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Synopsis 

There are many real world assignment, scheduling and planning tasks which can be classified as 

combinatorial optimisation problems (COPs). These are usually formulated as a mathematical problem 

of minimising or maximising some cost function subject to a number of constraints. Usually, such 

problems are NP hard, and thus, whilst it is possible to find exact solutions to specific problems, in 

general only approximate solutions can be found. There are many algorithms that have been proposed 

for finding approximate solutions to COPs, ranging from special purpose heuristics to general search 

meta-heuristics such as simulated annealing and tabu search. 

General meta-heuristic algorithms like simulated annealing have been applied to a wide range of 

problems. In most cases, the designer must choose an appropriate data structure and a set of local 

operators that define a search neighbourhood. The variability in representation techniques, and suitable 

neighbourhood transition operators, has meant that it is usually necessary to develop new code for each 

problem. Toolkits like the one developed by Ingber's Adaptive Simulated Annealing (Ingber 1993, 

1996) have been applied to assist rapid prototyping of simulated annealing codes, however, these still 

require the development of new programs for each type of problem. There have been very few attempts 

to develop a general meta-heuristic solver, with the notable exception being Connolly's General 

Purpose Simulated Annealing (Connolly 1992). 

In this research, a general meta-heuristic based system is presented that is suitable for a wide range of 

COPs. The main goal of this work is to build an environment in which it is possible to specify a range 

of COPs using an algebraic formulation, and to produce a tailored solver automatically. This removes 

the need for the development of specific software, allowing very rapid prototyping. Similar techniques 

have been available for linear programming based solvers for some years in the form of the GAMS 

(General Algebraic Modelling System) (Brooke, Kendrick, Meeraus and Raman 1997) and AMPL 

(Fourer, Gay and Kernighan 1993) interfaces. The new system is based on a novel linked list data 

structure rather than the more conventional vector notation due to the natural mapping between COPS 

and lists. In addition, the modelling system is found to be very suitable for processing by meta- 

heuristic search algorithms as it allows the direct application of common local search operators. 

A general solver is built that is based on the linked list modelling system. This system is capable of 

using meta-heuristic search engines such as greedy search, tabu search and simulated annealing. A 

number of implementation issues such as generating initial solutions, choosing and invoking 

appropriate local search transition operators and producing suitable incremental cost expressions, are 

considered. As such, the system can been seen as a good test-bench for model prototypers and those 

who wish to test various meta-heuristic implementations in a standard way. However, it is not meant 

as a replacement or substitute for efficient special purpose search algorithms. 



The solver shows good performance on a wide range of problems, frequently reaching the optimal and 

best-known solutions. Where this is not the case, solutions within a few percent deviation are 

produced. Performance is dependent on the chosen transition operators and the frequency with which 

:ach is applied. To a lesser extent, the performance of this implementation is influenced by runtime 

parameters of the meta-heuristic search engine. 
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Chapter 1: Introduction 

1.1 Introduction 

According to Osman and Kelly (1996, p. 2) "Combinatorial optimization problems are normally easy 

to describe but difficult to solve". Typically these problems have a finite number of alternative 

solutions that represent different arrangements of discrete objects. As such, each solution state has a 

different degree of effectiveness for solving a particular problem. The aim is to find the solution that 

receives the highest overall evaluation while simultaneously satisfying a set of constraints. This is 

known as the optimal solution. Many real world problems that involve location, arrangement, 

scheduling and planning tasks can be classified as combinatorial optimisation problems. The 

importance of these problems to industry cannot be underestimated. For instance, Anbil, Gelman, 

Patty and Tanga (1991) describe a problem in which crews are scheduled to airline flights. Given that 

airline operating costs are in the order of billions of dollars per year and that personnel costs are one of 

the largest components thereof, even slight increases in efficiency can lead to substantial savings. 

The number of possible solution states can be large even for relatively small size combinatorial 

optimisation problems. As a result, many of these problems are intractable and require years'of 

computer processing time to identify optimal solutions. The theory of computational complexity 

identified by Cook (1971) states that a problem is NP (Nondeterministically Polynomial) hard if the 

amount of computational time required to find the optimal solution grows exponentially with the size 

of the problem instance, in the worst case. Consequently, it is improbable that efficient search 

algorithms exist that will solve such problems to give the optimal solution. 

As a result of the fact that many COPS have been shown to be NP hard, combinatorial optimisation has 

been seen as a challenging field by researchers from a variety of disciplines including mathematics, 

computer science, engineering, economics and management. Numerous solution techniques exist for 

combinatorial optimisation problems. The most successful and widely used search algorithms are 

those that forsake the requirement of obtaining optimal solutions (Osman and Laporte 1996) and these 

are broadly known as heuristics. In most cases, special purpose algorithms that solve individual 

problem types are the most efficient way of solving these problems. As such, a great deal of research 

has focused on the development and refinement of these algorithms. In contrast there has been 

relatively little investigation to determine if and how more general-purpose search platforms can be 

built. Therefore it is in this area that the research of the thesis will concentrate. 



1.2 Scope 

Combinatorial optimisation problems may be defined as any optimisation problem that has a finite 

number of feasible solutions (Winston 1991). Most problems fitting this description have a discrete 

solution domain that is therefore defined over a subset of integers. The general model for COPS can be 

expressed using Equations (1) and (2) according to Osman and Kelly (1996). 

Optimise fix) 
subject to (s. t . )  

X E  X s R  

Where: 
x represents a solution to the COP. 
fix) is the evaluation of the arbitrary objective function,f, according to x. 
X  is the feasible space. 
R  is the entire solution space. 

The equation given in (1) states that an arbitrary function, f, with argument, x (the solution), is to be 

optimised. That is, the solution with either the lowest or highest evaluation off (depending on whether 

the problem requires minimisation or maximisation) is sought. The feasible space is bound by a set of 

constraints (which are themselves arbitrary functions) (2). Combinatorial optimisation generally 

requires that the sets, X and f2 consist of discrete values. 

The discrete solution space allows the modelling of problems that require some form of assignment or 

mapping of items to a number of different groups. Therefore much of combinatorial optimisation is 

primarily concerned with "finding an optimal arrangement, grouping, ordering or selection of discrete 

objects usually finite in number" (Osman and Kelly 1996, p. 2). There have been varied attempts to 

model COPS including Integer Linear Programming, graph theoretic approaches and constraint 

programming. These are discussed in Chapter 2. 

As well as modelling these problems, there are subsequently many applicable solution methods and 

these may be separated into two distinct groups of exact and approximate approaches. Of the former 

group, the techniques of Operations Research (OR) predominate. The most widely used techniques 

within this field for solving COPS are "branch and bound" and "cutting plane algorithms" (Taha 1992; 

Winston 1991). While these techniques guarantee optimal solutions, the effects of NP complexity 

become apparent. These techniques are discussed in detail in Chapter 2. 

The approximate techniques aim to find the best possible solution, not necessarily the proven optimal 

solution, with a given amount of computational effort. These techniques are referred to as lzeuristics 

and are often in the form of specialised algorithms that solve particular problems. Heuristics are 

generally very efficient. However, it can be expensive and time consuming to alter individual 

algorithms to suit other problems. Nevertheless, a class of meta-heuristic algorithms exist that can be 

adapted to suit different problems with less effort. While these algorithms are typically less efficient 



than their tailored heuristic counterparts, they have been applied successfully to a variety of difficult 

and practical COPs. 

Although meta-heuristics are general algorithms for solving COPs, there is no universally standard and 

efficient way of representing problem structure and data. Therefore, the common practice has been to 

incorporate problem specific information and data within the search engine itself. In contrast, 

relatively little research has been carried out to produce general and reconfigurable COP search 

engines, apart from Abramson and Randall (1998), Connolly (1992), Johnson, Aargon, McGeogh and 

Scheveon (1991a, 1991b) and Ingber (1993, 1996). 

The work in this thesis contains the details of a new modelling system that represents COPS in a way 

that closely reflects the underlying structure of the problem being solved. In this study, it is found that 

a variety of iterative search techniques coupled with standard local search transition operators can 

successfully operate within the framework of this modelling system. The modelling system itself is 

discussed in Chapter 3, while the details of the implementation of a new general-purpose solver are 

contained in Chapter 4. The general system is tested on a wide variety of COPs over a range of 

parameters and compared to some benchmark solvers (Chapter 5). Finally, in Chapter 6, conclusions 

are drawn about the modelling system and its implementation. As well as this, the details of further 

research projects arising from this work are discussed. 

The aim of this research is to demonstrate that practical size COPs can be solved in a standard way by 

meta-heuristic search engines. COPS are fundamentalIy difficult problems to solve and have wide 

applicability. While Integer Linear Programming (ILP) packages can solve these problems, their 

performance may be poor especially for moderate to large size problems. They are also particularly 

concerned with finding the optimal solution. There are also heuristic and meta-heuristic codes, 

however, they are usually tailored to solve specific probIems and efficient solvers may not be available 

for particular problems. As such, there is no standard test-bench with which COPS can be solved. In 

this thesis, a practical means of solving arbitrary COPS using a new modelling system and associated 

meta-heuristic search algorithms is presented. Such a tool is particularly useful for the model 

prototyper and those who work with numerous problems of this nature. 

In particular, the general system developed as part of this research has a number of key features that 

differentiates it from other solvers in a number of important ways. These are: 

It provides a new modelling data structure for COPs based on linked lists. This 

eliminates many of the constraints and variables associated with problems formulated 

using other notations. 



As well as providing a Simulated Annealing (SA), Tabu Search (TS) and Greedy Search 

(GS) framework, it has an in-built set of neighbourhood transition operators that are 

commonly used in tailored heuristics. A method has been developed that determines 

which local search operators are appropriate for a particular problem based on its 

constraints. 

It incorporates mechanisms that allow the evaluation of incremental objective functions. 

The objective and constraint functions may be arbitrary algebraic expressions. 

It provides an algebraic modelling language, which makes rapid prototyping possible. 

The general system was produced so that COPS could be solved with minimal initial development time 

and effort. While it produces very good solutions to a range of hard problems, it is not meant as a 

replacement or substitute for efficient special purpose search algorithms. 



Chapter 2: A Review of Modelling 
Methods and Solution Techniques 

This chapter concentrates on two key aspects of solving COPs, namely modelling systems (the way a 

problem is expressed) and search algorithms (the way a problem is solved). An outline of both of these 

topics is presented as a basis for developing a new modelling paradigm and subsequently a general- 

purpose COP solver system. 

2.1 A Review of Modelling Systems for COPs 

There are a variety of methods that can be used to represent COPs. This section discusses five different 

approaches and is used as a foundation for the development of alternative modelling systems. The first 

of the approaches, Integer Linear Programming, expresses COPs in terms of linear equalities and 

inequalities using binary variables. The graph theoretic approach represents problems as graphs with 

solution states determined by the connection of vertices with a number of edges. The connectionist 

approach models COPS in terms of neural network architectures. The CP modelling system formulates 

problems in terms of finite domain variables rather than binary variables. Finally, the compacted 

integer vector approach is shown as an extension of ILP notation. In this approach, variables assume a 

range of integer values rather than being restricted to binary values and constraints can be either linear 

or non-linear. 

2.1.1 Integer Linear Programming 

As discussed in Section 1.2, COPs require that the solution domain be defined over a subset of discrete 

values. In terms of a linear programming approach, this domain is usually reduced to the interval [0,1] 

in order to denote that an object is assigned to a particular group. Equations (3) - (5)  give the generic 

formulation of a 0- 1 ILP. 



Where: 
C is the cost vector of size N. 
x is the solution vector of size N. 
A is the constraint matrix of size M x N. 
B is the constraint vector of size M. 

In the formulation, (3) - (3, the cost is optimised subject to the constraints specified in the matrix 

expression. The exact nature and values in both the A matrix and B vector depend on the problem 

being modeled. 

Constraints are often used to express assignments of the form required for COPs. For instance, in order 

to denote that item i is assigned to group j, constraints of the form of (6) are used. This constraint 

ensures that an item cannot belong to more than one group. 

Constraints of the form (6) are often referred to as encoding constraints as they are required to ensure 

the integrity of the solution. Similarly, some problems require that artificial variables be created for the 

same purpose. Encoding constraints and variables enlarge the model size significantly and as a result, 

the number of potential solution states increases exponentially with problem size, although many of 

these may not satisfy the constraints. Accordingly with realistic problems, it is usually impractical to 

simply explore the 2N possible states either with explicit or implicit enumeration techniques (discussed 

in Section 2.2.1.1) in order to obtain the optimal solution. 

2.1.2 Connectionist Models 

Another representation of COPs is based on neural networks. This is referred to as the connectionist 

approach and models the way that neurons function and interact with one another (Carling 1992) as a 

paradigm for problem solving. It is typical for neural networks to have a number of nodes (neurons) as 

well as connections (weights) between them. 

There are a number of different implementations and types of neural networks. In general, two models 

are suitable for representing and solving COPs (Smith, Palaniswami, and Krishnamoorthy 1996a, 



1996b); the Hopfield-Tank network (Tank and Hopfield 1985) and the Kohonen Self-Organising 

Feature Maps (SOFM) (Kohonen 1982). 

The Hopfield-Tank (Tank and Hopfield 1985) approach has been the most widely used neural network 

for COPs (Ramanujam and Sadayappan 1995). It is a single layer, fully interconnected network having 

an energy function (7) that is minimised (Hopfield 1982). 

Where: 
E is the resultant energy. 
n is the number of neurons. 
T j  is the weight between neuron i and neuron j. 
Vi is the activity of neuron i. 
I i  is the external bias or input of neuron i. 

When modelling COPs using the Hopfield-Tank approach, both the objective function and the 

constraints are mapped onto (7) (Ramanujam and Sadayappan 1995) by extending the original energy 

function to include the constraints (8) (Peterson and Sodberg 1989). 

E = cost + constraints (8) 

Thus constraints are implemented as penalty terms in the energy function. By applying a learning rule, 

the state of the network (V" is adapted such that the energy function is minimised. This learning rule 

is based on a gradient descent (greedy) search and accordingly the network will iterate towards a 

ground energy state that corresponds to a local optimum for the COP. Recent research by Smith 

Paliniswami and Krishnamoorthy (1998) has shown that Hopfield-Tank networks can: (a) ensure that 

optimal solutions are obtained and (b) incorporate hill-climbing search strategies to escape local 

optima. 

Hopfield-Tank networks are more generalisable than the other common approach, SOFM. The SOFM 

networks take an arbitrarily dimensioned input and transform this into a discrete two dimensional 

(Euclidean) feature map (Smith et al. 1996a). In addition to adapting weights of the neurons in order to 

form a solution, the SOFM also organises the neurons on a discrete lattice. As a result, the most 

popular combinatorial application is to the Travelling Salesman Problem (TSP) (Smith et al. 1996a). 

An imaginary elastic band is stretched and allowed to move across the lattice until it attaches itself to 

the nodes. These nodes represent the cities and the distance between the nodes is proportional to the 

distance between the cities. The positions of the cities on the lattice also reflects their current location 

in Euclidean space and hence form an ordered ring that represents the tour. Thus the final tour is 

determined by the position of the nodes in the network and the location of the elastic band at the 



network's ground energy state. There has been little effort to adapt this approach to other COPS (Smith 

et al. 1996a; Osman and Laporte 1996). 

Research into neural network architectures for COPS is focusing on hybrid networks as well as 

refinements to existing techniques (Smith et al. 1996a and Smith et al. 1998). However, as a result of 

the problems of poor solution quality, lack of generality as well as the performance degradation of 

implementing neural networks on conventional sequential computer architectures, Osman and Laporte 

(1996, p. 522) comment of the connectionist approach that: 

"They have not been successful when applied to optimization 
problems and are not competitive with the best meta-heuristics 
from the operations research literature, when applied to 
combinatorial optimization problems." 

2.1.3 Graph-Theoretic Techniques 

A graph-theoretic approach represents COPS as either directed or undirected graphs in Euclidean space 

(Chartrand 1977; Wilson 1985). A graph (G) consists of vertices (V) connected by a set of edges ( E )  

and is given by G=(V,E) (Could 1988). Local changes can be made in G in a number of ways 

including partitioning the vertices and adding or dropping the edges between vertices. A range of 

different problems can be expressed as graphs, especially those arising from transportation ~ n d  

scheduling. For instance, the TSP as a graph theoretic model can be represented as an undirected 

network (G) whose vertices correspond to cities (see Figure 1). Every vertex pair is connected by a 

weighted edge (representing the distance between the two cities) and the problem becomes one of 

finding a minimum length Hamiltonian cycle on G. 

As a result of the spatial characteristics of graphs, it can be difficult to map general graph problems that 

require optimisation onto a form that is directly solvable in a computational implementation. Despite 

this, there are a number of special purpose algorithms that exploit graph structure in order to perform 

combinatorial search for particular problems. Two such examples are the processor allocation problem 

(Sofianopoulou 1992) and the weighted maximal planar layout problem (Hasan and Osman 1995). The 

processor allocation problem is a problem in which a number of processes are allocated to a number of 

processors such that the total communication flow between processes on different processors is 

minimised. The maximal planar layout problem is a facilities layout problem in which a planar graph 

is sought that has the qualities: (a) no edges intersect; and (b) the sum of edge weights is maximised. 

For both problems, graph based algorithms can only soIve relatively small problems. More complex 

problems require specification using algebraic techniques and solutions with local search methods (see 

Section 2.2.2 for a description of local search). 



Figure 1: A graph-theoretic representation of a 5 city TSP. The cities are given by the set (A, B, C, D, 
E)  and form the vertices of the graph. The edge weights represent the distance between each pair of 
cities. 

2.1.4 Constraint Programming 

An alternative method of modelling and solving COPS is by Constraint Programming (CP). CP is a 

relatively new field of research belonging primarily to the domain of Artificial Intelligence (AI). It is a 

merger of declarative language and logic programming (Jaffar and Maher 1997) and is finding use in 

the modelling and solving both COPS and constraint satisfaction problems (Little and Darby-Dowman 

1995). 

CP combines an algebraic modelling system with an enumerative tree search algorithm (discussed in 

2.2.1.3). Unlike 0-1 ILP notation that uses vector notation, CP can store problem information in terms 

of lists (Marriot and Stuckey 1998). These lisghold integer values bounded within finite domains. In 

addition to relational constraints, CP incorporates conditional constraints commonly found in logic 

programming. Complex constraints, such as all elements of a list are different, are also accommodated 

in CP (Marriot and Stuckey 1998). These features provide for a rich modelling l o q 3 ~ c  that is more 

natural and compact than integer linear programming. As a result, CP based solvers (such as ILOG- 

SOLVER (ILOG 1998)) are finding success in commercial implementations. 

Despite the language's richness, it still requires its own form of encoding constraints in order to specify 

a problem. This can enlarge problem size significantly and is particularly evident for problems such as 

the TSP. The number of constraints that are required to represent this problem can easily exhaust a CP 

solver software for sizes below 15 cities (Caseau and Laburthe 1997). This is due to the representation 

of the sub-tour constraints that ensure the path traveled by the salesman is a Hamiltonian cycle. Many 

COPS have complex underlying structures and as such, there are difficulties representing and solving 

common COPS using CP according to Little and Darby-Dowman (1995) and Osman and Laporte 

(1996). 



2.1.5 A Compacted Integer Vector Approach 

A recent study (Abramson and Randall 1998) examined another representation scheme for COPS'. 

This formulation technique allows variables to take on arbitrary integer values. This is in contrast to 

the linear modelling of COPS that often require the use of binary variables and result in sparse problem 

models. This scheme was developed so that a problem model could be written with fewer encoding 

constraints than the equivalent 0-1 ILP model. The authors observed that: 

Fewer variables and constraints are required in the new integer formulation, 

The equality and encoding constraints are removed, 

It is necessary to allow inequality (;t) constraints, which are non-linear, 

More complex cost functions are required, often involving non-linear operators. 

In order to compensate for the lack of encoding constraints, problems are divided into three categories 

namely: order based, arbirrary linear constraints and assignment problems. Each of these categories 

has a distinct mathematical structure. Despite obtaining good quality solutions in relatively small 

amounts of time with the SA meta-heuristic, this modelling technique is difficult to apply to problems 

that do not fall into any of the categories or that span multiple categories. This study compared the 

system's performance (called INTSA) against Connolly's (Connolly 1992) General Purpose SIMulated 

ANnealing (GPSIMAN) and a commercial ILP package, Optimisation Subroutine Library (OSL). The 

latter two codes accept problems formulated as 0-1 ILPs. The results demonstrated that solving 

moderate to large size COPs using 0-1 ILP formulations is impractical. 

The work described in Abramson and Randall (1998) acts as a precursor to the material contained in 

this thesis because it identified that acceptable performance was possible for a range of problems with a 

common representation. The main disadvantage is that i t  is not general enough to represent real 

problems. However, the concept of the representation of COPS using integer values forms a seminal 

component of the new linked list modelling approach (as presented in Chapter 3). 

2.2 Search Algorithms for Combinatorial 
Optimisation Problems 

2.2.1 Exact Search Algorithms 

Exact solution techniques are those that produce solutions to COPs that can be proven to be optimal. In 

this section, four widely studied approaches from the Operations Research and Artificial Intelligence 

disciplines are examined. 

' See Appendix F for a preprint of this paper. 



2.2.1.1 Operations Research Techniques 

Using the 0-1 ILP modelling technique discussed in Section 2.1.1 often gives rise to large and sparse 

problem models. Techniques belonging to OR have been developed to exploit the structure of these 

models, using a form of implicit enumeration to find proven optimal solutions. There are two classes 

of such techniques, namely, branch and bound and cutting plane algorithnls (Taha 1992). 

Branch and bound (Taha 1992; Winston 1991) is an iterative tree search process in which the problem 

is first solved by disregarding the constraint that all values must be discrete. This is achieved by using 

a procedure such as the simplex algorithm. Each variable that contains a continuous value is used in 

order to form two new sub-problems that exclude this continuous region. For instance, if variable i in 

solution x contains the value 1.5, two sub-problems are created by adding the constraints xi I 1 to the 

first sub-problem and xi 2 2 to the second sub-problem. The search process will then choose one of the 

available sub-problems and repeat the process (known as branching). The choice of sub-problem is 

governed by a branching strategy. Various branches of this tree can be shown not to contain the 

optimal solution given the lower and upper bounds of other branches (known as bounding), hence they 

are not explored and said to be pruned. The search is complete when all the branches have been 

fathomed (i.e. explored or pruned) and the optimal solution is returned. 

Cutting plane algorithms are similar to branch and bound, as they will first solve the problem without 

regard to obtaining pure integer values. However, instead of branching at each step, cutting plane 

algorithms add a constraint to the system to 'cut' off continuous regions. A characteristic of the 

algorithm is that the optimal solution is found when an all integer solution is reached. 

Techniques such as branch and bound and cutting plane algorithms have been the popular search 

techniques to solve COPs. However, apart from suffering NP time bounds in the worst case, moderate 

to large size problems often require many variables and constraints and hence the problem can become 

intractable even on large supercomputers using sophisticated software packages. As such, Taha (1992, 

p. 309) states that branch and bound and branch and cut are not "uniformly effective" methods of 

solving COPs. 

A* is an implicit tree search algorithm that was originally proposed by Hart, Nilsson and Raphael 

(1968). This algorithm has the characteristic that it considers estimates of the remaining distance until 

the optimal or goal-state is reached given the current solution-state. The generic objective function for 

problems solved with A* is: 



Where: 

n is the current solution-state. 
f*(n) is the modified objective cost of the solution state n. 
g(n) is the cost of the solution state n. 
h*(n) is an estimate of h(n), the minimum cost difference between the current state, 
n, and the optimal state. 

If h*(n) in Equation (9), is an underestimate of h(n), the A* search procedure is guaranteed of finding 

the optimal solution. There are numerous ways that the algorithm can be applied to particular 

problems. The following description illustrates one such approach for the TSP. 

The goal of the TSP is to construct a Hamiltonian tour of minimum length between cities lying on a 

Euclidean plane. Beginning from a starting city (for example, city 1) and using a best search strategy 

(as described in Winston (1992)), the next city to add to the solution is chosen so that thef*(n) is the 

smallest amongst all the alternatives. For this problem, the estimate of the remaining distance can be 

the distance back to the starting city. The distance from the current city to that starting city is always 

smaller than the length of the rest of the tour. If the partial tour length is greater than the smallest 

overall tour length found to date, then this partial tour cannot lead to the optimal solution. Hence, the 

solution is backtracked to the previous city on the tour and this part of the search space is pruned (or 

fathomed). Providing that each h*(n)lh(n), A* will always return the optimal solution. 

While A* search can be very efficient for some problems, it still suffers from NP time bounds as does 

branch and bound, and branch and cut. In addition, there may not be enough information to obtain h* 

or it may be too complex and time consuming to compute (Firebaugh 1989; Luger and Stubblefield 

1993; Winston 1992). 

2.2.1.3 Constraint Programming 

Apart from the modelling system discussed in Section 2.1.4, CP provides a proven optimal search 

technique for COPS. It uses a form of tree search based on implicit enumeration but is different to the 

branch and bound procedure. 

The solution space of a CP problem is represented by a tree structure. Each of the levels of the tree 

represents a variable and the domain of each variable is given by the set of nodes at that level. A 

candidate solution is obtained by traversing the tree from the root node to a leaf node. The entire tree is 

initially pruned by considering the effects of all the constraints (called constraint propagation). The 

search process is a form of enumeration that proceeds as a depth-wise tree traversal. According to the 

current place in the tree, the process can disregard values of variables that would make the current 

solution infeasible (referred to as dynamic pruning). Should the process determine that all values of a 



particular variable are infeasible with the current solution, it will backtrack and undo changes at higher 

levels of the tree. An example of the CP search strategy is shown in Figure 2 and Figure 3. Figure 2 

shows a complete CP for a small two variable problem, whilst Figure 3 presents the tree after the 

constraint, X2Y, is processed (demonstrating constraint propagation). 

Figure 2: X and Y have the domains of 2,4,5 and 4,6,8 respectively. This is the entire search tree. This 
problem is a demonstration example reproduced from Little and Darby-Dowman (1995, Figure 1, p. 3). 

Figure 3: Once the constraint X 2 Y is added, the search tree is reduced (pruned). This problem is a 
demonstration example reproduced from Little and Darby-Dowman (1995, Figure 2, p. 3). 

The CP system was originally designed for solving constraint satisfaction problems (Osman and 

Laporte 1996). Constraint satisfaction problems differ from COPS as they require that only a set of 

constraints be satisfied rather than the optimisation of a specific objective function. An example of a 

constraint satisfaction problem is the SEND + MORE = MONEY problem in which numerals are 

assigned to the letters such that each letter has only one value and the addition is satisfied (Little and 

Darby-Dowman 1995). In order for CP to evaluate multiple feasible solutions to obtain the optimal 

solution for a COP, a special constraint is used. This constraint states that in order for a solution to be 

feasible, it needs to have a cost value better than the currently best-known value. 



At the present time, constraint programming systems such as ILOG Solver (ILOG 1998) use the proven 

optimal search strategy outlined above and as such suffer from the same NP time complexity 

difficulties as the OR methods. CP problems should also be very carefully modeled as Little and 

Darby-Dowman (1995, p. 9) note: 

"Generally, the more constraints the greater the search 
reduction which can take place. However, since each 
constraint takes time to be woken up and processed, if any are 
making no significant reduction in the search space, this may 
use up processing time." 

Currently research is being undertaken to allow CP to use other search techniques such as those from 

the meta-heuristic family (Stuckey and Tam 1996; Barnier 1997). Barnier (1997) discusses a hybrid 

Genetic Algorithm (GA) - CP implementation capable of solving small Vehicle Routing Problems 

(VRPs). The problem was modeled using CP notation and the intrinsic CP search engine was replaced 

by a GA, yielding encouraging initial results. 

2.2.2 Heuristics 

Pearl defines heuristics in the broad sense as "criteria, methods or principals for deciding which among 

several alternative courses of action promises to be the most effective in order to achieve some goal" 

(Pearl 1984, p. 3). In terms of combinatorial optimisation, heuristic procedures aim to produce good 

quality solutions in a short amount of computational time. However, this is at the expense of not 

obtaining proven optimality and is in contrast with the implicit enumeration techniques such as branch 

and bound, CP and A*. There is a variety of heuristic techniques available for different COPS and such 

heuristics are tailored to the particular problem that they solve. As a result, specific problem data 

structures can be directly incorporated in the computer code to produce an efficient solver. Therefore 

in practice, specialised heuristics are often used for large and complex problems in preference to the 

exact techniques. 

Heuristic techniques can be broadly classified into two groups that describe how the heuristic obtains a 

solution to a particular problem. These are: 

Improvement Techiliques An initial solution to a problem is changed over a number 

of iterative steps so that solution quality is gradually improved. These changes take the 

form of altering the solution slightly using any one of a variety of local search transition 

operators. The set of all possible changes that can be applied to a particular solution state 

by a particular operator is referred to as its neighbourhood. Iterative improvement 

techniques are more generalisable than constructive methods and have wider application. 

Some examples of successful heuristic procedures that are based on iterative 



improvement are (Christofides and Eilon 1969; Higgins, Kozan and Ferreira 1997; Lin 

and Kernighan 1973; Kernighan and Lin 1970; Johnson 1990; Battiti and Protasi 1995). 

Constructive techniques Rather than iteratively adjusting a solution over a number 

of algorithmic steps (like the improvement techniques), constructive techniques build a 

final solution from an empty solution by a process of successive augmentation of solution 

components. As such, constructive techniques rely on a detailed understanding of the 

problem to allow the development of the solution. For instance, a constructive technique 

for the VRP builds a solution by successively assigning customers to be serviced by a 

vehicle until all customers are accounted for (the Clarke-Wright procedure, see Clarke 

and Wright (1964) and Osman (1993)). Other successful constructive heuristics include 

the classic nearest neighbour heuristic for the TSP and those works by Crama, Flippo, van 

de Klundert and Spieksma (1995) and Rosenkrantz, Stearns and Lewis (1977). 

In some cases, techniques from the two classes have been combined to form an overall problem solving 

strategy that will first produce an initial solution using a constructive heuristic and refine this using 

iterative improvement. An example of this is the Martello and Toth heuristic for the generalised 

assignment problem (Martello and Toth 1981). The first phase of the algorithm constructs a solution 

by successively assigning jobs to agents according to a computed desirability measure. The second 

part consists of an iterative search that attempts to reassign jobs to agents in order to minimise the 

overall cost. 

Local search operators are an integral part of the operation of the improvement techniques. Some local 

search operators are designed for specific problems such as the Lin-Kernighan heuristic for the TSP 

(Lin and Kernighan 1973). However, there is a set of operators that have general applicability across 

problem type. The most well known of these is the Or operator (Or 1976) in which the positions of two 

elements of the solution structure are exchanged. This transition is generalisable to the n-opt exchange 

as described by Osman (1993, 1995) in which more than two elements are involved. Other well known 

local search operators include add and drop in which items are added to or dropped from the solution 

respectively as well as the insert operator that changes the position of an item within a solution (Glover 

and Laguna 1997). The insert and Or operators are particularly appropriate for sequencing problems 

such as the TSP and Quadratic Assignment Problem (QAP). 

According to Osman and Kelly (1996), a meta-heuristic may be broadly defined as an "iterative 

generation process which guides a subordinate heuristic by combining intelligently different concepts 

for exploring and exploiting the search space" (Osman and Kelly 1996, p. 3). Like their heuristic 

counterparts, meta-heuristics are also approximate techniques. The general form of an iterative meta- 

heuristic based on local search is given in Algorithm l .  



X = Generate Initial Feasible Solution; 
C(X) = Compute initial cost of X; 
While (stopping criterion not met) 

Transition = Select a Transition from Neighbourhood (X); 
X' = Apply Transition Operator(X,Transition); 
AC = Compute Change in Cost (X, X', Transition); 
If (accept) 

X = X'; 
C(X) = C(X) + AC; 

End If; 
If (minimisation problem and C(X) < Chest) OR 
(maximisation problem and C (X) > Chest) Chest = C (X) ; 

End While; 
Output C,,,, ; 
End. 

Algorithm 1 : Skeleton pseudocode of an iterative meta-heuristic search algorithm. 

The key calculations which are performed repeatedly by this algorithm are: the generation of a state 

transition in the neighbourhood of the current one; application of the transition to compute a new 

solution, X'; the computation of the difference in cost between the new solution and the previous one, 

and whether to accept the change. This process can be repeated any number of times, and therefore a 

termination strategy is necessary. Two common approaches are to stop after a fixed number of 

iterations have occurred or stop after a certain solution quality has been reached. There is no standard 

stopping criteria in the literature (Barr, Golden, Kelly, Resende and Stewart 1995) and a variety of 

other methods are possible. 

While meta-heuristics are generally less efficient at finding optimal and near optimal solutions than 

their tailored heuristic counterparts, the advantage of meta-heuristics is that they can be applied (in 

principle) to solve a wide variety of problems and are subsequently not restricted to particular 

problems. Despite this, the practice of many researchers has been to tailor meta-heuristic search 

engines to particular problems (see Beasley and Chu 1997a; Chams, Hertz and de Werra 1987; Chu and 

Beasley 1997; Connolly 1990; Kampke 1988; Osman 1993, 1995; Taillard 1991 as examples). While 

this technique can generally produce solutions of good quality in reasonable amounts of computational 

time, a great deal of effort is often required in order to recode the meta-heuristic program to suit a 

different problem type. In contrast, relatively little effort has been made to produce a general-purpose 

meta-heuristic search platform, except for Abramson and Randall (1998), Connolly (1992), Ingber 

(1993, 1996) and Johnson et al. (1991a, 1991b). 

There are a number of different meta-heuristic techniques suitable for solving COPS. This section will 

describe five of the more common ones, namely Simulated Annealing, Tabu Search, Greedy Search, 

GRASP (Greedy Randomised Adaptive Search Procedures) and Genetic Algorithms. These techniques 

can be divided into two categories; those that are able to use local search operators and those that do 

not. GS, TS, SA and GRASP are in the former group while GAS and Artificial Neural Networks 

(ANNs) are in the latter. 



Most research concerning meta-heuristics and combinatorial optimisation has concentrated on local 

search techniques. A common issue is that of obtaining and maintaining feasible solutions. For many 

of the COPs that have been studied, feasible solutions are maintained by the application of an 

appropriate local search operator. For instance, many SA codes that solve the TSP store the solution as 

an ordered list of cities. In this case, any local search operator that rearranges the order of the cities 

will not violate the constraint that each city must be visited only once. However, in the case of other 

problems, such as the GAP, knapsack problem, VRP and set partitioning problem, there are additional 

restrictions on the feasible space that cannot be satisfied with the application of a simple local search 

operator. Examples of this include capacity constraints for the GAP and time window constraints for 

the VRP. In this case, two main practices have been adopted. First, constraints are incorporated into 

the objective function as penalty terms and second, the solutions are repaired to a feasible state at each 

transition. Abramson, Dang and Krishnamoorthy (1996) found that the former approach often returns 

infeasible solutions and concluded that the second was the most practicable approach (though the 

processing time for each iteration may be high). 

Section 2.2.3 describes each of the chosen meta-heuristic algorithms briefly (apart from ANNs that 

have been dealt with in Section 2.1.2). Section 2.3 contains a review of existing general meta-heuristic 

implementations. 

2.2.3.1 Greedy Search 

GS is the simplest of the iterative search techniques. Given an initial feasible solution to a problem, 

GS will examine the neighbourhood of the current solution for a new solution with a better cost. This 

process is repeated until an improving transition cannot be made (Algorithm 2). As this process will 

stop at the first local optimum i t  encounters, it is often referred to as local optima search. 

GS is very easy to implement and unlike its more sophisticated counterparts (namely SA and TS), will 

return a solution to a problem in a relatively small amount of computational time. It is rarely used as a 

practical solution technique for COPs as it often produces poor solutions due to its characteristic of 

settling in a local optimum. However, it is useful as a benchmark to test the performance of other 

meta-heuristic and heuristic implementations (Barr et al. 1995; Battiti and Tecchiolli 1995). 



X = Generate Initial Feasible Solution; 
C(X) = Compute initial cost of X; 
continue = TRUE; 
While (continue = TRUE) 

Transition = Select a Transition from Neighbourhood (X); 
X' = Apply Transition(X,Transition); 
AC = Compute Change in Cost (X, X', Transition); 
If (minimisation problem and AC < 0)  OR (maximisation problem 
and AC > 0) 

X = X' ; 
c(x) = c(x) + AC; 

Else 
continue = FALSE; 

End If; 
End While; 
Output C (X) ; 
End. 

Algorithm 2: Pseudocode for GS. 

2.2.3.2 Tabu Search 

TS is a relatively new meta-heuristic search method that has been successfully applied to COPS (Glover 

1989, 1990; Glover and Laguna 1997). Glover (1989, p. 19 1) describes TS as: 

"Tabu search guides ... a heuristic to continue exploration 
without being confounded by an absence of improving moves, 
and without falling back into a local optimum from which it 
previously emerged" 

The subordinate heuristic can take many forms (Glover and Laguna 1997), though it is usual that it is a 

local search engine. However, TS has also been used as the controlling strategy for a branch and bound 

framework for 0-1 ILPs (Aboudi and Jornsten 1994; Lokketangen, Jornsten and Storoy 1994). In the 

context of COPS, TS can be thought of as an enhanced and more general version of GS. The unique 

characteristics of TS that distinguish it from its simpler counterpart are: 

Tabu Search can escape local optimum traps: Local optima serve as attractors to search 

techniques. This is inevitable, as search techniques seek the global optimum solution. 

Often search techniques become trapped in a local optimum, either permanently (like GS) 

or potentially for a large number of iterations (like SA). TS overcomes this inherent 

problem by evaluating the neighbourhood of the current solution, N(x)  and choosing the 

best transition from the ones currently available in N(x)  regardless of whether it improves 

the current solution cost '. If the transition is non-improving, then the search process has 

encountered a local optimum and thus begins the process of escape immediately. 

2 
A subset of N(x), N,(x) (N,(x) N(x)) can be used to represent N(x). This is done if the problem is large and 
subsequently N(x) has many elements (Glover 1989 and Hertz, Taillard and de Werra 1997). There is a variety of 
neighbourhood sampling methods and these are referred to as cundidure list srnrctures (Glover and Laguna 1997). 



* Tabu Search can effectively sample the search space: After a transition is made in which 

a non-improving move is accepted, the new neighbourhood, N'(x) ,  contains the previous 

state which is now an improving transition. If this is accepted as the next transition, the 

search can be said to be cycling. TS has a mechanism that overcomes this problem that is 

referred to as the tabu list. The tabu list stores information that the search can use in 

order to avoid previously traversed search routes. A transition is considered tabu if it has 

been recorded on the tabu list and its tabu tenure has not passed. The tabu tenure is the 

number of iterations that an item on the list stays tabu. As only limited information is 

recorded on the tabu list, it is possible that the search process will regard solutions that 

have not been previously encountered as being tabu. In order to counteract this 

potentially negative effect of the tabu list, TS makes use of one or more aspiration 

functions. The simplest and most widely used of these functions is a rule that states that a 

tabu transition is accepted if it produces a superior quality solution compared to those 

previously encountered. Glover and Laguna (1997) discuss a wide variety of aspiration 

functions. 

TS is described in Algorithm 3. 



X = Generate an Initial Feasible Solution; 
C(X) = Compute initial cost of X; 
best-cost = C(X); 
Initialise tabu list T = 0 ;  
While (stopping criterion not met) 

For (s E N(X)) 
X' = Apply Transition(X, s, Transition); 
AC = Compute Change in Cost (X, X', s); 

End For; 
While (suitable neighbour not found) 

s E N(x); 
If (S 6E T) 

X = Apply Transition(X, s, Transition); 
T = T u s ;  
C(X) = Compute cost of X; 
found suitable neighbour = TRUE; 

Else 
If (aspiration(s) = TRUE) 

X = Apply Transition(X, s, Transition); 
C(X) = Compute cost of X; 
found suitable neighbour = TRUE; 

End If; 
End If; 

End While; 
If ((minimisation problem AND C(X) i best-cost) OR 
(maximisation problem AND C(X) > best-cost)) best-cost = C(X); 

End While; 
Output best-cost; 
End. 

Algorithm 3: Pseudocode for TS. 

The TS algorithm described above and in Algorithm 3 corresponds to the short-term implementation 

that is popular in the literature (Glover and Laguna 1997). Advanced forms of TS use intensification 

and diversification strategies embodied in long term memory structures (Glover and Laguna 1997). 

Intensification aims to identify solution attributes that are common to good solutions and to encourage 

the tabu search (via the tabu and aspiration mechanisms) to seek solutions with these attributes. 

Diversification is complimentary to this, as it allows the search process to enter unexplored regions of 

the state space. Diversification can be achieved by using longer tabu tenures for solution attributes that 

are frequently incorporated into the solution (a form of penalisation), thereby encouraging the use of 

less frequently used attributes. Another strategy is to form a new starting solution once long-term 

cyclic behaviour has been detected (Battit and Tecchiolli 1994; Glover and Laguna 1997). However, 

many implementations of TS use only a limited form of the tabu list that can be thought of as short- 

term memory that does not explicitly incorporate intensification and diversification strategies. Some 

examples of short-term TS implementations are Abada and El-Darzi (1996), Osman (1993, 1995), 

Taillard (l991), and Taillard, Badeau, Gendreau, Guertin and Potvin (1997). 

2.2.3.3 Simulated Annealing 

SA is derived from the physics of annealing metals. SA seeks to minimise an energy function, which 

in combinatorial optimisation is the objective function. At the beginning of the annealing there is a 



high likelihood of accepting any transition regardless of whether it improves the solution or not, rather 

than later on in the process. This process is performed in accordance with an exponential acceptance 

function (called the Boltzman function) based on a parameter called temperature. The temperature is 

decremented at intervals regulated by a Markov chain length until it is quite small and hence very few 

uphill transitions, in which a worse solution may replace the current solution, are accepted. As SA can 

make these non-improving transitions, settling into a local optimum is potentially avoided. The way 

the temperature is controlled is referred to as the cooling schedule. For further information about SA 

and its variants, see Connolly (1992), Eglesse (1990), Johnson et al. (1991a, 1991b), Kirpatrick, Gelatt 

and Vecchi (1983) and van Laarhoven and Aarts (1987). A general algorithm for SA is given in 

Algorithm 4. 

SA has been applied to a wide variety of COPS and there are a great number of articles in the literature, 

including Abramson (1991), Chams et al. (1987), Connolly (1990, 1992), Johnson (1991a, 1991b), 

Kampke (1988), Kirpatrick et al. (1983), Kouvelis and Chiang (1992), Koulamas, Antony and Jansen 

(1994), Osman (1993, 1995), Randall and Abramson (1998) and van Laarhoven and Aarts (1987). 



X = Generate an Initial Feasible Solution; 
C(X) = Compute initial cost of X; 
best-cost = C(X); 
T = Compute initial temperature; 
While (stopping criterion not met) 

Repeat (markov chain length times) 
Transition = Select a Transition from Neighbourhood (X); 
X' = Apply Transition(X,Transition); 
AC = Compute Change in Cost (X, X', Transition); 
p = generate random number (0,l) 
If ( (  (minimisation problem AND AC < 0 )  OR 
(maximisation problem AND AC > 0 ) )  OR (e-AC'T > p)) 

X = X'; 
C(X) = C(X) + AC; 

End If; 
If ( (minimisation problem AND C(X) < best-cost) OR 
(maximisation problem AND C(X) > best-cost)) 
best-cos t = C (X) ; 

End Repeat; 
T = Apply cooling function (T); 

End While; 
Output best-cost; 
End. 

Algorithm 4: Pseudocode for SA. 

2.2.3.4 Greedy Randomised Search Procedures (GRASP) 

GRASP is a search technique that consists of two distinct phases per iteration, namely a constructiort 

and local search phase (Feo and Resende 1995; Mavridou, Pardalos, Pitsoulis and Resende 1995; 

Glover and Laguna 1997). The first stage builds a new feasible solution from a list of elements, one 

element at a time. The list itself is produced by ordering the elements with respect to a greedy function 

based on elements chosen in previous iterations. The next element to be added to the solution is 

randomly chosen from the best candidates in the list. In many instances, this solution will not 

correspond to a local optimum and can hence be improved upon. This is achieved by applying a local 

search procedure (such as GS) to the solution. 

GRASP is a new procedure compared with GS, TS and SA. However, it has been successfully applied 

to a number of problems including set covering (Feo and Resende 1989), VRP (Kontoravdis and Bard 

1995), QAP (Li, Pardalos and Resende 1994) and the p-hub median problems (Klincewicz 1992). The 

general structure of GRASP is given in Algorithm 5. 



While (stopping criterion not met) 
x = 0; 
S = Construct an ordered element list; 
While (solution not complete) 

s = Greedy random element of S; 
x = x u s ;  

End While ; 
X = Execute local search (such as Algorithm 2); 
C(X) = Compute cost of X; 
If ((minimisation problem AND C(X) < best-cost) OR 
(maximisation problem AND C(X) > best-cost)) best-cost = C(X); 

End While; 
Output best-cost; 
End. 

Algorithm 5: Pseudocode for GRASP. 

2.2.3.5 Genetic Algorithms 

Genetic Algorithms (GAS) belong to a broader class of function optimisation techniques known as 

evolutionary computing. GAS are modeled on the biological selection and reproduction of genetic 

material, chromosomes. This follows a Darwinian or natural selection approach in which the fittest 

chromosomes survive and reproduce while the others perish (Goldberg 1989; Randall 1995). In terms 

of function optimisation, the chromosomes represent potential solution vectors. The algorithm 

proceeds as follows: 

a) Generate an initial population of chromosomes 

b) Evaluate each chromosome's objective function (fitness) 

C) Select a number of the fittest individuals to form a mating pool 

d) Apply mating procedures to the individuals in the mating pool to form the next generation 

of chromosomes 

e) Repeat the procedure from b) onwards until a number of generations have passed or a 

certain quality of solution has been reached. 

The mating process, step d), consists of applying a number of genetic operators to the chromosomes in 

the mating pool. The most common operators are: crossover - subsections of two or more 

chromosomes are combined in order to form a new individual, and nzutation - an element of a 

chromosome changes its value to a random value. 

Like neural network approaches, GAS have not been as successful as other meta-heuristic techniques in 

solving COPS, as observed by Osman and Kelly (1996). One problem is that GAS often converge to 

poor local optima if a population of weak individual chromosomes is dominated by single or small 

group of fit individuals. This problem can be partially overcome by increasing the mutation or 

applying a scaling function to the fitness function (Goldberg 1989). Another approach that has been 



used in Beasley and Chu (1996, 1997a, 1997b) and Chu and Beasley (1997) to overcome poor local 

optima, has been to execute a problem specific heuristic after each generation has been produced in 

order to improve the fitness of the chromosomes. As these studies only report the results of the hybrid 

implementation and not the GA by itself, it is unclear how much of an impact the specialised heuristic 

makes. 

A more serious problem is that GAS find it difficult to deal with constraints due to their context-free 

nature (i.e. there is "no reliance on conditions that solutions must obey in a particular problem setting" 

(Glover and Laguna 1997, p. 309)). This mainly arises from the recombination operator, crossover, in 

which large portions of different chromosomes are combined so that given feasible parent solutions, 

there is a high likelihood that the child chromosome is infeasible. To counteract this, three strategies 

are generally available: a) restore the feasibility of the offspring chromosomes, (b) apply a special 

purpose operator to ensure feasibility or minimise the amount of infeasibility and (c) trust that at the 

end of the GA run there is a feasible, highly fit chromosome. Procedure (a) is often computationally 

expensive, (b) is only available for specific problems such as the TSP, and (c) does not guarantee that a 

final feasible solution is produced. 

2.3 General Purpose Meta-heuristic Solvers 

As mentioned previously, few attempts have been made in the past to produce a general meta-heuristic 

solver using local search for COPS. This is due mainly to two reasons: 

Meta-heuristic and heuristic codes that are customised to particular problems (such as the 

TSP or QAP) are very efficient and produce good quality solutions with relatively little 

computational effort. However, substantial reprogramming is required in order to build 

another implementation that will solve a different problem type. Some examples of 

specific meta-heuristics include Beasley and Chu (1997a), Chu and Beasley (1997), 

Connolly (1990), Kampke (1988), Osman (1993, 1995), Smith et al. (1996a, 1996b) and 

Taillard (1991). 

It is a difficult task to design and implement appropriate modelling systems and data 

structures to support a system that solves arbitrarily formed problems. 

This section reviews general meta-heuristic implementations that have been presented in the literature. 

These implementations can be divided into two approaches: systems that allow the problem to be 

represented in an algebraic form; and skeleton systems that require the user to produce interfacing 

computer code that represents the problem. 



2.3.1 Algebraic Modelling Approach 

The only algebraic modelling implementation that is represented in the literature for meta-heuristic 

based local search is GPSIMAN (Connolly 1992). 

2.3.1.1 GPSIMAN 

Connolly's General Purpose SIMulated ANnealing (GPSIMAN) solves 0-1 ILPs with SA (Connolly 

1992). This approach is adequate for very small problems, however, as the size of the problem 

increases, the number of variables and constraints rapidly increases as a result of the 0-1 encoding. 

Therefore, making a neighbourhood transition, i.e. changing a variable value from a 1 to a 0 and vice 

versa, is computationally expensive as many of the constraints are potentially violated and need to be 

restored to a feasible state before the next transition can be undertaken. 

Algorithm 6 shows the overall algorithm used in GPSIMAN. The algorithm operates as follows. First, 

the problem model and SA parameters are initialised, and an initial solution is generated along with its 

cost. A number of annealing runs is subsequently performed. Within each run, variables are chosen 

and altered at random. A transition is characterized by changing the state of a variable (from 0 to 1 or 1 

to 0 - referred to as flipping) and measuring the effect in terms of how the cost changes. Also, if the 

change causes the constraints to become infeasible, then feasibility is restored before the change in cqst 

is evaluated. 

The feasibility restoration technique flips variables (other than the original variable) in order to obtain a 

new feasible solution. The scheme employed in Connolly (1992) is a heuristic technique whereby a 

score is computed for each of the variables based on how helpful a change in the variable value would 

be for feasibility restoration. The most helpful variable (the one with the highest score) is flipped and 

the resulting amount of infeasibility is re-calculated. If feasibility has been restored, the procedure is 

terminated. However, in many instances, particularly for 0-1 problems that have many related 

constraints, this is not the case. The algorithm proceeds to calculate the next most helpful variable. 

This progresses as a depth-wise tree search, in which the algorithm can backtrack, should it find that 

the current sequence of flips cannot restore feasibility. This procedure is only useful if feasibility is 

relatively easy to restore else the search for feasibility can become impracticable. If the process cannot 

restore feasibility after a fixed number of searches, then the original transition is rejected. After 

feasibility is restored, the change in the objective cost can be calculated by simply adding or 

subtracting the appropriate coefficients (Ci) for all variables that have been flipped. If the cost is 

positive (for a minimisation problem), then the proposed solution is worse than the current one and it is 

accepted as the current solution depending on the evaluation of Boltzman's equation. If it is not 

accepted and a number of consecutive previous solutions have also been rejected, the process is 

performed at the temperature at which the best solution (in this trial) was found. This continues for the 

remainder of the annealing run. 



GPSIMAN is impractical for problems larger than the original test set that Connolly (1992) proposed. 

This was demonstrated in Abramson and Randall (1998) (see Appendix F). 

Get SA parameters (TI,TF,steps_per-tria1,max-fails); 
Read problem model; 
fails=O ; 
X=Generate initial feasible solution; 
C(X)=Compute cost of initial solution; 
Repeat (user specified number of annealing trials) 

p= (TI-TF) / (steps_per-trial~T~xT~) ; 

T=TI ; 
While (T > TF) 

i=unif-rand(l,sizeof(X)); 
X'=X; 
X' ,=l-X . 

I 1 '  
X8=Restore Feasibility; 
AC=Compute change in cost(X,X'); 
p=unif-rand(0,l); 
If (((minimisation problem AND AC < 0) OR 
(maximisation problem AND AC > 0 )  ) OR (e-Ac'T > p) ) 

X=X ' ; 
C(X)=c(X)+ AC; 
fails=O ; 

Else 
fails=fails+l; 
If (fails > max-fails) 

Tmin=T ; 

p=o ; 
T=Tbest ; 

End If; 
End If; 
If (C (X) < Chest) 

C =C(X) ; 
be5 t 

T =T; 
best 

End If; 
T=T/ (I+~xT) ; 

End While ; 
TI= (TI+Tbest) /2 ; 
If (p=o) 

TF= ( TF+Tmin) / 2 ; 
Else 

TF=TF/ 2 ; 
End If; 

End Repeat; 
Output Chest; 
End. 

Where: 
unif-rand (a, b) returns a random uniformly distributed number between a and b. 

Algorithm 6: The simulated annealing based 0-1 solver GPSIMAN from Connolly(l990). 



2.3.2 Code Segment Approach 

Code segment approaches adopt a different strategy than algebraic representation methods. These 

systems consist of a core meta-heuristic search engine (such as SA or GS) for which the developer is 

required to provide an interface (via code modules) for a particular problem. This specifies the cost, 

constraint and transition functions. These systems are not based on an algebraic modelling language 

and while code development is a flexible approach to modelling a particular problem, this can require 

the developer to spend a substantial amount of time defining the problem to be solved. In this section, 

three implementations are discussed, namely the Johnson et al. Generic SA (Johnson et al. 1991a, 

1991b) Ingber's Adaptive Simulated Annealing (ASA) (Ingber 1993, 1996) and skeleton GA codes. 

2.3.2.1 Johnson's et al. Generic SA 

In this implementation (Johnson et al. 1991a, 1991b), the system components are divided into generic 

and problem specific sections. The generic part consists of a set of core SA subroutines that control the 

cooling schedule. In these studies (Johnson et al. 1991a, 1991b), the system was tested on the graph 

partitioning problem, graph colouring problem and number partitioning problem by varying the 

parameters of the generic part. The problem specific section defines the problem in terms of cost 

function, constraints and possible transition functions for which the developer must provide compatible 

computer code. Figure 4 summarises the problem specific and generic components of the system. 

PROBLEM-SPECIFIC 
1. What is the solution? 
2. What are the neighbors of a solution? 
3. What is the cost of a solution'? 
4. How do we determine an initial solution? 
GENERIC 
1. How do we determine an initial temperature? 
2. How do we determine the cooling rate r? 
3. How do we determine the temperature length L? 
4. How do we know when we are frozen? 

Figure 4: SA implementation choices made by Johnson et al. (1991a, 1991b). Reproduced from Johnson 
et al. (1991a, Figure 5, p. 869). 

2.3.2.2 ASA 

ASA is a freely available SA toolkit produced by Lester Ingber Research (Ingber 1993, 1996). It uses a 

different form of annealing schedule from the standard Boltzman function as proposed in the original 

versions of SA (van Laarhoven and Aarts 1987). This new schedule is much faster than the original as 

it samples the search space more effectively (Ingber 1996). Unfortunately, the time required to run the 

program can be lengthy for NP hard problems due to the cooling schedules ASA uses. In order to 

improve the performance of the system, an option is available that permits rapid annealing 

("quenching") and re-annealing in order to find a near optimal solution to the problems being solved, 



however, proven optimality cannot be obtained. The search proceeds in feasible space throughout the 

search process. At each iteration, a number of solution states are generated until one satisfies the 

problem's constraints. 

ASA has a large range of parameter options that can be set. However, the code has the ability to adjust 

these in a systematic manner throughout the search process (hence the term adaptive). ASA 

is best suited to solving problems in which the cost function is non-linear, non-convex and has 

continuous ranging decision variables. As such, ASA has found application in a diverse field of 

disciplines, including combat analysis, neuroscience and finance (Ingber 1993) rather than pure 

combinatorial problems. 

2.3.2.3 Skeleton GA Implementations 

Skeleton GA implementations have the components of genetic search inbuilt into a source code library. 

These components typically include selection, mutation and recombination procedures. Standard 

parameters such as population size and mutation rate are also adjustable. Two notable skeleton GA 

codes are GENEsYs by Back (1992) and GENESIS by Grefenstette (1987). 

As GAS have a standard set of genetic transition operators (i.e. crossover and mutation), only a single 

objective function and problem data (for instance the distance matrix for the TSP) need to be specified 

for each problem. However, as GAS are best suited to solving optimisation problems that can be 

formulated without using constraints, skeleton code implementations generally require that the 

constraints be incorporated into the objective function as penalty terms. This approach is adopted as 

the standard genetic operators produce solutions without regard to feasibility (see Section 2.2.3.5). 

This often leads to the situation in which "finding a feasible point is almost as difficult as finding the 

best" (Goldberg 1989, p. 85) for COPs. As a result of this, the construction of general GA 

implementations for solving arbitrary COPs has been hampered and is reflected by Beasley and Chu 

(1997b) who state that in order to solve COPs effectively, problem specific genetic operators must be 

incorporated into the GA platform. 

2.4 Summary 

This chapter reviewed modelling systems and search algorithms for COPs as well as examining some 

existing general meta-heuristic implementations, in order to establish a base for further development of 

general-purpose meta-heuristic search platforms. 

The traditional way of expressing COPs mathematically has been to use a sparse 0-1 ILP vector 

formulation, though there are other approaches such as graph theoretic and CP models. In the 0-1 ILP 

model, variables take on either a value of 0 or 1 to denote assignment of items to groups. This is a very 



general and flexible approach that has been quite successful for a range of ILPs, particularly for finding 

lower and upper bounds on the optimal solution. However, in some cases it is difficult to map the 

structure of a COP onto a 0-1 space, resulting in a sparse problem model that contains a large number 

of variables and constraints. This is especially evident for problems with a complex underlying 

structure such as the travelling salesman problem (TSP) in which a set of cities are visited but only 

with a Hamiltonian tour. 

Search algorithms may be broadly classified into exact and approximate approaches. The first consists 

of techniques from OR and AI. These techniques (such as branch and bound and branch and cut for 

OR; and CP and A* for AI) aim to produce solutions that have proven optimality. While COPS can be 

solved in this way, many are NP hard and as such can require exponential computational time to solve 

to proven optimality. An alternative group of techniques, known as heuristics, take a different 

apiroach to solving COPs. Instead of seeking proven optimality, they endeavour to find good (near- 

optimal) solutions in reasonable amounts of computational time. A heuristic is applied to a specific 

problem and exploits that problem's structural properties in order to find solutions. While these are 

often very efficient (see for example Lin and Kernighan (1973)), they cannot be readily adapted to 

other problem types. However, there is a class of heuristic techniques that are applicable across 

problem types and these are known as the meta-heuristics. Well-known meta-heuristic techniques are 

Simulated Annealing, Tabu Search, Greedy Search, Greedy Randomised Adaptive Search Procedures, 

Genetic Algorithms and Artificial Neural Networks. 

There have been only a few attempts made in the past to produce implementations of meta-heuristic 

algorithms that solve arbitrary COPs. This is because it is a difficult task to design and implement 

appropriate modelling systems and data structures to support general problem solving. It has been 

determined that there are two basic approaches of building general meta-heuristic search engines, 

namely: implementations that accept an algebraic model of the problem; and those that require the 

developer to code information about the problem. The first approach is characterised by Connolly's 

GPSIMAN (Connolly 1992), while Johnson et al.'s Generic SA (Johnson et al. 1991a, 1991b) and 

Ingber's ASA (Ingber 1993) are examples of the other category. 

It is evident from this chapter that research into meta-heuristic algorithms has concentrated on 

implementations that solve particular problems, rather than ways of generalising across problem types. 

This is due to concerns about the efficiency of general implementations and the suitability of existing 

modelling systems and underlying data structures for the effective representation of these problems. A 

representation scheme specifically designed for COPs would take into account the fact that these 

problems require an optimal grouping (or assignment) of discrete objects (Osman and Kelly 1996). 

The nature of groups, especially using an iterative search algorithm, such as GS, TS or SA, is dynamic 

and not static. Many existing algebraic representation techniques are based on static memory 

structures (usually arrays). Therefore, it is believed that dynamic data structures (those that are able to 



change with the current state of the solution) could be a viable alternative for modelling COPS. The 

following chapter investigates this notion. 



Chapter 3: A Modelling System Based 
on Linked Lists 

3.1 Motivation 

This research is concerned with constructing a general-purpose meta-heuristic solver that deals with a 

range of problems and delivers good quality solutions in a reasonable amount of computational time. 

In order to expedite the time it takes to develop appropriate problem descriptions, an algebraic 

representation for COPS is desirable. The issue then becomes one of choosing an appropriate 

representation scheme. Each of the methods of representation outlined in Section 2.1 has practical 

implementation problems associated with it. A suitable representation for COPS should ensure that 

discrete objects can be grouped, assigned or selected without using a large number of artificial 

constraints and variables. As any modelling system designed specifically for COPS should allow the 

evaluation of different assignments of objects to groups, it is believed that dynamic data structures may 

be suitable for this purpose. 

3.2 Using Dynamic Data Structures to Represent 
COPs 

As is evident in Section 2.1, the predominant form of representation of solutions to optimisation 

problems has been with vector and matrix notation. For optimisation problems that have continuous 

variables (non-COPS), the most efficient form of modelling is the LP (Equations (3) - (5)) as the A 

matrix and subsequently B vector are dense and hence compact. COPS however, tend to have a sparse 

A matrix and B vector as a result of the assignment of objects to groups which in turn can require 

special encoding constraints and variables in conventional notation. As noted in Section 2.1.1, such a 

sparse representation can lead to extremely large model sizes for relatively small problems, as well as 

making it difficult for meta-heuristic algorithms to navigate the resulting search space. Therefore, it is 

believed that COPS can be more effectively represented for meta-heuristics. 

Rather than using static data structures to model COPs, this work focuses on the other broad class of 

data structure, namely the dynamic data structures. These memory structures are not fixed in size and 

can be altered during the execution of the computer code as the need arises. As such, these data 

structures are appropriate for systems that dynamically model and test different arrangements of items 

in a given context (Pohl 1990). 

There are a variety of dynamic data structures. The two most common are described below: 



Linked Lists. Lists are dense structures in which elements are linked together in a linear 

fashion. Lists can shrink and grow by adding and subtracting elements. An element in a 

list can itself be a list (i.e. a sub-list). Special variations of linked lists include queues, 

stacks and rings (Pohl 1990). Figure 5 gives a graphical representation of a linked list 

structure. The list has been shown to be useful for performing general computation as it 

forms the basis of the computer programming language LISP (LISt Processing) 

(Barendregt 1984). 

Trees. Like the linked list structure, a tree is a collection of nodes. However, the nodes 

are arranged in a hierarchical manner in which a node may have a number of branches to 

child nodes that form sub-trees. A tree is anchored by the root node and terminated at a 

number of leaf nodes. Figure 5 gives a graphical representation of a tree. 

Figure 5: A list and tree structure. A square box is used to denote an elementlnode while a line is an 
edge. The traversal of the list structure is indicated by the arrows. 

,---(sub-list- 

As COPS are primarily concerned with groupings, a structure is needed that ensures group integrity and 

consistency. From this perspective, a tree structure can be eliminated from consideration as it is used 

to represent hierarchical information, rather than simple groupings. However, the linked list is 

appropriate as the use of sub-lists can be used to differentiate groups. Furthermore, each member of a 

group can therefore be represented directly without the use of encoding constraints (as in the 0-1 ILP 

and CP systems). 

(leaf node) 
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As a result of the mappings being expressed in terms of lists, the elements in the list can take on a range 

of integer values. Another advantage is that a solution expressed as a list can be altered by using 

common local search transition operators (these are discussed in Section 2.2.2). 

3.3 Expressing COPS Using a List Based Notation 

3.3.1 General Model 

In this section, a general model is developed that specifies COPS as dense linked list structures. The 

list consists of both sub-lists and elements. A sub-list is a list structure within the overall list while an 

element stores an atomic value. The placement of elements (that contain discrete values) on particular 

sub-lists or at certain positions on the sub-lists defines the current solution to the problem. To denote 

that element e is assigned to the i'th sub-list at the j'th position, the notation x(ij)=e is used. For 

instance, consider a TSP in which city 5 is assigned to position 2 therefore x(2)=5. This indicates that 

city 5 is the second stop on the salesman's tour. In this work, problems that can be expressed with one 

decision list (denoted by x) are considered. All other literals in the problem models are considered as 

scalars, vectors or matrices as appropriate. 

The structure of the list is defined for each particular problem and is characterised by: 

number and location of sub-lists within the overall list structure, 

size of the lists (specified in terms of a lower and upper bound), 

the range of values that may appear on a list, 

the number of times that a particular value can appear on a list. 

The general list modelling system is stated mathematically in Equations (10) - (16). 

Optimise flx) 
s. t. 



Where: 
x is the decision list. For instance: x(ij) is the j'th element value of the i'th sub-list. 
Ax) is the objective function according to decision list x. 
lhsi(x) is the left-hand side of problem constraint i according to decision list x. 
rhsi is the right-hand side of problem constraint i. 
C is the number of problem constraints. 
y represents any list structure within list x. 
lil is the length of the list defined by i. 
I, is the minimum length of the list y. 
u, is the maximum length of list y. 
min-count(y) and max-count(y) return the number of occurrences of the least 
frequent and most frequent element value in list y respectively. These functions are 
discussed in detail below. 
my defines the minimum number of occurrences of each value on list y. 

nldefines the maximum number of occurrences of each value on list y. 
e, represents the set of element values contained on list y. 
pi is the smallest value that can be contained in list y. 
qi is the largest value that can be contained in list y. 
N is the set of Natural Numbers. 

The objective function is an arbitrary function over the list x (10). Using this modelling system, 

constraints are conceptually grouped into two distinct classes, namely the list constraints (constraints 

that govern the list structure) and the problenz constraints (those that define the feasible space of the 

problem). Equations (12) - (16) in the preceding model refer to the list constraints, while (11) 

represents the problem constraints (which again are arbitrary functions over the list x). In general, list 

constraints are divided into three categories, namely Value Range, Count and List Size. 



The legal values of elements in a particular list are discrete and specified between a lower and upper 

bound. This category is referred to as the Value Range and is in the form of Equations (15) and (16). 

For instance, if a list stores the order of the cities for an N city TSP, the value range would be defined 

between 1 and N for list x. 

The Count constraints regulate the number of occurrences of each value on a list. It is specified using 

the two functions min-count and max-count (Equations (13) - (14)). min-count@) returns the 

cardinality of the element value that appears least on list y. For instance, given that a list consists of the 

elements (5, 5, 6, 3, 3 ) ,  min-count returns 1 as the element value 6 appears once in the list. 

max-count@) is the opposite is this as it returns the cardinality of the element that appears most on list 

y. In the previous example, max-count returns 2. Permutations of values are widely used in COPS and 

can be specified using the constraints min-count(x)=l and max-count(x)=l. This combination limits 

each value to one appearance in the entire list. In the case of the TSP, these constraints only allow 

tours that do not violate the condition that each city is only visited once. The Count constraint type can 

eliminate many of the complex encoding constraints required for other systems (especially 0-1 ILPs). 

The size and shape of a list structure is specified using Equation of the form (12). This category is 

referred to as the List Size. Using this notation, an arbitrary list structure can be built as well as 

allowing the size of a list to be either static or dynamic. If the latter is the case, the size of the list may 

vary between preset lower and upper limits or without limit on the size. 

3.3.2 Illustrated Examples of the List Modelling System 

In order to demonstrate the representation of COPS using the linked list modelling system, the 

Generalised Assignment Problem (GAP) (Chu and Beasley 1997; Martello and Toth 1981; Osman 

1995) is considered. This problem requires that jobs be assigned to agents subject to capacity 

constraints. A solution for a 5 agent, 15 job problem appears in Figure 6. 



Agent 1 Job 1 Job 3 Job 5 Job 2 

Agent 2 Job 9 Job 14 

Agent 3 Job 4 Job 6 FFI 
Agent 4 Job 1 1  Job 15 

Agent 5 Job 12 Job 13 Job 10 

Figure 6: A linked list representation of a GAP. 

Therefore job 4 is assigned to agent 3 and job 13 is assigned to agent 5 etc. The objective function is to 

minimise the total cost of assigning the jobs to the agents and is expressed by (17). 

M \.t(i)l 

Minimise y, C(x(i, j ) ,  i )  

Where: 
x(i j) is the j'th job performed by agent i. 
C( i j )  is the cost of assigning job i to agent j .  
M is the number of agents. 

Whilst this list notation appears similar to the conventional vector form used in standard LPs, each sub- 

list contains a variable number of elements. Thus, the second summation sign in (17) requires a bound 

which varies depending on the length of each sub-list (i.e. Ix(i)l ) and changes according to the current 

solution state. Similarly, the constraints concerning the capacity of each agent are formed across list 

space. 

I.r(i)l 

( x i ,  j ) ,  i 5 b )  ~i I S i W  
j=l 

Where: 
a( i j )  is the resource required by agent j to perform job i. 
b(i) is the capacity of agent i. 
N is the number of jobs. 



In this example, Equations (19) - (22) are the list constraints while (18) represents the problem 

constraints. 

Using the linked list structure with one level of sub-list as described in the previous section, it is 

possible to represent a wide range of COPs. Table 1 displays the problems that have been formulated 

using list notation as part of this research. The set is representative of problems in the literature. The 

table is divided into four sections, according to the problem's Count constraints. It is found that most 

COPs fall into one of these categories. 



Table 1 : Problems that can be expressed using the list modelling system. 

Count constraint(s) 
min-count(x)= 1 and 
max-count(x)= 1 

min-count(x)=O and 
max-count(x)= 1 

min-count(x)= 1 and 
max-count(x)= 
unbounded 
min-count(x)= 
unboundedand 
max-count(x)= 
unbounded 

Problem Name 
TSP 

QAP 

GAP 
Graph Partitioning Problem 
(GPP) 
Graph Colouring Problem 
(GRAPH) 
Car Sequencing Problem (CSP) 
Bin Packing Problem (BIN) 
VRP 

Linear Ordering Problem 

Timetabling Problem (TTP) 

Uncapacitated Single Allocation 
p-Hub Median Problem 
(USApHMP) 
Capacitated Single Allocation p- 
Hub Median Problem 
(CSApHMP) 
Personnel Time Scheduling 
Problem 
Processor Allocation Problem 
Machine Scheduling / Job 
Sequencing Problem 
Single Layout Problems in 
Flexible Manufacturing 
Knapsack / Multiple Knapsack 
Problem (MKP) 
Maximum Clique Problem 
(MCP) 
Set Partitioning / Covering 
Problem 
Aircraft Landing Problem 

Field Programmable Gate Array 
placement Problem 
N Queens Problem 
Number Partitioning Problem 

Uncapacitated Multiple 
Allocation p-Hub Median 
Problem (UMApHMP) 
Cutting Stock Problem 

Reference(s) 
Lawler, Lenstra, Rinnoy and Shmoys (1990) 
and Reinelt (1991) 
Burkard, Karisch and Rend1 (1997), Connolly 
(1990) and Nugent, Vollman and Rum1 (1968) 
Chu and Beasley (1997) and Osman (1995) 
Johnson et al. (1991a) 

Chams et al. (1987) and Johnson et al. 
(1991b) 
Smith et al. (1996a, 1996b) 
Kampke (1988) 
Christofides and Eilon (1969), Clarke and 
Wright (1964), Osman (1993) 
Chanas and Kobylanski (1995) and Reinelt 
(1985) 
Abramson (1991), Abramson and Dang 
( 1993) 
Ernst and Krishnamoorthy (1996b, 1997b), 
Skorin-Kapov and Skorin-Kapov (1994) and 
Campbell (1994) 
Ernst and Krishnamoorthy (l997a) 

Krishnamoorthy, Ernst and Beasley (1997) 

Sofianopoulou (1992) 
Glover and Laguna (1997) 

Kouvelis and Chiang (1992) 

Beasley and Chu (1997a), Connolly (1992) 
and Petersen (1 967) 
Battiti and Protasi (1995) and Johnson and 
Trick (1993) 
Abramson et al. (1993, 1996) and Beasley and 
Chu (1996, 1997b) 
Beasley, Krishnamoorthy, Abramson and 
Sharaihia (1995) and Ernst, Krishnamoorthy 
and Storer (1997) 
Chandy and Prithviraj (1996) 

Sosic and Gu (1991) 
Johnson et al. (1991b) and Ruml, Ngo, Marks 
and Shieber (1995) 
Ernst and Krishnamoorthy (1996a, 1997b) 

Gilmore and Gommory (1961) and Little and 
Darby-Dowman (1995) 



The following problem models demonstrate the semantics of list notation and are also used to test the 

performance of the general-purpose system3 (see Chapter 5). The problems are a subset of those in 

Table 1. For the problem types BIN, GRAPH and MCP, alternative list formulations are available and 

these are given in Appendix B. 

A number of auxiliary functions are necessary to express these problems in list notation. These 

functions are summarised in Table 2. 

Table 2: The intrinsic functions available to the list modelling system. 

Function 
ABS(i) 
pred(i j,k,l) 
succ(i j,k,l) 

k 
min f (i) 

i= j 

k 

max f (i) 
i= j 

occ(y,i) 
list(y,ij) 
MIN(a,b) 
MAX(a,b) 

Quadratic Assi~nment Problem 

Description 
Returns the absolute value of i. 
Returns the value i-1 unless i-l<j at which k is returned. 
Returns the value i+l unless i+l>k at which j is returned. 
Returns the minimum value of function f between a lowerbound value of j 
and an upperbound value of k. 

Returns the maximum value of function f between a lowerbound value of j 
and an upperbound value of k. 

Returns the number of times that value i occurs on list y. 
Returns the list number of the j'th occurrence of the value i on list y. 
Returns the minimum of a and b. 
Returns the maximum of a and b. 

The Quadratic Assignment Problem (QAP) is a facilities assignment problem. Each facility is assigned 

to a unique location in order to minimise the total intercommunication cost between the facilities. This 

problem is common in electronics, scheduling, manufacturing and parallel and distributed computing 

(Burkard et al. 1997; Nugent et al. 1968; Pardalos and Wolkowicz 1994). 

N-l  N 

Minimise f (x(i), x( j)) . d (i, j) 
i=l j=i+l 

Where: 
x(i) is the facility at location i. 
Ai  j )  is the flow between facility i and j. 
d(i j )  is the distance between location i and j. 
N is the number of facilities/locations. 

For the sake of brevity, problem models that use min-colo~t(x)=O m d  ~rm~count (x)=l  are expressed using only 
max-coutrr(x)=l. Similarly, problems that require the constraints rnin-counr(x)=l and muxcount(x)=unbounded are expressed 
using only min-cortnt(x)=l . 



Travelline Salesman Problem 

The TSP is a problem in which a salesman visits each of a number of cities exactly once. The salesman 

starts and ends at a base city and the solution is therefore called a tour. The objective is to minimise the 

length of the tour that the salesman takes. Whilst there are limited practical applications of the TSP, it 

is often used as a benchmark COP (Lawler et ai. 1990). It is also generalisable to more practical 

problems such as the vehicle routing problem. 

Minimise d (x ( i ) ,   red (i,l, N, l ) ))  
i=l 

Where: 
x(i) is the i'th city visited on the tour. 
d(i J )  is the distance between city i and j. 
N is the number of cities. 

Bin Packing 

A set of items, each of which has a particular weight, is packed into a number of bins. Each bin has the 

same weight capacity. The problem can be formulated so that the number of bins is minimised or the 

excess weight of each bin is minimised. The following model is of the latter. 

M Ix(i)l 

Minimise 3 MAX[O. W(X(i7 j ) )  - wma. 
]=I i 

Where: 
x(iJ) is the j'th item assigned to bin i. 
W,,, is the maximum bin weight. 
w(i) is the weight of item i. 
M is the number of bins. 
N is the number of items. 



Graph Colouring 

Given a graph G=(V,E), a colour is assigned to each vertex, such that the colour of the vertex is 

different to that of its neighbours (those vertices to which it is connected by an edge). The problem can 

be formulated so that either the number of colours is minimised or the number of neighbour violations 

for a given set of colours is minimised. The following model is of the latter. 

N Ix(i)-ll Ix(i)l 

Minimise x x x edge(x(i, j), x(i, k)) 
i = l  j = l  k = j + l  

s. t. 
Ixl=N 
Ix(i)l? 1 Vi 1 li9V 

Where: 
x(i J) is the j'th node assigned to colour i. 
edge(i J) is 1 if there is an edge between vertex i and j, 0 otherwise. 
N is the number of colours available. 
M is the number of vertices. 

Uncapacitated Single Allocation p-Hub Median Problem 

The USApHMP is a member of p-median hub allocation problems (Ernst and Krishnamoorthy 1996b, 

1997b; Skorin-Kapov and Skorin-Kapov 1994). In this problem, a routing network needs to be 

designed to allow a commodity flow between each pair of nodes. As it is expensive to route 

commodities directly from the source node to the destination node, a subset of nodes (called hubs) are 

used to consolidate the flows into larger flows that can be handled more economically. Each non-hub 

node is connected to a single hub node and the hubs are fully interconnected. The aim is to find a 

configuration of hub and non-hub nodes that minimises the total cost of the flows between every pair of 

nodes. This problem has applications in the design of telecommunications, airline passenger and postal 

delivery networks. 

Minimise 
P P Ix, l Ixl. l 

Cy ~(x(k,i),x(l, j)). (~d(x(k,i),x(k,l)) + ~d(x(k,l), ~(1~1)) + a(x(l,l), ~ ( 1 ,  j ) ) )  
/ = I  k = l  j = l  ;=I 



Where: 
x(ij) is the j'th node on the i'th hub (Note: x(i,l) is a hub). 
P is the number of hubs. 
N is the number of nodes. 
W(i j) is the flow from node i to node j. 
d(i j )  is the distance from node i to node j. 
x is the collection cost coefficient. 
6 is the distribution cost coefficient. 
T is the transfer cost coefficient. 

Uncapacitated Multiple Allocation p-Hub Median Problem 

Like the USApHMP, the UMApHMP is a member of p-median hub allocation problems (Ernst and 

Krishnamoorthy 1996a, 1997b). In this particular version of the problem, non-hub nodes are allowed 

to be assigned to more than one hub. 

Minimise 

N N rxc(x.i)  ocx.c(x. j )  xz min rnin W(i, j) . hd(i,x(list(x,i,k),l)) +.rd(x(list(x,i, k),l),x(list(x, j,1),1)) + Gd(x(list(x, j,1),1), j)) 
i=l j=l  k=l l=I 

Where: 
x(ij) is the j'th node on the i'th hub (Note: x(i,l) is a hub). 
P is the number of hubs. 
N is the number of nodes. 
W(i j )  is the flow from node i to node j. 
d(i j )  is the distance from node i to node j. 
x is the collection cost coefficient. 
6 is the distribution cost coefficient. 
T is the transfer cost coefficient. 

Multiple Knapsack Problem 

The multiple knapsack problem frequently arises in resource allocation situations (Beasley and Chu 

1997a). Given a project i, with profit c ,  the overall profit of the inclusion of a number of projects is 

maximised subject to a number of budgetary constraints. This problem is a generalisation of the 

knapsack problem. 



Where: 
x(i) is the i'th project in the project mix. 
c(i) is the profit of including project i in the project mix. 
a(i J) is the number of units of resource j required by project i . .  
b(j) is the maximum number of resource units available from resource j. 
N is the number of projects. 
M is the number of different resources. 

School Time Tablin~ Problem 

In this problem, a number of tuples (consisting of teacher, class and room attributes) are scheduled in a 

fixed number of time slots (periods). The aim is to minimise the number of clashes between tuples. 

This problem has particular application in primarylelementary school time tabling (Abramson 1991; 

Abramson and Dang 1993). 

P C Ix(i)l-I Ix(i)l 

Minimise clash(t(x(i, j ) ,  1 )  - t (x(i ,  k ) ,  1 ) )  

s. t. 
Ixi =P 
1 Cx(i J ) W  Vi 1 l i l p  

'Jj 1 Sjjirlx(i) l 
min-count(x)= 1 
max-count(x)= 1 

Where: 
x(i j)  is the j'th tuple in period i. 
t(ij) is the i'th tuple. j refers to the different aspects of the tuple, namely: 

class number (j=l) 
teacher number (i=2) 
room number (j=3). 

N is the number of available tuples that are to be scheduled. 
C is the number of items in the tuple (three). 
P is the number of periods. 

0, otherwise 



Graph Partitionine Problem 

Given the graph, G=(V,E), the aim is to find two equal partitions of nodes (V) such that the number of 

interconnections between the partitions (E)  is minimised. This problem has many applications 

particularly in circuit board design in which off chip connections must be kept to a minimum (Johnson 

et al. 1991a). 

Z Z 

Minimise 7 edge(x ( l ,  i ) ,  x (2 ,  j ) )  

Where: 
x(i j )  is the j'th node in partition i. 
edge(ij) is 1 if nodes i and j are connected by an edge, 0 otherwise. 
N is the number of nodes. 

Car Seauencin~ Problem 

The CSP is a common problem in the car manufacturing industry and has been studied by Smith et al. 

(1996a, 1996b). In this problem, a number of different car models are sequenced on an assembly line. 

The objective is to separate cars of the same model type as much as possible in order to evenly 

distribute the manufacturing workload. 

M D(i)-1 D ( i )  

Minirnise x z P ( A B S ( x ( i , k ) - x ( i ,  j ) ) , i )  

Where: 
x(i j )  is the order in the sequence of the j'th car of model i. 
P( i j )  is the separation penalty for the j'th model separated by i places in the 
sequence. 
N is the number of cars. 
M is the number of models. 
D(i) is the number of cars of model i in the sequence. 



Maximum Clique Problem 

Given a graph, G=(V,E), the aim is to find the largest clique V, (V, c V) such that each member of the 

clique has a common edge with every other member of the clique. The problem has applications in 

fault tolerance diagnosis, timetabling and printed circuit board testing (Glover and Laguna 1997). The 

problem can be formulated so that either the number of nodes in the clique is maximised or the number 

of edge violations is minimised. The following model is of the latter. 

Minimise 
3 

- edge(x(i), x( j)) 

Where: 
x(i) is the i'th node assigned to the clique. 
N is the number of nodes. 
edge(i J) is 1 if there is an edge between nodes i and j, 0 otherwise. 
M is the clique size. 

From these few examples, it can be seen that the linked list modelling system is capable of representing 

a variety of common COPS. Whilst not as general as either the ILP or CP languages, the dense linked 

list structure makes it possible to directly apply well known local search operators (as discussed next). 

3.4 Search Over Linked Lists 

There are a number of possible ways that a list can be altered in order to form a new solution to a 

particular problem. Portions of the list structure can be shifted to new locations within the list, deleted 

from the list, or added to the list. A portion may represent an element, group of elements, a sub-list or 

a group of sub-lists. As well as this, individual values of elements in the list may be altered. 

Accordingly, there is a great deal of scope and flexibility in the way that new solutions are created. 

An attractive feature of using the linked list representation is that well-known local search operators 

form a subset of all possible transition operators that are available for lists. This is due to the dense 

nature of the list structure. Therefore, direct application of these operators to the problem model is 

possible. However, this in turn restricts the type of meta-heuristic search algorithm that can be used 

with the linked list modelling system to those that are based on local search (i.e. GS, TS, SA and 



GRASP). ANNs and GAS cannot directly utilise the linked list modelling systems as they rely on 

specialised methods of generating solutions to problems (see Sections 2.1.2 and 2.2.3.5 respectively). 

3.4.1 List-Based Local Search Transition Operators 

As a result of using an integer representation, it is possible to apply to the list structure well known 

local search operators that have successfully been used in other heuristic and meta-heuristic codes, for 

example: Abramson (1991), Connolly (1990), Chams et al. (1987), Johnson et al. (1991a, 1991b), 

Kampke (1988), Osman (1993, 1995) and Taillard (1991). There are a variety of ways that lists can be 

altered in order to form different solutions. However, seven different transition operators that 

correspond to common local search operators as used in the literature, have been identified as sufficient 

to navigate the search space of the list-based formulations. Given the wide variety of standard COPS 

that have converted into this notation (see Table I), this set appears to be sufficient to find good quality 

solutions. The operators are: 

Move: An element is moved from one list to the end of another list. This is similar to 

Osman's shift process (Osman 1993, 1995). See Figure 7. 

Swap: The positions of two elements, from the same or different lists, are swapped. This 

is equivalent to the Or operator (2-opt) and Osman's interchange process (Osman 1993, 

1995) (which is generalisable to the n-opt). See Figure 8. 

Inversion: The sequence between two elements on the same sub-list is reversed. See 

Figure 9. 

Reposition: The position of an element in a list is changed. See Figure 10. 

Add: An element is added to a list. See Figure 11. 

Drop: An element is removed from a list. See Figure 12. 

Change: The value of a list element is changed to another value. See Figure 13. 

Figure 7: The move operator. 
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Figure 8: The swap operator. 
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Figure 9: The inversion operator. 
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Figure 10: The repositiorz operator. 
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Figure 1 1: The add operator. 
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Figure 12: The drop operator. 
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Figure 13: The change operator. 
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The transition operators that can be applied to a particular problem are determined by the 

characteristics of the problem's list based model. The use of appropriate transition operators ensures 

that the problem's list constraints are not violated. For instance, in a permutation problem, operators 

that only perturb the ordering of the elements in the list (such as swap, inversion and reposition) are 

appropriate. A set of rules can be formalised that determine appropriate transition operators given the 

list constraints (Table 3). Note, as in Section 3.3.1, y represents any list structure within list x. 

After 
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Table 3: Appropriate transition operators given a problem's list constraints. y represents any list 
structure while N represents a constant. 

A transition is made in accordance with the rules of the particular meta-heuristic technique, subject to 

the list constraints being satisfied. For instance, if an element appears once on list y, the constraint 

min-count(y)=l makes it infeasible to drop this element. 

Transition 
Operators 

swap, inversion, reposition 

swap, inversion, reposition, move 
swap, inversion, reposition, change, 
add, drop 
swap, inversion, reposition, change, 
add, drop, move 
swap, inversion, reposition, change, 
add, drop 
swap, inversion, reposition, change 
swap, inversion, reposition, change, 
add, drop, move - 

List Constraints 

3.4.1.1 Enforcing Constraints 

Count 
min-count@)=l and 
max-count@)= 1 

max-count(y)= 1 

min-count@)= 1 or 
unspecified 

Search may proceed either through feasible or infeasible space in order to visit solutions. For list based 

problems, there are effectively two spaces that are bound by the list and problem constraints 

respectively. Table 3 in the previous section presented a set of rules for choosing transition operators 

that do not violate list constraints. However, there is no guarantee that the operators will also preserve 

the feasibility of the problem constraints. Two strategies are in place in order to ensure problem 

feasibility is satisfied: 

List Size Conditions 
ly(i)l=N Q i  lSi<lyl or 
ly l=N 
l y b l  
lyl=l 

ly I> 1 

lyl=l 

ly(i)l =N 'di 1 SiSlyl 
l y b l  

Feasibility Maintenance 

Feasibility Restoration 

The first method only allows transitions that do not violate the problem constraints. For instance, in the 

GAP, a job is only moved to a new sub-list (i.e. an agent) if that agent has the enough spare capacity to 

perform that job. Feasibility restoration on the other hand initially performs a transition without regard 

to the problem constraints and then employs a number of feasibility maintaining transitions in order to 

obtain problem feasibility once more. The advantage of the former technique is that it is 

computationally inexpensive to implement. However, feasibility restoration can traverse infeasible 

space and is required if the problem is tightly constrained and a straight feasibility maintaining 

transition is not possible. 



3.4.1.2 Applying the Transition Operators 

Using the local search operators described in Section 3.4.1, it is possible to explore multiple 

neighbourhoods in the course of solving a particular problem. In many cases, not all of the operators 

(as per Table 3) are required. For instance, one may be interested in the effect of performing only 

swaps on a TSP. Therefore the unwanted transition operators can be eliminated. The mneta-heuristic 

technique is then performed using only those operators that were not excluded, referred to as the active 

operators. At each iteration of the search, an operator is chosen from those in the active set. If all but 

one of the operators is eliminated, this operator is used at each iteration. In the case that there are two 

or more active operators, each operator is assigned a probability of being selected at each transition4 

(totaling 1). Equations (23) - (26) can be used to select a neighbourhood operator. 

V i  1 SiSN (default) 

N 

(alternatively pi can be explicitly specified, however pi = 1 ) 

op = { i ; lbiSclubi } 1 SiSN 

. . 
lbi = p ,  ~i 1 SiSN 

Where: 
N is the number of active transition operators. 
op is the selected transition operator. 
c is a uniform random number in the range [0,1]. 
lbi is the lower probability bound of the active transition operator i. 
ubi is the upper probability bound of the active transition operator i .  
p, is the probability of the active transition operator i being selected. 

Equation (23) assigns an equal probability to each of the active transition operators. For instance, if 

there are two operators, each one receives a probability of 0.5. Alternatively, the probability of each of 

the operators may be individually specified. The probability space is partitioned into a number of 

sections (using these probabilities as bounds) that represent each of the transition operators (Equation 

(25) - (26)). A uniform random number is then generated in order to select the next transition operator 

(Equation (24)). This is like the weighted probability wheel used in roulette wheel selection by 

Goldberg (1989). For example, if the operator move is given the probability region [0,0.5] while swap 

There are also other possible models for determining which transition operator is to be used at a particular transition. One 
possibility is to use a round-robin approach in which each operator is used in turn, though other models are possible. 
Alternatively, the neighbourhood of each possible operator could be examined to determine which operator yields the most 
effective solution. Glover and Laguna (1997) discusses this concept in some detail. 



is assigned (0.5,1] and 0.6 is the uniform random number (c), swap is chosen as the next transition 

operator. 

3.4.1.2.1 The Adaptive Probability Model 

The set of transition operator probabilities can be either static throughout the search or vary 

dynamically according to the relative performances of the active transition operators (in terms of 

optimising the objective function). Thus if an operator is producing solutions of high quality, its 

probability is raised. Similarly, the probability is dropped for a poorly performing operator. The 

amount of the change is dependent on a parameter known as the adaptive rate. This is similar to the 

learning rate employed by ANNs (Carling 1992). If the adaptive rate is set low, the change in 

probabilities will also be conservative and vice versa. 

The probabilities are adapted at set intervals throughout the search process. Equations (27) - (30) show 

how the probabilities are adapted. 

N+k-' i f  (tran( j )  = i ) ,  cost, - cost j-l 
dci = { Vi 1 l i W  

0, otherwise 

dc, 
rd, = 

M XI dcj I 
j=l 

Note: -for minimisation, +for maximisation 

Where: 
lil is the absolute value of i. 
M is the number of active transition operators. 
N is the number of iterations between adaptations. 
a is the adaptation rate (i.e. a=0.01 (very slow adaptation), a=0.9 (very fast adaptation)). 
dc, is the summed incremental cost of the i'th transition operator. 
k is the iteration number of the first iteration in the adaptation period. For instance, if N=100, 
k would take on successive values of 1, 101, 201, . .. . 
tran(i) is the transition operator used at iteration i. 
rd, is the ratio incremental cost of the i'th transition operator. 
pa, is the new raw probability of the i'th transition operator. 
p, is the scaled probability of the i'th transition operator. 
cost, is the objective cost obtained at iteration i. 



Equation (27) calculates the total change in cost for each of the active transition operators and (28) 

normalises these values between 0 and 1. The new probability set is computed based on the adaptive 

rate (29) and this is in turn converted to a new set of probability values (30). 

3.4.2 Calculating Incremental Costs 

The objective function of many COPS is costly to compute, especially for realistic size problems. The 

linked list structure makes it possible to compute an incremental cost based on the elements that have 

changed in the list. This can result in substantial computational savings, particularly for iterative 

algorithms such as GS, TS and SA. 

Algebraic incremental cost expressions can be developed for problems modeled in linked list notation. 

As each of the local search operators alters the solution in a different way, a number of incremental 

cost expressions may be required for the one problem type. There are two methods of making use of 

incremental costs in a list-modelling environment: 

Automatically generate incremental cost expressions given an objective function and set 

of transition operators. 

Manually develop incremental cost expressions. 

It can be difficult to automatically generate incremental cost expressions for problems modeled in a list 

notation using the first approach. This is due in part to a) incremental cost expressions being dependent 

on the transition operator used, b) many objective functions in a list based modelling environment are 

non-linear. In contrast, to calculate an incremental cost for a 0-1 ILP does not require a specific 

incremental cost expression, as the coefficients of the variables that are changed need only to be either 

subtracted or added appropriately. This is a disadvantage of a general modelling solver system based 

on a compacted representation such as linked lists. As a result, it is difficult to produce a general 

algorithm that generates incremental cost expressions from an arbitrary objective function. 

In order to produce a practical means of automatically generating incremental cost expressions, a 

slightly less general approach is adopted. This method uses a system that matches the objective 

function against one of a number of templates. The rationale behind this approach is that many list 

based objective functions are very similar. For instance, consider the objective functions of graph 

colouring with the processor allocation problem (see Appendix B) and the knapsack (see Appendix B) 1 

multiple knapsack with the set partitioning problem 1 set covering problems (see Appendix B) as 

examples of this. The template method therefore attempts to fit an objective function to a known 

template and produce incremental cost expressions for the set of feasible transition operators. 

Equations (3 1) - (36) present a set of templates that are typical of objective functions formulated in list 

notation. 



In order to accommodate a wide variety of objective functions, simple transformations of these 

functions are also admissible (Equations (37) - (41)). For instance, Equation (37) indicates that the 

system can derive suitable incremental cost expressions for a function of a list that is multiplied by 

some constant. An example of this might be a transformed GAP having the objective function 

M Ix(i)l 

7, ~ ( x ( i ,  j ) ,  i )  . c where c is a constant. Similarly, objective functions such as 
i=l j=l 

M Ix(i)l 

C ( x ( i ,  j ) ,  i )  + g ( i )  (given by Equation (39)) can also be processed by the system. 

Where: 
f and g are arbitrary functions. 
c is a scalar. 
. . . is an algebraic expression. 

A given set of templates cannot support every conceivable objective function. This set of templates 

covers all of the problems from Section 3.3.2 except USApHMP, UMApHMP and the timetabling 



problem. Incremental cost expressions can be calculated manually by considering the effect of the 

application of the transition operator to the cost function and list structure. In some instances, it may 

not be possible to calculate an appropriate expression because of the complexity of the cost function, in 

which case the original cost function is the only expression that can be used. Section 4.5 outlines how 

these templates (3 1 - 35) can be applied to produce appropriate incremental cost expressions. 

3.5 Summary 

This chapter has described a general modelling system for COPS that allows solution-states to be 

expressed using dynamic list structures. Unlike more conventional modelling systems (such as ILPs 

and CP), a list-based solution consists of a densely packed set of integers that dynamically changes 

according to the current solution-state. The feasible solution space of problems formulated using the 

list notation is governed by two classes of constraints; the list constraints and the problem constraints. 

The list constraints consist of restrictions to solutions that include: the range of values that can occur on 

the list; the number of times that a particular value can appear on a list; and the shape and size of the 

list structure. In many cases, these constraints alone are sufficient to express a wide range of COPs, 

some of which include the well-known TSP and QAP. Additional problem-specific constraints (like 

the capacity constraints for the GAP and the budgetary constraints for the MKP) can also be modeled 

via the problem constraints. 

Based on the configuration of the list constraints for a particular problem model, suitable local search 

operators can be deduced automatically. As more that one operator may be suitable for a problem, a 

probabilistic procedure for choosing a transition operator at each iteration of a meta-heuristic search 

algorithm has been proposed. In this method, each operator is assigned a probability of being chosen 

and is subsequently selected using a variation of the weighted roulette wheel notion introduced by 

Goldberg (1989). The system can also adaptively set the probabilities according to the performance of 

each of the operators. 

Objective functions for practical size COPs can be costly to evaluate. However, using the linked list 

modelling system, appropriate incremental cost expressions can be produced. These expressions are 

calculated based on the elements that have recently changed in the solution and their use can represent 

a substantial efficiency increase for the meta-heuristic search algorithm. An automatic system that 

matches an objective function to one of a set of templates to produce incremental cost expressions has 

been devised. While not entirely general, this system can generate appropriate incremental cost 

expressions for a wide range of COPs. This is due to the similarity of the objective functions of 

various COPS and the fact that simple transformations of the template set can be accommodated. 

In order to gauge the benefits of modelling COPs using linked lists, the following chapter describes the 

issues relating to a software implementation of the system. As many COPs can be expressed with one 



Chapter 4: Implementation of a General 
Solver 

This chapter discusses a number of issues related to producing a general-purpose solver for COPS 

based on the linked list modelling system. These topics include: the design of a text-based language 

for describing arbitrary list models, a method of producing initial feasible solutions, a feasibility 

restoration scheme, a candidate list strategy for TS and GS, appropriate incremental cost templates; and 

the implementation of the SA, TS and GS search engines. These techniques are designed to operate 

within a restricted general list modelling system that is described in Section 4.8. 

The work on the linked list. modelling system has culminated in the design of a software 

implementation named COSULOM (Combinatorial Optimisation System Using List Oriented Meta- 

heuristics). COSULOM is a real world solver written in ANSI C so that it is available to a wide range 

of computer platforms. The TS component is also available as a parallel program for MIMD (Multiple 

Instructions, Multiple Data) computers supporting the MPI (Message Passing Interface) library. 

4.1 System Architecture 

The solver performs a number of tasks in order to progress from an initial problem model to a final 

solution. Figure 14 gives an architectural description of the implementation of the system. 
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Figure 14: An architectural representation of the general solver. 

A file containing a problem model is read by the compiler that converts this into a set of C files. These 

C files contain the code that represents the objective function, list model, constraints and problem data. 

The algebraic language that describes the list models is given in Section 4.2. The compiler also 



produces a mathematical list-based model in LaTeX 2e format (using the algebraic notation outlined in 

Section 3.3). The files are then linked with the core code modules to produce an executable file based 

on the selected meta-heuristic technique. 

The runtime system has two main tasks: to form an initial solution to the problem as well as running 

the appropriate meta-heuristic search in order to produce a final solution to the problem being solved. 

The process of forming an initial solution is described in Section 4.7. 

4.2 Algebraic Modelling Language 

It can take considerable time to develop either a meta-heuristic based computer program or a suitable 

code segment (as discussed in Section 2.3.2) compared with an algebraic model. This is because code 

development is a complex process that requires planning, implementation and testing phases. 

However, a high level algebraic description (such as the one described herein) is typically less costly to 

develop and not as prone to error. 

The general system accepts text files that contain a list based algebraic description of the problem and 

automatically converts these to computer code. This approach is more efficient than interpreting data 

structures that represent the objective and constraint functions. In addition, customised code modules 

can be used instead of the code generated from the input file compiler (a description of these modules 

is given in Appendix E). This flexibility allows the system to accept arbitrary functions that are 

difficult to write algebraically. 

The algebraic modelling language is based loosely on the GAMS syntax, which is widely used and well 

understood. The reader unfamiliar with the GAMS syntax is referred to Brooke et al. (1997). The 

language can be used to express list models as described in Chapter 3. While the syntax has been 

borrowed, semantic modifications have had to be made in order to account for the list modelling 

system. This is particularly apparent in the SOLUTION section that incorporates the list constraints. 

Files can incorporate both data (for instance the distance matrix for the TSP) as well as objective and 

constraint functions. Alternatively, data and expressions can be contained in separate files. 

A user manual describing the syntax, layout and available functions of the language is given in 

Appendix D. Nevertheless, an example of a file that describes a small GAP is presented in Figure 15. 

This file is divided into a number of distinct sections. The SCALAR section specifies problem 

constants typically related to problem size. In this case, there are 5 agents (denoted M) and 15 jobs 

(denoted N). The SETS section allows range variables to be specified, i.e. J ranges in value from 1 to 

M (across the agents). The PARAMETER and TABLE sections contain the data for the problem instance. 

For the GAP, a cost matrix C, resource matrix A and an agent capacity vector B are required. The 

SOLUTION section is used to describe the list model and constraints. S IZE (X) = M denotes that there 



are M sub-lists while MIN-COUNT (X )  =1 and MAX-COUNT (X)  =1 indicates that each element can 

appear only once on the list. To specify that the value range is between 1 and N, the statement 

l<=X<=N is used. Finally the EQUATIONS section allows the objective (specified using the COST 

keyword), constraints and incremental costs to be specified. The capacity constraints are formed for 

each agent (J). It is important to note that in this system, the user specifies whether the objective 

function is minimised or maximised at runtime. 

SCALAR 
N /15/ 
M /5/; 

SETS 
J /1-M/; 

PARAMETER 
B(M) / 36 34 38 27 33 / ;  

TABLE 
C (M, N) 

/ 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16 
23 16 21 16 17 16 19 25 18 21 17 15 25 17 24 
16 20 16 25 24 16 17 19 19 18 20 16 17 21 24 
19 19 22 22 20 16 19 17 21 19 25 23 25 25 25 
18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 / 

A(M,N) 
/ 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24 
15 7 23 22 11 11 12 10 17 16 7 16 10 18 22 
21 20 6 22 24 10 24 9 21 14 11 14 11 19 16 
20 11 8 14 9 5 6 19 19 7 6 6 13 9 18 
8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 / ;  

SOLUTION 
SIZE (X) =M 
MIN-COUNT (X) =1 
MAX-COUNT ( X) = 1 
l<=X<=N; 

EQUATIONS 
COST. . SUM(SUM(C(J,X(J,K)),K=l,SIZEOF(X(J))),J) 
CAPACITY: SUM(A(J,X(J,K)) ,K=l,SIZEOF(X(J) ) )<=B(J) ; 

SOLVE USING SA 

Figure 15: Input file representing a GAP. 

In order to describe the algebraic modelling formally, a BNF (Backaus-Naur Form) description is 

provided in Figure 16. 

<problem-description>+ {<scalar-secti~n>)~-~ {<set -sect i~n>}~-~ { <parameter-section> Jo-l 
{<table-secti~n>}~.~ <solution-section> (<equations-secti~n>)~.~ < solve-section> 
<scalar-section>+ SCALAR (<scalar>) I +  ; 
<scalar>+ <identifier> / <number> / 
<sets-section>+ SETS (<set>} I+ ; 
<set>+ <identifier> / <constant> - <constant> / 
<parameter-section>+ PARAMETER {<parameter>} ,+ ; 
<parameter>+ <identifier> ( <constant> ) / <number-set> / 
<table-section>+ TABLE { <table> ) ,+ ; 
<table>+ <identifier> ( <constant> , <constant> ) / <number-set> / 
<number-set>+ <number> { , <number>),,+ 
<solution-section>+ SOLUTION <list-constraints> ; 
<list-constraints>+ {<size-c~nstraints>}~-~ {<count-c~nstraints>}~.~ <value-range-constraint> 
<size-constraint>+ {<constant><relational~~perator>}~~~ SIZE ( <indentifier>    constant>)^-I ) 
{<constan~<relational-operator>)@l Continued.. . 
<count-constraints>+ {<count-type> ( <identifier> ) < c o u n t - r h ~ > ) ~ - ~  
<count-type>+ MIN-COUNT I MAX-COUNT 
<count-rhs>+ =1 



<value-range-constrain- <constant> <relational-operator><identifier><relational-operator> 
<constant> 
<equations-section>+ <objective~function>(<incremental~cost~objecti~e~}~ 
(<constraint-functi~n>}~+ ; 
<objective-function>+ COST.. <expression> 
<expression>+ <expression-component> I ( <expression> ) I <expression><arithmetic~operator> 
<expression> 
<expression-component>t <sum> I <constant> I <list-or-array-reference> I <list-size> I <min> I 
<max> I<minimum>l<maximum>I cabs> 
<sum>+ SUM ( <expression> , <range> ) 
<min>+ MIN ( <expression> , <range> ) 
<max>+ MAX ( <expression> , <range> ) 
<minimum>+MINIMUM( <expression> , <expression> ) 
<maximum>+MAXIMUM( <expression> , <expression> ) 
<range>+ <identifier> I <indentifier> = <expression> , <expression> 
<abs>+ ABS ( <expression> ) 
<list-size>+ SIZEOF ( <identifier>( ( <constant> ) ) 
<incremental~cost~objective>+ DCOST ( <transition-operator> ) .. <incremental-cost-expression> 
<transition-operator>+ move I swap I inversion I reposition I add I drop I change 
<incremental-cost-expression>+ <expression> I <pred-statement> I <succ-statement> I 
<incremental-cost-attribute> I ( <incremental-cost-expression> ) I <incremental-cost-expression> 
arithmetic-operator> <incremental-cost-expression> 
<pred-statement>+ PRED ( <identifier> , <constant> , <constant> , <constant> ) 
<succ-statement>+ SUCC ( <identifier> , <constant> , <constant> , <constant> ) 
<occurrence~statement>+OCC(<identifier>,<constant>) 
<list-statement>+LIST(<identifier>,<constant>,<constant>) 
<incremental-cost-attribute>+ E l  I E2 I L1 I L2 I P1 I P2 
<constraint-functions>+ <identifier> : <constraint> 
<constraint>+ <expression><relational~operator><expression~ 
<solve-section>+ SOLVE USING <search-engine> 
<search-engine>+SA I GS I TS 
<relational-operator>+ <= I < I = I > I >= I <> 
<constant>+ <identifier> I <number> 
<number>+ <float> I <integer> 
<float>+ (<digit>),,+ . (<digit>} ,+ 

<integer>+ (<digit>} 
<digit>+O111213141516171819 
<identifier>+ {any alphabetic character} 

Where: 
x is a terminal. 
a> is a non-terminal. 
{x},-~ x is present between a and b times. 
(x),, x is present a times or greater. 

Figure 16: BNF of the algebraic modelling language. 



4.3 Feasibility Maintenance and Restoration 

A feasibility maintenance operation consists of a simple application of the transition operator. For 

neighbourhood search techniques such as GS and TS, all possible applications of the operator are 

examined and only the ones that satisfy both the list and problem constraints are considered. The 

feasibility maintenance scheme for SA uses a first admissible strategy (Osman 1993, 1995) in which a 

number of transitions of the same type are attempted until one satisfies both the list and problem 

constraints. Consider the GAP example; each element is moved from its sub-list to another sub-list in 

turn until one of these transitions produces a new feasible solution. The order in which candidate 

transitions are performed is permuted so that the search process sufficiently samples the neighbour 

space. This technique has been found to be effective by Connolly (1990, 1992), Johnson et al. (1991a, 

199b) and Abramson and Randall (1998). 

As discussed in Section 3.4.1.1, the aim of feasibility restoration is to traverse infeasible space in order 

to find another feasible pocket of solutions that may be inaccessible otherwise. It is possible to apply 

feasibility restoration techniques to both the list constraints and problem constraints. In this 

implementation, only the operation regarding the latter type is considered. 

The process of feasibility restoration consists of first breaking and then repairing feasibility. A 

transition is made that potentially violates some or all of the problem constraints. A series of feasibili6 

maintenance transitions are subsequently undertaken in order to return to a feasible state. 

Feasibility restoration schemes differ for each transition operator. The change operator can be seen as 

a simple implementation of feasibility restoration for addldrop transitions as an element is added to a 

list and another is dropped. Performing feasibility restoration for the swap, inversion and reposition 

operators can be more complex as the original transition will perturb multiple elements of the list and 

hence may require a great deal of computational effort to restore to a feasible state. The principal of 

feasibility restoration is therefore most effectively demonstrated with a less complex operator, the 

move (Algorithm 7). In the context of this operator, the algorithm is useful for problems such as the 

GAP and VRP in which elements can be moved between lists. 



Move an element to another sub-list; 
Check the constraints associated with the old sub-list; 
If (these constraints are violated) 

Attempt to add a combination of elements on this sub-list; 
If (this fails) try to do the same thing except remove the 
elements off the old sub-list; 
If (the old sub-list is now feasible) perform 
feasibility maintenance with the displaced elements; 
If (this fails) abort the restoration, reinstate the 
original solution and exit; 

End if; 
Check the constraints associated with the new sub-list; 
If (these constraints are violated) 

Attempt to add a combination of elements from this list; 
if (the new sub-list is now feasible) perform 
feasibility maintenance with the displaced elements; 
If (this fails) try to add to this sub-list a combination of 
elements; 
If (this fails) abort the restoration, reinstate the 
original solution; 

End If; 
End. 

Algorithm 7: Feasibility restoration procedure for the move operator. 

In the above algorithm, a combination of elements is either removed from the sub-list or added to the 

sub-list from other sub-lists in order to make the constraints associated with the original sub-list 

feasible. For practical purposes, the number of elements that constitute the combination is bounded by 

a constant value. As with feasibility maintenance, the search for a combination terminates when one 

that satisfies the problem constraints associated with the sub-list is found. 

4.4 Probabilistic Candidate List Strategy 

Unlike SA, both GS and TS systematically examine the neighbourhood of the current solution to find a 

replacement solution. Many practical size problems have large neighbourhoods. For instance, if a 

n(n - 1) 
swap is performed on a TSP with n cities, each solution would have 

2 
neighbours. Therefore 

the search process can become slow if the neighbourhood is large. In order that large problems can be 

solved in reasonable amounts of time, the system has a parameter that controls the amount of the 

neighbourhood that is searched. This is achieved by using a subset N, of the neighbourhood N (i.e. N,s 

E N )  and is referred to as the candidate list strategy (as outlined by Glover and Laguna (1997)). There 

are a number of ways in which this strategy can be defined (Glover and Laguna 1997) such as choosing 

every k'th neighbour so that IN,I=NIk. This implementation uses a probabilistic approach. For 

instance, if the probability is set to 1, then all neighbours are tested, however, if the probability is set to 

0.5, then each neighbour has a 50% chance of being evaluated. This is accomplished by using the rule 

in (42). 



If (c  I p), then Evaluate neighbour 

Where: 
c is a uniform random number in the range [0,1]. 
p is the probability that a neighbour is evaluated. p is in the range [0,1]. 

4.5 Incremental Cost Templates 

As discussed in Section 3.4.2, the template method matches an arbitrarily formed objective function 

with one of a number of available templates in order to produce an algebraic expression to calculate the 

incremental cost. The set of possible templates for COPS is large and therefore this implementation 

only uses a subset of these (as specified previously in Equations (30) - (36)). 

If the system cannot recognise a given combination of template and transformation, it reports that it is 

unable to produce an incremental cost expression. The user can nevertheless manually calculate the 

appropriate incremental cost expression and code it in the algebraic modelling language described in 

Section 4.2 or directly in the C programming language. Descriptions of how incremental cost 

expressions are coded in the algebraic modelling language as well as directly in the C description files 

are given in Appendix D and Appendix E respectively. The advantage of this system is that templates 

can be easily added, should the need arise. 

In order to produce an incremental cost expression from a given template and transition operator, 

information about the type of change that has occurred to the list structure is needed. For instance, if 

an item is added to the solution list and the objective function is matched to template 1 (Equation (3 I)), 

the value of the item (e) is used to form the incremental expression, +f(e). Apart from element value, 

sub-list and position number are also important indicators of change. The following description shows 

how this information is used for each of the transition operators (taking into account Figure 7 to Figure 

13). 

Move: An element with value el is removed from x(ll,pl) and placed at x(12,p2). 
Swap: An element with value el located at x(ll,pl) is swapped with an element 
with value e2 located at x(12,p2). 
Inversion: The elements between x(ll,pl) (with value el) and x(12,p2) (with value 
e2) are inverted. 
Reposition: The element with value el is removed from x(ll,pl) and inserted at 
x(l1,pz). 
Add: An element with value el is added at x(ll,pl). 
Drop: An element with value el is dropped from x(ll,pl). 
Change: An element with value el located at x(l1,pl) changes its value to e2. 

Table 4 gives the output of templates with transition operators using the notation described above. For 

example, consider Template 2 given by Equation (32) in Section 3.4.2. Template 2 represents 

objective functions that sum all of the elements in the list structure according to a function f. Each 

transition operator affects the solution differently and subsequently a unique incremental cost 



expression is produced. For the move operator, an element is deleted from one sub-list and placed at 

the end of another. Hence the incremental cost expression becomes c; = ci-, -flel,ll) + fle,,lz) where c; 

is the cost of the objective functions at the current iteration and c;., denotes the previous iteration. The 

swap operator involves more calculations as two elements are dropped and again added to  new sub- 

lists. Conversely, transition operators that change the order of elements within a sub-list do not affect 

the overall cost (as addition is commutative). Hence for the inversion and reposition operator slots in 

the table, None is given (i.e. c; = ci.,). 

The effect of each of the transition operators on each of the templates is considered in Table 4. The 

abbreviations used in this table are: 

NP - it is not possible to perform the indicated transition on the template. For example, if 

a template has only one sub-list (such as Template I), it is not possible to use a transition 

operator that involves two sub-lists (such as move). 

NW - the resulting incremental cost expression has a greater complexity that the original 

expression. 

None - there is no resulting change in the objective cost for this template with this 

transition operator. 
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4.6 Search Engine Implementation 

The following describes how each of the search engines is implemented within the framework of the 

general solver system. Due to the opportunities that exist to create parallel implementations of TS, 

both a serial and parallel version are described. 

The SA search engine implements the cooling schedule called Q8-7 ' (Connolly 1990, 1992) as it has 

shown to be quite successful (Abramson and Randall 1998; Connolly 1990, 1992) (Algorithm 6). The 

cooling schedule is based on reheating the temperature a number of times throughout the search (see 

Figure 17). The temperature to which it reheats is always less than the previous reheating point. The 

number of times this reheating occurs as well as the interval between reheats can be altered. Therefore, 

if there is a long interval between reheating points, fewer reheatings will occur within the fixed 

runtimes (as used in this study) than if the interval between reheating points is short. The SA engine 

also has an option that allows it to perform as many reheats as possible in order to try to reach a given 

solution quality. 

E 
E 
Q) 

B 
Q) 

E-r 

Iterations 

Figure 17: A graphical representation of the SA reheating schedule. 

According to Connolly (1990, p. 96) 48-7 derives its name "from the fact that it was the seventh modification of the eigth 
annealing scheme tested on the QAP by the author". 
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The GS engine follows the pseudocode given in Algorithm 2. Unlike SA, GS searches the 

neighbourhood of the current solution in order to find a suitable replacement. As a result of using 

different transition operators, there are a number of possible neighbourhood structures (described 

below). 

Move: The neighbourhood consists of moving each element from its sub-list to the end of 

each other sub-list in the solution. For instance, if an element at x(1,l) is in a solution 

having three sub-lists, two moves involving this element would be to place it at the end of 

sub-list 2 and sub-list 3. 

Swap: The swap neighbourhood is composed of a set of pairs of elements. A pair 

consists of two different elements of the list. This set contains all possible combinations 

n(n  - 1) 
of elements. Given n elements in a list, this equates to - neighbours. 

2 

Inversion: The inversion neighbourhood consists of pairs of elements between which the 

sequence can be reversed. Therefore, both elements of a pair must be located on the same 

sub-list. The neighbourhood is a subset of the swap neighbourhood. 

Reposition: The reposition neighbourhood consists of each combination of element and 

position on that element's sub-list. For instance, if sub-list 1 has a length of 4, the 

possible transitions available to the element at x(1,l) are to reposition it at positions 2,3 

and 4 on the sub-list. 

Add: The neighbourhood consists of adding each element value in the legal range to the 

end of each sub-list. For instance, if sub-list 1 contains two elements and the value range 

is given by 11x14, element x(1,3) can take on the values { 1,2,3,4). 

Drop: The neighbourhood consists of dropping each element from its place in the current 

solution. Therefore the size of the neighbourhood is the number of elements in the list 

structure. 

Change: The neighbourhood consists of the set of transitions in which each element in 

the solution structure changes its value to a different value in the legal range. For 

instance, if the value range of the solution is 11x14 and x(l,l)=2, the values that x(l , I )  

can change to are { 1,3,4). 

Note: Neighbourhoods only incorporate members that do not violate the list and problem constraints. 

GS terminates once it encounters a local optimum. The existence of a local optimum is determined in 

the following way. If the current transition operator fails to find an improved solution, each of the 

other active transition operators are tested instead. If each of these cannot produce a better solution, 

then a local optimum has been encountered. 



Both the sequential and parallel version of the TS engine follows the pseudocode given in Algorithm 3. 

The neighbourhood structures are the same as those described in Section 4.6.2. 

4.6.3.1 Sequential 

The TS engine allows the tabu list size to be set6. This parameter governs the number of iterations that 

a particular transition will stay tabu. The tabu list is implemented as a matrix. This approach has been 

adopted by a number of other researchers (Osman 1993,1995; Randall and Abramson 1998; Taillard 

1991) and has been shown to be quite effective. The tabu list in this system records whether a 

particular element has been placed on a certain sub-list. If the position of an element on a sub-list is 

important (for instance, ordering problems such as the TSP and QAP), the tabu list records the element 

against the position number as well. Hashing vectors are an alternative means of representing a tabu 

list and can easily be generalised across problem type (Woodruff and Zemel 1993). However, while 

hashing vectors require only a small amount of memory, their use as the tabu list mechanism can 

degrade the performance of the search process (Glover and Laguna 1997). 

4.6.3.2 A Parallel Implementation of the Solver 

In recent years, parallel processing hardware platforms have become increasingly more available. This 

has meant potential increases in the performance of search algorithms for COPS. TS is particularly 

well suited for parallel implementation and the performance is generally scalable (Glover and Laguna 

1997). Therefore, efficient parallelisation strategies can lead to significant savings in the amount of 

computational time required to solve large size problems. This is unlike SA which is an inherently 

sequential algorithm, however some parallelisation strategies exist; see van Laarhoven and Aarts 

(1987) and Ramanujam and Sadayaappan (1995) for a description of these. While it is possible to 

implement a parallel GS, the benefit would not justify the development effort. This is due to the fact 

that GS is a limited search technique that cannot overcome the first local optimum it encounters. 

This following sub-section reviews a number of parallelisation strategies suitable for TS and describes 

the implementation of the one that has been adopted for the general system. The parameters of the 

parallel TS  engine (such as tabu list size and neighbour selection probability) are the same as in the 

sequential version. 

4.6.3.2.1 A Review of Parallelisation Strategies for Tabu Search 

There are a number of strategies available and these can be organised in a taxonomy as in Crainic, 

Toulouse and Gendreau (1997) and Glover and Laguna (1997). Combining parallelisation strategies 

"he tabu tenure is varied between 1 and the tabu list size throughout the search process. This is done so as to introduce some 
element of intensification and diversification into the search (Glover and Laguna 1997, p.48). 



has also proven effective, as demonstrated by Badeau et al. (1997). Some of the more common may be 

summarised as: 

Parallel Evaluation of Neighbours: This method is an implementation of the master slave 

model and works on the premise that the most computationally expensive part of tabu 

search is the evaluation of the neighbours (corresponding to low level parallelism). Given 

P slave processors, the neighbourhood is divided equally among the processors. Each 

processor performs the transitions along with the evaluation of the cost function and 

constraints and sends its best neighbour back to the master processor. The master 

processor then determines the best neighbour among all that it has received (according to 

the tabu rules) and establishes this as the next solution. This approach can require a 

substantial amount of communication time because of the master slave configuration, but 

can be easily applied to a range of COPS. This method can be illustrated by considering 

the QAP. Given that a possible transition operator consists of swapping pairs of facilities, 

each processor can be assigned a subset of these pairs to evaluate. See Taillard (1993) 

and Garcia, Potvin and Rousseau (1994) as examples of the implementation of this 

method. 

Parallel Independent Tabu Searches: In this approach, a number of sequential tabu 

searches are run simultaneously across processors on a particular problem. Each search is 

different as key parameters such as random seed, initial solution or tabu list size are 

varied. This method is particularly suitable to parallel architectures in which each node 

behaves as an independent system, such as MIMD computers. Because of the 

independence of the searches, no communication is required between the processors. See 

Taillard (1991) for an example of the implementation of this method. 

Parallel Interacting Tabu Searches: This approach is similar to the previous method, 

except that an interaction between the searches occurs at given intervals, (De Falco, Del 

Balio and Tarantino 1996). This consists of determining which search has been the most 

successful and transferring its solution to the other search processes. Each search then 

continues with an empty tabu list from this solution. This approach can have quite a large 

communication overhead due to the necessity of broadcasting entire solution structures. 

Search Space Division: Each processor is assigned a subsection of the search space. A 

tabu search subsequently explores its subsection and sends back the partial solution to the 

master process once it has finished (De Falco et al. 1996). These partial solutions are 

combined into a final solution. While this method has low communication costs, the 

process of dividing the search space is very problem specific and may not be possible for 

all problems. An example of this method deals with the VRP (Taillard 1993). Each 

processor is assigned a unique vehicle tour to optimise. At the end of the search, each 



processor sends its tour to the master processor that assembles these tours and computes 

the overall cost. 

Due to the solver's capacity to process general problem formulations, methods 1 and 2 are 

implemented. Because each processor is an independent system, method 2 can be easily achieved by 

running a number of sequential tabu searches on different nodes of an MIMD computer. Despite the 

communication cost overhead associated with method 1, this approach has been adopted because its 

applicability across problem type is required for the general list modelling system. This decision is 

also influenced by the fact that the machine used here has an MIMD architecture (coarse grain and 

loosely coupled) that is suitable for this parallelisation approach. The parallel code is implemented 

using the MPI library version 1 .O. 

4.6.3.2.2 Division of the Neighbourhood 

At each transition, the master processor calculates an appropriate sub-neighbourhood to delegate to 

each of the slaves based on the transition to perform, the current solution and the number of available 

processors. The members of the neighbourhood are divided evenly amongst the processors (see 

Section 4.6.2 for a description of each of the neighbourhoods of the transition operators). In the event 

N 
that - (where N is the number of neighbours and P is the total number of processors) is non-integral, 

P 

the last processor is assigned a different size neighbourhood subset to evaluate than the othel 

processors. This is calculated by the following rule: 

N N 
if ( ( -  - trunc(-)) < 0 . 5 )  

P P 
N 

S = trunc ( - ) 
P 

else 

Where: 
trunc (x) returns the integer component of x. 
s is the number of neighbours the processors 1 through P- 1 receives. 
Sp is the number of neighbours that processor P receives. 

This procedure can lead to a slightly uneven distribution of neighbours to processors. However, as the 

N 
numerator in -becomes large (i.e. more neighbours), the ratio of left over neighbours to allocated 

P 

neighbours becomes small. Hence, for large size problems, this method of allocation should make little 

difference to the performance of the TS engine. 



4.6.3.2.3 The Parallel Algorithm 

Figure 18 shows the inter-processor communication needed for the parallel evaluation of neighbours 

method. The master and slave processes are synchronised by the communication messages. The 

master's task is to coordinate the entire TS process as well as to control key data structures such as the 

tabu list and solution memory. It is responsible for delegating the neighbourhood evaluation tasks to 

the slaves as well as determining which neighbour will form the next solution. In addition, the master 

also acts as a slave as it evaluates a subsection of the neighbourhood. The master's and slaves' 

activities are described fully in Algorithm 8 and Algorithm 9 respectively. The communication 

messages in Figure 18 are noted in these algorithms. Note: the TS mechanics are exactly the same as 

those outlined in Algorithm 3. 

. . . . .  .FL . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  F\ Processor . . . . .  F 2  F 3 . .  . . . . . . . . . .  jT 
Processors ( l . . N )  

. . - . -  .F4 . . . . - . . . . . .  

. . . . .  .FI  . . . . . . . . . . .  

Where: 
N is the number of available slave processors. 
F l  is the message of the initial solution from the master to the slaves. 
F2 is the message describing the subsection of the neighbourhood that each slave evaluates. 
F3 is the message of each slave's best neighbour to the master processor. 
F4 is the solution update. 
F5 is the signal informing the slaves whether to terminate or not. 

Figure 18: Block diagram of the communications between the master processor and the slave processors 
for the parallel TS algorithm. 

Generate an initial feasible solution; 
Broadcast the initial solution to the slaves (send message Fl); 
While (termination condition not met) 

Partition the neighbourhood into equal sizes and send partition 
details to the slaves (send message F2); 
Evaluate each neighbour from own neighbourhood and retain the 
best neighbour; 
Collect each slave's best neighbour (receive messages F3); 
Determine the most suitable neighbour (using the tabu list 
and aspiration rules) and use it to form the next solution; 
Broadcast the attributes of the chosen transition to the slaves 
(send message F4); 
Update the tabu list; 
Determine if the termination condition has been met; 
Broadcast the termination information to the slaves 
(send message F5); 

End While ; 
Report best obtained solution; 
End. .. 

Algorithm 8: Pseudocode for the master processor. 

'~eceive Initial solution (receive message Fl); 
While (terminate signal is not "stop") 

Receive details of neighbourhood partition to evaluate 
(receive message F2) ; 



Evaluate the neighbours in this partition; 
Send the transition attributes of the best neiahbour to the .+ 

master processor (send message F3) ; 
Receive the attributes of the chosen transition and update 
the local copy of the solution (receive message F4); 
Receive the termination information signal 
(receive message F5) ; 

End While; 
End. 

Algorithm 9: Pseudocode for the slave processors. 

4.7 Generating an Initial Solution 

The generation of initial feasible solutions to COPS can be a difficult task according to Goldberg 

(1989). This is especially so for solver systems (such as this one) that are able to solve a variety of 

problems. An alternative to automatic generation is to allow some problem specific means of 

generating initial solutions such as using constructive heuristics or the requirement that solutions be 

produced manually. While these methods may produce efficient initial solutions, a more general 

approach that takes advantage of list structures is proposed here. The following procedure is capable of 

finding initial feasible solutions to all of the problems described in Section 3.3.2 with a relatively small 

amount of computational effort (typically < 1 CPU second). 

The method uses a two-stage process in order to form initial feasible solutions. The first stage attempts 

to satisfy the list constraints while the second is concerned with obtaining the feasibility of the problem 

constraints. Once the two sets of feasibility have been established, the system invokes the meta- 

heuristic search algorithm. 

The first stage of the algorithm consists of the following process (Algorithm 10). Initially, a set of 

feasible element values is produced, according to the Count and Value Range constraints. Following 

this, the element values are distributed throughout the list structure to ensure the length bounds on the 

lists are valid. Accordingly, a solution that satisfies the list constraints is established. In many cases 

such as the TSP and QAP that have no problem constraints, this initial solution is fully feasible and the 

search process can begin immediately. 



/ *  Create the vector of element values to place in the solution 
list * /  
Case ((min-count(x)=l) AND (max-count(x)=l)) 

For i=list-value-lowerbound, list-value-upperbound 
elements-tojlace(i-list-~alue~lowerbound + l)=i; 

End For; 
Case (max-count (x) =1) 

j=list-value-lowerbound; 
For i=list-value-lowerbound, list-value-upperbound 

If (randomly-select()=true) 
elements-to_place(j -list-value-lowerbound + l)=i; 
j=j+l; 

End If; 
End For; 

Case ( (min-count (x) =1) OR (unspecified) ) 
For i=list-value-lowerbound, list-value-upperbound 

elements-to_place(i - list-value-lowerbound + l)=i; 
End For; 
j=list-value-lowerbound; 
For i=list-value-lowerbound, list-value-upperbound 

If (randomly-select()=true) 
elements-tojlace(j -list-value-lowerbound + l)=i; 
j=j+l; 

End If; 
End For; 

/ *  Place the elements * /  
Randomly rearrange the elements contained in the elements-tojlace 
vector ; 
For i=l,length(elements-tojlace) 

sublist=succ(x,sublist); 
position=~x(sublist) I; 
While (x(sublist,position) does not violate the list 
length bounds) 

sublist=succ(x,sublist); 
position=~x(sublist) I ;  
If (each sublist has been tried without success) exit and 
report failure; 

End While ; 
x(sublist,position)=elements~to_place(i) ; 

End For; 
End. 

Where: 
x is the solution list. 
elements-tojlace is a vector containing the element values to place on the 
solution list. 
randomly-select ( ) is a function that generates a random state from the set 
(true, false). 
length ( i ) returns the length of vector i. 
succ (x, i ) returns i+l unless i = I x I at which i=l. 

Algorithm 10: The algorithm for forming an initial solution that satisfies the list constraints. 

If problem constraints are present, the next stage is performed. As the constraints are arbitrary 

algebraic equations, it is difficult to devise a general algorithm that modifies the generated solution so 

that it is feasible. However, a meta-heuristic search engine can be applied to establish a feasible 

solution by allowing it to minimise the sum of the constraints' violation (49). When this sum is equal 

to 0, a feasible solution has been obtained. Constraint violation is calculated according to the relational 

operators that are present in the constraints. For instance, if the sign of a constraint is 5 and the left- 



hand side is larger than the right-hand side, the net difference is the amount of constraint violation. 

This is shown in Equation (43). The constraint violations (44) - (48) for the other signs are calculated 

in a similar manner. 

if(rhs, = lhs,),l 
(#) cv. = 

0, otherwise 

N 

Minimise cvi 
i=l 

Where: 
N is the number of constraints. 
la1 is the absolute value of a. 
MAX(a,b) returns the larger value of a and b. 
cvi is the constraint violation of constraint i (15i5N). 
lhs, is the evaluation of the left hand side of constraint i (15iSN). 
rhs; is the evaluation of the right hand side of constraint i (l<iSN). 

4.8 Practical Limitations of the System 

The general list model for COPS is flexible and broad in its approach. Due to its generality, 

implementing a practical solver based on the modelling system presented in Equations (10) - (16) 

would be both expensive to develop and slow to run. In order to produce an efficient system that is still 

able to solve a wide range of problems (like those outlined in Table l), certain restrictions have been 

placed on the general model. These are summarised below: 

The list structure is limited to one level of sub-lists as this is adequate to express the 

assignment of objects to groups. 

There are four categories of Count constraints. The most common of these is (1) 

(min-count(x)=l and max-count(x)=l) that indicates that each value appears exactly 

once on the list structure (i.e. a permutation). There is also (2) max-count(x)=l (each 

value can appear once or not at all) and (3) min-count(x)=l (each value appears at least 

once or many times). This attribute may be omitted and hence (4) there is no restriction 

on how many times a value can appear on the list. 

Count and value range statements apply across the entire list structures rather than to 

individual sub-lists. 



The more limited list model that the general system implements is given by Equations (50) - (57). 

Despite its restricted nature, this modelling system can express all of the problems given in Table I. 

Optimise flx) 
s. t. 

lhs, (x) 
> 

lbl < I x l < bl i]] r:] 

lbv I x(i J) I ubv l l  i 5 1x1 
I l  j 5 Ix(i)l 

Where: 
lbl is the lower bound of the main list's length. 
ubl is the upper bound of the main list's length. 
lbl; is the lower bound of sub-list i's length. 
ubl; is the upper bound of sub-list i's length. 
lbv is the lower bound value that can be contained on the list. 
ubv is the upper bound value that can be contained on the list. 

4.9 Summary 

The implementation of the list modelling system as a practical solver has been described in this 

chapter. The system allows algebraic descriptions of COPS to be compiled in order to produce an 



individual solver. The syntax of description files is similar to the well-known GAMS language with 

some modifications to account for the list modelling notation. Other important issues related to the 

production of the general solver are; how a transition is made in the search space (feasibility 

maintenance and restoration); how to select neighbours to evaluate at each iteration for GS and TS; the 

available incremental cost templates and their output; and how to generate initial feasible solutions to a 

range of problems. In addition, the mechanics of the SA, GS and TS search engines are described. The 

TS  engine has also been implemented as a parallel program that is suitable for MIMD machine 

architectures. 

In the interests of efficiency, the current system accepts problems that have restricted list models. For 

instance, list models can contain only one level of sub-lists. Despite the restrictions, many COPS can 

be successfully modeled using this approach. In order to test the effectiveness of the system, a range of 

experiments are proposed and performed. These experiments and the results are described in Chapter 

5. 



Chapter 5: Methodology and Results 

5.1 Experimental Overview and Rationale 

The system is tested on many standard problems from the literature. As there are a large number of 

parameters that can be set, a full test of its performance is impracticable. The main objective is to 

choose a suitable subset of problems, problem instances and parameters to determine the effectiveness 

of the system. However, there are many variations of SA and TS algorithms that could also be used 

and these may give different performances than recorded here. Nevertheless, the general system is 

compared against widely available COP solver packages to gauge its performance as well as to draw 

some conclusions about different parametric choices. 

There are a number of ways that problems can be modeled using list notation (as is evident by 

Appendix B). In this work, list models that are best suited to iterative search are used. These are 

models that provide undulating cost landscapes rather than flatter surfaces. This is quite a common 

approach that has been used in many studies, including Abramson and Randall (1998), Chams et al. 

(1987) and Johnson et al. (1991a, 1991b). For instance, there are two different formulations of the bin 

packing problem. The formulation adopted here minimises the excess weight for a given number of 

bins rather than minimising the actual number of bins. This is because the latter model has many 

equivalent packings (effectively flattening the search surface) that can lead to unproductive wandering 

through search space. Another example is the graph colouring problem in which a feasible colouring 

is sought using a fixed number of colour classes. The common formulation requires that the number of 

colour classes is minimised. The other problem formulated in this manner is the maximum clique 

problem. 

The computing platform that is used to conduct all of the experiments discussed herein is an IBM SP2 

consisting of 22 RS6000 model 590 nodes connected by an MIMD architecture7. Each node has a peak 

performance of 266 MFLOPs (Millions of Floating Point Operations Per second). This computer is 

operated by Queensland Parallel Supercomputing Facility (QPSF) which is a consortium funded by 

Griffith University, University of Queensland, Queensland University of Technology, University of 

Southern Queensland, James Cook University, University of Central Queensland, Bond University and 

the Commonwealth Government of Australia. 

The sequential SA, TS and GS runs use only a single RS6000 processor. 



5.2 Problems Classes and Instances 

The problems used to test the general system are representative of those given in Table 1. In some 

cases, all published instances have been used (such as for the Car Sequencing Problem), otherwise a 

few instances of each problem type are used. 

Table 5 describes each of the COPS. The Problem heading gives the broad name of the problem while 

Instance is the name that is used to refer to a particular problem. The Description column provides a 

brief description of the size of the problem instance. The last two columns indicate the Optimal Cost 

(if proven optimality has previously been obtained for that problem in the literature) and the Best 

Known Cost (otherwise). 

Problem 

Car Sequencing Problem 
(csp)  

Bin Packing Problem 
(BIN) 

Graph Colouring Problems 
(GRAPH) 

Uncapacitated Single 
Allocation P Hub 
Problem(USApHMP) 

Problem 
Sources 

Smith et al. 
(1 996b) 

Beasley 
( 1990) 

Johnson et 
al. (1991b) 

Emst and 
Krishna- 
moorthy 
(1996b) 

Instance 

n20t l 
n20t2 
n20t3 
n20t4 
n20t5 
n40t 1 
n40t2 
n40t3 
n40t4 
n40t5 
n60t 1 
n60t2 
n60t3 
n60t4 
n60t5 
n80t 1 
n80t2 
n80t3 
118014 
n80t5 
binlal 
binla2 
bin l a4 
binla6 
bin2al 
bin2a2 
bin2a3 
bin2a4 
bin3al 
bin3a2 
bin3a3 
bin3a4 
C125.1 
C125.5 
C125.9 
C250.1 
C250.5 
C250.9 
ap20a2 
ap20a3 
ap20a4 
ap20a5 
ap25a2 
ap25a3 
ap25a4 
ap25a5 

Description 

20 cars, class 1 
20 cars, class 2 
20 cars, class 3 
20 cars, class 4 
20 cars, class 5 
40 cars, class 1 
40 cars, class 2 
40 cars, class 3 
40 cars, class 4 
40 cars, class 5 
60 cars, class I 
60 cars, class 2 
60 cars, class 3 
60 cars, class 4 
60 cars, class 5 
80 cars, class I 
80 cars, class 2 
80 cars, class 3 
80 cars, class 4 
80 cars, class 5 

120 i tems 
120 items 
120 items 
120 items 
250 items 
250 items 
250 items 
250 items 
500 items 
500 items 
500 items 
500 items 

125 nodes, 736 edges 
125 nodes, 389 1 edges 
125 nodes, 696 1 edges 
250 nodes, 32 18 edges 
250 nodes, 15668 edges 
250 nodes, 27897 edges 

20 nodes, 2 hubs 
20 nodes, 3 hubs 
20 nodes, 4 hubs 
20 nodes, 5 hubs 
25 nodes, 2 hubs 
25 nodes, 3 hubs 
25 nodes, 4 hubs 
25 nodes, 5 hubs 

Optimal 
Cost 

48 
49 
49 
48 
99 
1 00 
102 
100 
198 
20 1 
202 
204 

172816.7 
151533.1 
135624.9 
123130.1 
175542.0 
155256.3 
139197.2 
123574.3 

Best Known 
Cost 
5 8 
40 
29 
10 
150 
146 
94 
66 
33 
352 
238 . 
152 
105 
58 
562 
330 
215 
146 
82 

772 

5 
17 
43 
8 

29 
71 



' Problems gapl-1 - gap8-l are maximised while gapA5-100 - gapA20-200 are minimised. This is to keep the results consistent 
with Chu and Beasley (1997). 

Problem 

Uncapacitated Multiple 
Allocation P Hub 
Problem(UM ApHMP) 

Quadratic Assignment 
Problem(QAP) 

Traveling Salesman 
Problem(TSP) 

Generafised Assignment 
Problem(GAP)' 

Graph Partitioning 
Problem(GPP) 

Multiple Knapsack 

Problem 
Sources 
Ernst and 
Krishna- 
moorthy 
( 1996a) 

Burkard et 
al. (1997) 

Reinelt 
(1991) 

Beasley 
( 1  990) 

Johnson et 
al. (1991a) 

Beasley 
Problem(MKP) 

Maximum Clique 
Problem(MCP) 

Time Tabling Problem 

Instance 

ap lOa2 
aplOa3 
ap lOa4 
ap l O d  
nug08 
nugl2 
nugl5 
nug20 
nug30 
ste36a 
tho40 
esc64a 
sko72 
will00 
gr24 

swiss42 
hk48 
ei15 1 

brazi158 
st70 

kroA 100 
ch130 
a280 

gapl-l 
gap2- l 
gap3-l 
gap4- l 
gap5- l 
gap6- l 
gap7-l 
gap8-l 

gapA5- 100 
gapA5-200 
gapA10-100 
gapA 10-200 
gapA20-100 
gapA20-200 

G124.02 
G124.M 
G124.08 
G124.16 
G250.01 
G250.02 
G250.04 
G250.08 
weingl 

(1990) 

Battiti and 
Protasi 
(1 995) 

Abramson 
and Dang 

(1993) 

Description 

20 nodes, 2 hubs 
20 nodes, 3 hubs 
20 nodes, 4 hubs 
20 nodes, 5 hubs 

. 8 facilitiesllocations 
12 facilitiesllocations 
15 facilitiesllocations 
20 facilitiesllocations 
30 facilitiesllocations 
36 facilitiesllocations 
40 facilitiesllocations 
64 facilitiesllocations 
72 facilitiesllocations 
100 facilitiesllocations 

24 cities 
42 cities 
48 cities 
51 cities 
58 cities 
70 cities 
100 cities 
130 cities 
280 cities 

15 jobs, 5 agents 
20 jobs, 5 agents 
25 jobs, 5 agents 
30 jobs, 5 agents 
24 jobs, 8 agents 
32 jobs, 8 agents 
40 jobs, 8 agents 
48 jobs, 8 agents 
100 jobs, 5 agents 
200 jobs, 5 agents 
100 jobs, 10 agents 
200 jobs, 10 agents 
100 jobs, 20 agents 
200 jobs, 20 agents 

124 nodes, 298 edges 
124 nodes, 635 edges 

124 nodes, 1240 edges 
124 nodes, 2542 edges 
250 nodes, 662 edges 

250 nodes, 1224 edges 
250 nodes, 2566 edges 

28 items, 2 knapsacks 
pb6 

weishl2 
sent01 
sent02 

weish 15 
weish25 
weish29 

johnsong-2-4 
johnson16-2-4 

keller4 
c-fat200- 1 

brock200-2 
brock200-3 
brock200-1 

hdtt4 
hdtt5 
hdtt6 
hdtt7 
hdtt8 

Optimal 
Cost 

163603.94 
131581.79 
107354.73 
86028.88 

107 
289 
575 
1285 
3062 

1272 
1273 
11461 
426 

25395 
675 

21282 
61 10 
2579 
336 
434 
580 
656 
563 
76 1 
942 
1133 
1698 
3235 
1360 
2623 
1158 
2339 

141278 

Best Known 
Cost 

4763 
120258 

58 
33158 
136522 

13 
63 
178 
449 
29 
114 
357 
828 

40 items, 30 knapsacks 
50 items, 5 knapsacks 

60 items, 30 knapsacks 
60 items, 30 knapsacks 
60 items, 5 knapsacks 
80 items, 5 knapsacks 
90 items, 5 knapsacks 
28 nodes, 210 edges 

120 nodes, 5460 edges 
17 1 nodes, 9435 edges 
200 nodes, 1534 edges 
200 nodes, 9876 edges 
200 nodes, 12048 edges 
200 nodes, 14834 edges 
i 20 tuples, 30 periods 
150 tuples, 30 periods 
180 tuples, 30 periods 
210 tuples, 30 periods 
240 tuples, 30 periods 

776 
6339 
7772 
8722 
7486 
9939 
9410 

4 
8 

12 

0 
0 
0 
0 
0 

11 

12 
15 
21 



Table 5: Problem classes and instances that are used in this study. Note: as objective costs are typically 
reported dimensionless in the literature, units are not shown here. 

Problem 

5.3 Parameter Settings 

The performance of the system is tested by varying the following key groups of parameters: 

Problem 
Sources 

The transition operators and the probability of applying these operators (see Table 6 )  

The search engine specific parameters (see Table 7) 

The parameters are set relatively coarsely. This is because the amount of computing time that would be 

involved in testing all combinations of parameter settings would be prohibitive. Therefore, the 

parameter settings outlined here are used to conduct tests that consist of runs involving small amounts 

of Central Processor Unit (CPU) time (referred to as the standard tests). Based on the outcome of 

these experiments, suitable parameter settings for different problem types can be derived. 

Instance 

ttgenl 
ttgen2 

The most time consuming set of experiments is the variation of the transition operator probabilities. A 

discussion of probability settings can be found in Section 3.4.1.2. As such, a test set for each problem 

type has been devised and these are given in Table 6. For instance, the GAP has five settings in which 

Description 

275 tuples, 30 periods 
300 tuples, 30 periods 

the probabilities of the move and swap operators are { {1,0}, {0.5,0.5}, {0.2,0.8), (0.8,0.2}, adaptive) 

respectively. Note: for the adaptive setting, a=0.001 and N=10 is used. 

Optimal 
Cost 

0 
0 

Each set of probabilities for a particular problem type is given a TRANSITION SET REFERENCE NUMBER 

in order to uniquely identify the set in subsequent tables. Due to the large amount of computer time 

that could be required, a full exploration of transition probability parameter space (according to Table 

6 )  will only occur for the SA runs. The best transition probability set obtained for a particular problem 

type with SA is used for the GS and TS runs (this process is described in Section 5.8.3.1). 

Best Known 
Cost 



Table 6: Transition probability settings for each problem type. 

PROBLEM SET REFERENCE 
CLASS NUMBER 

CSP 1 
GPP I 
GAP 1 

2 
3 
4 
5 

BIN 1 
2 
3 
4 
5 

GRAPH 1 
2 
3 
4 
5 

USApHMP I 
2 
3 
4 
5 
6 

T r P  I 
2 
3 
4 
5 

TSP 1 
2 
3 
4 
5 
6 
7 
8 

Q AP I 
2 
3 
4 
5 
6 
7 

ppp 

8 
MCP 1 
MKP 1 

2 
3 
4 
5 
6 

UMApHMP 1 
2 
3 
4 
5 
6 

Table 7 gives a brief description of the parameters required for the SA and TS engines (Note: GS needs 

no engine-specific parameters). A description of the implementation of each search method is given in 

Section 4.6. 

Move 

1 
0.2 
0.8 
0.5 

1 
0.2 
0.8 
0.5 

1 
0.2 
0.8 
0.5 

1 
0.5 
0.2 
0.8 
0.4 

1 
0.2 
0.8 
0.5 

0.2 
0.4 
0.8 
0.3 

Swap 
1 
1 

0.8 
0.2 
0.5 

0.8 
0.2 
0.5 

0.8 
0.2 
0.5 

0.5 
0.8 
0.2 
0.4 

0.8 
0.2 
0.5 

1 

0.33 
0.8 
0.1 
0.1 

1 

0.33 
0.8 
0.1 
0.1 

PROBABILITY 

Inversion 

1 

0.33 
0.1 
0.8 
0.1 

1 

0.33 
0.1 
0.8 
0.1 

OF 
TRANSITION 

Reposition 

0.2 

1 
0.33 
0.1 
0.1 
0.8 

1 
0.33 
0.1 
0.1 
0.8 

0.2 
0.4 

0.3 

0.5 
0.25 
0.1 
0.4 

0.2 
0.1 
0.1 
0.1 
0.33 

0.5 
0.25 
0.1 
0.4 

0.2 
0.1 
0.1 
0.1 
0.33 

SELECTING 
OPERATORS 

Add 

0.33 
0 
0.5 
0.8 
0.2 

0.2 

0.2 
0.33 

Drop 

0.33 

1 

1 

Change 

---,- 

1 
0.33 

Adaptive 

1 

1 

1 

1 

1 

1 

1 



Table 7: Search engine-specific parameters. 

Search Engine 
S A 
TS 

GS 

5.4 Termination Conditions 

Parameters 
Reheating run length=( 1000,5000, 10000)x(ubv - lbv) 
Tabu list length=(Problem sizeY) 
Neighbourhood evaluation probability=(O. 1, 0.5, 1 .O) 
Neighbourhood evaluation probability=(O.l, 0.5, 1 .O) 

For the standard trials, each run on the SP2 platform receives 1600 seconds of CPU time (chosen due to 

the constraints of the computer's job scheduling system). If the optimal solution is known for a 

particular problem instance, the run is terminated once this has been reached. As mentioned in Section 

4.6.2, GS terminates once it encounters a local optimum. 

For those problems that: (a) the system has not reached the optimal cost in the trial runs; or (b) the 

optimal is not known and the best known has not been reached or improved upon in the trial runs; 

further tests are carried out with the best parameter set. These are referred to as the extended runs and 

each terminates after 6400 seconds of CPU time has elapsed. 

5.5 Benchmarking Against Other Software Packages 

In order to evaluate the performance of the general system, it is compared with existing optimisation 

packages. A variety of software packages, ranging from commercial OR codes to special-purpose 

heuristics for particular problems, have been obtained for this purpose. While it is not possible to test 

all alternative packages, it is believed that these will give a good indication of the general system's 

performance. Table 8 gives a brief description of each package. 

Table 8: Optimisation packages that are compared with the general solver. 

Name 
Optimisation Subroutine Library (OSL) 
LINDO 

tsp-solve 

QAPS IM 
QAPBB 

SA-CSP 

dfmax, dfclique 

Recursive Largest First (RLF) 

Setting the size of the tabu list to an indicator of problem size has been used with some success by Taillard (1991, 1997). For 
instance: the tabu list size for gapl-1 (15 jobs) becomes 15, and hk48 (48 cities) is 48. 

Problem(s) 
all (except TTP and BIN (a)) 
all (except TTP and BIN (a)) 

TSP 

Q AP 
QAp 

CSP 

MCP 

GRAPH 

Description 
A commercial OR package by IBM (IBM 1990). 
A commercial OR package by Lindo Systems (Schmge 
1997). 
A collection of heuristic solvers for the TSP. This 
product is from the GNU Free Software Foundation 
and selects the most appropriate solver for each type of 
TSP (Hurwitz 1994). 
An SA solver for the QAP (Burkard et al. 1997). 
A Branch and Bound code for the QAP (Burkard et al. 
1997). 
A special purpose SA code provided by K. Smith and 
used in Smith et al. (1996b). 
Special purpose branch and bound codes used in Battiti 
and Protasi (1995). 
A heuristic used by Johnson et al. (1991b). 



These packages are run according to the specifications given by their technical documentation. Both 

quality of solution, and time to reach the best solution, are recorded for each package on the problems 

that are run. The 0-1 ILP formulations of the test problems used by Lindo and OSL are given in 

Appendix C. 

5.6 Feasibility Restoration Runs 

In order to test the effectiveness of the feasibility restoration implementation outlined in Section 4.3, 

the GAP instances from Table 5 are used. The GAP was chosen as the test-bed as it is the only 

problem type in the test collection that has problem constraints and can utilise the move transition 

operator. Feasibility restoration will be tested with the SA and TS engines. 

5.7 Parallel Runs 

The primary concern of testing the parallel TS engine is the evaluation of the parallel speedup and 

efficiency of the TS engine, rather than solution quality (as this is tested extensively with the sequential 

version of the code). Table 9 lists the problems and problem instances that are used to test the paralle! 

tabu engine (a subset of those in Table 5). The best transition operator set for each problem type is 

used. This is determined from the standard runs using the process outlined in Section 5.8.3.1. Each 

problem is run for a fixed number of iterations on dedicated nodes. Wall clock time as opposed to 

CPU time is used to measure the time taken for each run. The number of processors is also varied from 

I node to 12 nodes in order to determine the effectiveness of the parallel code. 

The guidelines for reporting parallel experiments as outlined in Barr and Hickman (1993) are followed. 

The most common measure of effectiveness of a parallel algorithm is given by speedup. Speedup is 

defined by (58) (Ban and Hickman 1993). 

Time to solve a problem with the fastest serial 

code on a specific parallel computer 
speediip = 

Time to solve the same problem with the parallel 

code using P processors on the same computer 

According to B a r  and Hickman (1993), average values should not be used in (58) and would require a 

new definition of speedup. As a result of this, only one seed per combination of problem type and 

processor grouping is used. 



In order to ascertain the effectiveness of the parallel code, the efficiency for each problem is computed 

by Equation (59). 

speedup 
efficiency = 

P 

Speedup and efficiency tables and graphs are produced from the collected data. 

Table 9: Problem classes and instances that are used to test the parallel tabu engine. 

5.8 Reporting the Results 

A large amount of raw data is gathered as a result of these experiments. In order that any valid 

conclusions are reached, the results are analysed and reported in a succinct manner that is recognised 

by the operational research and broader scientific community. To accomplish this, the reporting of the 

results is divided into three categories: 

Numerical Data 

Qualitative Analysis 

Statistical Analysis 

As it is expected that the data will be highly non-normally distributed, non-parametric descriptions and 

analyses are predominately used. 



5.8.1 Numerical Data 

Each combination of problem instance, search engine and parameter set is run across 10 random seeds 

(referred to as a trial set). The random seeds control probabilistic search engine choices, such as which 

neighbour to evaluate in TS and GS, as well as the generation of the initial solutions. Because many 

problem instances are used, the application of different random seeds will reduce variability in the 

results (Barr et al. 1995). For each run, the best solution cost and the corresponding CPU time'' is 

recorded. This information is presented in a series of tables in the form of summary statistics. Each 

trial set is described using: 

Min -The minimum result of the trial set. 

Med - The median (mid-point) of the trial set. This is a measure of the central tendency 

of the data. 

Max - The maximum of the trial set. 

IQR - The Inter Quartile Range of the trial set. IQR is a measure of the dispersion of the 

results. It is defined as the difference between the first and third quartile points of the 

trial set (Emory and Cooper 1991). 

5.8.2 Qualitative Analysis 

The overall trends present in the result tables are highlighted. The qualitative analyses are made in 

terms of the solution quality achieved by the general solver as well as the amount of runtime required 

to obtain these solutions. 

5.8.3 Statistical Analysis 

Statistical analyses are performed in order to determine the effect of the transition operator sets and 

engine-specific parameters. As well as this, statistical analyses are used to calculate the best overall 

software package for each problem type. An a of 0.05 is used throughout. 

5.8.3.1 The Effect of the Transition Operator Sets and Engine-specific Parameters 

As well as the descriptive statistics mentioned previously, tests for significant differences in solution 

quality (gained from varying the transition operator sets and the engine-specific parameters for each 

problem) are conducted. This takes the form of the Kruskal-Wallis procedure (discussed in Sprent 

(1993)) with post-hoc analysis in order to detect individual differences. 

10 Runtimes are rounded to the nearest second due to the small variability in the SP2 timimg mechanism. For instance, a runtime 
of 0.35 seconds is rounded down to 0. 



5.8.3.2 Overall Comparison 

Statistical analysis can also be used to obtain a quantitative measure of the performance of the general 

system compared with other software packages. The analysis consists of two phases. 

The first phase rank-orders the performance of each applicable code on every problem instance. This is 

achieved by using the Kruskal-Wallis procedure. If a significant difference is detected on a particular 

problem instance, a post-hoc test is performed in order to determine where the differences lie. From 

this, the solvers can be ordered. Performance is calculated primarily on objective cost. If two 

algorithms are indistinguishable using the objective cost, runtime is used instead. For some problems 

(such as GRAPH and MCP), direct comparison between the competing solvers is not possible as the 

objective functions measure different quantities. 

The second phase determines the best overall solver for each problem type. This is achieved by 

analysing the ranks for each solver (generated in the first phase) again using the JSruskal-Wallis test. If 

a significant difference is detected, post-hoc procedures are carried out to determine where these 

differences lie. From this, the most effective solvers for a given problem type can be deduced. As 

RLF, dfmax and dfclique utilise a different objective function to the one used by the general solver, a 

ranking of their performance is made using a subjective analysis. 

5.9 Results 

5.9.1 Standard Runs 

The standard run tables (Table 45 - Table 47) are presented in Appendix A due to their large size. The 

following descriptions are qualitative analyses of the performances of the SA, TS and GS engines for 

each problem type based on a review of these tables. These analyses highlight the main trends present 

in the data with particular reference to the effects of the transition operator sets. A quantitative analysis 

using statistical methods can be found in Section 5.10 in which the performances of the solvers for each 

problem type are rank ordered. 

Note: in all cases except CSP and some GAP instances, the GS engine performed poorly. Typically GS 

returned inferior quality solutions in very short runtimes, compared with SA and TS. 



The search engines (in particular SA and TS) produced very good solutions, frequently finding better 

solutions than reported in Smith et al. (1996b). There was only one problem instance (n40t5) for which 

the engines could not obtain the best-known solution. SA and TS consistently produced a minimum 

solution cost of 354 whereas the Hopfield-Tank neural network used by Smith et al. (1996b) reached a 

cost of 352. 

BIN - 

Using SA, transition operator sets that incorporated the swap operator (sets 2 - 5) were all very 

effective in finding the prescribed bin packings. The use of the move operator in isolation (set 1) 

produced costs that were considerably worse than those obtained for the other sets. The TS engine 

found it difficult to produce the required bin packings for the large problem instances (i.e. bin3a1, 

bin3a2, bin3a3 and bin3a4). 

The smallest colouring for each problem instance attempted in Johnson et al. (1991b) is also used here 

(see Table 5 for these). These colourings could only be obtained by Johnson et al. (1991b) after many 

hours of computer processing time (and not at all for C125.9 and C250.9). As the final costs achieved 

by the SA and TS engines are relatively close to 0, it is not unreasonable to conclude that these 

solutions are of good quality. 

The optimal solutions were frequently found using SA and TS. While transition operator set 1 

performed consistently well in terms of solution quality, the runtimes were typically longer than for the 

other sets (sets 2 - 6). It is interesting to note that for this problem type, the use of the move operator 

in isolation (set 1) outperforms the other sets, while for the problems BIN, GAP and lTP,  the same 

transition operator set produced the worst results. 

For SA, transition operator sets 2,3,4 and 6 performed equally well in terms of solution quality. TS 

could not produce the optimal solution for aplOa4 and aplOa5, though it was at most 4% away in the 

worst case. 

For SA, the use of the swap operator helped to produce more efficient solutions than inversion or 

reposition. It is noted that the application of swap transition perturbs the current solution less than 



reposition and inversion. In general, the system performs extremely well on QAPs. This is 

characterised by the fact that TS finds solutions for the largest problem instance (wi1100) that are at 

most 1.5% away from the best-known solution cost. This is also achieved with a small amount of 

computational effort. 

TSP - 

For SA, the use of the inversion operator helped to produce more efficient solutions than swap or 

reposition. Like the QAP, it is noted that the application of inversion transition perturbs the current 

solution less than reposition and swap. The solver produced very poor solutions for a280. As this is a 

very large problem instance, it is expected that substantially more computer processing time would be 

required in order to find reasonable quality solutions. 

The SA engine frequently produces optimal solutions using transition operator sets 2 - 5. Very poor 

performance is recorded for SA using the move operator in isolation (transition operator set 1). The 

best results obtained by the SA and TS engine are comparable with that of the specialised GA meta- 

heuristic implementation of Chu and Beasley (1997) in terms of both solution quality and runtime. It is 

interesting to note that GS performed well on the larger GAPS (gapA5-100 - gapA20-200) as it 

regularly found the optimal solution. 

The SA engine is a very efficient solver for this problem type. The only instance that it could not solve 

as well as Johnson et al. (1991a) was G250.01. In this case, it produced a solution that was 3% from 

the best-known cost. TS found the optimal solution for the problem instances G124.02 - G124.16. 

However, for the problems with 250 vertices, TS produced near optimal solutions. It is believed that 

was the case as it had to evaluate a large number of neighbours at each step (up to 31 125). Longer TS 

runs should give improved solutions (see Section 5.9.2). 

MKP - 
The SA engine solved all the MKP problem instances to optimality using transition operator set 4. The 

performance of the TS engine (using this set) was similar except that the optimal solution could not be 

produced for weish25 and weish29. 

MCP - 

Both SA and TS could not obtain the optimal solutions for the problem instances as recorded in Battiti 

and Protasi (1995) (except for keller4). However, both search engines typically achieved the same 

solution cost for each problem instance. As a result of this, further investigation was undertaken. The 



SA engine was run using the alternative formulation that maximised the number of nodes in the clique 

(the list formulation is provided in Appendix B). These results show that the best-known result could 

only be gained for the problem instances keller4 and johnson16-2-4 (Table 10). 

Table 10: Largest clique sizes achieved with the SA engine using the alternative list formulation for the 
MCP given in Appendix B. 

MCP Problem Instance 

johnson8-2-4 
johnson 16-2-4 
keller4 
c-fat200- 1 
brock200-2 
brock200- 1 
brock200-3 

TTP - 

The SA engine is extremely efficient for this problem type as it records better solutions than Abramson 

and Dang (1993) for the largest problem instances (hdtt7 and hdtt8). It is possible that this is due to the 

fact that Abramson and Dang (1993) only used the equivalent of the move operator whereas the general 

solver employed this operator in conjunction with swap transitions. As the problem instances were 

generated to have solutions that represent clash-free time tables (i.e. a cost of 0), it can be concluded 

the SA engine finds the optimal solution to these difficult (Abramson and Dang 1993) problems. TS 

could not find the optimal solutions for the problem instances hdtt6 - hdtt8. 

Optimal / Best 
Known Solution Cost 
4 
8 
I I 
12 
12 
2 1 
15 

5.9.2 Extended Runs 

Maximum Cliques 
Achieved using SA Engine 
3 
8 
1 1  
I I 
10 
18 
13 

Some of the test problem instances were run for longer periods of time using SA and TS in order to 

determine whether improved results could be obtained. Each problem instance was chosen as the best- 

known or optimal cost could not be found in the standard runs for it. The amount of CPU time for each 

run is increased from 1600 seconds to 6400 seconds. Table 1 land Table 12 show these results. As 

observed in Section 5.9.1, GS tends to return poor locally optimal solutions after short amounts of 

runtime. It is for this reason that the Extended Runs were only be performed for SA and TS. 





Problem Instance 

BIN bin3a2 

bin3a4 

GRAPH C125.1 

C125.5 

C125.9 

C250.1 

C250.5 

C250.9 

USApHMP ap25a5 

UMApHMP ap10a4 

ap 1035 

Q AP ste36a 

lho40 

sko72 

Optimal l 
Best Known 
Cost 
0 

0 

0 

0 

0 

0 

0 

0 

123574.3 

107354.7 

86028.9 

4763 

120258 

33158 

Neighbour 
Probability 

0.1 
0.5 
I 
0.1 
0.5 
I 
0.1 
0.5 
I 
0.1 
0.5 
1 
0.1 
0.5 
I 
0.1 
0.5 
1 
0.1 
0.5 
1 
0.1 
0.5 
1 
0.1 
0.5 
1 
0.1 
0.5 
1 
0.1 
0.5 
1 
0.1 
0.5 
1 
0.1 
0.5 
I 
0.1 

Cost 

Min 
0 
3 
7 
2 
5 
13 
6 
2 
2 
9 
4 
4 
6 
2 
2 
17 
13 
16 
14 
14 
18 
13 
11  
16 
123659.7 
123659.7 
123659.7 
1076 12.1 
108262.5 
109391.4 
86794.76 
87761.12 
86794.76 
4763 
4873 
4944 
120329 
120316 
120803 
33196 

Runtime 

Min 
2113 
2378 
3722 
1874 
2705 
3792 
225 
26 1 
726 
379 
774 
760 
295 
1283 
87 1 
1227 
908 
1331 
360 
1978 
3121 
740 
2988 
4319 
36 
267 
23 
6 1 
20 
698 
396 
717 
242 
680 
34 
15 
665 
220 
15 
3694 

Med 
1.5 
5.5 
15.5 
4.5 
14 
18 
7 
3 
3 
10 
5 
6 
6 
2 
3 
19 
16 
I9 
2 1 
17.5 
20.5 
16.5 
15.5 
19 
123766.1 
123659.7 
1283 19.8 
108262.5 
109260.1 
110956.9 
87469.62 
88132.31 
89183.2 
4765 
5001 
5215.5 
120403 
120823.5 
123163 
33273 

(seconds) 

Med 
4738.5 
4088 
4679.5 
4897.5 
563 1 
5394 
1791 
2154.5 
1610.5 
1988.5 
2619.5 
2386.5 
2397 
4288 
2869.5 
3372 
2923.5 
4016.5 
224 1 
5004.5 
4963 
3002 
5554 
5214 
2992.5 
3095 
368.5 
2091.5 
2065 
2696.5 
3062.5 
3854 
1569 
2260 
716.5 
95.5 
1983 
2746 
87 
6082.5 

Max 
3 
14 
33 
5 
39 
27 
9 
5 
5 
12 
7 
7 
7 
3 
4 
22 
18 
23 
23 
18 
23 
19 
19 
22 
124683.5 
123659.7 
135708.2 
1095 10.7 
1 10508.3 
1 11845.8 
88572.9 1 
88645.64 
89643.23 
4862 
5270 
5485 
120620 
121615 
125789 
33428 

IQR 
1 
2.5 
8 
2 
7.75 
7.5 
0.75 
0.75 
0.75 
1.75 
0.75 
I 
I 
0.75 
0.75 
2.5 
2.5 
2 
0.75 
1.75 
2.5 
2.5 
2 
1.75 
916.83 
0 
5322.22 
260.37 
1020.41 
1403.38 
103 1.99 
352.14 
1 179.22 
1 1.75 
169.25 
228.5 
75.75 
773 
1530 
32 

Max 
6206 
6219 
5713 
6162 
6339 
6280 
4922 
6275 
5488 
6126 
6212 
5536 
5834 
5969 
5968 
500 1 
5537 
5501 
5490 
5868 
6168 
4997 
6329 
605 1 
5660 
6203 
4020 
5561 
6088 
5903 
6309 
6275 
4463 
3447 
294 1 
1902 
3356 
6372 
3 24 
6343 

IQR 
2185.75 
1434.25 
917.5 
2016 
1741 
761.75 
2536.75 
2203.75 
2456 
3698 
3949 
1655.5 
2759.5 
1377.5 
3561.25 
1849.75 
2266.75 
1378.5 
3035 
1632.25 
690.25 
851.5 
71 1.25 
773.25 
2278.25 
2572.5 
805.5 
4132 
4226.5 
2367.75 
3268 
2994 
2682 
791.25 
1098 
343.25 
547.5 
2805 
179.75 
435.25 



Problem Instance 

will00 

TSP kroA 100 

ch130 

a280 

GAP gapA 10-200 

gapA20-200 

GPP (3250.1 

G250.2 

G250.4 

G250.8 

M KP weish25 

weish29 

TTP hdtt6 

Optimal I 
Best Known 
Cost 

136522 

21282 

6110 

2579 

2623 

2339 

29 

114 

357 

828 

9939 

9410 

0 

Neighbour 
Probability 

0.5 
1 
0. I 
0.5 
1 
0.1 
0.5 
1 
0.1 
0.5 
I 
0.1 
0.5 
I 
0.1 
0.5 
1 
0.1 
0.5 
I 
0. I 
0.5 
1 
0. I 
0.5 
I 
0. I 
0.5 
1 
0. I 
0.5 
I 
0.1 
0.5 
I 
0. I 
0.5 
I 
0.1 
0.5 
I 

Runtime 

Min 
2951 
1813 
2864 
2961 
5256 
491 
841 
1467 
707 
1278 
1921 
6337 
6355 
6361 
144 
236 
638 
143 
316 
504 
1650 
77 1 
1599 
613 
1622 
2969 
2189 
2009 
2969 
1865 
2381 
3141 
679 
192 
165 
377 
484 
75 
337 
1360 
1384 

Max 
607 1 
6379 
6320 
6365 
6387 
5329 
6226 
5791 
6175 
6392 
4949 
6380 
6400 
6400 
6001 
3364 
927 1 
3808 
4804 
6066 
6297 
6352 
5742 
6152 
6226 
6407 
5508 
6054 
6322 
5859 
6181 
5853 
6152 
4284 
1128 
6032 
6368 
630 
5944 
5490 
6235 

(seconds) 

Med 
5101 
4956 
5425.5 
6052 
6069 
1472 
3708 
3620.5 
3157 
3924 
3803 
6362.5 
6393 
6398.5 
1323.5 
397.5 
1039 
1425.5 
2208 
838 
3332 
5474 
3845 
3684 
5318 
4490.5 
4209 
4808 
5810 
5121.5 
4768 
4455 
2892.5 
1491.5 
326 
4171.5 
2838 
267 
3123.5 
2982 
4187 

IQR 
589.25 
2371.75 
1 1  12.25 
838.5 
474.75 
2890.25 
3741.75 
1976 
2065 
1278 
2029.5 
18.75 
7 
2 
1446.75 
1533.25 
3103.25 
2684 
1616.25 
318 
2863.5 
3 208 
2857 
2223 
1060 
1886.5 
1496.5 
1702.25 
2157.25 
2196 
2286.5 
1564.25 
876.25 
2449.5 
3 14.25 
3420.25 
2785 
230 
23 14.25 
1872 
1608.5 

Cost 

Min 
33344 
33272 
136825 
136859 
137315 
21415 
2 1370 
21363 
6187 
6209 
6164 
3527 
15729 
22475 
2630 
2625 
2624 
2348 
2341 
2341 
32 
47 
53 
117 
127 
127 
357 
368 
379 
830 
838 
855 
9837 
9832 
9832 
9207 
9130 
9023 
9 
2 
0 

Med 
33541 
33590 
137134 
137440.5 
137594 
21968.5 
21691.5 
21952.5 
6290 
6320.5 
6334.5 
3607 
16806.5 
23247 
263 1 
2626 
2624.5 
2350 
2342.5 
2343 
37.5 
5 1 
56 
122 
130 
138 
370 
380.5 
386.5 
834.5 
858 
869.5 
9857 
9832 
9832 
9266 
9206.5 
9023 
11.5 
3.5 
2 

Max 
33834 
33845 
137381 
137976 
137813 
22380 
22341 
22954 
6407 
6453 
6443 
3801 
17439 
24268 
2633 
2629 
2626 
235 1 
2345 
2346 
44 
62 
65 
126 
152 
151 
380 
39 1 
396 
847 
877 
90 1 
9889 
9883 
9832 
9345 
9345 
9023 
13 
5 
4 

IQR 
149.25 
203.5 
261.25 
422.25 
269 
2705.25 
362.75 
597.5 
43.5 
77.5 
114.75 
102.5 
326 
722.75 
I 
2.5 
1 
I .75 
2 
1.75 
5.25 
4.25 
5.25 
5.25 
7 
12.5 
6.5 
8.25 
8 
9.75 
14.25 
9.75 
24.75 
23.25 
0 
86.75 
207.75 
0 
1 
I 
1.75 
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Table 11 and Table 12 show that the TS engine has benefited most from the extra runtime as it 

frequently found the optimal, best-known or improved cost within the extra time. In nearly all cases, 

SA finds the same solution as it did in the standard runs and spends the rest of the time trying to find 

better quality solutions. This may be due to the use of the Q8-7 temperature schedule (Connolly 1990, 

1992). It is possible that the schedule is not sufficiently reheating the temperature to adequately escape 

deep local optima in the final stages of the search process. Further investigation would be required to 

verify and remedy this situation. 

5.9.3 Other Software 

Table 13 to Table 17 are produced as a result of running the heuristic codes while Table 18 and Table 

19 show the results of running Lindo and OSL respectively. For those software programs that can 

produce proven optimal solutions, the column "Runtime to Proven Opt" is included. In the case of 

dfmax, the output displays the time at which each new solution cost is recorded, therefore the amount 

of CPU time required to find the first instance of the optimal solution is shown. This column is labeled 

"Runtime to Opt". There are some abbreviations used in these tables. These are: 

CNS indicates that the algorithm Could Not Solve the problem with the given amount of 

computational time (6400 seconds). 

TB indicates that the resulting model exceeded the memory and disk space storage 

capacity of the hardwarelsoftware platform. 

- indicates that a result could not be obtained. 

Table 13: CSP results (objective costs and runtimes) for SA-CSP. 

" This solver runs 20 sequential SA searches. See Smith et al. (1996b). 

Problem instance 

n20t l 
n20t2 
n20t3 
n20t4 
n20t5 
n40t 1 
n40t2 
n40t3 
n40t4 
n40t5 
n60t 1 
n60t2 
n60t3 
n60t4 
n60t5 
n80t 1 
n80t2 
n80t3 
n80t4 
118015 

Best Known 
cost 

58 
40 
29 
10 
150 
146 
94 
66 
33 
352 
238 
152 
105 
58 
562 
330 
215 
146 
82 
772 

Med 

61 
42 
31 
10.5 
150 
150 
100.5 
70 
35 
362 
242.5 
171 
112 
63 
568 
341 
231 
154 
89 
780 

Min 

58 
40 
30 
10 
150 
146 
94 
67 
33 
354 
238 
155 
108 
60 
566 
331 
215 
150 
86 
772 

IQR 

3.25 
2 
1 
I 
0 
4 
3 
1.25 
2.5 
1 
6 
13 
1.25 
2.5 
8.5 
6.25 
5.75 
2.25 
3 
2.5 

Max 

63 
43 
3 1 
12 
150 
158 
105 
73 
39 
362 
252 
177 
115 
67 
578 
358 
252 
158 
96 
790 

Total Runtime 
(seconds)" 

10 
10 
9 
8 
8 
12 
1 I 
11  
10 
10 
14 
14 
14 
13 
12 
18 
17 
17 
16 
16 



Table 14: Results of running tsp-solve on the TSP. 

Problem Instance 
gr24 
swiss42 
hk48 
ei15 1 
brazil58 
st70 
kroA I00 
ch130 
a280 

Table 15: Results of running dfmax and dfclique on the MCP problem instances. 

Optimal Cost 
1272 
1273 
11461 
426 
25395 
675 
21282 
61 10 
2579 

Problem 
Instance 

brock200-1 
brock200-2 
brock200-3 
c-fat200- I 
johnson8-2-412 
johnson16-2-4 
keller4 

Table 16: Results of running RLF on the GRAPH problem instances. 

Cost 
1272 
1273 
11461 
426 
25395 
675 
CNS 
CNS 
CNS 

Optimal I 
Best Known 
Cost 
2 1 
12 
15 
12 
4 
8 
I I 

Problem Instance 

C125.1 
C125.5 
C125.9 
C250.1 
C250.5 
C250.9 

Runtime (seconds) 
0 
0 
0 
46 
5 
559 
CNS 
CNS 
CNS 

dfmax 

Table 17: Results of running QAPBB and QAPSIM on the QAP problem instances. 

Nodes in 
Clique 

21 
12 
15 
12 
4 
8 
11  

dfclique 

Best Known 
Colouring 
5 
17 
43 
8 
29 
71 

" These progmms record an optimal of 4 for johnson8-2-4. However the general solver, LINDO and OSL all record a value of 3 
for the same problem. 

Nodes in 
Clique 

21 
12 
15 
12 
4 
8 
1 1  

Problem 

nug08 
nugl2 
nugl5 
nug20 
nug30 
ste36a 
tho40 
esc64a 
sko72 
will00 

Runtime to 
Opt (seconds) 

176 
0 
0 
0 
0 
0 
0 

Runtime to proven 
Opt (seconds) 

67 1 
I 
8 
0 
0 
28 
15 

Number of 
Colours obtained 
6 
2 1 
5 1 
10 
36 
85 

Optimal I Best 
Known Cost 
107 
289 
575 
1285 
3062 
4763 
120258 
58 
33158 
136522 

Runtime to 
proven Opt 
(seconds) 
665 
I 
8 
0 
0 
28 
15 

Runtime 
(seconds) 
0 
0 
0 
0 
0 
0 

QAPBB 

Cost 

107 
289 
CNS 
CNS 
CNS 
TB 
TB 
TB 
TB 
TB 

QAPSIM 

Runtime to Proven 
Opt (seconds) 
0 
16 
CNS 
CNS 
CNS 
TB 
TB 
TB 
TB 
TB 

Cost 

109 
300 
585 
1299 
3168 
5050 
124219 
58 
33617 
137539 

Runtime 
(seconds) 
0 
0 
0 
0 
1 
1 
1 
1 
10 
40 

1 



Table 18 and Table 19 display the results of solving the test COPS with commercial ILP packages. 

There are a number of additional abbreviations used in these tables. These are: 

(a) refers to the penalty formulation, while (b) refers to the formulations that either 

minimise or maximise groups (see Section 5.1). 

CNFLM indicates that a linear model could not be formulated. 

opt denotes that the optimal solution cost was reached. 

all represents all the problem instances of a problem type. 

a-b indicates problem instance a through problem instance b (according to the order 

given in Table 5). 

USApHMP and UMApHMP were not solved with Lindo and OSL because comparable results exist in 

the literature (Ernst and Krishnamoorthy 1997b). Table 20 and Table 21 give the results for these two 

problem types using highly refined MILP (Mixed Integer Linear Program) formulations. Note: the 

standard formulations of these problems as used by Campbell (1994) were not solved in Ernst and 

Krishnamoorthy (1997b) because of poor performance with the increase in problem size beyond 10 

nodes. 

GPP 

MKP 

gap3- 1 

gap4-l 

gap5- 1 

gap6- 1 

gap7- l 

gap8-l 

gapA5- I00 

gapA5-200 

gapA 10- 100 

gapA10-200 

gapA20-100 

gapA20-200 

all 

weingl 

weish12 

weishl5 

weish25 

weish29 

opt 

opt 

opt 

opt 

opt 
CNS 

opt 

opt 

opt 

opt 

opt 
CNS 

TB 

opt 

opt 

opt 

opt 

opt 

62 

9 

17 

73 

207 

CNS 

2 

4 

16 

8 

18 

CNS 

TB 

1 

2 

I 

- 7 
1 



Table 18: The  results of running Lindo on the problem test suite. 

Problem 

MCP (a) 

MCP (b) 

TTP 

Problem instance 

sent01 

sent02 

pb6 

brock200- 1 - 
keller4 
johnson8-2-4 (4 
node clique) 
brock200- 1 - 
keller4 
johnson8-2-4 

all 

Problem 

CSP 

BIN (a) 

BIN (b) 

GRAPH (a) 

GRAPH (b) 

PAP 

TSP 

GAP 

GPP 

MKP 

Cost 

opt 

opt 

Opt 
TB 

1 

TB 

3 

CNFLM 

Problem Instance 

n20t I - n20t5 

n4Otl - n80t5 

binlal - binla6 

bin2al - bin3a4 

all 

C125.1 

C125.5-C250.9 

C125.1 

C125.5-C250.9 

aII 

all 

gapl-l 

gap2- 1 

gap3- 1 

gap4- 1 

gap5-1 

gap6- 1 

gap7 - 1 

gap8-1 

gapA5- I00 

gapA5-200 

gapA 10- 100 

gapA 10-200 

gapA20- 100 

gapA20-200 

G124.2 

G124.4 - G250.8 

weing 1 

weishl2 

weish 15 

weish25 

weish29 

sent0 1 

sent02 

pb6 

Runtime to 
Proven Opt 
(seconds) 
29 

44 

19 

TB 

10 

TB 

37 

CNFLM 

Cost 

CNS 

TB 

CNS 

TB 

CNFLM 

CNS 

TB 

CNS 

TB 

TB 

TB 

opt 

Opt 

opt 

opt 

opt 

opt 
CNS 

CNS 

opt 

opt 

opt 

opt 

opt 

opt 

CNS 

TB 

opt 

opt 

opt 

opt 

opt 

opt 

opt 

opt 

Runtime to 
Proven Opt 
(seconds) 
CNS 

TB 

CNS 

TB 

CNFLM 

CNS 

TB 

CNS 

TB 

TB 

TB 

2 

6 

16 

10 

34 

236 1 

CNS 

CNS 

1 

2 

4 

3 

5 

1 1  

CNS 

TB 

0 

I 

1 

1 

1 

3 

8 

2 
_. 



Table 19: The results of running OSL on the problem test suite. 

Problem 

MCP(a) 

MCP (b) 

TTP 

Table 20: Results of branch and bound with the shortest path heuristic for the USApHMP on a DEC 
3000f700 with CPLEX (reproduced from Ernst and Krishnamoorthy (l997b, Table 2, p. 15)). 

Problem Instance 

brock200-1- 
keller4 
johnsons-2-4 (4 
node clique) 
brock200-1 - 
keller4 
johnsons-2-4 

all 

Optimal Solution MILP CPU 
(seconds) 

163603.94 
131581.79 
107354.73 
86028.88 0.8 

MILP CPU 
(seconds) 
4.03 
0.8 
1.24 
1.73 
4.03 
7.18 
8.44 
13.76 

n 

20 
20 
20 
20 
25 
25 
25 
25 

Table 21: Results of branch and bound with the shortest path heuristic for the UMApHMP on a DEC 
30001700 with CPLEX (reproduced from Ernst and Krishnamoorthy (l997b, Table 3, p. 16)). 

Cost 

CNS 

1 

CNS 

3 

CNFLM 

The ILP packages performed well on problem types that required few encoding constraints such as 

GAP and MKP. Proven optimal solutions were obtained (in most cases) for these problems in runtimes 

that are comparable with the general system. Many of the other problems (especially those with 

complex encoding constraints) produced 0-1 ILP models that exceeded the capacity of the 

hardwarefsoftware platform and subsequently could not be run. 

Runtime to 
Proven Opt 
(seconds) 
CNS 

3 

CNS 

9 

CNFLM 

P 

2 
3 
4 
5 
2 
3 
4 
5 

For the most part, the general system outperformed the specialised heuristics in terms of solution 

quality, particularly in the case of QAP (QAPBB and QAPSIM), GRAPH (RLF) and CSP (SA-CSP). 

The statistical analysis in Section 5.10.2 also confirms this. The heuristics for MCP produced the best- 

known costs with relatively little CPU time. However, there is a question about the validity of dfmax 

and dfclique, especially in reference to the problem johnsong-2-4. Both Lindo and OSL record a 

proven optimal solution of 3 nodes using a 0-1 ILP formulation while the two heuristic codes produce a 

value of 4 nodes. 

Optimal Solution 

1728 16.69 
151533.08 
135624.88 
123 130.09 
175541.98 
155256.32 
139197.17 
123574.29 



5.9.4 Feasibility Restoration Runs 

Table 22 and Table 23 display the results of the feasibility restoration procedure for the SA and TS 

engines respectively. 

Table 22: Feasibility restoration runs using SA. 

Problem 
Instance 

gapl-1 

gap2- 1 

gap3- 1 

gap4- 1 

gap5-1 

gap6- 1 

gap7- 1 

gap8- 1 

gapA5- 100 

gapA5-200 

gapA 10- 100 

gapA10-200 

gapA20- 100 

gapA20-200 

Optimal 
Cost 

336 

434 

580 

656 

563 

76 1 

942 

1133 

1698 

3235 

1360 

2623 

1 158 

2339 

Annealing 
Length 

1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 

Cost 

Min 
363 
363 
363 
434 
434 
434 
580 
580 
580 
656 
656 
656 
563 
563 
563 
758 
759 
758 
933 
935 
935 
1109 
1109 
1109 
1702 
1702 
1702 
3235 
3235 
3235 
1361 
1361 
1361 
3729 
3733 
3729 
1158 
1158 
1158 
2339 
2339 
2339 

Runtime 

Min 
0 
0 
0 
28 
135 
275 
76 
286 
4 
86 
381 
764 
0 
0 
0 
2 
0 
2 
1 
1 
1 
275 
275 
275 
683 
683 
683 
1484 
1484 
1484 
2 
2 
2 
1489 
1489 
1489 
8 
8 
8 
25 
25 
25 

Med 
363 
363 
363 
434 
434 
434 
580 
580 
580 
656 
656 
656 
563 
563 
563 
759.5 
759 
760 
936.5 
937 
937 
1116.5 
1116.5 
1116.5 
1725 
1725 
1725 
3716 
3716 
3716 
1363 
1363 
1363 
4031 
4031 
4031 
1158 
1158 
1158 
2339 
2339 
2339 

(seconds) 

Med 
27 
124 
245 
40 
193 
381.5 
101.5 
409.5 
788 
135 
560.5 
853.5 
56 
232 
47 1 
494.5 
515 
722.5 
9.5 
9.5 
450.5 
878 
878 
878.5 
956.5 
956.5 
956.5 
1580 
1570 
1580 
7.5 
9.5 
7.5 
1568 
1557 
1568 
13 
13 
13 
52 
77.5 
77.5 

Max 
363 
363 
363 
434 
434 
434 
580 
580 
580 
656 
656 
656 
563 
563 
563 
761 
761 
761 
938 
938 
938 
1123 
1123 
1123 
1754 
1754 
1754 
4168 
4168 
4168 
1371 
1371 
1371 
4407 
4407 
4407 
1158 
1158 
1158 
2342 
2341 
2341 

IQR 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
6 
6 
6 
17 
17 
17 
200.5 
192.75 
200.5 
2.75 
2.75 
2.75 
476 
476 
476 
0 
0 
0 
1.5 
0 
0 

Max 
34 
1 44 
282 
5 1 
250 
501 
198 
523 
946 
174 
678 
1287 
142 
365 
520 
987 
1255 
1303 
246 
975 
1415 
1398 
1530 
1542 ' 
1588 
1588 
1588 
1593 
1591 
1591 
37 
450 
37 
1591 
1590 
1591 
36 
36 
36 
119 
197 
197 

IQR 
6 
30 
50.25 
5.25 
32.75 
59 
33 
91.5 
174.25 
37.5 
76.5 
324.75 
43.5 
58.25 
72.25 
349.5 
420.25 
684 
110 
576 
1209.75 
874 
874 
874.25 
29 1 
29 1 
29 1.5 
32.5 
25.75 
25.75 
10.75 
13.5 
10 
5 1.75 
49.75 
52.25 
4 
4 
3.75 
59 
58.25 
58.25 



Table 23: Feasibility restoration runs using TS. 

Problem 
Instance 

gapl-1 

gap2- l 

gap3- 1 

gap4- l 

gap5-1 

gap6-1 

gap7- 1 

gap8-1 

gapA5- 100 

gapA5-200 

gapA10-100 

gapA 10-200 

gapA20- 100 

gapA20-200 

Table 22 and Table 23 show that the use of feasibility restoration moves gives better quality solutions 

than feasibility maintaining moves (see Table 45 and Table 46, transition probability set 1, Appendix 

A) for both the SA and TS engines. However, it is clear that the combination of feasibility maintaining 

moves and swaps (transition probability sets 2 - 5 in Table 45 and Table 46, Appendix A) result in 

similar or better quality solutions in considerably shorter runtimes than feasibility restoration. 

On some of the larger problems (in particular GapA10-200), both SA and TS produce solutions that are 

very far from optimal. This is due to the large computational requirements of feasibility restoration 

compared with feasibility maintenance. Apart from the complex mechanics of the restoration 

algorithm, it does not make use of incremental cost expressions. This is because a large number of 

individual list transition operations are performed before the cost function can be evaluated. It is 

envisaged that techniques can be developed to overcome this problem. 

Optimal 
Cost 

336 

434 

580 

656 

563 

76 1 

942 

1133 

1698 

3235 

1360 

2623 

1 158 

2339 

Neighbour 
Probability 

0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .0 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 

Cost 

Min 
363 
363 
363 
428 
434 
434 
570 
580 
580 
634 
653 
656 
550 
561 
563 
738 
757 
759 
914 
936 
938 
1073 
1108 
1114 
1748 
1821 
1969 
4177 
4658 
4931 
1418 
1360 
1360 
4210 
5086 
5674 
1307 
1167 
1158 
2449 
2343 
2339 

Runtime 

Min 
5 
1 
0 
150 
5 
0 
48 
28 
24 
14 
317 
10 
26 
30 
2 
5 
180 
14 
43 
2 
61 
65 
342 
439 
1192 
1539 
1498 
1488 
1231 
816 
23 
9 
7 
1480 
1030 
821 
78 
160 
56 
46 
4 
106 

Med 
363 
363 
363 
432.5 
434 
434 
572.5 
580 
580 
639.5 
655.5 
656 
551 
563 
563 
742 
758 
760.5 
916.5 
937.5 
939.5 
1081.5 
1112 
1118.5 
1809 
1910.5 
2193 
4777.5 
5337.5 
5512.5 
1430.5 
1360 
1360 
5064.5 
5650 
5758.5 
1321.5 
1170 
1159 
2455.5 
2344 
2339 

(seconds) 

Med 
33 
5 
2 
859 
44 
15.5 
389 
296.5 
128 
769.5 
530 
373.5 
553 
297.5 
32 
1085.5 
608.5 
332 
638.5 
913.5 
888.5 
589 
921 
946 
1499 
1568 
1577 
1550.5 
1370.5 
1350 
962.5 
237.5 
22.5 
1522 
1493 
1329.5 
648.5 ' 

838.5 
580.5 
406 
528.5 
354 

Max 
363 
363 
363 
434 
434 
434 
577 
580 
580 
644 
656 
656 
555 
563 
563 
750 
760 
761 
921 
938 
941 
1089 
1119 
1123 
1862 
2421 
2674 
5278 
5677 
5937 
1436 
1361 
1360 
5631 
5886 
5966 
1325 
1172 
1159 
2466 
2345 
2339 

IQR 
0 
0 
0 
4.75 
0 
0 
1.75 
0 
0 
2.75 
2.5 
0 
1.75 
0 
0 
1.75 
0.75 
I 
2.5 
1.75 
1.75 
7.5 
3.5 
2.75 
70.25 
222 
216.75 
603 
418.75 
452 
5 
1 
0 
482.5 
422.75 
129.25 
6.5 
0.75 
0.75 
6.75 
0 
0 

Max 
76 
12 
10 
1499 
218 
23 
1060 
1281 
398 
1443 
985 
1197 
1136 
1581 
316 
1485 
1493 
1197 
1225 
1450 
1349 
1526 
1382 
1400 
1583 
1597 
1599 
1597 
1527 
1588 
1483 
1493 . 
32 
1582 
1572 
1598 
1436 
1568 
1292 
1495 
1260 
1194 

IQR 
37 
6 
4.25 
7125.5 
109.25 
6.5 
375.5 
770.5 
167.25 
577 
222.25 
454.75 
813.25 
685.25 
65.25 
706.5 
930 
63 1.5 
506 
748 
101.5 
879.75 
757.75 
272.75 
186 
18.5 
41.5 
69 
120 
294 
568.5 
249.5 
15.5 
21 
56.5 
187.5 
926.25 
1235 
664.25 
511.5 
351 
199.5 



5.9.5 Parallel Runs 

Table 24 and Table 25 show the parallel speedup and efficiency gained by running the test problems. 

Parallel speedup and efficiency graphs for each problem type are given in Figure 19 - Figure 28. 



Table 24: Parallel speedup results. 

Problem 

GPP 

QAP 

GAP 

BIN 

TSP 

Instance 

G250.01 
(3250.02 
G250.04 
(3250.08 
tho40 
esc64a 
sko72 
will00 
gapA 10- 100 
gapA 10-200 
gapA20- 100 
gapA20-200 
bin3al 
bin3a2 
bin3a3 
bin3a4 
st70 
kroA 100 
chi30 
a280 

Processors 
1 

0.63 
0.65 
0.67 

2 
0.95 
1.02 
1.15 

3 
1.7 
1.79 
1.85 

4 
2.43 
2.66 
2.63 

5 
3.12 
3.32 
3.56 

0.62 
0.96 
0.95 
0.98 
0.99 
0.97 
0.99 
0.97 
0.98 
0.99 
0.99 
0.99 
0.99 
0.99 
0.69 
0.99 
0.88 

6 
3.72 
3.96 
4.45 

5.08 
5.69 
4.96 
6.46 
6.78 
4.01 
5.83 
4.16 
5.62 
5.2 
5.51 
5.36 
5.41 
5.79 
3.47 
6.22 
5.83 

8.07 
6.79 
6.58 
10.07 
10.44 
4.77 
8.69 
5.03 
7.68 
7.89 
8.42 
8.15 
8.19 
8.13 
5.21 
9.49 
8.95 

1.9 
1.61 
1.95 
1.96 
1.42 
1.78 
1.59 
1.62 
1.71 
1.78 
1.71 
1.74 
1.76 
1.32 
1.94 
1.78 

5.74 
6.15 
5.4 
7.53 
7.68 
4.16 
6.97 
4.56 
5.4 
6.02 
6.32 
6.01 
6.13 
6.1 
4.22 
7.04 
6.53 

8.17 
7.29 
6.85 
10.93 
11.24 
4.46 
9.47 
5.86 
8.3 1 
8.57 
9.07 
8.79 
8.68 
8.69 
5.73 
10.05 
9.77 

7 
4.42 
4.69 
5.1 

2.77 
2.32 
2.9 
2.94 
2.15 
2.62 
2.56 
2.49 
2.45 
2.55 
2.48 
2.46 
2.58 
1.96 
2.83 
2.57 

6.46 
6.41 
5.54 
8.44 
8.63 
4.56 
7.12 
4.72 
6 
6.59 
7.09 
6.73 
6.75 
7.04 
4.57 
7.8 
7.47 

11 
6.7 1 
7.02 
7.57 

8 
5.22 
5.55 
6.01 

7.19 
6.91 
6.19 
8.97 
9.43 
4.22 
8.22 
5.15 
6.94 
7.4 
7.77 
7.68 
7.76 
7.82 
4.95 
8.55 
8.1 1 

12 
7.18 
7.82 
8.73 

3.57 
3.06 
3.9 
3.89 
2.69 
3.78 
2.94 
3.23 
3.16 
3.29 
3.20 
3.28 
3.62 
2.42 
3.72 
3.37 

9 
5.71 
6.23 
6.57 

3.83 
3.69 
4.83 
4.88 
3.3 
4.18 
3.36 
3.99 
3.84 
4.06 
3.91 
4.01 
4.4 
2.96 
4.62 
4.18 

10 
6.2 
6.65 
7.04 

5.01 
4.4 
5.65 
5.83 
3.52 
4.94 
3.78 
4.74 
4.65 
4.88 
4.65 
4.72 
5.2 
3.35 
5.31 
5.05 



Table 25: Parallel efficiency results. 

Problem 

GPP 

QAP 

GAP 

BIN 

TSP 

L 

Instance 

G250.01 
G250.02 
(3250.04 
(3250.08 
tho40 
esc64a 
sko72 
will00 
gapA10-100 
gapA10-200 
gapA20- 100 
gapA20-200 
bin3al 
bin3a2 
bin3a3 
bin3a4 
st70 
kroA I00 
ch130 
a280 

Processors 
1 

0.63 
0.65 
0.67 
0.62 
0.96 
0.95 
0.98 
0.99 
0.97 
0.99 
0.97 
0.98 
0.99 
0.99 
0.99 
0.99 
0.99 
0.69 
0.99 
0.88 

2 
0.48 
0.51 
0.57 
0.55 
0.95 
0.81 
0.97 
0.98 
0.71 
0.89 
0.8 
0.81 
0.85 
0.89 
0.85 
0.87 
0.88 
0.66 
0.97 
0.89 

3 
0.57 
0.6 
0.62 
0.63 
0.92 
0.77 
0.97 
0.98 
0.72 
0.87 
0.85 
0.83 
0.82 
0.85 
0.83 
0.82 
0.86 
0.65 
0.94 
0.86 

4 
0.61 
0.67 
0.66 
0.72 
0.89 
0.76 
0.97 
0.97 
0.67 
0.95 
0.74 
0.8 1 
0.79 
0.82 
0.8 
0.82 
0.9 1 
0.6 1 
0.93 
0.84 

6 
0.62 
0.66 
0.74 
0.73 
0.83 
0.73 
0.94 
0.97 
0.59 
0.82 
0.63 
0.79 
0.78 
0.81 
0.78 
0.79 
0.87 
0.56 
0.88 
0.84 

5 
0.62 
0.66 
0.71 
0.74 
0.77 
0.74 
0.97 
0.98 
0.66 
0.84 
0.67 
0.8 
0.77 
0.81 
0.78 
0.8 
0.88 
0.59 
0.92 
0.84 

7 
0.63 
0.67 
0.73 
0.73 
0.81 
0.71 
0.92 
0.97 
0.57 
0.83 
0.59 
0.80 
0.74 
0.79 
0.77 
0.77 
0.83 
0.5 
0.89 
0.83 

8 
0.65 
0.69 
0.75 
0.72 
0.77 
0.67 
0.94 
0.96 
0.52 
0.87 
0.57 
0.67 
0.75 
0.79 
0.75 
0.77 
0.76 
0.53 
0.88 
0.82 

9 
0.63 
0.69 
0.73 
0.72 

- 0.71 
0.62 
0.94 
0.96 
0.51 
0.79 
0.52 
0.67 
0.73 
0.79 
0.75 
0.75 
0.78 
0.51 
0.87 
0.83 

10 
0.62 
0.67 
0.7 
0.72 
0.69 
0.62 
0.9 
0.94 
0.42 
0.82 
0.52 
0.69 
0.74 
0.78 
0.77 
0.78 
0.78 
0.49 
0.85 
0.8 1 

11 
0.61 
0.64 
0.69 
0.73 
0.62 
0.6 
0.92 
0.95 
0.43 
0.79 
0.46 
0.7 
0.72 
0.77 
0.74 
0.75 
0.74 
0.47 
0.86 
0.8 1 

12 
0.6 
0.65 
0.73 
0.68 
0.61 
0.57 
0.9 1 
0.94 
0.37 
0.79 
0.49 
0.69 
0.7 1 
0.76 
0.73 
0.72 
0.72 
0.48 
0.84 
0.82 



Parallel Speedup for GPPs 

I Processors I 

Figure 19: Parallel speedup graph for the GPP. 

Parallel Efficiency for GPPs 
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Figure 20: Parallel efficiency graph for the GPP. 
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Figure 21: Parallel speedup graph for the GAP. 





Parallel Speedup for BINS 
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Figure 25: Parallel speedup graph for the BIN. 
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I I I , , , , ,  I , , ,  

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  
Processors 

Figure 26: Parallel efficiency graph for the BIN. 
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Figure 27: Parallel speedup graph for the TSP. 
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Figure 28: Parallel efficiency graph for the TSP 

The performance of the parallel TS is generally dependent on the complexity of the objective function 

and the number of neighbours that are evaluated at each iteration. This is due to the parallelisation 

strategy adopted by this study. Parallel communication and housekeeping activities degrade the 

performance of the algorithm especially where the neighbourhood is small. This is evident when one 

considers that as the number of processors is increased, the time required to broadcast the 

neighbourhood division details and to process the incoming neighbours (sequential tasks), becomes 

large. Hence there is a reduction in efficiency as the number of processors increases. However the 

large QAPs generally record efficiencies above 90%. This is due to the QAP having the most complex 

incremental cost expression of this set of problems and a large number of neighbours to evaluate at 

each iteration of the TS algorithm. 

As well as the above, parallel speedup and efficiency are adversely affected by the use of incremental 

cost expressions. This is because incremental cost expressions reduce the amount of computation 

required for the evaluation of the neighbourhood (i.e. the component of TS that has been parallelised). 

In order to demonstrate this, a problem instance that the parallel algorithm performed poorly on, 

gapA10-100, was run without using the incremental cost expression (Table 26). Both speedup and 

efficiency are improved, though the performance of TS is substantially degraded. This is verified using 

the Mann-Whitney U test that compared efficiency with and without incremental cost expressions and 

gave P=0.02. 



Table 26: Parallel speedup and efficiency for gapA10-100 with and without using incremental cost 
expressions. 

Processors 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

5.10 Performance Analysis 

5.10.1 The Effect of the Transition Operator Sets and Engine-specific 
Parameters 

In order to determine the most effective transition operator set for a particular problem type, the 

Kruskal-Wallis procedure is used. "Transition operator set" was the independent (grouping) variable 

while objective cost was the dependent variable. For many of the problem types, a significant result 

was recorded which indicates that the choice of transition operator probabilities affects quality of 

solution. 

With Incremental 
Cost Expressions 

Table 27 shows the order of performance of the transition operator sets for each problem typeI3. For 

instance, in the case of BIN problems, transition set 2 (rank 1) was the best overall while set 1 (rank 5 )  

was the worst. In the case of UMApHMP, sets 2,3,4 and 6 recorded equivalent objective costs and 

therefore "runtime" was used to distinguish between these sets. 

Speedup 
0.97 
1.43 
2.15 
2.69 
3.30 
3.52 
4 
4.16 
4.57 
4.22 
4.77 
4.46 

Without Incremental 
Cost Expressions 

The GS and TS engines are run with the best transition operator set (rank order 1) for each problem 

type. 

Efficiency 
0.97 
0.7 1 
0.7 1 
0.67 
0.66 
0.59 
0.57 
0.52 
0.51 
0.42 
0.43 
0.37 

Speedup 
0.99 
1.78 
2.52 
3.27 
3.97 
4.64 
5.53 
5.88 
6.55 
6.77 
7.23 
7.46 

'"ost-hoc analysis was used to determine whether there were any significant performance differences between the transition 
operator sets for each problem type. However, as it is difficult to construct overall ranks from this information, the Kruskal - 
Wallis median ranks were also taken into consideration. 

Efficiency 
0.99 
0.89 
0.84 
0.82 
0.79 
0.77 
0.79 
0.74 
0.73 
0.68 
0.66 
0.62 



Table 27: Rank order of the transition sets for each problem type. 

Problem 

CSP 
BIN 
GRAPH 
USApHMP 
UMApHMP 

QAP 
TSP 
GAP 
GPP 
MKP 
MCP 
TTP 

The same technique that has been applied in Table 27 has been used in Table 28 and Table 29 to 

determine the most effective SA cooling length and TS probabilistic candidate list setting respectively. 

For instance, a cooling length of 10000 generally outperforms lengths of 1000 and 5000 for the CSP. 

In order to make an overall assessment, the average rank of the cooling length and neighbourhood 

probability setting is produced. From this it can be seen that: 

SA - Longer cooling lengths typically improve solution quality. 

TS - Evaluating half of the neighbours at each iteration is usually more effective tha? 

evaluating all of the neighbours. 

Transition Set Reference Number 
1 2 3 4 5 6 7 8 
1 
5 1 4 2 3 
3 5 1 4 2 
1 6 2 4 3 5 
5 4 2 I 6 3 

1 8 7 3 2 5 6 4 
8 1 7 3 5 2 6 4 
5 1 2 3 4 
1 
3 6 2 I 5 4 
1 
5 1 4 2 3 

Significance 
(p) 

,000 
,344 
,000 

,000 (cost) 
,000 (runtime) 

,000 
,000 
,000 

,000 

.OOO 

Table 28: Rank order of the different SA cooling lengths for each problem type. 

Problem 
CSP 
BIN 
GRAPH 
USApHMP 
UMApHMP 
QAP 
TSP 
GAP 
GPP 
MKP 
MCP 
T r P  

Average 
Rank 

SA Cooling Length 
1000 5000 loo00 
3 2 1 
3 2 1 
3 2 1 
3 1 2 
3 2 1 
2 1 3 
3 2 I 
3 2 1 
2 1 3 
3 2 1 
3 2 1 
3 2 1 
2.83 1.75 1.42 

Significance 
(p) 
,017 
.000 
.000 
,000 
,007 
,670 
,007 
.082 
,000 
.000 
,151 
,000 



Table 29: Rank order of the different TS neighbourhood probabilities for each problem type. 

Problem 
CSP 
BIN 
GRAPH 
USApHMP 
UMApHMP 
QAP 
TSP 
GAP 
GPP 
MKP 
MCP 
TTP 

Average 
Rank 

5.10.2 Overall Comparison 
I 

Table 30 to Table 41 displays the results of rank ordering the performance of the various solvers on the 

problem instances. The procedure for calculating the ranks is described in Section 5.8.3.2. For 

instance in Table 30, the SA and TS engines produce very similar results (in terms of solution quality 

and time to solve) for the CSP problem instance n20t2. As these results are significantly superior to the 

GS and SA-CSP search engines, SA and TS share a ranking of 1. Moreover, as SA-CSP produces 

significantly better results than GS, these techniques receive the ranks of 2 and 3 respectively. The 

entry in the Significance (P) column indicates that likelihood (probability) of this set of ranks 

occurring by chance is .000 (i.e. these ranks are reliable). The Average Rank row at the bottom of 

each of the tables gives an approximate indication of the overall performance of each search engine on 

the problem type. For instance, in Table 30 it can be seen that SA and TS generally produce low ranks 

(such as 1 or 2) compared to SA-CSP and GS. Therefore, SA and TS are the best overall search 

engines for the CSP. 

Neighbour Probability 
0.1 0.5 1 
2 1 3 
1 2 3 
2 1 3 
3 1 2 
1 2 3 
I 2 3 
3 1 2 
3 2 1 
1 2 3 
2 1 3 
I 2 3 
3 I 2 
1.92 1.5 2.58 

Table 42 shows the overall rankings of the search engines for each of the problem types. These overall 

rankings were calculated from the ranks given in Table 30 to Table 41 using the Kruskal Wallis 

procedure (described in Section 5.8.3.2). This table is read in the same way as Table 30 to Table 41. 

For instance, it can be seen that SA and TS perform equally well on the CSP as they share a rank of 1. 

The performances of GS and SA-CSP are similar but worse than SA and TS, hence they both receive a 

ranking of 2. As Lindo and OSL could not process the problem formulations, their performance is 

given a rank of 3. 

Significance 
(p) 
,013 
.002 
,047 
,000 
.00 1 
,000 
,000 
,000 
,000 
,000 
.000 
,024 

The following abbreviations refer to the various solver systems: 

SA-REST is the general SA engine using the feasibility restoration technique. 

TS-REST is the general TS engine using the feasibility restoration technique. 



EUS and EUM refer to the results for the USApHMP and UMApHMP problem instances 

given in Table 20 and Table 21 respectively. 

Table 30: Performance comparison on the CSP. 

Problem 
n20tl 
n20t2 
n20t3 
n20t4 
n20t5 
n40t l 
n40t2 
n40t3 
n40t4 
n40t5 
n60t 1 
n60t2 
n60t3 
n60t4 
n60t5 
n80tl 
n80t2 
n80t3 
n80t4 
n80t5 

Average 
Rank 

Table 3 1: Performance comparison on the BIN. 

Table 32: Performance comparison on GRAPH. 

Significance 
(p) 
.000 
,000 
.OOO 
,000 
,000 
,000 
.000 
,000 
,000 
,000 
,000 
.000 
,000 
.000 
,000 
,000 
.000 
,000 
.000 
,000 

Solver 
SA engine 
2 
1 
1 
1 
1 
2 
1 
2 
1 
1 
2 
2 
1 
I 
I 
2 
1 
1 
1 
1 
1.3 

Problem 
C125.1 
C125.5 
C125.9 
C250.1 
C250.5 
C250.9 

Average 
Rank 

TS engine 
1 
1 
2 
2 
3 
1 
1 
1 
2 
2 
I 
I 
2 
2 
2 
1 
1 
2 
2 
2 
1.6 

Significance 
(p) 
,000 
,000 
,000 
.000 
,000 
,000 

Solver 

GS engine 
4 
3 
4 
4 
4 
4 
3 
4 
4 
4 
4 
4 
3 
3 
4 
3 
3 
3 
3 
4 
3.6 

SA engine 
1 
1 
1 
1 
1 
1 
1 

SA-CSP 
3 
2 
3 
3 
2 
3 
2 
3 
3 
3 
3 
3 
4 
4 
3 
4 
2 
4 
4 
3 
3.05 

TS engine 
2 
1 
2 
2 
2 
2 
1.83 

GS engine 
3 
2 
3 
3 
3 
3 
2.83 



Table 33: Performance comparison on QAP. 

Problem 
nug08 
nugl2 
nugl5 
nug20 
nug30 
ste36a 
tho40 
esc64a 
sko72 
will00 

Average 
Rank 

Table 34: Performance comparison on TSP. 

Problem 
gr24 
swiss42 
hk48 
ei15 1 
brazil58 
st70 
kroAlOO 
ch130 
a280 

Average 
Rank 

I Rank I 1 

Significance 
(p) 

.OO 1 
,000 
,000 
.000 
,000 
.000 
,000 
,000 
,000 
,000 

Solver 

Table 35: Performance comparison on MKP. 

SA engine 
1 
1 
1 
1 
1 
1 
1 
3 
1 
I 
1.2 

I4 The rank of 5 indicates that QAPBB could not solve the problem instance within 6400 seconds. 

Significance 
(P) 
,000 
,000 
,000 
,000 
,000 
,000 
,000 
,000 
,000 

Solver 

TS engine 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
1.8 

SA engine 
2 
3 
2 
2 
3 
3 
1 
1 
1 
2 

GS engine 
2 
2 
4 
4 
4 
4 
4 
4 
4 
4 
3.6 

TS engine 
3 
2 
3 
1 
2 
2 
2 
2 
2 
2.1 

QAPSIM 
2 
2 
3 
3 
3 
3 
3 
1 
3 
3 
2.6 

GS engine 
4 
4 
4 
3 
4 
4 
3 
3 
3 
3.56 

QAPBB'~ 
1 
I 
5 
5 
5 
5 
5 
5 
5 
5 
4.2 

tsp-solve 
1 
1 
1 
1 
1 
I 
4 
4 
4 
2 



Table 36: Performance comparison on GPP. 

Table 37: Performance comparison on TTP. 

Table 38: Performance comparison on MCP. 

Table 39: Performance comparison on USApHMP. 



Table 40: Performance comparison on UMApHMP. 

Problem 
ap lOa2 
ap lOa3 
ap l Oa4 
ap l O d  

Average 
Rank 

Table 41 : Performance comparison on GAP. 

Problem 
gapl-l 
gap2- l 
gap3- l 
gap4- l 
gap5- l 
gap6- l 
gap7- l 
gap8-l 
gapA5-100 
gapA5-200 
gapAIO-100 
gapA10-200 
gapA20-100 
gapA20-200 

Average 
Rank 

Significance 
( p )  
,000 
,000 
,000 
,000 

Solver 
SA engine 
1 
1 
1 
I 
1 

Significance 
(p) 
,000 
,000 
,000 
.000 
.000 
.000 
.000 
.000 
.OOO 
,000 
,000 
.000 
,000 
,000 

Solver 
SA engine 
I 
I 
I 
1 
2 
1 
1 
1 
3 
2 
2 
2 
1 
I 
1.42 

TS engine 
2 
2 
2 
2 
2 

GS engine 
3 
3 
3 
3 
3 

TS engine 
1 
1 
I 
1 
I 
1 
1 
1 
2 
2 
3 
2 
3 
2 
1.57 

GS engine 
3 
3 
3 
3 
4 
4 
3 
3 
4 
2 
2 
2 
4 
2 
3 

SA-REST 
2 
2 
2 
2 
3 
3 
2 
2 
5 
3 
4 
3 
2 
1 
2.57 

TS-REST 
1 
1 
2 
2 
3 
2 
2 
2 
5 
3 
1 
3 
3 
3 
2.36 

OSL 
1 
1 
1 
1 
2 
1 
4 
4 
1 
1 
1 
1 
1 
4 
1.71 

LINDO 
1 
I 
I 
1 
2 
I 
1 
4 
1 
1 
1 
1 
1 
4 
1.28 



Table 42: Overall comparison of the performance of the various solvers. 

Problem 

CSP 
BIN 
GRAPH 
Q AP 
TSP 
M KP 
GPP 
USApHMP 
UMApHMP 
MCP 
TTP 
GAP 

General Solver Other Software 
GS 
engine 
2 
3 
4 
3 
2 
3 
3 
4 
4 
4 
3 
2 

SA-CSP 

2 

S A 
engine 
I 
I 
I 
I 
1 
2 
I 
3 
2 
2 
I 
1 

SA-REST 

2 

TS 
engine 
I 
2 
2 
2 
I 
2 
2 
2 
3 
3 
2 
1 

TS-REST 

2 

OSL 

3 
4 
5 
5 
3 
1 
4 

5 

1 

QAPBB 

4 

dfclique 

1 

Lindo 

3 
4 
5 
5 
3 
1 
4 

5 

1 

FUF 

3 

QAPSIM 

3 

dfmax 

1 

EUS 

I 

EUM 

1 

tsp-solve 

1 



Table 43 presents the ordering of the search engines based on the ranks given in Table 42. a @ b is used 

to denote that search engine a had better performance than search engine b while (a, b} is used to show 

that search engines a and b exhibited similar performances. 

Table 43: Ordering of the search engines based on their performances for each problem type. 

Problem 
CSP 
BIN 
GRAPH 
Q AP 
TSP 
MKP 
GPP 
USApHMP 
UMApHMP 
MCP 
7TP 
GAP 

Both SA and TS perform extremely well on the CSP, frequently finding improved solutions over the 

results provided by Smith et al. (1996b). The analysis shows that the SA implementation used by 

Smith et al. (1996b) is only as effective as the GS engine. SA and TS also perform well on the QAP as 

they routinely find optimal and near optimal (within a few per cent) solution costs. It is also shown 

that the system outperforms QAPBB and QAPSIM. There is no statistical difference between 

tsp-solve, SA and TS for the TSP. However, this may be due to the fact that tsp-solve could not returi 

solutions for the three largest problem instances (kroA100, ch130 and a280). For the MCP, the 

heuristics, dfmax and dfclique, were always able to obtain the clique sizes reported in Battiti and 

Protasi (1995) and hence shared an equal first ranking. 

Ordering of Search Engines 
{SA, TS) $ {GS, SA-CSP] $ (OSL, Lindo) 
SA $ TS $ GS $ {OSL, Lindo) 
SA $ TS $ RLF $ GS (OSL, Lindo) 
SA $ TS $ (GS, QAPSIM) $ QAPBB $ {OSL, Lindo) 
(SA, TS, tsp-solve] $ GS $ {OSL, Lindo) 
(OSL, Lindo] $ {SA, TS] $ GS 
SA $ TS $ GS $ (OSL, Lindo) 
E U S $ T S $ S A $ G S  
E U M $ S A $ T S $ G S  
(dfrnax, dfclique] $ SA $ TS $ GS $ {OSL, Lindo] 
S A $ T S $ G S  
(SA, TS, OSL, Lindo) $ {GS, SA-REST, TS-REST) 

The ILP packages are only effective on problems with dense 0-1 structures such as the MKP and GAP. 

These solvers generally outperform the list-based meta-heuristics in terms of the time required to reach 

the optimal solution cost. However, Lindo and OSL could not deliver a solution to gap8-1 within 6400 

seconds of runtime, even though the SA and TS engines typically found the optimal solution within a 

few seconds. The USApHMP and the UMApHMP are also solved very efficiently using exact 

techniques (see Table 20 and Table 21 respectively), though the general system (SA and TS) is also 

capable of delivering optimal solutions in reasonable amounts of runtime. 

5.10.3 Runtime Differences between the Various Solver Packages 

This section describes the way in which each solver varies in the amount of runtime required to reach 

the optimal or best-known solution cost. This is done in order to give an overall idea of how the 

general system rates in terms of the amount of computational effort required to deliver effective 

solutions compared to other optimisation packages (such as OSL and Lindo). An analysis of this type 

is difficult as a result of the wide variability of runtimes received in the course of solving a particular 



problem instance. Within the one set of 10 runs of a search engine, it is possible to record runtimes of 

as little as a few CPU seconds to thousands of CPU seconds. However, this may be attributed to the 

use of the random strategies embedded into the meta-heuristic search engines. While GS also uses 

random strategies, it displays a much smaller variation as it often descends quickly to the nearest local 

optimum and stops. As a consequence, the discussions concerning the performance of the general 

system's search engines are confined to best transition operator sets (as identified in Table 27) and the 

SA and TS search engines. 

A general characteristic of both the SA and TS engines is that they find good quality solutions early in 

the run and spend the rest of the available runtime making smaller improvements. For instance, in the 

case of the QAP tho40, the SA engine finds a solution that is 2% above the best known solution cost in 

21 CPU seconds and a solution that is 0.39% above the best-known in 959 seconds. 

A comparison of the general system's performance to the other optimisation packages for each problem 

type is given below. Overall, the general system can require significantly larger runtimes to reach the 

same quality solutions as the heuristic and ILP programs in the worst case. However, this must be 

considered in context with the fact that the general system can solve a very wide range of problems and 

produce superior quality solutions in comparison to the other optimisation packages. 

CSP - 

SA-CSP solves CSP instances relatively quickly compared to the search engines of the general solver 

system. However, it must be noted that for 70% of the problem instances, the SA and TS engines find 

better solution costs than reported in Smith et al. (1996b). For the majority of the problem instances, 

the general system records runtimes that are approximately equal to SA-CSP in the best case. In the 

worst case, the general system can require in the order of 1000 times longer runtime than SA-CSP. 

However, a close inspection of individual runs reveals that both the SA and TS engines find the best- 

known solution costs within a similar amount of runtime to SA-CSP. The general solver utilises the 

extra runtime to find improved solutions over those reported in Smith et al. (1996b). 

The RLF heuristic by Johnson et al. (1991b) terminates before 1 CPU second has elapsed for each 

problem instance. However, the solutions returned by this heuristic are typically of a low quality. This 

is in comparison to the SA and TS engines of the general system that use all of the available CPU time 

to produce solution costs that are closer to the best-known costs. In addition, the optimal coloring was 

reached for (2125.1 using the SA engine. 



USApHMP and UMApHMP 

The branch and bound code with the shortest path heuristic developed by Ernst and Krishnamoorthy 

(1997b) is a very efficient form of solving the USApHMP and the UMApHMP. However, in the best 

case, the general solver can produce optimal solutions in the same or less time for the majority of 

problem instances compared with this code. In the worst case, the SA engine is approximately 100 

times s l o ~ e r ' ~ .  

The general system often produces solutions that are of better quality than QAPSIM and QAPBB in 

approximately the same amount of runtime. However, QAPSIM's runtimes are typically smaller for 

the larger problems. For instance, consider will00 for which the SA engine produces solutions that are 

at most 0.33% above the best-known cost compared with QAPSIM that finds a solution that is 0.75% 

above the best-known cost. However, this comes at a price as the general system can require up to 100 

times longer to produce this result. A close inspection of individual runs reveals that both the SA and 

TS engines find similar quality solution costs (0.75% above the best-known cost) to QAPSIM in 

approximately the same amount of runtime. In the best case, the SA search engine can produce a result 

that is 0.18% above the optimal solution in approximately 900 seconds. 

tsp-solve produces the optimal solution cost to each of the problem instances except the three largest 

(kroA100, ch130 and a280). For many of the problem instances, the general system can find the 

optimal solution in approximately the same amount of runtime as tsp-solve. However, for st70 (the 

largest problem that tsp-solve could solve), tsp-solve is at most three times faster than the general 

solver. 

GAP - 

Both OSL and Lindo are extremely efficient at finding the optimal solution to the GAP problem 

instances within a relatively short amount of computational time (except for gap7-1 and gap8-I). 

These runtimes are of approximately the same magnitude as required by the general system. However, 

some differences are evident, such as for gap6-1 in which OSL requires 20 times longer to obtain the 

optimal solution compared with the SA engine. Conversely, for gap20-200, the SA engine requires 

between 2 and 13 times longer to obtain the optimal solution compared with OSL. 

'' This statement neglects differences in the speed of the DEC 3000/700 (used by Ernst et al. (1997b)) and the RS6000 processor 
(as used in this study). However, they are comparable processors. 



MKP - 
OSL and Lindo typically solve MKP instances to optimality in far less runtime than either the SA and 

TS engines. In the best case, the SA engine produces optimal solutions for the majority of the problem 

instances in approximately the same amount of runtime as the Lindo package. However, in some cases 

(particularly for TS), the ILP codes solve the MKP problem instances 50 times faster than the general 

system. 

MCP - 

Both dfmax and dfclique are extremely efficient algorithms for the MCP problems as they solved all 

instances to optimality (or the best-known cost). This is contrast to the SA and TS engines that could 

only produce the optimal result for keller4. However, as noted in Section 5.9.3, there is some concern 

about the validity of some of the results produced by these programs. 

5.11 Summary 

In this chapter, a set of experiments was proposed in order to test the performance of the linked list 

modelling system and the general solver implementation. These experiments were designed to test the 

following: 

The effect of the transition operator probability sets on the performance of the search 

engines. 

The effect of the engine-specific parameter settings, such as SA cooling length and the 

neighbour selection probability, on the performance of the solver. 

The performance of the general solver compared to other optimisation packages (such as 

commercial LP codes and heuristic programs). 

The effectiveness of the feasibility restoration scheme for the move operator. 

The efficiency of the parallel TS engine. 

The problem types and problem instances used in this study are representative of a wide range of 

problems in the literature. Both qualitative and quantitative descriptions of the results were presented 

in this chapter. The quantitative analysis relied on the use of statistical techniques in order to determine 

differences in performance between search engines and different parameter settings. According to Barr 

et al. (1995, p. 24) "statistically validated conclusions" are essential to studies of this nature but are 

frequently lacking in the literature. 

The results of the various experiments indicated that: 



The general system is capable of solving a wide variety of COPs very effectively. It 

frequently finds the optimal and best-known solution costs in runtimes that can be as 

efficient as other optimisation packages. In addition, new best-known costs were 

recorded for some of the CSP and TTP problem instances. 

The choice of transition operators for a particular problem affects the quality of solution 

and runtime. Engine-specific parameter settings effect the performance of the search 

algorithms, but to a much lesser extent. 

The feasibility restoration scheme is computationally expensive in comparison to 

feasibility maintenance. The latter technique generally outperformed feasibility 

restoration in terms of both solution quality and runtime. 

The parallel TS engine reduces the amount of wall clock time required to solve COPS 

over the sequential version of the engine. This real time reduction is particularly evident 

for problems that exhibit the characteristics of having large neighbourhoods and complex 

incremental cost expressions (such as the QAP). 

The next chapter presents an in-depth summary of the performance of the general system. It also 

describes a number of research projects that are now possible as a direct result of the work on linked 

list modelling systems for COPs. Finally, the achievements and new developments contained in this 

thesis are highlighted. 



Chapter 6: Conclusions and Further 
Work 

6.1 Conclusions 

The list modelling system allows COPs to be represented in an efficient and compact manner. As a 

result, widely used and reported local search operators can be applied directly to the solution structure. 

Accordingly, the list modelling system is well suited to supporting meta-heuristic search algorithms 

such as GS, TS, SA and GRASP. A general solver was built that accepts problems formulated in this 

list notation. Apart from recording good overall performance on a range of COPs compared with ILP 

and heuristic codes, the time to develop a problem description is minimised due to the compact 

algebraic language with which problems are described (see Section 4.2). A method of automatically 

producing incremental cost expressions was also developed. This contributed greatly to the system's 

performance. 

The testing of the linked list modelling system was extensive and consisted of two main parts; standard 

and extended runs. Despite the short amount of time available to the standard runs, optimal and near 

optimal solutions were recorded for many problems. If the best solution for each problem is considered 

(disregarding the effects of both the transition operator probability sets and search engine specific 

parameters), the percentages of optimal solutions encountered by each of the search engines gives an 

encouraging picture (Table 44). For this particular implementation of the meta-heuristic search 

algorithms, it appears that SA typically outperforms TS. However, this is hardly a fair comparison 

because of two reasons: (a) different implementations of the algorithms will produce different results, 

and (b) TS was run using only one transition set per problem type while SA was tested under a range of 

conditions. Allowing SA and TS more runtime for problems in which the optimal or best-known 

solution could not be found resulted in further improvements (especially for TS). GS performs 

surprisingly well for some instances of the CSP and GAP. This can be potentially attributed to two 

factors: the ease of the problem instance and the contribution of the transition operator set. In the case 

of the CSP, there is only one effective transition operator (the swap), so it is not unreasonable to argue 

that these problem instances are easy to solve. For the GAP however, the combination of the move and 

the swap operator appears to form an efficient solving method in its own right (regardless of the search 

method used). 



Table 44: The percentage of Optimal and Best-Known solution costs achieved by SA, TS and GS for the 
standard runs. 

Search Engine 
S A 
TS 
GS 

Feasibility restoration was implemented for the move operator and applied to the GAP. This scheme is 

more cornputationally intensive than straight feasibility maintenance as a number of individual 

transitions are performed at each step and incremental cost expressions are not used. If only the move 

operator is considered, feasibility restoration outperformed feasibility maintenance on most of the GAP 

problem instances (see Section 5.9.4). However, the combination of the feasibility-maintaining move 

with the swap operator is far more efficient than feasibility restoration by itself. 

Percent (%) Optimamest-Known Costs 
83 
69 
21 

The solver allows multiple neighbourhoods to be evaluated in the course of solving a particular 

problem using an automatic technique that determines a set of appropriate transition operators without 

the need for changing the formulation of the problem. As a direct consequence of this, it is possible to 

gauge the effect of transition operators on solution quality and runtime. Generally, transitions that 

produce a small perturbation of the solution outperform those that change the solution greatly. 

Consider the TSP in which the application of the inversion operator requires that only four links of the 

tour change, whereas eight links change with the swap operator. The system, regardless of the searc'h 

engine, records better performance with the inversion operator than with the swap operator. There are 

some problems for which a combination of operators is more suitable than one used in isolation. For 

instance, the move operator applied to the BIN problem produces very poor solutions, whereas the 

addition of the swap operator results in the optimal solution frequently being found (see Table 45, 

Appendix A). It is believed that this is the case because the move operator can often find it difficult to 

produce a feasible solution and is likely to give a large incremental cost. However, swap in isolation is 

also ineffective, as each bin will contain a fixed number of items throughout the search process, thus 

making many regions of the search space inaccessible. 

Each problem type also utilised an adaptive probability setting in which the system changes the 

probability of each of the active transition operators according to its performance. In many cases, the 

adaptive probability setting performed well in comparison to other transition operator settings. 

However more work is needed to explore different adaptive rates and their effect on solution quality 

and runtime. 

The engine-specific parameters also affect solution quality. In particular, the probabilistic candidate 

list structure alters the performance of both GS and TS. For most problems, it was found that 

evaluating a subsection of the neighbourhood was more effective that evaluating the entire 

neighbourhood (see Table 29). Further studies could be conducted to determine whether this is due to 



the probabilistic sampling and/or the fact that more iterations are performed if a smaller subset of the 

neighbourhood is used. 

The parallel implementation showed that the TS engine could be made more efficient, in terms of the 

actual amount of time required to solve a problem, by allowing the simultaneous evaluation of the cost 

functions of neighbouring solutions. However, as the use of incremental cost expressions reduces the 

computation overhead and as there is a large communication time associated with the parallelisation 

scheme, the parallel performance was somewhat limited. 

6.2 Further Work 

This research has shown that a variety of COPs can be solved efficiently by meta-heuristic search 

engines underpinned by the new linked list modelling system. However, while the experiments were 

extensive, they were not exhaustive. A greater range of problem types and parameter settings could be 

used to further test its performance. 

An area that needs particular attention is the way in which the transition operators are applied. As 

noted in Section 3.4.1.2, there are a number of alternative methods that could be used. Even with the 

probabilistic approach demonstrated here, a greater range of probability sets could be used to determine 

the effectiveness of particular local search operators for different COPs. 

An additional enhancement to the modelling language would be the incorporation of logical statements 

and operators. This includes an IF ELSE construct and logical operators such as OR, AND, XOR and 

NOT. It is believed that the use of logical statements and operators in conjunction with algebraic 

expressions would allow the modelling system to express more complex optimisation problems. 

It is believed that a software product based on the linked list modelling system would have commercial 

application. The resulting program would greatly benefit from a graphical user interface that would 

allow the user to directly enter the list model using mathematical symbols. This description could be 

converted into a solver in much the same way as specified in this study. 

In addition to the above, this project naturally leads on to the following areas of research: 

Direct hardware implementation of the list modelling system. 

The use of different dynamic data structures for the representation of COPs. 

Alternative search strategies. 



6.2.1 Direct Hardware Implementation 

The work reported here was undertaken as part of a larger project that aims to develop Application 

Specific Computers (ASCs) for solving COPS (Abramson 1992; Abramson, de Silva, Randall and 

Postula 1995 and Abramson, Logothetis, Randall and Postula 1997, 1998). The benefit of these 

systems is that a specific hardware design has real time advantages over conventional workstations. 

The architectures of these computers will be designed to support a range of meta-heuristic search 

techniques through system reconfiguration using the list modelling system as the general representation 

scheme. As such, they will be based on Field Programmable Gate Array (FPGA) technology. FPGAs 

allow hardware to be reconfigured without any physical modification. This offers enormous potential 

because it should be possible to build a reconfigurable special purpose architecture, which can be used 

to solve a range of optimisation problems. It is envisaged that the ASC will be connected to a 

conventional workstation to provide the interface (Figure 29). 

The work is significant because it will allow a wide range of integer optimisation problems to be solved 

very rapidly using one inexpensive hardware and software platform. Thus it will be possible to solve a 

number of important practical problems using one system. The system will provide the advantages of 

generic algorithms with the speed of specific ones. The work will also lead to a conceptual advance in 

the role of special purpose computers. 

Figure 29: Schematic of the ASC for solving COPS. 



6.2.2 Alternative Dynamic Data Structures 

Linked lists are very successful at representing a wide range of COPS efficiently. However, as 

discussed in Section 3.2, trees are an alternative dynamic data structure on which a general modelling 

system for COPS could be based. In particular, such a representation would be more appropriate than 

list modelling for solving problems such as the minimal spanning tree problem. The transition operator 

set could conceivably consist of adding, dropping and moving edges or sub-trees. However, general 

methods of indexing nodes and edges as well as ways of maintaining the integrity of the tree (such as 

ensuring that every node is connected by an edge without a circuit for the minimal spanning tree 

problem) would need to be developed. 

6.2.3 Alternative Search Engines 

This study has described the implementation of a general COP solver using three meta-heuristic 

engines, namely GS, TS and SA. However, there are other meta-heuristic algorithms that could be 

incorporated into the general system. One in particular is the GRASP technique (see Section 2.2.3.4). 

This can be implemented by modifying the initial solution procedure (described in Section 4.7) to act 

as the construction phase of the algorithm and using either the GS, TS or SA engines as the local search 

phase. 

The list modelling system is particularly suited to meta-heuristics that are based on local search 

operators. However, it is believed that other techniques (in particular GAS and other evolutionary 

procedures) could be implemented in a modified version of the general environment. For GAS, the 

local search transition operators would be replaced by a set of recombination operators. However, as 

noted in Section 2.3.2.3, operators would need to be designed for specific problems, though it may be 

possible to use one operator for a group of similar problems. This is due to the fact that many problems 

have similar representations using the list notation. For instance, the QAP and TSP are very similar as 

they are both permutation problems that can be modeled with a fixed size sub-list and subsequently 

recombination could be performed using the PMX (partially match crossover) operator (Goldberg 

1989) or its variants. It remains to be seen whether a rule base can be established that could match 

appropriate operators to problems (like the one in Table 3 that determines suitable local search 

operators). A GA search engine would also be particularly suited to parallel implementation as 

multiple solutions are generated and evaluated at every step of the algorithm. 

6.3 Achievements and Significance 

This research has presented a number of new concepts in the field of general-purpose meta-heuristic 

COP solvers. The most fundamental of which is a new modelling system specifically designed for 



COPs. It has been shown that linked list data structures efficiently model combinatorial optimisation 

problems due to the natural mapping between COPS and lists. 

The new modelling system is unique as it is based on a dynamic data structure, the linked list. A 

property of the new system is that it eliminates the need for artificial encoding constraints and variables 

common in ILP and CP modelling as it more directly represents the grouping characteristics of COPs. 

Using the linked list modelling system, a variety of local search transition operators can be directly 

applied to problem models (see Section 3.4.1). A method has also been developed that determines the 

appropriate local search operators for particular problems (see Table 3). As well as this, a probabilistic 

method for applying transition operators capable of adaptive behaviour was investigated. 

A means of automatically generating incremental cost expressions was produced in order to allow the 

efficient evaluation of objective functions. This technique matches an objective function to one or 

more known templates so as to derive a suitable algebraic expression in list notation. Whilst this 

method is not entirely general, it has been applied successfully to a number of COPs. It also has the 

advantage that the set of templates can easily be expanded, should the need arise. 

The linked list modelling system is used as the foundation of a new general-purpose solver named 

COSULOM. This system is capable of solving a wide range of COPS with meta-heuristics based on 

the use of local search transition operators. To date, GS, TS  and SA engines have been implemented. 

The system accepts algebraic arbitrary formulations of COPS in GAMS like syntax (Brooke et ai. 

1997). This feature can dramatically reduce the development time for prototyping and solving COPs. 

Another property of the system is that it can produce feasible starting solutions to problems, which is a 

difficult task in itself. 

In summary, it is believed that the work contained in this thesis has contributed to the knowledge of 

modelling systems for COPS and general-purpose meta-heuristic implementations in the following 

areas: 

The list modelling system is an efficient means of representing COPS as it models the 

fundamental "grouping, ordering and selection of discrete objects" characteristics of these 

problems (see Section 1.2). Encoding constraints used by other systems (in particular ILP 

and CP) that can make COPS impractical to solve are eliminated in the linked list 

modelling system. 

The choice of transition operator(s) affects the performance of the search algorithm to a 

greater extent than specific meta-heuristic parameters. 

A general solver can have similar performance to special purpose solvers. The advantage 

of using a general solver is that the time to develop a problem description is relatively 

small compared with the construction of special purpose codes. 



Using a linked list modelling system for COPs, a technique of automatically generating 

initial feasible solutions to problems was developed. The generation of feasible solutions 

has been described as a difficult task in itself (Goldberg 1989). 

Using a linked list modelling system for COPs, a set of local search transition operators 

that preserve feasibility, can be automatically deduced using a rule base. 

Using a linked list modelling system for COPs, incremental cost expressions can be 

deduced from the original cost function. These expressions increase the efficiency of 

meta-heuristic search algorithms, as fewer operations are required to compute the change 

in cost than to calculate the entire cost. 

As seen in Section 6.2, the work contained in this thesis has also given rise to a number of subsidiary 

projects. 
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Glossary of Terms and Acronyms 

AI: Artificial Intelligence 

ANN: Artificial Neural Network 

ASA: Adaptive Simulated Annealing 

ASC: Application Specific Computer 

Backaus-Naur Form: See BNF. 

BIN: Bin Packing Problem. A problem in which a set of weighted objects is to be partitioned 

between a number of bins with a certain capacity. The aim is to minimise the number of bins. 

Bin Packing Problem: See BIN. 

BNF: Backaus-Naur Form. A syntax for describing languages (in particular programming 

languages). It is often used for the production of compilers. 

Car Sequencing Problem: See CSP. 

Constraint: An inequality or equality relationship that limits the set of feasible solution states. 

COP: Combinatorial Optimisation Problem 

CP: Constraint programming. 

CSP: Car Sequencing Problem. A problem in which a number of different car models are to be 

sequenced on an assembly line. The objective is to separate cars of the same model type as much as 

possible in order to evenly distribute the manufacturing workload. 

CPU: Central Processor Unit 

CPU time: The total time taken for the CPU to execute a program. 

Field Programmable Gate Array. See FPGA. 



FPGA : Field Programmable Gate Array. An FPGA is a silicon chip that allows a hardware 

design to be simulated. FPGAs are useful as they allow hardware designs to be reconfigured without 

any physical modification. 

GRASP: Greedy Randomised Adaptive Search Procedures 

GA: Genetic Algorithm 

GAMS: General Algebraic Modelling System 

GAP: Generalised Assignment Problem. In this problem, jobs are assigned to agents subject to 

capacity constraints. The aim is to minimise the overall cost of this assignment. 

Generalised Assignment Problem: See GAP. 

GPP: Graph Partitioning Problem. A problem in which the aim is to find two equal partitions of 

nodes such that the number of interconnections between the partitions (characterised by the edges) is 

minimised. 

GPSIMAN: General Purpose SIMulated ANNealing. The solver was demonstrated in Connolly 

(1992). 

GRAPH: Graph Colouring Problem. A problem in which a minimal number of colours are to 

be assigned to a set of vertices such that any pair of vertices connected by an edge has two different 

colours. 

Graph Colouring Problem: See GRAPH. 

Graph Partitioning Problem. See GPP. 

GS: Greedy Search 

Hamiltonian Cycle: A Hamiltonian cycle is a circuit in a graph in which each vertex appears 

exactly once. 

ILP: Integer Linear Program(ming) 

IQR: Inter Quartile Range, The IQR quantifies the spread of the distribution for non-normally 

distributed data. It is defined as the difference between the first and third quartile of the distribution 

(Emory and Cooper 1991). 



Knapsack Problem: The objective of this problem is to fit a maximum number of items in the 

knapsack such that the profit is maximised. The sum of the weights of the items must not exceed a 

preset bound. 

LISP: LISt Processing. A computer language designed for manipulating lists of data. 

LP: Linear Program(ming) 

Markov Chain Length: The number of SA iterations for which the temperature is held 

constant. 

Max: Maximum 

Maximal Planar Layout Problem: A facilities layout problem in which a planar graph is 

sought that has the qualities: (a) no edges intersect; and (b) the sum of edge weights is maximised. 

Maximum Clique Problem: See MCP. 

Med: Median 

MCP: Maximum Clique Problem. A problem in which a clique of maximum cardinality is 

sought. Each clique member must be connected by an edge to every other member of the clique. 

MFLOP: Millions of FLoating Point Operations per second. 

MILP: Mixed Integer Linear Program(ming). An MILP is an LP in which some variables 

are continuous while others are restricted to integer values. 

Min: Minimum 

Minimal Spanning Tree Problem: This problem requires that all vertices in a graph are 

connected by edges such that: (a) the edges do not form a circuit (i.e. a Hamiltonian cycle); (b) the sum 

of the weight of the edges is minimised. 

MIMD: Multiple Instructions Multiple Data. 

MKP: Multiple Knapsack Problem. This problem is an extension of the knapsack problem 

as it has a number of capacity constraints instead of a single constraint. 



Multiple Knapsack Problem. See MKP. 

Neighbourhood: The neighbourhood of a solution is the set of those solutions that can be 

reached from the original solution by the application of a transition operator. 

NP: Nondeterministically Polynomial. Refers to a class of problems that may not be solved to 

proven optimality in less than exponential computational time (in the worst case). 

OR: Operations Research 

OSL: Optimisation Subroutine Library. A commercial LP/ILP package produced by IBM. 

PMX: Partially Matched Crossover 

Processor Allocation Problem: A problem in which a number of processes is allocated to a number 

of processors such that the total communication flow between processes on different processors is 

minimised. 

QAP: Quadratic Assignment Problem. A problem in which a set of facilities is assigned to unique 

locations in order to minimise the total intercommunication cost between the facilities. 

Quadratic Assignment Problem: See QAP. 

SA: Simulated Annealing 

School Time Tabling Problem: See TTP 

SOFM: Self-Organising Feature Maps 

Transition: A transition is a perturbation of the current solution state. There are a variety of 

different transition types. Some of which include exchanging the position of values within the 

solution, adding / dropping a value to / from the solution, or changing a value within the solution to 

another value. Different problems have their own set of suitable transition operators. 

Traveling Salesman Problem: See TSP. 

TS: Tabu Search 

TSP: Traveling Salesman Problem. The objective of the TSP is to find a minimum length 

Hamiltonian cycle through a set of cities (nodes). 



TTP: School Time Tabling Problem. A problem in which a number of tuples (consisting of teacher, 

room and class) are scheduled in a fixed number of time slots (periods). The aim is to minimise the 

number of clashes between tuples. 

UMApHMP: Uncapacitated Multiple Allocation p-Hub Median Problem. This is similar to 

USApHMP except that each node may be connected to more than one hub. 

Uncapacitated Multiple Allocation p-Hub Median Problem. See UMApHMP. 

Uncapacitated Single Allocation p-Hub Median Problem. See USApHMP. 

USApHMP: Uncapacitated Single Allocation p-Hub Median Problem. A problem in which a set 

of nodes is assigned to a set of hubs (i.e. each node is connected to a single hub) such that the total cost 

of the flows between every pair of nodes is minimised. The problem also involves deciding which 

nodes are to be the hub nodes. 

Vehicle Routing Problem: See VRP. 

VRP: Vehicle Routing Problem. This is a generalisation of the TSP in which a number of tours are 

used to visit the set of nodes. The objective is to either minimise the total length of the tour or to 

minimise the number of tours, subject to time and capacity constraints. 

Wall clock time: The elapsed (real) time it takes to execute a program. As such, this time 

includes any system overhead and processor waiting. 



Appendix A: Standard Results for the 
SA, TS and GS engines 

Table 45, Table 46 and Table 47 display the best results obtained for every problem instance with the 

meta-heuristic engines. The summary tables are divided into two main sections, Cost and Runtime. 

For each section, the minimum (denoted Min), median (denoted Med), maximum (denoted Max) and 

inter-quartile range (denoted IQR) are given (as each problem instance is run with 10 random seeds). 

The Runtime section records the amount of CPU time required to reach the best solution cost for that 

particular run. Note: The desired objective function cost for the BIN, GRAPH and MCP problems is 0 

as a result of the reasons outlined in Section 5.1. 



SA Standard Results 3 
Problem Instance 

CSP n20tl 
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n2013 
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n4012 

n4013 

n4014 
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Optimal 1 
Best 
Known 
cost 
58 

40 

29 

10 

150 

146 

94 

66 

33 

352 

238 
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Annealing 
Length 
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5000 
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5000 
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1000 
5000 
10000 
1000 
5000 
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5000 
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Runtime 

Min 

0 
0 
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0 
0 
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0 
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2 
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189 
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IQR 
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0 
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0.75 
1.75 
1 
0 
0 
0 
1 
1 
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0 

Cost 
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58 
58 
40 
40 
40 
29 
29 
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92 
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65 
65 
65 
32 
32 
32 
354 
354 
354 
228 
228 
228 
144 
144 
144 

(seconds) 

Med 

7.5 
224 
359.5 
0.5 
3 
6.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
701 
458 
450.5 
419.5 
433 
250.5 
0.5 
0.5 
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3 
3.5 
2.5 
0.5 
0.5 
0.5 
1 
2 
1 
164.5 
307.5 
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Med 

58 
58 
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23 1 
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Max 

27 
1617 
1339 
2 
8 
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4 
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1634 
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1304 
940 
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13 
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67 
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32 
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32 
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233 
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146 
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IQR 

6.25 
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932 
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7 
13.75 
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0 
0 
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1330 
517 
325.75 
457 
222.75 
0.25 
0.5 
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80 
4 
41.5 
6 
18.25 
33.75 
11.5 
702.25 
137.25 
1063 
287.5 
371.5 
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Transition 
Set 
Reference 
Number 
4 
4 
4 
5 
5 
5 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
I 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
1 

SA Standard Results I 
Problem Instance 

bin2al 

bin2a2 

bin2a3 

Annealing 
Length 

1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 

Optimal l 
Best 
Known 
cost 

0 

0 

0 

Cost 

Min 

0 
0 
0 
0 
0 
0 
187 
199 
340 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
168 
153 
169 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
181 
202 
310 

Runtime 

Min 

2 
2 
2 
2 
2 
2 
229 
114 
5 
10 
10 
10 
52 
79 
79 
30 
30 
30 
18 
18 
18 
176 
906 
110 
4 
4 
4 
29 
29 
29 
8 
8 
8 
9 
9 
9 
892 
79 1 
8 

Med 

0 
0 
0 
0 
0 
0 
205.5 
225 
400.5 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
0 
188 
187 
327.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
212 
230.5 
392 

Max 

0 
0 
0 
0 
0 
0 
250 
230 
495 
0 
0 
0 
3 
1 
0 
0 
0 
0 
2 
0 
0 
20 1 
240 
449 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
242 
256 
453 

IQR 

0 
0 
0 
0 
0 
0 
22.25 
9.25 
63.5 
0 
0 
0 
1.75 
0 
0 
0 
0 
0 
0 
0 
0 
19.5 
17.75 
46.75 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
3 1.75 
28.75 
30.75 

(seconds) 

Med 

3.5 
3.5 
3.5 
2 
2 
2 
1265.5 
956.5 
54.5 
16 
16 
16 
86 
123.5 
123.5 
45.5 
45.5 
45.5 
28.5 
28.5 
28.5 
1044.5 
1078.5 
832 
7 
7 
7 
49 
49 
42 
13 
13 
13 
12.5 
12.5 
12.5 
1107 
1088 
691.5 

Max 

9 
9 
9 
6 
6 
6 
1387 
1588 
1000 
47 
47 
47 
95 
392 
495 
55 
55 
550 
5 1 
85 
85 
1547 
1400 
1568 
9 
9 
9 
84 
84 
84 
2 1 
21 
21 
24 
24 
24 
1537 
1367 
1151 

IQR 

1.25 
1.25 
1.25 
2 
2 
2 
640.5 
629.5 
329.75 
7.25 
7 
7 
11.5 
41.75 
87 
14.25 
14.25 
14.25 
7.75 
20.25 
20.5 
141.25 
138 
59 1.75 
2.5 
2.5 
2.5 
28.5 
28.25 
24.25 
5 
5 
5 
8.5 
8.5 
8.5 
253 
108 
417.75 



SA Standard Results I 
Problem Instance 

bin2a4 

bin3al 

Runtime 

Min 

5 
5 
5 
46 
46 
46 
19 
19 
19 
18 
18 
18 
843 
894 
15 
5 
5 
5 
35 
35 
35 
11  
I I 
1 I 
13 
13 
13 
778 
179 
488 
62 
63 
62 
322 
217 
377 
188 
737 
216 

Transition 
Set 
Reference 
Number 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 

Optimal 1 
Best 
Known 
cost 

0 

0 

(seconds) 

Med 

10 
10 
10 
64.5 
75.5 
75.5 
23.5 
23.5 
23.5 
19.5 
19.5 
20 
1341 
1084 
900.5 
8 
8 
8 
49.5 
49.5 
49.5 
16 
16 
16 
17.5 
17.5 
17.5 
1156 
1086.5 
958 
146 
171.5 
170 
360 
377.5 
1036.5 
246 
938 
528 

Annealing 
Length 

1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
I0000 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
I0000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
lo00 
5000 
10000 

Max 

18 
18 
18 
90 
105 
105 
3 1 
3 1 
3 1 
3 1 
3 1 
3 1 
1587 
1513 
1104 
13 
13 
13 
80 
80 
80 
25 
25 
25 
21 
26 
2 1 
1287 
1582 
1426 
186 
414 
413 
373 
844 
1557 
276 
1575 
842 

IQR 

4.25 
4.25 
4 
18.5 
32.5 
33.25 
3.75 
3.75 
3.75 
3.25 
3.25 
3 
362.5 
467.75 
884 
1.25 
I 
1.25 
15 
15 
15 
3 
3 
3 
3.5 
3.5 
3.5 
110 
600.75 
307.75 
48.25 
87.5 
85.5 
20 
391.5 
341.5 
54 
375 
387.75 

IQR 

0 
0 
0 
0.75 
0 
0 
0 
0 
0 
0 
0 
0 
13.5 
20.5 
35.75 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
80.5 
162.25 
265.5 
1 
0 
0 
2.25 
1 
0.75 
2 
0 
0 

Cost 

Min 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
176 
171 
161 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
517 
412 
446 
0 
0 
0 
3 
0 
0 
0 
0 
0 

Med 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
202 
197 
328.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
58 1 
544.5 
711.5 
0 
0 
0 
7 
0 
0 
I 
0 
0 

Max 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
22 1 
246 
435 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
89 1 
916 
916 
3 
0 
0 
13 
2 
28 
3 
0 
0 



SA Standard Results I 
Problem Instance 

bin3a2 

bin3a3 

bin3a4 

Transition 
Set 
Reference 
Number 
5 
5 
5 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
1 
2 
2 
2 

Optimal 1 
Best 
Known 
cost 

0 

0 

0 

Annealing 
Length 

1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
I000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
lo000 

Cost 

Min 

0 
0 
0 
558 
483 
260 
0 
0 
0 
9 
0 
0 
1 
0 
0 
I 
0 
0 
517 
509 
672 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
581 
81 1 
634 
2 
0 
0 

Runtime 

Min 

107 
190 
190 
745 
26 
41 
91 
171 
173 
333 
596 
322 
199 
3 65 
365 
189 
262 
262 
7 06 
377 
377 
64 
64 
64 
295 
378 
374 
122 
122 
122 
111 
11  1 
111  
729 
11  
20 
90 
29 1 
29 1 

IQR 

0.75 
0 
0 
73 
286.75 
298 
0.75 
0 
0 
4.5 
I 
0 
1 
0 
0 
1 
0 
0 
30.5 
114.5 
114.5 
0 
0 
0 
2.5 
0 
0 
0 
0 
0 
I 
0 
0 
2 1.25 
72.25 
106.25 
1.75 
0 
0 

Med 

1 
0 
0 
588 
826 
633.5 
1 
0 
0 
14.5 
0.5 
0 
3.5 
0 
0 
2 
0 
0 
552 
822 
822 
0 
0 
0 
3 
0 
0 
0 
0 
0 
0.5 
0 
0 
633 
900 
853.5 
4.5 
0 
0 

(seconds) 

Med 

194.5 
4 10.5 
410.5 
1019 
760 
642.5 
165 
239.5 
24 1 
360.5 
1330.5 
1246.5 
239.5 
615 
5 24 
212 
41 1 
411.5 
1141 
1081 
1080.5 
101.5 
101 
101 
337.5 
654.5 
65 1 
194.5 
204.5 
204.5 
153 
262.5 
263 
869 
1301.5 
1369.5 
174.5 
589.5 
596 

Max 

2 
0 
0 
646 
101 1 
964 
2 
0 
0 
16 
1 
0 
5 
0 
I 
6 
0 
0 
615 
885 
885 
0 
0 
0 
7 
1 
I 
2 
0 
0 
3 
0 
0 
660 
1113 
1007 
6 
2 
2 

Max 

253 
87 1 
87 1 
1309 
1558 
1322 
185 
370 
370 
377 
1593 
1522 
277 
948 
805 
245 
1223 
1223 
1597 
1570 
1570 
176 
176 
176 
378 
1017 
1017 
277 
505 
505 
23 1 
521 
521 
1306 
1552 
1537 
195 
741 
780 

IQR 

66.5 
377.25 
377 
488.75 
1290.5 
58 1.75 
46.25 
104 
104 
23.5 
474.25 
33 1.75 
48.5 
25 1.25 
233.5 
19.75 
324.5 
324.25 
438.75 
332.5 
332.25 
32.25 
32.25 
32.25 
54 
383 
384.5 
44 
103 
103 
60.5 
190.5 
190.5 
325.75 
716 
298 
30 
24 1 
246.5 



SA Standard Results I 
Problem Instance 

GRAPH C125.1 

C125.5 

Optimal l 
Best 
Known 
cost 

0 

0 

Transition 
Set 
Reference 
Number 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 

Annealing 
Length 

loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 

Cost 

Min 

12 
1 
0 
3 
0 
0 
3 
0 
0 
2 
1 
1 
1 
I 
0 
2 
1 
1 
2 
2 
0 
2 
0 
0 
6 
3 
1 
8 
5 
4 
8 
5 
3 
6 
5 
4 
8 
5 
5 

Runtime 

Min 

332 
785 
783 
221 
576 
418 
205 
412 
412 
3 
3 
3 
5 
14 
14 
6 
1 I 
11  
5 
5 
5 
9 
15 
15 
10 
23 
130 
9 
9 
34 
8 
24 
24 
52 
14 
14 
I I 
24 
5 1 

Med 

19.5 
3 
1 
6.5 
0 
0 
4.5 
0 
0 
3 
3 
3 
3 
2 
2 
3 
2 
2 
3 
2.5 
2 
3 
2 
2 
8 
6 
5.5 
10 
6.5 
6 
9.5 
6.5 
6 
9 
6 .  
5 
9 
6 
6 

Max 

27 
7 
4 
11  
1 
1 
7 
1 
1 
6 
6 
5 
5 
4 
2 
5 
5 
5 
5 
4 
4 
5 
5 
5 
10 
8 
9 
13 
9 
8 
10 
10 
10 
12 
10 
10 
12 
8 
7 

IQR 

16 
190.5 
470 
31.5 
650 
601.25 
25.75 
419.5 
420 
6.75 
6.75 
6.75 
15.5 
87 
176.25 
13.25 
68 
68 
10.75 
45.75 
121.75 
13 
74.5 
74.75 
6.5 
68.25 
295.75 
1.5 
24 
66 
9 
6 1.25 
105 
16 
23.25 
120 
4.25 
37.5 
56.75 

(seconds) 

Med 

355 
1368.5 
11 12 
265 
1296.5 
876 
250.5 
792.5 
793 
6.5 
7 
7 
17.5 
57.5 
100 
15.5 
66.5 
69.5 
15 
30 
48 
26 
77.5 
77.5 
18.5 
44 
407 
15.5 
6 1 
95 
17 
65.5 
8 1 
66 
40 
67 
20.5 
8 1 
100.5 

IQR 

4 
2 
1.75 
2.5 
0.75 
0.75 
1 
0 
0 
1.75 
1.75 
1.75 
2.75 
0.75 
0.75 
1.5 
1.5 
1.5 
I 
1.75 
1.75 
0 
0.75 
0.75 
1 
2 
3.75 
1.75 
1.75 
1.75 
1 
2.5 
1.75 
2.75 
2.25 
1.75 
1 
1.75 
0.75 

Max 

380 
1532 
1546 
287 
1429 
1389 
319 
1215 
1215 
41 
90 
268 
36 
197 
409 
32 
198 
198 
38 
153 
406 
43 
22 1 
22 1 
23 
113 
1481 
18 
77 
149 
24 
110 
232 
80 
101 
217 
23 
112 
204 
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SA Standard Results I 
Problem Instance 

ap20a3 

ap20a4 

ap20a5 

Optimal 1 
Best 
Known 
cost 
151533.1 

135624.9 

123130.1 

Transition 
Set 
Reference 
Number 
1 
I 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
I 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
I 
1 

Annealing 
Length 

1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
iO000 
1000 
5000 
10000 
1000 
5000 
10000 
I 000 
5000 
10000 
1000 
5000 
10000 

Cost 

Min 

151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
151533.1 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
135624.9 
123130.1 
123130.1 
123130.1 

Runtime 

Min 

39 
166 
321 
1 
1 
1 
0 
0 
0 
I 
1 
1 
0 
0 
0 
1 
1 
1 
32 
154 
310 
1 
I 
1 
1 
I 
I 
1 
8 
2 
1 
I 
1 
0 
I 
0 
78 
180 
346 

Med 

151533.1 
151533.1 
151533.1 
153240.2 
152651.78 
152093.89 
152651.77 
151533.1 
152092.46 
156439.99 
153828.62 
151533.1 
151533.1 
151533.1 
151533.1 
152651.81 
152092.46 
152092.46 
135624.9 
135624.9 
135624.9 
139560.21 
135624.9 
135624.9 
139762.7 
135624.9 
139022.43 
139093.58 
135624.9 
139762.27 
139560.25 
137986.37 
139093.58 
138373.37 
135624.9 
136513.19 
123130.1 
123130.1 
123130.1 

(seconds) 

Med 

61 
179 
339.5 
3.5 
84 
488 
2 
208.5 
2 
5.5 
6 
253.5 
1 
1 
I 
1.5 
139.5 
315 
97.5 
254 
366.5 
21 
230 
260 
2.5 
250 
389 
1 1  
23 1 
16 
20.5 
196.5 
642.5 
7.5 
200 
208 
20 1 
769 
607 

Max 

151533.1 
151533.1 
151533.1 
161745.95 
161745.95 
160250.09 
160250.14 
159170.27 
160250.14 
161349.92 
163209.45 
160250.11 
160250.08 
160250.14 
160250.06 
160250.11 
153293.8 
160250.1 1 
135624.9 
135624.9 
135624.9 
140863.03 
141121.83 
141 121.83 
144485.05 
140863.06 
140863.03 
144032.28 
139093.67 
142732.05 
14323 1.6 
143599.91 
143023.16 
149138.55 
144781.47 
141 121.83 
123202.78 
123347.63 
123202.82 

IQR 

0 
0 
0 
5183.17 
2015.81 
2295.48 
2015.85 
838.93 
2001.3 
8447.17 
8447.05 
839.01 
839.03 
839.01 
4345.4 
641.99 
1 1 18.71 
11 18.71 
0 
0 
0 
2629.76 
0 
3614.98 
1692.9 1 
2601.5 1 
4852.22 
2061.67 
0 
3400.35 
3056.25 
4743.23 
3838.95 
2910.86 
1254.13 
2695.95 
0 
0 
0 

Max 

121 
413 
483 
703 
1256 
1390 
218 
35 1 
91 1 
237 
1438 
1480 
63 
457 
503 
553 
233 
46 1 
207 
543 
62 1 
87 
977 
1168 
195 
969 
1175 
65 
1191 
1497 
76 
1181 
1490 
179 
664 
714 
53 1 
1080 
1175 

IQR 

3 1 
66.25 
2 1.75 
62 
247.25 
178 
45.5 
229.5 
452.75 
64.25 
183.25 
515.5 
1.5 
194.5 
0.75 
3.75 
217 
435.5 
123 
139.5 
181.25 
53 
72.75 
518.5 
44.5 
140.75 
219.5 
36.5 
19 
423.5 
62 
246.5 
825 
5 1.25 
155.25 
415.25 
108.75 
592.75 
265.75 



SA Standard Results 3 
Problem Instance 

ap25a2 

ap25a3 

Transition 
Set 
Reference 
Number 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
1 
1 
2 
2 
2 

Optimal l 
Best 
Known 
cost 

175542 

155256.3 

Annealing 
Length 

1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
loo00 

Cost 

Min 

123130.1 
123130.1 
1231 30.1 
1231 30.1 
123130.1 
123130.1 
123130.1 
123 130.1 
123 130.1 
123 130.1 
123 130.1 
123 130.1 
123130.1 
123130.1 
123130.1 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
155256.3 
155256.3 
155256.3 
155256.3 
155256.3 
155256.3 

Runtime 

Min 

I 
2 
1 
1 
1 
I 
1 
1 
1 
I 
1 
I 
1 
I 
1 
78 
383 
752 
0 
0 
0 
1 
1 
I 
1 
1 
I 
1 
1 
1 
0 
0 
0 
72 
406 
715 
1 
1 
1 

IQR 

4795.98 
3536.28 
1666.48 
1865.76 
163.17 
185.96 
619.02 
240.39 
3808.57 
820.69 
1068.65 
1666.48 
3212.18 
4401 .I9 
163.19 
307.55 
307.97 
267.51 
307.55 
230.66 
230.66 
230.66 
230.66 
0 
230.66 
307.55 
307.55 
230.66 
230.66 
230.66 
230.66 
230.66 
230.66 
354.51 
354.51 
265.88 
567.41 
4687.37 
4598.74 

(seconds) 

Med 

18.5 
250.5 
383.5 
42.5 
283 
3 85 
57.5 
235.5 
548 
41.5 
196.5 
513 
3 
207 
399.5 
157 
649.5 
1338.5 
4.5 
4.5 
4.5 
2 
2 
2 
4 
4 
4 
4.5 
5 
4.5 
2 
2 
2 
333.5 
665 
1076.5 
23 
280 
573.5 

Med 

126687.54 
123130.1 
123359.12 
123664.43 
123130.1 
123130.1 
123359.12 
123238.9 
123610.27 
124198.74 
123664.43 
123664.42 
124995.86 
123130.1 
123130.1 
175695.76 
175541.98 
175541.98 
175695.76 
175541.98 
175541.98 
175541.98 
17554 1.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
175541.98 
155492.8 
155610.81 
155610.81 
159943.64 
156374.77 
156374.01 

Max 

133435.81 
128379.25 
128379.25 
128379.25 
124995.81 
124198.72 
128379.25 
127762.47 
132204.03 
128379.26 
127762.4 
128379.26 
128379.26 
132450.42 
128379.26 
186193.17 
175849.95 
175849.95 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
175849.53 
164744.94 
159943.64 
160018.14 
161743.77 
159943.67 
16021 3.6 1 

Max 

137 
605 
1050 
223 
854 
1582 
216 
1196 
1455 
131 
97 1 
870 
172 
7 65 
1501 
1109 
1460 
1759 
59 
59 
1243 
352 
635 
1289 
275 
115 
115 
140 
655 
1529 
120 
625 
1180 
1432 
1228 
1288 
125 
852 
1320 

IQR 

45.75 
131.75 
41 1.75 
47.25 
435.75 
474.25 
149.75 
29 
891.25 
63 
214.25 
267 
38.25 
85.5 
394 
153.5 
527.25 
253.25 
30.5 
30.5 
30.5 
6.5 
19.25 
19.25 
34.75 
38.25 
38.25 
34.75 
35.5 
35.75 
21 
21 
40.5 
186.5 
345 
216.75 
28.75 
627 
1140 
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SA Standard Results I 
Problem Instance 

ap l0a4 

ap l0a5 

Optimal 1 
Best 
Known 
cost 

107354.73 

86028.88 

Transition 
Set 
Reference 
Number 
4 
4 
5 
5 
5 
6 
6 
6 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
1 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 

Annealing 
Length 

5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
I0000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
1 0000 
1000 

Cost 

Min 

131581.79 
131581.79 
131581.79 
131581.79 
131581.79 
131581.79 
131581.79 
131581.79 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 

Runtime 

Min 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
2 
2 
2 
0 
0 
0 
0 
I 
0 
0 
0 
0 
0 
0 
0 
1 
1 
I 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 

Med 

131581.79 
131581.79 
132511.19 
131581.79 
131581.79 
131581.79 
131581.79 
131581.79 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 

(seconds) 

Med 

0.5 
0.5 
17.5 
71.5 
145 
1.5 
1.5 
1.5 
40.5 
204 
398 
14.5 
14.5 
14.5 
0.5 
0.5 
0.5 
1.5 
1.5 
1.5 
30.5 
152.5 
301.5 
7.5 
7.5 
7.5 
3.5 
3.5 
3.5 
12.5 
12.5 
12.5 
6.5 
6.5 
6.5 
3.5 
3.5 
3.5 
27.5 

Max 

131581.79 
131581.79 
159398.64 
133798.33 
133798.33 
131581.79 
131581.79 
131581.79 
108600.15 
108262.5 
108262.5 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
107354.73 
108600.15 
108600.15 
107354.73 
107354.73 
107354.73 
107354.73 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
. 86028.89 

IQR 

0 
0 
2127.1 
748.2 
1394.09 
0 
0 
0 
680.83 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Max 

2 
2 
30 
362 
424 
7 
7 
7 
80 
400 
416 
55 
57 
57 
23 
23 
23 
9 
9 
9 
117 
436 
580 
26 
26 
26 
65 
336 
676 
56 
151 
151 
37 
37 
37 
42 
40 
40 
102 

IQR 

0.25 
0.25 
13.75 
109.25 
8 
4.25 
4.25 
4.25 
37 
158 
304.25 
21.25 
21.25 
21.25 
1.5 
1.5 
1.5 
4.75 
4.75 
4.75 
24.25 
132 
42.25 
9 
8.5 
8.5 
2 
2 
2 
34.25 
34.25 
34 
18 
18 
18 
3.5 
3.5 
3.5 
62.25 



l6 All run lengths for esc64a, sko72 and will00 were too long for the time available for the standard runs. These problem instances appear in the Extended Runs instead. 

SA Standard Results 1 
Problem Instance 

nug08 

nugl2 

Optimal l 
Best 
Known 
cost 

107 

289 

Transition 
Set 
Reference 
Number 
5 
5 
6 
6 
6 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
1 
I 
I 
2 
2 
2 
3 
3 

Annealing 
Length 

5000 
loo00 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
loo00 
loo0 
5000 
1oo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
loo00 
lo00 
5000 

Cost 

Min 

86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
1 07 
107 
107 
1 07 
107 
107 
107 
107 
107 
107 
289 
289 
289 
289 
289 
289 
289 
289 

Runtime 

Min 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
3 
7 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
6 
I I 
4 
13 
23 
2 
14 

Med 

86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
1 07 
107 
107 
107 
107 
107 
107 
1 07 
1 07 
289 
289 
289 
289 
289 
289 
289 
289 

(seconds) 

Med 

128.5 
260 
8 
8 
8 
0 
2 
4.5 
0.5 
3 
6.5 
I 
3.5 
7 
0.5 
3 
6 
0.5 
2.5 
5 
0 
0 
0 
0.5 
3.5 
6.5 
0.5 
3 
6.5 
2 
7 
11.5 
8.5 
32.5 
26 
7 
27.5 

Max 

86028.89 
86028.89 
86028.89 
86028.89 
86028.89 
1 07 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
107 
1 07 
107 
107 
107 
107 
1 07 
107 
107 
1 07 
107 
107 
107 
289 
289 
289 
289 
289 
289 
289 
289 

IQR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Max 

262 
524 
40 
40 
40 
0 
2 
5 
1 
4 
7 
2 
4 
7 
1 
3 
6 
1 
3 
5 
I 
3 
6 
1 
4 
7 
I 
3 
7 
3 
I I 
15 
35 
83 
58 
67 
77 

IQR 

256 
518.75 
11.5 
1 1.75 
11.75 
0.25 
1.75 
3.5 
0 
0 
0.25 
0.25 
0.25 
0.25 
0.5 
3 
6 
0.5 
2.5 
5 
0.5 
3.25 
6.25 
0.25 
2.5 
5 
0.5 
3.25 
6.25 
1.25 
1 
0.5 
9.25 
19.25 
12 
20 
14 



- 
SA Standard Results 
Problem Instance 

nugl5 

Transition 
Set 
Reference 
Number 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
I 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 

Optimal l 
Best 
Known 
cost 

575 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
lo000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
lo000 
1000 
5000 
10000 
1000 
5000 
10000 
lo00 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

Runtime 

Min 

25 
2 
10 
19 
0 
0 
0 
2 
I t  
23 
3 
1 1  
23 
2 
10 
19 
0 
0 
0 
14 
6 1 
86 
14 
89 
155 
4 
20 
3 8 
3.5 
13 
26 
0 
0 
0 
5 
25 
47 
8 
25 

Cost 

Min 

289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 

(seconds) 

Med 

36.5 
5 
15.5 
22.5 
2 
8.5 
15 
8 
13 
24 
11.5 
18 
30 
6 
13.5 
2 1 
5.5 
10 
27 
254.5 
181 
3 16 
191.5 
695 
516 
30 
46 
68.5 
9.5 
17 
37 
41 
76.5 
96.5 
22.5 
60.5 
124 
23 
33.5 

Med 

289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 

Max 

83 
10 
27 
30 
6 
14 
19 
22 
33 
3 1 
21 
42 
43 
14 
23 
41 
18 
19 
37 
868 
779 
79 1 
906 
1517 
1202 
50 
121 
118 
24 
37 
48 
96 
169 
234 
78 
218 
309 
58 
96 

Max 

289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
289 
575 
575 
575 
575 
576 
575 
575 
575 
576 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 
575 

IQR 

10.5 
4.25 
7.75 
6 
1.25 
2.75 
0.5 
7 
2.25 
2 
1 1.25 
8 
7 
4 
7.75 
2.25 
3.75 
4 
1 1.75 
594.25 
383.5 
338.25 
3 26 
521 
429.75 
16.5 
33.25 
24.25 
6.25 
7.25 
5.5 
22.5 
72.75 
55.75 
40 
38 
118.5 
15.25 
21.5 

IQR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.75 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 





SA Standard Results 1 
Problem Instance 

ste36a 

tho40 

Annealing 
Length 

10000 
1000 
5000 
loo00 
1000 
5600 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
I0000 
1000 
5000 
loo00 
loo0 
5000 
loo00 
1000 
5000 

Optimal / 
Best 
Known 
cost 

4763 

120258 

Transition 
Set 
Reference 
Number 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
I 
1 
1 
2 
2 

Runtime 

Min 

217 
89 
587 
613 
128 
327 
621 
113 
474 
473 
5 1 
267 
486 
121 
579 
4 
670 
586 
3 
224 
498 
834 
122 
258 
370 
479 
682 
36 
32 
32 
146 
15 
453 
14 
81 
208 
380 
I l l  
10 

Cost 

Min 

3062 
3077 
3064 
3067 
3073 
3064 
3064 
3072 
3062 
3064 
4763 
4763 
4763 
5347 
5488 
5377 
5072 
5222 
53 14 
4776 
4763 
4768 
4765 
4763 
4763 
4841 
4775 
4774 
4801 
4825 
4846 
4785 
4775 
4775 
120535 
120316 
12027 1 
128498 
128168 

Max 

3064 
3168 
3086 
3098 
3124 
3082 
3101 
3100 
3080 
3075 
4793 
4782 
4775 
5876 
5937 
6434 
5805 
5909 
6325 
4883 
4952 
5039 
4851 
4785 
4901 
4962 
5055 
5346 
4980 
5043 
5959 
4953 
4847 
4976 
121903 
122000 
121292 
134014 
136640 

Med 

3062 
3099 
3076 
3083 
3096.5 
3077.5 
3087.5 
3079.5 
3072 
3064 
4763 
4770 
477 1.5 
5470.5 
5754.5 
5922 
5285.5 
5391.5 
575 1 
4810.5 
4810 
4886.5 
4820.5 
4776.5 
478 1 
4906.5 
4886.5 
4929 
4896 
49 17.5 
499 1.5 
48 12.5 
4805 
4901 
121016.5 
120535 
120336.5 
130895 
13495 1 

IQR 

0 
22.25 
13 
6.5 
13.25 
1.75 
14 
6.25 
14.25 
3 
2 
12 
10.75 
325.25 
244 
309.75 
174.75 
277 
654.75 
29 
113 
153.25 
54.5 
9.75 
20.5 
54 
88 
290.25 
97 
104.5 
335 
41 
41.5 
132.5 
552.25 
367.25 
146.25 
2797 
2473.25 

(seconds) 

Med 

459 
521 
1067.5 
834.5 
556 
707.5 
1112.5 
988 
548.5 
978.5 
435 
879 
800.5 
636 
1155 
1137 
1059 
1025.5 
568.5 
539.5 
1090 
1204.5 
505 
1086.5 
884 
820 
1 129.5 
616 
653.5 
998 
1090 
549.5 
954 
1091 
465 
742.5 
1338 
960.5 
873 

Max 

1498 
1402 
1590 
1461 
1486 
1344 
1435 
1449 
1295 
1504 
1513 
1554 
1559 
1386 
1531 
1272 
1464 
1557 
1162 
1458 
1543 
1591 
1414 
1573 
1453 
1545 
1315 
1567 
1592 
1557 
1596 
1529 
1295 
1474 
1284 
1469 
1596 
1571 
1558 

IQR 

498.25 
882.25 
428.5 
68 1 
89 1.5 
234.5 
462 
827.25 
375.5 
594 
618.25 
716.75 
347.5 
88 1 
426.5 
880 
442.25 
448.25 
1145 
966 
375.5 
433.75 
721.5 
648.5 
349.75 
56 1 
314 
1344.25 
494 
336.25 
1077.25 
759.75 
379.75 
732.5 
644.25 
525 
419 
589.75 
368.5 



" All run lengths for kroA100, ch130 and a280 were too long for the time available for the standard runs. These problem instances appear in the Extended Runs instead. 

SA Standard Results 1 
Problem Instance 

TSP" gr24 

Optimal l 
Best 
Known 
cost 

1272 

Transition 
Set 
Reference 
Number 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 

Runtime 

Min 

5 
484 
86 1 
10 
181 
45 
12 
182 
487 
735 
259 
112 
87 
240 
797 
39 
438 
627 
13 
5 
8 
16 
0 
0 
0 
5 
24 
48 
0 
0 
0 
2 
11 
21 
0 
0 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

(seconds) 

Med 

9 
866.5 
927.5 
16.5 
1183.5 
934 
17.5 
886.5 
1 134.5 
895 
1344.5 
576 
173.5 
1364 
1154 
768 
1197 
1151 
33 
8 
20.5 
30 
4 
19.5 
38.5 
10.5 
30.5 
50 
4.5 
18 
35 
4 
11  
23.5 
2 
9.5 

Cost 

Min 

134328 
126670 
130303 
131710 
120562 
121319 
121051 
120334 
120342 
120529 
121 120 
121438 
122313 
120316 
121804 
121918 
120874 
121374 
122194 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 

Max 

19 
1499 
1472 
640 
1587 
1310 
21 1 
1586 
1450 
1491 
1591 
1510 
740 
1599 
1575 
1564 
1577 
1582 
81 1 
66 
3 8 
63 
8 
2 1 
43 
32 
49 
85 
10 
28 
36 
I I 
16 
26 
5 
27 

IQR 

5 
761 
383.5 
22 
493.75 
476.75 
25 
589.5 
420 
417.5 
472.25 
982.75 
139.25 
372.25 
690.25 
875.75 
308.5 
163 
23 
3.25 
12 
13.25 
I 
0.5 
1.25 
11.5 
17 
18.25 
3 
1.25 
1.25 
2 
1.25 
3.5 
4 
18.5 

IQR 

1999.25 
2849.75 
2198.75 
2703.5 
358.5 
2094.25 
1953.25 
938.25 
415 
434.25 
1355.25 
1763.25 
1140.75 
57 1.75 
1507 
4729.75 
676 
1002.75 
3361.25 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Med 

137075 
130890.5 
131914 
138038.5 
121533 
123033 
125499.5 
121202.5 
121 152 
122013.5 
122520 
123339 
1 2429 1 
121876 
123616.5 
123456 
121365.5 
122239 
125082.5 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 

Max 

141439 
136337 
134496 
142823 
122183 
126319 
12645 1 
122288 
122008 
122867 
123906 
1277 14 
126085 
124103 
125406 
13037 1 
12225 1 
124386 
127375 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 
1272 



SA Standard Results 1 
Problem Instance 

swiss42 

hk48 

Optimal l 
Best 
Known 
cost 

1273 

11461 

Transition 
Set 
Reference 
Number 
6 
7 
7 
7 
8 
8 
8 
I 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
I 
I 
I 
2 
2 
2 
3 
3 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
loo00 
loo0 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

1272 
1272 
1272 
1272 
1272 
1272 
1272 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
11461 
11461 
11461 
11461 
11461 
I1461 
1 1461 
11461 

Runtime 

Min 

0 
5 
23 
45 
0 
0 
0 
237 
90 
82 
17 
84 
166 
23 
116 
212 
1 
I 
I 
3 
3 
3 
7 
7 
7 
6 
6 
6 
4 
4 
4 
42 
180 
362 
135 
122 
555 
59 
289 

Med 

1272 
1272 
1272 
1272 
1272 
1272 
1272 
1273.5 
1291.5 
1310 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1 1962.5 
1181 1.5 
1 1559.5 
11461 
11461 
11461 
11699 
1 1554.5 

Max 

1272 
1272 
1272 
1272 
1272 
1272 
1272 
1338 
1342 
1313 
1273 
1273 
1273 
1331 
1303 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
1273 
12623 
12312 
1 1863 
11461 
1 1470 
11470 
12238 
11819 

IQR 

0 
0 
0 
0 
0 
0 
0 
35.25 
38.5 
1.5 
0 
0 
0 
22.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
366 
256 
247.5 
0 
0 
0 
255 
190 

(seconds) 

Med 

18.5 
7.5 
24 
49 
5 
18.5 
36.5 
420.5 
368.5 
395.5 
33.5 
115.5 
173.5 
85 
208.5 
413.5 
15.5 
74 
143 
20 
38.5 
80 
18.5 
82.5 
164 
48.5 
100.5 
192.5 
19 
75 
149 
573 
539 
648.5 
407 
337 
777.5 
391.5 
886.5 

Max 

38 
14 
27 
66 
9 
20 
38 
1341 
1541 
1160 
85 
217 
330 
555 
5 20 
815 
56 
134 
277 
59 1 
74 
209 
66 
85 
3 24 
76 
189 
387 
265 
213 
288 
1591 
1549 
1424 
1061 
952 
1415 
1598 
1282 

IQR 

36.75 
4.5 
1.25 
6.75 
2.75 
1.25 
0.5 
392 
767 
429.5 
11  
7 1.25 
123.25 
84 
250.75 
185 
8 
53.25 
107.25 
27.75 
54.25 
101.75 
25 
54.5 
116.25 
35 
18.5 
3.75 
20.25 
53 
108.75 
796.5 
89 1.25 
583.5 
340.25 
290 
564.25 
350.25 
236.25 
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SA Standard Results I 
Problem Instance 

brazi158 

st70 

Optimal 1 
Best 
Known 
cost 

25395 

675 

Transition 
Set 
Reference 
Number 
8 
1 
I 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 

Annealing 
Length 

loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
loo00 
loo0 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
loo00 
lo00 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5oo0 

Cost 

Min 

426 
25754 
25849 
25643 
25395 
25395 
25395 
25395 
25445 
25627 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
721 
704 
70 1 
678 
680 
676 
688 
68 1 
682 
683 
678 
676 
683 
677 

Runtime 

Min 

309 
37 
72 
196 
123 
194 
373 
21 
715 
519 
46 
158 
318 
8 
8 
8 
6 
6 
6 
76 
639 
426 
9 
9 
9 
16 
66 
140 
I I 
1 I 
I I 
125 
55 1 
1235 
7 
17 
7 
14 
33 

Med 

429 
29844.5 
26764 
26628.5 
25395 
25395 
25395 
25693 
25680.5 
26107 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
25395 
776 
735 
715 
686.5 
682.5 
68 1.5 
720.5 
696 
689.5 
689 
682 
683.5 
701.5 
685 

(seconds) 

Med 

392 
133.5 
424 
577.5 
378 
363.5 
1093 
37 1 
1010.5 
974 
128.5 
313.5 
684.5 
147 
145 
359 
73.5 
267 
365 
246.5 
1067.5 
970.5 
82 
219.5 
323.5 
426.5 
177.5 
333.5 
111 
67 1 
946 
147.5 
758 
1463 
58 
415 
759 
36 
186.5 

Max 

435 
32538 
30356 
28286 
25597 
25597 
25395 
28206 
26381 
29233 
25507 
25395 
25395 
25455 
25395 
25395 
25395 
25395 
25395 
25400 
25395 
25643 
25395 
25395 
25395 
795 
748 
734 
695 
688 
686 
743 
714 
723 
707 
693 
686 
719 
695 

IQR 

3.5 
740.25 
888.75 
435.5 
0 
0 
0 
148.75 
235.75 
816.25 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
84 
0 
0 
0 
46 
22.75 
11.75 
6.75 
4.75 
3.5 
9.75 
14.75 
27.25 
8.5 
4.25 
5.25 
19.5 
4.25 

Max 

560 
1560 
1596 
1525 
1258 
1244 
1473 
733 
1539 
1425 
3 26 
919 
1536 
849 
290 
734 
210 
849 
1230 
565 
1364 
1313 
352 
11  15 
1270 
943 
782 
1155 
215 
1162 
1122 
273 
1538 
1550 
133 
651 
947 
81 
305 

TQR 

74.5 
1045.25 
83 
665 
733.25 
247.75 
643.25 
271.5 
635 
47.75 
107.75 
339 
838.5 
172.25 
192.5 
280 
67.5 
520.5 
46 1 
108.5 
586.5 
8 14 
133.75 
244 
17 
556.5 
272 
518 
47.25 
255 
179.25 
5.5 
344.5 
197.25 
75.5 
96.5 
181.5 
4 1 
47 



SA Standard Results I 
Problem Instance 

GAP gapl-1 

gap2- 1 

Optimal l 
Best 
Known 
cost 

336 

434 

Transition 
Set 
Reference 
Number 
5 
6 
6 
6 
7 
7 
7 
8 
8 
8 
I 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
I 
I 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 

Annealing 
Length 

10000 
1000 
5000 
10000 
lo00 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

Runtime 

Min 

395 
43 
402 
793 
24 
29 
36 
10 
24 
694 
0 
0 
0 
I 
4 
8 
2 
9 
17 
1 
6 
12 
I 
6 
13 
0 
0 
0 
0 
0 
0 
3 
13 
25 
2 
9 
18 
2 
9 

IQR 

2.5 
4.5 
5.5 
1.75 
18.25 
7.5 
4.25 
4.5 
3 
2.25 
44.75 
44.75 
44.75 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Cost 

Min 

680 
678 
678 
676 
681 
677 
676 
687 
676 
678 
27 1 
27 1 
27 1 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
349 
349 
349 
434 
434 
434 
434 
434 
434 
434 
434 
434 
434 
434 

(seconds) 

Med 

568 
103 
538 
1006.5 
42.5 
560.5 
1210 
76.5 
406 
1097.5 
0 
0 
0 
1 
4 
8 
2.5 
9 
17.5 
1.5 
6.5 
13 
1.5 
7 
13 
4.5 
17.5 
33.5 
1.5 
6 
12.5 
6 
15.5 
30 
3 
9 
19 
2.5 
I I 

Med 

683 
690 
68 1 
68 1 
695.5 
682 
684.5 
693 
684.5 
682 
297 
297 
297 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
433 
433 
433 
434 
434 
434 
434 
434 
434 
434 
434 
434 
434 
434 

Max 

627 
160 
777 
1426 
173 
995 
1281 
133 
743 
1448 
26 
120 
39 
I 
4 
8 
5 
12 
21 
3 
7 
16 
4 
8 
15 
12 
353 
36 1 
2 
7 
14 
10 
27 
37 
4 
10 
2 1 
5 
13 

Max 

686 
692 
689 
684 
717 
702 
69 1 
702 
695 
683 
334 
334 
334 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
336 
433 
433 
433 
434 
434 
434 
434 
434 
434 
434 
434 
434 
434 
434 

IQR 

148.25 
20.5 
185 
190 
6 1.75 
131.75 
131.25 
83.5 
95.5 
430.75 
5 
11  
21.5 
0 
0 
0 
I 
I 
1.25 
0.5 
0 
0 
0.5 
0.25 
0.25 
4.5 
3 
5 
0.25 
0.5 
1.25 
3 
4 
5.25 
0.75 
0.5 
1.25 
I 
1.75 



SA Standard Results I 
Problem Instance 

gap3- l 

gap4- 1 

gap5- l 

Optimal l 
Best 
Known 
cost 

580 

656 

563 

Transition 
Set 
Reference 
Number 
5 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
1 
2 
2 
2 
3 
3 

Annealing 
Length 

loo00 
1000 
5000 
10000 
1000 
5000 
lo000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
1 0000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

434 
57 1 
578 
580 
579 
5 80 
580 
5 80 
580 
580 
578 
580 
5 80 
579 
578 
580 
53 1 
53 1 
53 1 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
563 
563 
563 
563 
563 
563 
563 
563 

Runtime 

Min 

18 
7 
2 1 
40 
2 
10 
17 
5 
13 
25 
6 
17 
37 
3 
21 
28 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
6 
30 
55 
0 
0 
0 
8 
26 

Med 

434 
578 
580 
5 80 
5 80 
5 80 
580 
5 80 
580 
580 
580 
580 
5 80 
5 80 
580 
580 
603 
603 
557.5 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
563 
563 
563 
563 
563 
563 
563 
563 

(seconds) 

Med 

19 
15 
40 
65 
4.5 
13.5 
21.5 
11  
20.5 
34.5 
11  
3 1 
49.5 
4.5 
40 
37.5 
4 
13 
27.5 
5.5 
17 
32 
12.5 
40.5 
63.5 
9 
21.5 
56 
8 
25.5 
50 
12 
38 
72.5 
5 
17.5 
34 
12 
38.5 

Max 

434 
578 
580 
580 
5 80 
580 
580 
580 
580 
580 
580 
580 
580 
580 
580 
580 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
656 
563 
563 
563 
563 
563 
563 
563 
563 

IQR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
107 
107 
92 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Max 

20 
158 
265 
222 
6 
17 
34 
37 
34 
48 
43 
54 
87 
8 
263 
55 
66 
34 
81 
7 
23 
41 
17 
61 
102 
12 
40 
63 
I 1  
30 
63 
76 
64 
91 
6 
21 
45 
27 
60 

IQR 

1.25 
41 
38 
41.5 
1 
4.25 
4.25 
18.75 
17.25 
4.5 
4 
14 
26.75 
3 
3 8 
7.25 
14.5 
29.5 
64.5 
I 
3.5 
3.75 
7.5 
12.5 
9.5 
1 
15.5 
24 
3.25 
1.75 
12.75 
8.25 
5.5 
15.75 
0.25 
3.5 
13.25 
1.75 
14.75 



SA Standard Results I 
Problem Instance 

gap6- l 

gap7- l 

gap8- l 

Transition 
Set 
Reference 
Number 
3 
4 
4 
4 
5 
5 
5 
I 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 

Optimal l 
Best 
Known 
cost 

76 1 

942 

1133 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
I000 
5000 
loo00 
loo0 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
10000 
loo0 
5000 
loo00 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

563 
563 
563 
563 
563 
563 
563 
76 1 
76 1 
76 1 
76 1 
76 1 
76 1 
761 
76 1 
76 1 
761 
76 1 
76 1 
76 1 
76 1 
761 
94 1 
942 
94 1 
942 
942 
942 
94 1 
941 
942 
94 1 
94 1 
942 
94 1 
942 
942 
975 
975 

Runtime 

Min 

46 
3 
20 
35 
5 
15 
38 
12 
60 
116 
8 
14 
6 1 
15 
62 
109 
10 
49 
75 
8 
50 
97 
24 
97 
268 
14 
53 
121 
32 
109 
253 
23 
95 
189 
2 1 
46 
154 
0 
0 

Med 

563 
563 
563 
563 
563 
563 
563 
76 1 
76 1 
76 1 
76 1 
76 1 
761 
761 
76 1 
76 1 
76 1 
76 1 
76 1 
76 1 
76 1 
76 1 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
1129 
1130 

(seconds) 

Med 

69.5 
8 
27 
49.5 
8 
28.5 
49.5 
18 
73.5 
130.5 
18.5 
47.5 
77.5 
20.5 
76.5 
153 
13 
54.5 
122 
21 
61 
116 
64.5 
162.5 
334.5 
17.5 
67.5 
143.5 
1 12.5 
152 
292.5 
88.5 
138 
224 
24 
113 
214.5 
174.5 
888 

Max 

563 
563 
563 
563 
563 
563 
563 
761 
76 1 
76 1 
76 1 
76 1 
76 1 
761 
76 1 
76 1 
76 1 
76 1 
76 1 
76 1 
76 1 
76 1 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
942 
1130 
1131 

IQR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.75 
0 
0.75 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1.75 
0 

Max 

92 
14 
38 
77 
39 
37 
69 
34 
102 
193 
I l l  
54 
96 
163 
122 
179 
171 
76 
145 
111 
92 
152 
263 
725 
3 89 
55 
213 
163 
140 
197 
374 
237 
207 
279 
3 17 
402 
298 
986 
2194 

IQR 

11.5 
1 
8.25 
23.25 
3 
9.5 
20.5 
6.25 
23.75 
28.25 
21.25 
7 
22.5 
56.25 
8 
38.5 
10.75 
11.75 
3 1.75 
30.25 
19 
15 
138 
24 
80.25 
9.5 
21.75 
9 
76.25 
19 
74 
57.5 
49.25 
9.5 
163 
46.75 
59.25 
257.75 
569 
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SA Standard Results I 
Problem Instance 

gapAl0-100 

gapAIO-200 

gapA20-100 

Optimal 1 
Best 
Known 
cost 

1360 

2623 

1 158 

Transition 
Set 
Reference 
Number 
4 
5 
5 
5 
1 
1 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
I 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
I 
1 
I 
2 
2 

Runtime 

Min 

6 
4 
4 
4 
I 
I 
l 
I 
I 
1 
1 
1 
I 
1 
1 
I 
1 
1 
1 
4 
4 
4 
6 
6 
6 
8 
8 
8 
4 
4 
4 
6 
6 
6 
2 
2 
2 
2 
2 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

(seconds) 

Med 

9.5 
7 
7 
6.5 
39 
175 
305.5 
2.5 
2.5 
2.5 
3.5 
3.5 
3.5 
2.5 
2.5 
2.5 
2.5 
3 
3 
7 
7 
7 
11.5 
15 
15 
18.5 
19.5 
19.5 
7.5 
7.5 
7.5 
12 
12 
12 
3.5 
3.5 
3.5 
4.5 
4.5 

IQR 

0 
0.75 
0.75 
0.75 
8.5 
4.75 
5.5 
1 
1 
1 
7.25 
7.25 
5.5 
I 
1 
1 
2.5 
1.75 
1.75 
9 
8 
4.75 
2.75 
2.75 
2 
2 
2 
2 
2.5 
2.5 
1.75 
4.25 
4.25 
4.25 
0 
0 
0 
0 
0 

Cost 

Min 

3235 
3235 
3235 
3235 
1361 
1361 
1361 
1360 
1360 
1360 
1360 
1360 
1360 
1360 
1360 
1360 
1360 
1360 
1360 
2326 
2628 
2624 
2623 
2623 
2623 
2625 
2623 
2623 
2624 
2624 
2624 
2623 
2623 
2623 
1158 
1158 
1158 
1158 
1158 

Max 

49 
16 
16 
16 
1018 
673 
418 
5 
5 
5 
18 
174 
314 
5 
5 
5 
10 
129 
274 
37 
38 
38 
39 
59 
46 
42 
171 
171 
36 
36 
36 
35 
35 
35 
4 
4 
4 
8 
8 

IQR 

8 
2 
2 
2 
845 
258.75 
360 
2 
2 
2 
5.25 
5.5 
5.5 
1 
1 
I 
2.25 
7 
7 
3 
3 
3 
5.5 
26 
18.5 
14.75 
2 1 
2 1 
3.5 
3.5 
3.5 
I I 
I I 
I I 
2 
2 
2 
2.25 
2.25 

Med 

3235 
3235 
3235 
3235 
1372 
1369 
1369.5 
1361 
1361 
1361 
1364.5 
1364.5 
1364.5 
1361 
1361 
1361 
1361.5 
1361 
1361 
2632 
2633 
2630.5 
2625 
2624.5 
2626.5 
2627.5 
2626.5 
2626.5 
2626.5 
2626.5 
2626.5 
2626 
2626 
2626 
1158 
1158 
1158 
1158 
1158 

Max 

3236 
3237 
3237 
3237 
1375 
1372 
1374 
1363 
1363 
1363 
1374 
1372 
1370 
1365 
1365 
1365 
1377 
1372 
1370 
2652 
2652 
2652 
2629 
2629 
2630 
263 1 
2630 
2630 
2629 
2629 
2629 
263 1 
263 1 
263 1 
1160 
1160 
1160 
1163 
1163 



r 
SA Standard Results I 
Problem Instance 

gapA20-200 

GPP G124.02 

G124.04 

G124.08 

(3124.16 

Transition 
Set 
Reference 
Number 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
I 
1 
I 
1 
I 
1 
1 
I 
1 
I 
1 

Optimal 1 
Best 
Known 
cost 

2339 

13 

63 

178 

449 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
I0000 
1000 
5000 
10000 
I000 
5000 
I0000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
1 0000 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

1158 
1158 
1158 
1158 
1158 
1158 
1158 
1158 
1158 
1158 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
2339 
13 
13 
13 
63 
63 
64 
178 
178 
179 
449 
449 

Runtime 

Min 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
4 
5 
5 
9 
25 
25 
9 
9 
9 
12 
12 
12 
10 
10 
10 
7 
7 
2 
3 
949 
3 
187 
18 
14 
166 
649 

Med 

1158 
1158 
1158 
1158 
I158 
1158 
1158 
1158 
1158 
1158 
2341 
2341 
2342 
2340.5 
2339 
2339 
2339.5 
2340.5 
2339 
2340.5 
2339 
2340.5 
2340 
2340 
2340 
13 
13 
16.5 
64 
63 
69 
178 
178 
181 
449 
449 

Max 

1163 
1160 
1158 
1158 
1158 
1158 
1158 
1163 
1163 
1163 
2345 
2345 
2345 
2344 
2342 
2342 
2344 
2343 
2344 
234 1 
2344 
2343 
2348 
234 1 
234 1 
13 
13 
22 
64 
64 
72 
181 
179 
185 
449 
449 

IQR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
4.5 
4.5 
4.75 
2.5 
0 
0 
2.75 
1.75 
1.75 
1 
1.75 
1.75 
1 
1.75 
1.75 
0 
0 
2.75 
0.75 
0 
3.25 
L .5 
0 
1.5 
0 
0 

(seconds) 

Med 

4.5 
3.5 
4 
4 
4.5 
4.5 
4.5 
4 
4 
4 
15 
15 
15 
24.5 
50 
41.5 
21.5 
24 
24 
25 
29 
29 
25.5 
37 
37 
256.5 
1111.5 
5 
23 1 
1143 
14 
24 1 
890.5 
61 
187 
834 

Max 

8 
6 
47 
47 
7 
7 
6 
12 
12 
12 
36 
36 
36 
33 
131 
130 
29 
264 
264 
39 
76 
76 
41 
67 
67 
946 
1179 
190 
340 
1427 
1302 
599 
1080 
1307 
356 
1034 

IQR 

2.25 
I .5 
2 
2 
1.75 
2 
2 
2 
2 
2 
22 
19.25 
19.25 
12.25 
43 
39.75 
8.25 
7.25 
7.25 
14.5 
11 
1 1  
21.25 
18 
18 
78.25 
172.25 
4 
60 
29 1.25 
24 
65.5 
42.25 
1235.25 
151 
209.5 



'' Run lengths of 5000 and 10000 were too long for the time available for the standard runs and are not considered here. 

SA Standard Results I 
Problem Instance 

~ 2 5 0 . 0 1 ' ~  
(3250.02 
(3250.04 
(3250.08 

MKP weingl 

IJb6 

Optimal / 
Best 
Known 
cost 

29 
114 
357 
828 
141278 

776 

Transition 
Set 
Reference 
Number 
1 
1 
1 
1 
I 
1 
1 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 

Annealing 
Length 

10000 
1000 
1000 
1000 
I000 
1000 
5000 
10000 
1000 
5000 
lo000 
1000 
5000 
10000 
1000 
5000 
10000 
I000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
1 0000 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

449 
30 
114 
358 
828 
120468 
127633 
127633 
89482 
121442 
121931 
112471 
127633 
127633 
127633 
133615 
133609 
112327 
125968 
127633 
1 11354 
127243 
127633 
542 
694 
609 
473 
473 
499 
609 
650 
694 
745 
694 
762 
576 
590 

Runtime 

Min 

1069 
908 
928 
217 
660 
0 
1 
1 
0 
0 
1 
0 
I 
1 
0 
0 
0 
0 
1 
I 
0 
I 
1 
0 
0 
0 
0 
1 
2 
0 
0 
0 
0 
1 
1 
0 
0 

Med 

449 
32 
117 
360 
83 1 
133303 
137079 
137226.5 
122958.5 
139718 
140778 
129921 
133615 
133615 
140507 
140605.5 
140782 
129700 
133615 
140662 
132997 
133615 
133426 
702 
776 
776 
543 
568.5 
60 1 
733 
776 
776 
770.5 
776 
776 
713 
770.5 

(seconds) 

Med 

1259 
11  14.5 
1041.5 
1026.5 
972 
0 
1.5 
2 
0 
1 
1.5 
0 
1 
2 
0 
I 
2 
0.5 
1 
1.5 
0.5 
I 
2.5 
I 
3.5 
7 
0 
1.5 
3 
I 
3.5 
10.5 
1 
2.5 
5 
0.5 
2 

Max 

45 1 
32 
120 
364 
837 
140543 
141278 
141278 
140618 
141278 
141278 
140477 
141278 
141278 
140543 
140786 
141278 
140068 
141278 
141278 
140618 
141278 
141278 
776 
776 
776 
678 
762 
776 
776 
776 
776 
776 
776 
776 
776 
776 

IQR 

0 
I 
3.5 
3.75 
5.5 
5980.5 
7391.5 
7478 
16032 
1 1837 
613.75 
8772 
5814 
9682.5 
6932.5 
235 
800.75 
6072.25 
12366.75 
7667.5 
5980.5 
11  128.5 
12893.5 
156.5 
11 
65 
135.25 
129 
130.25 
I 11.5 
14 
0 
13.25 
0 
0 
79.25 
14 

Max 

1582 
1447 
1407 
1238 
1514 
0 
2 
4 
0 
2 
4 
I 
2 
3 
1 
2 
10 
I 
3 
5 
1 
2 
9 
2 
17 
14 
1 
5 
6 
2 
9 
76 
5 
51 
23 
2 
8 

IQR 

153.25 
258.75 
244 
170.75 
446.25 
0 
0.25 
1.25 
0 
0.5 
0.5 
0.25 
0.25 
1 
0.25 
0.75 
2.25 
0 
0.25 
1.25 
0.25 
0.5 
I 
1 
2.25 
4.5 
0 
1.5 
I .5 
0.75 
4 
10.75 
1.25 
6 
3.25 
0.5 
3 



SA Standard Results I 
Problem Instance 

weishl2 

weishl5 

Transition 
Set 
Reference 
Number 
5 
6 
6 
6 
I 
I 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 

Optimal / 
Best 
Known 
cost 

6339 

7486 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
loo0 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
loo00 
loo0 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

650 
542 
643 
636 
6170 
6255 
627 1 
5084 
5946 
599 1 
6285 
6225 
6285 
6170 
627 1 
6285 
6058 
6170 
6285 
6131 
6225 
6285 
6749 
6800 
7056 
5589 
6735 
6762 
6735 
742 1 
7486 
6770 
6770 
7486 
6735 
6800 
6829 
6783 
6783 

Runtime 

Min 

0 
0 
0 
0 
0 
0 
7 
0 
1 
3 
I 
1 
1 
0 
0 
0 
0 
I 
I 
0 
1 
1 
I 
3 
3 
0 
1 
2 
I 
I 
1 
I 
1 
1 
I 
3 
7 
1 
1 

Med 

776 
747 
776 
776 
6288 
6339 
6339 
6049.5 
628 1 
6332 
6339 
6339 
6339 
6285 
6339 
6339 
6170 
6339 
6339 
627 1.5 
6339 
6339 
6928 
7486 
7486 
6526 
7121 
7443.5 
7486 
7486 
7486 
7405 
7486 
7486 
6783 
7056 
7486 
6800 
7249 

(seconds) 

Med 

6 
1 
4 
7.5 
1 
5 
8.5 
0.5 
2 
4 
1 
4.5 
10 
1 
5.5 
10 
1.5 
4 
9 
I 
4 
9 
1.5 
6.5 
1 I 
0.5 
3.5 
4.5 
1.5 
8 
14 
3 
8.5 
17.5 
1.5 
7 
15.5 
1.5 
9.5 

Max 

776 
776 
776 
776 
6339 
6339 
6339 
6326 
6339 
6339 
6339 
6339 
6339 
6339 
6339 
6339 
6338 
6339 
6339 
6339 
6339 
6339 
7486 
7486 
7486 
7415 
7486 
7486 
7486 
7486 
7486 
7486 
7486 
7486 
7486 
7486 
7486 
7486 
7486 

IQR 

64.25 
130.25 
13.25 
13.25 
79 
40.75 
0 
369.5 
177.75 
56 
I 
0 
0 
63.75 
52.25 
42 
130.25 
85.75 
0 
89.5 
0.75 
0 
698.75 
27.75 
0 
663 
667.25 
698.25 
52.5 
0 
0 
53 1.75 
0 
0 
30 
621.75 
0 
558.25 
678.75 

Max 

11 
2 
7 
77 
2 
12 
94 
1 
7 
5 
11  
7 
17 
3 
40 
28 
3 
8 
57 
4 
14 
17 
6 
78 
219 
I 
5 
7 
4 
19 
24 
6 
24 
29 
2 
42 
91 
6 
82 

IQR 

3 
I 
2 
11.75 
I 
6 
1.75 
0.5 
3 
I 
1.75 
1.75 
5 
I 
6 
13.25 
1.25 
2 
7.25 
0.75 
4.75 
6.5 
2 
4 
7.5 
0.25 
2.25 
2 
I 
3.5 
12.25 
2.5 
5.25 
6.5 
1 
5 
8 
1.5 
9 
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SA Standard Results 1 
Problem Instance 

weish29 

MCP johnson8-2-4 

johnson16-2-4 

Runtime 

Min 

35 
1 
3 
5 
4 
15 
5 
4 
17 
25 
4 
10 
1 
3 
4 
7 
2 
10 
19 
I 
3 
3 
5 
37 
3 1 
2 
10 
10 
5 
15 
32 
3 
7 
7 
0 
0 
0 
0 
0 

Transition 
Set 
Reference 
Number 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
I 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
1 
1 
1 
1 
I 

Optimal l 
Best 
Known 
cost 

9410 

0 

0 

(seconds) 

Med 

254 
1.5 
5.5 
9 
7 
29 
49.5 
8 
26.5 
123 
7 
25.5 
49.5 
6.5 
57 
69 
18.5 
35.5 
103 
1 
7 
8.5 
14.5 
52 
205 
7.5 
49.5 
34 
12 
61 
100 
8.5 
31.5 
59 
0 
0 
0 
0 
0 

Annealing 
Length 

loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
loo00 
loo0 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1 000 
5000 

Max 

343 
2 
35 
134 
19 
208 
293 
40 
284 
535 
36 
157 
535 
61 
168 
346 
68 
176 
355 
2 
29 
25 
83 
220 
394 
45 
160 
629 
41 
118 
227 
170 
193 
308 
1 
1 
3 
0 
0 

IQR 

215.5 
0.75 
3 
2.75 
4.5 
18.25 
33.25 
3.5 
33.5 
298 
6.75 
15.75 
124.25 
6.5 
100.75 
208.75 
24 
94 
136.25 
0.5 
3.25 
4.25 
28.5 
42.25 
3 16.25 
9.5 
66 
28 
6.75 
62 
121.25 
17 
125.75 
76.5 
0 
0 
0 
0 
0 

Cost 

Min 

9737 
7866 
9185 
9598 
9482 
9784 
8790 
9710 
9749 
9788 
8819 
9223 
9588 
9536 
8554 
975 1 
8799 
8819 
9056 
6952 
8341 
8689 
8244 
8242 
9056 
9054 
9244 
9222 
8521 
8852 
8983 
8783 
9050 
9054 
1 
I 
I 
2 
2 

Max 

9923 
9552 
9817 
9886 
9913 
9939 
9939 
9939 
9939 
9939 
9852 
9939 
9939 
9896 
9923 
9923 
9410 
9287 
9410 
8595 
889 1 
9171 
9318 
9296 
9318 
9410 
9410 
9410 
9521 
9318 
9410 
925 1 
9318 
9318 
1 
1 
1 
2 

- 2  

Med 

9770 
8840 
9538 
9723 
9742 
9850 
985 1 
9841.5 
9892 
9923 
9650.5 
955 1 
9792 
9739 
9756 
9789 
9063.5 
9060.5 
927 1 
8188.5 
8736.5 
9033.5 
8947 
9060.5 
9239 
925 1 
9304 
9410 
9148 
9062 
925 1 
9045.5 
9168 
9239 
I 
1 
1 
2 
2 

IQR 

37.75 
955.25 
235.75 
102.75 
238.75 
133.75 
136 
166.5 
150 
16 
230.5 
198.25 
132.75 
88.75 
173.75 
3.25 
138.25 
304.75 
62 
504.25 
2 16.25 
250 
358.75 
249.5 
202.75 
135.75 
135.25 
73.25 
277.5 
147 
252 
65.25 
185 
198.25 
0 
0 
0 
0 
0 



SA Standard Results 1 
Problem Instance 

keller4 

c-fat200-1 

brock200-2 

brock2OO-1 

brock200-3 

TTP ttgen 1 

ttgen2 

Optimal 1 
Best 
Known 
cost 

0 

0 

0 

0 

0 

0 

0 

Transition 
Set 
Reference 
Number 
1 
I 
I 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
I 
1 
I 
2 
2 
2 
3 
3 

Annealing 
Length 

10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

2 
0 
0 
0 
1 
I 
1 
3 
3 
3 
3 
3 
3 
3 
3 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Runtime 

Min 

0 
6 
1 
0 
9 
29 
3 
6 
3 
3 
22 
84 
12 
8 
1 
3 
5 
5 
5 
7 
7 
7 
6 
6 
6 
9 
9 
9 
10 
10 
10 
7 
7 
7 
15 
15 
15 
I I 
I I 

Med 

2 
0 
0 
0 
1 
1 
1 
3 
3 
3 
3 
3 
3 
4 
4 
I 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

(seconds) 

Med 

0 
13.5 
24 
0.5 
17.5 
38 
60.5 
11.5 
32 
60.5 
42 
139.5 
190.5 
22 
66 
60.5 
9.5 
9.5 
9.5 
19 
19 
19 
12 
12 
12 
19.5 
19.5 
19.5 
13.5 
13.5 
13.5 
10.5 
10.5 
10.5 
20.5 
20.5 
20.5 
16 
16 

Max 

2 
0 
0 
0 
1 
1 
1 
5 
3 
3 
4 
3 
4 
5 
5 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

IQR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
I 
0 
0 
1.5 
1.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Max 

0 
46 
90 
1 
40 
94 
77 
150 
68 
115 
373 
229 
489 
514 
359 
77 
23 
23 
23 
24 
24 
24 
24 
24 
24 
3 1 
3 1 
3 1 
17 
17 
17 
15 
15 
15 
38 
38 
38 
26 
26 

IQR 

0 
7.25 
12.25 
0.5 
22.25 
29.25 
5 
5.75 
12.25 
40 
32.5 
75.25 
166.25 
27 
37.25 
5 
7.5 
7.5 
7.5 
7.25 
7.25 
7.25 
5.5 
5.5 
5.5 
10.75 
10.75 
10.75 
3 
3 
3 
3.25 
3.25 
3.25 
8.5 
8.5 
8.25 
9.25 
9.25 





SA Standard Results I 
Problem Instance 

hdtt7 

hdtt8 

Optimal l 
Best 
Known 
cost 

0 

0 

Transition 
Set 
Reference 
Number 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 

Annealing 
Length 

10000 
1000 
5000 
10000 
loo0 
5000 
10000 
loo0 
5000 
10000 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
loo00 
1000 
5000 
10000 
loo0 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 
loo00 
1000 
5000 
loo00 
1000 
5000 
10000 
1000 
5000 

Cost 

Min 

9 
2 
0 
0 
6 
0 
0 
5 
0 
0 
2 
0 
0 
16 
I I 
9 
5 
0 
0 
9 
4 
0 
3 
2 
0 
5 
0 
0 
10 
6 
6 
5 
2 
0 
9 
5 
2 
10 
2 

Runtime 

Min 

11 
32 
40 
40 
22 
87 
87 
3 1 
63 
65 
27 
83 
83 
26 
30 
30 
44 
73 
72 
45 
152 
320 
29 
67 
1 1 1  
46 
103 
125 
49 
64 
64 
49 
140 
176 
68 
181 
185 
65 
185 

Med 

13 
6 
0 
0 
9 
2 
1 
7 
2 
0 
7 
0 
0 
17 
15.5 
15.5 
9.5 
2 
0 
14 
4.5 
2 
8 
3 
2 
7 
2 
2 
19 
14 
14 
13.5 
3.5 
2 
14 
6 
4 
13.5 
4 

(seconds) 

Med 

33.5 
37 
91.5 
106 
44.5 
203 
242 
43 
92 
162.5 
35 
173.5 
179 
48 
66 
66 
53 
199.5 
263 
57 
28 1 
437 
60 
131.5 
356.5 
56.5 
228.5 
262 
76 
156.5 
156.5 
71.5 
302.5 
485 
84.5 
298.5 
528.5 
77.5 
348.5 

Max 

22 
9 
3 
3 
10 
4 
4 
9 
4 
4 
11 
3 
3 
20 
20 
20 
14 
4 
4 
18 
5 
5 
14 
4 
3 
I I 
4 
4 
23 
19 
19 
16 
6 
4 
17 
10 
7 
15 
7 

IQR 

3.75 
2.75 
2 
1.5 
2 
1 
3 
2 
2.5 
3 
1.5 
2 
0 
1 
3.75 
3.75 
3 
0.75 
2.75 
2.75 
I 
0 
3.25 
0.75 
2.75 
2.75 
0.75 
0 
6 
5.5 
5.5 
3.25 
2 
3.75 
3.75 
I 
2.5 
1 
1.75 

Max 

67 
43 
163 
334 
5 1 
249 
438 
48 
198 
44 1 
48 
238 
366 
7 1 
309 
666 
58 
276 
534 
67 
340 
563 
63 
295 
577 
63 
296 
489 
90 
452 
453 
76 
382 
694 
88 
406 
8 80 
82 
409 

IQR 

18.5 
3.5 
39.5 
63.25 
11.75 
84.25 
195 
4 
49.5 
209 
9 
72 
89 
23.25 
167 
167 
5.75 
54.5 
120.25 
5.5 
82 
128.5 
5.75 
85.75 
278.25 
6 
1 16.5 
72 
20 
187 
187.25 
6.5 
130.5 
23 1.5 
7 
129.25 
426 
7 
156.75 



Table 45: Standard results for the SA engine. 

SA Standard Results I 

For the T S  and GS standard runs, the most promising transition operator set (as determined form the SA trials) is used. The statistical analysis used to determine this is 

outlined in Section 5.8.3.1. 

Problem Instance Transition 
Set 
Reference 
Number 
4 
5 
5 
5 

Optimal l 
Best 
Known 
cost 

TS Standard Results 1 
Problem Instance 

CSP n20t 1 

n20t2 

n20t3 

n20t4 

n20t.5 

n40t 1 

n40t2 

Annealing 
Length 

loo00 
1000 
5000 
10000 

OptimaU Best 
Known cost 
58 

40 

29 

10 

150 

146 

94 

Cost 

Runtime (seconds) 
Min 
6 
0 
1 
I 
0 
0 
7 
1 
3 
1 
1 
0 
0 
0 
0 
66 
7 
13 
13 

Min 

0 
10 
4 
0 

Runtime (seconds) 

Neighbourhood 
probability 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 

Min 

184 
69 
198 
367 

Med 
26 
1 
6 
8 
0.5 
2 
86 
10.5 
10.5 
39 
1.5 
5 
0.5 
0.5 
0 
615.5 
679.5 
88.5 
116.5 

Med 

2.5 
14 
4 
2 

Cost 
Min 

58 
58 
58 
40 
40 
40 
29 
29 
29 
10 
10 
10 
150 
150 
150 
142 
142 
142 
92 

Med 

476.5 
81 
255 
549.5 

Max 
128 
6 
14 
18 
3 
8 
613 
46 
84 
78 
6 
15 
4 
2 
1 
1464 
1202 
1232 
1232 

Max 

4 
17 
6 
4 

Med 
58 
58 
58 
40 
40 
40 
29 
29 
29 
10 
10 
10 
150 
150 
150 
143 
142 
143 

92. 

IQR 
77 
1.25 
2.25 
5.75 
0.75 
3.5 
164 
18.25 
14.5 
18.5 
1.5 
7 
1 
0.75 
0.25 
600 
788.75 
441.25 
415.75 

IQR 

1 
2.75 
1 
1.75 

Max 

750 
84 
378 
818 

IQR 

113 
1.5 
1 10.5 
151.75 

Max 
58 
58 
58 
40 
40 
40 
29 
29 
29 
10 
10 
10 
150 
150 
150 
145 
143 
145 
92 

IQR 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1.75 
1 
1.75 
0 



TS Standard Results I 
Problem Instance 

n40t3 

n40t4 

n40t5 

n6011 

n60t2 

n60t3 

n60t4 

n60t5 

n80t 1 

n80t2 

n80t3 

n80t4 

n80t5 

- - 

Optimal/ Best 
Known cost 

66 

33 

352 

238 

152 

105 

58 

562 

330 

215 

146 

82 

772 

Neighbourhood 
probability 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0. I 
0.5 
1 .O 
0. I 
0.5 
I .O 
0.1 
0.5 
I .O 
0. I 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
1 .O 

Cost 
Min 

92 
92 
66 
65 
65 
32 
32 
32 
354 
3 54 
354 
227 
228 
227 
144 
144 
147 
104 
102 
1 04 
54 
54 
54 
558 
558 
558 
311 
312 
3 12 
196 
198 
196 
143 
140 
142 
76 
76 . 
76 
762 
762 
770 

Runtime (seconds) 
Min 
2 
8 
52 
25 
2 
3 
2 
4 
0 
0 
1 
71 
48 
7 1 
263 
57 
44 
34 
132 
33 
2 
5 
19 
I 
9 
28 
425 
127 
148 
124 
180 
116 
9 
66 
34 
26 
14 
15 
10 
19 
85 

Med 
92 
92 
67 
65 
66 
32 
32 
32 
354 
362 
354 
228 
228 
228 
144.5 
147 
150 
105 
103 
105 
54 
54 
54 
566 
566 
566 
313 
314 
3 15 
199 
200 
218 
143.5 
142 
143 
77 
76 
77 
778 
778 
780 

Med 
187 
400 
354 
277 
177.5 
86.5 
9 
26 
46 
9 
2.5 
680.5 
294 
680.5 
453 
79 1 
827.5 
21 1 
433.5 
275.5 
340.5 
452.5 
412 
6.5 
72.5 
652.5 
1174 
779 
877.5 
452 
73 1 
567.5 
302 
967 
75 1 
92.5 
477.5 
244.5 
44 
136.5 
260 

Max 
92 
97 
67 
66 
68 
32 
32 
33 
354 
368 
354 
229 
229 
23 1 
146 
150 
164 
105 
104 
107 
55 
54 
55 
574 
566 
566 
3 14 
3 16 
3 26 
200 
218 
223 
144 
143 
144 
77 
77 
78 
778 
786 
796 

IQR 
0 
1.5 
0 
0 
1 
0 
0 
0 
0 
4.5 
0 
0.75 
0 
0.75 
1 
3 
12 
0 
0 
1 
0.75 
0 
0.75 
0 
0 
0 
1 
1.75 
5 
1.5 
5.75 
14 25 
I 
0.75 
I 
0 
1 
0 
8 
6 
8 

Max 
141 1 
1548 
1134 
1584 
705 
298 
58 
32 1 
350 
124 
1075 
1597 
1474 
1597 
1134 
1494 
1521 
1566 
74 1 
88 1 
1150 
1393 
1320 
1053 
992 
1549 
1566 
1211 
1561 
826 
1499 
1530 
1268 
1572 
1516 
233 
1437 
1457 
126 
1396 
1193 

IQR 
185 
8 86 
283.5 
577.75 
408.5 
77.75 
34 
38.5 
101.75 
73.5 
26.25 
1050.25 
3 25 
1049.75 
242.5 
66 1.25 
788 
600.5 
33 1 
394 
408.75 
559.5 
71 1 
8 
225.25 
902 
477 
584.25 
740 
368.75 
989 
453 
587.25 
552.75 
577 
109.25 
695.5 
562.25 
67.5 
685.5 
247.5 



TS Standard Results 1 
Problem Instance 

BIN binlal 

binla2 

bin l a4 

binla6 

bin2al 

bin2a2 

bin2a3 

bin2a4 

bin3al 

bin3a2 

bin3a3 

bin3a4 

MKP weingl 

pb6 

Optimal/ Best 
Known cost 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

141278 

776 

Runtime (seconds) 
Min 
2 
7 
14 
2 
6 
12 
I 1 
11  
22 
4 
8 
15 
68 
301 
326 
33 
113 
227 
50 
118 
283 
42 
127 
233 
883 
1540 
1564 
914 
1506 
1587 
636 
1547 
1588 
1082 
1525 
1574 
0 
9 
0 
0 
1 

Neighbourhood 
probability 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 

Med 
4.5 
9.5 
16.5 
3 
8 
14.5 
15 
19 
66.5 
8.5 
11.5 
17.5 
135 
675.5 
968 
40 
133 
255.5 
101 
208 
738.5 
56.5 
154 
282.5 
1300.5 
1592.5 
1590.5 
1256.5 
1581.5 
1594 
1212 
1581 
1592.5 
1440 
1593 
1590 
7 
39 
0.5 
34 
25.5 

Cost 
Min 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
30 
197 
4 
31 
171 
0 
23 
175 
7 
55 
229 
141278 
141278 
135763 
776 
776 

Max 
10 
3 1 
69 
6 
15 
27 
36 
55 
457 
13 
26 
84 
381 
1189 
1470 
55 
181 
439 
160 
473 
1509 
84 
329 
580 
1477 
1599 
1600 
1552 
1600 
1599 
1480 
1600 
1597 
1599 
1599 
1596 
15 
83 
2 
115 
108 

Med 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
4.5 
46 
227.5 
6 
60 
237.5 
0 
38.5 
198 
12.5 
67.5 
27 1.5 
141278 
141278 
135763 
776 
776 

IQR 
2 
14 
17.75 
2 
1.75 
3 
5 
12 
32 
6.5 
4 
26.25 
63 
422.5 
511.75 
9 
16.75 
33.5 
44 
99.5 
757.25 
3 1 
36.25 
139.75 
202.5 
34.5 
10.75 
270 
43.5 
9.75 
149.5 
30.5 
5.5 
292.25 
8.75 
4 
5.5 
54.25 
0.25 
61 
43.5 

Max 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
0 
0 
0 
1 
0 
0 
0 
14 
60 
265 
9 
77 
287 
2 
48 
3 14 
18 
96 
330 
141278 
141278 
135763 
776 
776 

IQR 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.75 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2.75 
7.25 
36.75 
3.75 
21.75 
30.25 
0.75 
1 1.75 
48 
3.5 
8.5 
12.75 
0 
0 
0 
0 
0 



TS Standard Results 1 
Problem Instance OptimaU Best Neighbourhood Cost Runtime (seconds) 

weishl2 

weishl5 

sent01 

sent02 

weish25 

weish29 

GRAPH C125.1 

C125.5 

C125.9 

C250.1 

C250.5 

C250.9 

Known cost 

6339 

7486 

7772 

8722 

9939 

9410 

0 

0 

0 

0 

0 

0 

I 
USApHMP ap20a2 

1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .0 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 

I 1 i3 I 172816.7 1 179884.91 201353.31 1 :532.63 1 i8 1 K5 1 ? I ::: I 
ap20a3 151533.1 151547.63 152312.63 153828.77 779.66 619.5 1319 629.75 

172846.7 

704 
6323 
6292 
6292 
7417 
7418 
7416 
7739 
7739 
7682 
866 1 
8587 
8477 
9761 
9776 
9832 
9053 
9084 
9023 
7 
2 
3 
9 
4 
6 
7 
2 
2 
17 
16 
21 
14 
21 
28 
17 
22 
2 1 

0.1 

704 
6339 
6339 
6292 
7442.5 
7486 
7416 
7740 
7772 
7682 
8692.5 
8721 
8563 
9828.5 
9832 
9832 
9154.5 
9130 
9023 
8.5 
5 
4.5 
I I 
6.5 
8 
7 
3.5 
4 
24.5 
22 
30.5 
24.5 
24.5 
32 
22 
24 
28.5 

172816.7 
172816.7 

704 
6339 
6339 
6292 
7486 
7486 
7416 
7772 
7772 
7682 
8704 
8722 
8693 
9857 
9832 
9832 
9345 
9316 
9023 
9 
6 
7 
13 
9 
9 
8 
5 
7 
26 
24 
33 
28 
28 
41 
24 
28 
38 

172816.7 
172816.7 

IQR 
0 
0 
0 
0 
5 1 
24 
0 
16 
27.5 
0 
10.5 
0 
1 13.25 
56.5 
15 
0 
150.75 
37 
0 
1 
1 
3 
1.5 
1.75 
I 
1 
1.75 
1.75 
5.25 
3.5 
6 
5.5 
1.75 
4.75 
3.5 
1 
3.25 

175008.09 
172816.7 

Min 
7 
138 
2 1 
72 
74 
111 
54 
186 
216 
76 
83 
315 
266 
121 
190 
165 
164 
171 
75 
225 
73 
46 
219 
252 
462 
140 
585 
258 
574 
570 
798 
284 
838 
882 
740 
884 
924 

935.09 

11.5 
699 
419.5 
352 
597.5 
7 18.5 
146 
666 
525.5 
218 
68 1 
882.5 
965.5 
96 1.5 
479.5 
326 
904 
533.5 
267 
664 
928 
754.5 
688 
1015 
784.5 
946.5 
845.5 
1148.5 
797 
1186 
1341 
1167 
1082 
1422.5 
1307 
1299.5 
1304.5 

255 

81 
1508 
1464 
918 
1515 
1497 
3 80 
1595 
1441 
770 
1575 
1398 
1583 
1473 
738 
1128 
1194 
1590 
630 
1569 
1553 
1529 
1227 
1557 
1362 
1535 
1283 
1459 
1454 
1530 
1587 
1564 
1460 
1538 
1543 
1523 
1557 

8.25 
196 
602 
608 
613 
415.75 
189.75 
1080.75 
642 
130.75 
878 
511.25 
572.25 
678 
345.25 
314 
618.75 
57 1.75 
230.25 
372.75 
867.25 
584.25 
550 
690.25 
296 
936.25 
459.25 
398 
500.25 
494 
511.25 
317 
286 
459.75 
344.5 
289 
287.5 

844 1570 77 1.75 
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TS Standard Results 1 
Problem Instance 

nug20 

nug30 

ste36a 

tho40 

esc64a 

sko72 

will00 

TS P gr24 

swiss42 

hk48 

ei15 1 

brazil58 

st70 

kroA 100 

Optimal/ Best 
Known cost 
1285 

3062 

4763 

120258 

58 

33158 

136522 

1272 

1273 

11461 

426 

25395 

675 

2 1282 

Neighbourhood 
probability 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
I .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 

Cost 
Min 

1285 
1285 
1285 
3062 
3062 
3073 
4774 
4873 
4944 
120439 
120319 
12081 1 
58 
58 
58 
33197 
3339 1 
33482 
137080 
137202 
137846 
1272 
1272 
1272 
1277 
1273 
1273 
1 1533 
11461 
11461 
434 
427 
426 
25568 
25395 
25395 
684 
675 
675 
2 1828 
21484 

Runtime (seconds) 
Min 
115 
1 
0 
248 
42 
7 
225 
35 
15 
108 
224 
15 
4 
8 
19 
677 
856 
778 
700 
1197 
1347 
102 
I 
0 
20 
4 
7 
2 
28 
102 
10 
59 
47 
79 
39 
4 1 
18 
37 
321 
176 
660 

Med 
1285 
1285 
1318.5 
3066.5 
3064 
3127.5 
4782.5 
5042.5 
5225 
120630 
121032.5 
123163 
58 
5 8 
58 
33348.5 
33613 
33713 
137396 
137685 
13796 1 
1272 
1272 
1272 
1308.5 
1273 
1273 
1 1786.5 
11465.5 
1 1470 
442 
427 
427 
25652.5 
25395 
25395 
698.5 
679 
681.5 
22120.5 
2 1946.5 

Max 
1287 
1285 
1326 
3078 
3089 
3163 
4884 
5270 
5485 
120852 
122446 
125789 
58 
60 
60 
33686 
34030 
341 11  
137527 
138216 
138593 
1279 
1272 
1272 
1318 
1273 
1273 
1 1870 
1 1505 
11484 
447 
428 
428 
25795 
25416 
25395 
703 
688 
690 
22670 
2794 1 

IQR 
561.75 
229.25 
1.25 
469 
599.75 
26 
592 
648 
83.5 
678 
1014.5 
179.25 
38 
18.25 
17.25 
654.25 
460.75 
577.25 
183.25 
145 
43.75 
379.25 
4.25 
2.5 
994 
60 
35.25 
829.25 
834 
505.5 
584.25 
45 1.25 
523.25 
465.25 
367.5 
378.5 
582 
4 18.5 
723 
750 
351.5 

Med 
760.5 
70 
1 
950 
149 
26 
1289.5 
565 
95.5 
1061.5 
1179.5 
87 
23.5 
15 
29.5 
1430.5 
1402.5 
1379 
1495 
1535.5 
1580.5 
598.5 
2 
1.5 
804 
64.5 
33.5 
510.5 
779.5 
830.5 
259.5 
263.5 
833.5 
365.5 
164.5 
524 
482.5 
910 
983.5 
1062 
1015 

IQR 
0 
0 
17.75 
6 
16 
36.25 
67.5 
159.25 
237.25 
263.25 
899 
1530 
0 
1.5 
0 
245.5 
126.25 
253.75 
166.75 
380.75 
296.5 
0 
0 
0 
13.25 
0 
0 
132.5 
9 
3 
5.75 
1 
0 
152.25 
3.75 
0 
6.25 
11.5 
6.5 
324.25 
842.75 

Max 
1236 
1373 
7 
1294 
1563 
136 
1573 
1523 
483 
1597 
1516 
3 24 
539 
86 
106 
1591 
1550 
1580 
1591 
1599 
1593 
1198 
6 
12 
1396 
136 
106 
1574 
1300 
1223 
1511 
1305 
1568 
958 
868 
1073 
1592 
1407 
1530 
1598 
1491 



TS Standard Results I 
Problem Instance 

ch130 

a280 

GAP gapl-l 

gap2- l 

gap3-1 

gap4- l 

gap5- l 

gap6-l 

gap7- 1 

gap8- l 

gapA5- 100 

gapA5-200 

gapA10-100 

gapA10-200 

Optimal/ Best 
Known cost 

61 10 

2579 

336 

434 

580 

656 

563 

76 1 

942 

1133 

1698 

3235 

1360 

2623 

Neighbourhood 
probability 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 

Cost 
Min 

21717 
6306 
6287 
6414 
14229 
2651 1 
28866 
336 
336 
336 
434 
434 
434 
579 
580 
580 
656 
656 
656 
561 
563 
563 
759 
76 1 
76 1 
939 
942 
942 
1126 
1131 
1132 
1699 
1698 
1698 
3237 
3236 
3235 
1361 
1361 
1360 
2630 

Runtime (seconds) 
Min 
1322 
288 
886 
1579 
1568 
1503 
1508 
1 
0 
0 
2 
0 
0 
60 
2 
0 
13 
0 
0 
10 
1 
0 
39 
4 
4 
203 
8 
3 
10 
67 
172 
131 
36 
23 
46 
232 
399 
15 
24 
43 
70 

Med 
22949.5 
6396.5 
6519 
6605 
15045.5 
27799 
30155 
336 
336 
336 
434 
434 
434 
580 
580 
580 
656 
656 
656 
562.5 
563 
563 
759.5 
76 1 
76 1 
940 
942 
942 
1127 
1132 
1132 
1700.5 
1698 
1698 
3241 
3237 
3235 
1366 
1361 
1361 
263.3 

Med 
1 444 
735.5 
1143.5 
1595.5 
1579 
1527 
1530 
3.5 
0.5 
0.5 
12.5 
0 
0 
457.5 
6.5 
1.5 
39.5 
2 
1.5 
346.5 
3.5 
1 
245.5 
29 
17 
683 
74.5 
35.5 
356 
45 1 
257.5 
747.5 
328.5 
170 
159 
350.5 
629 
400.5 
223 
28 1 
244 

Max 
23767 
6499 
6814 
6988 
15264 
29001 
31376 
336 
336 
336 
434 
434 
434 
580 
580 
580 
656 
656 
656 
563 
563 
563 
760 
76 1 
76 1 
942 
942 
942 
1129 
1133 
1133 
1701 
1699 
1699 
3243 
3240 
3237 
1367 
1362 
1361 
2636 

IQR 
429.5 
99.5 
79.75 
194 
287.25 
341.25 
482.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1.5 
0 
0 
I 
I 
1 
1.75 
1 
0 
1.75 
1.75 
0.75 
0.75 
0 
1 
2.5 

Max 
1596 
1582 
1343 
1599 
1592 
1536 
1554 
9 
1 
7 
33 
I 
1 
1102 
24 
10 
158 
18 
17 
1329 
15 
4 
1415 
178 
144 
1423 
222 
102 
1132 
1180 
854 
1194 
829 
937 
1416 
1035 
101 1 
895 
1134 
1306 
1168 

IQR 
189.25 
555.5 
31 1 
5 
11.75 
18 
19 
3.25 
0.5 
0.25 
19.5 
0.25 
0.25 
333.75 
13.25 
1.5 
11 1.25 
4.25 
2.75 
564 
5 
1.25 
555 
56 
16.75 
507.75 
74.5 
59 
674 
644 
131.25 
253.25 
312.5 
346.5 
575.75 
205.5 
424 
43 1.5 
194 
208 
628.25 



TS Standard Results I 
Problem Instance 

gapA20-100 

gapA20-200 

GPP GI 24.02 

G 124.04 

GI 24.08 

(3124.16 

G250.01 

'3250.02 

G250.04 

G250.08 

MCP johnsong-2-4 

johnson16-2-4 

keller4 

Optimal/ Best 
Known cost 

1 158 

2339 

13 

63 

178 

449 

29 

114 

357 

828 

0 

0 

0 

Neighbourbood 
probability 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .o 
0.1 
0.5 
1 .o 
0.1 
0.5 
1 .o 

Cost 
Min 

2625 
2624 
1165 
1158 
1158 
2349 
2342 
2342 
13 
14 
17 
63 
64 
64 
178 
179 
181 
449 
449 
449 
39 
55 
55 
117 
129 
148 
365 
377 
427 
834 
855 
928 
1 
1 
1 
2 
2 .  
2 
0 
0 
1 

IQR 
158.25 
296 
803.5 
309.5 
765.75 
602 
647 
297.75 
447 
37 1.75 
192.5 
396.75 
952.75 
803 
83 1.25 
637 
442.25 
192.25 
776 
577.5 
301.5 
364 
42.5 
743.5 
123.25 
0 
422 
121 
0.25 
121 
56.5 
0 
0 
0 
0 
0 
0 
0 
18.75 
371.5 
0 

Med 
2626 
2625 
1167 
1159 
1159 
235 1 
2344.5 
2343 
13 
16.5 
19 
64 
67 
68 
178 
181.5 
186.5 
449 
449 
459.5 
41 
59.5 
62.5 
125 
1 44 
162.5 
376 
393 
430 
847 
878.5 
939 
1 
I 
1 
2 
2 
2 
0 
1 
2 .  

Max 
1158 
1423 
1324 
1166 
1281 
1451 
1 444 
1437 
1153 
1361 
858 
1531 
1571 
1482 
1308 
I449 
1492 
533 
1421 
1379 
1563 
1555 
1599 
1549 
1587 
1599 
1598 
1599 
1599 
1599 
1600 
1599 
0 
0 
0 
0 
0 
0 
38 
570 
0 

Runtime (seconds) 
Min 
236 
458 
105 
46 
130 
74 
284 
503 
256 
254 
198 
27 
51 
120 
180 
112 
206 
104 
158 
113 
933 
77 1 
1427 
613 
1002 
1598 
648 
1316 
1598 
1316 
1460 
1598 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Max 
2629 
2629 
1168 
1160 
1161 
2353 
2347 
2346 
15 
22 
25 
64 
70 
78 
179 
187 
196 
457 
46 1 
476 
53 
65 
69 
130 
158 
184 
388 
398 
457 
868 
888 
964 
1 
1 
I 
2 
2 
2 
0 
3 
3 

Med 
324.5 
893 
366 
325 
754 
636.5 
750.5 
839.5 
583.5 
634.5 
647 
229.5 
682 
65 1.5 
874 
342 
785 
288.5 
867.5 
624.5 
1313 
1283.5 
1598.5 
1467 
1474.5 
1598.5 
1366.5 
1513 
1598.5 
1513 
1515 
1598.5 
0 
0 
0 
0 
0 
0 
6 
3.5 
0 

IQR 
2 
1.75 
1 
1 
0.75 
1.5 
1.75 
1.75 
0.75 
2.5 
4.75 
0 
2.75 
6 
0 
3.5 
8 
6 
1.5 
15 
3.5 
5.5 
6 
2.5 
11.5 
15.25 
8 
9.25 
7.25 
16.25 
15.25 
7.5 
0 
0 
0 
0 
0 
0 
0 
1 
2 



Table 46: Standard results for the TS engine. 

TS Standard Results I 
Problem Instance 

c-fat200-1 

brock200-2 

brock200-1 

brock200-3 

TI-P ttgen 1 

ttgen2 

hdtt4 

hdtt5 

hdtt6 

hdtt7 

hdtt8 

Optimal/ Best 
Known cost 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Neighbourhood 
probability 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0. I 
0.5 
I .O 
0. I 
0.5 
I .O 
0. I 
0.5 
I .O 
0.1 
0.5 
1 .O 

Cost 
Min 

1 
1 
3 
3 
3 
3 
3 
3 
6 
3 
3 
6 
0 
0 
0 
0 
0 
0 
3 
0 
0 
6 
2 
0 
9 
3 
2 
15 
4 
12 
19 
13 
22 

Med 
I 
2.5 
4 
3 
3.5 
6.5 
3 
5 
9.5 
3 
5 
8.5 
0 
0 
I 
0 
0 
0.5 
5 
0 
0 
8.5 
2 
2 
13 
6 
6 
17.5 
I I 
16.5 
22 
16.5 
25.5 

IQR 
21.5 
33.25 
0 
47 
916.25 
0 
560 
190.25 
0.75 
124.25 
585.25 
0.5 
193.75 
655.25 
287 
410 
584.75 
35 1 
944 
687.75 
645.25 
680.5 
77 1 
559 
424.25 
249.5 
391.5 
502.75 
270.75 
2 16.75 
983.5 
328.25 
303.25 

Runtime (seconds) 
Min 
0 
0 
0 
2 
1 
1 
5 
3 
3 
2 
1 
1 
104 
3 20 
378 
243 
I l l  
904 
22 
120 
162 
41 
136 
156 
163 
646 
774 
436 
679 
1020 
21 1 
701 
1034 

Max 
1 
4 
5 
3 
5 
10 
3 
7 
13 
4 
8 
12 
0 
1 
2 
0 
1 
I 
6 
2 
2 
10 
4 
6 
15 
7 
9 
19 
16 
23 
24 
22 
3 1 

Med 
5.5 
6 
0.5 
14 
157 
I 
370 
5.5 
4.5 
58 
36.5 
1.5 
374 
732.5 
796.5 
499 
1084.5 
1204.5 
781.5 
557.5 
666.5 
530.5 
407 
938.5 
545 
1224.5 
1231 
988.5 
1351.5 
1469.5 
891.5 
1368.5 
1401 

IQR 
0 
2 
0.75 
0 
2 
3.25 
0 
2 
2.5 
I 
2.5 
3 
0 
0 
0.75 
0 
0.75 
I 
1 
0 
0 .  
1.75 
0.75 
0 
1 
1.75 
2 
1.75 
5 
4.75 
1.5 
4.75 
5.25 

Max 
55 
106 
1 
218 
985 
1 
1289 
758 
5 
89 1 
1538 
2 
1361 
1415 
1498 
1085 
1580 
1526 
1515 
1568 
1228 
1385 
1598 
1309 
1175 
1453 
1554 
1486 
1567 
1599 
1548 
1553 
1599 





GS Standard Results 1 
Prohlem Instance 

n60t4 

n60t5 

118011 

n80t2 

11800 

n80t4 

118015 

BIN binlal 

bin 1 a2 

bin 1 a4 

bin 1 a6 

bin2al 

bin2a2 

bin2a3 

Optimal/ Best 
Known cost 

58 

562 

330 

215 

146 

82 

772 

0 

0 

0 

0 

0 

0 

0 

Neighhourhood 
probability 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
I .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 

IQR 
0.5 
0 
0.25 
0.75 
0 
0.25 
0.5 
0.5 
0.75 
3.75 
0.25 
1.75 
3.5 
0.25 
1.5 
2 
0.25 
0.75 
1.75 
0 
1.25 
2 
0.25 
I 
1.5 
0.25 
0.75 
1 
0.25 
I 
1.25 
0.25 
2 
2.25 
2.25 
12.5 
23.5 
6.25 
26.25 
47.25 
2.75 

Max 
4 
0 
2 
4 
0 
2 
4 
2 
7 
16 
2 
8 
16 
1 
7 
15 
I 
7 
15 
2 
8 
14 
2 
7 
15 
2 
7 
14 
2 
9 
17 
2 
9 
14 
22 
102 
204 
24 
115 
212 
21 

Runtime (seconds) 
Min 
2 
0 
1 
2 
0 
1 
2 
I 
5 
9 
I 
4 
9 
1 
4 
7 
I 
5 
10 
1 
5 
8 
1 
5 
10 
I 
5 
9 
I 
5 
10 
1 
5 
9 
15 
58 
118 
15 
61 
129 
15 

Cost 
Min 
106 
67 
59 
55 
576 
572 
572 
338 
325 
323 
230 
215 
210 
149 
146 
146 
89 
82 
78 
810 
780 
784 
3 
0 
0 
3 
0 
0 
20 
I 
1 
12 
0 
0 
44 
24 
13 
12 
0 
4 
64 

Med 
3 
0 
I .5 
3 
0 
1.5 
3 
1.5 
6.5 
13.5 
1 
6 
14 
1 
5.5 
I I 
1 
5.5 
11.5 
I 
6 
11.5 
1.5 
6.5 
11  
1.5 
6 
10.5 
1.5 
7.5 
I I 
1.5 
6.5 
1 1  
18 
77 
151.5 
19 
89 
167.5 
18 

Med 
108.5 
75 
62.5 
59 
604 
589 
593 
356.5 
340.5 
336.5 
267.5 
248.5 
238 
153 
149 
148 
98.5 
85 
84 
837 
803 
810 
10 
6 
4 
13.5 
2.5 
1 
54 
9.5 
21.5 
45.5 
11  
17.5 
91 
58.5 
52.5 
5 1 
20 
19 
105 

Max 
113 
84 
67 
63 
620 
624 
610 
367 
348 
340 
286 
262 
25 1 
169 
153 
154 
105 
97 
88 
860 
830 
838 
45 
25 
14 
41 
18 
8 
69 
28 
35 
60 
30 
38 
136 
95 
82 
103 
66 
63 
154 

IQR 
3.75 
7 
3.5 
3.5 
18 
16 
14.5 
13.25 
10 
5.5 
32.25 
23.75 
12 
6.25 
2.5 
4.25 
5.25 
4.75 
4.25 
12.5 
20.5 
18 
16.75 
15 
5 
18.25 
2.75 
2.5 
22 
18.5 
15.25 
18.75 
17.5 
20 
36.25 
18.75 
20.75 
50.75 
25.5 
31.25 
43 



Neighbourhood 
probability 
0.5 
I .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0. I 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
I .O 

GS Standard Results I 
Problem Instance 

bin2a4 

bin3al 

bin3a2 

bin3a3 

bin3a4 

M KP weingl 

~ b 6  

weish I2 

weishl5 

sent0 1 

sent02 

weish25 

weish29 

OptimaU Best 
Known cost 

0 

0 

0 

0 

0 

141278 

776 

6339 

7486 

7772 

8722 

9939 

9410 

Cost 
Min 
20 
20 
24 
35 
18 
155 
101 
173 
194 
123 
157 
134 
7 1 
148 
176 
141 
210 
22507 
13558 
30800 
234 
348 
238 
892 
255 1 
1562 
3036 
1562 
2162 
780 
2678 
2684 
780 
2678 
2684 
670 
892 
892 
3818 
892 
892 

IQR 
19.75 
27 
2.5 
9 
17.5 
16.5 
85.25 
7.5 
15.5 
99 
9 
15.25 
89.25 
6.25 
9.5 
108.75 
9 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.25 
0.25 
0 
2 
0 
0 
0.25 
0.25 
0 
2 

Runtime (seconds) 
Min 
64 
112 
14 
59 
112 
182 
840 
1562 
189 
149 
1579 
184 
803 
1572 
195 
799 
1576 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Med 
45 
40.5 
92 
60.5 
47 
198.5 
142.5 
194.5 
213 
160 
212.5 
197 
135 
185.5 
246 
183.5 
240 
78507.5 
103690 
135568 
457.5 
438 
496 
4364 
527 1 
4269.5 
543 1.5 
3002 
4449.5 
3839 
5584 
6192 
3824 
447 1 
5679 
5189 
2893.5 
3525 
6855.5 
3526.5 
3958.5 

Med 
87 
155 
16 
65 
138.5 
208 
937.5 
1589 
202.5 
912.5 
1590.5 
205 
932 
1591 
209.5 
924 
1588.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Max 
88 
73 
157 
86 
85 
26 1 
198 
225 
293 
199 
254 
252 
163 
287 
287 
243 
293 
139508 
135563 
135673 
629 
646 
646 
5997 
6107 
5867 
6797 
5199 
6908 
7619 
7439 
7492 
7837 
8132 
6996 
6969 
9832 
7773 
8223 
6127 
8872 

Max 
108 
203 
23 
83 
171 
226 
1086 
1599 
218 
1069 
1599 
233 
1105 
1599 
249 
1054 
1600 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
7 
1 
1 
0 
5 
0 
7 
1 
1 
0 
5 

IQR 
32.75 
28.5 
34.5 
35.5 
25.25 
23.25 
56.75 
27 
20.25 
30.5 
32 
43.75 
50 
45.75 
30.25 
50 
18.25 
62733.5 
39774 
5805 1 
97.5 
57.5 
53 
1082.75 
269 1.5 
1953.25 
1666.25 
1811.25 
995 
2178 
4196 
1326 
2178 
4390 
1566 
207 1.75 
1456.75 
4103 
2991.25 
2416.25 
5496.5 



GS Standard Results I 
Problem Instance 

GRAPH C125.1 

C125.5 

C125.9 

C250.1 

C250.5 

C250.9 

USApHMP ap20a2 

ap20a3 

ap20a4 

ap20a5 

ap25a2 

ap25a3 

ap25a4 

ap25a5 

Neighbourhood 
probability 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 

Optimal/ Best 
Known cost 
0 

0 

0 

0 

0 

0 

172846.7 

151533.1 

135624.9 

123130.1 

175542.0 

155256.3 

139197.2 

123574.3 

Cost 
Min 
18 
14 
13 
43 
25 
24 
27 
17 
17 
42 
37 
32 
68 
57 
55 
63 
56 
50 
233530.88 
175638.32 
179884.84 
206197.44 
162662.77 
1591 16.36 
199164.77 
150274.91 
143641.97 
158279.31 
130424.72 
126366.75 
253240.83 
188214.92 
187950.1 1 
187802.8 
164168.44 
163228.89 
195984.84 
149223.63 
148521.67 
156083.73 
131935.94 

IQR 
0.25 
4.25 
5.25 
0.5 
1 
1.75 
0.25 
0.5 
1 
12.75 
28 
79.75 
3 
8.5 
11.75 
2 
10 
12.5 
0 
0 
0 
0 
0 
0 
0 
0.25 
0.25 
0 
0 
0.25 
0 
0.25 
0.25 
0 
0.25 
1 
0 
0.25 
0.25 
0 
0.5 

Med 
25 
19.5 
17 
48 
30 
29.5 
3 1 
22 
21 
57 
47 
42 
86 
70 
66.5 
78 
60.5 
55 
304352.21 
22975 1.74 
219489.93 
269925.77 
20727 1 .O 1 
195730.8 
239693.38 
164348.25 
160768.04 
19395 1.73 
139049.02 
135365.77 
294952.57 
215822.65 
21 1359.6 
253 153.69 
174893.87 
178133.7 
228987.92 
156970.94 
160001.87 
19 1566.92 
151471.9 

Max 
30 
24 
2 1 
56 
39 
38 
35 
29 
25 
64 
62 
58 
93 
77 
69 
91 
69 
6 1 
503992.56 
282306.84 
282306.84 
401995.03 
21 8225.59 
2 14503.03 
3 12220.66 
193745.73 
192892.05 
390419.72 
140874.13 
147606.81 
504773.94 
30929 1.47 
347292.39 
40204 1.78 
187440.48 
188583.02 
290637.06 
184919.14 
184919.19 
3437 1 1.84 
. 155406.77 

Max 
5 
16 
35 
2 
8 
17 
3 
1 1  
22 
59 
234 
569 
23 
102 
184 
30 
118 
237 
0 
0 
0 
0 
0 
1 
0 
I 
2 
0 
I 
2 
0 
1 
2 
0 
2 
3 
0 
2 
4 
0 
3 

IQR 
5 
4.75 
3.5 
3.5 
5.25 
9 
4.25 
3.5 
3.75 
13.25 
4.25 
9.5 
14.5 
7.75 
4.75 
15.25 
10 
6.75 
157399.63 
48856.14 
33237.34 
78571.9 
29053.31 
30715.42 
32353.52 
1 1627.36 
9724.58 
34389.45 
5474.04 
4973.03 
6733 1.26 
27667.06 
21474.61 
10508 1.53 
12642.07 
13567.05 
5 1264.94 
17878.67 
14936.3 
4521 8.95 
8800.01 

Runtime (seconds) 
Min 
2 
10 
19 
I 
7 
11 
2 
9 
18 
29 
137 
3 24 
16 
70 
158 
21 
96 
195 
0 
0 
0 
0 
0 
1 
0 
0 
I 
0 
1 
I 
0 
0 
1 
0 
I 
I 
0 
1 
2 
0 
2 

Med 
3.5 
13 
26 
1.5 
7.5 
14.5 
2.5 
10 
19 
40.5 
166.5 
379 
20 
85.5 
171 
25.5 
109.5 
212 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
1 
1.5 
0 
0.5 
1 
0 
1 
2.5 
0 
1.5 
3.5 
0 
2 
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GS Standard Results I 
Problem Instance 

TSP gr24 

swiss42 

hk48 

ei15 1 

brazil58 

st70 

kroA 100 

ch130 

a280 

GAP gapl-1 

gap2-1 

gap3-1 

gap4- 1 

Optimal/ Best 
Known cost 

1272 

1273 

11461 

426 

25395 

675 

21282 

61 10 

2579 

336 

434 

580 

656 

Neighbourhood 
probability 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
I .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 

Cost 
Min 
137447 
137852 
1440 
1320 
1272 
1429 
1335 
1294 
13090 
1 1908 
11760 
494 
446 
432 
2723 1 
25923 
25400 
744 
686 
687 
23578 
21947 
21741 
6668 
6355 
6414 
14229 
265 1 1 
28866 
27 1 
288 
294 
345 
385 
403 
500 
539 
554 
567 
620 
637 

IQR 
61.75 
149 
0 
0 
0 
0 
0.25 
0.75 
0.25 
0.5 
0.75 
0.25 
0.25 
1 
0.5 
1.5 
3 
0.5 
3.25 
3 
7.25 
39.5 
102.25 
8.75 
34.75 
9.75 
9.5 
18 
19 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Med 
137952.5 
138065.5 
1741.5 
1367 
1308 
1639 
1373.5 
1376 
14097 
12009 
12127.5 
545.5 
456.5 
455.5 
2883 1 
26636.5 
2660 1.5 
842.5 
715 
727.5 
25822 
22824 
23339 
7079.5 
6723.5 
6605 
14844 
27799 
30155 
299.5 
307 
3 20 
374 
418 
418.5 
525.5 
562 
571.5 
598.5 
644 
644.5 

Max 
138524 
138642 
2034 
1454 
1415 
1917 
1508 
1407 
16478 
12302 
13023 
593 
475 
465 
31563 
27457 
27148 
926 
737 
777 
26942 
23885 
23983 
7469 
6996 
6988 
15264 
2900 1 
31376 
31 1 
321 
330 
406 
427 
429 
553 
577 
578 
626 
656 
654 

IQR 
605.75 
263 
254.5 
74.5 
78.25 
176 
53 
41.5 
869.5 
223 
243 
45.25 
14.75 
11.5 
1917 
985.5 
1422.75 
46 
27 
26.25 
1699 
824.25 
1027.5 
448.5 
213.25 
213.5 
235.5 
341.25 
482.5 
13.25 
12 
12.75 
45.25 
6 
9.75 
10.75 
6 
3 
29.5 
10.75 
5.75 

Max 
712 
1553 
0 
0 
0 
1 
3 
6 
1 
6 
I I 
2 
8 
15 
4 
16 
33 
8 
43 
74 
150 
678 
1387 
186 
893 
1597 
1598 
1535 
1553 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Runtime (seconds) 
Min 
596 
1272 
0 
0 
0 
0 
2 
5 
1 
5 
10 
1 
6 
13 
3 
12 
27 
6 
33 
65 
123 
5 87 
1201 
156 
80 1 
1466 
1576 
1502 
1508 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Med 
686 
1435.5 
0 
0 
0 
0.5 
3 
6 
1 
5.5 
10.5 
1.5 
7 
14 
3 
15 
30 
7 
35 
68.5 
128 
645.5 
1279.5 
171 
840.5 
1593 
1589 
1526.5 
1529.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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GS Standard Results I 
Problem Instance 

G250.01 

G250.02 

G250.04 

(3250.08 

MCP johnsong-2-4 

johnson16-2-4 

keller4 

c-fat200- I 

brock200-2 

brock200-1 

brock200-3 

TTP tlgen 1 

ttgen2 

hdtt4 

Optimal/ Best 
Known cost 

29 

114 

357 

828 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Neighbourhood 
probability 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
I .O 
0. I 
0.5 
I .o 
0. I 
0.5 
I .O 
0. I 
0.5 
I .O 
0.1 
0.5 
1 .O 
0. I 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0.1 
0.5 
I .O 
0. I 
0.5 
I .O 
0.1 

Cost 
Min 
457 
50 
55 
55 
135 
130 
148 
378 
377 
427 
868 
855 
928 
1 
1 
1 
5 
5 
5 
21 
21 
21 
29 
29 
29 
39 
33 
35 
96 
96 
89 
52 
52 
52 
3 
0 
1 
I 
1 
0 
16 

IQR 
39.25 
9.25 
50.25 
42.25 
23 
161 
0 
51.5 
199.5 
0 
32.25 
250 
0.5 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
5.5 
27 
67.75 
4 
13.5 
53.75 
0.5 

Med 
471.5 
57.5 
61 
62.5 
147.5 
146.5 
162.5 
400.5 
394 
430 
884 
879 
939 
1.5 
1 
1.5 
16.5 
16.5 
16.5 
29.5 
29 
27.5 
38.5 
36 
34 
46 
46 
46 
132.5 
132.5 
132.5 
68 
68 
65.5 
6 
2 
1.5 
7 
3.5 
1 
21.5 

Max 
119 
189 
968 
1593 
259 
1481 
1592 
333 
1507 
1592 
298 
1595 
1593 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
79 
346 
698 
114 
543 
1039 
4 

Runtime (seconds) 
Min 
60 
150 
742 
1421 
206 
824 
1592 
202 
11  10 
1592 
200 
1166 
1592 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
61 
275 
562 
93 
425 
855 
3 

Med 
92 
177.5 
795.5 
1592 
224 
1083 
1592 
247 
1281 
1592 
275.5 
1452.5 
1592 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
68.5 
320.5 
609.5 
104.5 
485 
933.5 
3 

Max 
496 
67 
68 
69 
158 
164 
184 
416 
400 
457 
976 
898 
964 
3 
3 
3 
24 
24 
24 
37 
37 
37 
49 
52 
52 
57 
57 
57 
160 
160 
160 
97 
89 
97 
8 
3 
3 
15 
5 
3 

* 32 

IQR 
18.75 
4.5 
4.25 
6 
8.5 
15.25 
15.25 
14.75 
6 
7.25 
25.25 
19.75 
7.5 
1 
1 
I 
5.75 
5.75 
5.75 
6.5 
6.5 
7 
12.75 
12.75 
15.5 
10 
1 1.75 
10 
32.75 
32.75 
32.75 
11.75 
11.75 
18 
1.5 
2 
1 
4 
2 
1.5 
5.75 



Table 47: Standard results for the GS engine. 

GS Standard Results I 
Problem Instance 

hdtt5 

hdtt6 

hdtt7 

hdtt8 

Runtime (seconds) Neighbourhood 
probability 
0.5 
1 .O 
0.1 
0.5 
I .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 
0.1 
0.5 
1 .O 

OptimaV Best 
Known cost 

0 

0 

0 

0 

IQR 
1.25 
6 
1 
3.25 
4 
1 
7.5 
12 
5.25 
6.5 
16.25 
1.75 
22.25 
29 

Max 
18 
41 
9 
45 
85 
18 
87 
168 
33 
158 
383 
58 
253 
547 

Min 
15 
30 
6 
36 
70 
14 
68 
150 
21 
131 
269 
38 
209 
459 

Cost 
Med 
16 
33.5 
8 
40.5 
74 
15.5 
80 
162 
28 
142 
293.5 
49.5 
229.5 
475.5 

Min 
8 
5 
18 
15 
I 1  
36 
20 
19 
37 
26 
26 
47 
32 
29 

Med 
13 
8.5 
30.5 
16.5 
16.5 
39.5 
23.5 
21 
46.5 
32 
3 1 
51.5 
38 
35.5 

Max 
16 
12 
39 
23 
22 
44 
32 
27 
57 
41 
37 
65 
46 
43 

IQR 
5.5 
3 
4.5 
3.5 
4 
3.75 
3.5 
2.5 
8 
5.75 
6.75 
4.25 
7.25 
3.5 



Appendix B: List Formulations of 
Common COPS 

This appendix contains the list formulations of the problems in Table 1 excluding those presented in 

Section 3.3.2. The alternative formulations for BIN, GRAPH and MCP are also included here. 

BIN - 
Minimise Ixl 

s. t. 

Where: 
N is the number of items. 
x(i J) is the j'th item assigned to bin i. 
W,,, is the maximum bin weight. 
w(i) is the weight of item i. 

GRAPH 

Minimise Irl 

Ix(k)l-l Ix(k)l x edge(x(k,i),x(k, j ) )  = 0 V k  I S ~ S I X I  
i=1 j=i+l 

Where: 
x(i j )  is the j'th item with colour i .  
edge(i j )  is 1 if there exists and edge between vertex i  and j, else it is 0. 
N is the number of vertices. 



Cavacitated Single Allocation p-Hub Median Problem 

Minimise 

7 y, w ( x ( i ,  j ) ,  x(1, k ) )  5 T(1) Vt 1 <l<lxl 

Where: 
x(ij) is the j'th node on the i'th hub (Note: x(i,l) is a hub). 
P is the number of hubs. 
N is the number of nodes. 
W(i j )  is the flow from node i to node j. 
d(i j )  is the distance from node i to node j. 
fii) is the fixed cost of establishing i as a hub. 
r(l) is the capacity of hub 1. 
x is the collection cost coefficient. 
6 is the distribution cost coefficient. 
z is the transfer cost coefficient. 

VRP - 

Minimise z ( z d ( x ( k ,  ( i  - l ) ) , x ( k ,  i ) )  + d(x (k , l  x ( k )  I),O)) 
k=l i=l 

Where: 
x(i j )  is the number of the customer who is serviced by vehicle i on its j'th stop. 
V is the number of vehicles in the fleet. 
N is the number of customers. 
T(i) is the capacity of vehicle i. 



c(i) is the demand of customer i. 
fli) is the drop time required for customer i. 
g(i) is the total allowable timeldistance for vehicle i. 
d(i J) is the distance from customer i to j (Note: customer 0 is the depot). 

Knapsack Problem 

Maximise x c(x( i ) )  

Where: 
x(i) is the i'th item in the knapsack. 
c(i) is the profit of including an item i in the knapsack. 
w(i) is the weight of item i. 
W,, is the maximum weight that the knapsack can support. 
N is the number of items. 

Set Partitioning Problem 

Minimise x c(x( i ) )  

Where: 
x(i) is the i'th column number in the solution. 
c(i) is the cost of including column i. 
a is the covering matrix. 
M is the number of columns. 
N is the number of rows. 



Set Covering Problem 

... . 

Minimise x c(x(i))  

Where: 
x(i) is the i'th column number in the solution. 
c(i) is the cost of including column i. 
a is the covering matrix. 
M is the number of columns. 
N is the number of rows. 

Aircraft Landing Problem 

Minimise x c(i)  ABS( t (x ( i ) )  - t ,  ( i ) )  
i=l 

Where: 
c(i) is the cost per unit time for a delay or early landing. 
x(i) is the time index of when aircraft i will land. 
t(i) is the i'th possible landing time. 
5(i) is the desired landing time of aircraft i. 
te(i) is the earliest time to land for aircraft i. 
t,(i) is the latest time to land for aircraft i. 
I(i j )  is the minimum number of time periods that aircraft i can land after aircraft j. 
M is the total number of landing times. 
N is the number of aircrafts. 



Processor Allocation Problem 

M Ix(i)l M Ix(k)l 

Minimise 7 y, x x c ( x ( i ,  j ) , x ( k , l ) )  

Ixl =M 
Ix(i) I2 1 V i  1 S i l M  
1 l x ( i  J ) m  V i  I S i l M  

V j  I SjSlx(i) l 
min-count(x)= 1 
max-count(x)= 1 

Where: 
x(i J )  is the j'th process on processor i .  
N is the number of processes. 
M is the number of processors. 
c ( i  J )  is the communication cost between process i and j. 
R is the resource available on each processor. 
r( i )  is the resource required by process i .  

O, i f ( i  = 0 )  
p(i>= 

1 ,  otherwise 

Sin~ le  Layout Problems in FMS (Flexible Manufacturing Systems) 

,, 2 ,  

Minimise 7 7 w(i, j )  . d ( x ( i ) ,  x( j ) )  . a ( x ( i ) ,  x( j ) )  

Where: 
x(i)  is the location of station i. 

i f ( i  > j ) , l  
a ( i  J ) =  

0, otherwise 
N is the number of stations 1 locations. 
d ( i  J )  is the distance from location i to j .  
w(i  J )  gives the number of parts that are routed from station i to j .  



Personal Time Schedulin~ Problem 

N Ix(i)l 

Minimise x C ( x ( i ,  j ) ,  j )  

Where: 
C(i J) is the cost of agent i performing overtime on job j. 
a(i J) is 1 if job i and j clash, 0 otherwise. 
N is the number of agents. 
M is the number of jobs. 

Number Partitioning Problem 

Where: 
x(iJ) is the j'th element of the set of real numbers in the i'th partition. 
a(i) is the i'th real number in a sequence between 0 and 1. 
N is the number of terms in the sequence. 

Linear Ordering Problem 

N - l  N  

Maximise x C ( x ( i ) ,  X (  j ) )  

s. t. 
Ixl =N 
1 lx(i)SN 
min-count(x)= 1 
max-count(x)= 1 

Where: 
x(i) is the i'th ordered item. 
N is the number of items. 



C(i J )  is the cost of ordering item i before j. 

FPGA Placement Problem 

Minimise 
N - l  N 

C C w ( i , j )  - ( A B S ( P ( ~ ( ~ ) , ~ )  - p ( x ( j ) , l ) )  + ABS(p(x( i ) ,2)  - p(x( j ) , 2 ) ) )  
i=I j= i+l  

s. t. 
Ixl =N 
I lx(i)Gz V i  1 liSN 
max-count(x)= 1 

Where: 
x(i) is the placement of block i .  
N is the number of blocks. 
n is the number of available co-ordinates on the grid. 
w(i J )  is the weight between block i and j. 
p(iJ) represents the j'th component of the i'th co-ordinate. The set of co-ordinates on 
a two dimensional grid is represented as a vector. j = l  represents the horizontal 
component and j=2 represents the vertical component. This is similar to the tuples 
array in the time tabling problem (TTP). 

MCP - 
Maximise Ixl 

Where: 
x(i) is the i'th node assigned to the clique. 
N is the number of nodes. 
edge(i J )  is 1 if there is an edge between nodes i and j. 

Machine Scheduling 1 Job Sequencing Problem 

N 

Minimise w(x( i ) )  . man(0 ,g  p(x(  j ) )  - d ( x ( i ) ) )  
i=l j=l 

Where: 
N is the number of jobs. 
w(i)  is the tardiness penalty of job i. 
p(i) is the processing time of job i. 



d(i) is the due date of job i. 

N Queens Problem 

Minimise 

'di 1 SiSn 

Where: 
n is the number of queens. 
N is the number of available co-ordinates on the chessboard. 
p(iJ) represents the j'th component of the i'th co-ordinate. The set of co-ordinates on 
the chessboard is represented as a vector. j=l represents the horizontal component 
and j=2 represents the vertical component. 

l,q(i = j )  
s(i, j )  = 

0, otherwise 

cut tin^ Stock Problem 

Minimise C W ( X ( ~ ) )  
i=l 

Where: 
M is the number of boards. 
N is the number of cutting configurations. 
L is the number of shelf sizes. 
P(i J )  is the number of shelves of size i in configuration j. 
R(i) is the required number of shelves of size i. 



Appendix C: 0-1 ILP formulations of 
the Test Problems 

This appendix contains the 0-1 ILP formulations of the problems in Table 5. Note: 

(a) refers to the formulation used to test the problems in this study while (b) is the 

alternative formulation. 

the various formulations for USApHMP and UMApHMP are contained in Ernst and 

Krishnamoorthy (1996a, 1996b, 1997b). 

a 0-1 ILP model could not be formulated for ?TP or BIN (a). 

CSP - 

Where: 
xij is 1 if the j'th car is model i ,  0 otherwise. 
Po is the separation penalty for the j'th model separated by i places in the sequence. 
N is the number of cars. 
M is the number of models. 
D; is the number of cars of model i in the sequence. 

N N N N  

Minimist? 7 ciujbyiujb 



Where: 
xu is 1 if facility i  is placed at location j, 0 otherwise. 
Cildh is the communication cost of assigning facility i  to location a and facility j to 
location b. 
N is the number of facilities/locations. 

TSP - 
N N N  N N  

~ i n i m i s e  C C C d , k ~ ~ ( ; - I ) k  +C C d j k y I j N k  
i=2 j=l k = l  , = I  k=l  

x, + xj, 5 yjkj, + 1 IF i=N THEN j= 1 ELSE j=i+l Vk#l IS ij,k,l W 

Where: 
xuis 1 if city i  is the j'th city visited, 0 otherwise. 
du is the distance between city i  and city j. 
N is the number of cities. 

GRAPH 

M N - l  N 

Minimise 7,y C y ,  edge, 

Where: 
xu is 1 if vertex j is assigned to colour i, 0 otherwise. 
edgeij is 1 if there is an edge between vertex i  and vertex j. 



N is the number of vertices in the graph. 
M is the number of colours. 

Minimise x Ck 

Where: 
K is the maximum number of colours allowed. 

BIN - 
(b) 

M  

Minimise Ccj 

Where: 
xvis 1 if item i is assigned to bin j, 0 otherwise. 
M is the maximum number of bins allowed. 

GAP - 
N M  

Minimise z CC,X, 



Where: 
x,is 1 if job i is assigned to agent j, 0 otherwise. 
cu is the cost of assigning job i to agent j .  
aii is resource required by agent j to perform job i . 
M is the number of agents. 
N is the number of jobs. 

MKP - 

Where: 
xi is 1 if project i is included in the project mix, 0 otherwise. 
P i  is the profit of including project i in the project mix. 
N is the total number of projects. 
wu is the number of units of resource i required by resource j .  
bi is the maximum number of resource units available from resource i. 

MCP - 
N-l N 

(a) Minimise x x y ,  

s. 1. 

x ;  + x j  5 y , + 1  
1 S i W -  1 
i+ 1 S j W  
$(i, j )  61 edge 

N 

i=l 

xi€ {0,1) V i 1 5iSN 
10,l) J u 'd i j  15iSN- 1 i+l<jSN 

$(i, j )  G edge 
Where: 

x; is 1 if node i is included in the clique, 0 otherwise. 
N is the total number of nodes. 
M is the number of nodes in the clique. 



N 

(b) Maximise xi 

1 G9V- 1 
i+ 1 5j9V 
if (i, j) @ edge 

GPP - 
.. .. 

Minimise C y, edgeg 

Where: 
xu is 1 if vertex i is assigned to partition j, 0 otherwise. 
edgeij is 1 if there is an edge between vertex i and vertex j, 0 otherwise. 
N is the number of vertices in the graph. 



Appendix D: Algebraic Modelling 
Language User Manual 

User Manual: 

A Text Based Language for the List Modelling System 

D1.O Introduction 

This manual describes how to compose list-based models of combinatorial optimisation problems for 

the COSULOM solver package. The system converts this text-based description to a code description 

that is compatible with COSULOM*. The syntax of the language is similar to that used in GAMS 

(Brooke, Kendrick, Meeraus and Raman 1997). The main differences occur in relation to the specific 

list modelling features of the language. 

This manual concentrates on the syntax of the sections required to construct a valid problem model (see 

Section D2.0). As well as this, a technique for separating problem specification and problem data into 

different files is described. 

D2.0 Writing A Problem Description 

A description of the list model of a combinatorial optimisation problem is divided into a number of 

distinct sections. These sections describe the problem data and the problem specifications. 

Throughout this manual, a model of a small multiple knapsack problem (Beasley and Chu 1997) is 

developed. The list model is: 

1x1 

Maxirnisr c(x( i ) )  

Note: Parameters such as SA cooling length, tabu list size and transition operator probabilities are set at runtime rather than in 
the problem description itself. 



Where: 
x(i) is the i'th project in the project mix. 
c(i) is the profit of including project i in the project mix. 
a(i j) is the number of units of resource j required by project i. 
bG) is the maximum number of resource units available from resource j. 
N is the number of projects. 
M is the number of different resources. 

For the following sections, the conventions that are used to explain syntax are as follows: 

bold type: indicates reserved words, such as SCALAR, SETS and ; 

italic type: indicates user-defined names and data, such as N, A(N) and 34 

Examples of each of the sections are shown in courier font. 

D2.1 Description Sections 

D2.1.1 SCALAR 

The SCALAR section defines the constants that are used in the problem model. Scalars can contain 

either integer or floating point values. Typically the entries in the SCALAR section are related to the 

size of the problem. The syntax of the SCALAR section is: 

SCALAR 
scalar-name-1 1 number 1 
. . . 
scalar-name-n 1 number I ;  

An example for the multiple knapsack problem is: 

SCALAR 
N / 1 0 /  
M / 4 / ;  

D2.1.2 SETS 

The SETS section is used to define range variables. Range variables are a useful means for defining 

the lower and upper bounds on a summation operation or to define a group of similar constraints (see 

Section D2.16). The syntax of the SETS section is: 

SETS 
set-name-1 1  number - number 1 
. . . 
set-name-n 1  nutnber - rzunzber l ; 



In the above, number, may be either from the scalar list or an integer value. An example for the 

multiple knapsack problem is: 

SETS 
J / 1 - M / ;  

D2.1.3 PARAMETER 

The PARAMETER section allows vectors of values to be defined. Like SCALAR, values may be 

either integer or floating point. Integer and floating point values can also be mixed within the one 

vector. For each vector definition, a name and the dimension of the vector are required. The syntax of 

the PARAMETER section is: 

PARAMETER 
parameter-name-1 (N) 1 item(1) . . . item(N) 1 
... 
parameter-name-n (N) 1 item(1) . . . item(N) I ;  

An example for the multiple knapsack problem is: 

PARAMETER 
C ( N )  / 1 2  1 0  2 0  2 4  9  1 7  1 6  8  1 5  7 / 
B ( M )  / 1 7  1 9  2 5  22 / ;  

D2.1.4 TABLE 

The TABLE section allows matrices of values to be specified, in much the same way as in the 

PARAMETER section. The syntax of the TABLE section is as follows: 

TABLE 
table-name-1 (M,N) 1 item(1,l) . . . item(1, N) . . . item(M,N) 1 
... 
table-name-n (M,N) I item(1,l) . . . item(1, N) . . . item(M, N) l ; 

An example for the multiple knapsack problem is: 

TABLE 
A(M,N) / 3 9 7 5 4 4 8 6 5 2  

2 3 1 8 4 7 2 3 5 4  
1 5 6 3 2 7 5 4 1 0 1  
2 3 3 4 2 7 5 6 1 5 / ;  

D2.1.5 SOLUTION 



The SOLUTION section is used to define the list constraints of the problem model. These include the 

Size, Count and Value Range constraints (see Section 3.3.1 of the thesis). The syntax of the 

SOLUTION section is: 

SOLUTION 
SIZE(x) relational-operator number 
. . . 
MIN-COUNT(x) = number 
MAX-COUNT(x) = number 
lowerbound relational-operator x relational-operator upperbound ; 

The SIZE statement is used to set the bounds of the list (i.e. the number of sub-lists and the number of 

elements on those sub-lists). For instance, if the model requires M sub-lists, SIZE (x) =M is used. The 

relational-operator is from the set {<=,<,=,>,>=I. To denote the size of an individual sub-list, a 

statement like SIZE (x (1) ) <=N is used. This indicates that sub-list 1 on list x can contain no more 

than N elements. Should SIZE be undefined, there are no limits on the number of sub-lists or the 

number of elements that can be contained on the sub-lists. 

The last line of the syntax description defines the range of legal values that can occur on the list. This 

statement cannot be omitted. 

An example for the multiple knapsack problem is: 

SOLUTION 
SIZE (X) =1 
MAX-COUNT (X ) =1 
l<=X<=N; 

D2.1.6 EQUATIONS 

The EQUATIONS section is used to describe the objective cost, incremental cost expressions and the 

constraints of the problem. The syntax of the EQUATIONS section is: 

EQUATIONS 
COST.. expression 
ICOST(transition-operator): ic-expression 
... 
constraint-name-I: expression relational-operator expression 
. . . 
constraint-name-n: expression relational-operator expression; 

COST.. indicates the objective cost. The objective cost is an arbitrary algebraic expression that can 

consist of the following functions: 

I Function name and arguments I Description I 



The system can generate its own incremental cost expressions from the objective function. ~ o w e v ' e r  

the user can provide their own for particular transition operators using ICOST statements. 

transition-operator is from the set (move, swap, invert, reposition, add, drop, change). ic-expression 

contains special incremental cost constants as well as all of the functions used in expression (explained 

in Section 4.5 of the thesis). These are: 

Function name and arguments 
SIZEOF (i) 
SUM(expression,i=j,k) 

ABS (i) 
minimum (expression-1, expression-2 

maximum (expression-1, expression-2 

min(expression,i,j,k) 

max(expression,i,j,k) 

occ (x, i) 

list (x, i, j) 

pred(i,j,k,l) 

succ(i, j,k,l) 

Description 
The size of list i. Returns lit. 
The sum of an expression between a lower and 

k 

an upper bound. Returns expression. 
i= j 

Returns the absolute value of i . 
Returns the value of smallest expression of 
expression-1 and express ion-2. 
Returns the value of largest expression of 
expression-1 and expression-2. 
Returns the expression of least value between a 

k 

lower and upper bound. i.e. min(expression) . 
i= j 

Returns the expression of greatest value between 
a lower and upper bound. i.e. 

k 

max(expression) . 
i= j 

Returns the number of times that value i occurs 
on list x. 
Returns the sub-list number of the j ' th 
occurrence of the value i on list x. 
Returns i-L unless i-l<j at which k is 
returned. 
Returns i+l unless i+l>j at which k is 
returned. 

The last part of the EQUATIONS section concerns the constraints of the problem. Each constraint is 

Constant name and arguments 
COST-OLD 

E 1 
E2 
L 1 
L 2 
P1 
P 2 

given an individual name. If a range variable (from the SETS section) is used, it is possible to create a 

Description 
Returns the cost of the objective function before the transition was 
made 
Element 1 
Element 2 
Sub-list 1 
Sub-list 2 
Position 1 
Position 2 

number of constraints. This is often useful when the same constraint is associated with some or all of 

the sub-lists. An example of an EQUATIONS section for the multiple knapsack problem is: 

EQUATIONS 
COST. . SUM(C(X(1)) ,I=l,SIZEOF(X(l)) 
ICOST (ADD) : COST-OLD + C (El) 
ICOST (DROP) : COST-OLD - C (El) 



ICOST (CHANGE) : COST-OLD - C(E1) + C(E2) 
CAPACITY : SUM(A(J,X(I) )<=B(J) ; 

D2.1.7 SOLVE 

The SOLVE statement is used to specify which search engine is to be used. The syntax is: 

SOLVE USING engine 

engine can be any of the following: 

SA a simulated annealing search engine 

TS a tabu search engine 

GS a greedy search engine 

D2.2 Complete Example File 

The complete description file for the multiple knapsack problem (as used above) is: 

SCALAR 
N / 1 0 /  
M / 4 / ;  

SETS 
J / 1 - M / ;  

PARAMETER 
C(N) / 12 10 20 24 9 17 16 8 15 7/ 
B(M) / 17 19 25 22 / ;  

TABLE 
A(M,N) / 3 9 7 5 4 4 8 6 5 2  

2 3 1 8 4 7 2 3 5 4  
1 5 6 3 2 7 5 4 1 0 1  
2 3 3 4 2 7 5 6 1 5 / ;  

SOLUTION 
SIZE (X) =1 
MAX-COUNT (X) =1 
l<=X<=N; 

EQUATIONS 
COST. . SUM(C(X(1)) ,I=l,SIZEOF(X(l)) 
ICOST (ADD) : COST-OLD + C ( El ) 
ICOST (DROP) : COST-OLD - C (El) 
ICOST (CHANGE) : COST-OLD - C(E1) + C(E2) 
CAPACITY : SUM(A(J,X(I) )<=B(J) ; 

SOLVE USING TS 

D2.2 File Construction 

The preprocessing directive # inc lude  (as commonly found in C applications) can be used in the 

language. The greatest benefit in this context is to separate data from the problem specification. Using 



this approach, one specification file can be used for multiple data files (i.e. many instances of the same 

problem). The syntax of the #include directive is: 

filename is the name of the file that is to be included. An example using the multiple knapsack 

problem is given below. The first file is called "mkp-problem-data" and contains the problem data. 

The second is "mult-knapsack" and contains the specification of the list model, objective cost, 

incremental cost expressions and constraints. 

The file "mkp-problem-data": 

SCALAR 
N / 1 0 /  
M / 4 / ;  

SETS 
J / 1 - M / ;  

PARAMETER 
C(N) / 12 10 20 24 9 17 16 8 15 7/ 
B(M) / 17 19 25 22 / ;  

TABLE 
A(M,N) 1 3 9 7 5 4 4 8 6 5 2  

2 3 1 8 4 7 2 3 5 4  
1 5 6 3 2 7 5 4 1 0 1  
2 3 3 4 2 7 5 6 1 5 / ;  

The file "mult-knapsack": 

#include "mkp-problem-data" 
SOLUTION 

SIZE (X) =1 
MAX.-COUNT (X) =1 
l<=X<=N; 

EQUATIONS 
COST. . SUM(C(X(1)) ,I=l,SIZEOF(X(l)) 
ICOST (ADD) : COST-OLD + C (El) 
ICOST (DROP) : COST-OLD - C (El) 
ICOST (CHANGE) : COST-OLD - C(E1) + C(E2) 
CAPACITY : SUM(A(J,X(I) )<=B(J) ; 

SOLVE USING TS 
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Appendix E: Overview of the C 
Problem Description Files 

COSULOM uses two C files in order to represent a list problem model. These are named   user.^" and 

"user.hW. The first of these files represents the list constraints, objective function, incremental cost 

expressions and constraints. "user.h" contains the data for a particular problem instance. Both of the 

files are described in Section E1.O and E2.0 respectively. By way of example, the multiple knapsack 

problem instance as given in Appendix D, is used to illustrate these two files (Section E3.0). 

The files "misc.h", "1ist.h" and "user.h must be included within   user.^". "1ist.h" and "misc.h" 

contain the definition of list structures and some necessary function prototypes.   user.^" consists of 

four functions: 

user-define-solution 

user-evaluate-cost 

user~evaluate~incremental~cost 

user-evaluate-constraints 

These are described below. 

El.1 user-def ine-solution 

This function is used by the system to create an appropriate list structure for the solution of a particular 

problem. As such, the list constraints are specified in this function. The list constraints themselves are 

implemented by calling the system functions described below. 

The function prototype of user-def ine-solution is: 

void user~define~solution(solution~1i~t~type) 

solution-lis t-type is the C type that describes the list structure of the solution. 

El.l.l set-min-count and set-max-count 

These functions are used to specify the Count constraints. The function prototypes are: 



void set~min~count(solution~1ist~type) 

void set~max~count(solution~1ist~type) 

The syntax for each function is: 

se t-min-count (solution) 

set-max-count (solution) 

solution is a variable name used by the system to store the current solution state. For this 

implementation, min-count and max-count are set to 1 if the appropriate function is called. 

E1.1.2 set-size-bounds 

This function is used to specify the shape and size of the solution list structure. The function prototype 

is: 

void set~size~bounds(solution~list~type, int, int, int) 

The syntax is: 

se t-s i ze-bounds ( solution, list-identij?er, size-lowerbound, size-upperbound) 

list-identijier is used to denote the list while size-lowerbound and size-upperbound set the limits of 

how small and how large a list can become respectively. To specify the list of lists (i.e. the list that 

supports the sub-list structures), 0 is used. For instance, to specify the structure of an M agent GAP 

(i.e. there are M sub-lists), the following would be used: 

As many problems such as the travelling salesman problem, quadratic assignment problem and 

multiple knapsack problem have only one sub-list, se t-size-bounds ( solution, 0,1,1) is 

used. Sub-lists are numbered from 1 onwards. 

E1.1.3 set-value-bounds 

This function specifies the range of values for the list elements. The function prototype is: 

void set~value~bounds(solution~1ist~type, int, int) 

The syntax is: 

set-value-bounds (solution, value-lowerbound, value-upperbound) 



value-lowerbound and value-upperbound set the limits of the value range. For the multiple knapsack 

problem, this becomes: 

E1.1.4 A Complete user-define-solution Function 

The complete function for the multiple knapsack problem becomes: 

void user~define~solution(solution~1ist~type solution) 
{ 

E1.2 user-evaluatecost 

This function specifies the objective function of the combinatorial optimisation problem. The function 

prototype is: 

float user~evaluate~cost(solution~1ist~type) 

Within this function, arbitrary C statements can be used in order to calculate the value of the objective 

function. This usually involves the data (constants and arrays) declared in "user.h" (see Section 

E2.0). The following system functions are available to user-evaluate-cost (as well other C 

functions). 

Description 
Returns the value of the 
element on the 
sub-list-number sub-list at the 
position-number position. 
Returns the length of list 
list-number. 
Returns the minimum of i and 
j. 
Returns the maximum of i and 
j. 
Returns the number of times 
that value i occurs on list x. 
Returns the sub-list number of 
the j'th occurrence of the value 
i on list x. 
Returns i-1 unless i-l<j at 
which k is returned. 
Returns i+l unless i+l>j at 
which k is returned. 

Function Prototype 
int find-value-at( 
solution-list-type, int, 
int ) 

int get-sizeof-list( 
solution-list-type, int 
float fmin ( f  loat, float) 

float fmax (f loat, float) 

int occ ( 
solution-list-type, int) 
int list ( 
solution-list-type, int, 
int) 

int pred (int, int, int, 
int ) 
int succ (int, int, int, 
int ) 

Function Syntax 
f ind-value-at (solution 
, sub-list-number, 
position-number ) 

get-sizeof-list( 
solution, list-number) 
fmin (i,j) 

fmax (i, j) 

occ (x, i) 

list (x, i,j) 

pred (i,j, k, 1) 

succ (i,j, k ,  1) 



The complete function for the multiple knapsack problem becomes: 

float user~evaluate~cost(solution~1ist~type solution) 
{ 

float sum=0.0; 
int i; 
for(i=l;i~=get~sizeof~list(solution,l);i++) 

return sum; 
1 

This function is used to calculate the incremental cost resulting from the local search transition made 

by the system. The function prototype is: 

float u s e r ~ e v a l u a t e ~ i n c r e m e n t a l _ c o s t ( s o l u t i o n ~ l i s t ~ t ~ e ,  

last-transition-type, float) 

The syntax is: 

user~evaluate~incremental~cos t (solution, last-transition , cost-old) 

last-transition-type is a C struct in which the information about the last transition is 

recorded: 

struct last-transition-struct 
f 

transit-type transition; 
int elementl; 
int listl; 
int positionl; 
int element2; 
int list2; 
int position2; 

I ;  

typedef struct last-transition-struct last-transition-type; 

transit-type is given by: 

enum tran{move-maint, move-rest, swap, invert, reposition, change, 
add, drop 1 ; 

typedef enum tran transit-type; 

The use of the members of last-transition-type is similar to that specified in Section 4.5. A 

switch statement is the most efficient means of selecting an appropriate incremental cost expression 

to evaluate. The complete function for the multiple knapsack problem becomes: 



float user~evaluate~incremental~cost(solution~1ist~type solution, 
last-transition-type last-transition, float cost-old) 
{ 

float cost-new; 
switch(1ast-transition-transition) 
{ 

case add: 
cost~new=cost~old+c[last~transition.element1]; 
break; 

case drop: 
cost~new=cost~old-c[last-transition.elementl1; 
break; 

case change: 
cost~new=cost~old-c[last-transition.elementl] 
+c[last-transition.element21; 
break; 

1 
return cost-new; 

1 

If incremental cost expressions are not available for a particular objective function, 

user-evaluate-cost can be called from this function. For example: 

float user~evaluate~incremental~cost(solution1isttype solution, 
last-transition-type last-transition, float cost-old) 
{ 

return user~evaluate~cost(so1ution); 
1 

This function is used to specify the constraints of the problem model. The function prototype is: 

float user~evaluate~constraints(solution~1ist~type, int) 

The syntax is: 

user-evaluate-cons traint s (solution, constraint-number) 

The function returns the amount of constraint violation for the constraint given by constraint-number. 

Constraint violation is calculated according to Equations (44 - 49). The complete function for the 

multiple knapsack problem becomes: 

float user~evaluate~constraints(solution~1i~t~type solution, int 
constraint) 
{ 

float sum=0.0; 
int i; 
for(i=l;i<=get-sizeof_list(solution,l);i++) 
{ 

sum+=a[find~value~at(solution,l,i)] [constraint]; 
I 
return fmax(0.0,sum-b[constraint]); 

I 



If the problem model contains no problem constraints, the following should be used: 

float user~evaluate~constraints(solution~1istte solution, int 
constraint) 
{ 

return 0.0; 
1 

This file stores the constants and arrays necessary to describe a problem instance. To declare the 

constants, the standard #define directive is used. One constant is required to be present. This is 

num_problem~constraints that tells the system how many problem constraints the problem 

model has. For the multiple knapsack problem, it can be declared as: 

provided that M has been previously declared. Arrays are declared and initialised in the customary C 

manner. 

E3.0 Complete Example Files for the Multiple Knapsack 
Problem Instance 

The file   user.^" is: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* user.c for the MKP * 
* Written by Marcus Randall * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#include <stdio.hz 
#include <stdlib.h> 
#include "misc.h" 
#include "1ist.h" 
#include "user.hn 

void user~define~solution(solution~1ist~type solution) 
{ 

set~max~count(so1ution); 
set~size~bounds(solution,0,l,l); 
set~value~bounds(solution,0,l,N); 

1 

float user~evaluate~cost(solution~1ist~type solution) 
{ 

float sum=0.0; 
int i; 
for(i=l;i~=get~sizeof~list(solution,l);i++) 
I 

sum+=c[find~value~at(solution,l,i)l; 
1 
return sum; 



I 

float user~evaluate~incremental~cost(solution~1ist~type solution, 
last-transition-type last-transition,float cost-old) 
{ 

float cost-new; 
switch(last~transition.transition) 
{ 

case add: 
c o s t ~ n e w = c o s t ~ o l d + c [ l a s t _ t r a n s i t i o n . e l e m e n t l l ;  
break; 

case drop: 
c o s t ~ n e w = c o s t ~ o l d - c [ l a s t _ t r a n s i t i o n . e l e m e n t l l ;  
break; 

case change: 
cost~new=cost~old-c[last_transition.elementll 
+c[last-transition.element21; 
break; 

I 
return cost-new; 

1 

float user~evaluate~constraints(solution~1ist~type solution,int 
constraint) 
{ 

float sum=0.0; 
int i; 
for(i=~;i~=get~sizeof_list(solution,l);i++) Continued.. . 
I 

sum+=a[find~value~at(solution,l,i)] [constraint] ; 
I 
return fmax(0.0,sum-b[constraint]); 

I 

The file "user.h" is: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* user.h for an MKP instance * 
* Written by Marcus Randall * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#define N 10 
#define M 4  
#define num-problem-constraints M 

int c [N] = 
{ 

12, 10, 20, 24, 9, 17, 16, 8, 15, 7  
I ,  

b [MI = 
{ 

17, 19, 25, 22 
1 ,  

a [MI [Nl = 

3 , 9 , 7 , 5 , 4 , 4 , 8 , 6 , 5 ,  2, 
2 , 3 , 1 , 8 , 4 , 7 , 2 , 3 , 5 ,  4, 
1 , 5 , 6 , 3 , 2 , 7 , 5 , 4 , 1 0 , 1 ,  
2 , 3 , 3 , 4 , 2 , 7 , 5 , 6 , 1 ,  5  

1 ;  



Appendix F: "A Simulated Annealing 
Code for General Integer Linear 
Programs" 
The following is a pre-print of the paper "A Simulated Annealing Code for General Integer Linear 

Programs" by D. Abramson and M. Randall. This paper is to appear in the journal The Annals of 

Operations Research. 
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