011 Control Experimental Experimental 0.22 (0.02)

110 Experimental Experimental Control 0.23 (0.01)

111 Experimental Experimental Experimental 0.25 (0.01)
* Significant Differences (p<.001) between one or more model configurations

Table 6.14: Differences in Mean Gini Coefficient and Effect Sizes from con-
trol model configuration 000 by model configuration (n = 500 per model
configuration) – Dynamic Targets

Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Differences
in Mean
Gini Coef
from model
000

Effect Size
(Cohen’s D)
from model
000

000 Control Control Control 0 0

001 Control Control Experimental 0.02 1.16

100 Experimental Control Control 0.02 1.78

010 Control Experimental Control 0.04 3.20

101 Experimental Control Experimental 0.04 3.35

011 Control Experimental Experimental 0.05 3.62

110 Experimental Experimental Control 0.05 5.03

111 Experimental Experimental Experimental 0.08 6.42

In assessing the differential impacts of each mechanism the activation of
all three mechanisms in isolation results in similar changes in repeat vic-
timisation, the greatest being conferred by the rational choice mechanism
(differences in mean of 0.04 from rationale choice compared to 0.02 for both
routine activities and awareness spaces). Subsequent examination of the im-
pacts of each possible combination of two mechanisms sees small monotonic
increases in repeat victimisation with routine activities and awareness spaces
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(model 101); rational choice and awareness spaces (model 011); and routine
activities and rational choice (model 110) producing differences in mean Gini
coefficients of 0.21, 0.22 and 0.23 respectively. Analysis of effect sizes (Co-
hen’s D) again demonstrates large effects between all model configurations
and the control model (see Table 6.14).

Histogram of GINI co−efficient by Simuation Configuration
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Figure 6.11: Distributions of Gini Coefficients by Model Configuration (as
Gini tends towards 1 greater levels of repeat victimisation is observed) –
Dynamic Targets

6.8.4 Study 2.3 – Journey to Crime

Hypothesis 3: The journey to crime curve will become more positively skewed
as the mechanisms of the opportunity theories are activated.

Trip distances for each crime committed in each replication were calculated
and a journey to crime curve plotted for each replication. Subsequently,
Pearson’s coefficient of skewness was calculated for each journey to crime
curve and a distribution of 500 skewness coefficients for each of the eight
model configurations was generated (see Figure 6.12) and the statistical dif-
ferences between each examined. Table 6.15 summarises the mean Pearson’s
coefficient of skewness and associated standard deviation for each model con-
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figuration. A one-way ANOVA detected significant differences in skewness
between model configurations F (7, 3992) = 2640, p = <.001.

Table 6.15: Mean and Standard Deviation of Pearson’s Coefficient of Skew-
ness for Journey to Crime Curves by Model Configuration (n=500 per model
configuration) – Dynamic Targets
Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

JTC
Skewness*

000 Control Control Control 0.35 (0.10)

010 Control Experimental Control 0.37 (0.10)

011 Control Experimental Experimental 0.39 (0.13)

001 Control Control Experimental 0.39 (0.13)

110 Experimental Experimental Control 0.74 (0.11)

100 Experimental Control Control 0.75 (0.12)

101 Experimental Control Experimental 0.99 (0.14)

111 Experimental Experimental Experimental 1.01 (0.15)
* Significant Differences (p<.001) between one or more model configurations

Examining the impact of each behavioural configuration (see Table 6.16)
demonstrates that the greatest difference in skewness was observed between
model configuration 000 (mean skewness of 0.35) and model configuration
111 (mean skewness of 1.01). These results further support Hypothesis
3.

Examining the relative contributions of each mechanism in isolation demon-
strates similar results to those observed in examining crimes static targets.
Again, routine activities generate the most substantial increases in the skew-
ness of journey to crime distributions. Comparing configuration 100 to the
control model configuration 000 highlights a difference in mean skewness of
0.40. Again, visual inspection demonstrated that in all model configura-
tions where routine activities were enabled journey to crime curves closely
resembled the characteristic distance decay curve (see Figure 6.13).

Again the awareness spaces mechanism in isolation produces little effect on
skewness (comparing models 000 to 001 – difference in mean skewness of
0.04), however in combination with routine activities substantially greater
increases in skewness are observed - comparing 100 to 101 and 110 to 111
highlighting differences in mean skewness of 0.24 and 0.27 respectively. Ac-
tivation of the rational choice mechanism does increase skewness (comparing
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model configuration 101 to 111), but such increases are minimal in compari-
son to those conferred by routine activities and awareness spaces (difference
in mean of 0.02). Furthermore, effect sizes calculated between the control
model 000 and each subsequent model demonstrate large effects from all
model configurations in which the routine activity mechanism is enabled
(Table 6.16).

Table 6.16: Differences in Mean Pearson’s Coefficient of Skewness from con-
trol model configuration 000 by model configuration (n=500 per model con-
figuration) – Dynamic Targets

Model
Config

Routine
Activities

Rational
Choice

Awareness
Spaces

Differences
in Mean
Pearson’s
Coef of
Skew from
model 000

Effect Size
(Cohen’s D)
from model
000

000 Control Control Control 0 0

010 Control Experimental Control 0.02 0.17

011 Control Experimental Experimental 0.04 0.37

001 Control Control Experimental 0.04 0.36

110 Experimental Experimental Control 0.39 3.78

100 Experimental Control Control 0.40 3.78

101 Experimental Control Experimental 0.64 5.56

111 Experimental Experimental Experimental 0.66 5.31
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Histogram of Pearson's Coefficient of Skewness by Simulation Configuration
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Figure 6.12: Distributions of Pearson’s Skewness Coefficient by Model Con-
figuration – Dynamic Targets

Figure 6.13: Journey to Crime Curves for Model Configurations 000 and
111 (all model replications grey lines (n=500), mean black line) – Dynamic
Targets
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6.9. MODEL RUNTIME

6.8.5 Model Robustness

Section 6.7.4 describes model robustness testing for the first model variant.
Due to time constraints model robustness tests were not performed for the
second model variant. This is a direct result of the significant increases
in computation time required to run the second model variant, which are
briefly discussed below in section 6.9. While this is not ideal, it is hoped
that the initial model robustness tests of the first model variant provide a fair
indication that the model is not overly sensitive to initial parameter selection.
In addition, as each within-model replication uses a different random number
seed, it can at least be deduced that the second model variant is robust to
changes in random number seeds. However, it is acknowledged that further
work (or more specifically time) is required to fully test the robustness of
the second model variant’s results.

6.9 Model Runtime

As discussed in the previous section, the computational resources required
of each model variant presented are substantially different. To illustrate
Table 6.17 provides a brief overview of the average computation time required
to complete a single within-model replication using both model variants, an
estimated time required to perform all within-model replications for each
study, and an estimate of the time required to undertake robustness testing
of five model parameters (using available hardware).

Table 6.17: Estimates of Computation Time by Model Variant
Model Variant Average

Time to
Complete 1
Replication

Computation Time -
500 Replications for 8

Model
Configurations*

Computation Time -
Robustness Testing -

5 Parameters*

Static Targets 2 minutes 17 hours 4 days

Dynamic Targets 28 minutes 10 days 50 days
*Time to compute estimates based on 8 parallel simulations running on a Dual Quad
Core 2.26Ghz Intel Xeon, 16gb RAM

Note that the computational time of the second model variant is orders of
magnitude greater than that of the first. This is a result of the substan-
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tial increases in computation when all targets are spatially dynamic and
must employ the wayfinding and routine activities behaviours described in
sections 5.6.1 and 5.6.4. While these agent behaviours may be further opti-
mised for efficiency, such disparities will like always exist as a result of the
first model requiring to compute the wayfinding behaviour 25 times (once
for each offender) per simulation cycle, and the second 2525 times (once for
each offender and target).
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7
Discussion

In this chapter, the key findings of the research are discussed. The overar-
ching and focused research questions are restated, their underlying rationale
revisited, and the findings of studies performed in addressing them sum-
marised. A number of potential implications for theory, methodology, and
policy that result are subsequently described. Finally, several potential lim-
itations of the research presented are discussed, and a series of prospective
avenues for further research set out.

The aim of this thesis was to apply an ABM to test the generative sufficiency
of micro-level mechanisms provided by the opportunity theories in explaining
several commonly observed macro-level patterns of crime. In doing so, the
following overarching research question was investigated:

Are the micro-level mechanisms of the opportunity theories generatively suf-
ficient to explain macroscopic patterns commonly observed in the empirical
study of crime?

To address this question a generative ABM of crime was developed to ex-
plore the three key identified micro-level mechanisms of movement, decision-
making and learning derived from the routine activity approach (Cohen &
Felson, 1979), rational choice perspective (Cornish & Clarke, 1986), and
crime pattern theory (Brantingham & Brantingham, 1993a). Drawing on
these mechanisms, an artificial society was created in which offenders tra-
versed a virtual environment encountering potential targets (routine activ-
ities); victimising those considered suitable (rational choice); and learning
about their local environment and the potential targets within it (crime
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pattern theory). For each theoretical mechanism, control and experimental
agent behaviours were developed, representing the absence and presence of
a proposed mechanism; hence providing a counterfactual through which the
impacts of specific mechanisms could be assessed via computational experi-
mentation.

Using this model, a series of experiments were performed in which the be-
haviour of offender agents were systematically manipulated and the emer-
gent crime patterns generated as a result examined and compared to several
known macroscopic regularities of crime. Using a computational laboratory-
based approach each experiment was replicated 500 times, each replication
exploring the impacts of the same theoretical mechanisms in a unique simu-
lation environment inhabited by a distinct population of victims and offend-
ers.

Two model variants were presented, each addressing a fundamentally differ-
ent type of offending: the first simulating the commission of crime against
spatially static targets (e.g. residential burglary), and the second against
spatially dynamic targets (e.g. street robbery). Simulated crime patterns
produced in these experiments were analysed using a number of commonly
used analytical techniques, each aimed at identifying and quantifying the
presence of an empirically identified macroscopic regularity of crime. In
undertaking this analysis the following five focused research questions were
investigated.

FRQ1: Are the mechanisms of the opportunity theories generatively sufficient
to explain the spatial concentration of crime commonly observed in empirical
study?

FRQ2: Are the mechanisms of the opportunity theories generatively sufficient
to explain patterns of repeat victimisation commonly observed in empirical
study?

FRQ3: Are the mechanisms of the opportunity theories generatively sufficient
to explain the characteristic journey to crime curve commonly observed in
empirical study?

FRQ4: Do the mechanisms of the routine activity approach, rational choice
perspective and crime pattern theory have differential impacts on commonly
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observed patterns of crime?

FRQ5: Do these results differ by crimes that occur against static or dynamic
targets?

In addressing these questions, this thesis provides a systematic test of the
generative sufficiency of mechanisms described by the routine activity ap-
proach, rational choice perspective and crime pattern theory in explaining
multiple regularities of crime across multiple crime types.

7.1 Summary of Research Findings

Findings of both studies presented in chapter six demonstrate that the iden-
tified micro-mechanisms of the routine activity approach, rational choice per-
spective and crime pattern theory provide a depiction of the crime event that
is generatively sufficient to explain commonly observed patterns of spatial
clustering, repeat victimisation and the journey to crime curve. Simulation
experiments show that the greatest levels of these regularities were observed
when offenders operated according to all three proposed mechanisms of the
opportunity theories. Moreover, the generative sufficiency of these mecha-
nisms was demonstrated across multiple environments and in the context of
criminal activities that occur both against static and dynamic targets. In
addition, model results were shown to be consistent across several initial ro-
bustness tests. In the following section the previously stated focused research
questions are addressed.

7.2 Focused Research Questions

FRQ1: Are the mechanisms of the opportunity theories generatively sufficient
to explain the spatial concentration of crime commonly observed in empirical
study?
The greatest levels of spatial clustering, for static and dynamic targets, were
observed when offenders operated according to the identified mechanisms of
routine activities, rational choice, and awareness spaces. Thus, demonstrat-
ing that the mechanisms of the opportunity theories provide a candidate
generative explanation for the spatial clustering of crime.
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FRQ2: Are the mechanisms of the opportunity theories generatively sufficient
to explain patterns of repeat victimisation commonly observed in empirical
study?
The greatest levels of repeat victimisation, for static and dynamic targets,
were also observed when offenders were imbued with all three identified mech-
anisms of the opportunity theories. Thus, demonstrating that the mecha-
nisms of routine activities, rational choice and awareness spaces provide a
candidate generative explanation for empirically observed patterns of repeat
victimisation.

FRQ3: Are the mechanisms of the opportunity theories generatively sufficient
to explain the characteristic journey to crime curve commonly observed in
empirical study?
Journey to crime curves, for static and dynamic targets, exhibited the great-
est levels of positive skew when offender agents operated under all three pro-
posed mechanisms of the opportunity theories. Thus, demonstrating that
the mechanisms of routine activities, rational choice, and awareness spaces
provide a candidate generative explanation for the characteristic journey to
crime curve observed in empirical studies of offender mobility.

FRQ4: Do the mechanisms of the routine activity approach, rational choice
perspective and crime pattern theory have differential impacts on commonly
observed patterns of crime?
The model developed demonstrates that the identified mechanisms of the
routine activity approach, rational choice perspective, and crime pattern
theory, have differential impacts on the each of the macroscopic regularities
of crime studied. Furthermore, such impacts differ when comparing offending
against static and dynamic targets. Figure 7.1 provides an overview of the
relative impact each mechanism confers on the regularities of interest in both
model variants investigated.

Primarily, the routine activities mechanism confers the greatest impacts on
the three selected regularities, playing a substantial role in 5 out of 6 regular-
ities studied. Interestingly, the two model variants differ in only one key way
– levels of repeat victimisation are most influenced by the routine activity
and awareness space mechanisms when targets are static. Conversely when
targets are spatially dynamic the rational choice mechanism seems to play a
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Table 7.1: Relative Impacts of Each Mechanism on Macroscopic Regularities
by Model Variant

Crimes against Static Targets Crimes against Dynamic Targets

Spatial
Clustering

Repeat
Victimisa-
tion

Journey
to Crime
Skew

Spatial
Clustering

Repeat
Victimisa-
tion

Journey
to Crime
Skew

Routine
Activities

Greater Greater Greater Greater Lesser Greater

Rational
Choice

Lesser Lesser Lesser Lesser Greater Lesser

Awareness
Spaces

Greater Greater Lesser Greater Lesser Lesser

more significant role in explaining repeat victimisation.1

FRQ5: Do these results differ by crimes that occur against static or dynamic
targets?
As discussed above, when simulating offending against both static and dy-
namic targets the identified micro-mechanisms of the opportunity theories
provide a generative explanation of all three regularities of interest. However,
the impacts of the three identified mechanisms do differ between offending
types.

Having summarised the key findings of the thesis, a number of implications
for theory, methodology and policy are now discussed

7.3 Theoretical Implications

This thesis began by identifying several hypotheses concerning the proxi-
mal mechanisms of crime put forward by the opportunity theories. In doing
so, it was demonstrated that while considerable empirical support for these
theories existed, several problems associated with observation and experi-
mentation limited the rigour with which their underlying hypotheses could
be empirically tested at the micro-level.

1However, further robustness tests are required to confirm the ubiquity of this result.
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In examining the salient findings of a wide range of empirically based research
within environmental criminology, a number of consistently observed macro-
scopic regularities of crime were highlighted. These included the non-uniform
spatial and temporal distributions of crime, patterns of repeat victimisation,
and the characteristic journey to crime curve. Drawing on Brantingham
and Brantingham’s (1993b) depiction of crime as a patterned activity that
produces patterned outcomes, it was argued that such regurlarities repre-
sented the observable, predictable, emergent outcomes of whatever mecha-
nisms were indeed operating in-situ.

In an attempt to bridge this divide between micro-theory and macro-observation
an ABM of crime was developed through which the generative sufficiency of
micro-level theoretical mechanisms in explaining these commonly observed
patterns of crime could be assessed.

Results of the simulations performed demonstrate that the mechanisms de-
scribed by the opportunity theories provide a candidate generatively suffi-
cient explanation for the spatial clustering of crime, patterns of repeat vic-
timisation, and the characteristic journey to crime curve, commonly observed
in empirical studies. As a result, the primary theoretical implication of this
research is that the model provides micro, meso and macro support for the
identified hypothetical mechanisms of the routine activity approach, rational
choice perspective, and crime pattern theory. By exploring the decentralised
interactions of multiple heterogeneous individuals, the model demonstrates
that the micro-level interactions of offenders, victims and place described by
the opportunity theories give rise to a number of predictable emergent out-
comes that closely resemble those observed in the real world. This finding
is congruent with crime pattern theory’s depiction of the criminal event as
a complex system that exhibits patterned outcomes. Of particular note is
the ability of the mechanisms formalised to consistently generate all three
regularities of interest, across multiple environments, and when examining
offending against both static and dynamic targets. The ubiquity of these
findings serves to further support the propositions of the opportunity theo-
ries as viable generalizable crime event explanations that can be applied to
a range of crime types.

Furthermore, by applying a computational laboratory based approach the
model was also able to estimate the likely contributions of specific mech-
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anisms in the formation of particular crime patterns. When targets are
static, results of the model suggest that both the routine activity and aware-
ness space mechanisms confer the greatest impacts on all three regulari-
ties. This finding supports the propositions of the routine activity approach
that describe the importance of the crime convergence in explaining the ob-
served incidence of crime. Furthermore, the interplay of routine activities
and awareness spaces is of considerable significance - cognitively known areas
are a direct result of those which are commonly visited and as a result, the
awareness space mechanism serves to reinforce the spatial activities of an
individual.

As such, the model provides a computational demonstration of the proposed
interactions of activity and awareness spaces provided by Brantingham and
Brantingham’s pattern and geometry of crime theories. In particular, re-
turning to the hypothetical offender-target-environment scenarios depicted
in Brantingham and Brantingham (1981), patterns of crime produced by the
model closely mirror the expected distributions of crime described in cases 7,
8, 9 of the theory (Brantingham & Brantingham, 1981, 44-47), demonstrat-
ing that above and beyond the hypothesised mechanisms, the interactions
which occur between them produce patterns of crime congruent with those
both expected by theory, and observed in reality. These findings provide
significant support for the geometric theory of crime’s depiction of aggregate
crime patterns and the underlying mechanisms which give rise to them.

Further observations are also congruent with the opportunity based de-
pictions of the crime event provided by environmental criminology, which
suggest that while the most attractive targets are more likely to be vic-
timised, target utility alone is unlikely to be sufficient to predict victimi-
sation. Rather, targets both attractive and located within the cognitively
known operating area of motivated offenders are those who face the greatest
risks of victimisation (Cohen & Felson, 1979; Hindelang et al., 1978).

A further interesting finding is the limited impact that the rational choice
mechanism had on levels of repeat victimisation when targets were static.
This observation has potential implications for the theoretical mechanisms
of event dependence (boost) and risk heterogeneity (flag), suggesting that
event dependence is likely to play a significant role in explaining repeat
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victimisation in crimes such as residential burglary.2

When targets are spatially dynamic (e.g. street robbery, assault), the rou-
tine activities and awareness spaces mechanism remain most significant in
explaining the spatial clustering and the characteristic journey to crime
curve. However, when examining repeat victimisation across both model
variants, the results of study 2.2 suggest that the rational choice mechanism
confers the greatest impact on repeat victimisation (relative to the routine
activity and awareness space mechanisms) when targets are spatially dy-
namic.3

In considering why this might be the case three potential explanations are
proposed, the first relating to the characteristics of the underlying mecha-
nisms being studied, and two further which relate to potential limitations of
the ABM presented.

The first potential explanation concerns the increased complexity of inter-
actions which occur in the commission of crime against dynamic targets –
that is, when both offender and victim activity is, as a result of the rou-
tine activities mechanism, nonlinear. To illustrate, consider a static target
with a relatively low utility found within the cognitively known activity
space of offenders. Over time, as the target is repeatedly encountered by a
particular offender, the offender becomes increasingly more aware of it. In
this scenario, eventually all but the most unattractive targets will likely be
victimised, and after an initial victimisation the chance of a subsequent vic-
timisation can only increase (until at least some upper bound of awareness
is reached).

Conversely, dynamic targets are likely to be encountered less frequently by
the same offender in the same location, simply as a result of them not al-
ways being in the same place at the same time. In these cases, the relative
utility of a target may play a more significant role in determining whether
victimisation occurs. To be considered viable, targets with relatively low
utility require offenders to not only converge with them, but also to do so in
cognitively well known crime places which facilitate offending.

2This hypothesis could be further investigated using the existing model by establishing
whether repeat victims were repeatedly targeted by the same or different offenders.

3This finding however, requires further investigation via robustness testing.
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In essence, this relationship can be described as follows. Each time an of-
fender encounters the same (static) target, the likelihood of victimisation
increases as a result of the awareness spaces mechanism. Conversely, when
encountering dynamic targets the likelihood of victimisation depends on both
the utility of the target and the offender’s knowledge of the place in which
convergence occurs. Thus, targets become more or less attractive to offend-
ers depending on where and when they are encountered, highlighting the
importance of place, and in turn offender’s awareness of it, in considering
the spatial and temporal distribution of suitable criminal opportunities. Re-
lating this observation again to the boost and flag explanations of repeat
victimisation, the model results thus suggest that when targets are spatially
dynamic, risk heterogeneity may play a more significant role in repeat vic-
timisation than event dependence.

An alternative way to consider this finding is to ask not why the rational
choice mechanism might be more significant in explaining repeat victimisa-
tion against dynamic targets, but instead, why the routine activities and
awareness spaces mechanisms seem less important relative to when targets
are static. One potential explanation concerns the implementation of rou-
tine activities within the model itself. Currently the temporal aspects of
routine activities are somewhat underdeveloped, offenders undertake spa-
tial activities in only a semi-structured fashion (the key pseudo-temporal
element being the likelihood of returning home after each activity). This
limited conceptualisation of temporal constraints is likely to have little im-
pact on crimes occurring against static targets, as these are encountered at
the same location irrespective of time. However, when considering crimes
against dynamic targets the lack of temporal constraints for offender and
victim activity may underestimate the repeated convergence of certain vic-
tims and offenders that might result from overlapping spatial and temporal
characteristics of activities, thus reducing the impacts that routine activities
might play in levels of repeat victimisation.4

A further possible explanation relates to a lack of formalised, shared ac-
tivity nodes within the environment. Crime pattern theory suggests that
certain societal nodes described as crime generators repeatedly draw certain

4Given the links between activity and awareness spaces discussed above this may also
limit the impact of awareness spaces on repeat victimisation.
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activities and as a result, bring together victim and offender, thus leading
to greater numbers of potential crime convergences. Within the model pre-
sented routine activity nodes are randomly allocated from the environment
to all offenders and victims (when dynamic), with no predisposition for cer-
tain nodes to be shared by agents. Thus, the inclusion of such nodes might
lead to the repeated convergence of dynamic victims and offenders at pre-
dictable locations, and in turn increase levels of repeat victimisation. Both of
these potential explanations can be explored further using additional model
elements and are discussed briefly in the extensions section below.

In summary, the primary theoretical implication of this thesis is that the
identified mechanisms of the opportunity theories offer a candidate expla-
nation that is generatively sufficient to explain why offending against both
static and dynamic targets tends to be spatially clustered, experienced by
a relatively small number of repeat victims, and why the aggregate journey
to crime curve tends to follow a characteristic distance decay relationship.
In demonstrating how the micro-hypotheses of theory are capable of gener-
ating macro-patterns observed in reality the model provides support for the
propositions of the routine activity approach, rational choice perspective, and
crime pattern theory, at micro, meso and macro levels. Recalling Jeffrey’s
(1993) criticism of the routine activity approach as providing a “description of
[crime] events and not an explanation” (p492), this thesis demonstrates that
the proximal descriptions of the crime event provided by the routine activity
approach, rational choice perspective and crime pattern theory do provide
an explanation of several widely observed crime phenomena – a generative
explanation.

Observations beyond this primary implication, such as those described above,
serve to highlight the strengths of the simulation approach in generating
novel and interesting hypotheses that should be further explored through
both computational and empirical study. Having discussed the key theoret-
ical implications of the experiments performed throughout this thesis, the
following sections outline a number of potential methodological and policy
implications.
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7.4 Methodological Implications

This thesis has demonstrated how computational ABMs of the crime event
can be used to assess the generative sufficiency of theoretical crime event
micro-specifications, and in turn, estimate the likely impacts of important
theoretical processes in the formation of particular crime patterns. In keeping
with the work of previous authors within the field of computational criminol-
ogy, this research further highlights the suitability of simulation approaches
in exploring the validity of hypotheses that describe complex unobservable
interactions of the crime event.

Epstein’s approach of generative social science applied in this thesis seems
to offer considerable promise to those who wish to apply ABM in explor-
ing and testing the viability of criminological theory. Given that much is
known about the macroscopic patterns of crime, the criterion of generative
sufficiency seems an eminently suitable method through which micro-level
hypotheses can be prioritised in terms of their plausibility as explanations
for known crime patterns.

In addition, the application of simulation as a computational laboratory
as undertaken here and advocated by previous authors also demonstrates
considerable utility. By permitting the systematic manipulation of model el-
ements, controlled computational experimentation affords a suitable method
through which theories about unobservable mechanisms can be assessed in
ways that are, for the most part, impossible through traditional experimental
means. While the inferences that can be made from computational exper-
iments are different from those related to empirical experimentation, when
appropriately framed, the computational model provides a unique point of
triangulation through which theories describing the crime event can be ex-
plored. Importantly, relative to other forms of experimentation, simulation
remains monetarily, ethically, and logistically inexpensive. Thus, while the
simulation experiment will never replace traditional empirical enquiry, and
should never aspire to, in the future it may provide a viable compatriot to
existing approaches that is capable of easily, quickly and cheaply prototyping
theoretical proposition; in turn, prioritising theory in terms of its plausibility
prior to further empirical investigation.
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7.5 Policy Implications

When considering potential policy implications of explanatory models such
as the one presented in this thesis appropriate caution should be taken in
making inferences from simulation outcomes to the real world. The approach
to modelling presented here favours parsimony in order to explore the under-
lying dynamics of several theoretical propositions. As such its implications
are primarily theoretical.

Importantly the model developed in this thesis has demonstrated generative
sufficiency not causal explanation. Thus, there may well be other mecha-
nisms not formalised here that are equally capable of generating the macro-
scopic patterns of crime studied, and as such offer an equally viable explana-
tion for the patterns of crime we commonly observe in empirical study. This,
however, is not unlike other methods of enquiry where previously unobserved
constructs may be responsible for observed effects.

For policy implications to be derived from the model presented here further
testing in a considerable greater number of scenarios and against a greater
number of regularities is required. While such experiments will never es-
tablish causal explanation the greater the flexibility of the mechanisms in
producing plausible outcomes the greater the confidence we can have that
that they do indeed sufficiently reflect those processes operating in the real
world. Furthermore it is obvious that, as ever, further empirical investigation
will be required to explore the validity of model-driven insight.

Therefore, the primary policy implication of this thesis is that the depictions
of the crime event provided by the opportunity theories have been supported
and as such, crime prevention techniques that draw upon them such as situa-
tional crime prevention (SCP), problem-oriented policing (POP) , and crime
prevention through environmental design (CPTED) are likely to be effective
in reducing crime (just as they have demonstrated to be).

7.6 Model Development Observations

Having described the key findings and implications of the research presented,
this section outlines three key observations regarding the use of computa-
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tional modelling that became evident in undertaking the research presented
in this thesis.

First, from the outset, researchers must be explicit about the purposes of
models being developed. The development of computational models is con-
strained by three key factors: the imagination of the researcher, their techni-
cal ability, and the computational resources available to them. This creative
potential is a double-edged sword; while ABM offers considerable flexibil-
ity, the numerous directions in which a model may progress dictate that
researchers must exercise considerable self-control in selecting what should
and should not be modelled. For them to be useful, models must be transpar-
ent and should start out simple, only incrementally increasing their scope in
a systematic fashion (Townsley & Johnson, 2008). In taking this approach,
each additional model component can be appropriately justified (why should
it be included? ), specified (how should it be included? ), and implemented
(how was it included? ). The emergent nature of ABM dictates that each
additional model component can have considerable and often unforeseen im-
pacts on model outcomes. Indeed, this is often the very phenomenon one is
interested in. However, as a result, model enhancements require extensive
testing to ensure that what was initially specified has been appropriately
implemented. While the time and resources required to perform simulation
experimentation are likely considerably less than those associated with real
world experiments, development of an ABM still requires considerable in-
vestment by researchers. It is crucial at the outset to specify a model’s aim
and what inferences can be made from its output behaviour. Asking ques-
tions such as what will the analysis of model output data tell us, will they
inform theory, practical intervention, predict behaviour, or all of the above,
will make the viability of certain inclusions and exclusions easier to assess.
The focus of the model described in this research was to assess the valid-
ity of several identified mechanisms provided by the opportunity theories
as a generative explanation of several characteristics of crime. Therefore,
model elements were limited to operationalisations of several core identified
mechanisms of those theories.

Second, one should not overlook the considerable utility derived from the pro-
cess of model building. Translating theoretical construct into computational
equivalents forces the researcher to consider all the concepts, entities and
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interactions of a given hypothetical mechanism. Thus, modelling promotes
the rigorous specification of theory. This process of theory formalisation
can highlight logical inconsistencies that may otherwise be overlooked, and
has lead to considerable debate in the development of the model presented
in this thesis. Furthermore, the requirement of formalisation serves well to
highlight theories that lack adequate specification. Those theoretical con-
structs that cannot be operationalised and examined in an artificial society,
where perfect measurement and manipulation is possible, are those that are
likely to be very difficult to test in reality.

Finally, another key observation made during this thesis relates to the im-
portance of appropriate simulation data management and analysis protocols.
As previously discussed, simulation experimentation can generate vast quan-
tities of data that must be managed and analysed. To illustrate, the results
presented for study one require data describing in total 24 million distinct
crime events5. Data relating to these and their subsequent analysis required
roughly 75,000 data files and 20 gigabytes of disk space. In managing these
data a number of procedures were undertaken to ensure that simulated data
was adequately prepared, analysed and catalogued. These procedures are
briefly summarised below.

Standardised recording: simulation output files should necessarily be stan-
dardised, specifying both what will be recorded and how will it be recorded.
It is likely unrealistic to record every computational step performed during
every simulation – especially when large numbers are performed. Thus, stan-
dardised output recording should be established that is appropriate to the
research questions the model aims to address. In the model presented in this
thesis the recording of simulated crime data aimed to mirror that of recorded
crime data (albeit without errors in reporting and recording) thus allowing
commonly used analytical techniques to be applied to simulated crime data
in the same way that they are applied to recorded crime data.

Standardised analysis: For the output of numerous within-model replications
to be analysed and aggregated at suitable levels for reporting, the analysis
of simulation output data must be standardised and automated. This re-
quires developing suitable computational routines that will process, analyse

56 model variants (1 original + 5 modified robustness test models) x 8 model configu-
rations x 500 within-model replications x 1000 crimes per replication.
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and summarise simulated crime data. In line with observations made by
Axtell and Epstein (1994), researchers should not underestimate the work-
loads involved in developing suitable methods for processing and analysing
simulation output data. To illustrate, at the completion of the research pre-
sented in this thesis, the R code developed to process and analyse simulation
output data was equivalent in size to the NetLogo code that described the
model itself. Furthermore, the time spent in computing such analysis was
not insignificant.

Data Cataloguing : Once simulated data are recorded, processed and analysed
they must be appropriately catalogued, so that they can be recalled when
required. For each set of experiments output files produced by the model
were stored in a standardised repository. In addition to the raw model output
data, and its subsequent analyses, each repository stored the source code
associated with the model used to generate data, and a summary of all
model parameters used in each simulation.

7.7 Limitations and Methodological Critiques

The results of this study should be interpreted in the context of several po-
tential limitations. These limitations, relating to both the model developed
and more generally the application of ABM and generative social science,
are summarised below.

The first potential limitation of the model presented relates to the under-
developed nature of temporal constraints applied to agent routine activi-
ties. Currently, the model specifies routine activities by allocating agents
routine activity nodes, however it does not create any particular temporal
schedule beyond the likelihood of returning home after certain activities. As
previously discussed, this simplification may impact on model outcomes in
a number of ways, especially when considering crimes that occur against
dynamic targets where the temporal characteristics of activities may more
significantly impact on the spatio-temporal distribution of victim-offender
convergences. Moreover, if the model is to be used to assess generative suf-
ficiency in explaining temporally based regularities such as the time course
of repeat victimisation (Polvi, Looman, Humphries, & Pease, 1991) or the
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spatio-temporal clustering of near repeats (Johnson et al., 2007; Townsley
et al., 2003) it is likely that a more developed representation of temporal
constraints on routine activities will need to be developed.

Another potential limitation concerns the current depiction of offender moti-
vation as uniform and static. While this initial model assumption effectively
disentangled the effects of offender motivation from the underlying mecha-
nisms explored, it is unlikely to reflect real world offending populations. With
this in mind however, the variation in crime phenomena generated given a
population of uniformly motivated offenders seems particularly noteworthy.
Nevertheless, further model development should explore the impact that dif-
fering representations of offender motivation have on model outcomes.

Similarly, the assumption that target utility is randomly distributed through-
out the environment should be further explored. The law of spatial de-
pendence states that things that are spatially proximate are more likely to
be characteristically similar (Tobler, 1970). Thus, the current depiction of
target utility may impact on model outcomes. For instance, randomly dis-
tributed target utility may underestimate the likely influences of the rational
choice mechanism on the spatial clustering of crime, as some offenders may
find themselves within particularly fortuitous circumstances as a result of
the clustering of target utility. As a result, extensions to the existing model
should investigate the impacts of different spatial distributions of target util-
ity.

While these three limitations are likely to have influenced model outcomes
it is important to remember that the aim of this research was to present an
initial parsimonious model that allowed the impact of identified theoretical
mechanisms to be explored. In order to assess the impacts of these proposed
model modifications, the outcomes of further models should necessarily be
compared to this initial model, thus providing a counterfactual. However,
such comparisons significantly increase computational requirements and as
a result were considered beyond the scope of this study. To illustrate, in ex-
ploring the influence of spatially autocorrelated target utility, all simulation
experiments would need to be replicated first within simulation environments
in which target utility was randomly distributed, and secondly where target
utility was spatially autocorrelated, thus doubling the required number of
within model replications that need to be performed.
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More generally, the approach of generative social science applied in this the-
sis is also still in its infancy. Given its relatively recent introduction, the
generative explanation lacks much of the rigour associated with its statis-
tical equivalent. While this should not dissuade researchers from potential
applications within criminology, especially given its demonstrated strengths,
improper applications of new techniques can undermine credibility; there-
fore, understanding and clearly communicating the purposes of any model
is paramount. With regard to generative social science, the key here is to
ensure that the audience for model results understand the difference between
generative sufficiency and causal explanation.

One specific limitation of the generative social science approach to mod-
elling crime relates to the quality of data describing the crime event from
which regularities are derived, and in turn, against which model outcomes
are compared. As previously discussed, the limitations of crime data are
well acknowledged (Maguire, 2007). Thus, in assessing equivalence of simu-
lated and empirical data researchers must interpret levels of correspondence
appropriately. In discussing this issue Eck and Liu (2008) rightly point out
that without adequate modelling of the crime recording process, quantitative
equivalence between simulated and recorded crime data should be interpreted
with scepticism.

It is suggested however, that this limitation may not impact as greatly on
explanatory models, such as the one presented in this thesis that aim for
qualitative equivalence, than those models which aim for quantitative equiv-
alence. Consistent with existing studies utilising recorded crime data, the
current model makes the necessary assumption that unreported and un-
recorded offences do not conform to a unique set of distributional charac-
teristics distinct from those observed in recorded crime data. Nevertheless,
the more realistic a model becomes, the more thought that will be required
in addressing this issue in a hope of minimising threats to model validity.
Furthermore, as the number of empirical regularities against which model
outcomes are assessed increases, the ubiquity of certain regularities will need
to be carefully considered to ensure that empirical patterns are indeed reflec-
tive of the underlying mechanisms and not the processes through which crime
is reported and recorded. This will likely involve triangulation of multiple
data sources including recorded crime, victimisation survey, and offender self
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report data; estimates of the likely impacts of reporting and recording prac-
tices; and eventually, as Eck and Liu propose simulation of reporting and
recording practices.

Another common criticism of ABM is that model outcomes can only ever
reflect initial assumptions explicitly made by the model developer – that
is, you only get out what you put in. This is simply not the case, it is
obvious that through the interactions of initial assumptions further, novel
outcomes can be observed. For instance, in the models presented, at no
point are agents directed to repeatedly victimise certain homes or concentrate
their efforts in certain hot-spot locations, yet we observe both high levels of
spatial clustering and repeat victimisation when agents operate according
to the three mechanisms studied. Furthermore, the approach of generative
social science addresses much of the basis for this criticism by appropriately
framing the interpretation of model outcomes; by comparing the outcomes of
specified micro-mechanisms to known macro-patterns one is able to assess the
plausibility of those initial assumptions, so they may in turn be better refined,
or eliminated as potential explanations for observed phenomena.

A further criticism of the agent-based approach relates to the primary direc-
tion of causality explored using ABM. Emergence in the current model is uni-
directional – in that specified micro-behaviour gives rise to observed macro-
structures, but macro-outcomes have little impact on micro-behaviour. In
the real world macro-patterns affect individual behaviour. For instance,
with regard to the crime event, some locations will likely attract and repel
offender and victim respectively because of their known properties as good
crime places. As such, the initial model presented fails to capture some of
the likely feedback mechanisms operating in-situ. Acknowledging this limi-
tation, a number of methods can be envisaged through which it may be, at
least partially, addressed with the use of macroscopic constructs that influ-
ence individual agent action. For example, Wang et al. (2008) developed
a tension surface which encodes the macro-patterns of crime emerging from
the micro-level, and through which micro-action is influenced in a top-down
manner.

Another limitation of computational modelling relates to the computational
resources needed to run large numbers of simulation experiments. While sim-
ulation is cheap relative to many other experimental methods within the so-
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cial sciences, the application of computational models does often require that
researchers invest considerable time or computational power6 in performing
simulation experiments. Unfortunately, such computational resources are
not commonly found in the academic departments of criminology and crim-
inal justice. In the study presented, the computational capacity available
limited the extent of robustness tests that could be performed, dictating
that for the second model variant, which was considerably more computa-
tionally demanding than the first, robustness tests could not be performed
within a reasonable time frame. Furthermore, where robustness tests were
performed the parameter space explored was necessarily small in order that
such tests were manageable. As such it is acknowledged that further explo-
rations of the parameter space should be undertaken for both model variants,
assessing the robustness of model findings and estimating the likely impacts
of differing initial conditions in a wider range of circumstances.

Finally, the validity of the model presented in this thesis has only been as-
sessed using within-model replication. An obvious next step is to undertake
between-model replication of the same underlying model assumptions using
other computational architectures, thus ensuring that findings are not unique
to the presented implementation. It is hoped that the documentation pro-
vided throughout this thesis will assist those who might wish to undertake
this endeavour.

Having discussed a number of potential limitations of the research presented,
the following section sets out a number of avenues for further research, several
of which aim to address the concerns discussed above.

7.8 Recommendations for Further Research

Having explored the research questions posed in this thesis, a wide range of
potential avenues for further research using the existing model are apparent.
As such, it is hoped that this thesis has detailed the first of several research
efforts using the model presented. A number of these potential lines of

6These two requirements are obviously intrinsically linked, at least in theory. Anecdo-
tally, the author has however observed more computing power producing more complex
models, which in turn require the same or more time to execute – a property of software
development that is in no way unique to agent-based models of social science phenomenon.
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enquiry are now briefly described.

7.8.1 Exploring Further Regularities:

Extending this research, the initial goal is to further explore the emergent
properties of the existing model. While additional theoretical mechanisms
could be incorporated and assessed for generative sufficiency, or the exist-
ing computational equivalents of those studied here developed further, the
first aim is to explore which other regularities of crime can and cannot be
generatively explained by the parsimonious mechanisms described here. For
example, assessing the generative sufficiency of these mechanisms in produc-
ing two other commonly observed characteristics of residential burglary: the
typically short time-course of repeat victimisation (Polvi et al., 1991) and
the spatio-temporal clustering of burglary offences (Johnson et al., 2007;
Townsley et al., 2003). By extending the regularities against which micro-
level mechanisms are validated the confidence that researchers can have in
the sufficiency of theories increases.

7.8.2 Longitudinal Analysis of Simulation Trace

The results of the experiments presented in this thesis have concentrated on
the macroscopic outcomes of agent populations operating under a number of
theoretically inspired behaviours. The study of these patterns presented has
been purely cross-sectional; a potential extension of this research is to further
explore the underlying trace that generates such patterns using longitudinal
analysis.

7.8.3 Combining Model Variants:

A further suggested application of the current model is to combine both
variants presented into a single model in which targets can be both spatially
static and dynamic. In doing so, dynamic targets representing civilians could
be distributed amongst static targets, representing their homes. One key
ramification of combining model variants in this way is that it could facilitate
a more advanced exploration of guardianship, such that the utility of static
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targets could be modified by the presence or absence of home owners, thus
capturing the inherently dynamic nature of guardianship (Reynald, 2011).
Furthermore, this new model could also be used to explore the impact of
informal guardianship by modelling individual’s ability to disrupt the crime
commission process both against fellow civilians and their homes.

7.8.4 Advanced Temporal Representations:

As previously discussed, currently the temporal aspects of the model are the
most underdeveloped. One obvious model extension would provide temporal
constraints to routine activities as implemented by Groff (2008) and Wang
et al. (2008). In doing so, agents could be allocated temporal schedules
that reflect the timings of day-to-day activities. This would permit further
examination of temporal patterns of crime such as those described in sec-
tion 2.2.1.

7.8.5 Exploring the Impact of Crime Generators:

In the hope of addressing another potential model limitation discussed in
section 7.7, a further model extension could implement crime generators
within the simulation environment. Crime generators could be added to the
existing model as routine activity nodes and added to the routine activity
spaces of all offenders and victims, thus exploring the impacts of such shared
activity nodes on macroscopic patterns of offending

7.8.6 Autocorrelated Target Utility:

A further model extension could explore the impact of spatially autocor-
related target utility – such that targets close to one another would share
similar utility scores. In this way different neighbourhoods within the envi-
ronment could be defined with similar utility profiles. Such model additions
could then be used to explore a number of phenomena such as the edge
effects described by crime pattern theory (Brantingham & Brantingham,
1993b).
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7.8.7 More Advanced Representations of Target Utility:

The current model collapses the metrics of risk, reward and effort into a
single measure of target utility. One potential model extension is to model
all of these features of a given target separately. In addition, target utility is
currently static and does not change; further models could explore dynamic
target utility. For instance, given a more advanced temporal representation,
static targets for could exhibit different utility at different times throughout
a simulation day, reflecting the presence or absence of guardianship provided
by residents (Cohen & Felson, 1979).

7.8.8 Variable Offender Motivation:

The current model explores the dynamics that occur given a uniformly mo-
tivated offender population. As previously discussed, this representation
of offender motivation is one that is unlikely to reflect real world offending
populations. Further model extensions could explore the impacts of dynamic
offender motivation. Furthermore, the model could be used to represent the
provoked, mundane and anti-social predator offenders suggested by Cornish
and Clarke (2003). In doing so, different classes of offender agent could
be provided with differing behaviours, for instance providing some offend-
ers with a more refined target search strategy that allows them to actively
search for targets rather than simply victimising those opportunistically en-
countered during day-to-day activities. Similarly, different classes of offend-
ers might have different learning rates, which reflect their ability to more
rapidly ascertain which targets are suitable for offending.

7.8.9 Offender Effectiveness and Adaptation:

The current model assumes that when the offending calculus deems a po-
tential target sufficiently suitable it is victimised. This representation is
simplistic – offenders are clearly ineffective on some occasions (an observa-
tion attested by the frequency of attempted burglaries found within recorded
crime data). Following a similar approach to Wang, Liu and Eck (2008), fur-
ther model extensions could better represent the commission process, and in
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addition might allow offenders to be encouraged or discouraged from com-
mitting crime based on their previous successes and failures.

7.8.10 Spatially Specific Activity Nodes:

Following the approach taken by Groff (2007a), another potential model ex-
tension could split the simulation environment into a series of zones, such
that agent home locations are drawn from identified residential areas and
work and recreational nodes from other suitable zones. This clustering of
the location of certain types of activities nodes is likely to be a better re-
flection of the distribution of activity nodes found in the real world where it
is unlikely that residential, commercial and industrial premises will be ran-
domly distributed. This model extension might better formalise the overlap
of particular societal routine activities undertaken at different times of the
day.

Having undertaken the initial experiments presented in this thesis and demon-
strated the generative sufficiency of the opportunity theories, the model ex-
tensions listed above could be implemented and their impacts systemati-
cally assessed by comparing modified model outcomes to those produced in
this thesis. Thus permitting the incremental and systematic development of
model complexity, and in turn, the exploration of new hypotheses.

7.9 Concluding Remarks

The research presented in this thesis has demonstrated how computational
agent-based models of society can be used to gain insight into the poten-
tial ramifications of theoretical crime event mechanisms, and, in particular,
assess their plausibility in explaining patterns of crime that are commonly
observed in empirical study.

Having highlighted the current difficulties facing those who aim to test the
propositions of the opportunity theories, the approach described provides a
distinct but complimentary method of triangulation to existing endeavours.
In addition, by building on the observations of previously developed compu-
tational models which aim to explore the crime event, the model presented
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here aims to contribute to the burgeoning field of computational criminol-
ogy.

The approach of generative social science proposes that to explain some
macroscopic phenomenon one should ask: “How could the decentralised local
interactions of heterogeneous autonomous agents generate the given regular-
ity?” (Epstein, 1999, 41). In the artificial societies in which offenders operate
according to mechanisms outlined by the routine activity approach, rational
choice perspective and crime pattern theory, crime clusters in hot spots, with
targets that are both attractive and located within the cognitively known
activity space of one or more offenders experiencing repeated victimisation.
Furthermore, when aggregate journey to crime curves are observed they fol-
low a characteristic distance decay curve. Thus, findings of the simulations
presented demonstrate that the identified mechanisms of the opportunity
theories provide a generative, and as such, candidate explanation for several
commonly observed patterns of crime.

While the importance of empirical experimentation cannot be overstated,
computational approaches such as those presented here may provide a com-
plimentary and comparatively inexpensive method for theoretical prototyp-
ing. Establishing mechanisms that offer viable generative explanations for
crime increases our ability to identify those hypotheses most likely to reflect
real-world mechanisms, and diminishes the likelihood of pursuing mecha-
nisms that are unable to explain commonly observed crime patterns. While
this approach is only capable of demonstrating the generative sufficiency of
theory, assessing which theories offer a sufficient explanation of commonly
observed outcomes is of obvious utility. Not only for testing theory, but also
in highlighting those theories that lack adequate specification of the mecha-
nisms through which they propose observed outcomes come about. Without
revision, such theories are likely of little use in developing either simulation
or, more importantly, crime prevention intervention.

While some may lament the fact that simulation relies on assumptions con-
cerning the mechanisms of crime – so does intervention. Indeed, in sev-
eral ways intervention and simulation are very similar. Both provide viable
methods to test the validity of proposed theory – each with their own respec-
tive strengths and weaknesses. Yet the relative savings offered by simula-
tion, monetarily, ethically and logistically, necessitate that we must continue
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to investigate its application as a preliminary tool capable of assessing the
risks associated with pursuing particular theoretical propositions. Given the
wealth of potential explanations for crime and criminality proposed within
the criminological literature, theory validity is implicitly variable. Prioritis-
ing theoretical mechanisms in terms of their plausibility may help to guide
necessary, but in many cases expensive, empirical activity. Drawing on Sher-
man’s what works nomenclature (Sherman et al., 1998), simulation might
provide us with a suitable way to initially establish which mechanisms pro-
posed by theory can and can’t work.
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