
A GENERAL
MODELLING SYSTEM AND

META-HEURISTIC
BASED SOLVER FOR

COMBINATORIAL
OPTIMISATION PROBLEMS

BY MARCUS CHRISTIAN RANDALL,
BSc, BBus(Hons)

A Dissertation
submitted in fulfillment of the
requirements of the degree of

Doctor of Philosophy
for the School of Environmental and Applied Science,

Faculty of Environmental Sciences,
Griffith University

5 May, 1999

Synopsis

There are many real world assignment, scheduling and planning tasks which can be classified as

combinatorial optimisation problems (COPs). These are usually formulated as a mathematical problem

of minimising or maximising some cost function subject to a number of constraints. Usually, such

problems are NP hard, and thus, whilst it is possible to find exact solutions to specific problems, in

general only approximate solutions can be found. There are many algorithms that have been proposed

for finding approximate solutions to COPs, ranging from special purpose heuristics to general search

meta-heuristics such as simulated annealing and tabu search.

General meta-heuristic algorithms like simulated annealing have been applied to a wide range of

problems. In most cases, the designer must choose an appropriate data structure and a set of local

operators that define a search neighbourhood. The variability in representation techniques, and suitable

neighbourhood transition operators, has meant that it is usually necessary to develop new code for each

problem. Toolkits like the one developed by Ingber's Adaptive Simulated Annealing (Ingber 1993,

1996) have been applied to assist rapid prototyping of simulated annealing codes, however, these still

require the development of new programs for each type of problem. There have been very few attempts

to develop a general meta-heuristic solver, with the notable exception being Connolly's General

Purpose Simulated Annealing (Connolly 1992).

In this research, a general meta-heuristic based system is presented that is suitable for a wide range of

COPs. The main goal of this work is to build an environment in which it is possible to specify a range

of COPs using an algebraic formulation, and to produce a tailored solver automatically. This removes

the need for the development of specific software, allowing very rapid prototyping. Similar techniques

have been available for linear programming based solvers for some years in the form of the GAMS

(General Algebraic Modelling System) (Brooke, Kendrick, Meeraus and Raman 1997) and AMPL

(Fourer, Gay and Kernighan 1993) interfaces. The new system is based on a novel linked list data

structure rather than the more conventional vector notation due to the natural mapping between COPS

and lists. In addition, the modelling system is found to be very suitable for processing by meta-

heuristic search algorithms as it allows the direct application of common local search operators.

A general solver is built that is based on the linked list modelling system. This system is capable of

using meta-heuristic search engines such as greedy search, tabu search and simulated annealing. A

number of implementation issues such as generating initial solutions, choosing and invoking

appropriate local search transition operators and producing suitable incremental cost expressions, are

considered. As such, the system can been seen as a good test-bench for model prototypers and those

who wish to test various meta-heuristic implementations in a standard way. However, it is not meant

as a replacement or substitute for efficient special purpose search algorithms.

The solver shows good performance on a wide range of problems, frequently reaching the optimal and

best-known solutions. Where this is not the case, solutions within a few percent deviation are

produced. Performance is dependent on the chosen transition operators and the frequency with which

:ach is applied. To a lesser extent, the performance of this implementation is influenced by runtime

parameters of the meta-heuristic search engine.

Table of Contents
Chapter 1: Introduction ... 1

.. 1.1 Introduction 1

1.2 Scope .. 2

1.3 Aim ... 3

Chapter 2: A Review of Modelling Methods and Solution Techniques .. 5

2.1 A Review of Modelling Systems for COPS .. 5

2.1.1 Integer Linear Programming ... 5

2.1.2 Connectionist Models ... 6

2.1.3 Graph-Theoretic Techniques .. 8

2.1.4 Constraint Programming ... 9

... 2.1.5 A Compacted Integer Vector Approach 10

... 2.2 Search Algorithms for Combinatorial Optimisation Problems 10

2.2.1 Exact Search Algorithms .. 10

.. 2.2.1.1 Operations Research Techniques 11

2.2.1.2 A* ... 11

... 2.2.1.3 Constraint Programming 12

2.2.2 Heuristics .. 14

2.2.3 Meta-heuristics ... 15

2.2.3.1 Greedy Search ... $7

2.2.3.2 Tabu Search .. 18

2.2.3.3 Simulated Annealing ... 20

2.2.3.4 Greedy Randomised Search Procedures (GRASP) ... 22

2.2.3.5 Genetic Algorithms ... 23

2.3 General Purpose Meta-heuristic Solvers .. 24

2.3.1 Algebraic Modelling Approach .. 25

.. 2.3.1 . 1 GPSIMAN 25

2.3.2 Code Segment Approach .. 27

2.3.2.1 Johnson's et a1 . Generic SA .. 27

2.3.2.2 ASA .. 27

2.3.2.3 Skeleton GA Implementations .. 28

2.4 Summary .. 28

Chapter 3: A Modelling System Based on Linked Lists ... 31

3.1 Motivation .. 31

3.2 Using Dynamic Data Structures to Represent COPS .. 31

3.3 Expressing COPS Using a List Based Notation .. 33

3.3.1 General Model .. 33

3.3.2 Illustrated Examples of the List Modelling System .. 35

3.4 Search Over Linked Lists ... 45

... 3.4.1 List-Based Local Search Transition Operators 46

3.4.1.1 Enforcing Constraints ... 49

... 3.4.1.2 Applying the Transition Operators 50

... 3.4.1.2.1 The Adaptive Probability Model 51

.. 3.4.2 Calculating Incremental Costs 52

3.5 Summary .. 54

.. Chapter 4: Implementation of a General Solver 56

... 4.1 System Architecture 56

4.2 Algebraic Modelling Language .. 58

... 4.3 Feasibility Maintenance and Restoration 61

... 4.4 Probabilistic Candidate List Strategy 62

... 4.5 Incremental Cost Templates 63

... 4.6 Search Engine Implementation 69

... 4.6.1 SA 69

... 4.6.2 GS 70

... 4.6.3 TS 71

... 4.6.3.1 Sequential 71

.. 4.6.3.2 A Parallel Implementation of the Solver 71

................................. 4.6.3.2.1 A Review of Parallelisation Strategies for Tabu Search 71

4.6.3.2.2 Division of the Neighbourhood ... 73

.. 4.6.3.2.3 The Parallel Algorithm 34

4.7 Generating an Initial Solution .. 75

4.8 Practical Limitations of the System .. 77

4.9 Summary .. 78

Chapter 5: Methodology and Results .. 80

5.1 Experimental Overview and Rationale ... 80

5.2 Problems Classes and Instances ... 81

5.3 Parameter Settings .. 83

5.4 Termination Conditions .. 85

5.5 Benchmarking Against Other Software Packages .. 85

5.6 Feasibility Restoration Runs .. 86

.. 5.7 Parallel Runs 86

... 5.8 Reporting the Results 87

5.8.1 Numerical Data ... 88

5.8.2 Qualitative Analysis ... 88

5.8.3 Statistical Analysis ... 88

5.8.3.1 The Effect of the Transition Operator Sets and Engine-specific Parameters 88

5.8.3.2 Overall Comparison .. 89

5.9 Results .. 89

5.9.1 Standard Runs ... 89

5.9.2 Extended Runs .. 92

.. 5.9.3 Other Software 97

5.9.4 Feasibility Restoration Runs ... 102

5.9.5 Parallel Runs ... 104

.. 5.10 Performance Analysis 1 1 1

.................... 5.10.1 The Effect of the Transition Operator Sets and Engine-specific Parameters I11

.. 5.10.2 Overall Comparison 1 1 3

.. 5.10.3 Runtime Differences between the Various Solver Packages 119

.. 5.1 1 Summary 122

Chapter 6: Conclusions and Further Work .. 124

.. 6.1 Conclusions 124

.. 6.2 Further Work 1 2 6

... 6.2.1 Direct Hardware Implementation 127

... 6.2.2 Alternative Dynamic Data Structures 128
. 6.2.3 Alternative Search Engines 128

... 6.3 Achievements and Significance 128

... Bibliography 131

Glossary of Terms and Acronyms ... 139

.. Appendix A: Standard Results for the SA, TS and GS engines 144

.. Appendix B: List Formulations of Common COPS 198

Appendix C: 0-1 ILP formulations of the Test Problems .. 206

... Appendix D: Algebraic Modelling Language User Manual 211

Appendix E: Overview of the C Problem Description Files .. 219

............................ Appendix F: "A Simulated Annealing Code for General Integer Linear Programs" 227

Appendix G: Papers Arising from this Study .. 249

List of Figures

Figure 1: A graph-theoretic representation of a 5 city TSP . The cities are given by the set {A. B. C . D.

E) and form the vertices of the graph . The edge weights represent the distance between each pair

... of cities 9

Figure 2: X and Y have the domains of 2.4. 5 and 4.6. 8 respectively . This is the entire search tree . This

problem is a demonstration example reproduced from Little and Darby-Dowman (1995. Figure 1.

p.3) ... 13

Figure 3: Once the constraint X 2 Y is added. the search tree is reduced (pruned) . This problem is a

......... . demonstration example reproduced from Little and Darby-Dowman (1995. Figure 2. p 3) 13

Figure 4: SA implementation choices made by Johnson et a1 . (1991a. 1991b) . Reproduced from

. Johnson et a1 (199 la. Figure 5. p 869) 27

Figure 5: A list and tree structure . A square box is used to denote an elementlnode while a line is an

.. edge . The traversal of the list structure is indicated by the arrows 32

... Figure 6: A linked list representation of a GAP 36

Figure 7: The move operator .. 46

Figure 8: The swap operator .. 47

Figure 9: The inversion operator .. 47

.. Figure 10: The reposition operator 47

Figure 1 1 : The add operator .. 48

Figure 12: The drop operator ... 48

Figure 13: The change operator .. 48

Figure 14: An architectural representation of the general solver ... 57

Figure 15: Input file representing a GAP ... 59

Figure 16: BNF of the algebraic modelling language .. 60

Figure 17: A graphical representation of the SA reheating schedule ... 69

Figure 18: Block diagram of the communications between the master processor and the slave

processors for the parallel TS algorithm .. 74

Figure 19: Parallel speedup graph for the GPP .. 107

Figure 20: Parallel efficiency graph for the GPP .. 107

Figure 21: Parallel speedup graph for the GAP ... 107

Figure 22: Parallel efficiency graph for the GAP ... 108

Figure 23: Parallel speedup graph for the QAP ... 108

Figure 24: Parallel efficiency graph for the QAP ... 108

Figure 25: Parallel speedup graph for the BIN .. 109

Figure 26: Parallel efficiency graph for the BIN .. 109

Figure 27: Parallel speedup graph for the TSP .. 109

Figure 28: Parallel efficiency graph for the TSP ... 110

Figure 29: Schematic of the ASC for solving COPS ... 127

List of Tables
... Table 1 : Problems that can be expressed using the list modelling system 38

... Table 2: The intrinsic functions available to the list modelling system 39

Table 3: Appropriate transition operators given a problem's list constraints . y represents any list

structure while N represents a constant .. 49

........................... Table 4: Incremental cost expressions according to template and transition operator 68

Table 5: Problem classes and instances that are used in this study . Note: as objective costs are typically

... reported dimensionless in the literature. units are not shown here 83

Table 6: Transition probability settings for each problem type .. 84

... Table 7: Search engine-specific parameters 85

.. Table 8: Optimisation packages that are compared with the general solver 85

............................ Table 9: Problem classes and instances that are used to test the parallel tabu engine 87

Table 10: Largest clique sizes achieved with the SA engine using the alternative list formulation for the

MCP given in Appendix B ... 92

Table 1 1 : Extended results of the SA engine ... 93

.. Table 12: Extended results of the TS engine 96

.. Table 13: CSP results (objective costs and runtimes) for SA-CSP 97

Table 14: Results of running tsp-solve on the TSP ... 98

Table 15: Results of running dfmax and dfclique on the MCP problem instances 98

Table 16: Results of running RLF on the GRAPH problem instances ... 98

............................ Table 17: Results of running QAPBB and QAPSIM on the QAP problem instances 98

.. Table 18: The results of running Lindo on the problem test suite 100

Table 19: The results of running OSL on the problem test suite .. 101

Table 20: Results of branch and bound with the shortest path heuristic for the USApHMP on a DEC

30001700 with CPLEX (reproduced from Ernst and Krishnamoorthy (1997b. Table 2. p . 15)) . . 101

Table 21: Results of branch and bound with the shortest path heuristic for the UMApHMP on a DEC

30001700 with CPLEX (reproduced from Ernst and Krishnamoorthy (1997b. Table 3. p.16)). .. 101

Table 22: Feasibility restoration runs using SA ... 102

Table 23: Feasibility restoration runs using TS ... 103

.. Table 24: Parallel speedup results 105

Table 25: Parallel efficiency results ... 106

Table 26: Parallel speedup and efficiency for gapA10-100 with and without using incremental cost

expressions ... 111

Table 27: Rank order of the transition sets for each problem type ... 112

Table 28: Rank order of the different SA cooling lengths for each problem type 112

Table 29: Rank order of the different TS neighbourhood probabilities for each problem type 113

Table 30: Performance comparison on the CSP ... 114

Table 3 1 : Performance comparison on the BIN ... 114

Table 32: Performance comparison on GRAPH ... 114

Table 33: Performance comparison on QAP .. 1 15

Table 34: Performance comparison on TSP ... 115

Table 35: Performance comparison on MKP ... 115

Table 36: Performance comparison on GPP .. 116

Table 37: Performance comparison on TTP .. 116

Table 38: Performance comparison on MCP ... 116

Table 39: Performance comparison on USApHMP ... 116

Table 40: Performance comparison on UMApHMP .. 117

Table 41 : Performance comparison on GAP .. 117

.. Table 42: Overall comparison of the performance of the various solvers 118

........... Table 43: Ordering of the search engines based on their performances for each problem type 119

Table 44: The percentage of Optimal and Best-Known solution costs achieved by SA, TS and GS for

the standard runs .. 125

... Table 45: Standard results for the SA engine 180

... Table 46: Standard results for the TS engine 188

Table 47: Standard results for the GS engine .. 197

List of Algorithms
Algorithm 1: Skeleton pseudocode of an iterative meta-heuristic search algorithm 16

Algorithm 2: Pseudocode for GS ... 18

Algorithm 3: Pseudocode for TS .. 20

Algorithm 4: Pseudocode for SA ... 22

Algorithm 5: Pseudocode for GRASP .. 23

.................. Algorithm 6: The simulated annealing based 0-1 solver GPSIMAN from Connolly(l990) 26

Algorithm 7: Feasibility restoration procedure for the move operator ... 62

Algorithm 8: Pseudocode for the master processor .. 74

Algorithm 9: Pseudocode for the slave processors .. 75

.............. Algorithm 10: The algorithm for forming an initial solution that satisfies the list constraints 76

Acknowledgements

The undertaking of this PhD would not have been possible without the help and support of numerous

people and organisations. I will attempt to give due credit to those who had a major impact on both

this study and myself.

Professor David Abramson

I am extremely fortunate to know and work with Professor Abramson. As my principal supervisor, he

has provided me with direction and encouragement throughout the PhD process.

Dr Clyde Wild

His reading of the thesis has improved its readability considerably. Dr Wild's knowledge of statistics

has helped me greatly. I wish to also thank him for his administrative support of this PhD.

Dr Keith Carter

His reading of the thesis and good-natured support is much appreciated.

Queensland Parallel Supercomputing Facility

The computer provided by this facility has been the backbone of this work. It would not have been

possible to perform the required computations on conventional workstations, especially the testing'of

the parallel implementation. Sadly, this facility is both underfunded and understaffed. The staff has

carried out their difficult task admirably and has assisted me on numerous occasions. In particular, I

would like to thank Dr Zdizslaw (Gustav) Meglicki and Mr Andrew Lewis.

School of Environmental and Applied Science (GrifJith University)

This School has supported me financially as well as providing the facilities I needed in order to

complete this study.

School of Conlputer Science and SofhYare Engineering (Monash University)

The School has always been very welcoming during my frequent visits to Melbourne. In particular I

would like to mention Ms Eryn Glover and Mr Paul Logothetis.

Statement of Orieinal Authorship

This work has not been previously submitted for a degree or diploma at any university or institution.
To the best of my knowledge and belief, the thesis contains no material previously published or written
by another person except where due reference is made in the thesis itself.

Signed:. Date: .

Author's Note

I have endeavoured to write this thesis for a broad scientific audience rather than strictly for those of
the Operations Research, Mathematics or Computer Science communities. As part of this approach, I
have included a Glossary that explains some of the more discipline-oriented terms and acronyms. I
hope and trust that this helps. However, a passing knowledge of statistics is assumed.

Marcus Randall

5 May, 1999

Chapter 1: Introduction

1.1 Introduction

According to Osman and Kelly (1996, p. 2) "Combinatorial optimization problems are normally easy

to describe but difficult to solve". Typically these problems have a finite number of alternative

solutions that represent different arrangements of discrete objects. As such, each solution state has a

different degree of effectiveness for solving a particular problem. The aim is to find the solution that

receives the highest overall evaluation while simultaneously satisfying a set of constraints. This is

known as the optimal solution. Many real world problems that involve location, arrangement,

scheduling and planning tasks can be classified as combinatorial optimisation problems. The

importance of these problems to industry cannot be underestimated. For instance, Anbil, Gelman,

Patty and Tanga (1991) describe a problem in which crews are scheduled to airline flights. Given that

airline operating costs are in the order of billions of dollars per year and that personnel costs are one of

the largest components thereof, even slight increases in efficiency can lead to substantial savings.

The number of possible solution states can be large even for relatively small size combinatorial

optimisation problems. As a result, many of these problems are intractable and require years'of

computer processing time to identify optimal solutions. The theory of computational complexity

identified by Cook (1971) states that a problem is NP (Nondeterministically Polynomial) hard if the

amount of computational time required to find the optimal solution grows exponentially with the size

of the problem instance, in the worst case. Consequently, it is improbable that efficient search

algorithms exist that will solve such problems to give the optimal solution.

As a result of the fact that many COPS have been shown to be NP hard, combinatorial optimisation has

been seen as a challenging field by researchers from a variety of disciplines including mathematics,

computer science, engineering, economics and management. Numerous solution techniques exist for

combinatorial optimisation problems. The most successful and widely used search algorithms are

those that forsake the requirement of obtaining optimal solutions (Osman and Laporte 1996) and these

are broadly known as heuristics. In most cases, special purpose algorithms that solve individual

problem types are the most efficient way of solving these problems. As such, a great deal of research

has focused on the development and refinement of these algorithms. In contrast there has been

relatively little investigation to determine if and how more general-purpose search platforms can be

built. Therefore it is in this area that the research of the thesis will concentrate.

1.2 Scope

Combinatorial optimisation problems may be defined as any optimisation problem that has a finite

number of feasible solutions (Winston 1991). Most problems fitting this description have a discrete

solution domain that is therefore defined over a subset of integers. The general model for COPS can be

expressed using Equations (1) and (2) according to Osman and Kelly (1996).

Optimise fix)
subject to (s. t .)

X E X s R

Where:
x represents a solution to the COP.
fix) is the evaluation of the arbitrary objective function,f, according to x.
X is the feasible space.
R is the entire solution space.

The equation given in (1) states that an arbitrary function, f, with argument, x (the solution), is to be

optimised. That is, the solution with either the lowest or highest evaluation off (depending on whether

the problem requires minimisation or maximisation) is sought. The feasible space is bound by a set of

constraints (which are themselves arbitrary functions) (2). Combinatorial optimisation generally

requires that the sets, X and f2 consist of discrete values.

The discrete solution space allows the modelling of problems that require some form of assignment or

mapping of items to a number of different groups. Therefore much of combinatorial optimisation is

primarily concerned with "finding an optimal arrangement, grouping, ordering or selection of discrete

objects usually finite in number" (Osman and Kelly 1996, p. 2). There have been varied attempts to

model COPS including Integer Linear Programming, graph theoretic approaches and constraint

programming. These are discussed in Chapter 2.

As well as modelling these problems, there are subsequently many applicable solution methods and

these may be separated into two distinct groups of exact and approximate approaches. Of the former

group, the techniques of Operations Research (OR) predominate. The most widely used techniques

within this field for solving COPS are "branch and bound" and "cutting plane algorithms" (Taha 1992;

Winston 1991). While these techniques guarantee optimal solutions, the effects of NP complexity

become apparent. These techniques are discussed in detail in Chapter 2.

The approximate techniques aim to find the best possible solution, not necessarily the proven optimal

solution, with a given amount of computational effort. These techniques are referred to as lzeuristics

and are often in the form of specialised algorithms that solve particular problems. Heuristics are

generally very efficient. However, it can be expensive and time consuming to alter individual

algorithms to suit other problems. Nevertheless, a class of meta-heuristic algorithms exist that can be

adapted to suit different problems with less effort. While these algorithms are typically less efficient

than their tailored heuristic counterparts, they have been applied successfully to a variety of difficult

and practical COPs.

Although meta-heuristics are general algorithms for solving COPs, there is no universally standard and

efficient way of representing problem structure and data. Therefore, the common practice has been to

incorporate problem specific information and data within the search engine itself. In contrast,

relatively little research has been carried out to produce general and reconfigurable COP search

engines, apart from Abramson and Randall (1998), Connolly (1992), Johnson, Aargon, McGeogh and

Scheveon (1991a, 1991b) and Ingber (1993, 1996).

The work in this thesis contains the details of a new modelling system that represents COPS in a way

that closely reflects the underlying structure of the problem being solved. In this study, it is found that

a variety of iterative search techniques coupled with standard local search transition operators can

successfully operate within the framework of this modelling system. The modelling system itself is

discussed in Chapter 3, while the details of the implementation of a new general-purpose solver are

contained in Chapter 4. The general system is tested on a wide variety of COPs over a range of

parameters and compared to some benchmark solvers (Chapter 5). Finally, in Chapter 6, conclusions

are drawn about the modelling system and its implementation. As well as this, the details of further

research projects arising from this work are discussed.

The aim of this research is to demonstrate that practical size COPs can be solved in a standard way by

meta-heuristic search engines. COPS are fundamentalIy difficult problems to solve and have wide

applicability. While Integer Linear Programming (ILP) packages can solve these problems, their

performance may be poor especially for moderate to large size problems. They are also particularly

concerned with finding the optimal solution. There are also heuristic and meta-heuristic codes,

however, they are usually tailored to solve specific probIems and efficient solvers may not be available

for particular problems. As such, there is no standard test-bench with which COPS can be solved. In

this thesis, a practical means of solving arbitrary COPS using a new modelling system and associated

meta-heuristic search algorithms is presented. Such a tool is particularly useful for the model

prototyper and those who work with numerous problems of this nature.

In particular, the general system developed as part of this research has a number of key features that

differentiates it from other solvers in a number of important ways. These are:

It provides a new modelling data structure for COPs based on linked lists. This

eliminates many of the constraints and variables associated with problems formulated

using other notations.

As well as providing a Simulated Annealing (SA), Tabu Search (TS) and Greedy Search

(GS) framework, it has an in-built set of neighbourhood transition operators that are

commonly used in tailored heuristics. A method has been developed that determines

which local search operators are appropriate for a particular problem based on its

constraints.

It incorporates mechanisms that allow the evaluation of incremental objective functions.

The objective and constraint functions may be arbitrary algebraic expressions.

It provides an algebraic modelling language, which makes rapid prototyping possible.

The general system was produced so that COPS could be solved with minimal initial development time

and effort. While it produces very good solutions to a range of hard problems, it is not meant as a

replacement or substitute for efficient special purpose search algorithms.

Chapter 2: A Review of Modelling
Methods and Solution Techniques

This chapter concentrates on two key aspects of solving COPs, namely modelling systems (the way a

problem is expressed) and search algorithms (the way a problem is solved). An outline of both of these

topics is presented as a basis for developing a new modelling paradigm and subsequently a general-

purpose COP solver system.

2.1 A Review of Modelling Systems for COPs

There are a variety of methods that can be used to represent COPs. This section discusses five different

approaches and is used as a foundation for the development of alternative modelling systems. The first

of the approaches, Integer Linear Programming, expresses COPs in terms of linear equalities and

inequalities using binary variables. The graph theoretic approach represents problems as graphs with

solution states determined by the connection of vertices with a number of edges. The connectionist

approach models COPS in terms of neural network architectures. The CP modelling system formulates

problems in terms of finite domain variables rather than binary variables. Finally, the compacted

integer vector approach is shown as an extension of ILP notation. In this approach, variables assume a

range of integer values rather than being restricted to binary values and constraints can be either linear

or non-linear.

2.1.1 Integer Linear Programming

As discussed in Section 1.2, COPs require that the solution domain be defined over a subset of discrete

values. In terms of a linear programming approach, this domain is usually reduced to the interval [0,1]

in order to denote that an object is assigned to a particular group. Equations (3) - (5) give the generic

formulation of a 0- 1 ILP.

Where:
C is the cost vector of size N.
x is the solution vector of size N.
A is the constraint matrix of size M x N.
B is the constraint vector of size M.

In the formulation, (3) - (3, the cost is optimised subject to the constraints specified in the matrix

expression. The exact nature and values in both the A matrix and B vector depend on the problem

being modeled.

Constraints are often used to express assignments of the form required for COPs. For instance, in order

to denote that item i is assigned to group j, constraints of the form of (6) are used. This constraint

ensures that an item cannot belong to more than one group.

Constraints of the form (6) are often referred to as encoding constraints as they are required to ensure

the integrity of the solution. Similarly, some problems require that artificial variables be created for the

same purpose. Encoding constraints and variables enlarge the model size significantly and as a result,

the number of potential solution states increases exponentially with problem size, although many of

these may not satisfy the constraints. Accordingly with realistic problems, it is usually impractical to

simply explore the 2N possible states either with explicit or implicit enumeration techniques (discussed

in Section 2.2.1.1) in order to obtain the optimal solution.

2.1.2 Connectionist Models

Another representation of COPs is based on neural networks. This is referred to as the connectionist

approach and models the way that neurons function and interact with one another (Carling 1992) as a

paradigm for problem solving. It is typical for neural networks to have a number of nodes (neurons) as

well as connections (weights) between them.

There are a number of different implementations and types of neural networks. In general, two models

are suitable for representing and solving COPs (Smith, Palaniswami, and Krishnamoorthy 1996a,

1996b); the Hopfield-Tank network (Tank and Hopfield 1985) and the Kohonen Self-Organising

Feature Maps (SOFM) (Kohonen 1982).

The Hopfield-Tank (Tank and Hopfield 1985) approach has been the most widely used neural network

for COPs (Ramanujam and Sadayappan 1995). It is a single layer, fully interconnected network having

an energy function (7) that is minimised (Hopfield 1982).

Where:
E is the resultant energy.
n is the number of neurons.
T j is the weight between neuron i and neuron j.
Vi is the activity of neuron i.
I i is the external bias or input of neuron i.

When modelling COPs using the Hopfield-Tank approach, both the objective function and the

constraints are mapped onto (7) (Ramanujam and Sadayappan 1995) by extending the original energy

function to include the constraints (8) (Peterson and Sodberg 1989).

E = cost + constraints (8)

Thus constraints are implemented as penalty terms in the energy function. By applying a learning rule,

the state of the network (V" is adapted such that the energy function is minimised. This learning rule

is based on a gradient descent (greedy) search and accordingly the network will iterate towards a

ground energy state that corresponds to a local optimum for the COP. Recent research by Smith

Paliniswami and Krishnamoorthy (1998) has shown that Hopfield-Tank networks can: (a) ensure that

optimal solutions are obtained and (b) incorporate hill-climbing search strategies to escape local

optima.

Hopfield-Tank networks are more generalisable than the other common approach, SOFM. The SOFM

networks take an arbitrarily dimensioned input and transform this into a discrete two dimensional

(Euclidean) feature map (Smith et al. 1996a). In addition to adapting weights of the neurons in order to

form a solution, the SOFM also organises the neurons on a discrete lattice. As a result, the most

popular combinatorial application is to the Travelling Salesman Problem (TSP) (Smith et al. 1996a).

An imaginary elastic band is stretched and allowed to move across the lattice until it attaches itself to

the nodes. These nodes represent the cities and the distance between the nodes is proportional to the

distance between the cities. The positions of the cities on the lattice also reflects their current location

in Euclidean space and hence form an ordered ring that represents the tour. Thus the final tour is

determined by the position of the nodes in the network and the location of the elastic band at the

network's ground energy state. There has been little effort to adapt this approach to other COPS (Smith

et al. 1996a; Osman and Laporte 1996).

Research into neural network architectures for COPS is focusing on hybrid networks as well as

refinements to existing techniques (Smith et al. 1996a and Smith et al. 1998). However, as a result of

the problems of poor solution quality, lack of generality as well as the performance degradation of

implementing neural networks on conventional sequential computer architectures, Osman and Laporte

(1996, p. 522) comment of the connectionist approach that:

"They have not been successful when applied to optimization
problems and are not competitive with the best meta-heuristics
from the operations research literature, when applied to
combinatorial optimization problems."

2.1.3 Graph-Theoretic Techniques

A graph-theoretic approach represents COPS as either directed or undirected graphs in Euclidean space

(Chartrand 1977; Wilson 1985). A graph (G) consists of vertices (V) connected by a set of edges (E)

and is given by G=(V,E) (Could 1988). Local changes can be made in G in a number of ways

including partitioning the vertices and adding or dropping the edges between vertices. A range of

different problems can be expressed as graphs, especially those arising from transportation ~ n d

scheduling. For instance, the TSP as a graph theoretic model can be represented as an undirected

network (G) whose vertices correspond to cities (see Figure 1). Every vertex pair is connected by a

weighted edge (representing the distance between the two cities) and the problem becomes one of

finding a minimum length Hamiltonian cycle on G.

As a result of the spatial characteristics of graphs, it can be difficult to map general graph problems that

require optimisation onto a form that is directly solvable in a computational implementation. Despite

this, there are a number of special purpose algorithms that exploit graph structure in order to perform

combinatorial search for particular problems. Two such examples are the processor allocation problem

(Sofianopoulou 1992) and the weighted maximal planar layout problem (Hasan and Osman 1995). The

processor allocation problem is a problem in which a number of processes are allocated to a number of

processors such that the total communication flow between processes on different processors is

minimised. The maximal planar layout problem is a facilities layout problem in which a planar graph

is sought that has the qualities: (a) no edges intersect; and (b) the sum of edge weights is maximised.

For both problems, graph based algorithms can only soIve relatively small problems. More complex

problems require specification using algebraic techniques and solutions with local search methods (see

Section 2.2.2 for a description of local search).

Figure 1: A graph-theoretic representation of a 5 city TSP. The cities are given by the set (A, B, C, D,
E) and form the vertices of the graph. The edge weights represent the distance between each pair of
cities.

2.1.4 Constraint Programming

An alternative method of modelling and solving COPS is by Constraint Programming (CP). CP is a

relatively new field of research belonging primarily to the domain of Artificial Intelligence (AI). It is a

merger of declarative language and logic programming (Jaffar and Maher 1997) and is finding use in

the modelling and solving both COPS and constraint satisfaction problems (Little and Darby-Dowman

1995).

CP combines an algebraic modelling system with an enumerative tree search algorithm (discussed in

2.2.1.3). Unlike 0-1 ILP notation that uses vector notation, CP can store problem information in terms

of lists (Marriot and Stuckey 1998). These lisghold integer values bounded within finite domains. In

addition to relational constraints, CP incorporates conditional constraints commonly found in logic

programming. Complex constraints, such as all elements of a list are different, are also accommodated

in CP (Marriot and Stuckey 1998). These features provide for a rich modelling l o q 3 ~ c that is more

natural and compact than integer linear programming. As a result, CP based solvers (such as ILOG-

SOLVER (ILOG 1998)) are finding success in commercial implementations.

Despite the language's richness, it still requires its own form of encoding constraints in order to specify

a problem. This can enlarge problem size significantly and is particularly evident for problems such as

the TSP. The number of constraints that are required to represent this problem can easily exhaust a CP

solver software for sizes below 15 cities (Caseau and Laburthe 1997). This is due to the representation

of the sub-tour constraints that ensure the path traveled by the salesman is a Hamiltonian cycle. Many

COPS have complex underlying structures and as such, there are difficulties representing and solving

common COPS using CP according to Little and Darby-Dowman (1995) and Osman and Laporte

(1996).

2.1.5 A Compacted Integer Vector Approach

A recent study (Abramson and Randall 1998) examined another representation scheme for COPS'.

This formulation technique allows variables to take on arbitrary integer values. This is in contrast to

the linear modelling of COPS that often require the use of binary variables and result in sparse problem

models. This scheme was developed so that a problem model could be written with fewer encoding

constraints than the equivalent 0-1 ILP model. The authors observed that:

Fewer variables and constraints are required in the new integer formulation,

The equality and encoding constraints are removed,

It is necessary to allow inequality (;t) constraints, which are non-linear,

More complex cost functions are required, often involving non-linear operators.

In order to compensate for the lack of encoding constraints, problems are divided into three categories

namely: order based, arbirrary linear constraints and assignment problems. Each of these categories

has a distinct mathematical structure. Despite obtaining good quality solutions in relatively small

amounts of time with the SA meta-heuristic, this modelling technique is difficult to apply to problems

that do not fall into any of the categories or that span multiple categories. This study compared the

system's performance (called INTSA) against Connolly's (Connolly 1992) General Purpose SIMulated

ANnealing (GPSIMAN) and a commercial ILP package, Optimisation Subroutine Library (OSL). The

latter two codes accept problems formulated as 0-1 ILPs. The results demonstrated that solving

moderate to large size COPs using 0-1 ILP formulations is impractical.

The work described in Abramson and Randall (1998) acts as a precursor to the material contained in

this thesis because it identified that acceptable performance was possible for a range of problems with a

common representation. The main disadvantage is that i t is not general enough to represent real

problems. However, the concept of the representation of COPS using integer values forms a seminal

component of the new linked list modelling approach (as presented in Chapter 3).

2.2 Search Algorithms for Combinatorial
Optimisation Problems

2.2.1 Exact Search Algorithms

Exact solution techniques are those that produce solutions to COPs that can be proven to be optimal. In

this section, four widely studied approaches from the Operations Research and Artificial Intelligence

disciplines are examined.

' See Appendix F for a preprint of this paper.

2.2.1.1 Operations Research Techniques

Using the 0-1 ILP modelling technique discussed in Section 2.1.1 often gives rise to large and sparse

problem models. Techniques belonging to OR have been developed to exploit the structure of these

models, using a form of implicit enumeration to find proven optimal solutions. There are two classes

of such techniques, namely, branch and bound and cutting plane algorithnls (Taha 1992).

Branch and bound (Taha 1992; Winston 1991) is an iterative tree search process in which the problem

is first solved by disregarding the constraint that all values must be discrete. This is achieved by using

a procedure such as the simplex algorithm. Each variable that contains a continuous value is used in

order to form two new sub-problems that exclude this continuous region. For instance, if variable i in

solution x contains the value 1.5, two sub-problems are created by adding the constraints xi I 1 to the

first sub-problem and xi 2 2 to the second sub-problem. The search process will then choose one of the

available sub-problems and repeat the process (known as branching). The choice of sub-problem is

governed by a branching strategy. Various branches of this tree can be shown not to contain the

optimal solution given the lower and upper bounds of other branches (known as bounding), hence they

are not explored and said to be pruned. The search is complete when all the branches have been

fathomed (i.e. explored or pruned) and the optimal solution is returned.

Cutting plane algorithms are similar to branch and bound, as they will first solve the problem without

regard to obtaining pure integer values. However, instead of branching at each step, cutting plane

algorithms add a constraint to the system to 'cut' off continuous regions. A characteristic of the

algorithm is that the optimal solution is found when an all integer solution is reached.

Techniques such as branch and bound and cutting plane algorithms have been the popular search

techniques to solve COPs. However, apart from suffering NP time bounds in the worst case, moderate

to large size problems often require many variables and constraints and hence the problem can become

intractable even on large supercomputers using sophisticated software packages. As such, Taha (1992,

p. 309) states that branch and bound and branch and cut are not "uniformly effective" methods of

solving COPs.

A* is an implicit tree search algorithm that was originally proposed by Hart, Nilsson and Raphael

(1968). This algorithm has the characteristic that it considers estimates of the remaining distance until

the optimal or goal-state is reached given the current solution-state. The generic objective function for

problems solved with A* is:

Where:

n is the current solution-state.
f*(n) is the modified objective cost of the solution state n.
g(n) is the cost of the solution state n.
h*(n) is an estimate of h(n), the minimum cost difference between the current state,
n, and the optimal state.

If h*(n) in Equation (9), is an underestimate of h(n), the A* search procedure is guaranteed of finding

the optimal solution. There are numerous ways that the algorithm can be applied to particular

problems. The following description illustrates one such approach for the TSP.

The goal of the TSP is to construct a Hamiltonian tour of minimum length between cities lying on a

Euclidean plane. Beginning from a starting city (for example, city 1) and using a best search strategy

(as described in Winston (1992)), the next city to add to the solution is chosen so that thef*(n) is the

smallest amongst all the alternatives. For this problem, the estimate of the remaining distance can be

the distance back to the starting city. The distance from the current city to that starting city is always

smaller than the length of the rest of the tour. If the partial tour length is greater than the smallest

overall tour length found to date, then this partial tour cannot lead to the optimal solution. Hence, the

solution is backtracked to the previous city on the tour and this part of the search space is pruned (or

fathomed). Providing that each h*(n)lh(n), A* will always return the optimal solution.

While A* search can be very efficient for some problems, it still suffers from NP time bounds as does

branch and bound, and branch and cut. In addition, there may not be enough information to obtain h*

or it may be too complex and time consuming to compute (Firebaugh 1989; Luger and Stubblefield

1993; Winston 1992).

2.2.1.3 Constraint Programming

Apart from the modelling system discussed in Section 2.1.4, CP provides a proven optimal search

technique for COPS. It uses a form of tree search based on implicit enumeration but is different to the

branch and bound procedure.

The solution space of a CP problem is represented by a tree structure. Each of the levels of the tree

represents a variable and the domain of each variable is given by the set of nodes at that level. A

candidate solution is obtained by traversing the tree from the root node to a leaf node. The entire tree is

initially pruned by considering the effects of all the constraints (called constraint propagation). The

search process is a form of enumeration that proceeds as a depth-wise tree traversal. According to the

current place in the tree, the process can disregard values of variables that would make the current

solution infeasible (referred to as dynamic pruning). Should the process determine that all values of a

particular variable are infeasible with the current solution, it will backtrack and undo changes at higher

levels of the tree. An example of the CP search strategy is shown in Figure 2 and Figure 3. Figure 2

shows a complete CP for a small two variable problem, whilst Figure 3 presents the tree after the

constraint, X2Y, is processed (demonstrating constraint propagation).

Figure 2: X and Y have the domains of 2,4,5 and 4,6,8 respectively. This is the entire search tree. This
problem is a demonstration example reproduced from Little and Darby-Dowman (1995, Figure 1, p. 3).

Figure 3: Once the constraint X 2 Y is added, the search tree is reduced (pruned). This problem is a
demonstration example reproduced from Little and Darby-Dowman (1995, Figure 2, p. 3).

The CP system was originally designed for solving constraint satisfaction problems (Osman and

Laporte 1996). Constraint satisfaction problems differ from COPS as they require that only a set of

constraints be satisfied rather than the optimisation of a specific objective function. An example of a

constraint satisfaction problem is the SEND + MORE = MONEY problem in which numerals are

assigned to the letters such that each letter has only one value and the addition is satisfied (Little and

Darby-Dowman 1995). In order for CP to evaluate multiple feasible solutions to obtain the optimal

solution for a COP, a special constraint is used. This constraint states that in order for a solution to be

feasible, it needs to have a cost value better than the currently best-known value.

At the present time, constraint programming systems such as ILOG Solver (ILOG 1998) use the proven

optimal search strategy outlined above and as such suffer from the same NP time complexity

difficulties as the OR methods. CP problems should also be very carefully modeled as Little and

Darby-Dowman (1995, p. 9) note:

"Generally, the more constraints the greater the search
reduction which can take place. However, since each
constraint takes time to be woken up and processed, if any are
making no significant reduction in the search space, this may
use up processing time."

Currently research is being undertaken to allow CP to use other search techniques such as those from

the meta-heuristic family (Stuckey and Tam 1996; Barnier 1997). Barnier (1997) discusses a hybrid

Genetic Algorithm (GA) - CP implementation capable of solving small Vehicle Routing Problems

(VRPs). The problem was modeled using CP notation and the intrinsic CP search engine was replaced

by a GA, yielding encouraging initial results.

2.2.2 Heuristics

Pearl defines heuristics in the broad sense as "criteria, methods or principals for deciding which among

several alternative courses of action promises to be the most effective in order to achieve some goal"

(Pearl 1984, p. 3). In terms of combinatorial optimisation, heuristic procedures aim to produce good

quality solutions in a short amount of computational time. However, this is at the expense of not

obtaining proven optimality and is in contrast with the implicit enumeration techniques such as branch

and bound, CP and A*. There is a variety of heuristic techniques available for different COPS and such

heuristics are tailored to the particular problem that they solve. As a result, specific problem data

structures can be directly incorporated in the computer code to produce an efficient solver. Therefore

in practice, specialised heuristics are often used for large and complex problems in preference to the

exact techniques.

Heuristic techniques can be broadly classified into two groups that describe how the heuristic obtains a

solution to a particular problem. These are:

Improvement Techiliques An initial solution to a problem is changed over a number

of iterative steps so that solution quality is gradually improved. These changes take the

form of altering the solution slightly using any one of a variety of local search transition

operators. The set of all possible changes that can be applied to a particular solution state

by a particular operator is referred to as its neighbourhood. Iterative improvement

techniques are more generalisable than constructive methods and have wider application.

Some examples of successful heuristic procedures that are based on iterative

improvement are (Christofides and Eilon 1969; Higgins, Kozan and Ferreira 1997; Lin

and Kernighan 1973; Kernighan and Lin 1970; Johnson 1990; Battiti and Protasi 1995).

Constructive techniques Rather than iteratively adjusting a solution over a number

of algorithmic steps (like the improvement techniques), constructive techniques build a

final solution from an empty solution by a process of successive augmentation of solution

components. As such, constructive techniques rely on a detailed understanding of the

problem to allow the development of the solution. For instance, a constructive technique

for the VRP builds a solution by successively assigning customers to be serviced by a

vehicle until all customers are accounted for (the Clarke-Wright procedure, see Clarke

and Wright (1964) and Osman (1993)). Other successful constructive heuristics include

the classic nearest neighbour heuristic for the TSP and those works by Crama, Flippo, van

de Klundert and Spieksma (1995) and Rosenkrantz, Stearns and Lewis (1977).

In some cases, techniques from the two classes have been combined to form an overall problem solving

strategy that will first produce an initial solution using a constructive heuristic and refine this using

iterative improvement. An example of this is the Martello and Toth heuristic for the generalised

assignment problem (Martello and Toth 1981). The first phase of the algorithm constructs a solution

by successively assigning jobs to agents according to a computed desirability measure. The second

part consists of an iterative search that attempts to reassign jobs to agents in order to minimise the

overall cost.

Local search operators are an integral part of the operation of the improvement techniques. Some local

search operators are designed for specific problems such as the Lin-Kernighan heuristic for the TSP

(Lin and Kernighan 1973). However, there is a set of operators that have general applicability across

problem type. The most well known of these is the Or operator (Or 1976) in which the positions of two

elements of the solution structure are exchanged. This transition is generalisable to the n-opt exchange

as described by Osman (1993, 1995) in which more than two elements are involved. Other well known

local search operators include add and drop in which items are added to or dropped from the solution

respectively as well as the insert operator that changes the position of an item within a solution (Glover

and Laguna 1997). The insert and Or operators are particularly appropriate for sequencing problems

such as the TSP and Quadratic Assignment Problem (QAP).

According to Osman and Kelly (1996), a meta-heuristic may be broadly defined as an "iterative

generation process which guides a subordinate heuristic by combining intelligently different concepts

for exploring and exploiting the search space" (Osman and Kelly 1996, p. 3). Like their heuristic

counterparts, meta-heuristics are also approximate techniques. The general form of an iterative meta-

heuristic based on local search is given in Algorithm l .

X = Generate Initial Feasible Solution;
C(X) = Compute initial cost of X;
While (stopping criterion not met)

Transition = Select a Transition from Neighbourhood (X);
X' = Apply Transition Operator(X,Transition);
AC = Compute Change in Cost (X, X', Transition);
If (accept)

X = X';
C(X) = C(X) + AC;

End If;
If (minimisation problem and C(X) < Chest) OR
(maximisation problem and C (X) > Chest) Chest = C (X) ;

End While;
Output C,,,, ;
End.

Algorithm 1 : Skeleton pseudocode of an iterative meta-heuristic search algorithm.

The key calculations which are performed repeatedly by this algorithm are: the generation of a state

transition in the neighbourhood of the current one; application of the transition to compute a new

solution, X'; the computation of the difference in cost between the new solution and the previous one,

and whether to accept the change. This process can be repeated any number of times, and therefore a

termination strategy is necessary. Two common approaches are to stop after a fixed number of

iterations have occurred or stop after a certain solution quality has been reached. There is no standard

stopping criteria in the literature (Barr, Golden, Kelly, Resende and Stewart 1995) and a variety of

other methods are possible.

While meta-heuristics are generally less efficient at finding optimal and near optimal solutions than

their tailored heuristic counterparts, the advantage of meta-heuristics is that they can be applied (in

principle) to solve a wide variety of problems and are subsequently not restricted to particular

problems. Despite this, the practice of many researchers has been to tailor meta-heuristic search

engines to particular problems (see Beasley and Chu 1997a; Chams, Hertz and de Werra 1987; Chu and

Beasley 1997; Connolly 1990; Kampke 1988; Osman 1993, 1995; Taillard 1991 as examples). While

this technique can generally produce solutions of good quality in reasonable amounts of computational

time, a great deal of effort is often required in order to recode the meta-heuristic program to suit a

different problem type. In contrast, relatively little effort has been made to produce a general-purpose

meta-heuristic search platform, except for Abramson and Randall (1998), Connolly (1992), Ingber

(1993, 1996) and Johnson et al. (1991a, 1991b).

There are a number of different meta-heuristic techniques suitable for solving COPS. This section will

describe five of the more common ones, namely Simulated Annealing, Tabu Search, Greedy Search,

GRASP (Greedy Randomised Adaptive Search Procedures) and Genetic Algorithms. These techniques

can be divided into two categories; those that are able to use local search operators and those that do

not. GS, TS, SA and GRASP are in the former group while GAS and Artificial Neural Networks

(ANNs) are in the latter.

Most research concerning meta-heuristics and combinatorial optimisation has concentrated on local

search techniques. A common issue is that of obtaining and maintaining feasible solutions. For many

of the COPs that have been studied, feasible solutions are maintained by the application of an

appropriate local search operator. For instance, many SA codes that solve the TSP store the solution as

an ordered list of cities. In this case, any local search operator that rearranges the order of the cities

will not violate the constraint that each city must be visited only once. However, in the case of other

problems, such as the GAP, knapsack problem, VRP and set partitioning problem, there are additional

restrictions on the feasible space that cannot be satisfied with the application of a simple local search

operator. Examples of this include capacity constraints for the GAP and time window constraints for

the VRP. In this case, two main practices have been adopted. First, constraints are incorporated into

the objective function as penalty terms and second, the solutions are repaired to a feasible state at each

transition. Abramson, Dang and Krishnamoorthy (1996) found that the former approach often returns

infeasible solutions and concluded that the second was the most practicable approach (though the

processing time for each iteration may be high).

Section 2.2.3 describes each of the chosen meta-heuristic algorithms briefly (apart from ANNs that

have been dealt with in Section 2.1.2). Section 2.3 contains a review of existing general meta-heuristic

implementations.

2.2.3.1 Greedy Search

GS is the simplest of the iterative search techniques. Given an initial feasible solution to a problem,

GS will examine the neighbourhood of the current solution for a new solution with a better cost. This

process is repeated until an improving transition cannot be made (Algorithm 2). As this process will

stop at the first local optimum i t encounters, it is often referred to as local optima search.

GS is very easy to implement and unlike its more sophisticated counterparts (namely SA and TS), will

return a solution to a problem in a relatively small amount of computational time. It is rarely used as a

practical solution technique for COPs as it often produces poor solutions due to its characteristic of

settling in a local optimum. However, it is useful as a benchmark to test the performance of other

meta-heuristic and heuristic implementations (Barr et al. 1995; Battiti and Tecchiolli 1995).

X = Generate Initial Feasible Solution;
C(X) = Compute initial cost of X;
continue = TRUE;
While (continue = TRUE)

Transition = Select a Transition from Neighbourhood (X);
X' = Apply Transition(X,Transition);
AC = Compute Change in Cost (X, X', Transition);
If (minimisation problem and AC < 0) OR (maximisation problem
and AC > 0)

X = X' ;
c(x) = c(x) + AC;

Else
continue = FALSE;

End If;
End While;
Output C (X) ;
End.

Algorithm 2: Pseudocode for GS.

2.2.3.2 Tabu Search

TS is a relatively new meta-heuristic search method that has been successfully applied to COPS (Glover

1989, 1990; Glover and Laguna 1997). Glover (1989, p. 19 1) describes TS as:

"Tabu search guides ... a heuristic to continue exploration
without being confounded by an absence of improving moves,
and without falling back into a local optimum from which it
previously emerged"

The subordinate heuristic can take many forms (Glover and Laguna 1997), though it is usual that it is a

local search engine. However, TS has also been used as the controlling strategy for a branch and bound

framework for 0-1 ILPs (Aboudi and Jornsten 1994; Lokketangen, Jornsten and Storoy 1994). In the

context of COPS, TS can be thought of as an enhanced and more general version of GS. The unique

characteristics of TS that distinguish it from its simpler counterpart are:

Tabu Search can escape local optimum traps: Local optima serve as attractors to search

techniques. This is inevitable, as search techniques seek the global optimum solution.

Often search techniques become trapped in a local optimum, either permanently (like GS)

or potentially for a large number of iterations (like SA). TS overcomes this inherent

problem by evaluating the neighbourhood of the current solution, N(x) and choosing the

best transition from the ones currently available in N(x) regardless of whether it improves

the current solution cost '. If the transition is non-improving, then the search process has

encountered a local optimum and thus begins the process of escape immediately.

2
A subset of N(x), N,(x) (N,(x) N(x)) can be used to represent N(x). This is done if the problem is large and
subsequently N(x) has many elements (Glover 1989 and Hertz, Taillard and de Werra 1997). There is a variety of
neighbourhood sampling methods and these are referred to as cundidure list srnrctures (Glover and Laguna 1997).

* Tabu Search can effectively sample the search space: After a transition is made in which

a non-improving move is accepted, the new neighbourhood, N'(x) , contains the previous

state which is now an improving transition. If this is accepted as the next transition, the

search can be said to be cycling. TS has a mechanism that overcomes this problem that is

referred to as the tabu list. The tabu list stores information that the search can use in

order to avoid previously traversed search routes. A transition is considered tabu if it has

been recorded on the tabu list and its tabu tenure has not passed. The tabu tenure is the

number of iterations that an item on the list stays tabu. As only limited information is

recorded on the tabu list, it is possible that the search process will regard solutions that

have not been previously encountered as being tabu. In order to counteract this

potentially negative effect of the tabu list, TS makes use of one or more aspiration

functions. The simplest and most widely used of these functions is a rule that states that a

tabu transition is accepted if it produces a superior quality solution compared to those

previously encountered. Glover and Laguna (1997) discuss a wide variety of aspiration

functions.

TS is described in Algorithm 3.

X = Generate an Initial Feasible Solution;
C(X) = Compute initial cost of X;
best-cost = C(X);
Initialise tabu list T = 0 ;
While (stopping criterion not met)

For (s E N(X))
X' = Apply Transition(X, s, Transition);
AC = Compute Change in Cost (X, X', s);

End For;
While (suitable neighbour not found)

s E N(x);
If (S 6E T)

X = Apply Transition(X, s, Transition);
T = T u s ;
C(X) = Compute cost of X;
found suitable neighbour = TRUE;

Else
If (aspiration(s) = TRUE)

X = Apply Transition(X, s, Transition);
C(X) = Compute cost of X;
found suitable neighbour = TRUE;

End If;
End If;

End While;
If ((minimisation problem AND C(X) i best-cost) OR
(maximisation problem AND C(X) > best-cost)) best-cost = C(X);

End While;
Output best-cost;
End.

Algorithm 3: Pseudocode for TS.

The TS algorithm described above and in Algorithm 3 corresponds to the short-term implementation

that is popular in the literature (Glover and Laguna 1997). Advanced forms of TS use intensification

and diversification strategies embodied in long term memory structures (Glover and Laguna 1997).

Intensification aims to identify solution attributes that are common to good solutions and to encourage

the tabu search (via the tabu and aspiration mechanisms) to seek solutions with these attributes.

Diversification is complimentary to this, as it allows the search process to enter unexplored regions of

the state space. Diversification can be achieved by using longer tabu tenures for solution attributes that

are frequently incorporated into the solution (a form of penalisation), thereby encouraging the use of

less frequently used attributes. Another strategy is to form a new starting solution once long-term

cyclic behaviour has been detected (Battit and Tecchiolli 1994; Glover and Laguna 1997). However,

many implementations of TS use only a limited form of the tabu list that can be thought of as short-

term memory that does not explicitly incorporate intensification and diversification strategies. Some

examples of short-term TS implementations are Abada and El-Darzi (1996), Osman (1993, 1995),

Taillard (l991), and Taillard, Badeau, Gendreau, Guertin and Potvin (1997).

2.2.3.3 Simulated Annealing

SA is derived from the physics of annealing metals. SA seeks to minimise an energy function, which

in combinatorial optimisation is the objective function. At the beginning of the annealing there is a

high likelihood of accepting any transition regardless of whether it improves the solution or not, rather

than later on in the process. This process is performed in accordance with an exponential acceptance

function (called the Boltzman function) based on a parameter called temperature. The temperature is

decremented at intervals regulated by a Markov chain length until it is quite small and hence very few

uphill transitions, in which a worse solution may replace the current solution, are accepted. As SA can

make these non-improving transitions, settling into a local optimum is potentially avoided. The way

the temperature is controlled is referred to as the cooling schedule. For further information about SA

and its variants, see Connolly (1992), Eglesse (1990), Johnson et al. (1991a, 1991b), Kirpatrick, Gelatt

and Vecchi (1983) and van Laarhoven and Aarts (1987). A general algorithm for SA is given in

Algorithm 4.

SA has been applied to a wide variety of COPS and there are a great number of articles in the literature,

including Abramson (1991), Chams et al. (1987), Connolly (1990, 1992), Johnson (1991a, 1991b),

Kampke (1988), Kirpatrick et al. (1983), Kouvelis and Chiang (1992), Koulamas, Antony and Jansen

(1994), Osman (1993, 1995), Randall and Abramson (1998) and van Laarhoven and Aarts (1987).

X = Generate an Initial Feasible Solution;
C(X) = Compute initial cost of X;
best-cost = C(X);
T = Compute initial temperature;
While (stopping criterion not met)

Repeat (markov chain length times)
Transition = Select a Transition from Neighbourhood (X);
X' = Apply Transition(X,Transition);
AC = Compute Change in Cost (X, X', Transition);
p = generate random number (0,l)
If (((minimisation problem AND AC < 0) OR
(maximisation problem AND AC > 0)) OR (e-AC'T > p))

X = X';
C(X) = C(X) + AC;

End If;
If ((minimisation problem AND C(X) < best-cost) OR
(maximisation problem AND C(X) > best-cost))
best-cos t = C (X) ;

End Repeat;
T = Apply cooling function (T);

End While;
Output best-cost;
End.

Algorithm 4: Pseudocode for SA.

2.2.3.4 Greedy Randomised Search Procedures (GRASP)

GRASP is a search technique that consists of two distinct phases per iteration, namely a constructiort

and local search phase (Feo and Resende 1995; Mavridou, Pardalos, Pitsoulis and Resende 1995;

Glover and Laguna 1997). The first stage builds a new feasible solution from a list of elements, one

element at a time. The list itself is produced by ordering the elements with respect to a greedy function

based on elements chosen in previous iterations. The next element to be added to the solution is

randomly chosen from the best candidates in the list. In many instances, this solution will not

correspond to a local optimum and can hence be improved upon. This is achieved by applying a local

search procedure (such as GS) to the solution.

GRASP is a new procedure compared with GS, TS and SA. However, it has been successfully applied

to a number of problems including set covering (Feo and Resende 1989), VRP (Kontoravdis and Bard

1995), QAP (Li, Pardalos and Resende 1994) and the p-hub median problems (Klincewicz 1992). The

general structure of GRASP is given in Algorithm 5.

While (stopping criterion not met)
x = 0;
S = Construct an ordered element list;
While (solution not complete)

s = Greedy random element of S;
x = x u s ;

End While ;
X = Execute local search (such as Algorithm 2);
C(X) = Compute cost of X;
If ((minimisation problem AND C(X) < best-cost) OR
(maximisation problem AND C(X) > best-cost)) best-cost = C(X);

End While;
Output best-cost;
End.

Algorithm 5: Pseudocode for GRASP.

2.2.3.5 Genetic Algorithms

Genetic Algorithms (GAS) belong to a broader class of function optimisation techniques known as

evolutionary computing. GAS are modeled on the biological selection and reproduction of genetic

material, chromosomes. This follows a Darwinian or natural selection approach in which the fittest

chromosomes survive and reproduce while the others perish (Goldberg 1989; Randall 1995). In terms

of function optimisation, the chromosomes represent potential solution vectors. The algorithm

proceeds as follows:

a) Generate an initial population of chromosomes

b) Evaluate each chromosome's objective function (fitness)

C) Select a number of the fittest individuals to form a mating pool

d) Apply mating procedures to the individuals in the mating pool to form the next generation

of chromosomes

e) Repeat the procedure from b) onwards until a number of generations have passed or a

certain quality of solution has been reached.

The mating process, step d), consists of applying a number of genetic operators to the chromosomes in

the mating pool. The most common operators are: crossover - subsections of two or more

chromosomes are combined in order to form a new individual, and nzutation - an element of a

chromosome changes its value to a random value.

Like neural network approaches, GAS have not been as successful as other meta-heuristic techniques in

solving COPS, as observed by Osman and Kelly (1996). One problem is that GAS often converge to

poor local optima if a population of weak individual chromosomes is dominated by single or small

group of fit individuals. This problem can be partially overcome by increasing the mutation or

applying a scaling function to the fitness function (Goldberg 1989). Another approach that has been

used in Beasley and Chu (1996, 1997a, 1997b) and Chu and Beasley (1997) to overcome poor local

optima, has been to execute a problem specific heuristic after each generation has been produced in

order to improve the fitness of the chromosomes. As these studies only report the results of the hybrid

implementation and not the GA by itself, it is unclear how much of an impact the specialised heuristic

makes.

A more serious problem is that GAS find it difficult to deal with constraints due to their context-free

nature (i.e. there is "no reliance on conditions that solutions must obey in a particular problem setting"

(Glover and Laguna 1997, p. 309)). This mainly arises from the recombination operator, crossover, in

which large portions of different chromosomes are combined so that given feasible parent solutions,

there is a high likelihood that the child chromosome is infeasible. To counteract this, three strategies

are generally available: a) restore the feasibility of the offspring chromosomes, (b) apply a special

purpose operator to ensure feasibility or minimise the amount of infeasibility and (c) trust that at the

end of the GA run there is a feasible, highly fit chromosome. Procedure (a) is often computationally

expensive, (b) is only available for specific problems such as the TSP, and (c) does not guarantee that a

final feasible solution is produced.

2.3 General Purpose Meta-heuristic Solvers

As mentioned previously, few attempts have been made in the past to produce a general meta-heuristic

solver using local search for COPS. This is due mainly to two reasons:

Meta-heuristic and heuristic codes that are customised to particular problems (such as the

TSP or QAP) are very efficient and produce good quality solutions with relatively little

computational effort. However, substantial reprogramming is required in order to build

another implementation that will solve a different problem type. Some examples of

specific meta-heuristics include Beasley and Chu (1997a), Chu and Beasley (1997),

Connolly (1990), Kampke (1988), Osman (1993, 1995), Smith et al. (1996a, 1996b) and

Taillard (1991).

It is a difficult task to design and implement appropriate modelling systems and data

structures to support a system that solves arbitrarily formed problems.

This section reviews general meta-heuristic implementations that have been presented in the literature.

These implementations can be divided into two approaches: systems that allow the problem to be

represented in an algebraic form; and skeleton systems that require the user to produce interfacing

computer code that represents the problem.

2.3.1 Algebraic Modelling Approach

The only algebraic modelling implementation that is represented in the literature for meta-heuristic

based local search is GPSIMAN (Connolly 1992).

2.3.1.1 GPSIMAN

Connolly's General Purpose SIMulated ANnealing (GPSIMAN) solves 0-1 ILPs with SA (Connolly

1992). This approach is adequate for very small problems, however, as the size of the problem

increases, the number of variables and constraints rapidly increases as a result of the 0-1 encoding.

Therefore, making a neighbourhood transition, i.e. changing a variable value from a 1 to a 0 and vice

versa, is computationally expensive as many of the constraints are potentially violated and need to be

restored to a feasible state before the next transition can be undertaken.

Algorithm 6 shows the overall algorithm used in GPSIMAN. The algorithm operates as follows. First,

the problem model and SA parameters are initialised, and an initial solution is generated along with its

cost. A number of annealing runs is subsequently performed. Within each run, variables are chosen

and altered at random. A transition is characterized by changing the state of a variable (from 0 to 1 or 1

to 0 - referred to as flipping) and measuring the effect in terms of how the cost changes. Also, if the

change causes the constraints to become infeasible, then feasibility is restored before the change in cqst

is evaluated.

The feasibility restoration technique flips variables (other than the original variable) in order to obtain a

new feasible solution. The scheme employed in Connolly (1992) is a heuristic technique whereby a

score is computed for each of the variables based on how helpful a change in the variable value would

be for feasibility restoration. The most helpful variable (the one with the highest score) is flipped and

the resulting amount of infeasibility is re-calculated. If feasibility has been restored, the procedure is

terminated. However, in many instances, particularly for 0-1 problems that have many related

constraints, this is not the case. The algorithm proceeds to calculate the next most helpful variable.

This progresses as a depth-wise tree search, in which the algorithm can backtrack, should it find that

the current sequence of flips cannot restore feasibility. This procedure is only useful if feasibility is

relatively easy to restore else the search for feasibility can become impracticable. If the process cannot

restore feasibility after a fixed number of searches, then the original transition is rejected. After

feasibility is restored, the change in the objective cost can be calculated by simply adding or

subtracting the appropriate coefficients (Ci) for all variables that have been flipped. If the cost is

positive (for a minimisation problem), then the proposed solution is worse than the current one and it is

accepted as the current solution depending on the evaluation of Boltzman's equation. If it is not

accepted and a number of consecutive previous solutions have also been rejected, the process is

performed at the temperature at which the best solution (in this trial) was found. This continues for the

remainder of the annealing run.

GPSIMAN is impractical for problems larger than the original test set that Connolly (1992) proposed.

This was demonstrated in Abramson and Randall (1998) (see Appendix F).

Get SA parameters (TI,TF,steps_per-tria1,max-fails);
Read problem model;
fails=O ;
X=Generate initial feasible solution;
C(X)=Compute cost of initial solution;
Repeat (user specified number of annealing trials)

p= (TI-TF) / (steps_per-trial~T~xT~) ;

T=TI ;
While (T > TF)

i=unif-rand(l,sizeof(X));
X'=X;
X' ,=l-X .

I 1 '
X8=Restore Feasibility;
AC=Compute change in cost(X,X');
p=unif-rand(0,l);
If (((minimisation problem AND AC < 0) OR
(maximisation problem AND AC > 0)) OR (e-Ac'T > p))

X=X ' ;
C(X)=c(X)+ AC;
fails=O ;

Else
fails=fails+l;
If (fails > max-fails)

Tmin=T ;

p=o ;
T=Tbest ;

End If;
End If;
If (C (X) < Chest)

C =C(X) ;
be5 t

T =T;
best

End If;
T=T/ (I+~xT) ;

End While ;
TI= (TI+Tbest) /2 ;
If (p=o)

TF= (TF+Tmin) / 2 ;
Else

TF=TF/ 2 ;
End If;

End Repeat;
Output Chest;
End.

Where:
unif-rand (a, b) returns a random uniformly distributed number between a and b.

Algorithm 6: The simulated annealing based 0-1 solver GPSIMAN from Connolly(l990).

2.3.2 Code Segment Approach

Code segment approaches adopt a different strategy than algebraic representation methods. These

systems consist of a core meta-heuristic search engine (such as SA or GS) for which the developer is

required to provide an interface (via code modules) for a particular problem. This specifies the cost,

constraint and transition functions. These systems are not based on an algebraic modelling language

and while code development is a flexible approach to modelling a particular problem, this can require

the developer to spend a substantial amount of time defining the problem to be solved. In this section,

three implementations are discussed, namely the Johnson et al. Generic SA (Johnson et al. 1991a,

1991b) Ingber's Adaptive Simulated Annealing (ASA) (Ingber 1993, 1996) and skeleton GA codes.

2.3.2.1 Johnson's et al. Generic SA

In this implementation (Johnson et al. 1991a, 1991b), the system components are divided into generic

and problem specific sections. The generic part consists of a set of core SA subroutines that control the

cooling schedule. In these studies (Johnson et al. 1991a, 1991b), the system was tested on the graph

partitioning problem, graph colouring problem and number partitioning problem by varying the

parameters of the generic part. The problem specific section defines the problem in terms of cost

function, constraints and possible transition functions for which the developer must provide compatible

computer code. Figure 4 summarises the problem specific and generic components of the system.

PROBLEM-SPECIFIC
1. What is the solution?
2. What are the neighbors of a solution?
3. What is the cost of a solution'?
4. How do we determine an initial solution?
GENERIC
1. How do we determine an initial temperature?
2. How do we determine the cooling rate r?
3. How do we determine the temperature length L?
4. How do we know when we are frozen?

Figure 4: SA implementation choices made by Johnson et al. (1991a, 1991b). Reproduced from Johnson
et al. (1991a, Figure 5, p. 869).

2.3.2.2 ASA

ASA is a freely available SA toolkit produced by Lester Ingber Research (Ingber 1993, 1996). It uses a

different form of annealing schedule from the standard Boltzman function as proposed in the original

versions of SA (van Laarhoven and Aarts 1987). This new schedule is much faster than the original as

it samples the search space more effectively (Ingber 1996). Unfortunately, the time required to run the

program can be lengthy for NP hard problems due to the cooling schedules ASA uses. In order to

improve the performance of the system, an option is available that permits rapid annealing

("quenching") and re-annealing in order to find a near optimal solution to the problems being solved,

however, proven optimality cannot be obtained. The search proceeds in feasible space throughout the

search process. At each iteration, a number of solution states are generated until one satisfies the

problem's constraints.

ASA has a large range of parameter options that can be set. However, the code has the ability to adjust

these in a systematic manner throughout the search process (hence the term adaptive). ASA

is best suited to solving problems in which the cost function is non-linear, non-convex and has

continuous ranging decision variables. As such, ASA has found application in a diverse field of

disciplines, including combat analysis, neuroscience and finance (Ingber 1993) rather than pure

combinatorial problems.

2.3.2.3 Skeleton GA Implementations

Skeleton GA implementations have the components of genetic search inbuilt into a source code library.

These components typically include selection, mutation and recombination procedures. Standard

parameters such as population size and mutation rate are also adjustable. Two notable skeleton GA

codes are GENEsYs by Back (1992) and GENESIS by Grefenstette (1987).

As GAS have a standard set of genetic transition operators (i.e. crossover and mutation), only a single

objective function and problem data (for instance the distance matrix for the TSP) need to be specified

for each problem. However, as GAS are best suited to solving optimisation problems that can be

formulated without using constraints, skeleton code implementations generally require that the

constraints be incorporated into the objective function as penalty terms. This approach is adopted as

the standard genetic operators produce solutions without regard to feasibility (see Section 2.2.3.5).

This often leads to the situation in which "finding a feasible point is almost as difficult as finding the

best" (Goldberg 1989, p. 85) for COPs. As a result of this, the construction of general GA

implementations for solving arbitrary COPs has been hampered and is reflected by Beasley and Chu

(1997b) who state that in order to solve COPs effectively, problem specific genetic operators must be

incorporated into the GA platform.

2.4 Summary

This chapter reviewed modelling systems and search algorithms for COPs as well as examining some

existing general meta-heuristic implementations, in order to establish a base for further development of

general-purpose meta-heuristic search platforms.

The traditional way of expressing COPs mathematically has been to use a sparse 0-1 ILP vector

formulation, though there are other approaches such as graph theoretic and CP models. In the 0-1 ILP

model, variables take on either a value of 0 or 1 to denote assignment of items to groups. This is a very

general and flexible approach that has been quite successful for a range of ILPs, particularly for finding

lower and upper bounds on the optimal solution. However, in some cases it is difficult to map the

structure of a COP onto a 0-1 space, resulting in a sparse problem model that contains a large number

of variables and constraints. This is especially evident for problems with a complex underlying

structure such as the travelling salesman problem (TSP) in which a set of cities are visited but only

with a Hamiltonian tour.

Search algorithms may be broadly classified into exact and approximate approaches. The first consists

of techniques from OR and AI. These techniques (such as branch and bound and branch and cut for

OR; and CP and A* for AI) aim to produce solutions that have proven optimality. While COPS can be

solved in this way, many are NP hard and as such can require exponential computational time to solve

to proven optimality. An alternative group of techniques, known as heuristics, take a different

apiroach to solving COPs. Instead of seeking proven optimality, they endeavour to find good (near-

optimal) solutions in reasonable amounts of computational time. A heuristic is applied to a specific

problem and exploits that problem's structural properties in order to find solutions. While these are

often very efficient (see for example Lin and Kernighan (1973)), they cannot be readily adapted to

other problem types. However, there is a class of heuristic techniques that are applicable across

problem types and these are known as the meta-heuristics. Well-known meta-heuristic techniques are

Simulated Annealing, Tabu Search, Greedy Search, Greedy Randomised Adaptive Search Procedures,

Genetic Algorithms and Artificial Neural Networks.

There have been only a few attempts made in the past to produce implementations of meta-heuristic

algorithms that solve arbitrary COPs. This is because it is a difficult task to design and implement

appropriate modelling systems and data structures to support general problem solving. It has been

determined that there are two basic approaches of building general meta-heuristic search engines,

namely: implementations that accept an algebraic model of the problem; and those that require the

developer to code information about the problem. The first approach is characterised by Connolly's

GPSIMAN (Connolly 1992), while Johnson et al.'s Generic SA (Johnson et al. 1991a, 1991b) and

Ingber's ASA (Ingber 1993) are examples of the other category.

It is evident from this chapter that research into meta-heuristic algorithms has concentrated on

implementations that solve particular problems, rather than ways of generalising across problem types.

This is due to concerns about the efficiency of general implementations and the suitability of existing

modelling systems and underlying data structures for the effective representation of these problems. A

representation scheme specifically designed for COPs would take into account the fact that these

problems require an optimal grouping (or assignment) of discrete objects (Osman and Kelly 1996).

The nature of groups, especially using an iterative search algorithm, such as GS, TS or SA, is dynamic

and not static. Many existing algebraic representation techniques are based on static memory

structures (usually arrays). Therefore, it is believed that dynamic data structures (those that are able to

change with the current state of the solution) could be a viable alternative for modelling COPS. The

following chapter investigates this notion.

Chapter 3: A Modelling System Based
on Linked Lists

3.1 Motivation

This research is concerned with constructing a general-purpose meta-heuristic solver that deals with a

range of problems and delivers good quality solutions in a reasonable amount of computational time.

In order to expedite the time it takes to develop appropriate problem descriptions, an algebraic

representation for COPS is desirable. The issue then becomes one of choosing an appropriate

representation scheme. Each of the methods of representation outlined in Section 2.1 has practical

implementation problems associated with it. A suitable representation for COPS should ensure that

discrete objects can be grouped, assigned or selected without using a large number of artificial

constraints and variables. As any modelling system designed specifically for COPS should allow the

evaluation of different assignments of objects to groups, it is believed that dynamic data structures may

be suitable for this purpose.

3.2 Using Dynamic Data Structures to Represent
COPs

As is evident in Section 2.1, the predominant form of representation of solutions to optimisation

problems has been with vector and matrix notation. For optimisation problems that have continuous

variables (non-COPS), the most efficient form of modelling is the LP (Equations (3) - (5)) as the A

matrix and subsequently B vector are dense and hence compact. COPS however, tend to have a sparse

A matrix and B vector as a result of the assignment of objects to groups which in turn can require

special encoding constraints and variables in conventional notation. As noted in Section 2.1.1, such a

sparse representation can lead to extremely large model sizes for relatively small problems, as well as

making it difficult for meta-heuristic algorithms to navigate the resulting search space. Therefore, it is

believed that COPS can be more effectively represented for meta-heuristics.

Rather than using static data structures to model COPs, this work focuses on the other broad class of

data structure, namely the dynamic data structures. These memory structures are not fixed in size and

can be altered during the execution of the computer code as the need arises. As such, these data

structures are appropriate for systems that dynamically model and test different arrangements of items

in a given context (Pohl 1990).

There are a variety of dynamic data structures. The two most common are described below:

Linked Lists. Lists are dense structures in which elements are linked together in a linear

fashion. Lists can shrink and grow by adding and subtracting elements. An element in a

list can itself be a list (i.e. a sub-list). Special variations of linked lists include queues,

stacks and rings (Pohl 1990). Figure 5 gives a graphical representation of a linked list

structure. The list has been shown to be useful for performing general computation as it

forms the basis of the computer programming language LISP (LISt Processing)

(Barendregt 1984).

Trees. Like the linked list structure, a tree is a collection of nodes. However, the nodes

are arranged in a hierarchical manner in which a node may have a number of branches to

child nodes that form sub-trees. A tree is anchored by the root node and terminated at a

number of leaf nodes. Figure 5 gives a graphical representation of a tree.

Figure 5: A list and tree structure. A square box is used to denote an elementlnode while a line is an
edge. The traversal of the list structure is indicated by the arrows.

,---(sub-list-

As COPS are primarily concerned with groupings, a structure is needed that ensures group integrity and

consistency. From this perspective, a tree structure can be eliminated from consideration as it is used

to represent hierarchical information, rather than simple groupings. However, the linked list is

appropriate as the use of sub-lists can be used to differentiate groups. Furthermore, each member of a

group can therefore be represented directly without the use of encoding constraints (as in the 0-1 ILP

and CP systems).

(leaf node)

[I

(leaf node) [7

List Stmture Tree Structure

As a result of the mappings being expressed in terms of lists, the elements in the list can take on a range

of integer values. Another advantage is that a solution expressed as a list can be altered by using

common local search transition operators (these are discussed in Section 2.2.2).

3.3 Expressing COPS Using a List Based Notation

3.3.1 General Model

In this section, a general model is developed that specifies COPS as dense linked list structures. The

list consists of both sub-lists and elements. A sub-list is a list structure within the overall list while an

element stores an atomic value. The placement of elements (that contain discrete values) on particular

sub-lists or at certain positions on the sub-lists defines the current solution to the problem. To denote

that element e is assigned to the i'th sub-list at the j'th position, the notation x(ij)=e is used. For

instance, consider a TSP in which city 5 is assigned to position 2 therefore x(2)=5. This indicates that

city 5 is the second stop on the salesman's tour. In this work, problems that can be expressed with one

decision list (denoted by x) are considered. All other literals in the problem models are considered as

scalars, vectors or matrices as appropriate.

The structure of the list is defined for each particular problem and is characterised by:

number and location of sub-lists within the overall list structure,

size of the lists (specified in terms of a lower and upper bound),

the range of values that may appear on a list,

the number of times that a particular value can appear on a list.

The general list modelling system is stated mathematically in Equations (10) - (16).

Optimise flx)
s. t.

Where:
x is the decision list. For instance: x(ij) is the j'th element value of the i'th sub-list.
Ax) is the objective function according to decision list x.
lhsi(x) is the left-hand side of problem constraint i according to decision list x.
rhsi is the right-hand side of problem constraint i.
C is the number of problem constraints.
y represents any list structure within list x.
lil is the length of the list defined by i.
I, is the minimum length of the list y.
u, is the maximum length of list y.
min-count(y) and max-count(y) return the number of occurrences of the least
frequent and most frequent element value in list y respectively. These functions are
discussed in detail below.
my defines the minimum number of occurrences of each value on list y.

nldefines the maximum number of occurrences of each value on list y.
e, represents the set of element values contained on list y.
pi is the smallest value that can be contained in list y.
qi is the largest value that can be contained in list y.
N is the set of Natural Numbers.

The objective function is an arbitrary function over the list x (10). Using this modelling system,

constraints are conceptually grouped into two distinct classes, namely the list constraints (constraints

that govern the list structure) and the problenz constraints (those that define the feasible space of the

problem). Equations (12) - (16) in the preceding model refer to the list constraints, while (11)

represents the problem constraints (which again are arbitrary functions over the list x). In general, list

constraints are divided into three categories, namely Value Range, Count and List Size.

The legal values of elements in a particular list are discrete and specified between a lower and upper

bound. This category is referred to as the Value Range and is in the form of Equations (15) and (16).

For instance, if a list stores the order of the cities for an N city TSP, the value range would be defined

between 1 and N for list x.

The Count constraints regulate the number of occurrences of each value on a list. It is specified using

the two functions min-count and max-count (Equations (13) - (14)). min-count@) returns the

cardinality of the element value that appears least on list y. For instance, given that a list consists of the

elements (5, 5, 6, 3, 3) , min-count returns 1 as the element value 6 appears once in the list.

max-count@) is the opposite is this as it returns the cardinality of the element that appears most on list

y. In the previous example, max-count returns 2. Permutations of values are widely used in COPS and

can be specified using the constraints min-count(x)=l and max-count(x)=l. This combination limits

each value to one appearance in the entire list. In the case of the TSP, these constraints only allow

tours that do not violate the condition that each city is only visited once. The Count constraint type can

eliminate many of the complex encoding constraints required for other systems (especially 0-1 ILPs).

The size and shape of a list structure is specified using Equation of the form (12). This category is

referred to as the List Size. Using this notation, an arbitrary list structure can be built as well as

allowing the size of a list to be either static or dynamic. If the latter is the case, the size of the list may

vary between preset lower and upper limits or without limit on the size.

3.3.2 Illustrated Examples of the List Modelling System

In order to demonstrate the representation of COPS using the linked list modelling system, the

Generalised Assignment Problem (GAP) (Chu and Beasley 1997; Martello and Toth 1981; Osman

1995) is considered. This problem requires that jobs be assigned to agents subject to capacity

constraints. A solution for a 5 agent, 15 job problem appears in Figure 6.

Agent 1 Job 1 Job 3 Job 5 Job 2

Agent 2 Job 9 Job 14

Agent 3 Job 4 Job 6 FFI
Agent 4 Job 1 1 Job 15

Agent 5 Job 12 Job 13 Job 10

Figure 6: A linked list representation of a GAP.

Therefore job 4 is assigned to agent 3 and job 13 is assigned to agent 5 etc. The objective function is to

minimise the total cost of assigning the jobs to the agents and is expressed by (17).

M \.t(i)l

Minimise y, C(x(i, j) , i)

Where:
x(i j) is the j'th job performed by agent i.
C(i j) is the cost of assigning job i to agent j .
M is the number of agents.

Whilst this list notation appears similar to the conventional vector form used in standard LPs, each sub-

list contains a variable number of elements. Thus, the second summation sign in (17) requires a bound

which varies depending on the length of each sub-list (i.e. Ix(i)l) and changes according to the current

solution state. Similarly, the constraints concerning the capacity of each agent are formed across list

space.

I.r(i)l

(x i , j) , i 5 b) ~i I S i W
j=l

Where:
a(i j) is the resource required by agent j to perform job i.
b(i) is the capacity of agent i.
N is the number of jobs.

In this example, Equations (19) - (22) are the list constraints while (18) represents the problem

constraints.

Using the linked list structure with one level of sub-list as described in the previous section, it is

possible to represent a wide range of COPs. Table 1 displays the problems that have been formulated

using list notation as part of this research. The set is representative of problems in the literature. The

table is divided into four sections, according to the problem's Count constraints. It is found that most

COPs fall into one of these categories.

Table 1 : Problems that can be expressed using the list modelling system.

Count constraint(s)
min-count(x)= 1 and
max-count(x)= 1

min-count(x)=O and
max-count(x)= 1

min-count(x)= 1 and
max-count(x)=
unbounded
min-count(x)=
unboundedand
max-count(x)=
unbounded

Problem Name
TSP

QAP

GAP
Graph Partitioning Problem
(GPP)
Graph Colouring Problem
(GRAPH)
Car Sequencing Problem (CSP)
Bin Packing Problem (BIN)
VRP

Linear Ordering Problem

Timetabling Problem (TTP)

Uncapacitated Single Allocation
p-Hub Median Problem
(USApHMP)
Capacitated Single Allocation p-
Hub Median Problem
(CSApHMP)
Personnel Time Scheduling
Problem
Processor Allocation Problem
Machine Scheduling / Job
Sequencing Problem
Single Layout Problems in
Flexible Manufacturing
Knapsack / Multiple Knapsack
Problem (MKP)
Maximum Clique Problem
(MCP)
Set Partitioning / Covering
Problem
Aircraft Landing Problem

Field Programmable Gate Array
placement Problem
N Queens Problem
Number Partitioning Problem

Uncapacitated Multiple
Allocation p-Hub Median
Problem (UMApHMP)
Cutting Stock Problem

Reference(s)
Lawler, Lenstra, Rinnoy and Shmoys (1990)
and Reinelt (1991)
Burkard, Karisch and Rend1 (1997), Connolly
(1990) and Nugent, Vollman and Rum1 (1968)
Chu and Beasley (1997) and Osman (1995)
Johnson et al. (1991a)

Chams et al. (1987) and Johnson et al.
(1991b)
Smith et al. (1996a, 1996b)
Kampke (1988)
Christofides and Eilon (1969), Clarke and
Wright (1964), Osman (1993)
Chanas and Kobylanski (1995) and Reinelt
(1985)
Abramson (1991), Abramson and Dang
(1993)
Ernst and Krishnamoorthy (1996b, 1997b),
Skorin-Kapov and Skorin-Kapov (1994) and
Campbell (1994)
Ernst and Krishnamoorthy (l997a)

Krishnamoorthy, Ernst and Beasley (1997)

Sofianopoulou (1992)
Glover and Laguna (1997)

Kouvelis and Chiang (1992)

Beasley and Chu (1997a), Connolly (1992)
and Petersen (1 967)
Battiti and Protasi (1995) and Johnson and
Trick (1993)
Abramson et al. (1993, 1996) and Beasley and
Chu (1996, 1997b)
Beasley, Krishnamoorthy, Abramson and
Sharaihia (1995) and Ernst, Krishnamoorthy
and Storer (1997)
Chandy and Prithviraj (1996)

Sosic and Gu (1991)
Johnson et al. (1991b) and Ruml, Ngo, Marks
and Shieber (1995)
Ernst and Krishnamoorthy (1996a, 1997b)

Gilmore and Gommory (1961) and Little and
Darby-Dowman (1995)

The following problem models demonstrate the semantics of list notation and are also used to test the

performance of the general-purpose system3 (see Chapter 5). The problems are a subset of those in

Table 1. For the problem types BIN, GRAPH and MCP, alternative list formulations are available and

these are given in Appendix B.

A number of auxiliary functions are necessary to express these problems in list notation. These

functions are summarised in Table 2.

Table 2: The intrinsic functions available to the list modelling system.

Function
ABS(i)
pred(i j,k,l)
succ(i j,k,l)

k
min f (i)

i= j

k

max f (i)
i= j

occ(y,i)
list(y,ij)
MIN(a,b)
MAX(a,b)

Quadratic Assi~nment Problem

Description
Returns the absolute value of i.
Returns the value i-1 unless i-l<j at which k is returned.
Returns the value i+l unless i+l>k at which j is returned.
Returns the minimum value of function f between a lowerbound value of j
and an upperbound value of k.

Returns the maximum value of function f between a lowerbound value of j
and an upperbound value of k.

Returns the number of times that value i occurs on list y.
Returns the list number of the j'th occurrence of the value i on list y.
Returns the minimum of a and b.
Returns the maximum of a and b.

The Quadratic Assignment Problem (QAP) is a facilities assignment problem. Each facility is assigned

to a unique location in order to minimise the total intercommunication cost between the facilities. This

problem is common in electronics, scheduling, manufacturing and parallel and distributed computing

(Burkard et al. 1997; Nugent et al. 1968; Pardalos and Wolkowicz 1994).

N-l N

Minimise f (x(i), x(j)) . d (i, j)
i=l j=i+l

Where:
x(i) is the facility at location i.
Ai j) is the flow between facility i and j.
d(i j) is the distance between location i and j.
N is the number of facilities/locations.

For the sake of brevity, problem models that use min-colo~t(x)=O m d ~rm~count (x)=l are expressed using only
max-coutrr(x)=l. Similarly, problems that require the constraints rnin-counr(x)=l and muxcount(x)=unbounded are expressed
using only min-cortnt(x)=l .

Travelline Salesman Problem

The TSP is a problem in which a salesman visits each of a number of cities exactly once. The salesman

starts and ends at a base city and the solution is therefore called a tour. The objective is to minimise the

length of the tour that the salesman takes. Whilst there are limited practical applications of the TSP, it

is often used as a benchmark COP (Lawler et ai. 1990). It is also generalisable to more practical

problems such as the vehicle routing problem.

Minimise d (x (i) , red (i,l, N, l)))
i=l

Where:
x(i) is the i'th city visited on the tour.
d(i J) is the distance between city i and j.
N is the number of cities.

Bin Packing

A set of items, each of which has a particular weight, is packed into a number of bins. Each bin has the

same weight capacity. The problem can be formulated so that the number of bins is minimised or the

excess weight of each bin is minimised. The following model is of the latter.

M Ix(i)l

Minimise 3 MAX[O. W(X(i7 j)) - wma.
]=I i

Where:
x(iJ) is the j'th item assigned to bin i.
W,,, is the maximum bin weight.
w(i) is the weight of item i.
M is the number of bins.
N is the number of items.

Graph Colouring

Given a graph G=(V,E), a colour is assigned to each vertex, such that the colour of the vertex is

different to that of its neighbours (those vertices to which it is connected by an edge). The problem can

be formulated so that either the number of colours is minimised or the number of neighbour violations

for a given set of colours is minimised. The following model is of the latter.

N Ix(i)-ll Ix(i)l

Minimise x x x edge(x(i, j), x(i, k))
i = l j = l k = j + l

s. t.
Ixl=N
Ix(i)l? 1 Vi 1 li9V

Where:
x(i J) is the j'th node assigned to colour i.
edge(i J) is 1 if there is an edge between vertex i and j, 0 otherwise.
N is the number of colours available.
M is the number of vertices.

Uncapacitated Single Allocation p-Hub Median Problem

The USApHMP is a member of p-median hub allocation problems (Ernst and Krishnamoorthy 1996b,

1997b; Skorin-Kapov and Skorin-Kapov 1994). In this problem, a routing network needs to be

designed to allow a commodity flow between each pair of nodes. As it is expensive to route

commodities directly from the source node to the destination node, a subset of nodes (called hubs) are

used to consolidate the flows into larger flows that can be handled more economically. Each non-hub

node is connected to a single hub node and the hubs are fully interconnected. The aim is to find a

configuration of hub and non-hub nodes that minimises the total cost of the flows between every pair of

nodes. This problem has applications in the design of telecommunications, airline passenger and postal

delivery networks.

Minimise
P P Ix, l Ixl. l

Cy ~(x(k,i),x(l, j)). (~d(x(k,i),x(k,l)) + ~d(x(k,l), ~(1~1)) + a(x(l,l), ~ (1 , j)))
/ = I k = l j = l ;=I

Where:
x(ij) is the j'th node on the i'th hub (Note: x(i,l) is a hub).
P is the number of hubs.
N is the number of nodes.
W(i j) is the flow from node i to node j.
d(i j) is the distance from node i to node j.
x is the collection cost coefficient.
6 is the distribution cost coefficient.
T is the transfer cost coefficient.

Uncapacitated Multiple Allocation p-Hub Median Problem

Like the USApHMP, the UMApHMP is a member of p-median hub allocation problems (Ernst and

Krishnamoorthy 1996a, 1997b). In this particular version of the problem, non-hub nodes are allowed

to be assigned to more than one hub.

Minimise

N N rxc(x.i) ocx.c(x. j) xz min rnin W(i, j) . hd(i,x(list(x,i,k),l)) +.rd(x(list(x,i, k),l),x(list(x, j,1),1)) + Gd(x(list(x, j,1),1), j))
i=l j=l k=l l=I

Where:
x(ij) is the j'th node on the i'th hub (Note: x(i,l) is a hub).
P is the number of hubs.
N is the number of nodes.
W(i j) is the flow from node i to node j.
d(i j) is the distance from node i to node j.
x is the collection cost coefficient.
6 is the distribution cost coefficient.
T is the transfer cost coefficient.

Multiple Knapsack Problem

The multiple knapsack problem frequently arises in resource allocation situations (Beasley and Chu

1997a). Given a project i, with profit c , the overall profit of the inclusion of a number of projects is

maximised subject to a number of budgetary constraints. This problem is a generalisation of the

knapsack problem.

Where:
x(i) is the i'th project in the project mix.
c(i) is the profit of including project i in the project mix.
a(i J) is the number of units of resource j required by project i . .
b(j) is the maximum number of resource units available from resource j.
N is the number of projects.
M is the number of different resources.

School Time Tablin~ Problem

In this problem, a number of tuples (consisting of teacher, class and room attributes) are scheduled in a

fixed number of time slots (periods). The aim is to minimise the number of clashes between tuples.

This problem has particular application in primarylelementary school time tabling (Abramson 1991;

Abramson and Dang 1993).

P C Ix(i)l-I Ix(i)l

Minimise clash(t(x(i, j) , 1) - t (x(i , k) , 1))

s. t.
Ixi =P
1 Cx(i J) W Vi 1 l i l p

'Jj 1 Sjjirlx(i) l
min-count(x)= 1
max-count(x)= 1

Where:
x(i j) is the j'th tuple in period i.
t(ij) is the i'th tuple. j refers to the different aspects of the tuple, namely:

class number (j=l)
teacher number (i=2)
room number (j=3).

N is the number of available tuples that are to be scheduled.
C is the number of items in the tuple (three).
P is the number of periods.

0, otherwise

Graph Partitionine Problem

Given the graph, G=(V,E), the aim is to find two equal partitions of nodes (V) such that the number of

interconnections between the partitions (E) is minimised. This problem has many applications

particularly in circuit board design in which off chip connections must be kept to a minimum (Johnson

et al. 1991a).

Z Z

Minimise 7 edge(x (l , i) , x (2 , j))

Where:
x(i j) is the j'th node in partition i.
edge(ij) is 1 if nodes i and j are connected by an edge, 0 otherwise.
N is the number of nodes.

Car Seauencin~ Problem

The CSP is a common problem in the car manufacturing industry and has been studied by Smith et al.

(1996a, 1996b). In this problem, a number of different car models are sequenced on an assembly line.

The objective is to separate cars of the same model type as much as possible in order to evenly

distribute the manufacturing workload.

M D(i)-1 D (i)

Minirnise x z P (A B S (x (i , k) - x (i , j)) , i)

Where:
x(i j) is the order in the sequence of the j'th car of model i.
P(i j) is the separation penalty for the j'th model separated by i places in the
sequence.
N is the number of cars.
M is the number of models.
D(i) is the number of cars of model i in the sequence.

Maximum Clique Problem

Given a graph, G=(V,E), the aim is to find the largest clique V, (V, c V) such that each member of the

clique has a common edge with every other member of the clique. The problem has applications in

fault tolerance diagnosis, timetabling and printed circuit board testing (Glover and Laguna 1997). The

problem can be formulated so that either the number of nodes in the clique is maximised or the number

of edge violations is minimised. The following model is of the latter.

Minimise
3

- edge(x(i), x(j))

Where:
x(i) is the i'th node assigned to the clique.
N is the number of nodes.
edge(i J) is 1 if there is an edge between nodes i and j, 0 otherwise.
M is the clique size.

From these few examples, it can be seen that the linked list modelling system is capable of representing

a variety of common COPS. Whilst not as general as either the ILP or CP languages, the dense linked

list structure makes it possible to directly apply well known local search operators (as discussed next).

3.4 Search Over Linked Lists

There are a number of possible ways that a list can be altered in order to form a new solution to a

particular problem. Portions of the list structure can be shifted to new locations within the list, deleted

from the list, or added to the list. A portion may represent an element, group of elements, a sub-list or

a group of sub-lists. As well as this, individual values of elements in the list may be altered.

Accordingly, there is a great deal of scope and flexibility in the way that new solutions are created.

An attractive feature of using the linked list representation is that well-known local search operators

form a subset of all possible transition operators that are available for lists. This is due to the dense

nature of the list structure. Therefore, direct application of these operators to the problem model is

possible. However, this in turn restricts the type of meta-heuristic search algorithm that can be used

with the linked list modelling system to those that are based on local search (i.e. GS, TS, SA and

GRASP). ANNs and GAS cannot directly utilise the linked list modelling systems as they rely on

specialised methods of generating solutions to problems (see Sections 2.1.2 and 2.2.3.5 respectively).

3.4.1 List-Based Local Search Transition Operators

As a result of using an integer representation, it is possible to apply to the list structure well known

local search operators that have successfully been used in other heuristic and meta-heuristic codes, for

example: Abramson (1991), Connolly (1990), Chams et al. (1987), Johnson et al. (1991a, 1991b),

Kampke (1988), Osman (1993, 1995) and Taillard (1991). There are a variety of ways that lists can be

altered in order to form different solutions. However, seven different transition operators that

correspond to common local search operators as used in the literature, have been identified as sufficient

to navigate the search space of the list-based formulations. Given the wide variety of standard COPS

that have converted into this notation (see Table I), this set appears to be sufficient to find good quality

solutions. The operators are:

Move: An element is moved from one list to the end of another list. This is similar to

Osman's shift process (Osman 1993, 1995). See Figure 7.

Swap: The positions of two elements, from the same or different lists, are swapped. This

is equivalent to the Or operator (2-opt) and Osman's interchange process (Osman 1993,

1995) (which is generalisable to the n-opt). See Figure 8.

Inversion: The sequence between two elements on the same sub-list is reversed. See

Figure 9.

Reposition: The position of an element in a list is changed. See Figure 10.

Add: An element is added to a list. See Figure 11.

Drop: An element is removed from a list. See Figure 12.

Change: The value of a list element is changed to another value. See Figure 13.

Figure 7: The move operator.

B efore

j I

After

-w
i

Figure 8: The swap operator.

B efore

I/

,

Figure 9: The inversion operator.

After

1

Figure 10: The repositiorz operator.

L

B efore

A

- - -

?

After

2 3

Figure 1 1: The add operator.

B efore After

~+J+--~TI+-J--~

Figure 12: The drop operator.

B efore After

Figure 13: The change operator.

B efore

The transition operators that can be applied to a particular problem are determined by the

characteristics of the problem's list based model. The use of appropriate transition operators ensures

that the problem's list constraints are not violated. For instance, in a permutation problem, operators

that only perturb the ordering of the elements in the list (such as swap, inversion and reposition) are

appropriate. A set of rules can be formalised that determine appropriate transition operators given the

list constraints (Table 3). Note, as in Section 3.3.1, y represents any list structure within list x.

After

6 4

Table 3: Appropriate transition operators given a problem's list constraints. y represents any list
structure while N represents a constant.

A transition is made in accordance with the rules of the particular meta-heuristic technique, subject to

the list constraints being satisfied. For instance, if an element appears once on list y, the constraint

min-count(y)=l makes it infeasible to drop this element.

Transition
Operators

swap, inversion, reposition

swap, inversion, reposition, move
swap, inversion, reposition, change,
add, drop
swap, inversion, reposition, change,
add, drop, move
swap, inversion, reposition, change,
add, drop
swap, inversion, reposition, change
swap, inversion, reposition, change,
add, drop, move -

List Constraints

3.4.1.1 Enforcing Constraints

Count
min-count@)=l and
max-count@)= 1

max-count(y)= 1

min-count@)= 1 or
unspecified

Search may proceed either through feasible or infeasible space in order to visit solutions. For list based

problems, there are effectively two spaces that are bound by the list and problem constraints

respectively. Table 3 in the previous section presented a set of rules for choosing transition operators

that do not violate list constraints. However, there is no guarantee that the operators will also preserve

the feasibility of the problem constraints. Two strategies are in place in order to ensure problem

feasibility is satisfied:

List Size Conditions
ly(i)l=N Q i lSi<lyl or
ly l=N
l y b l
lyl=l

ly I> 1

lyl=l

ly(i)l =N 'di 1 SiSlyl
l y b l

Feasibility Maintenance

Feasibility Restoration

The first method only allows transitions that do not violate the problem constraints. For instance, in the

GAP, a job is only moved to a new sub-list (i.e. an agent) if that agent has the enough spare capacity to

perform that job. Feasibility restoration on the other hand initially performs a transition without regard

to the problem constraints and then employs a number of feasibility maintaining transitions in order to

obtain problem feasibility once more. The advantage of the former technique is that it is

computationally inexpensive to implement. However, feasibility restoration can traverse infeasible

space and is required if the problem is tightly constrained and a straight feasibility maintaining

transition is not possible.

3.4.1.2 Applying the Transition Operators

Using the local search operators described in Section 3.4.1, it is possible to explore multiple

neighbourhoods in the course of solving a particular problem. In many cases, not all of the operators

(as per Table 3) are required. For instance, one may be interested in the effect of performing only

swaps on a TSP. Therefore the unwanted transition operators can be eliminated. The mneta-heuristic

technique is then performed using only those operators that were not excluded, referred to as the active

operators. At each iteration of the search, an operator is chosen from those in the active set. If all but

one of the operators is eliminated, this operator is used at each iteration. In the case that there are two

or more active operators, each operator is assigned a probability of being selected at each transition4

(totaling 1). Equations (23) - (26) can be used to select a neighbourhood operator.

V i 1 SiSN (default)

N

(alternatively pi can be explicitly specified, however pi = 1)

op = { i ; lbiSclubi } 1 SiSN

. .
lbi = p , ~i 1 SiSN

Where:
N is the number of active transition operators.
op is the selected transition operator.
c is a uniform random number in the range [0,1].
lbi is the lower probability bound of the active transition operator i.
ubi is the upper probability bound of the active transition operator i .
p, is the probability of the active transition operator i being selected.

Equation (23) assigns an equal probability to each of the active transition operators. For instance, if

there are two operators, each one receives a probability of 0.5. Alternatively, the probability of each of

the operators may be individually specified. The probability space is partitioned into a number of

sections (using these probabilities as bounds) that represent each of the transition operators (Equation

(25) - (26)). A uniform random number is then generated in order to select the next transition operator

(Equation (24)). This is like the weighted probability wheel used in roulette wheel selection by

Goldberg (1989). For example, if the operator move is given the probability region [0,0.5] while swap

There are also other possible models for determining which transition operator is to be used at a particular transition. One
possibility is to use a round-robin approach in which each operator is used in turn, though other models are possible.
Alternatively, the neighbourhood of each possible operator could be examined to determine which operator yields the most
effective solution. Glover and Laguna (1997) discusses this concept in some detail.

is assigned (0.5,1] and 0.6 is the uniform random number (c), swap is chosen as the next transition

operator.

3.4.1.2.1 The Adaptive Probability Model

The set of transition operator probabilities can be either static throughout the search or vary

dynamically according to the relative performances of the active transition operators (in terms of

optimising the objective function). Thus if an operator is producing solutions of high quality, its

probability is raised. Similarly, the probability is dropped for a poorly performing operator. The

amount of the change is dependent on a parameter known as the adaptive rate. This is similar to the

learning rate employed by ANNs (Carling 1992). If the adaptive rate is set low, the change in

probabilities will also be conservative and vice versa.

The probabilities are adapted at set intervals throughout the search process. Equations (27) - (30) show

how the probabilities are adapted.

N+k-' i f (tran(j) = i) , cost, - cost j-l
dci = { Vi 1 l i W

0, otherwise

dc,
rd, =

M XI dcj I
j=l

Note: -for minimisation, +for maximisation

Where:
lil is the absolute value of i.
M is the number of active transition operators.
N is the number of iterations between adaptations.
a is the adaptation rate (i.e. a=0.01 (very slow adaptation), a=0.9 (very fast adaptation)).
dc, is the summed incremental cost of the i'th transition operator.
k is the iteration number of the first iteration in the adaptation period. For instance, if N=100,
k would take on successive values of 1, 101, 201,
tran(i) is the transition operator used at iteration i.
rd, is the ratio incremental cost of the i'th transition operator.
pa, is the new raw probability of the i'th transition operator.
p, is the scaled probability of the i'th transition operator.
cost, is the objective cost obtained at iteration i.

Equation (27) calculates the total change in cost for each of the active transition operators and (28)

normalises these values between 0 and 1. The new probability set is computed based on the adaptive

rate (29) and this is in turn converted to a new set of probability values (30).

3.4.2 Calculating Incremental Costs

The objective function of many COPS is costly to compute, especially for realistic size problems. The

linked list structure makes it possible to compute an incremental cost based on the elements that have

changed in the list. This can result in substantial computational savings, particularly for iterative

algorithms such as GS, TS and SA.

Algebraic incremental cost expressions can be developed for problems modeled in linked list notation.

As each of the local search operators alters the solution in a different way, a number of incremental

cost expressions may be required for the one problem type. There are two methods of making use of

incremental costs in a list-modelling environment:

Automatically generate incremental cost expressions given an objective function and set

of transition operators.

Manually develop incremental cost expressions.

It can be difficult to automatically generate incremental cost expressions for problems modeled in a list

notation using the first approach. This is due in part to a) incremental cost expressions being dependent

on the transition operator used, b) many objective functions in a list based modelling environment are

non-linear. In contrast, to calculate an incremental cost for a 0-1 ILP does not require a specific

incremental cost expression, as the coefficients of the variables that are changed need only to be either

subtracted or added appropriately. This is a disadvantage of a general modelling solver system based

on a compacted representation such as linked lists. As a result, it is difficult to produce a general

algorithm that generates incremental cost expressions from an arbitrary objective function.

In order to produce a practical means of automatically generating incremental cost expressions, a

slightly less general approach is adopted. This method uses a system that matches the objective

function against one of a number of templates. The rationale behind this approach is that many list

based objective functions are very similar. For instance, consider the objective functions of graph

colouring with the processor allocation problem (see Appendix B) and the knapsack (see Appendix B) 1

multiple knapsack with the set partitioning problem 1 set covering problems (see Appendix B) as

examples of this. The template method therefore attempts to fit an objective function to a known

template and produce incremental cost expressions for the set of feasible transition operators.

Equations (3 1) - (36) present a set of templates that are typical of objective functions formulated in list

notation.

In order to accommodate a wide variety of objective functions, simple transformations of these

functions are also admissible (Equations (37) - (41)). For instance, Equation (37) indicates that the

system can derive suitable incremental cost expressions for a function of a list that is multiplied by

some constant. An example of this might be a transformed GAP having the objective function

M Ix(i)l

7, ~ (x (i , j) , i) . c where c is a constant. Similarly, objective functions such as
i=l j=l

M Ix(i)l

C (x (i , j) , i) + g (i) (given by Equation (39)) can also be processed by the system.

Where:
f and g are arbitrary functions.
c is a scalar.
. . . is an algebraic expression.

A given set of templates cannot support every conceivable objective function. This set of templates

covers all of the problems from Section 3.3.2 except USApHMP, UMApHMP and the timetabling

problem. Incremental cost expressions can be calculated manually by considering the effect of the

application of the transition operator to the cost function and list structure. In some instances, it may

not be possible to calculate an appropriate expression because of the complexity of the cost function, in

which case the original cost function is the only expression that can be used. Section 4.5 outlines how

these templates (3 1 - 35) can be applied to produce appropriate incremental cost expressions.

3.5 Summary

This chapter has described a general modelling system for COPS that allows solution-states to be

expressed using dynamic list structures. Unlike more conventional modelling systems (such as ILPs

and CP), a list-based solution consists of a densely packed set of integers that dynamically changes

according to the current solution-state. The feasible solution space of problems formulated using the

list notation is governed by two classes of constraints; the list constraints and the problem constraints.

The list constraints consist of restrictions to solutions that include: the range of values that can occur on

the list; the number of times that a particular value can appear on a list; and the shape and size of the

list structure. In many cases, these constraints alone are sufficient to express a wide range of COPs,

some of which include the well-known TSP and QAP. Additional problem-specific constraints (like

the capacity constraints for the GAP and the budgetary constraints for the MKP) can also be modeled

via the problem constraints.

Based on the configuration of the list constraints for a particular problem model, suitable local search

operators can be deduced automatically. As more that one operator may be suitable for a problem, a

probabilistic procedure for choosing a transition operator at each iteration of a meta-heuristic search

algorithm has been proposed. In this method, each operator is assigned a probability of being chosen

and is subsequently selected using a variation of the weighted roulette wheel notion introduced by

Goldberg (1989). The system can also adaptively set the probabilities according to the performance of

each of the operators.

Objective functions for practical size COPs can be costly to evaluate. However, using the linked list

modelling system, appropriate incremental cost expressions can be produced. These expressions are

calculated based on the elements that have recently changed in the solution and their use can represent

a substantial efficiency increase for the meta-heuristic search algorithm. An automatic system that

matches an objective function to one of a set of templates to produce incremental cost expressions has

been devised. While not entirely general, this system can generate appropriate incremental cost

expressions for a wide range of COPs. This is due to the similarity of the objective functions of

various COPS and the fact that simple transformations of the template set can be accommodated.

In order to gauge the benefits of modelling COPs using linked lists, the following chapter describes the

issues relating to a software implementation of the system. As many COPs can be expressed with one

Chapter 4: Implementation of a General
Solver

This chapter discusses a number of issues related to producing a general-purpose solver for COPS

based on the linked list modelling system. These topics include: the design of a text-based language

for describing arbitrary list models, a method of producing initial feasible solutions, a feasibility

restoration scheme, a candidate list strategy for TS and GS, appropriate incremental cost templates; and

the implementation of the SA, TS and GS search engines. These techniques are designed to operate

within a restricted general list modelling system that is described in Section 4.8.

The work on the linked list. modelling system has culminated in the design of a software

implementation named COSULOM (Combinatorial Optimisation System Using List Oriented Meta-

heuristics). COSULOM is a real world solver written in ANSI C so that it is available to a wide range

of computer platforms. The TS component is also available as a parallel program for MIMD (Multiple

Instructions, Multiple Data) computers supporting the MPI (Message Passing Interface) library.

4.1 System Architecture

The solver performs a number of tasks in order to progress from an initial problem model to a final

solution. Figure 14 gives an architectural description of the implementation of the system.

C f i les c o n t a i n i n g
o b j e c t i v e , c o n s t r a i n t s

a n d list de sc r ip t i on

L e g e n d

User Input

a System Generated Files

Core System Computer Code

11 Output - Results

Figure 14: An architectural representation of the general solver.

A file containing a problem model is read by the compiler that converts this into a set of C files. These

C files contain the code that represents the objective function, list model, constraints and problem data.

The algebraic language that describes the list models is given in Section 4.2. The compiler also

produces a mathematical list-based model in LaTeX 2e format (using the algebraic notation outlined in

Section 3.3). The files are then linked with the core code modules to produce an executable file based

on the selected meta-heuristic technique.

The runtime system has two main tasks: to form an initial solution to the problem as well as running

the appropriate meta-heuristic search in order to produce a final solution to the problem being solved.

The process of forming an initial solution is described in Section 4.7.

4.2 Algebraic Modelling Language

It can take considerable time to develop either a meta-heuristic based computer program or a suitable

code segment (as discussed in Section 2.3.2) compared with an algebraic model. This is because code

development is a complex process that requires planning, implementation and testing phases.

However, a high level algebraic description (such as the one described herein) is typically less costly to

develop and not as prone to error.

The general system accepts text files that contain a list based algebraic description of the problem and

automatically converts these to computer code. This approach is more efficient than interpreting data

structures that represent the objective and constraint functions. In addition, customised code modules

can be used instead of the code generated from the input file compiler (a description of these modules

is given in Appendix E). This flexibility allows the system to accept arbitrary functions that are

difficult to write algebraically.

The algebraic modelling language is based loosely on the GAMS syntax, which is widely used and well

understood. The reader unfamiliar with the GAMS syntax is referred to Brooke et al. (1997). The

language can be used to express list models as described in Chapter 3. While the syntax has been

borrowed, semantic modifications have had to be made in order to account for the list modelling

system. This is particularly apparent in the SOLUTION section that incorporates the list constraints.

Files can incorporate both data (for instance the distance matrix for the TSP) as well as objective and

constraint functions. Alternatively, data and expressions can be contained in separate files.

A user manual describing the syntax, layout and available functions of the language is given in

Appendix D. Nevertheless, an example of a file that describes a small GAP is presented in Figure 15.

This file is divided into a number of distinct sections. The SCALAR section specifies problem

constants typically related to problem size. In this case, there are 5 agents (denoted M) and 15 jobs

(denoted N). The SETS section allows range variables to be specified, i.e. J ranges in value from 1 to

M (across the agents). The PARAMETER and TABLE sections contain the data for the problem instance.

For the GAP, a cost matrix C, resource matrix A and an agent capacity vector B are required. The

SOLUTION section is used to describe the list model and constraints. S IZE (X) = M denotes that there

are M sub-lists while MIN-COUNT (X) =1 and MAX-COUNT (X) =1 indicates that each element can

appear only once on the list. To specify that the value range is between 1 and N, the statement

l<=X<=N is used. Finally the EQUATIONS section allows the objective (specified using the COST

keyword), constraints and incremental costs to be specified. The capacity constraints are formed for

each agent (J). It is important to note that in this system, the user specifies whether the objective

function is minimised or maximised at runtime.

SCALAR
N /15/
M /5/;

SETS
J /1-M/;

PARAMETER
B(M) / 36 34 38 27 33 / ;

TABLE
C (M, N)

/ 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16
23 16 21 16 17 16 19 25 18 21 17 15 25 17 24
16 20 16 25 24 16 17 19 19 18 20 16 17 21 24
19 19 22 22 20 16 19 17 21 19 25 23 25 25 25
18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 /

A(M,N)
/ 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24
15 7 23 22 11 11 12 10 17 16 7 16 10 18 22
21 20 6 22 24 10 24 9 21 14 11 14 11 19 16
20 11 8 14 9 5 6 19 19 7 6 6 13 9 18
8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 / ;

SOLUTION
SIZE (X) =M
MIN-COUNT (X) =1
MAX-COUNT (X) = 1
l<=X<=N;

EQUATIONS
COST. . SUM(SUM(C(J,X(J,K)),K=l,SIZEOF(X(J))),J)
CAPACITY: SUM(A(J,X(J,K)) ,K=l,SIZEOF(X(J)))<=B(J) ;

SOLVE USING SA

Figure 15: Input file representing a GAP.

In order to describe the algebraic modelling formally, a BNF (Backaus-Naur Form) description is

provided in Figure 16.

<problem-description>+ {<scalar-secti~n>)~-~ {<set -sect i~n>}~-~ { <parameter-section> Jo-l
{<table-secti~n>}~.~ <solution-section> (<equations-secti~n>)~.~ < solve-section>
<scalar-section>+ SCALAR (<scalar>) I + ;
<scalar>+ <identifier> / <number> /
<sets-section>+ SETS (<set>} I+ ;
<set>+ <identifier> / <constant> - <constant> /
<parameter-section>+ PARAMETER {<parameter>} ,+ ;
<parameter>+ <identifier> (<constant>) / <number-set> /
<table-section>+ TABLE { <table>) ,+ ;
<table>+ <identifier> (<constant> , <constant>) / <number-set> /
<number-set>+ <number> { , <number>),,+
<solution-section>+ SOLUTION <list-constraints> ;
<list-constraints>+ {<size-c~nstraints>}~-~ {<count-c~nstraints>}~.~ <value-range-constraint>
<size-constraint>+ {<constant><relational~~perator>}~~~ SIZE (<indentifier> constant>)^-I)
{<constan~<relational-operator>)@l Continued.. .
<count-constraints>+ {<count-type> (<identifier>) < c o u n t - r h ~ >) ~ - ~
<count-type>+ MIN-COUNT I MAX-COUNT
<count-rhs>+ =1

<value-range-constrain- <constant> <relational-operator><identifier><relational-operator>
<constant>
<equations-section>+ <objective~function>(<incremental~cost~objecti~e~}~
(<constraint-functi~n>}~+ ;
<objective-function>+ COST.. <expression>
<expression>+ <expression-component> I (<expression>) I <expression><arithmetic~operator>
<expression>
<expression-component>t <sum> I <constant> I <list-or-array-reference> I <list-size> I <min> I
<max> I<minimum>l<maximum>I cabs>
<sum>+ SUM (<expression> , <range>)
<min>+ MIN (<expression> , <range>)
<max>+ MAX (<expression> , <range>)
<minimum>+MINIMUM(<expression> , <expression>)
<maximum>+MAXIMUM(<expression> , <expression>)
<range>+ <identifier> I <indentifier> = <expression> , <expression>
<abs>+ ABS (<expression>)
<list-size>+ SIZEOF (<identifier>((<constant>))
<incremental~cost~objective>+ DCOST (<transition-operator>) .. <incremental-cost-expression>
<transition-operator>+ move I swap I inversion I reposition I add I drop I change
<incremental-cost-expression>+ <expression> I <pred-statement> I <succ-statement> I
<incremental-cost-attribute> I (<incremental-cost-expression>) I <incremental-cost-expression>
arithmetic-operator> <incremental-cost-expression>
<pred-statement>+ PRED (<identifier> , <constant> , <constant> , <constant>)
<succ-statement>+ SUCC (<identifier> , <constant> , <constant> , <constant>)
<occurrence~statement>+OCC(<identifier>,<constant>)
<list-statement>+LIST(<identifier>,<constant>,<constant>)
<incremental-cost-attribute>+ E l I E2 I L1 I L2 I P1 I P2
<constraint-functions>+ <identifier> : <constraint>
<constraint>+ <expression><relational~operator><expression~
<solve-section>+ SOLVE USING <search-engine>
<search-engine>+SA I GS I TS
<relational-operator>+ <= I < I = I > I >= I <>
<constant>+ <identifier> I <number>
<number>+ <float> I <integer>
<float>+ (<digit>),,+ . (<digit>} ,+

<integer>+ (<digit>}
<digit>+O111213141516171819
<identifier>+ {any alphabetic character}

Where:
x is a terminal.
a> is a non-terminal.
{x},-~ x is present between a and b times.
(x),, x is present a times or greater.

Figure 16: BNF of the algebraic modelling language.

4.3 Feasibility Maintenance and Restoration

A feasibility maintenance operation consists of a simple application of the transition operator. For

neighbourhood search techniques such as GS and TS, all possible applications of the operator are

examined and only the ones that satisfy both the list and problem constraints are considered. The

feasibility maintenance scheme for SA uses a first admissible strategy (Osman 1993, 1995) in which a

number of transitions of the same type are attempted until one satisfies both the list and problem

constraints. Consider the GAP example; each element is moved from its sub-list to another sub-list in

turn until one of these transitions produces a new feasible solution. The order in which candidate

transitions are performed is permuted so that the search process sufficiently samples the neighbour

space. This technique has been found to be effective by Connolly (1990, 1992), Johnson et al. (1991a,

199b) and Abramson and Randall (1998).

As discussed in Section 3.4.1.1, the aim of feasibility restoration is to traverse infeasible space in order

to find another feasible pocket of solutions that may be inaccessible otherwise. It is possible to apply

feasibility restoration techniques to both the list constraints and problem constraints. In this

implementation, only the operation regarding the latter type is considered.

The process of feasibility restoration consists of first breaking and then repairing feasibility. A

transition is made that potentially violates some or all of the problem constraints. A series of feasibili6

maintenance transitions are subsequently undertaken in order to return to a feasible state.

Feasibility restoration schemes differ for each transition operator. The change operator can be seen as

a simple implementation of feasibility restoration for addldrop transitions as an element is added to a

list and another is dropped. Performing feasibility restoration for the swap, inversion and reposition

operators can be more complex as the original transition will perturb multiple elements of the list and

hence may require a great deal of computational effort to restore to a feasible state. The principal of

feasibility restoration is therefore most effectively demonstrated with a less complex operator, the

move (Algorithm 7). In the context of this operator, the algorithm is useful for problems such as the

GAP and VRP in which elements can be moved between lists.

Move an element to another sub-list;
Check the constraints associated with the old sub-list;
If (these constraints are violated)

Attempt to add a combination of elements on this sub-list;
If (this fails) try to do the same thing except remove the
elements off the old sub-list;
If (the old sub-list is now feasible) perform
feasibility maintenance with the displaced elements;
If (this fails) abort the restoration, reinstate the
original solution and exit;

End if;
Check the constraints associated with the new sub-list;
If (these constraints are violated)

Attempt to add a combination of elements from this list;
if (the new sub-list is now feasible) perform
feasibility maintenance with the displaced elements;
If (this fails) try to add to this sub-list a combination of
elements;
If (this fails) abort the restoration, reinstate the
original solution;

End If;
End.

Algorithm 7: Feasibility restoration procedure for the move operator.

In the above algorithm, a combination of elements is either removed from the sub-list or added to the

sub-list from other sub-lists in order to make the constraints associated with the original sub-list

feasible. For practical purposes, the number of elements that constitute the combination is bounded by

a constant value. As with feasibility maintenance, the search for a combination terminates when one

that satisfies the problem constraints associated with the sub-list is found.

4.4 Probabilistic Candidate List Strategy

Unlike SA, both GS and TS systematically examine the neighbourhood of the current solution to find a

replacement solution. Many practical size problems have large neighbourhoods. For instance, if a

n(n - 1)
swap is performed on a TSP with n cities, each solution would have

2
neighbours. Therefore

the search process can become slow if the neighbourhood is large. In order that large problems can be

solved in reasonable amounts of time, the system has a parameter that controls the amount of the

neighbourhood that is searched. This is achieved by using a subset N, of the neighbourhood N (i.e. N,s

E N) and is referred to as the candidate list strategy (as outlined by Glover and Laguna (1997)). There

are a number of ways in which this strategy can be defined (Glover and Laguna 1997) such as choosing

every k'th neighbour so that IN,I=NIk. This implementation uses a probabilistic approach. For

instance, if the probability is set to 1, then all neighbours are tested, however, if the probability is set to

0.5, then each neighbour has a 50% chance of being evaluated. This is accomplished by using the rule

in (42).

If (c I p), then Evaluate neighbour

Where:
c is a uniform random number in the range [0,1].
p is the probability that a neighbour is evaluated. p is in the range [0,1].

4.5 Incremental Cost Templates

As discussed in Section 3.4.2, the template method matches an arbitrarily formed objective function

with one of a number of available templates in order to produce an algebraic expression to calculate the

incremental cost. The set of possible templates for COPS is large and therefore this implementation

only uses a subset of these (as specified previously in Equations (30) - (36)).

If the system cannot recognise a given combination of template and transformation, it reports that it is

unable to produce an incremental cost expression. The user can nevertheless manually calculate the

appropriate incremental cost expression and code it in the algebraic modelling language described in

Section 4.2 or directly in the C programming language. Descriptions of how incremental cost

expressions are coded in the algebraic modelling language as well as directly in the C description files

are given in Appendix D and Appendix E respectively. The advantage of this system is that templates

can be easily added, should the need arise.

In order to produce an incremental cost expression from a given template and transition operator,

information about the type of change that has occurred to the list structure is needed. For instance, if

an item is added to the solution list and the objective function is matched to template 1 (Equation (3 I)),

the value of the item (e) is used to form the incremental expression, +f(e). Apart from element value,

sub-list and position number are also important indicators of change. The following description shows

how this information is used for each of the transition operators (taking into account Figure 7 to Figure

13).

Move: An element with value el is removed from x(ll,pl) and placed at x(12,p2).
Swap: An element with value el located at x(ll,pl) is swapped with an element
with value e2 located at x(12,p2).
Inversion: The elements between x(ll,pl) (with value el) and x(12,p2) (with value
e2) are inverted.
Reposition: The element with value el is removed from x(ll,pl) and inserted at
x(l1,pz).
Add: An element with value el is added at x(ll,pl).
Drop: An element with value el is dropped from x(ll,pl).
Change: An element with value el located at x(l1,pl) changes its value to e2.

Table 4 gives the output of templates with transition operators using the notation described above. For

example, consider Template 2 given by Equation (32) in Section 3.4.2. Template 2 represents

objective functions that sum all of the elements in the list structure according to a function f. Each

transition operator affects the solution differently and subsequently a unique incremental cost

expression is produced. For the move operator, an element is deleted from one sub-list and placed at

the end of another. Hence the incremental cost expression becomes c; = ci-, -flel,ll) + fle,,lz) where c;

is the cost of the objective functions at the current iteration and c;., denotes the previous iteration. The

swap operator involves more calculations as two elements are dropped and again added to new sub-

lists. Conversely, transition operators that change the order of elements within a sub-list do not affect

the overall cost (as addition is commutative). Hence for the inversion and reposition operator slots in

the table, None is given (i.e. c; = ci.,).

The effect of each of the transition operators on each of the templates is considered in Table 4. The

abbreviations used in this table are:

NP - it is not possible to perform the indicated transition on the template. For example, if

a template has only one sub-list (such as Template I), it is not possible to use a transition

operator that involves two sub-lists (such as move).

NW - the resulting incremental cost expression has a greater complexity that the original

expression.

None - there is no resulting change in the objective cost for this template with this

transition operator.

k
Template 1
(31) -- - - - --
Template 2
(32) -- --- - - -
Template 3
(33)

(Note: pl < P Z)

- - - -

Template 4
(34)

Table of Incremental Cost Expressions 1
move / swap / inversion / reposition I add I drop / change
NP None None

- . - -- - -~ ---- - -. - -- - - -- - -- --
-Ae l , l l) +Ael , l z) - f (e l , l l) +Ael, lz) - None

. f @ z , l z) t fi5zzl1)- _ _ - -

None +

c- 1 - c- 1))) +AX@/) , ,el) +

Aez,x(succ@z, 1 ,
+ f(x@red@l,l ,lxl,c))

I
I

f (e~ ,x (succ@~, 1 ,kl,c

I
I
I

NP P I -1

r=l

/ t=p,+l I PI r=p,+l

2 M i) , e z) +
I r=l

4.6 Search Engine Implementation

The following describes how each of the search engines is implemented within the framework of the

general solver system. Due to the opportunities that exist to create parallel implementations of TS,

both a serial and parallel version are described.

The SA search engine implements the cooling schedule called Q8-7 ' (Connolly 1990, 1992) as it has

shown to be quite successful (Abramson and Randall 1998; Connolly 1990, 1992) (Algorithm 6). The

cooling schedule is based on reheating the temperature a number of times throughout the search (see

Figure 17). The temperature to which it reheats is always less than the previous reheating point. The

number of times this reheating occurs as well as the interval between reheats can be altered. Therefore,

if there is a long interval between reheating points, fewer reheatings will occur within the fixed

runtimes (as used in this study) than if the interval between reheating points is short. The SA engine

also has an option that allows it to perform as many reheats as possible in order to try to reach a given

solution quality.

E
E
Q)

B
Q)

E-r

Iterations

Figure 17: A graphical representation of the SA reheating schedule.

According to Connolly (1990, p. 96) 48-7 derives its name "from the fact that it was the seventh modification of the eigth
annealing scheme tested on the QAP by the author".

69

The GS engine follows the pseudocode given in Algorithm 2. Unlike SA, GS searches the

neighbourhood of the current solution in order to find a suitable replacement. As a result of using

different transition operators, there are a number of possible neighbourhood structures (described

below).

Move: The neighbourhood consists of moving each element from its sub-list to the end of

each other sub-list in the solution. For instance, if an element at x(1,l) is in a solution

having three sub-lists, two moves involving this element would be to place it at the end of

sub-list 2 and sub-list 3.

Swap: The swap neighbourhood is composed of a set of pairs of elements. A pair

consists of two different elements of the list. This set contains all possible combinations

n(n - 1)
of elements. Given n elements in a list, this equates to - neighbours.

2

Inversion: The inversion neighbourhood consists of pairs of elements between which the

sequence can be reversed. Therefore, both elements of a pair must be located on the same

sub-list. The neighbourhood is a subset of the swap neighbourhood.

Reposition: The reposition neighbourhood consists of each combination of element and

position on that element's sub-list. For instance, if sub-list 1 has a length of 4, the

possible transitions available to the element at x(1,l) are to reposition it at positions 2,3

and 4 on the sub-list.

Add: The neighbourhood consists of adding each element value in the legal range to the

end of each sub-list. For instance, if sub-list 1 contains two elements and the value range

is given by 11x14, element x(1,3) can take on the values { 1,2,3,4).

Drop: The neighbourhood consists of dropping each element from its place in the current

solution. Therefore the size of the neighbourhood is the number of elements in the list

structure.

Change: The neighbourhood consists of the set of transitions in which each element in

the solution structure changes its value to a different value in the legal range. For

instance, if the value range of the solution is 11x14 and x(l,l)=2, the values that x(l , I)

can change to are { 1,3,4).

Note: Neighbourhoods only incorporate members that do not violate the list and problem constraints.

GS terminates once it encounters a local optimum. The existence of a local optimum is determined in

the following way. If the current transition operator fails to find an improved solution, each of the

other active transition operators are tested instead. If each of these cannot produce a better solution,

then a local optimum has been encountered.

Both the sequential and parallel version of the TS engine follows the pseudocode given in Algorithm 3.

The neighbourhood structures are the same as those described in Section 4.6.2.

4.6.3.1 Sequential

The TS engine allows the tabu list size to be set6. This parameter governs the number of iterations that

a particular transition will stay tabu. The tabu list is implemented as a matrix. This approach has been

adopted by a number of other researchers (Osman 1993,1995; Randall and Abramson 1998; Taillard

1991) and has been shown to be quite effective. The tabu list in this system records whether a

particular element has been placed on a certain sub-list. If the position of an element on a sub-list is

important (for instance, ordering problems such as the TSP and QAP), the tabu list records the element

against the position number as well. Hashing vectors are an alternative means of representing a tabu

list and can easily be generalised across problem type (Woodruff and Zemel 1993). However, while

hashing vectors require only a small amount of memory, their use as the tabu list mechanism can

degrade the performance of the search process (Glover and Laguna 1997).

4.6.3.2 A Parallel Implementation of the Solver

In recent years, parallel processing hardware platforms have become increasingly more available. This

has meant potential increases in the performance of search algorithms for COPS. TS is particularly

well suited for parallel implementation and the performance is generally scalable (Glover and Laguna

1997). Therefore, efficient parallelisation strategies can lead to significant savings in the amount of

computational time required to solve large size problems. This is unlike SA which is an inherently

sequential algorithm, however some parallelisation strategies exist; see van Laarhoven and Aarts

(1987) and Ramanujam and Sadayaappan (1995) for a description of these. While it is possible to

implement a parallel GS, the benefit would not justify the development effort. This is due to the fact

that GS is a limited search technique that cannot overcome the first local optimum it encounters.

This following sub-section reviews a number of parallelisation strategies suitable for TS and describes

the implementation of the one that has been adopted for the general system. The parameters of the

parallel TS engine (such as tabu list size and neighbour selection probability) are the same as in the

sequential version.

4.6.3.2.1 A Review of Parallelisation Strategies for Tabu Search

There are a number of strategies available and these can be organised in a taxonomy as in Crainic,

Toulouse and Gendreau (1997) and Glover and Laguna (1997). Combining parallelisation strategies

"he tabu tenure is varied between 1 and the tabu list size throughout the search process. This is done so as to introduce some
element of intensification and diversification into the search (Glover and Laguna 1997, p.48).

has also proven effective, as demonstrated by Badeau et al. (1997). Some of the more common may be

summarised as:

Parallel Evaluation of Neighbours: This method is an implementation of the master slave

model and works on the premise that the most computationally expensive part of tabu

search is the evaluation of the neighbours (corresponding to low level parallelism). Given

P slave processors, the neighbourhood is divided equally among the processors. Each

processor performs the transitions along with the evaluation of the cost function and

constraints and sends its best neighbour back to the master processor. The master

processor then determines the best neighbour among all that it has received (according to

the tabu rules) and establishes this as the next solution. This approach can require a

substantial amount of communication time because of the master slave configuration, but

can be easily applied to a range of COPS. This method can be illustrated by considering

the QAP. Given that a possible transition operator consists of swapping pairs of facilities,

each processor can be assigned a subset of these pairs to evaluate. See Taillard (1993)

and Garcia, Potvin and Rousseau (1994) as examples of the implementation of this

method.

Parallel Independent Tabu Searches: In this approach, a number of sequential tabu

searches are run simultaneously across processors on a particular problem. Each search is

different as key parameters such as random seed, initial solution or tabu list size are

varied. This method is particularly suitable to parallel architectures in which each node

behaves as an independent system, such as MIMD computers. Because of the

independence of the searches, no communication is required between the processors. See

Taillard (1991) for an example of the implementation of this method.

Parallel Interacting Tabu Searches: This approach is similar to the previous method,

except that an interaction between the searches occurs at given intervals, (De Falco, Del

Balio and Tarantino 1996). This consists of determining which search has been the most

successful and transferring its solution to the other search processes. Each search then

continues with an empty tabu list from this solution. This approach can have quite a large

communication overhead due to the necessity of broadcasting entire solution structures.

Search Space Division: Each processor is assigned a subsection of the search space. A

tabu search subsequently explores its subsection and sends back the partial solution to the

master process once it has finished (De Falco et al. 1996). These partial solutions are

combined into a final solution. While this method has low communication costs, the

process of dividing the search space is very problem specific and may not be possible for

all problems. An example of this method deals with the VRP (Taillard 1993). Each

processor is assigned a unique vehicle tour to optimise. At the end of the search, each

processor sends its tour to the master processor that assembles these tours and computes

the overall cost.

Due to the solver's capacity to process general problem formulations, methods 1 and 2 are

implemented. Because each processor is an independent system, method 2 can be easily achieved by

running a number of sequential tabu searches on different nodes of an MIMD computer. Despite the

communication cost overhead associated with method 1, this approach has been adopted because its

applicability across problem type is required for the general list modelling system. This decision is

also influenced by the fact that the machine used here has an MIMD architecture (coarse grain and

loosely coupled) that is suitable for this parallelisation approach. The parallel code is implemented

using the MPI library version 1 .O.

4.6.3.2.2 Division of the Neighbourhood

At each transition, the master processor calculates an appropriate sub-neighbourhood to delegate to

each of the slaves based on the transition to perform, the current solution and the number of available

processors. The members of the neighbourhood are divided evenly amongst the processors (see

Section 4.6.2 for a description of each of the neighbourhoods of the transition operators). In the event

N
that - (where N is the number of neighbours and P is the total number of processors) is non-integral,

P

the last processor is assigned a different size neighbourhood subset to evaluate than the othel

processors. This is calculated by the following rule:

N N
if ((- - trunc(-)) < 0 . 5)

P P
N

S = trunc (-)
P

else

Where:
trunc (x) returns the integer component of x.
s is the number of neighbours the processors 1 through P- 1 receives.
Sp is the number of neighbours that processor P receives.

This procedure can lead to a slightly uneven distribution of neighbours to processors. However, as the

N
numerator in -becomes large (i.e. more neighbours), the ratio of left over neighbours to allocated

P

neighbours becomes small. Hence, for large size problems, this method of allocation should make little

difference to the performance of the TS engine.

4.6.3.2.3 The Parallel Algorithm

Figure 18 shows the inter-processor communication needed for the parallel evaluation of neighbours

method. The master and slave processes are synchronised by the communication messages. The

master's task is to coordinate the entire TS process as well as to control key data structures such as the

tabu list and solution memory. It is responsible for delegating the neighbourhood evaluation tasks to

the slaves as well as determining which neighbour will form the next solution. In addition, the master

also acts as a slave as it evaluates a subsection of the neighbourhood. The master's and slaves'

activities are described fully in Algorithm 8 and Algorithm 9 respectively. The communication

messages in Figure 18 are noted in these algorithms. Note: the TS mechanics are exactly the same as

those outlined in Algorithm 3.

.FL

. F\ Processor F 2 F 3 jT
Processors (l . . N)

. . - . - .F4 -

.FI

Where:
N is the number of available slave processors.
F l is the message of the initial solution from the master to the slaves.
F2 is the message describing the subsection of the neighbourhood that each slave evaluates.
F3 is the message of each slave's best neighbour to the master processor.
F4 is the solution update.
F5 is the signal informing the slaves whether to terminate or not.

Figure 18: Block diagram of the communications between the master processor and the slave processors
for the parallel TS algorithm.

Generate an initial feasible solution;
Broadcast the initial solution to the slaves (send message Fl);
While (termination condition not met)

Partition the neighbourhood into equal sizes and send partition
details to the slaves (send message F2);
Evaluate each neighbour from own neighbourhood and retain the
best neighbour;
Collect each slave's best neighbour (receive messages F3);
Determine the most suitable neighbour (using the tabu list
and aspiration rules) and use it to form the next solution;
Broadcast the attributes of the chosen transition to the slaves
(send message F4);
Update the tabu list;
Determine if the termination condition has been met;
Broadcast the termination information to the slaves
(send message F5);

End While ;
Report best obtained solution;
End. ..

Algorithm 8: Pseudocode for the master processor.

'~eceive Initial solution (receive message Fl);
While (terminate signal is not "stop")

Receive details of neighbourhood partition to evaluate
(receive message F2) ;

Evaluate the neighbours in this partition;
Send the transition attributes of the best neiahbour to the .+

master processor (send message F3) ;
Receive the attributes of the chosen transition and update
the local copy of the solution (receive message F4);
Receive the termination information signal
(receive message F5) ;

End While;
End.

Algorithm 9: Pseudocode for the slave processors.

4.7 Generating an Initial Solution

The generation of initial feasible solutions to COPS can be a difficult task according to Goldberg

(1989). This is especially so for solver systems (such as this one) that are able to solve a variety of

problems. An alternative to automatic generation is to allow some problem specific means of

generating initial solutions such as using constructive heuristics or the requirement that solutions be

produced manually. While these methods may produce efficient initial solutions, a more general

approach that takes advantage of list structures is proposed here. The following procedure is capable of

finding initial feasible solutions to all of the problems described in Section 3.3.2 with a relatively small

amount of computational effort (typically < 1 CPU second).

The method uses a two-stage process in order to form initial feasible solutions. The first stage attempts

to satisfy the list constraints while the second is concerned with obtaining the feasibility of the problem

constraints. Once the two sets of feasibility have been established, the system invokes the meta-

heuristic search algorithm.

The first stage of the algorithm consists of the following process (Algorithm 10). Initially, a set of

feasible element values is produced, according to the Count and Value Range constraints. Following

this, the element values are distributed throughout the list structure to ensure the length bounds on the

lists are valid. Accordingly, a solution that satisfies the list constraints is established. In many cases

such as the TSP and QAP that have no problem constraints, this initial solution is fully feasible and the

search process can begin immediately.

/ * Create the vector of element values to place in the solution
list * /
Case ((min-count(x)=l) AND (max-count(x)=l))

For i=list-value-lowerbound, list-value-upperbound
elements-tojlace(i-list-~alue~lowerbound + l)=i;

End For;
Case (max-count (x) =1)

j=list-value-lowerbound;
For i=list-value-lowerbound, list-value-upperbound

If (randomly-select()=true)
elements-to_place(j -list-value-lowerbound + l)=i;
j=j+l;

End If;
End For;

Case ((min-count (x) =1) OR (unspecified))
For i=list-value-lowerbound, list-value-upperbound

elements-to_place(i - list-value-lowerbound + l)=i;
End For;
j=list-value-lowerbound;
For i=list-value-lowerbound, list-value-upperbound

If (randomly-select()=true)
elements-tojlace(j -list-value-lowerbound + l)=i;
j=j+l;

End If;
End For;

/ * Place the elements * /
Randomly rearrange the elements contained in the elements-tojlace
vector ;
For i=l,length(elements-tojlace)

sublist=succ(x,sublist);
position=~x(sublist) I;
While (x(sublist,position) does not violate the list
length bounds)

sublist=succ(x,sublist);
position=~x(sublist) I ;
If (each sublist has been tried without success) exit and
report failure;

End While ;
x(sublist,position)=elements~to_place(i) ;

End For;
End.

Where:
x is the solution list.
elements-tojlace is a vector containing the element values to place on the
solution list.
randomly-select () is a function that generates a random state from the set
(true, false).
length (i) returns the length of vector i.
succ (x, i) returns i+l unless i = I x I at which i=l.

Algorithm 10: The algorithm for forming an initial solution that satisfies the list constraints.

If problem constraints are present, the next stage is performed. As the constraints are arbitrary

algebraic equations, it is difficult to devise a general algorithm that modifies the generated solution so

that it is feasible. However, a meta-heuristic search engine can be applied to establish a feasible

solution by allowing it to minimise the sum of the constraints' violation (49). When this sum is equal

to 0, a feasible solution has been obtained. Constraint violation is calculated according to the relational

operators that are present in the constraints. For instance, if the sign of a constraint is 5 and the left-

hand side is larger than the right-hand side, the net difference is the amount of constraint violation.

This is shown in Equation (43). The constraint violations (44) - (48) for the other signs are calculated

in a similar manner.

if(rhs, = lhs,),l
(#) cv. =

0, otherwise

N

Minimise cvi
i=l

Where:
N is the number of constraints.
la1 is the absolute value of a.
MAX(a,b) returns the larger value of a and b.
cvi is the constraint violation of constraint i (15i5N).
lhs, is the evaluation of the left hand side of constraint i (15iSN).
rhs; is the evaluation of the right hand side of constraint i (l<iSN).

4.8 Practical Limitations of the System

The general list model for COPS is flexible and broad in its approach. Due to its generality,

implementing a practical solver based on the modelling system presented in Equations (10) - (16)

would be both expensive to develop and slow to run. In order to produce an efficient system that is still

able to solve a wide range of problems (like those outlined in Table l), certain restrictions have been

placed on the general model. These are summarised below:

The list structure is limited to one level of sub-lists as this is adequate to express the

assignment of objects to groups.

There are four categories of Count constraints. The most common of these is (1)

(min-count(x)=l and max-count(x)=l) that indicates that each value appears exactly

once on the list structure (i.e. a permutation). There is also (2) max-count(x)=l (each

value can appear once or not at all) and (3) min-count(x)=l (each value appears at least

once or many times). This attribute may be omitted and hence (4) there is no restriction

on how many times a value can appear on the list.

Count and value range statements apply across the entire list structures rather than to

individual sub-lists.

The more limited list model that the general system implements is given by Equations (50) - (57).

Despite its restricted nature, this modelling system can express all of the problems given in Table I.

Optimise flx)
s. t.

lhs, (x)
>

lbl < I x l < bl i]] r:]

lbv I x(i J) I ubv l l i 5 1x1
I l j 5 Ix(i)l

Where:
lbl is the lower bound of the main list's length.
ubl is the upper bound of the main list's length.
lbl; is the lower bound of sub-list i's length.
ubl; is the upper bound of sub-list i's length.
lbv is the lower bound value that can be contained on the list.
ubv is the upper bound value that can be contained on the list.

4.9 Summary

The implementation of the list modelling system as a practical solver has been described in this

chapter. The system allows algebraic descriptions of COPS to be compiled in order to produce an

individual solver. The syntax of description files is similar to the well-known GAMS language with

some modifications to account for the list modelling notation. Other important issues related to the

production of the general solver are; how a transition is made in the search space (feasibility

maintenance and restoration); how to select neighbours to evaluate at each iteration for GS and TS; the

available incremental cost templates and their output; and how to generate initial feasible solutions to a

range of problems. In addition, the mechanics of the SA, GS and TS search engines are described. The

TS engine has also been implemented as a parallel program that is suitable for MIMD machine

architectures.

In the interests of efficiency, the current system accepts problems that have restricted list models. For

instance, list models can contain only one level of sub-lists. Despite the restrictions, many COPS can

be successfully modeled using this approach. In order to test the effectiveness of the system, a range of

experiments are proposed and performed. These experiments and the results are described in Chapter

5.

Chapter 5: Methodology and Results

5.1 Experimental Overview and Rationale

The system is tested on many standard problems from the literature. As there are a large number of

parameters that can be set, a full test of its performance is impracticable. The main objective is to

choose a suitable subset of problems, problem instances and parameters to determine the effectiveness

of the system. However, there are many variations of SA and TS algorithms that could also be used

and these may give different performances than recorded here. Nevertheless, the general system is

compared against widely available COP solver packages to gauge its performance as well as to draw

some conclusions about different parametric choices.

There are a number of ways that problems can be modeled using list notation (as is evident by

Appendix B). In this work, list models that are best suited to iterative search are used. These are

models that provide undulating cost landscapes rather than flatter surfaces. This is quite a common

approach that has been used in many studies, including Abramson and Randall (1998), Chams et al.

(1987) and Johnson et al. (1991a, 1991b). For instance, there are two different formulations of the bin

packing problem. The formulation adopted here minimises the excess weight for a given number of

bins rather than minimising the actual number of bins. This is because the latter model has many

equivalent packings (effectively flattening the search surface) that can lead to unproductive wandering

through search space. Another example is the graph colouring problem in which a feasible colouring

is sought using a fixed number of colour classes. The common formulation requires that the number of

colour classes is minimised. The other problem formulated in this manner is the maximum clique

problem.

The computing platform that is used to conduct all of the experiments discussed herein is an IBM SP2

consisting of 22 RS6000 model 590 nodes connected by an MIMD architecture7. Each node has a peak

performance of 266 MFLOPs (Millions of Floating Point Operations Per second). This computer is

operated by Queensland Parallel Supercomputing Facility (QPSF) which is a consortium funded by

Griffith University, University of Queensland, Queensland University of Technology, University of

Southern Queensland, James Cook University, University of Central Queensland, Bond University and

the Commonwealth Government of Australia.

The sequential SA, TS and GS runs use only a single RS6000 processor.

5.2 Problems Classes and Instances

The problems used to test the general system are representative of those given in Table 1. In some

cases, all published instances have been used (such as for the Car Sequencing Problem), otherwise a

few instances of each problem type are used.

Table 5 describes each of the COPS. The Problem heading gives the broad name of the problem while

Instance is the name that is used to refer to a particular problem. The Description column provides a

brief description of the size of the problem instance. The last two columns indicate the Optimal Cost

(if proven optimality has previously been obtained for that problem in the literature) and the Best

Known Cost (otherwise).

Problem

Car Sequencing Problem
(csp)

Bin Packing Problem
(BIN)

Graph Colouring Problems
(GRAPH)

Uncapacitated Single
Allocation P Hub
Problem(USApHMP)

Problem
Sources

Smith et al.
(1 996b)

Beasley
(1990)

Johnson et
al. (1991b)

Emst and
Krishna-
moorthy
(1996b)

Instance

n20t l
n20t2
n20t3
n20t4
n20t5
n40t 1
n40t2
n40t3
n40t4
n40t5
n60t 1
n60t2
n60t3
n60t4
n60t5
n80t 1
n80t2
n80t3
118014
n80t5
binlal
binla2
bin l a4
binla6
bin2al
bin2a2
bin2a3
bin2a4
bin3al
bin3a2
bin3a3
bin3a4
C125.1
C125.5
C125.9
C250.1
C250.5
C250.9
ap20a2
ap20a3
ap20a4
ap20a5
ap25a2
ap25a3
ap25a4
ap25a5

Description

20 cars, class 1
20 cars, class 2
20 cars, class 3
20 cars, class 4
20 cars, class 5
40 cars, class 1
40 cars, class 2
40 cars, class 3
40 cars, class 4
40 cars, class 5
60 cars, class I
60 cars, class 2
60 cars, class 3
60 cars, class 4
60 cars, class 5
80 cars, class I
80 cars, class 2
80 cars, class 3
80 cars, class 4
80 cars, class 5

120 i tems
120 items
120 items
120 items
250 items
250 items
250 items
250 items
500 items
500 items
500 items
500 items

125 nodes, 736 edges
125 nodes, 389 1 edges
125 nodes, 696 1 edges
250 nodes, 32 18 edges
250 nodes, 15668 edges
250 nodes, 27897 edges

20 nodes, 2 hubs
20 nodes, 3 hubs
20 nodes, 4 hubs
20 nodes, 5 hubs
25 nodes, 2 hubs
25 nodes, 3 hubs
25 nodes, 4 hubs
25 nodes, 5 hubs

Optimal
Cost

48
49
49
48
99
1 00
102
100
198
20 1
202
204

172816.7
151533.1
135624.9
123130.1
175542.0
155256.3
139197.2
123574.3

Best Known
Cost
5 8
40
29
10
150
146
94
66
33
352
238 .
152
105
58
562
330
215
146
82

772

5
17
43
8

29
71

' Problems gapl-1 - gap8-l are maximised while gapA5-100 - gapA20-200 are minimised. This is to keep the results consistent
with Chu and Beasley (1997).

Problem

Uncapacitated Multiple
Allocation P Hub
Problem(UM ApHMP)

Quadratic Assignment
Problem(QAP)

Traveling Salesman
Problem(TSP)

Generafised Assignment
Problem(GAP)'

Graph Partitioning
Problem(GPP)

Multiple Knapsack

Problem
Sources
Ernst and
Krishna-
moorthy
(1996a)

Burkard et
al. (1997)

Reinelt
(1991)

Beasley
(1 990)

Johnson et
al. (1991a)

Beasley
Problem(MKP)

Maximum Clique
Problem(MCP)

Time Tabling Problem

Instance

ap lOa2
aplOa3
ap lOa4
ap l O d
nug08
nugl2
nugl5
nug20
nug30
ste36a
tho40
esc64a
sko72
will00
gr24

swiss42
hk48
ei15 1

brazi158
st70

kroA 100
ch130
a280

gapl-l
gap2- l
gap3-l
gap4- l
gap5- l
gap6- l
gap7-l
gap8-l

gapA5- 100
gapA5-200
gapA10-100
gapA 10-200
gapA20-100
gapA20-200

G124.02
G124.M
G124.08
G124.16
G250.01
G250.02
G250.04
G250.08
weingl

(1990)

Battiti and
Protasi
(1 995)

Abramson
and Dang

(1993)

Description

20 nodes, 2 hubs
20 nodes, 3 hubs
20 nodes, 4 hubs
20 nodes, 5 hubs

. 8 facilitiesllocations
12 facilitiesllocations
15 facilitiesllocations
20 facilitiesllocations
30 facilitiesllocations
36 facilitiesllocations
40 facilitiesllocations
64 facilitiesllocations
72 facilitiesllocations
100 facilitiesllocations

24 cities
42 cities
48 cities
51 cities
58 cities
70 cities
100 cities
130 cities
280 cities

15 jobs, 5 agents
20 jobs, 5 agents
25 jobs, 5 agents
30 jobs, 5 agents
24 jobs, 8 agents
32 jobs, 8 agents
40 jobs, 8 agents
48 jobs, 8 agents
100 jobs, 5 agents
200 jobs, 5 agents
100 jobs, 10 agents
200 jobs, 10 agents
100 jobs, 20 agents
200 jobs, 20 agents

124 nodes, 298 edges
124 nodes, 635 edges

124 nodes, 1240 edges
124 nodes, 2542 edges
250 nodes, 662 edges

250 nodes, 1224 edges
250 nodes, 2566 edges

28 items, 2 knapsacks
pb6

weishl2
sent01
sent02

weish 15
weish25
weish29

johnsong-2-4
johnson16-2-4

keller4
c-fat200- 1

brock200-2
brock200-3
brock200-1

hdtt4
hdtt5
hdtt6
hdtt7
hdtt8

Optimal
Cost

163603.94
131581.79
107354.73
86028.88

107
289
575
1285
3062

1272
1273
11461
426

25395
675

21282
61 10
2579
336
434
580
656
563
76 1
942
1133
1698
3235
1360
2623
1158
2339

141278

Best Known
Cost

4763
120258

58
33158
136522

13
63
178
449
29
114
357
828

40 items, 30 knapsacks
50 items, 5 knapsacks

60 items, 30 knapsacks
60 items, 30 knapsacks
60 items, 5 knapsacks
80 items, 5 knapsacks
90 items, 5 knapsacks
28 nodes, 210 edges

120 nodes, 5460 edges
17 1 nodes, 9435 edges
200 nodes, 1534 edges
200 nodes, 9876 edges
200 nodes, 12048 edges
200 nodes, 14834 edges
i 20 tuples, 30 periods
150 tuples, 30 periods
180 tuples, 30 periods
210 tuples, 30 periods
240 tuples, 30 periods

776
6339
7772
8722
7486
9939
9410

4
8

12

0
0
0
0
0

11

12
15
21

Table 5: Problem classes and instances that are used in this study. Note: as objective costs are typically
reported dimensionless in the literature, units are not shown here.

Problem

5.3 Parameter Settings

The performance of the system is tested by varying the following key groups of parameters:

Problem
Sources

The transition operators and the probability of applying these operators (see Table 6)

The search engine specific parameters (see Table 7)

The parameters are set relatively coarsely. This is because the amount of computing time that would be

involved in testing all combinations of parameter settings would be prohibitive. Therefore, the

parameter settings outlined here are used to conduct tests that consist of runs involving small amounts

of Central Processor Unit (CPU) time (referred to as the standard tests). Based on the outcome of

these experiments, suitable parameter settings for different problem types can be derived.

Instance

ttgenl
ttgen2

The most time consuming set of experiments is the variation of the transition operator probabilities. A

discussion of probability settings can be found in Section 3.4.1.2. As such, a test set for each problem

type has been devised and these are given in Table 6. For instance, the GAP has five settings in which

Description

275 tuples, 30 periods
300 tuples, 30 periods

the probabilities of the move and swap operators are { {1,0}, {0.5,0.5}, {0.2,0.8), (0.8,0.2}, adaptive)

respectively. Note: for the adaptive setting, a=0.001 and N=10 is used.

Optimal
Cost

0
0

Each set of probabilities for a particular problem type is given a TRANSITION SET REFERENCE NUMBER

in order to uniquely identify the set in subsequent tables. Due to the large amount of computer time

that could be required, a full exploration of transition probability parameter space (according to Table

6) will only occur for the SA runs. The best transition probability set obtained for a particular problem

type with SA is used for the GS and TS runs (this process is described in Section 5.8.3.1).

Best Known
Cost

Table 6: Transition probability settings for each problem type.

PROBLEM SET REFERENCE
CLASS NUMBER

CSP 1
GPP I
GAP 1

2
3
4
5

BIN 1
2
3
4
5

GRAPH 1
2
3
4
5

USApHMP I
2
3
4
5
6

T r P I
2
3
4
5

TSP 1
2
3
4
5
6
7
8

Q AP I
2
3
4
5
6
7

ppp

8
MCP 1
MKP 1

2
3
4
5
6

UMApHMP 1
2
3
4
5
6

Table 7 gives a brief description of the parameters required for the SA and TS engines (Note: GS needs

no engine-specific parameters). A description of the implementation of each search method is given in

Section 4.6.

Move

1
0.2
0.8
0.5

1
0.2
0.8
0.5

1
0.2
0.8
0.5

1
0.5
0.2
0.8
0.4

1
0.2
0.8
0.5

0.2
0.4
0.8
0.3

Swap
1
1

0.8
0.2
0.5

0.8
0.2
0.5

0.8
0.2
0.5

0.5
0.8
0.2
0.4

0.8
0.2
0.5

1

0.33
0.8
0.1
0.1

1

0.33
0.8
0.1
0.1

PROBABILITY

Inversion

1

0.33
0.1
0.8
0.1

1

0.33
0.1
0.8
0.1

OF
TRANSITION

Reposition

0.2

1
0.33
0.1
0.1
0.8

1
0.33
0.1
0.1
0.8

0.2
0.4

0.3

0.5
0.25
0.1
0.4

0.2
0.1
0.1
0.1
0.33

0.5
0.25
0.1
0.4

0.2
0.1
0.1
0.1
0.33

SELECTING
OPERATORS

Add

0.33
0
0.5
0.8
0.2

0.2

0.2
0.33

Drop

0.33

1

1

Change

---,-

1
0.33

Adaptive

1

1

1

1

1

1

1

Table 7: Search engine-specific parameters.

Search Engine
S A
TS

GS

5.4 Termination Conditions

Parameters
Reheating run length=(1000,5000, 10000)x(ubv - lbv)
Tabu list length=(Problem sizeY)
Neighbourhood evaluation probability=(O. 1, 0.5, 1 .O)
Neighbourhood evaluation probability=(O.l, 0.5, 1 .O)

For the standard trials, each run on the SP2 platform receives 1600 seconds of CPU time (chosen due to

the constraints of the computer's job scheduling system). If the optimal solution is known for a

particular problem instance, the run is terminated once this has been reached. As mentioned in Section

4.6.2, GS terminates once it encounters a local optimum.

For those problems that: (a) the system has not reached the optimal cost in the trial runs; or (b) the

optimal is not known and the best known has not been reached or improved upon in the trial runs;

further tests are carried out with the best parameter set. These are referred to as the extended runs and

each terminates after 6400 seconds of CPU time has elapsed.

5.5 Benchmarking Against Other Software Packages

In order to evaluate the performance of the general system, it is compared with existing optimisation

packages. A variety of software packages, ranging from commercial OR codes to special-purpose

heuristics for particular problems, have been obtained for this purpose. While it is not possible to test

all alternative packages, it is believed that these will give a good indication of the general system's

performance. Table 8 gives a brief description of each package.

Table 8: Optimisation packages that are compared with the general solver.

Name
Optimisation Subroutine Library (OSL)
LINDO

tsp-solve

QAPS IM
QAPBB

SA-CSP

dfmax, dfclique

Recursive Largest First (RLF)

Setting the size of the tabu list to an indicator of problem size has been used with some success by Taillard (1991, 1997). For
instance: the tabu list size for gapl-1 (15 jobs) becomes 15, and hk48 (48 cities) is 48.

Problem(s)
all (except TTP and BIN (a))
all (except TTP and BIN (a))

TSP

Q AP
QAp

CSP

MCP

GRAPH

Description
A commercial OR package by IBM (IBM 1990).
A commercial OR package by Lindo Systems (Schmge
1997).
A collection of heuristic solvers for the TSP. This
product is from the GNU Free Software Foundation
and selects the most appropriate solver for each type of
TSP (Hurwitz 1994).
An SA solver for the QAP (Burkard et al. 1997).
A Branch and Bound code for the QAP (Burkard et al.
1997).
A special purpose SA code provided by K. Smith and
used in Smith et al. (1996b).
Special purpose branch and bound codes used in Battiti
and Protasi (1995).
A heuristic used by Johnson et al. (1991b).

These packages are run according to the specifications given by their technical documentation. Both

quality of solution, and time to reach the best solution, are recorded for each package on the problems

that are run. The 0-1 ILP formulations of the test problems used by Lindo and OSL are given in

Appendix C.

5.6 Feasibility Restoration Runs

In order to test the effectiveness of the feasibility restoration implementation outlined in Section 4.3,

the GAP instances from Table 5 are used. The GAP was chosen as the test-bed as it is the only

problem type in the test collection that has problem constraints and can utilise the move transition

operator. Feasibility restoration will be tested with the SA and TS engines.

5.7 Parallel Runs

The primary concern of testing the parallel TS engine is the evaluation of the parallel speedup and

efficiency of the TS engine, rather than solution quality (as this is tested extensively with the sequential

version of the code). Table 9 lists the problems and problem instances that are used to test the paralle!

tabu engine (a subset of those in Table 5). The best transition operator set for each problem type is

used. This is determined from the standard runs using the process outlined in Section 5.8.3.1. Each

problem is run for a fixed number of iterations on dedicated nodes. Wall clock time as opposed to

CPU time is used to measure the time taken for each run. The number of processors is also varied from

I node to 12 nodes in order to determine the effectiveness of the parallel code.

The guidelines for reporting parallel experiments as outlined in Barr and Hickman (1993) are followed.

The most common measure of effectiveness of a parallel algorithm is given by speedup. Speedup is

defined by (58) (Ban and Hickman 1993).

Time to solve a problem with the fastest serial

code on a specific parallel computer
speediip =

Time to solve the same problem with the parallel

code using P processors on the same computer

According to B a r and Hickman (1993), average values should not be used in (58) and would require a

new definition of speedup. As a result of this, only one seed per combination of problem type and

processor grouping is used.

In order to ascertain the effectiveness of the parallel code, the efficiency for each problem is computed

by Equation (59).

speedup
efficiency =

P

Speedup and efficiency tables and graphs are produced from the collected data.

Table 9: Problem classes and instances that are used to test the parallel tabu engine.

5.8 Reporting the Results

A large amount of raw data is gathered as a result of these experiments. In order that any valid

conclusions are reached, the results are analysed and reported in a succinct manner that is recognised

by the operational research and broader scientific community. To accomplish this, the reporting of the

results is divided into three categories:

Numerical Data

Qualitative Analysis

Statistical Analysis

As it is expected that the data will be highly non-normally distributed, non-parametric descriptions and

analyses are predominately used.

5.8.1 Numerical Data

Each combination of problem instance, search engine and parameter set is run across 10 random seeds

(referred to as a trial set). The random seeds control probabilistic search engine choices, such as which

neighbour to evaluate in TS and GS, as well as the generation of the initial solutions. Because many

problem instances are used, the application of different random seeds will reduce variability in the

results (Barr et al. 1995). For each run, the best solution cost and the corresponding CPU time'' is

recorded. This information is presented in a series of tables in the form of summary statistics. Each

trial set is described using:

Min -The minimum result of the trial set.

Med - The median (mid-point) of the trial set. This is a measure of the central tendency

of the data.

Max - The maximum of the trial set.

IQR - The Inter Quartile Range of the trial set. IQR is a measure of the dispersion of the

results. It is defined as the difference between the first and third quartile points of the

trial set (Emory and Cooper 1991).

5.8.2 Qualitative Analysis

The overall trends present in the result tables are highlighted. The qualitative analyses are made in

terms of the solution quality achieved by the general solver as well as the amount of runtime required

to obtain these solutions.

5.8.3 Statistical Analysis

Statistical analyses are performed in order to determine the effect of the transition operator sets and

engine-specific parameters. As well as this, statistical analyses are used to calculate the best overall

software package for each problem type. An a of 0.05 is used throughout.

5.8.3.1 The Effect of the Transition Operator Sets and Engine-specific Parameters

As well as the descriptive statistics mentioned previously, tests for significant differences in solution

quality (gained from varying the transition operator sets and the engine-specific parameters for each

problem) are conducted. This takes the form of the Kruskal-Wallis procedure (discussed in Sprent

(1993)) with post-hoc analysis in order to detect individual differences.

10 Runtimes are rounded to the nearest second due to the small variability in the SP2 timimg mechanism. For instance, a runtime
of 0.35 seconds is rounded down to 0.

5.8.3.2 Overall Comparison

Statistical analysis can also be used to obtain a quantitative measure of the performance of the general

system compared with other software packages. The analysis consists of two phases.

The first phase rank-orders the performance of each applicable code on every problem instance. This is

achieved by using the Kruskal-Wallis procedure. If a significant difference is detected on a particular

problem instance, a post-hoc test is performed in order to determine where the differences lie. From

this, the solvers can be ordered. Performance is calculated primarily on objective cost. If two

algorithms are indistinguishable using the objective cost, runtime is used instead. For some problems

(such as GRAPH and MCP), direct comparison between the competing solvers is not possible as the

objective functions measure different quantities.

The second phase determines the best overall solver for each problem type. This is achieved by

analysing the ranks for each solver (generated in the first phase) again using the JSruskal-Wallis test. If

a significant difference is detected, post-hoc procedures are carried out to determine where these

differences lie. From this, the most effective solvers for a given problem type can be deduced. As

RLF, dfmax and dfclique utilise a different objective function to the one used by the general solver, a

ranking of their performance is made using a subjective analysis.

5.9 Results

5.9.1 Standard Runs

The standard run tables (Table 45 - Table 47) are presented in Appendix A due to their large size. The

following descriptions are qualitative analyses of the performances of the SA, TS and GS engines for

each problem type based on a review of these tables. These analyses highlight the main trends present

in the data with particular reference to the effects of the transition operator sets. A quantitative analysis

using statistical methods can be found in Section 5.10 in which the performances of the solvers for each

problem type are rank ordered.

Note: in all cases except CSP and some GAP instances, the GS engine performed poorly. Typically GS

returned inferior quality solutions in very short runtimes, compared with SA and TS.

The search engines (in particular SA and TS) produced very good solutions, frequently finding better

solutions than reported in Smith et al. (1996b). There was only one problem instance (n40t5) for which

the engines could not obtain the best-known solution. SA and TS consistently produced a minimum

solution cost of 354 whereas the Hopfield-Tank neural network used by Smith et al. (1996b) reached a

cost of 352.

BIN -

Using SA, transition operator sets that incorporated the swap operator (sets 2 - 5) were all very

effective in finding the prescribed bin packings. The use of the move operator in isolation (set 1)

produced costs that were considerably worse than those obtained for the other sets. The TS engine

found it difficult to produce the required bin packings for the large problem instances (i.e. bin3a1,

bin3a2, bin3a3 and bin3a4).

The smallest colouring for each problem instance attempted in Johnson et al. (1991b) is also used here

(see Table 5 for these). These colourings could only be obtained by Johnson et al. (1991b) after many

hours of computer processing time (and not at all for C125.9 and C250.9). As the final costs achieved

by the SA and TS engines are relatively close to 0, it is not unreasonable to conclude that these

solutions are of good quality.

The optimal solutions were frequently found using SA and TS. While transition operator set 1

performed consistently well in terms of solution quality, the runtimes were typically longer than for the

other sets (sets 2 - 6). It is interesting to note that for this problem type, the use of the move operator

in isolation (set 1) outperforms the other sets, while for the problems BIN, GAP and lTP, the same

transition operator set produced the worst results.

For SA, transition operator sets 2,3,4 and 6 performed equally well in terms of solution quality. TS

could not produce the optimal solution for aplOa4 and aplOa5, though it was at most 4% away in the

worst case.

For SA, the use of the swap operator helped to produce more efficient solutions than inversion or

reposition. It is noted that the application of swap transition perturbs the current solution less than

reposition and inversion. In general, the system performs extremely well on QAPs. This is

characterised by the fact that TS finds solutions for the largest problem instance (wi1100) that are at

most 1.5% away from the best-known solution cost. This is also achieved with a small amount of

computational effort.

TSP -

For SA, the use of the inversion operator helped to produce more efficient solutions than swap or

reposition. Like the QAP, it is noted that the application of inversion transition perturbs the current

solution less than reposition and swap. The solver produced very poor solutions for a280. As this is a

very large problem instance, it is expected that substantially more computer processing time would be

required in order to find reasonable quality solutions.

The SA engine frequently produces optimal solutions using transition operator sets 2 - 5. Very poor

performance is recorded for SA using the move operator in isolation (transition operator set 1). The

best results obtained by the SA and TS engine are comparable with that of the specialised GA meta-

heuristic implementation of Chu and Beasley (1997) in terms of both solution quality and runtime. It is

interesting to note that GS performed well on the larger GAPS (gapA5-100 - gapA20-200) as it

regularly found the optimal solution.

The SA engine is a very efficient solver for this problem type. The only instance that it could not solve

as well as Johnson et al. (1991a) was G250.01. In this case, it produced a solution that was 3% from

the best-known cost. TS found the optimal solution for the problem instances G124.02 - G124.16.

However, for the problems with 250 vertices, TS produced near optimal solutions. It is believed that

was the case as it had to evaluate a large number of neighbours at each step (up to 31 125). Longer TS

runs should give improved solutions (see Section 5.9.2).

MKP -
The SA engine solved all the MKP problem instances to optimality using transition operator set 4. The

performance of the TS engine (using this set) was similar except that the optimal solution could not be

produced for weish25 and weish29.

MCP -

Both SA and TS could not obtain the optimal solutions for the problem instances as recorded in Battiti

and Protasi (1995) (except for keller4). However, both search engines typically achieved the same

solution cost for each problem instance. As a result of this, further investigation was undertaken. The

SA engine was run using the alternative formulation that maximised the number of nodes in the clique

(the list formulation is provided in Appendix B). These results show that the best-known result could

only be gained for the problem instances keller4 and johnson16-2-4 (Table 10).

Table 10: Largest clique sizes achieved with the SA engine using the alternative list formulation for the
MCP given in Appendix B.

MCP Problem Instance

johnson8-2-4
johnson 16-2-4
keller4
c-fat200- 1
brock200-2
brock200- 1
brock200-3

TTP -

The SA engine is extremely efficient for this problem type as it records better solutions than Abramson

and Dang (1993) for the largest problem instances (hdtt7 and hdtt8). It is possible that this is due to the

fact that Abramson and Dang (1993) only used the equivalent of the move operator whereas the general

solver employed this operator in conjunction with swap transitions. As the problem instances were

generated to have solutions that represent clash-free time tables (i.e. a cost of 0), it can be concluded

the SA engine finds the optimal solution to these difficult (Abramson and Dang 1993) problems. TS

could not find the optimal solutions for the problem instances hdtt6 - hdtt8.

Optimal / Best
Known Solution Cost
4
8
I I
12
12
2 1
15

5.9.2 Extended Runs

Maximum Cliques
Achieved using SA Engine
3
8
1 1
I I
10
18
13

Some of the test problem instances were run for longer periods of time using SA and TS in order to

determine whether improved results could be obtained. Each problem instance was chosen as the best-

known or optimal cost could not be found in the standard runs for it. The amount of CPU time for each

run is increased from 1600 seconds to 6400 seconds. Table 1 land Table 12 show these results. As

observed in Section 5.9.1, GS tends to return poor locally optimal solutions after short amounts of

runtime. It is for this reason that the Extended Runs were only be performed for SA and TS.

Problem Instance

BIN bin3a2

bin3a4

GRAPH C125.1

C125.5

C125.9

C250.1

C250.5

C250.9

USApHMP ap25a5

UMApHMP ap10a4

ap 1035

Q AP ste36a

lho40

sko72

Optimal l
Best Known
Cost
0

0

0

0

0

0

0

0

123574.3

107354.7

86028.9

4763

120258

33158

Neighbour
Probability

0.1
0.5
I
0.1
0.5
I
0.1
0.5
I
0.1
0.5
1
0.1
0.5
I
0.1
0.5
1
0.1
0.5
1
0.1
0.5
1
0.1
0.5
1
0.1
0.5
1
0.1
0.5
1
0.1
0.5
1
0.1
0.5
I
0.1

Cost

Min
0
3
7
2
5
13
6
2
2
9
4
4
6
2
2
17
13
16
14
14
18
13
11
16
123659.7
123659.7
123659.7
1076 12.1
108262.5
109391.4
86794.76
87761.12
86794.76
4763
4873
4944
120329
120316
120803
33196

Runtime

Min
2113
2378
3722
1874
2705
3792
225
26 1
726
379
774
760
295
1283
87 1
1227
908
1331
360
1978
3121
740
2988
4319
36
267
23
6 1
20
698
396
717
242
680
34
15
665
220
15
3694

Med
1.5
5.5
15.5
4.5
14
18
7
3
3
10
5
6
6
2
3
19
16
I9
2 1
17.5
20.5
16.5
15.5
19
123766.1
123659.7
1283 19.8
108262.5
109260.1
110956.9
87469.62
88132.31
89183.2
4765
5001
5215.5
120403
120823.5
123163
33273

(seconds)

Med
4738.5
4088
4679.5
4897.5
563 1
5394
1791
2154.5
1610.5
1988.5
2619.5
2386.5
2397
4288
2869.5
3372
2923.5
4016.5
224 1
5004.5
4963
3002
5554
5214
2992.5
3095
368.5
2091.5
2065
2696.5
3062.5
3854
1569
2260
716.5
95.5
1983
2746
87
6082.5

Max
3
14
33
5
39
27
9
5
5
12
7
7
7
3
4
22
18
23
23
18
23
19
19
22
124683.5
123659.7
135708.2
1095 10.7
1 10508.3
1 11845.8
88572.9 1
88645.64
89643.23
4862
5270
5485
120620
121615
125789
33428

IQR
1
2.5
8
2
7.75
7.5
0.75
0.75
0.75
1.75
0.75
I
I
0.75
0.75
2.5
2.5
2
0.75
1.75
2.5
2.5
2
1.75
916.83
0
5322.22
260.37
1020.41
1403.38
103 1.99
352.14
1 179.22
1 1.75
169.25
228.5
75.75
773
1530
32

Max
6206
6219
5713
6162
6339
6280
4922
6275
5488
6126
6212
5536
5834
5969
5968
500 1
5537
5501
5490
5868
6168
4997
6329
605 1
5660
6203
4020
5561
6088
5903
6309
6275
4463
3447
294 1
1902
3356
6372
3 24
6343

IQR
2185.75
1434.25
917.5
2016
1741
761.75
2536.75
2203.75
2456
3698
3949
1655.5
2759.5
1377.5
3561.25
1849.75
2266.75
1378.5
3035
1632.25
690.25
851.5
71 1.25
773.25
2278.25
2572.5
805.5
4132
4226.5
2367.75
3268
2994
2682
791.25
1098
343.25
547.5
2805
179.75
435.25

Problem Instance

will00

TSP kroA 100

ch130

a280

GAP gapA 10-200

gapA20-200

GPP (3250.1

G250.2

G250.4

G250.8

M KP weish25

weish29

TTP hdtt6

Optimal I
Best Known
Cost

136522

21282

6110

2579

2623

2339

29

114

357

828

9939

9410

0

Neighbour
Probability

0.5
1
0. I
0.5
1
0.1
0.5
1
0.1
0.5
I
0.1
0.5
I
0.1
0.5
1
0.1
0.5
I
0. I
0.5
1
0. I
0.5
I
0. I
0.5
1
0. I
0.5
I
0.1
0.5
I
0. I
0.5
I
0.1
0.5
I

Runtime

Min
2951
1813
2864
2961
5256
491
841
1467
707
1278
1921
6337
6355
6361
144
236
638
143
316
504
1650
77 1
1599
613
1622
2969
2189
2009
2969
1865
2381
3141
679
192
165
377
484
75
337
1360
1384

Max
607 1
6379
6320
6365
6387
5329
6226
5791
6175
6392
4949
6380
6400
6400
6001
3364
927 1
3808
4804
6066
6297
6352
5742
6152
6226
6407
5508
6054
6322
5859
6181
5853
6152
4284
1128
6032
6368
630
5944
5490
6235

(seconds)

Med
5101
4956
5425.5
6052
6069
1472
3708
3620.5
3157
3924
3803
6362.5
6393
6398.5
1323.5
397.5
1039
1425.5
2208
838
3332
5474
3845
3684
5318
4490.5
4209
4808
5810
5121.5
4768
4455
2892.5
1491.5
326
4171.5
2838
267
3123.5
2982
4187

IQR
589.25
2371.75
1 1 12.25
838.5
474.75
2890.25
3741.75
1976
2065
1278
2029.5
18.75
7
2
1446.75
1533.25
3103.25
2684
1616.25
318
2863.5
3 208
2857
2223
1060
1886.5
1496.5
1702.25
2157.25
2196
2286.5
1564.25
876.25
2449.5
3 14.25
3420.25
2785
230
23 14.25
1872
1608.5

Cost

Min
33344
33272
136825
136859
137315
21415
2 1370
21363
6187
6209
6164
3527
15729
22475
2630
2625
2624
2348
2341
2341
32
47
53
117
127
127
357
368
379
830
838
855
9837
9832
9832
9207
9130
9023
9
2
0

Med
33541
33590
137134
137440.5
137594
21968.5
21691.5
21952.5
6290
6320.5
6334.5
3607
16806.5
23247
263 1
2626
2624.5
2350
2342.5
2343
37.5
5 1
56
122
130
138
370
380.5
386.5
834.5
858
869.5
9857
9832
9832
9266
9206.5
9023
11.5
3.5
2

Max
33834
33845
137381
137976
137813
22380
22341
22954
6407
6453
6443
3801
17439
24268
2633
2629
2626
235 1
2345
2346
44
62
65
126
152
151
380
39 1
396
847
877
90 1
9889
9883
9832
9345
9345
9023
13
5
4

IQR
149.25
203.5
261.25
422.25
269
2705.25
362.75
597.5
43.5
77.5
114.75
102.5
326
722.75
I
2.5
1
I .75
2
1.75
5.25
4.25
5.25
5.25
7
12.5
6.5
8.25
8
9.75
14.25
9.75
24.75
23.25
0
86.75
207.75
0
1
I
1.75

-
u

8
E

E

=

m-m5?;;22

Z X ?o-*
-l-c-fl-+

SZI.e\oI=rnrn

I. P gg
52 . = e
Z R

El i j
g g ;;
0 2 8 0

a, U

Tv ! - ?
o o - o o -

0

a

Table 11 and Table 12 show that the TS engine has benefited most from the extra runtime as it

frequently found the optimal, best-known or improved cost within the extra time. In nearly all cases,

SA finds the same solution as it did in the standard runs and spends the rest of the time trying to find

better quality solutions. This may be due to the use of the Q8-7 temperature schedule (Connolly 1990,

1992). It is possible that the schedule is not sufficiently reheating the temperature to adequately escape

deep local optima in the final stages of the search process. Further investigation would be required to

verify and remedy this situation.

5.9.3 Other Software

Table 13 to Table 17 are produced as a result of running the heuristic codes while Table 18 and Table

19 show the results of running Lindo and OSL respectively. For those software programs that can

produce proven optimal solutions, the column "Runtime to Proven Opt" is included. In the case of

dfmax, the output displays the time at which each new solution cost is recorded, therefore the amount

of CPU time required to find the first instance of the optimal solution is shown. This column is labeled

"Runtime to Opt". There are some abbreviations used in these tables. These are:

CNS indicates that the algorithm Could Not Solve the problem with the given amount of

computational time (6400 seconds).

TB indicates that the resulting model exceeded the memory and disk space storage

capacity of the hardwarelsoftware platform.

- indicates that a result could not be obtained.

Table 13: CSP results (objective costs and runtimes) for SA-CSP.

" This solver runs 20 sequential SA searches. See Smith et al. (1996b).

Problem instance

n20t l
n20t2
n20t3
n20t4
n20t5
n40t 1
n40t2
n40t3
n40t4
n40t5
n60t 1
n60t2
n60t3
n60t4
n60t5
n80t 1
n80t2
n80t3
n80t4
118015

Best Known
cost

58
40
29
10
150
146
94
66
33
352
238
152
105
58
562
330
215
146
82
772

Med

61
42
31
10.5
150
150
100.5
70
35
362
242.5
171
112
63
568
341
231
154
89
780

Min

58
40
30
10
150
146
94
67
33
354
238
155
108
60
566
331
215
150
86
772

IQR

3.25
2
1
I
0
4
3
1.25
2.5
1
6
13
1.25
2.5
8.5
6.25
5.75
2.25
3
2.5

Max

63
43
3 1
12
150
158
105
73
39
362
252
177
115
67
578
358
252
158
96
790

Total Runtime
(seconds)"

10
10
9
8
8
12
1 I
11
10
10
14
14
14
13
12
18
17
17
16
16

Table 14: Results of running tsp-solve on the TSP.

Problem Instance
gr24
swiss42
hk48
ei15 1
brazil58
st70
kroA I00
ch130
a280

Table 15: Results of running dfmax and dfclique on the MCP problem instances.

Optimal Cost
1272
1273
11461
426
25395
675
21282
61 10
2579

Problem
Instance

brock200-1
brock200-2
brock200-3
c-fat200- I
johnson8-2-412
johnson16-2-4
keller4

Table 16: Results of running RLF on the GRAPH problem instances.

Cost
1272
1273
11461
426
25395
675
CNS
CNS
CNS

Optimal I
Best Known
Cost
2 1
12
15
12
4
8
I I

Problem Instance

C125.1
C125.5
C125.9
C250.1
C250.5
C250.9

Runtime (seconds)
0
0
0
46
5
559
CNS
CNS
CNS

dfmax

Table 17: Results of running QAPBB and QAPSIM on the QAP problem instances.

Nodes in
Clique

21
12
15
12
4
8
11

dfclique

Best Known
Colouring
5
17
43
8
29
71

" These progmms record an optimal of 4 for johnson8-2-4. However the general solver, LINDO and OSL all record a value of 3
for the same problem.

Nodes in
Clique

21
12
15
12
4
8
1 1

Problem

nug08
nugl2
nugl5
nug20
nug30
ste36a
tho40
esc64a
sko72
will00

Runtime to
Opt (seconds)

176
0
0
0
0
0
0

Runtime to proven
Opt (seconds)

67 1
I
8
0
0
28
15

Number of
Colours obtained
6
2 1
5 1
10
36
85

Optimal I Best
Known Cost
107
289
575
1285
3062
4763
120258
58
33158
136522

Runtime to
proven Opt
(seconds)
665
I
8
0
0
28
15

Runtime
(seconds)
0
0
0
0
0
0

QAPBB

Cost

107
289
CNS
CNS
CNS
TB
TB
TB
TB
TB

QAPSIM

Runtime to Proven
Opt (seconds)
0
16
CNS
CNS
CNS
TB
TB
TB
TB
TB

Cost

109
300
585
1299
3168
5050
124219
58
33617
137539

Runtime
(seconds)
0
0
0
0
1
1
1
1
10
40

1

Table 18 and Table 19 display the results of solving the test COPS with commercial ILP packages.

There are a number of additional abbreviations used in these tables. These are:

(a) refers to the penalty formulation, while (b) refers to the formulations that either

minimise or maximise groups (see Section 5.1).

CNFLM indicates that a linear model could not be formulated.

opt denotes that the optimal solution cost was reached.

all represents all the problem instances of a problem type.

a-b indicates problem instance a through problem instance b (according to the order

given in Table 5).

USApHMP and UMApHMP were not solved with Lindo and OSL because comparable results exist in

the literature (Ernst and Krishnamoorthy 1997b). Table 20 and Table 21 give the results for these two

problem types using highly refined MILP (Mixed Integer Linear Program) formulations. Note: the

standard formulations of these problems as used by Campbell (1994) were not solved in Ernst and

Krishnamoorthy (1997b) because of poor performance with the increase in problem size beyond 10

nodes.

GPP

MKP

gap3- 1

gap4-l

gap5- 1

gap6- 1

gap7- l

gap8-l

gapA5- I00

gapA5-200

gapA 10- 100

gapA10-200

gapA20-100

gapA20-200

all

weingl

weish12

weishl5

weish25

weish29

opt

opt

opt

opt

opt
CNS

opt

opt

opt

opt

opt
CNS

TB

opt

opt

opt

opt

opt

62

9

17

73

207

CNS

2

4

16

8

18

CNS

TB

1

2

I

- 7
1

Table 18: The results of running Lindo on the problem test suite.

Problem

MCP (a)

MCP (b)

TTP

Problem instance

sent01

sent02

pb6

brock200- 1 -
keller4
johnson8-2-4 (4
node clique)
brock200- 1 -
keller4
johnson8-2-4

all

Problem

CSP

BIN (a)

BIN (b)

GRAPH (a)

GRAPH (b)

PAP

TSP

GAP

GPP

MKP

Cost

opt

opt

Opt
TB

1

TB

3

CNFLM

Problem Instance

n20t I - n20t5

n4Otl - n80t5

binlal - binla6

bin2al - bin3a4

all

C125.1

C125.5-C250.9

C125.1

C125.5-C250.9

aII

all

gapl-l

gap2- 1

gap3- 1

gap4- 1

gap5-1

gap6- 1

gap7 - 1

gap8-1

gapA5- I00

gapA5-200

gapA 10- 100

gapA 10-200

gapA20- 100

gapA20-200

G124.2

G124.4 - G250.8

weing 1

weishl2

weish 15

weish25

weish29

sent0 1

sent02

pb6

Runtime to
Proven Opt
(seconds)
29

44

19

TB

10

TB

37

CNFLM

Cost

CNS

TB

CNS

TB

CNFLM

CNS

TB

CNS

TB

TB

TB

opt

Opt

opt

opt

opt

opt
CNS

CNS

opt

opt

opt

opt

opt

opt

CNS

TB

opt

opt

opt

opt

opt

opt

opt

opt

Runtime to
Proven Opt
(seconds)
CNS

TB

CNS

TB

CNFLM

CNS

TB

CNS

TB

TB

TB

2

6

16

10

34

236 1

CNS

CNS

1

2

4

3

5

1 1

CNS

TB

0

I

1

1

1

3

8

2
_.

Table 19: The results of running OSL on the problem test suite.

Problem

MCP(a)

MCP (b)

TTP

Table 20: Results of branch and bound with the shortest path heuristic for the USApHMP on a DEC
3000f700 with CPLEX (reproduced from Ernst and Krishnamoorthy (l997b, Table 2, p. 15)).

Problem Instance

brock200-1-
keller4
johnsons-2-4 (4
node clique)
brock200-1 -
keller4
johnsons-2-4

all

Optimal Solution MILP CPU
(seconds)

163603.94
131581.79
107354.73
86028.88 0.8

MILP CPU
(seconds)
4.03
0.8
1.24
1.73
4.03
7.18
8.44
13.76

n

20
20
20
20
25
25
25
25

Table 21: Results of branch and bound with the shortest path heuristic for the UMApHMP on a DEC
30001700 with CPLEX (reproduced from Ernst and Krishnamoorthy (l997b, Table 3, p. 16)).

Cost

CNS

1

CNS

3

CNFLM

The ILP packages performed well on problem types that required few encoding constraints such as

GAP and MKP. Proven optimal solutions were obtained (in most cases) for these problems in runtimes

that are comparable with the general system. Many of the other problems (especially those with

complex encoding constraints) produced 0-1 ILP models that exceeded the capacity of the

hardwarefsoftware platform and subsequently could not be run.

Runtime to
Proven Opt
(seconds)
CNS

3

CNS

9

CNFLM

P

2
3
4
5
2
3
4
5

For the most part, the general system outperformed the specialised heuristics in terms of solution

quality, particularly in the case of QAP (QAPBB and QAPSIM), GRAPH (RLF) and CSP (SA-CSP).

The statistical analysis in Section 5.10.2 also confirms this. The heuristics for MCP produced the best-

known costs with relatively little CPU time. However, there is a question about the validity of dfmax

and dfclique, especially in reference to the problem johnsong-2-4. Both Lindo and OSL record a

proven optimal solution of 3 nodes using a 0-1 ILP formulation while the two heuristic codes produce a

value of 4 nodes.

Optimal Solution

1728 16.69
151533.08
135624.88
123 130.09
175541.98
155256.32
139197.17
123574.29

5.9.4 Feasibility Restoration Runs

Table 22 and Table 23 display the results of the feasibility restoration procedure for the SA and TS

engines respectively.

Table 22: Feasibility restoration runs using SA.

Problem
Instance

gapl-1

gap2- 1

gap3- 1

gap4- 1

gap5-1

gap6- 1

gap7- 1

gap8- 1

gapA5- 100

gapA5-200

gapA 10- 100

gapA10-200

gapA20- 100

gapA20-200

Optimal
Cost

336

434

580

656

563

76 1

942

1133

1698

3235

1360

2623

1 158

2339

Annealing
Length

1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000

Cost

Min
363
363
363
434
434
434
580
580
580
656
656
656
563
563
563
758
759
758
933
935
935
1109
1109
1109
1702
1702
1702
3235
3235
3235
1361
1361
1361
3729
3733
3729
1158
1158
1158
2339
2339
2339

Runtime

Min
0
0
0
28
135
275
76
286
4
86
381
764
0
0
0
2
0
2
1
1
1
275
275
275
683
683
683
1484
1484
1484
2
2
2
1489
1489
1489
8
8
8
25
25
25

Med
363
363
363
434
434
434
580
580
580
656
656
656
563
563
563
759.5
759
760
936.5
937
937
1116.5
1116.5
1116.5
1725
1725
1725
3716
3716
3716
1363
1363
1363
4031
4031
4031
1158
1158
1158
2339
2339
2339

(seconds)

Med
27
124
245
40
193
381.5
101.5
409.5
788
135
560.5
853.5
56
232
47 1
494.5
515
722.5
9.5
9.5
450.5
878
878
878.5
956.5
956.5
956.5
1580
1570
1580
7.5
9.5
7.5
1568
1557
1568
13
13
13
52
77.5
77.5

Max
363
363
363
434
434
434
580
580
580
656
656
656
563
563
563
761
761
761
938
938
938
1123
1123
1123
1754
1754
1754
4168
4168
4168
1371
1371
1371
4407
4407
4407
1158
1158
1158
2342
2341
2341

IQR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
6
6
6
17
17
17
200.5
192.75
200.5
2.75
2.75
2.75
476
476
476
0
0
0
1.5
0
0

Max
34
1 44
282
5 1
250
501
198
523
946
174
678
1287
142
365
520
987
1255
1303
246
975
1415
1398
1530
1542 '
1588
1588
1588
1593
1591
1591
37
450
37
1591
1590
1591
36
36
36
119
197
197

IQR
6
30
50.25
5.25
32.75
59
33
91.5
174.25
37.5
76.5
324.75
43.5
58.25
72.25
349.5
420.25
684
110
576
1209.75
874
874
874.25
29 1
29 1
29 1.5
32.5
25.75
25.75
10.75
13.5
10
5 1.75
49.75
52.25
4
4
3.75
59
58.25
58.25

Table 23: Feasibility restoration runs using TS.

Problem
Instance

gapl-1

gap2- l

gap3- 1

gap4- l

gap5-1

gap6-1

gap7- 1

gap8-1

gapA5- 100

gapA5-200

gapA10-100

gapA 10-200

gapA20- 100

gapA20-200

Table 22 and Table 23 show that the use of feasibility restoration moves gives better quality solutions

than feasibility maintaining moves (see Table 45 and Table 46, transition probability set 1, Appendix

A) for both the SA and TS engines. However, it is clear that the combination of feasibility maintaining

moves and swaps (transition probability sets 2 - 5 in Table 45 and Table 46, Appendix A) result in

similar or better quality solutions in considerably shorter runtimes than feasibility restoration.

On some of the larger problems (in particular GapA10-200), both SA and TS produce solutions that are

very far from optimal. This is due to the large computational requirements of feasibility restoration

compared with feasibility maintenance. Apart from the complex mechanics of the restoration

algorithm, it does not make use of incremental cost expressions. This is because a large number of

individual list transition operations are performed before the cost function can be evaluated. It is

envisaged that techniques can be developed to overcome this problem.

Optimal
Cost

336

434

580

656

563

76 1

942

1133

1698

3235

1360

2623

1 158

2339

Neighbour
Probability

0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
I .O
0.1
0.5
I .O
0. I
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0. I
0.5
1 .O
0. I
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .0
0.1
0.5
1 .O
0. I
0.5
1 .O

Cost

Min
363
363
363
428
434
434
570
580
580
634
653
656
550
561
563
738
757
759
914
936
938
1073
1108
1114
1748
1821
1969
4177
4658
4931
1418
1360
1360
4210
5086
5674
1307
1167
1158
2449
2343
2339

Runtime

Min
5
1
0
150
5
0
48
28
24
14
317
10
26
30
2
5
180
14
43
2
61
65
342
439
1192
1539
1498
1488
1231
816
23
9
7
1480
1030
821
78
160
56
46
4
106

Med
363
363
363
432.5
434
434
572.5
580
580
639.5
655.5
656
551
563
563
742
758
760.5
916.5
937.5
939.5
1081.5
1112
1118.5
1809
1910.5
2193
4777.5
5337.5
5512.5
1430.5
1360
1360
5064.5
5650
5758.5
1321.5
1170
1159
2455.5
2344
2339

(seconds)

Med
33
5
2
859
44
15.5
389
296.5
128
769.5
530
373.5
553
297.5
32
1085.5
608.5
332
638.5
913.5
888.5
589
921
946
1499
1568
1577
1550.5
1370.5
1350
962.5
237.5
22.5
1522
1493
1329.5
648.5 '

838.5
580.5
406
528.5
354

Max
363
363
363
434
434
434
577
580
580
644
656
656
555
563
563
750
760
761
921
938
941
1089
1119
1123
1862
2421
2674
5278
5677
5937
1436
1361
1360
5631
5886
5966
1325
1172
1159
2466
2345
2339

IQR
0
0
0
4.75
0
0
1.75
0
0
2.75
2.5
0
1.75
0
0
1.75
0.75
I
2.5
1.75
1.75
7.5
3.5
2.75
70.25
222
216.75
603
418.75
452
5
1
0
482.5
422.75
129.25
6.5
0.75
0.75
6.75
0
0

Max
76
12
10
1499
218
23
1060
1281
398
1443
985
1197
1136
1581
316
1485
1493
1197
1225
1450
1349
1526
1382
1400
1583
1597
1599
1597
1527
1588
1483
1493 .
32
1582
1572
1598
1436
1568
1292
1495
1260
1194

IQR
37
6
4.25
7125.5
109.25
6.5
375.5
770.5
167.25
577
222.25
454.75
813.25
685.25
65.25
706.5
930
63 1.5
506
748
101.5
879.75
757.75
272.75
186
18.5
41.5
69
120
294
568.5
249.5
15.5
21
56.5
187.5
926.25
1235
664.25
511.5
351
199.5

5.9.5 Parallel Runs

Table 24 and Table 25 show the parallel speedup and efficiency gained by running the test problems.

Parallel speedup and efficiency graphs for each problem type are given in Figure 19 - Figure 28.

Table 24: Parallel speedup results.

Problem

GPP

QAP

GAP

BIN

TSP

Instance

G250.01
(3250.02
G250.04
(3250.08
tho40
esc64a
sko72
will00
gapA 10- 100
gapA 10-200
gapA20- 100
gapA20-200
bin3al
bin3a2
bin3a3
bin3a4
st70
kroA 100
chi30
a280

Processors
1

0.63
0.65
0.67

2
0.95
1.02
1.15

3
1.7
1.79
1.85

4
2.43
2.66
2.63

5
3.12
3.32
3.56

0.62
0.96
0.95
0.98
0.99
0.97
0.99
0.97
0.98
0.99
0.99
0.99
0.99
0.99
0.69
0.99
0.88

6
3.72
3.96
4.45

5.08
5.69
4.96
6.46
6.78
4.01
5.83
4.16
5.62
5.2
5.51
5.36
5.41
5.79
3.47
6.22
5.83

8.07
6.79
6.58
10.07
10.44
4.77
8.69
5.03
7.68
7.89
8.42
8.15
8.19
8.13
5.21
9.49
8.95

1.9
1.61
1.95
1.96
1.42
1.78
1.59
1.62
1.71
1.78
1.71
1.74
1.76
1.32
1.94
1.78

5.74
6.15
5.4
7.53
7.68
4.16
6.97
4.56
5.4
6.02
6.32
6.01
6.13
6.1
4.22
7.04
6.53

8.17
7.29
6.85
10.93
11.24
4.46
9.47
5.86
8.3 1
8.57
9.07
8.79
8.68
8.69
5.73
10.05
9.77

7
4.42
4.69
5.1

2.77
2.32
2.9
2.94
2.15
2.62
2.56
2.49
2.45
2.55
2.48
2.46
2.58
1.96
2.83
2.57

6.46
6.41
5.54
8.44
8.63
4.56
7.12
4.72
6
6.59
7.09
6.73
6.75
7.04
4.57
7.8
7.47

11
6.7 1
7.02
7.57

8
5.22
5.55
6.01

7.19
6.91
6.19
8.97
9.43
4.22
8.22
5.15
6.94
7.4
7.77
7.68
7.76
7.82
4.95
8.55
8.1 1

12
7.18
7.82
8.73

3.57
3.06
3.9
3.89
2.69
3.78
2.94
3.23
3.16
3.29
3.20
3.28
3.62
2.42
3.72
3.37

9
5.71
6.23
6.57

3.83
3.69
4.83
4.88
3.3
4.18
3.36
3.99
3.84
4.06
3.91
4.01
4.4
2.96
4.62
4.18

10
6.2
6.65
7.04

5.01
4.4
5.65
5.83
3.52
4.94
3.78
4.74
4.65
4.88
4.65
4.72
5.2
3.35
5.31
5.05

Table 25: Parallel efficiency results.

Problem

GPP

QAP

GAP

BIN

TSP

L

Instance

G250.01
G250.02
(3250.04
(3250.08
tho40
esc64a
sko72
will00
gapA10-100
gapA10-200
gapA20- 100
gapA20-200
bin3al
bin3a2
bin3a3
bin3a4
st70
kroA I00
ch130
a280

Processors
1

0.63
0.65
0.67
0.62
0.96
0.95
0.98
0.99
0.97
0.99
0.97
0.98
0.99
0.99
0.99
0.99
0.99
0.69
0.99
0.88

2
0.48
0.51
0.57
0.55
0.95
0.81
0.97
0.98
0.71
0.89
0.8
0.81
0.85
0.89
0.85
0.87
0.88
0.66
0.97
0.89

3
0.57
0.6
0.62
0.63
0.92
0.77
0.97
0.98
0.72
0.87
0.85
0.83
0.82
0.85
0.83
0.82
0.86
0.65
0.94
0.86

4
0.61
0.67
0.66
0.72
0.89
0.76
0.97
0.97
0.67
0.95
0.74
0.8 1
0.79
0.82
0.8
0.82
0.9 1
0.6 1
0.93
0.84

6
0.62
0.66
0.74
0.73
0.83
0.73
0.94
0.97
0.59
0.82
0.63
0.79
0.78
0.81
0.78
0.79
0.87
0.56
0.88
0.84

5
0.62
0.66
0.71
0.74
0.77
0.74
0.97
0.98
0.66
0.84
0.67
0.8
0.77
0.81
0.78
0.8
0.88
0.59
0.92
0.84

7
0.63
0.67
0.73
0.73
0.81
0.71
0.92
0.97
0.57
0.83
0.59
0.80
0.74
0.79
0.77
0.77
0.83
0.5
0.89
0.83

8
0.65
0.69
0.75
0.72
0.77
0.67
0.94
0.96
0.52
0.87
0.57
0.67
0.75
0.79
0.75
0.77
0.76
0.53
0.88
0.82

9
0.63
0.69
0.73
0.72

- 0.71
0.62
0.94
0.96
0.51
0.79
0.52
0.67
0.73
0.79
0.75
0.75
0.78
0.51
0.87
0.83

10
0.62
0.67
0.7
0.72
0.69
0.62
0.9
0.94
0.42
0.82
0.52
0.69
0.74
0.78
0.77
0.78
0.78
0.49
0.85
0.8 1

11
0.61
0.64
0.69
0.73
0.62
0.6
0.92
0.95
0.43
0.79
0.46
0.7
0.72
0.77
0.74
0.75
0.74
0.47
0.86
0.8 1

12
0.6
0.65
0.73
0.68
0.61
0.57
0.9 1
0.94
0.37
0.79
0.49
0.69
0.7 1
0.76
0.73
0.72
0.72
0.48
0.84
0.82

Parallel Speedup for GPPs

I Processors I

Figure 19: Parallel speedup graph for the GPP.

Parallel Efficiency for GPPs

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Processors

Figure 20: Parallel efficiency graph for the GPP.

Parallel Speedup for GAPS

- Linear
- - - - GAPAIO-100

-. - - - - . GAPA10-200

- - -. - GAPA20-I 00

- - - - - GAPA20-200

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Processors

Figure 21: Parallel speedup graph for the GAP.

Parallel Speedup for BINS
12

Q
3 8 -

'E3
Q,

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Processors

Figure 25: Parallel speedup graph for the BIN.

Parallel Efficiency for BINS

I I I , , , , , I , , ,

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Processors

Figure 26: Parallel efficiency graph for the BIN.

Parallel Speedup for TSPs

Linear
---- st70

. - . kroA100

- - - - -ch130

-.--- a280

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
Processors

Figure 27: Parallel speedup graph for the TSP.

--

Parallel Efficiency for TSPs 1

0 0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Processors

Figure 28: Parallel efficiency graph for the TSP

The performance of the parallel TS is generally dependent on the complexity of the objective function

and the number of neighbours that are evaluated at each iteration. This is due to the parallelisation

strategy adopted by this study. Parallel communication and housekeeping activities degrade the

performance of the algorithm especially where the neighbourhood is small. This is evident when one

considers that as the number of processors is increased, the time required to broadcast the

neighbourhood division details and to process the incoming neighbours (sequential tasks), becomes

large. Hence there is a reduction in efficiency as the number of processors increases. However the

large QAPs generally record efficiencies above 90%. This is due to the QAP having the most complex

incremental cost expression of this set of problems and a large number of neighbours to evaluate at

each iteration of the TS algorithm.

As well as the above, parallel speedup and efficiency are adversely affected by the use of incremental

cost expressions. This is because incremental cost expressions reduce the amount of computation

required for the evaluation of the neighbourhood (i.e. the component of TS that has been parallelised).

In order to demonstrate this, a problem instance that the parallel algorithm performed poorly on,

gapA10-100, was run without using the incremental cost expression (Table 26). Both speedup and

efficiency are improved, though the performance of TS is substantially degraded. This is verified using

the Mann-Whitney U test that compared efficiency with and without incremental cost expressions and

gave P=0.02.

Table 26: Parallel speedup and efficiency for gapA10-100 with and without using incremental cost
expressions.

Processors

I
2
3
4
5
6
7
8
9
10
11
12

5.10 Performance Analysis

5.10.1 The Effect of the Transition Operator Sets and Engine-specific
Parameters

In order to determine the most effective transition operator set for a particular problem type, the

Kruskal-Wallis procedure is used. "Transition operator set" was the independent (grouping) variable

while objective cost was the dependent variable. For many of the problem types, a significant result

was recorded which indicates that the choice of transition operator probabilities affects quality of

solution.

With Incremental
Cost Expressions

Table 27 shows the order of performance of the transition operator sets for each problem typeI3. For

instance, in the case of BIN problems, transition set 2 (rank 1) was the best overall while set 1 (rank 5)

was the worst. In the case of UMApHMP, sets 2,3,4 and 6 recorded equivalent objective costs and

therefore "runtime" was used to distinguish between these sets.

Speedup
0.97
1.43
2.15
2.69
3.30
3.52
4
4.16
4.57
4.22
4.77
4.46

Without Incremental
Cost Expressions

The GS and TS engines are run with the best transition operator set (rank order 1) for each problem

type.

Efficiency
0.97
0.7 1
0.7 1
0.67
0.66
0.59
0.57
0.52
0.51
0.42
0.43
0.37

Speedup
0.99
1.78
2.52
3.27
3.97
4.64
5.53
5.88
6.55
6.77
7.23
7.46

'"ost-hoc analysis was used to determine whether there were any significant performance differences between the transition
operator sets for each problem type. However, as it is difficult to construct overall ranks from this information, the Kruskal -
Wallis median ranks were also taken into consideration.

Efficiency
0.99
0.89
0.84
0.82
0.79
0.77
0.79
0.74
0.73
0.68
0.66
0.62

Table 27: Rank order of the transition sets for each problem type.

Problem

CSP
BIN
GRAPH
USApHMP
UMApHMP

QAP
TSP
GAP
GPP
MKP
MCP
TTP

The same technique that has been applied in Table 27 has been used in Table 28 and Table 29 to

determine the most effective SA cooling length and TS probabilistic candidate list setting respectively.

For instance, a cooling length of 10000 generally outperforms lengths of 1000 and 5000 for the CSP.

In order to make an overall assessment, the average rank of the cooling length and neighbourhood

probability setting is produced. From this it can be seen that:

SA - Longer cooling lengths typically improve solution quality.

TS - Evaluating half of the neighbours at each iteration is usually more effective tha?

evaluating all of the neighbours.

Transition Set Reference Number
1 2 3 4 5 6 7 8
1
5 1 4 2 3
3 5 1 4 2
1 6 2 4 3 5
5 4 2 I 6 3

1 8 7 3 2 5 6 4
8 1 7 3 5 2 6 4
5 1 2 3 4
1
3 6 2 I 5 4
1
5 1 4 2 3

Significance
(p)

,000
,344
,000

,000 (cost)
,000 (runtime)

,000
,000
,000

,000

.OOO

Table 28: Rank order of the different SA cooling lengths for each problem type.

Problem
CSP
BIN
GRAPH
USApHMP
UMApHMP
QAP
TSP
GAP
GPP
MKP
MCP
T r P

Average
Rank

SA Cooling Length
1000 5000 loo00
3 2 1
3 2 1
3 2 1
3 1 2
3 2 1
2 1 3
3 2 I
3 2 1
2 1 3
3 2 1
3 2 1
3 2 1
2.83 1.75 1.42

Significance
(p)
,017
.000
.000
,000
,007
,670
,007
.082
,000
.000
,151
,000

Table 29: Rank order of the different TS neighbourhood probabilities for each problem type.

Problem
CSP
BIN
GRAPH
USApHMP
UMApHMP
QAP
TSP
GAP
GPP
MKP
MCP
TTP

Average
Rank

5.10.2 Overall Comparison
I

Table 30 to Table 41 displays the results of rank ordering the performance of the various solvers on the

problem instances. The procedure for calculating the ranks is described in Section 5.8.3.2. For

instance in Table 30, the SA and TS engines produce very similar results (in terms of solution quality

and time to solve) for the CSP problem instance n20t2. As these results are significantly superior to the

GS and SA-CSP search engines, SA and TS share a ranking of 1. Moreover, as SA-CSP produces

significantly better results than GS, these techniques receive the ranks of 2 and 3 respectively. The

entry in the Significance (P) column indicates that likelihood (probability) of this set of ranks

occurring by chance is .000 (i.e. these ranks are reliable). The Average Rank row at the bottom of

each of the tables gives an approximate indication of the overall performance of each search engine on

the problem type. For instance, in Table 30 it can be seen that SA and TS generally produce low ranks

(such as 1 or 2) compared to SA-CSP and GS. Therefore, SA and TS are the best overall search

engines for the CSP.

Neighbour Probability
0.1 0.5 1
2 1 3
1 2 3
2 1 3
3 1 2
1 2 3
I 2 3
3 1 2
3 2 1
1 2 3
2 1 3
I 2 3
3 I 2
1.92 1.5 2.58

Table 42 shows the overall rankings of the search engines for each of the problem types. These overall

rankings were calculated from the ranks given in Table 30 to Table 41 using the Kruskal Wallis

procedure (described in Section 5.8.3.2). This table is read in the same way as Table 30 to Table 41.

For instance, it can be seen that SA and TS perform equally well on the CSP as they share a rank of 1.

The performances of GS and SA-CSP are similar but worse than SA and TS, hence they both receive a

ranking of 2. As Lindo and OSL could not process the problem formulations, their performance is

given a rank of 3.

Significance
(p)
,013
.002
,047
,000
.00 1
,000
,000
,000
,000
,000
.000
,024

The following abbreviations refer to the various solver systems:

SA-REST is the general SA engine using the feasibility restoration technique.

TS-REST is the general TS engine using the feasibility restoration technique.

EUS and EUM refer to the results for the USApHMP and UMApHMP problem instances

given in Table 20 and Table 21 respectively.

Table 30: Performance comparison on the CSP.

Problem
n20tl
n20t2
n20t3
n20t4
n20t5
n40t l
n40t2
n40t3
n40t4
n40t5
n60t 1
n60t2
n60t3
n60t4
n60t5
n80tl
n80t2
n80t3
n80t4
n80t5

Average
Rank

Table 3 1: Performance comparison on the BIN.

Table 32: Performance comparison on GRAPH.

Significance
(p)
.000
,000
.OOO
,000
,000
,000
.000
,000
,000
,000
,000
.000
,000
.000
,000
,000
.000
,000
.000
,000

Solver
SA engine
2
1
1
1
1
2
1
2
1
1
2
2
1
I
I
2
1
1
1
1
1.3

Problem
C125.1
C125.5
C125.9
C250.1
C250.5
C250.9

Average
Rank

TS engine
1
1
2
2
3
1
1
1
2
2
I
I
2
2
2
1
1
2
2
2
1.6

Significance
(p)
,000
,000
,000
.000
,000
,000

Solver

GS engine
4
3
4
4
4
4
3
4
4
4
4
4
3
3
4
3
3
3
3
4
3.6

SA engine
1
1
1
1
1
1
1

SA-CSP
3
2
3
3
2
3
2
3
3
3
3
3
4
4
3
4
2
4
4
3
3.05

TS engine
2
1
2
2
2
2
1.83

GS engine
3
2
3
3
3
3
2.83

Table 33: Performance comparison on QAP.

Problem
nug08
nugl2
nugl5
nug20
nug30
ste36a
tho40
esc64a
sko72
will00

Average
Rank

Table 34: Performance comparison on TSP.

Problem
gr24
swiss42
hk48
ei15 1
brazil58
st70
kroAlOO
ch130
a280

Average
Rank

I Rank I 1

Significance
(p)

.OO 1
,000
,000
.000
,000
.000
,000
,000
,000
,000

Solver

Table 35: Performance comparison on MKP.

SA engine
1
1
1
1
1
1
1
3
1
I
1.2

I4 The rank of 5 indicates that QAPBB could not solve the problem instance within 6400 seconds.

Significance
(P)
,000
,000
,000
,000
,000
,000
,000
,000
,000

Solver

TS engine
1
1
2
2
2
2
2
2
2
2
1.8

SA engine
2
3
2
2
3
3
1
1
1
2

GS engine
2
2
4
4
4
4
4
4
4
4
3.6

TS engine
3
2
3
1
2
2
2
2
2
2.1

QAPSIM
2
2
3
3
3
3
3
1
3
3
2.6

GS engine
4
4
4
3
4
4
3
3
3
3.56

QAPBB'~
1
I
5
5
5
5
5
5
5
5
4.2

tsp-solve
1
1
1
1
1
I
4
4
4
2

Table 36: Performance comparison on GPP.

Table 37: Performance comparison on TTP.

Table 38: Performance comparison on MCP.

Table 39: Performance comparison on USApHMP.

Table 40: Performance comparison on UMApHMP.

Problem
ap lOa2
ap lOa3
ap l Oa4
ap l O d

Average
Rank

Table 41 : Performance comparison on GAP.

Problem
gapl-l
gap2- l
gap3- l
gap4- l
gap5- l
gap6- l
gap7- l
gap8-l
gapA5-100
gapA5-200
gapAIO-100
gapA10-200
gapA20-100
gapA20-200

Average
Rank

Significance
(p)
,000
,000
,000
,000

Solver
SA engine
1
1
1
I
1

Significance
(p)
,000
,000
,000
.000
.000
.000
.000
.000
.OOO
,000
,000
.000
,000
,000

Solver
SA engine
I
I
I
1
2
1
1
1
3
2
2
2
1
I
1.42

TS engine
2
2
2
2
2

GS engine
3
3
3
3
3

TS engine
1
1
I
1
I
1
1
1
2
2
3
2
3
2
1.57

GS engine
3
3
3
3
4
4
3
3
4
2
2
2
4
2
3

SA-REST
2
2
2
2
3
3
2
2
5
3
4
3
2
1
2.57

TS-REST
1
1
2
2
3
2
2
2
5
3
1
3
3
3
2.36

OSL
1
1
1
1
2
1
4
4
1
1
1
1
1
4
1.71

LINDO
1
I
I
1
2
I
1
4
1
1
1
1
1
4
1.28

Table 42: Overall comparison of the performance of the various solvers.

Problem

CSP
BIN
GRAPH
Q AP
TSP
M KP
GPP
USApHMP
UMApHMP
MCP
TTP
GAP

General Solver Other Software
GS
engine
2
3
4
3
2
3
3
4
4
4
3
2

SA-CSP

2

S A
engine
I
I
I
I
1
2
I
3
2
2
I
1

SA-REST

2

TS
engine
I
2
2
2
I
2
2
2
3
3
2
1

TS-REST

2

OSL

3
4
5
5
3
1
4

5

1

QAPBB

4

dfclique

1

Lindo

3
4
5
5
3
1
4

5

1

FUF

3

QAPSIM

3

dfmax

1

EUS

I

EUM

1

tsp-solve

1

Table 43 presents the ordering of the search engines based on the ranks given in Table 42. a @ b is used

to denote that search engine a had better performance than search engine b while (a, b} is used to show

that search engines a and b exhibited similar performances.

Table 43: Ordering of the search engines based on their performances for each problem type.

Problem
CSP
BIN
GRAPH
Q AP
TSP
MKP
GPP
USApHMP
UMApHMP
MCP
7TP
GAP

Both SA and TS perform extremely well on the CSP, frequently finding improved solutions over the

results provided by Smith et al. (1996b). The analysis shows that the SA implementation used by

Smith et al. (1996b) is only as effective as the GS engine. SA and TS also perform well on the QAP as

they routinely find optimal and near optimal (within a few per cent) solution costs. It is also shown

that the system outperforms QAPBB and QAPSIM. There is no statistical difference between

tsp-solve, SA and TS for the TSP. However, this may be due to the fact that tsp-solve could not returi

solutions for the three largest problem instances (kroA100, ch130 and a280). For the MCP, the

heuristics, dfmax and dfclique, were always able to obtain the clique sizes reported in Battiti and

Protasi (1995) and hence shared an equal first ranking.

Ordering of Search Engines
{SA, TS) $ {GS, SA-CSP] $ (OSL, Lindo)
SA $ TS $ GS $ {OSL, Lindo)
SA $ TS $ RLF $ GS (OSL, Lindo)
SA $ TS $ (GS, QAPSIM) $ QAPBB $ {OSL, Lindo)
(SA, TS, tsp-solve] $ GS $ {OSL, Lindo)
(OSL, Lindo] $ {SA, TS] $ GS
SA $ TS $ GS $ (OSL, Lindo)
E U S $ T S $ S A $ G S
E U M $ S A $ T S $ G S
(dfrnax, dfclique] $ SA $ TS $ GS $ {OSL, Lindo]
S A $ T S $ G S
(SA, TS, OSL, Lindo) $ {GS, SA-REST, TS-REST)

The ILP packages are only effective on problems with dense 0-1 structures such as the MKP and GAP.

These solvers generally outperform the list-based meta-heuristics in terms of the time required to reach

the optimal solution cost. However, Lindo and OSL could not deliver a solution to gap8-1 within 6400

seconds of runtime, even though the SA and TS engines typically found the optimal solution within a

few seconds. The USApHMP and the UMApHMP are also solved very efficiently using exact

techniques (see Table 20 and Table 21 respectively), though the general system (SA and TS) is also

capable of delivering optimal solutions in reasonable amounts of runtime.

5.10.3 Runtime Differences between the Various Solver Packages

This section describes the way in which each solver varies in the amount of runtime required to reach

the optimal or best-known solution cost. This is done in order to give an overall idea of how the

general system rates in terms of the amount of computational effort required to deliver effective

solutions compared to other optimisation packages (such as OSL and Lindo). An analysis of this type

is difficult as a result of the wide variability of runtimes received in the course of solving a particular

problem instance. Within the one set of 10 runs of a search engine, it is possible to record runtimes of

as little as a few CPU seconds to thousands of CPU seconds. However, this may be attributed to the

use of the random strategies embedded into the meta-heuristic search engines. While GS also uses

random strategies, it displays a much smaller variation as it often descends quickly to the nearest local

optimum and stops. As a consequence, the discussions concerning the performance of the general

system's search engines are confined to best transition operator sets (as identified in Table 27) and the

SA and TS search engines.

A general characteristic of both the SA and TS engines is that they find good quality solutions early in

the run and spend the rest of the available runtime making smaller improvements. For instance, in the

case of the QAP tho40, the SA engine finds a solution that is 2% above the best known solution cost in

21 CPU seconds and a solution that is 0.39% above the best-known in 959 seconds.

A comparison of the general system's performance to the other optimisation packages for each problem

type is given below. Overall, the general system can require significantly larger runtimes to reach the

same quality solutions as the heuristic and ILP programs in the worst case. However, this must be

considered in context with the fact that the general system can solve a very wide range of problems and

produce superior quality solutions in comparison to the other optimisation packages.

CSP -

SA-CSP solves CSP instances relatively quickly compared to the search engines of the general solver

system. However, it must be noted that for 70% of the problem instances, the SA and TS engines find

better solution costs than reported in Smith et al. (1996b). For the majority of the problem instances,

the general system records runtimes that are approximately equal to SA-CSP in the best case. In the

worst case, the general system can require in the order of 1000 times longer runtime than SA-CSP.

However, a close inspection of individual runs reveals that both the SA and TS engines find the best-

known solution costs within a similar amount of runtime to SA-CSP. The general solver utilises the

extra runtime to find improved solutions over those reported in Smith et al. (1996b).

The RLF heuristic by Johnson et al. (1991b) terminates before 1 CPU second has elapsed for each

problem instance. However, the solutions returned by this heuristic are typically of a low quality. This

is in comparison to the SA and TS engines of the general system that use all of the available CPU time

to produce solution costs that are closer to the best-known costs. In addition, the optimal coloring was

reached for (2125.1 using the SA engine.

USApHMP and UMApHMP

The branch and bound code with the shortest path heuristic developed by Ernst and Krishnamoorthy

(1997b) is a very efficient form of solving the USApHMP and the UMApHMP. However, in the best

case, the general solver can produce optimal solutions in the same or less time for the majority of

problem instances compared with this code. In the worst case, the SA engine is approximately 100

times s l o ~ e r ' ~ .

The general system often produces solutions that are of better quality than QAPSIM and QAPBB in

approximately the same amount of runtime. However, QAPSIM's runtimes are typically smaller for

the larger problems. For instance, consider will00 for which the SA engine produces solutions that are

at most 0.33% above the best-known cost compared with QAPSIM that finds a solution that is 0.75%

above the best-known cost. However, this comes at a price as the general system can require up to 100

times longer to produce this result. A close inspection of individual runs reveals that both the SA and

TS engines find similar quality solution costs (0.75% above the best-known cost) to QAPSIM in

approximately the same amount of runtime. In the best case, the SA search engine can produce a result

that is 0.18% above the optimal solution in approximately 900 seconds.

tsp-solve produces the optimal solution cost to each of the problem instances except the three largest

(kroA100, ch130 and a280). For many of the problem instances, the general system can find the

optimal solution in approximately the same amount of runtime as tsp-solve. However, for st70 (the

largest problem that tsp-solve could solve), tsp-solve is at most three times faster than the general

solver.

GAP -

Both OSL and Lindo are extremely efficient at finding the optimal solution to the GAP problem

instances within a relatively short amount of computational time (except for gap7-1 and gap8-I).

These runtimes are of approximately the same magnitude as required by the general system. However,

some differences are evident, such as for gap6-1 in which OSL requires 20 times longer to obtain the

optimal solution compared with the SA engine. Conversely, for gap20-200, the SA engine requires

between 2 and 13 times longer to obtain the optimal solution compared with OSL.

'' This statement neglects differences in the speed of the DEC 3000/700 (used by Ernst et al. (1997b)) and the RS6000 processor
(as used in this study). However, they are comparable processors.

MKP -
OSL and Lindo typically solve MKP instances to optimality in far less runtime than either the SA and

TS engines. In the best case, the SA engine produces optimal solutions for the majority of the problem

instances in approximately the same amount of runtime as the Lindo package. However, in some cases

(particularly for TS), the ILP codes solve the MKP problem instances 50 times faster than the general

system.

MCP -

Both dfmax and dfclique are extremely efficient algorithms for the MCP problems as they solved all

instances to optimality (or the best-known cost). This is contrast to the SA and TS engines that could

only produce the optimal result for keller4. However, as noted in Section 5.9.3, there is some concern

about the validity of some of the results produced by these programs.

5.11 Summary

In this chapter, a set of experiments was proposed in order to test the performance of the linked list

modelling system and the general solver implementation. These experiments were designed to test the

following:

The effect of the transition operator probability sets on the performance of the search

engines.

The effect of the engine-specific parameter settings, such as SA cooling length and the

neighbour selection probability, on the performance of the solver.

The performance of the general solver compared to other optimisation packages (such as

commercial LP codes and heuristic programs).

The effectiveness of the feasibility restoration scheme for the move operator.

The efficiency of the parallel TS engine.

The problem types and problem instances used in this study are representative of a wide range of

problems in the literature. Both qualitative and quantitative descriptions of the results were presented

in this chapter. The quantitative analysis relied on the use of statistical techniques in order to determine

differences in performance between search engines and different parameter settings. According to Barr

et al. (1995, p. 24) "statistically validated conclusions" are essential to studies of this nature but are

frequently lacking in the literature.

The results of the various experiments indicated that:

The general system is capable of solving a wide variety of COPs very effectively. It

frequently finds the optimal and best-known solution costs in runtimes that can be as

efficient as other optimisation packages. In addition, new best-known costs were

recorded for some of the CSP and TTP problem instances.

The choice of transition operators for a particular problem affects the quality of solution

and runtime. Engine-specific parameter settings effect the performance of the search

algorithms, but to a much lesser extent.

The feasibility restoration scheme is computationally expensive in comparison to

feasibility maintenance. The latter technique generally outperformed feasibility

restoration in terms of both solution quality and runtime.

The parallel TS engine reduces the amount of wall clock time required to solve COPS

over the sequential version of the engine. This real time reduction is particularly evident

for problems that exhibit the characteristics of having large neighbourhoods and complex

incremental cost expressions (such as the QAP).

The next chapter presents an in-depth summary of the performance of the general system. It also

describes a number of research projects that are now possible as a direct result of the work on linked

list modelling systems for COPs. Finally, the achievements and new developments contained in this

thesis are highlighted.

Chapter 6: Conclusions and Further
Work

6.1 Conclusions

The list modelling system allows COPs to be represented in an efficient and compact manner. As a

result, widely used and reported local search operators can be applied directly to the solution structure.

Accordingly, the list modelling system is well suited to supporting meta-heuristic search algorithms

such as GS, TS, SA and GRASP. A general solver was built that accepts problems formulated in this

list notation. Apart from recording good overall performance on a range of COPs compared with ILP

and heuristic codes, the time to develop a problem description is minimised due to the compact

algebraic language with which problems are described (see Section 4.2). A method of automatically

producing incremental cost expressions was also developed. This contributed greatly to the system's

performance.

The testing of the linked list modelling system was extensive and consisted of two main parts; standard

and extended runs. Despite the short amount of time available to the standard runs, optimal and near

optimal solutions were recorded for many problems. If the best solution for each problem is considered

(disregarding the effects of both the transition operator probability sets and search engine specific

parameters), the percentages of optimal solutions encountered by each of the search engines gives an

encouraging picture (Table 44). For this particular implementation of the meta-heuristic search

algorithms, it appears that SA typically outperforms TS. However, this is hardly a fair comparison

because of two reasons: (a) different implementations of the algorithms will produce different results,

and (b) TS was run using only one transition set per problem type while SA was tested under a range of

conditions. Allowing SA and TS more runtime for problems in which the optimal or best-known

solution could not be found resulted in further improvements (especially for TS). GS performs

surprisingly well for some instances of the CSP and GAP. This can be potentially attributed to two

factors: the ease of the problem instance and the contribution of the transition operator set. In the case

of the CSP, there is only one effective transition operator (the swap), so it is not unreasonable to argue

that these problem instances are easy to solve. For the GAP however, the combination of the move and

the swap operator appears to form an efficient solving method in its own right (regardless of the search

method used).

Table 44: The percentage of Optimal and Best-Known solution costs achieved by SA, TS and GS for the
standard runs.

Search Engine
S A
TS
GS

Feasibility restoration was implemented for the move operator and applied to the GAP. This scheme is

more cornputationally intensive than straight feasibility maintenance as a number of individual

transitions are performed at each step and incremental cost expressions are not used. If only the move

operator is considered, feasibility restoration outperformed feasibility maintenance on most of the GAP

problem instances (see Section 5.9.4). However, the combination of the feasibility-maintaining move

with the swap operator is far more efficient than feasibility restoration by itself.

Percent (%) Optimamest-Known Costs
83
69
21

The solver allows multiple neighbourhoods to be evaluated in the course of solving a particular

problem using an automatic technique that determines a set of appropriate transition operators without

the need for changing the formulation of the problem. As a direct consequence of this, it is possible to

gauge the effect of transition operators on solution quality and runtime. Generally, transitions that

produce a small perturbation of the solution outperform those that change the solution greatly.

Consider the TSP in which the application of the inversion operator requires that only four links of the

tour change, whereas eight links change with the swap operator. The system, regardless of the searc'h

engine, records better performance with the inversion operator than with the swap operator. There are

some problems for which a combination of operators is more suitable than one used in isolation. For

instance, the move operator applied to the BIN problem produces very poor solutions, whereas the

addition of the swap operator results in the optimal solution frequently being found (see Table 45,

Appendix A). It is believed that this is the case because the move operator can often find it difficult to

produce a feasible solution and is likely to give a large incremental cost. However, swap in isolation is

also ineffective, as each bin will contain a fixed number of items throughout the search process, thus

making many regions of the search space inaccessible.

Each problem type also utilised an adaptive probability setting in which the system changes the

probability of each of the active transition operators according to its performance. In many cases, the

adaptive probability setting performed well in comparison to other transition operator settings.

However more work is needed to explore different adaptive rates and their effect on solution quality

and runtime.

The engine-specific parameters also affect solution quality. In particular, the probabilistic candidate

list structure alters the performance of both GS and TS. For most problems, it was found that

evaluating a subsection of the neighbourhood was more effective that evaluating the entire

neighbourhood (see Table 29). Further studies could be conducted to determine whether this is due to

the probabilistic sampling and/or the fact that more iterations are performed if a smaller subset of the

neighbourhood is used.

The parallel implementation showed that the TS engine could be made more efficient, in terms of the

actual amount of time required to solve a problem, by allowing the simultaneous evaluation of the cost

functions of neighbouring solutions. However, as the use of incremental cost expressions reduces the

computation overhead and as there is a large communication time associated with the parallelisation

scheme, the parallel performance was somewhat limited.

6.2 Further Work

This research has shown that a variety of COPs can be solved efficiently by meta-heuristic search

engines underpinned by the new linked list modelling system. However, while the experiments were

extensive, they were not exhaustive. A greater range of problem types and parameter settings could be

used to further test its performance.

An area that needs particular attention is the way in which the transition operators are applied. As

noted in Section 3.4.1.2, there are a number of alternative methods that could be used. Even with the

probabilistic approach demonstrated here, a greater range of probability sets could be used to determine

the effectiveness of particular local search operators for different COPs.

An additional enhancement to the modelling language would be the incorporation of logical statements

and operators. This includes an IF ELSE construct and logical operators such as OR, AND, XOR and

NOT. It is believed that the use of logical statements and operators in conjunction with algebraic

expressions would allow the modelling system to express more complex optimisation problems.

It is believed that a software product based on the linked list modelling system would have commercial

application. The resulting program would greatly benefit from a graphical user interface that would

allow the user to directly enter the list model using mathematical symbols. This description could be

converted into a solver in much the same way as specified in this study.

In addition to the above, this project naturally leads on to the following areas of research:

Direct hardware implementation of the list modelling system.

The use of different dynamic data structures for the representation of COPs.

Alternative search strategies.

6.2.1 Direct Hardware Implementation

The work reported here was undertaken as part of a larger project that aims to develop Application

Specific Computers (ASCs) for solving COPS (Abramson 1992; Abramson, de Silva, Randall and

Postula 1995 and Abramson, Logothetis, Randall and Postula 1997, 1998). The benefit of these

systems is that a specific hardware design has real time advantages over conventional workstations.

The architectures of these computers will be designed to support a range of meta-heuristic search

techniques through system reconfiguration using the list modelling system as the general representation

scheme. As such, they will be based on Field Programmable Gate Array (FPGA) technology. FPGAs

allow hardware to be reconfigured without any physical modification. This offers enormous potential

because it should be possible to build a reconfigurable special purpose architecture, which can be used

to solve a range of optimisation problems. It is envisaged that the ASC will be connected to a

conventional workstation to provide the interface (Figure 29).

The work is significant because it will allow a wide range of integer optimisation problems to be solved

very rapidly using one inexpensive hardware and software platform. Thus it will be possible to solve a

number of important practical problems using one system. The system will provide the advantages of

generic algorithms with the speed of specific ones. The work will also lead to a conceptual advance in

the role of special purpose computers.

Figure 29: Schematic of the ASC for solving COPS.

6.2.2 Alternative Dynamic Data Structures

Linked lists are very successful at representing a wide range of COPS efficiently. However, as

discussed in Section 3.2, trees are an alternative dynamic data structure on which a general modelling

system for COPS could be based. In particular, such a representation would be more appropriate than

list modelling for solving problems such as the minimal spanning tree problem. The transition operator

set could conceivably consist of adding, dropping and moving edges or sub-trees. However, general

methods of indexing nodes and edges as well as ways of maintaining the integrity of the tree (such as

ensuring that every node is connected by an edge without a circuit for the minimal spanning tree

problem) would need to be developed.

6.2.3 Alternative Search Engines

This study has described the implementation of a general COP solver using three meta-heuristic

engines, namely GS, TS and SA. However, there are other meta-heuristic algorithms that could be

incorporated into the general system. One in particular is the GRASP technique (see Section 2.2.3.4).

This can be implemented by modifying the initial solution procedure (described in Section 4.7) to act

as the construction phase of the algorithm and using either the GS, TS or SA engines as the local search

phase.

The list modelling system is particularly suited to meta-heuristics that are based on local search

operators. However, it is believed that other techniques (in particular GAS and other evolutionary

procedures) could be implemented in a modified version of the general environment. For GAS, the

local search transition operators would be replaced by a set of recombination operators. However, as

noted in Section 2.3.2.3, operators would need to be designed for specific problems, though it may be

possible to use one operator for a group of similar problems. This is due to the fact that many problems

have similar representations using the list notation. For instance, the QAP and TSP are very similar as

they are both permutation problems that can be modeled with a fixed size sub-list and subsequently

recombination could be performed using the PMX (partially match crossover) operator (Goldberg

1989) or its variants. It remains to be seen whether a rule base can be established that could match

appropriate operators to problems (like the one in Table 3 that determines suitable local search

operators). A GA search engine would also be particularly suited to parallel implementation as

multiple solutions are generated and evaluated at every step of the algorithm.

6.3 Achievements and Significance

This research has presented a number of new concepts in the field of general-purpose meta-heuristic

COP solvers. The most fundamental of which is a new modelling system specifically designed for

COPs. It has been shown that linked list data structures efficiently model combinatorial optimisation

problems due to the natural mapping between COPS and lists.

The new modelling system is unique as it is based on a dynamic data structure, the linked list. A

property of the new system is that it eliminates the need for artificial encoding constraints and variables

common in ILP and CP modelling as it more directly represents the grouping characteristics of COPs.

Using the linked list modelling system, a variety of local search transition operators can be directly

applied to problem models (see Section 3.4.1). A method has also been developed that determines the

appropriate local search operators for particular problems (see Table 3). As well as this, a probabilistic

method for applying transition operators capable of adaptive behaviour was investigated.

A means of automatically generating incremental cost expressions was produced in order to allow the

efficient evaluation of objective functions. This technique matches an objective function to one or

more known templates so as to derive a suitable algebraic expression in list notation. Whilst this

method is not entirely general, it has been applied successfully to a number of COPs. It also has the

advantage that the set of templates can easily be expanded, should the need arise.

The linked list modelling system is used as the foundation of a new general-purpose solver named

COSULOM. This system is capable of solving a wide range of COPS with meta-heuristics based on

the use of local search transition operators. To date, GS, TS and SA engines have been implemented.

The system accepts algebraic arbitrary formulations of COPS in GAMS like syntax (Brooke et ai.

1997). This feature can dramatically reduce the development time for prototyping and solving COPs.

Another property of the system is that it can produce feasible starting solutions to problems, which is a

difficult task in itself.

In summary, it is believed that the work contained in this thesis has contributed to the knowledge of

modelling systems for COPS and general-purpose meta-heuristic implementations in the following

areas:

The list modelling system is an efficient means of representing COPS as it models the

fundamental "grouping, ordering and selection of discrete objects" characteristics of these

problems (see Section 1.2). Encoding constraints used by other systems (in particular ILP

and CP) that can make COPS impractical to solve are eliminated in the linked list

modelling system.

The choice of transition operator(s) affects the performance of the search algorithm to a

greater extent than specific meta-heuristic parameters.

A general solver can have similar performance to special purpose solvers. The advantage

of using a general solver is that the time to develop a problem description is relatively

small compared with the construction of special purpose codes.

Using a linked list modelling system for COPs, a technique of automatically generating

initial feasible solutions to problems was developed. The generation of feasible solutions

has been described as a difficult task in itself (Goldberg 1989).

Using a linked list modelling system for COPs, a set of local search transition operators

that preserve feasibility, can be automatically deduced using a rule base.

Using a linked list modelling system for COPs, incremental cost expressions can be

deduced from the original cost function. These expressions increase the efficiency of

meta-heuristic search algorithms, as fewer operations are required to compute the change

in cost than to calculate the entire cost.

As seen in Section 6.2, the work contained in this thesis has also given rise to a number of subsidiary

projects.

Bibliography

Abada, H. and El-Darzi, E. (1996) "Solving the Timetable Problem Using Tabu Search",
University of Westminster, Working Paper.

Aboudi, R. and Jornstern, K. (1994) "Tabu Search for General Zero-One Integer Programs using
the Pivot and Complement Heuristic", ORSA Journal on Computing, 6, pp. 82-93.

Abramson, D. (1991) "Constructing School Timetables using Simulated Annealing: Sequential and
Parallel Algorithms", Management Science, 37, pp. 98-1 13.

Abramson, D. (1992) "A Very High Speed Architecture to Support Simulated Annealing", IEEE
Computer, pp. 27-34.

Abramson, D. and Dang, H. (1993) "School Timetables: A Case Study in Simulated Annealing",
Applied Simulated Annealing, Lecture Notes in Economics and Mathematics Systems,
Springer-Verlag, Ed: Vidal, V., Chapter 5, pp. 103 - 124.

Abramson, D., de Silva, A., Randall, M. and Postula, A. (1995) "Special Purpose Computer
Architectures for High Speed Optimisation", Proceedings of the Second Australasian
Conference on Parallel and Real Time Systems Conference, pp. 13 - 20.

Abramson, D., Dang, H. and Krishnamoorthy, M. (1993) "Enhanced Simulated Annealing
Through Linear Programming Preprocessing", Proceedings of the 12th National
Conference of the Australian Society for Operations Research, Adelaide, July 7-9, pp. 91-
114.

Abramson, D., Dang, H. and Krishnamoorthy, M. (1996) "A Comparison of Two Methods for
Solving 0-1 Integer Programs Using a General Purpose Simulated Annealing", Annals of
Operations Research, 63, pp. 129-150.

Abramson, D., Logothetis, P., Randall, M. and Postula, A. (1997) "Application Specific
Computers for Combinatorial Optimisation", The Australian Computer Architecture
Workshop, Sydney, Australia, February, pp. 29 - 43.

Abramson, D., Logothetis, P., Randall, M. and Postula, A. (1998) "A Tail Of 2" Cities: Performing
Combinatorial Optimisation Using Linked Lists On Special Purpose Computers",
Keynote address, Proceedings of the International Conference on Computational
Intelligence and Multimedia Applications, February, Gipsland. pp. 17-45.

Abramson, D. and Randall, M. (1998) "A Simulated Annealing Code for General Integer Linear
Programs", to appear in Anrlals of Operations Research.

Anbil, R., Gelman, E., Patty, B, and Tanga, R. (1991) "Recent Advances in Crew-Pairing
Optimization at American Airlines", Intelfaces, 21, pp. 62-74.

Back, T. (1992) "A User's Guide to GENEsYs 1.0", University of Dortmund, Department of
Computer Science.

Badeau, P., Gendreau, M., Guerin, F., Potvin, J. and Taillard, E. (1997) "A Parallel Tabu Search
Heuristic for the Vehicle Routing Problem with Time Windows", Transportation
Research-C, 5, pp. 109- 122.

Barendregt, H. (1984) The Lambda Calculus: Its Syntax and Semantics, North Holland,
Amsterdam, 621 pages.

Barr, R. and Hickman, B. (1993) "Reporting Computational Experiments with Parallel Algorithms:
Issues, Measures and Experts' Opinions", ORSA Journal on Computing, 5, pp. 2-18.

Barr, R., Golden, B., Kelly, J., Resende, M. and Stewart, W. (1995) "Designing and Reporting on
Computational Experiments with Heuristic Methods", Journal of Heuristics, 1, pp. 9-32.

Barnier, N. (1997) "Optimization by Hybridization of a Genetic Algorithm with CSP Techniques",
Proceedings of the Second ESSLLI Student Session, Eds: Drewery, A., Geert-Jan, M. and
Zuber, R..

Battiti, R. and Protasi, M. (1995) "Reactive Local Search for the Maximum Clique Problem",
Technical Report - International Computer Science Institute, TR-95-052.

Battiti, R. and Tecchiolli, G. (1994) "The Reactive Tabu Search", ORSA Journal on Computing, 6,
pp. 126-140.

Battiti, R. and Tecchiolli, G. (1995) "Local Search with Memory: Benchmarking RTS",
Operations Research Spektrum, 17, pp. 67 - 86.

Beasley, J. (1990) "OR-library: Distributing Test Problems by Electronic Mail", Journal of the
Operational Research Society, 41, pp. 1069- 1072.

Beasley, J., Krishnamoorthy, M., Abramson, D. and Sharaiha, Y. (1995) "Scheduling Aircraft
Landings - The Static Case", Submitted to Operations Research.

Beasley, J. and Chu, P. (1996) "A Genetic Algorithm for the Set Covering Problem", European
Journal of Operational Research, 94, pp. 392-404.

Beasley, J. and Chu, P. (1997a) "A Genetic Algorithm for the Multiconstraint Knapsack
Problem", Working Paper.

Beasley, J. and Chu, P. (1997b) "Constraint Handling in Genetic Algorithms: the Set Partitioning
Problem", Working Paper.

Brooke, A., Kendrick, D., Meeraus, A. and Raman, R. (1997) GAMS Language Guide, GAMS
Development Corporation, 305 pages.

Burkard, R., Karisch, S. and Rendl, F. (1997) "QAPLIB - A Quadratic Assignment Problem
Library", Journal of Global Optimization, 10, pp. 391-403.

Campbell, J. (1994) "Integer Programming Formulations of Discrete Hub Location Problems",
Annals of Operations Research, 75, pp. 387 - 405.

Carling, A. (1992) Introducing Neural Networks, Sigma Press, Wilmslow, 338 pages.

Caseau, Y. and Laburthe, F. (1997) "Solving Small TSPs with Constraints", Proceedings of the
Joint International Conference and Symposium on Logic Programming, Ed: Naish, L.,
MIT Press.

Chartrand, G. (1997) Graphs as Mathematical Models, Prindle, Weber and Schmidt Inc, Boston
MA, 294 pages.

Chams, M., Hertz, A. and de Werra, D. (1987) "Some Experiments with Simulated Annealing for
Coloring Graphs", European Journal of Operational Research, 32, pp. 260-266.

Chanas, S. and Kobylanski, P. (1995) "A New Heuristic Algorithm Solving the Linear Ordering
Problem7', Technical Report - Institute of Industrial Engineering and Management, PL-
50-372.

Chandy, J. and Prithviraj, B. (1996) "Parallel Simulated Annealing Strategies for VSLI Cell
Placement", Proceedings of the 9'* International Conference on VSLI Design, Bangalore,
India, January.

Christofides, N. and Eilon, S. (1969) "An Algorithm for the Vehicle Dispatching Problem",
Operations Research Quarterly, 20, pp. 309 - 3 18.

Chu, P. and Beasley, J. (1997) "A Genetic Algorithm for the Generalised Assignment Problem",
Computers and Operations Research, 24, 1997, pp. 17-23.

Clarke, G. and Wright, J. (1964) "Scheduling of Vehicles from a Central Depot to a Number of
Delivery Points", Operations Research, 12, pp. 568-581.

Connolly, D. (1990) "An Improved Annealing for the QAP", European Journal of Operational
Research, 46, pp. 93-100.

Connolly, D. (1992) "General Purpose Simulated Annealing", Journal of the Operational
Research Society, 43, pp. 495-505.

Cook, S. (1971) "The Complexity of Theorem-Proving Procedures", Proceedings of the 3"Annual
ACM Symposium on the Theory of Computing, pp. 15 1 - 158.

Crama, Y., Flippo, O., van de Klundert, J. and Spieksma, F. (1995) "The Assembly of Printed
Circuit Boards: A Case With Multiple Machines and Multiple Board Types", Research
Memorandum - Faculty of Econonzics and Business Administration, University of
Limburg, 951033.

Crainic, T., Toulouse, M. and Gendreau, M. (1997) "Toward a Taxonomy of Parallel Tabu Search
Heuristics", INFORMS Journal on Computing, 9, pp. 61-7 1.

De Falco, I., Del Balio, R. and Tarantino, E. (1996) "Solving the Mapping Problem by Parallel
Tabu Search", Instituto per la Ricerca sui Sistemi Informatici Paralli, Italy.

Eglesse, R. (1990) "Simulated Annealing: A Tool for Operational Research", European Journal of
Operational Research, 46, pp. 27 1-28 1.

Emory, W. and Cooper, D. (1991) Business Research Methods, Irwin Inc, Boston MA, 4' Edition,
760 pages.

Ernst, A. and Krishnamoorthy, M. (1996a) "Efficient Algorithms for the Uncapacitated Multiple
Allocation p-Hub Median Problem", to appear in European Journal of Operational
Research.

Ernst, A. and Krishnamoorthy, M. (1996b) "Efficient Algorithms for the Uncapacitated Single
Allocation p-hub Median Problem", Locations Science (Special Issue on Hub Location),
4, pp. 139-154.

Ernst, A. and Krishnamoorthy, M. (1997a) "Solution Algorithms for the Capacitated Single
Allocation Hub Location Problem", to appear in Annals of Operations Research.

Ernst, A. and Krishnamoorthy, M. (1997b) "A Novel Exact Solution Approach Based on Shortest
Paths for p-hub Median Problems", Submitted to ORSA Journal on Computing.

Ernst, A., Krishnamoorthy, M. and Storer, R. (1997) "Exact and Heuristic Algorithms for
Scheduling Aircraft Landings", Working Paper.

Feo, T. and Resende, M. (1989) "A Probabilistic Heuristic for a Computationally Difficult Set
Covering Problem", Operations Research Letters, 8, pp. 67-71.

Feo, T. and Resende, M. (1995) "Greedy Randomised Adaptive Search Procedures", Journal of
Global Optimization, 51, pp. 109-133.

Firebaugh, M. (1989) Artificial Intelligence, PWS-Kent, Boston MA, 740 pages.

Fourer, R., Gay, D. and Kernighan, B. (1993) AMPL: A Modeling Language for Mathematical
Programming, Duxbury Press, California, 35 1 pages.

Garcia, B., Potvin J. and Rousseau, J. (1994) "A Parallel Implementation of the Tabu Search
Heuristic for Vehicle Routing Problems with Time Window Constraints", Computers and
Operations Research, 21, pp. 1025-1033.

Gilmore, P. and Gomory, R. (1961) "A Linear Programming Approach to the Cutting Stock
Problem", Operations Research, 9, pp. 849-859.

Glover, F. (1989) "Tabu Search - Part I", ORSA Journal on Computing, 1, pp. 190-206.

Glover, F. (1990) "Tabu Search - Part 11", ORSA Journal on Computing, 2, pp. 4-32.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers, Boston MA, 402
pages.

Gould, R. (1988) Graph Theory, Benjamin/Cummings Publishing Company, California, 332
pages.

Goldberg, D. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison
Wesely, Reading, 412 pages.

Grefenstette, J. (1987) "A User's Guide to GENISIS", Navy Center for Applied Research in
Artificial Intelligence, Washington, D.C.

Hart, P., Nilsson, N. and Raphael, B. (1968) "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths", IEEE Transactions on SSC, SSC-4, pp. 100-107.

Hasan, M. and Osman, I. (1995) "Local Search Algorithms for the Maximal Planar Problem",
International Transactions on Operational Research, 2, pp. 89-106.

Hertz, A., Taillard, E. and de Werra, D. (1997) "Tabu Search", Local Search in Combinatorial
Optimization, Eds: Aarts, E. and Lenstra, J., Wiley, pp. 121-136.

Higgins, A., Kozan, E. and Ferreira, L. (1997) "Heuristic Techniques for Single Line Train
Scheduling", Journal of Heuristics, 3, pp. 42 - 62.

Hopfield, J. (1982) "Neural Networks and Physical Systems with Emergent Collective
Computational Responsibilities", Proceedings of the National Academy of Sciences, 79,
pp. 2554-2558.

Hurwitz, C. (1994) GNU tsp-solve, Free Software Foundation, Inc., 25 pages.

IBM (1990) Optimisation Subroutine Library User Manual, IBM Corporation, 823 pages.

ILOG (1998) ILOG Optimization Suite White Paper, ILOG Corporation, 57 pages.

Ingber, L. (1993) "Simulated Annealing: Practice Versus Theory", Computer Modelling, 18, pp.
29-57.

Ingber, L. (1996) "Adaptive Simulated Annealing (ASA): Lessons Learned", Control and
Cybernetics, 25, pp. 33-54.

Jaffar, J. and Maher, M. (1997) "Constraint Logic Programming: A Survey", to appear in Journal
of Logic Programming.

Johnson, D. (1990) "Local Optimization and the Traveling Salesman Problem", Proceedings of the
1 7Ih International Colloquim on Automata, Languages and Progranzming, pp. 446 - 461.

Johnson, D., Aragon, C., McGeogh, L. and Scheveon, C. (1991a) "Optimisation by Simulated
Annealing: An Experimental Evaluation Pt I, Graph Partitioning", Operations Research,
37, pp. 865-892.

Johnson, D., Aragon, C., McGeogh, L. and Scheveon, C. (1991b) "Optimisation by Simulated
Annealing: An Experimental Evaluation Pt 11, Graph Colouring and Number
Partitioning", Operations Research, 39, pp. 378-406.

Johnson, D. and Trick, M. (1993) "Cliques, Coloring, and Satisfiability", DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Volume 26.

Kampke, T. (1988) "Simulated Annealing: Use of a New Tool in Bin Packing", Annals of
Operations Research, 16, pp. 327-332.

Kernighan, B. and Lin, S. (1970) "An Efficient Heuristic Procedure for Partitioning Graphs", The
Bell System Technical Journal, pp. 291 - 307.

Kirpatrick, S., Gelatt, D. and Vecchi, M. (1983) "Optimization by Simulated Annealing", Science,
220, pp. 67 1-680.

Klincewicz, J. (1992) "Avoiding Local Optima in the p-hub Location Problem using Tabu Search
and GRASP", Annals of Operations Research, 40, pp. 283 - 302.

Kohonen, T. (1982) "Self-organized Formation of Topological Correct Feature Maps", Biological
Cybernetics, 43, pp. 53-69.

Kontoravdis, G. and Bard, J. (1995) "A GRASP for the Vehicle Routing Problem with Time
Windows", ORSA Journal on Computing, 7, pp. 10 - 23.

Kouvelis, P, and Chiang, W. (1992) "A Simulated Annealing Procedure for Single Row Layout
Problems in Flexible Manufacturing Systems", International Journal of Production
Research, 30, pp. 7 17-732.

Koulamas, C., Antony, S. and Jansen, R. (1994) "A Survey of Simulated Annealing to Operations
Research Problems", Omega International Journal of Management Science, 22, pp. 41-
56.

Krishnamoorthy, M., Ernst, A. and Beasley, J. (1997) "Formulations and Algorithms for the
Personnel Task Scheduling Problem", Working Paper.

Lawler, E., Lenstra, J., Rinnoy Kan, A. and Shmoys, D. (1985) The Traveling Salesman Problem:
A Guided Tour of Conzbinatorial Optimization, Wiley, Chichester, 465 pages.

Li, Y., Pardalos, P. and Resende, M. (1994) "A Greedy Randomized Adaptive Search Procedure
for the Quadratic Assignment Problem", in Quadratic Assignment and Related Problems,
Ed. Pardalos, P. and Wolowicz, H., DIMACS Series on Discrete Mathematics and
Theoretical Cornputer Science, 16.

Lin, S. and Kernighan, B. (1973) "An Effective Heuristic Algorithm for the Traveling Salesman
Problem", Operations Research, 21, pp. 498-516.

Little, J. and Darby-Dowman, K. (1995) "The Significance of Constraint Logic Programming to
Operational Research", Operational Research Tutorial Papers, Eds: Lawrence, M. and
Wilsdon, C., Operational Research Society, Birmingham.

Lokketangen, A., Jornsten, K. and Storoy, S. (1994) "Tabu Search within a Pivot and Complement
Framework", International Transactions in Operations Research, 1, pp. 305-3 16.

Luger, G. and Stubblefield, W. (1993) Artificial Intelligence, BenjaminlCummings, California, 740
pages.

Marriot, K. and Stuckey, P. (1998) Constraint Programming: An Introduction, MIT Press,
Cambridge MA, 476 pages.

Martello, S. and Toth, P. (1981) "An Algorithm for the Generalised Assignment Problem",
Proceedings of the 9'" IFORS conference, Hamburg, Germany.

Mavridou, T., Pardalos, P., Pitsoulis, L. and Resende, M. (1995) "Parallel Search for
Combinatorial Optimization: Genetic Algorithms, Simulated Annealing, Tabu Search and
GRASP", Proceedings of Parallel Algorithms for Irregularly Structured Problems, and
Springer-Verlag, Lecture Notes in Computer Science, 980, (1995), Eds: Ferreira, A. and
Rolim, J., pp. 3 17-33 1.

Nugent, C., Vollman, T. and Ruml, J. (1968) "An Experimental Comparison of Techniques for the
Assignment of Facilities to Locations", Operations Research, 16, pp. 150-173.

Or, I. (1976) "Traveling Salesman-type Combinatorial Optimization Problems and their Relation
to the Logistics of Regional Blood Banking", PhD Dissertation, Northwestern University,
Evanston, IL.

Osman, I. (1993) "Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problem", Annals of Operations Research, 41, pp. 421-45 1.

Osman, I. (1995) "Heuristics for the Generalised Assignment Problem: Simulated Annealing and
Tabu Search Approaches", Operations Research Spektrum, 17, pp. 21 1-225.

Osman, I. and Kelly, J. (1996) Metaheuristics: Theory and Applications, Kluwer Academic
Publishers, Norwell MA, 704 pages.

Osman, I. and Laporte, G. (1996) "Metaheuristics: A Bibliography", Annals of Operations
Research, 63, pp. 5 13-6 18.

Pardalos, P. and Wolkowicz, H. (1994) "Quadratic Assignment Problems and Related Problems",
Dimacs Series in Discrete Mathematics and Theoretical Computer Science, Volume 16,
370 pages.

Pearl, J. (1984) Heuristics: Intelligent Search strategies for Computer Problems Solving, Addison
Wesely, Reading, 382 pages.

Petersen, C. (1967) "Computational Experience with Variants of the Balas Algorithm Applied to a
Selection of R&D Projects", Management Science, 13, pp. 736-750.

Peterson, C. and Sodberg, B. (1989) "A New Method for Mapping Optimization Problems onto
Neural Networks", International Journal of Neural Systems, 1, pp. 3-22.

Pohl, I. (1990) A Book on C, BenjaminICummings, California, 525 pages.

Ramanujam, J. and Sadayappan, P. (1995) "Mapping Combinatorial Optimization Problems onto
Neural Networks", Information Sciences, 82, pp. 839 - 255.

Randall, M. (1995) "The Future and Applications of Genetic Algorithms", Proceedings of
Electronic Development Towards the Year 2000 Conference, Ed: Jain, L., IEEE
Computer Society Press, pp. 471 - 475.

Randall, M. and Abramson, D. (1998) "A General Meta-heuristic Based Solver for Combinatorial
Optimisation Problems", Working Paper.

Reinelt, G. (1985) "The Linear Ordering Problem: Algorithms and Applications, Research and
Exposition", Research and Exposition in Mathematics, 8, Heldermann Verlag, Berlin, 236
pages.

Reinelt, G. (1991) "TSPLIB - A Traveling Salesman Problem Library", ORSA Journal on
Computing, 3, pp. 376-384.

Rosenkrantz, D., Stearns, R. and Lewis, P. (1977) "An Analysis of Several Heuristics for the
Traveling Salesman Problem", SIAM Journal of Computing, 6, pp. 563 - 58 1.

Ruml, W., Ngo, J., Marks, J. and Shieber, S. (1995) "Easily Searched Encodings for Number
Partitioning", to appear in Journal of Optitnization Theory and Applications.

Schrage, L. (1997) Optimization Modeling with Lindo, Duxbury Press, Pacific Grove, 5'h Edition,
470 pages.

Skorin-Kapov, D. and Skorin-Kapov, J. (1994) "On Tabu Search for the Location of Interacting
Hub Facilities", European Journal on Operational Research, 73, pp. 501-508.

Smith, K., Palaniswami, M. and Krishnamoorthy, M. (1996a) "A Hybrid Neural Approach to
Combinatorial Optimisation", Computer and Operations Research, 23, pp. 597-610.

Smith, K., Palaniswami, M. and Krishnamoorthy, M. (1996b) "Traditional Heuristic Versus
Hopfield Neural Network Approaches to a Car Sequencing Problem", European Journal
of Operational Research, 93, pp. 300-3 16.

Smith, K., Palaniswami, M. and Krishnamoorthy, M. (1998) "Neural Techniques for
Combinatorial Optimization with Applications", IEEE Transactions on Neural Networks,
9, pp. 1301-1319.

Sofianopoulou, S. (1992) "The Process Allocation Problem: a Survey of the Application of Graph-
Theoretic and Integer Programming Approaches", Journal of the Operational Research
Society, 43, pp. 407-4 13.

Sosic, R. and Gu, J. (1991) "Fast Search Algorithms for the N-Queens Problem", IEEE
Transactions on Systems, Man and Cybernetics, 21, pp. 1572-1576.

Sprent, P. (1993) Applied Nonparametric Statistical Methods, Chapman and Hall, London, 2nd
Edition, 342 pages.

Stuckey, P. and Tam, V. (1996) "Models for Using Stochastic Constraint Solvers in Constraint
Logic Programming", International Symposium on Programming Languages,
Implementation, Logics and Programs, pp. 423 - 437.

Taha, H. (1992) Operations Research: An introduction, Macmillan Publishing Company, New
York, 5' Edition, 822 pages.

Taillard, E. (1991) "Robust Taboo Search for the Quadratic Assignment Problem", Parallel
Computing, 17, pp. 443-455.

Taillard, E. (1993) "Parallel Iterative Search Methods for Vehicle Routing Problems", Networks,
23, pp. 661 -673.

Taillard, E., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J. (1997). "A Tabu Search for the
Vehicle Routing Problem with Soft Time Windows", Transportation Science, 31, pp.
170-186.

Tank, D. and Hopfield, J. (1985) "'Neural' Computation of Decisions in Optimization Problems",
Biological Cybernetics, 52, pp. 14 1- 152.

van Laarhoven, P. and Aarts, E. (1987) Simulated Annealing: Theory and Applications, D Reidel
Publishing Company, Dordecht, 186 pages.

Wilson, R. (1985) Introduction to Graph Theory, Longman Scientific and Technical, Hong Kong,
3rd Edition, 166 pages.

Winston, P. (1992) ArtiJicial Intelligence, Addison Wesley, Reading, 3rd Edition, 737 pages.

Winston, W. (1991) Operations Research: Applications and Algorithms, Duxbury Press,
California, 2nd Edition, 1262 pages.

Woodruff, D. and Zemel, E. (1993) "Hashing Vectors for Tabu Search", Annals of Operations
Research, 41, pp. 123-137.

Glossary of Terms and Acronyms

AI: Artificial Intelligence

ANN: Artificial Neural Network

ASA: Adaptive Simulated Annealing

ASC: Application Specific Computer

Backaus-Naur Form: See BNF.

BIN: Bin Packing Problem. A problem in which a set of weighted objects is to be partitioned

between a number of bins with a certain capacity. The aim is to minimise the number of bins.

Bin Packing Problem: See BIN.

BNF: Backaus-Naur Form. A syntax for describing languages (in particular programming

languages). It is often used for the production of compilers.

Car Sequencing Problem: See CSP.

Constraint: An inequality or equality relationship that limits the set of feasible solution states.

COP: Combinatorial Optimisation Problem

CP: Constraint programming.

CSP: Car Sequencing Problem. A problem in which a number of different car models are to be

sequenced on an assembly line. The objective is to separate cars of the same model type as much as

possible in order to evenly distribute the manufacturing workload.

CPU: Central Processor Unit

CPU time: The total time taken for the CPU to execute a program.

Field Programmable Gate Array. See FPGA.

FPGA : Field Programmable Gate Array. An FPGA is a silicon chip that allows a hardware

design to be simulated. FPGAs are useful as they allow hardware designs to be reconfigured without

any physical modification.

GRASP: Greedy Randomised Adaptive Search Procedures

GA: Genetic Algorithm

GAMS: General Algebraic Modelling System

GAP: Generalised Assignment Problem. In this problem, jobs are assigned to agents subject to

capacity constraints. The aim is to minimise the overall cost of this assignment.

Generalised Assignment Problem: See GAP.

GPP: Graph Partitioning Problem. A problem in which the aim is to find two equal partitions of

nodes such that the number of interconnections between the partitions (characterised by the edges) is

minimised.

GPSIMAN: General Purpose SIMulated ANNealing. The solver was demonstrated in Connolly

(1992).

GRAPH: Graph Colouring Problem. A problem in which a minimal number of colours are to

be assigned to a set of vertices such that any pair of vertices connected by an edge has two different

colours.

Graph Colouring Problem: See GRAPH.

Graph Partitioning Problem. See GPP.

GS: Greedy Search

Hamiltonian Cycle: A Hamiltonian cycle is a circuit in a graph in which each vertex appears

exactly once.

ILP: Integer Linear Program(ming)

IQR: Inter Quartile Range, The IQR quantifies the spread of the distribution for non-normally

distributed data. It is defined as the difference between the first and third quartile of the distribution

(Emory and Cooper 1991).

Knapsack Problem: The objective of this problem is to fit a maximum number of items in the

knapsack such that the profit is maximised. The sum of the weights of the items must not exceed a

preset bound.

LISP: LISt Processing. A computer language designed for manipulating lists of data.

LP: Linear Program(ming)

Markov Chain Length: The number of SA iterations for which the temperature is held

constant.

Max: Maximum

Maximal Planar Layout Problem: A facilities layout problem in which a planar graph is

sought that has the qualities: (a) no edges intersect; and (b) the sum of edge weights is maximised.

Maximum Clique Problem: See MCP.

Med: Median

MCP: Maximum Clique Problem. A problem in which a clique of maximum cardinality is

sought. Each clique member must be connected by an edge to every other member of the clique.

MFLOP: Millions of FLoating Point Operations per second.

MILP: Mixed Integer Linear Program(ming). An MILP is an LP in which some variables

are continuous while others are restricted to integer values.

Min: Minimum

Minimal Spanning Tree Problem: This problem requires that all vertices in a graph are

connected by edges such that: (a) the edges do not form a circuit (i.e. a Hamiltonian cycle); (b) the sum

of the weight of the edges is minimised.

MIMD: Multiple Instructions Multiple Data.

MKP: Multiple Knapsack Problem. This problem is an extension of the knapsack problem

as it has a number of capacity constraints instead of a single constraint.

Multiple Knapsack Problem. See MKP.

Neighbourhood: The neighbourhood of a solution is the set of those solutions that can be

reached from the original solution by the application of a transition operator.

NP: Nondeterministically Polynomial. Refers to a class of problems that may not be solved to

proven optimality in less than exponential computational time (in the worst case).

OR: Operations Research

OSL: Optimisation Subroutine Library. A commercial LP/ILP package produced by IBM.

PMX: Partially Matched Crossover

Processor Allocation Problem: A problem in which a number of processes is allocated to a number

of processors such that the total communication flow between processes on different processors is

minimised.

QAP: Quadratic Assignment Problem. A problem in which a set of facilities is assigned to unique

locations in order to minimise the total intercommunication cost between the facilities.

Quadratic Assignment Problem: See QAP.

SA: Simulated Annealing

School Time Tabling Problem: See TTP

SOFM: Self-Organising Feature Maps

Transition: A transition is a perturbation of the current solution state. There are a variety of

different transition types. Some of which include exchanging the position of values within the

solution, adding / dropping a value to / from the solution, or changing a value within the solution to

another value. Different problems have their own set of suitable transition operators.

Traveling Salesman Problem: See TSP.

TS: Tabu Search

TSP: Traveling Salesman Problem. The objective of the TSP is to find a minimum length

Hamiltonian cycle through a set of cities (nodes).

TTP: School Time Tabling Problem. A problem in which a number of tuples (consisting of teacher,

room and class) are scheduled in a fixed number of time slots (periods). The aim is to minimise the

number of clashes between tuples.

UMApHMP: Uncapacitated Multiple Allocation p-Hub Median Problem. This is similar to

USApHMP except that each node may be connected to more than one hub.

Uncapacitated Multiple Allocation p-Hub Median Problem. See UMApHMP.

Uncapacitated Single Allocation p-Hub Median Problem. See USApHMP.

USApHMP: Uncapacitated Single Allocation p-Hub Median Problem. A problem in which a set

of nodes is assigned to a set of hubs (i.e. each node is connected to a single hub) such that the total cost

of the flows between every pair of nodes is minimised. The problem also involves deciding which

nodes are to be the hub nodes.

Vehicle Routing Problem: See VRP.

VRP: Vehicle Routing Problem. This is a generalisation of the TSP in which a number of tours are

used to visit the set of nodes. The objective is to either minimise the total length of the tour or to

minimise the number of tours, subject to time and capacity constraints.

Wall clock time: The elapsed (real) time it takes to execute a program. As such, this time

includes any system overhead and processor waiting.

Appendix A: Standard Results for the
SA, TS and GS engines

Table 45, Table 46 and Table 47 display the best results obtained for every problem instance with the

meta-heuristic engines. The summary tables are divided into two main sections, Cost and Runtime.

For each section, the minimum (denoted Min), median (denoted Med), maximum (denoted Max) and

inter-quartile range (denoted IQR) are given (as each problem instance is run with 10 random seeds).

The Runtime section records the amount of CPU time required to reach the best solution cost for that

particular run. Note: The desired objective function cost for the BIN, GRAPH and MCP problems is 0

as a result of the reasons outlined in Section 5.1.

SA Standard Results 3
Problem Instance

CSP n20tl

n20t2

n2013

n20t4

n20t5

n4011

n4012

n4013

n4014

n40t5

n60t 1

n60t2

Transition
Set
Reference
Number
1
1
I
1
I
1
1
1
I
1
1
I
1
I
1
I
I
1
I
1
I
1
I
I
1
I
I
1
I
I
I
1
1
1
1
1

Optimal 1
Best
Known
cost
58

40

29

10

150

146

94

66

33

352

238

152

Annealing
Length

1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000

Runtime

Min

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
1
I
189
0
0
0
0
0
I
0
0
0
0
1
0
4
4
4

IQR

0
0
I
0
0
0
0
0
0
0
0
0
0
0
0
0.75
1.75
1
0
0
0
1
1
I
0
0
0
0
0
0
2
I
1.25
1
1
0

Cost

Min

58
58
58
40
40
40
29
29
29
10
10
10
150
150
150
142
143
142
92
92
92
65
65
65
32
32
32
354
354
354
228
228
228
144
144
144

(seconds)

Med

7.5
224
359.5
0.5
3
6.5
0
0
0
0
0
0
0
0
0
701
458
450.5
419.5
433
250.5
0.5
0.5
0.5
3
3.5
2.5
0.5
0.5
0.5
1
2
1
164.5
307.5
270

Med

58
58
58
40
40
40
29
29
29
10
10
10
150
150
150
144
144
144
92
92
92
66
66
66
32
32
32
354
354
354
23 1
23-1
232
146.5
146
145

Max

27
1617
1339
2
8
15
4
9
20
0
0
0
0
0
0
1116
1634
1277
1304
940
917
I
5
5
339
102
166
13
28
53
1265
1232
219
1528
1029
1419

Max

58
59
59
40
40
40
29
29
29
10
10
10
150
150
150
145
145
145
92
92
92
67
67
66
32
32
32
354
354
354
233
232
234
150
146
. 146

IQR

6.25
95
932
1.5
7
13.75
0
0
0
0
0
0
0
0
0
515
1330
517
325.75
457
222.75
0.25
0.5
0.5
80
4
41.5
6
18.25
33.75
11.5
702.25
137.25
1063
287.5
371.5

3
8
s
B
2

-
$

3

&

8
E

3
= g

& s'

X

f

z
C

g

.-

vl vl
P vl + vi

vl 7 5 1 -42; 1 m m - p i & m + ~ " ~ ! e m v l w m z w m m w m z N - m m m e w m m w - e e m m w w - N w b w o o o m N N - - - - - -

w m I- m m m o w t - + m m w m
m A ~ m ~ % Z ~ g Z 2 f 2 z Z ~ ~ 2 2 0 \ 2 S S 2 5 2 2 N N N m o \ o \ d Z 2 m m m

'CI? y V !
1 Y V ! C ~ ? V ! ~ ~ V ! V ! ~ % ~ N O O O ~ ~ ~ ~ ~ % $ ~ m ~ - - - - m m m w w w m ~ m - d e - - ~ ~ m - e m w - - - v l w w ~ m ~ ~ m ~

m v l v l - -
~ ~ m o - - - - - m m m - N ~ + - - ~ ~ w - - - - - -

vl vl m vl vl vl vl vl
? ? r ? ? " " ? ? ? ?

- - o o o o o o ~ b ~ m - N - - - o o o o m m e - m - 0 0 0 0 0 0 0 0 0 0 0 0

mm, m m m e - - N N N O m m
o o o v l v l ~ v l v l v l ~ ~ ~ ~ ~ ~ ~ m m ~ ~ \ o ? ? ? m m v l
- - - m v l v l m v l v l m m m ~ ~ ~ - - - ~ ~ t - + ~ + w v l w ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

2 - - V!
m m m w w w - w w o o o o v l ~ d v l m v l - - - o 8 8 ~ A A ~ \ o w w w ~ m -

- - - v l v l v l v l v l v l m m m ~ ~ m - - - ~ ~ + + ~ + ~ v l v l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

- - - W W W N N N ~ W Q W + +
o o o e ~ e v l v l v l - - - m m m m m m w w w $ ~ S 1 ~ e -
- - - v l v l v l v l v l v l m m m - - - - - - ~ + + + t - + e m e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

.- - = '4

d
'E
'u
c
d
VI

$ 3

vlvlvl

N v ! ~ ? N ? vi 10 I0 vl
? ? m m m " - - 9 - v l m o m o m w V ! V ! V ! ? V ! Y V ! V ! V ! P ! ~ " !

O W v l P W O

V!
1

8 2 9

vl

1 2 ? -

" 2

2 k .- -
a E X
zlgg

\

3 s .J Y

a g g s v l
0 s p ~ 8 0

0

- 9 -
C(g

E
9
n

- v l - - v l - - v l - - v l - - v l - - v l - - v l - - v l - - v l - - v l - - v l - - ~ - - m -

b ~ ~ & Z - ~ ~ ~ m m m d + e m w m

- 8 2 w N N
m % m N 2 m r- P

- C=! T?;
0 0

9 " S L " C J
W W \O 2 " $ $ $ 8 m C C C C

o

-
9 .- C

z
m

m m
m

!4
E

0%: m N w
P m w

o m -
2" m b N N

m w y? w o o
2 2 2 - - - P b P N N N N N N - - W W W N b b W W W C W W z 2 - N N N - m m

v! v!
Y - v!

8
3

w o g
b m - - 8%: ~ % G o o ~ ~ ~ ~ - - - - - - ~ ~ ~ - - - w - - m m m ~ m ~ ~ ~ m - - - w w w

-

Pfi
m

r

- P - 3 -
e .- c c
3 9 E 3

V]

2
'2
7

!i z

H

c

2
c.I

3
3

? r! v! 2 v!
m P w 0 0 0 0 0 0 0 0 0 0 0 0 m ~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 m - ~ 0 0 0 0 0 0

VlO 6 ~ W O I N .lm N ~ m b o o o o o o o o o o o o w m w o o o - ~ ~ ~ ~ ~ ~ ~ ~ P P P O O O N O O

"?v ! v!:
~ ~ ~ O O O O O O O O O O O O ~ ~ ~ O O O O O O O O O O O O w w w O O O O O O

M

W W ~ W - W WNCh
N N N 0 0 0 0 0 0 0 0 0 0 0 0 m w m 0 0 0 0 0 0 0 0 0 0 0 0 m m b O O O O O O

B *
.J .- B g
a 5 %
Cfs% a

\

p r
n g Bz
omz s

W m ~ Z - - - ~ ~ ~ m m m ' ; f b ~ m m m - - - ~ ~ ~ ~ m m m ~ d b m m m - - - ~ ~ ~ m m m

0 0 0

N

Transition
Set
Reference
Number
4
4
4
5
5
5
1
I
1
2
2
2
3
3
3
4
4
4
5
5
5
1
I
I
2
2
2
3
3
3
4
4
4
5
5
5
1
1
1

SA Standard Results I
Problem Instance

bin2al

bin2a2

bin2a3

Annealing
Length

1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000

Optimal l
Best
Known
cost

0

0

0

Cost

Min

0
0
0
0
0
0
187
199
340
0
0
0
0
0
0
0
0
0
0
0
0
168
153
169
0
0
0
0
0
0
0
0
0
0
0
0
181
202
310

Runtime

Min

2
2
2
2
2
2
229
114
5
10
10
10
52
79
79
30
30
30
18
18
18
176
906
110
4
4
4
29
29
29
8
8
8
9
9
9
892
79 1
8

Med

0
0
0
0
0
0
205.5
225
400.5
0
0
0
I
0
0
0
0
0
0
0
0
188
187
327.5
0
0
0
0
0
0
0
0
0
0
0
0
212
230.5
392

Max

0
0
0
0
0
0
250
230
495
0
0
0
3
1
0
0
0
0
2
0
0
20 1
240
449
0
0
0
0
0
0
0
0
0
0
0
0
242
256
453

IQR

0
0
0
0
0
0
22.25
9.25
63.5
0
0
0
1.75
0
0
0
0
0
0
0
0
19.5
17.75
46.75
0
0
0
0
0
0
0
0
0
0
0
0
3 1.75
28.75
30.75

(seconds)

Med

3.5
3.5
3.5
2
2
2
1265.5
956.5
54.5
16
16
16
86
123.5
123.5
45.5
45.5
45.5
28.5
28.5
28.5
1044.5
1078.5
832
7
7
7
49
49
42
13
13
13
12.5
12.5
12.5
1107
1088
691.5

Max

9
9
9
6
6
6
1387
1588
1000
47
47
47
95
392
495
55
55
550
5 1
85
85
1547
1400
1568
9
9
9
84
84
84
2 1
21
21
24
24
24
1537
1367
1151

IQR

1.25
1.25
1.25
2
2
2
640.5
629.5
329.75
7.25
7
7
11.5
41.75
87
14.25
14.25
14.25
7.75
20.25
20.5
141.25
138
59 1.75
2.5
2.5
2.5
28.5
28.25
24.25
5
5
5
8.5
8.5
8.5
253
108
417.75

SA Standard Results I
Problem Instance

bin2a4

bin3al

Runtime

Min

5
5
5
46
46
46
19
19
19
18
18
18
843
894
15
5
5
5
35
35
35
11
I I
1 I
13
13
13
778
179
488
62
63
62
322
217
377
188
737
216

Transition
Set
Reference
Number
2
2
2
3
3
3
4
4
4
5
5
5
1
I
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1
1
2
2
2
3
3
3
4
4
4

Optimal 1
Best
Known
cost

0

0

(seconds)

Med

10
10
10
64.5
75.5
75.5
23.5
23.5
23.5
19.5
19.5
20
1341
1084
900.5
8
8
8
49.5
49.5
49.5
16
16
16
17.5
17.5
17.5
1156
1086.5
958
146
171.5
170
360
377.5
1036.5
246
938
528

Annealing
Length

1000
5000
10000
1000
5000
10000
1000
5000
10000
loo0
5000
I0000
1000
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
I0000
1000
5000
10000
1000
5000
10000
1000
5000
10000
lo00
5000
10000

Max

18
18
18
90
105
105
3 1
3 1
3 1
3 1
3 1
3 1
1587
1513
1104
13
13
13
80
80
80
25
25
25
21
26
2 1
1287
1582
1426
186
414
413
373
844
1557
276
1575
842

IQR

4.25
4.25
4
18.5
32.5
33.25
3.75
3.75
3.75
3.25
3.25
3
362.5
467.75
884
1.25
I
1.25
15
15
15
3
3
3
3.5
3.5
3.5
110
600.75
307.75
48.25
87.5
85.5
20
391.5
341.5
54
375
387.75

IQR

0
0
0
0.75
0
0
0
0
0
0
0
0
13.5
20.5
35.75
0
0
0
0
0
0
0
0
0
0
0
0
80.5
162.25
265.5
1
0
0
2.25
1
0.75
2
0
0

Cost

Min

0
0
0
0
0
0
0
0
0
0
0
0
176
171
161
0
0
0
0
0
0
0
0
0
0
0
0
517
412
446
0
0
0
3
0
0
0
0
0

Med

0
0
0
0
0
0
0
0
0
0
0
0
202
197
328.5
0
0
0
0
0
0
0
0
0
0
0
0
58 1
544.5
711.5
0
0
0
7
0
0
I
0
0

Max

0
0
0
1
0
0
0
0
0
0
0
0
22 1
246
435
0
0
0
0
0
0
0
0
0
0
0
0
89 1
916
916
3
0
0
13
2
28
3
0
0

SA Standard Results I
Problem Instance

bin3a2

bin3a3

bin3a4

Transition
Set
Reference
Number
5
5
5
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
1
I
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1
1
2
2
2

Optimal 1
Best
Known
cost

0

0

0

Annealing
Length

1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
10000
I000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
lo000

Cost

Min

0
0
0
558
483
260
0
0
0
9
0
0
1
0
0
I
0
0
517
509
672
0
0
0
0
0
0
0
0
0
0
0
0
581
81 1
634
2
0
0

Runtime

Min

107
190
190
745
26
41
91
171
173
333
596
322
199
3 65
365
189
262
262
7 06
377
377
64
64
64
295
378
374
122
122
122
111
11 1
111
729
11
20
90
29 1
29 1

IQR

0.75
0
0
73
286.75
298
0.75
0
0
4.5
I
0
1
0
0
1
0
0
30.5
114.5
114.5
0
0
0
2.5
0
0
0
0
0
I
0
0
2 1.25
72.25
106.25
1.75
0
0

Med

1
0
0
588
826
633.5
1
0
0
14.5
0.5
0
3.5
0
0
2
0
0
552
822
822
0
0
0
3
0
0
0
0
0
0.5
0
0
633
900
853.5
4.5
0
0

(seconds)

Med

194.5
4 10.5
410.5
1019
760
642.5
165
239.5
24 1
360.5
1330.5
1246.5
239.5
615
5 24
212
41 1
411.5
1141
1081
1080.5
101.5
101
101
337.5
654.5
65 1
194.5
204.5
204.5
153
262.5
263
869
1301.5
1369.5
174.5
589.5
596

Max

2
0
0
646
101 1
964
2
0
0
16
1
0
5
0
I
6
0
0
615
885
885
0
0
0
7
1
I
2
0
0
3
0
0
660
1113
1007
6
2
2

Max

253
87 1
87 1
1309
1558
1322
185
370
370
377
1593
1522
277
948
805
245
1223
1223
1597
1570
1570
176
176
176
378
1017
1017
277
505
505
23 1
521
521
1306
1552
1537
195
741
780

IQR

66.5
377.25
377
488.75
1290.5
58 1.75
46.25
104
104
23.5
474.25
33 1.75
48.5
25 1.25
233.5
19.75
324.5
324.25
438.75
332.5
332.25
32.25
32.25
32.25
54
383
384.5
44
103
103
60.5
190.5
190.5
325.75
716
298
30
24 1
246.5

SA Standard Results I
Problem Instance

GRAPH C125.1

C125.5

Optimal l
Best
Known
cost

0

0

Transition
Set
Reference
Number
3
3
3
4
4
4
5
5
5
1
I
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1
I
2
2
2
3
3
3
4
4
4
5
5
5

Annealing
Length

loo0
5000
loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
loo0
5000
10000
1000
5000
10000
1000
5000
10000

Cost

Min

12
1
0
3
0
0
3
0
0
2
1
1
1
I
0
2
1
1
2
2
0
2
0
0
6
3
1
8
5
4
8
5
3
6
5
4
8
5
5

Runtime

Min

332
785
783
221
576
418
205
412
412
3
3
3
5
14
14
6
1 I
11
5
5
5
9
15
15
10
23
130
9
9
34
8
24
24
52
14
14
I I
24
5 1

Med

19.5
3
1
6.5
0
0
4.5
0
0
3
3
3
3
2
2
3
2
2
3
2.5
2
3
2
2
8
6
5.5
10
6.5
6
9.5
6.5
6
9
6 .
5
9
6
6

Max

27
7
4
11
1
1
7
1
1
6
6
5
5
4
2
5
5
5
5
4
4
5
5
5
10
8
9
13
9
8
10
10
10
12
10
10
12
8
7

IQR

16
190.5
470
31.5
650
601.25
25.75
419.5
420
6.75
6.75
6.75
15.5
87
176.25
13.25
68
68
10.75
45.75
121.75
13
74.5
74.75
6.5
68.25
295.75
1.5
24
66
9
6 1.25
105
16
23.25
120
4.25
37.5
56.75

(seconds)

Med

355
1368.5
11 12
265
1296.5
876
250.5
792.5
793
6.5
7
7
17.5
57.5
100
15.5
66.5
69.5
15
30
48
26
77.5
77.5
18.5
44
407
15.5
6 1
95
17
65.5
8 1
66
40
67
20.5
8 1
100.5

IQR

4
2
1.75
2.5
0.75
0.75
1
0
0
1.75
1.75
1.75
2.75
0.75
0.75
1.5
1.5
1.5
I
1.75
1.75
0
0.75
0.75
1
2
3.75
1.75
1.75
1.75
1
2.5
1.75
2.75
2.25
1.75
1
1.75
0.75

Max

380
1532
1546
287
1429
1389
319
1215
1215
41
90
268
36
197
409
32
198
198
38
153
406
43
22 1
22 1
23
113
1481
18
77
149
24
110
232
80
101
217
23
112
204

-
3
'z
3
P:
'z
a
2
Gi

3
B
Y
d

B
3

*

3

L?

p!

g

3

E

= 3

p! s'

X

5

I

C

3

m m m m m m m v l m m m
m

q?v! " N Z ? ? Y ? " ? ? N G - m ' + ~ c - 2 N w N 3
Q ~ ~ m z $ G ~ ~ m g z m E g s g % ; g g g g $ z ~ $; : g 2 ~ ~ ~ g z z g s

d

m e
m N m

n z % - g ~ s ~ g ~ ~ ~ ~ ~ ~ ~ ~ ~ $ ~ ~ ~ ~ ~ ~ ~ ~ g w ~ 4 m ~ ~ o ~ ~ t - - w r t m m N m w m t -

m m m n Y Y m m m m m m ? " ' + ? Z e q Q m & G ~ -3tn-
z - - - P - m m w - d ~ - - - ~ - - d ~ - ~ m - d ~ ~ d \ ~ - ~ ~ ~ m m m N d e m m

- m d m
b z z P - N N - W d m N N - N N P N - Q - m - - - Q N m m - - m P P Q m ~ m P P d Q m m m % ~ 6 % ~ ~ $ ~ a = Q : : d ~ % ~ N m ~ m ~ N m N N Q - -

m m m m m m m m m m m m m m m m m m m
? ? ? ? ? ? ? ? Y ? ? ? " ? Y " ? ? ? ? ? " N e

Z Z o - o - - o o - - o - - o m N m m - N m N - v l - N c I N - - - p I d m m m m -

F m m m d m m ~ m P ~ m P - m m N m m z O m 2 = ~ ~ f Z P 2 = = ~ E z g Q " o Z 1 3 z

m m m m Y " m ? ? Y ? m -000
~ ~ ~ ~ m m m m ~ G & ~ ~ m m m ~ G ~ ~ m e e m m ~ - m m w m 2 = & % z - m - -

~ - - ~ N - ~ N - ~ N N ~ ~ - ~ ~ - ~ N N ~ ~ ~ I ~ ~ N \ o ~ N ' O E : ~ M = ~ ~ ~ P - P -

"IC

::
4 4

EO ?J
3 .- a 3
a t i * E z % a

\

2
3 - E * s ia 3

Q)

c
d a -
8
2

$ 2

0 0 0 0 0 0 0 0 oooo oo8oo8oo8oo8oo oooooo g g @ g g g g g g g ~ g x x x E g g s a z H a E E a E E a g z a g g g E E a E

h m p ! Z - - - ~ ~ ~ m m m d d d m m m - - - ~ c ~ ~ m m m d d d m m m - - - ~ C I ~ m m m

0 0

cr! - "
10
C! 2 8
U C1 C1

P:
2

E

vl vl vl
I- vl q v l v l vl

8
3

i
Fi

.a

3

2 3 2 0 lc,,lo y m m v l ' n ' n vl

l g s , = - , r n r c ~ $ ~ ~ ~ ~ ~ , ~ ~ z ; ; ~ 3 z ~ ~ ~ ~ - ~ - ~ 2 ~ ~ ~ ~

= 3

P:
2

X

5

E

3

~ ~ O ~ S ~ ~ % ~ ~ ~ ~ ~ % N S ~ * G ~ ~ % G ~ % % N Z % ~
~ m w ~ - ~ - v l m v m v l ~ v l m ~ m I - m ~ - I - m ~ ~ ~ ~ - ~ v l w - ~ v l m v l w ~ w ~ l ~ ~

M .- a = GJ

3 w z g

0

- m v l m m r i m o I-N o m w e
~ f ~ ~ ~ ~ E X % ~ ~ ~ E ~ ~ ~ ~ ~ ~ F 3 C ; ~ r ' ~ o o o o o o - - o o o o o o o

vl v l v l m m v l vl m vl vlvlvl
? N ? y y y y y P ? P ' O ? P
~ v m m N N - - c N - N N N - O N 2 z r z O O O O O O O O O O O O O O O O O 0

~ ~ ~ ~ = ~ ~ 2 ~ ~ " 2 ~ 2 " ~ z 2 ~ 2 d r ' r ' t : r ' r ' r ' r ' F ' r ' r ' F ' r ' t ; r ' F ' z z z

In vlvl vl vl rn m 2 0 6 ? ~ & ~ 0 6 6 ~ + ~ o w ~ m ~ z ~ E E E E ~ E E ~ E E E E E E E E E ~ ~ J - - N W - N - - ~ - - N - - N

Q ' m m 2 v w -

vl ? ?

w v

m - m m m
P y P 9 - . 9 9 P P P 9 " " - ? - - ~
2 2 2 : % : : 2 2 2 : 2 2 % 2 : : :
m m m w w w w m m m w m m w W ~ W ~
N N N v l v l v l v l N N N v l N N v l N v l v l v l

I-I-I-I-I-I-I-I-I-I-yt-I-PI-I-l-1- g g g g g g g g g g 2 g g 2 g s g g
, , , m m m m m m m m m m w m m m m m m w

I - I - I - I - I - l -b I -PI -yyI - I - I -yyP
d d d d d d d d w d w w w d d w w w - - - - - - - - - - - - - - - - - -
% % F i % % % % % % F i % % % % % F i F i %

~ " m ~ 2 2 r ' z , ~ = m ~ " m r r ' z r ' t : P r ' t : t t r ' r z z r z r r '

4 I4

8 , .-

-
3
2
2
2
m
m
c
d

2

\

H
d
3

E
2
%
2

0

2
vl

Ef

2 -
m N

'2

N

0 N a

0-
E
%.
Q,
3

SA Standard Results I
Problem Instance

ap20a3

ap20a4

ap20a5

Optimal 1
Best
Known
cost
151533.1

135624.9

123130.1

Transition
Set
Reference
Number
1
I
I
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
I
I
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
I
1

Annealing
Length

1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
iO000
1000
5000
10000
1000
5000
10000
I 000
5000
10000
1000
5000
10000

Cost

Min

151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
151533.1
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
135624.9
123130.1
123130.1
123130.1

Runtime

Min

39
166
321
1
1
1
0
0
0
I
1
1
0
0
0
1
1
1
32
154
310
1
I
1
1
I
I
1
8
2
1
I
1
0
I
0
78
180
346

Med

151533.1
151533.1
151533.1
153240.2
152651.78
152093.89
152651.77
151533.1
152092.46
156439.99
153828.62
151533.1
151533.1
151533.1
151533.1
152651.81
152092.46
152092.46
135624.9
135624.9
135624.9
139560.21
135624.9
135624.9
139762.7
135624.9
139022.43
139093.58
135624.9
139762.27
139560.25
137986.37
139093.58
138373.37
135624.9
136513.19
123130.1
123130.1
123130.1

(seconds)

Med

61
179
339.5
3.5
84
488
2
208.5
2
5.5
6
253.5
1
1
I
1.5
139.5
315
97.5
254
366.5
21
230
260
2.5
250
389
1 1
23 1
16
20.5
196.5
642.5
7.5
200
208
20 1
769
607

Max

151533.1
151533.1
151533.1
161745.95
161745.95
160250.09
160250.14
159170.27
160250.14
161349.92
163209.45
160250.11
160250.08
160250.14
160250.06
160250.11
153293.8
160250.1 1
135624.9
135624.9
135624.9
140863.03
141121.83
141 121.83
144485.05
140863.06
140863.03
144032.28
139093.67
142732.05
14323 1.6
143599.91
143023.16
149138.55
144781.47
141 121.83
123202.78
123347.63
123202.82

IQR

0
0
0
5183.17
2015.81
2295.48
2015.85
838.93
2001.3
8447.17
8447.05
839.01
839.03
839.01
4345.4
641.99
1 1 18.71
11 18.71
0
0
0
2629.76
0
3614.98
1692.9 1
2601.5 1
4852.22
2061.67
0
3400.35
3056.25
4743.23
3838.95
2910.86
1254.13
2695.95
0
0
0

Max

121
413
483
703
1256
1390
218
35 1
91 1
237
1438
1480
63
457
503
553
233
46 1
207
543
62 1
87
977
1168
195
969
1175
65
1191
1497
76
1181
1490
179
664
714
53 1
1080
1175

IQR

3 1
66.25
2 1.75
62
247.25
178
45.5
229.5
452.75
64.25
183.25
515.5
1.5
194.5
0.75
3.75
217
435.5
123
139.5
181.25
53
72.75
518.5
44.5
140.75
219.5
36.5
19
423.5
62
246.5
825
5 1.25
155.25
415.25
108.75
592.75
265.75

SA Standard Results 3
Problem Instance

ap25a2

ap25a3

Transition
Set
Reference
Number
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
1
1
2
2
2

Optimal l
Best
Known
cost

175542

155256.3

Annealing
Length

1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
loo00

Cost

Min

123130.1
123130.1
1231 30.1
1231 30.1
123130.1
123130.1
123130.1
123 130.1
123 130.1
123 130.1
123 130.1
123 130.1
123130.1
123130.1
123130.1
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
155256.3
155256.3
155256.3
155256.3
155256.3
155256.3

Runtime

Min

I
2
1
1
1
I
1
1
1
I
1
I
1
I
1
78
383
752
0
0
0
1
1
I
1
1
I
1
1
1
0
0
0
72
406
715
1
1
1

IQR

4795.98
3536.28
1666.48
1865.76
163.17
185.96
619.02
240.39
3808.57
820.69
1068.65
1666.48
3212.18
4401 .I9
163.19
307.55
307.97
267.51
307.55
230.66
230.66
230.66
230.66
0
230.66
307.55
307.55
230.66
230.66
230.66
230.66
230.66
230.66
354.51
354.51
265.88
567.41
4687.37
4598.74

(seconds)

Med

18.5
250.5
383.5
42.5
283
3 85
57.5
235.5
548
41.5
196.5
513
3
207
399.5
157
649.5
1338.5
4.5
4.5
4.5
2
2
2
4
4
4
4.5
5
4.5
2
2
2
333.5
665
1076.5
23
280
573.5

Med

126687.54
123130.1
123359.12
123664.43
123130.1
123130.1
123359.12
123238.9
123610.27
124198.74
123664.43
123664.42
124995.86
123130.1
123130.1
175695.76
175541.98
175541.98
175695.76
175541.98
175541.98
175541.98
17554 1.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
175541.98
155492.8
155610.81
155610.81
159943.64
156374.77
156374.01

Max

133435.81
128379.25
128379.25
128379.25
124995.81
124198.72
128379.25
127762.47
132204.03
128379.26
127762.4
128379.26
128379.26
132450.42
128379.26
186193.17
175849.95
175849.95
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
175849.53
164744.94
159943.64
160018.14
161743.77
159943.67
16021 3.6 1

Max

137
605
1050
223
854
1582
216
1196
1455
131
97 1
870
172
7 65
1501
1109
1460
1759
59
59
1243
352
635
1289
275
115
115
140
655
1529
120
625
1180
1432
1228
1288
125
852
1320

IQR

45.75
131.75
41 1.75
47.25
435.75
474.25
149.75
29
891.25
63
214.25
267
38.25
85.5
394
153.5
527.25
253.25
30.5
30.5
30.5
6.5
19.25
19.25
34.75
38.25
38.25
34.75
35.5
35.75
21
21
40.5
186.5
345
216.75
28.75
627
1140

-
, -
2
2
E
w
c OI

TI
4
vl

3
B
8 -
H 1 %
2

*

8

M

S
g

g

Tj
E

g

E

;
E

g

8
.c: 8 5 -g g g
Z z % 3

\

2 $
0ai2 s

Q v

B *

E
Q

3 z
CI

m m y m m
N N m r : m v) ?
m 4 G g N % & - m m m ~ m - a v $?

m 3 % * % 2 4 E : G m
2 2 2 3 ~ x 5 " ~ ~ ~

m 2
Y m 4 P - - N - ~ ~ Y Y

m

?&8sy I m d N - - $ 2 c 2
q g g g s 3 2 3

coca d m
9 9 Y 9 r : - - a m i - o a m

d ~ a m m m a a

b v l a Z V d d m m m w a a - - - ~ ~ ~ m m m d d d m m m a a a - - - ~ ~ ~ m m m d

w m
r:

8 -
a m
m 2
2 13

N m

2 E:
P F:

5
5 s

VI
m

m m m m m m m m m m m m r : m q ? " ? P- - m
? Y " " ? " " ? N " Y N Y Y Y c ! - ~ - - ~ - ~ m m a m m o o o o o o o o 0 m 3 ~ 0 0 0 ~ E : ~ ~ ~ ~ - - - o

m m - - m z q d d d - - - - - - - - - N m m - - - d m a - - - m m O O N

9 Y Y Y Y Y Y
~ ~ ~ ~ ~ ~ = ~ ~ m ~ % ~ ~ ~ o o o o o o m ~ % ~ ~ ~ m I = : ~ m m m - - - ~

d - d N N d - - - 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O

d

9 d

8 Y
'0

m N
m Q m F - F - 0 6 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 N O O O O O O O O O

m d w m m m m m m m m m m m m d m m m m m m m m m m m m m
9 w 9 w w 9 9 9 9 9 9 9 9 9 9 m 9 9 9 9 9 m ~ V ! r : r : r : r : r : r : ?

m ~ m m m m m m m m m m ~ m a m m m m m o - - - - - - -
0 0 m m ~ ~ o m 8 m m 0 0 0 0 o o o o o 0 ~ 0 ~ 0 0 0 m m ~ m m m m m m m
3 3 3 p g 2 8 ~ 9 ~ 3 g g g g g g g ~ 4 ' D , C : 4 Z 4 g g s s ~ 2 2 2 2 2 t l ! t l !
13213131351322C22 '0 '0 ' 0 ' 0 ' 0222 '02 '0222213131313131313131313

m m m m m m m m m m m m d m m m m m m m m m m m m m m m
~ ~ s r : s - w w ~ 9 9 9 9 9 9 9 9 9 4 9 9 9 9 9 9 o ! 9 r : r : r : ~ r : ~ ? ? r : r :
- $ 3 % 8 ~ % ~ ~ 8 8 8 8 ~ 8 8 8 8 8 8 8 ~ 8 8 8 8 8 ; ; ; ~ ~ ~ ~ ~ ~ ~ ~ ~
m O m P - N - a ~ P a a a a a a a a a w a a O a a a a a ~ m m m m m m m v) m d w m a P - m m m a m m m m m m m m m m m m m m m m m m - - - - r - - - -
22222222222222'02'0'0'02'0'0'0'022213131313131313131313

m
r : ~ m m m m m m m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o \ o ! o ? o ! o ! o : o 1 o ! r : r : r : r : r : r : r : ~ ~ ~
% g g g g g g g g a g g g g a a s g g ~ g g 8 ~ 8 g g z ~ z z z z z z z z
a m m m m m m m m a w a a w w a a a a a w a w w a a a 2 m m m m m m m m m
m - - - - - - - - -
222222222'0'0'0'0222'022222'022'021321313131313131313

SA Standard Results I
Problem Instance

ap l0a4

ap l0a5

Optimal 1
Best
Known
cost

107354.73

86028.88

Transition
Set
Reference
Number
4
4
5
5
5
6
6
6
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
1
I
2
2
2
3
3
3
4
4
4
5

Annealing
Length

5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
I0000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
1 0000
1000

Cost

Min

131581.79
131581.79
131581.79
131581.79
131581.79
131581.79
131581.79
131581.79
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89

Runtime

Min

0
0
0
0
0
0
0
0
1
1
1
2
2
2
0
0
0
0
I
0
0
0
0
0
0
0
1
1
I
0
0
0
0
0
0
1
1
1
0

Med

131581.79
131581.79
132511.19
131581.79
131581.79
131581.79
131581.79
131581.79
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89

(seconds)

Med

0.5
0.5
17.5
71.5
145
1.5
1.5
1.5
40.5
204
398
14.5
14.5
14.5
0.5
0.5
0.5
1.5
1.5
1.5
30.5
152.5
301.5
7.5
7.5
7.5
3.5
3.5
3.5
12.5
12.5
12.5
6.5
6.5
6.5
3.5
3.5
3.5
27.5

Max

131581.79
131581.79
159398.64
133798.33
133798.33
131581.79
131581.79
131581.79
108600.15
108262.5
108262.5
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
107354.73
108600.15
108600.15
107354.73
107354.73
107354.73
107354.73
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
86028.89
. 86028.89

IQR

0
0
2127.1
748.2
1394.09
0
0
0
680.83
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Max

2
2
30
362
424
7
7
7
80
400
416
55
57
57
23
23
23
9
9
9
117
436
580
26
26
26
65
336
676
56
151
151
37
37
37
42
40
40
102

IQR

0.25
0.25
13.75
109.25
8
4.25
4.25
4.25
37
158
304.25
21.25
21.25
21.25
1.5
1.5
1.5
4.75
4.75
4.75
24.25
132
42.25
9
8.5
8.5
2
2
2
34.25
34.25
34
18
18
18
3.5
3.5
3.5
62.25

l6 All run lengths for esc64a, sko72 and will00 were too long for the time available for the standard runs. These problem instances appear in the Extended Runs instead.

SA Standard Results 1
Problem Instance

nug08

nugl2

Optimal l
Best
Known
cost

107

289

Transition
Set
Reference
Number
5
5
6
6
6
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
1
I
I
2
2
2
3
3

Annealing
Length

5000
loo00
1000
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
loo00
loo0
5000
1oo00
1000
5000
10000
1000
5000
10000
1000
5000
10000
loo0
5000
loo00
lo00
5000

Cost

Min

86028.89
86028.89
86028.89
86028.89
86028.89
107
107
107
107
107
107
107
107
107
107
107
107
107
107
1 07
107
107
1 07
107
107
107
107
107
107
289
289
289
289
289
289
289
289

Runtime

Min

0
0
0
0
0
0
0
0
0
0
0
I
3
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
6
I I
4
13
23
2
14

Med

86028.89
86028.89
86028.89
86028.89
86028.89
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
1 07
107
107
107
107
107
107
1 07
1 07
289
289
289
289
289
289
289
289

(seconds)

Med

128.5
260
8
8
8
0
2
4.5
0.5
3
6.5
I
3.5
7
0.5
3
6
0.5
2.5
5
0
0
0
0.5
3.5
6.5
0.5
3
6.5
2
7
11.5
8.5
32.5
26
7
27.5

Max

86028.89
86028.89
86028.89
86028.89
86028.89
1 07
107
107
107
107
107
107
107
107
107
107
107
1 07
107
107
107
107
1 07
107
107
1 07
107
107
107
289
289
289
289
289
289
289
289

IQR

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Max

262
524
40
40
40
0
2
5
1
4
7
2
4
7
1
3
6
1
3
5
I
3
6
1
4
7
I
3
7
3
I I
15
35
83
58
67
77

IQR

256
518.75
11.5
1 1.75
11.75
0.25
1.75
3.5
0
0
0.25
0.25
0.25
0.25
0.5
3
6
0.5
2.5
5
0.5
3.25
6.25
0.25
2.5
5
0.5
3.25
6.25
1.25
1
0.5
9.25
19.25
12
20
14

-
SA Standard Results
Problem Instance

nugl5

Transition
Set
Reference
Number
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
I
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8

Optimal l
Best
Known
cost

575

Annealing
Length

10000
1000
5000
10000
1000
5000
10000
1000
5000
lo000
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
lo000
1000
5000
10000
1000
5000
10000
lo00
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000

Runtime

Min

25
2
10
19
0
0
0
2
I t
23
3
1 1
23
2
10
19
0
0
0
14
6 1
86
14
89
155
4
20
3 8
3.5
13
26
0
0
0
5
25
47
8
25

Cost

Min

289
289
289
289
289
289
289
289
289
289
289
289
289
289
289
289
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575

(seconds)

Med

36.5
5
15.5
22.5
2
8.5
15
8
13
24
11.5
18
30
6
13.5
2 1
5.5
10
27
254.5
181
3 16
191.5
695
516
30
46
68.5
9.5
17
37
41
76.5
96.5
22.5
60.5
124
23
33.5

Med

289
289
289
289
289
289
289
289
289
289
289
289
289
289
289
289
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575
575

Max

83
10
27
30
6
14
19
22
33
3 1
21
42
43
14
23
41
18
19
37
868
779
79 1
906
1517
1202
50
121
118
24
37
48
96
169
234
78
218
309
58
96

Max

289
289
289
289
289
289
289
289
289
289
289
289
289
289
289
289
575
575
575
575
576
575
575
575
576
575
575
575
575
575
575
575
575
575
575
575
575
575
575

IQR

10.5
4.25
7.75
6
1.25
2.75
0.5
7
2.25
2
1 1.25
8
7
4
7.75
2.25
3.75
4
1 1.75
594.25
383.5
338.25
3 26
521
429.75
16.5
33.25
24.25
6.25
7.25
5.5
22.5
72.75
55.75
40
38
118.5
15.25
21.5

IQR

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.75
0
0
0
0
0
0
0
0
0
0
0
0
0
0

SA Standard Results 1
Problem Instance

ste36a

tho40

Annealing
Length

10000
1000
5000
loo00
1000
5600
10000
1000
5000
10000
1000
5000
10000
loo0
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
I0000
1000
5000
loo00
loo0
5000
loo00
1000
5000

Optimal /
Best
Known
cost

4763

120258

Transition
Set
Reference
Number
5
6
6
6
7
7
7
8
8
8
1
I
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
I
1
1
2
2

Runtime

Min

217
89
587
613
128
327
621
113
474
473
5 1
267
486
121
579
4
670
586
3
224
498
834
122
258
370
479
682
36
32
32
146
15
453
14
81
208
380
I l l
10

Cost

Min

3062
3077
3064
3067
3073
3064
3064
3072
3062
3064
4763
4763
4763
5347
5488
5377
5072
5222
53 14
4776
4763
4768
4765
4763
4763
4841
4775
4774
4801
4825
4846
4785
4775
4775
120535
120316
12027 1
128498
128168

Max

3064
3168
3086
3098
3124
3082
3101
3100
3080
3075
4793
4782
4775
5876
5937
6434
5805
5909
6325
4883
4952
5039
4851
4785
4901
4962
5055
5346
4980
5043
5959
4953
4847
4976
121903
122000
121292
134014
136640

Med

3062
3099
3076
3083
3096.5
3077.5
3087.5
3079.5
3072
3064
4763
4770
477 1.5
5470.5
5754.5
5922
5285.5
5391.5
575 1
4810.5
4810
4886.5
4820.5
4776.5
478 1
4906.5
4886.5
4929
4896
49 17.5
499 1.5
48 12.5
4805
4901
121016.5
120535
120336.5
130895
13495 1

IQR

0
22.25
13
6.5
13.25
1.75
14
6.25
14.25
3
2
12
10.75
325.25
244
309.75
174.75
277
654.75
29
113
153.25
54.5
9.75
20.5
54
88
290.25
97
104.5
335
41
41.5
132.5
552.25
367.25
146.25
2797
2473.25

(seconds)

Med

459
521
1067.5
834.5
556
707.5
1112.5
988
548.5
978.5
435
879
800.5
636
1155
1137
1059
1025.5
568.5
539.5
1090
1204.5
505
1086.5
884
820
1 129.5
616
653.5
998
1090
549.5
954
1091
465
742.5
1338
960.5
873

Max

1498
1402
1590
1461
1486
1344
1435
1449
1295
1504
1513
1554
1559
1386
1531
1272
1464
1557
1162
1458
1543
1591
1414
1573
1453
1545
1315
1567
1592
1557
1596
1529
1295
1474
1284
1469
1596
1571
1558

IQR

498.25
882.25
428.5
68 1
89 1.5
234.5
462
827.25
375.5
594
618.25
716.75
347.5
88 1
426.5
880
442.25
448.25
1145
966
375.5
433.75
721.5
648.5
349.75
56 1
314
1344.25
494
336.25
1077.25
759.75
379.75
732.5
644.25
525
419
589.75
368.5

" All run lengths for kroA100, ch130 and a280 were too long for the time available for the standard runs. These problem instances appear in the Extended Runs instead.

SA Standard Results 1
Problem Instance

TSP" gr24

Optimal l
Best
Known
cost

1272

Transition
Set
Reference
Number
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6

Runtime

Min

5
484
86 1
10
181
45
12
182
487
735
259
112
87
240
797
39
438
627
13
5
8
16
0
0
0
5
24
48
0
0
0
2
11
21
0
0

Annealing
Length

10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000

(seconds)

Med

9
866.5
927.5
16.5
1183.5
934
17.5
886.5
1 134.5
895
1344.5
576
173.5
1364
1154
768
1197
1151
33
8
20.5
30
4
19.5
38.5
10.5
30.5
50
4.5
18
35
4
11
23.5
2
9.5

Cost

Min

134328
126670
130303
131710
120562
121319
121051
120334
120342
120529
121 120
121438
122313
120316
121804
121918
120874
121374
122194
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272

Max

19
1499
1472
640
1587
1310
21 1
1586
1450
1491
1591
1510
740
1599
1575
1564
1577
1582
81 1
66
3 8
63
8
2 1
43
32
49
85
10
28
36
I I
16
26
5
27

IQR

5
761
383.5
22
493.75
476.75
25
589.5
420
417.5
472.25
982.75
139.25
372.25
690.25
875.75
308.5
163
23
3.25
12
13.25
I
0.5
1.25
11.5
17
18.25
3
1.25
1.25
2
1.25
3.5
4
18.5

IQR

1999.25
2849.75
2198.75
2703.5
358.5
2094.25
1953.25
938.25
415
434.25
1355.25
1763.25
1140.75
57 1.75
1507
4729.75
676
1002.75
3361.25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Med

137075
130890.5
131914
138038.5
121533
123033
125499.5
121202.5
121 152
122013.5
122520
123339
1 2429 1
121876
123616.5
123456
121365.5
122239
125082.5
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272

Max

141439
136337
134496
142823
122183
126319
12645 1
122288
122008
122867
123906
1277 14
126085
124103
125406
13037 1
12225 1
124386
127375
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272
1272

SA Standard Results 1
Problem Instance

swiss42

hk48

Optimal l
Best
Known
cost

1273

11461

Transition
Set
Reference
Number
6
7
7
7
8
8
8
I
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
I
I
I
2
2
2
3
3

Annealing
Length

10000
1000
5000
10000
1000
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
loo00
loo0
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000

Cost

Min

1272
1272
1272
1272
1272
1272
1272
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
11461
11461
11461
11461
11461
I1461
1 1461
11461

Runtime

Min

0
5
23
45
0
0
0
237
90
82
17
84
166
23
116
212
1
I
I
3
3
3
7
7
7
6
6
6
4
4
4
42
180
362
135
122
555
59
289

Med

1272
1272
1272
1272
1272
1272
1272
1273.5
1291.5
1310
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1 1962.5
1181 1.5
1 1559.5
11461
11461
11461
11699
1 1554.5

Max

1272
1272
1272
1272
1272
1272
1272
1338
1342
1313
1273
1273
1273
1331
1303
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
1273
12623
12312
1 1863
11461
1 1470
11470
12238
11819

IQR

0
0
0
0
0
0
0
35.25
38.5
1.5
0
0
0
22.5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
366
256
247.5
0
0
0
255
190

(seconds)

Med

18.5
7.5
24
49
5
18.5
36.5
420.5
368.5
395.5
33.5
115.5
173.5
85
208.5
413.5
15.5
74
143
20
38.5
80
18.5
82.5
164
48.5
100.5
192.5
19
75
149
573
539
648.5
407
337
777.5
391.5
886.5

Max

38
14
27
66
9
20
38
1341
1541
1160
85
217
330
555
5 20
815
56
134
277
59 1
74
209
66
85
3 24
76
189
387
265
213
288
1591
1549
1424
1061
952
1415
1598
1282

IQR

36.75
4.5
1.25
6.75
2.75
1.25
0.5
392
767
429.5
11
7 1.25
123.25
84
250.75
185
8
53.25
107.25
27.75
54.25
101.75
25
54.5
116.25
35
18.5
3.75
20.25
53
108.75
796.5
89 1.25
583.5
340.25
290
564.25
350.25
236.25

-
3
el
(0

2
-z
4
z
4
rn

m m m m VI m m
$? v ! v ! N v! Y N v ! ? qv!F v! CIS?? m VI q m m Y v ! ? m ? ? * 2 m G % 2 % G % 2 % ~ ~ ~ Z % 2 ~ ~ m ~ ~ m % o O ~ ~ G ; F : m ' C ! - ~ ~ m N w ~ m ~ ~ ~ ~ N - - ~ - ~ ~ (U ~ ~ - ~ ~ ~ N W - ~ ~ ~ I - N N - - X % (U (U C (W ~ N ~ N

~ ~ r ~ s g ~ ~ ~ ~ ~ 4 ~ ~ w ~ ~ n ~ ~ ~ ~ ~ ~ ; ? ; m ~ ~ w ~ ~ O ~ ~ N x ~ O ~
- m e e m w - m - - - - - d m - - - ~ m m d - d m m (~ m ~ m ~ ~ w m w e d m w (U

8
4

&
-(U P I 0 S e S Z m Z 2 m = Z e = % e m S i - m m w m w -

~ w - - - - - m - m e m m m m m m m ~ m - m w 3 G m w w ~ w ~ ~ ~ m m m m ~ ~

*

8

9

8 "

B
2

C

g

N m m m m m m m m n m m m m m m d 2 v ! v ! N ? P Y v ! N Y ? ? ? ? ? v ! N ? ? N v!?
% o o o o o o o o o ~ o o o o o - m m ~ m m m m ~ m ~ m ~ ~ r ' l m ~ ~ m m ~ m m

- - - - - o - - w * o - - -

~ ~ ~ ~ z z ~ f z z ~ ~ f z z z - w w z g z % ~ g q z ~ G g g q g m q g g g g
- - - - - - - - - - - - - - - - b b b d d d d d d d d d d d d d d 3 d d d d d

G ! G G G G G G G G G G G G G G G v! v! v! v! v!v! v! v! v! z " " x x x x " " ~ " " " " " ~ g ~ g ~ ; ; ; g q R ~ f i z ~ g ~ ; ; ; g g g 4 ~ % 0 0
- - - - - - - - - - - - - - - - b b b d d d d d d d d d d d d d d d d d d 3 3

- - - - - - - - - - - - - - - -
w w w w w w w w w w w w w w w w ~ ~ ~ ~ ~ d d ~ ~ b ~ ~ ~ ~ ~ d P I N N P w e m e w m m w m m m - i - V 3 P I O w m ~
= = = = = = r = = ~ = = = = z = % 9 q G r ; ! r ; ! q G r ; ! r ; ! r ; ! r ; ! r ; ! r ; ! C 3 G q q 2 G G G

M .-

B a = 2 2 'g g 3
i?z%a

\

8 :
S't; 0 't; o a g s

w

3
;nE
CI

E z c
&

& ~ ~ z m d d d m m V I W W W ~ + ~ W W W - - - N N N m m m d d d m m m W W W I ' - e e m w

w
r;!

-
2 .-
e,

SA Standard Results I
Problem Instance

brazi158

st70

Optimal 1
Best
Known
cost

25395

675

Transition
Set
Reference
Number
8
1
I
I
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
8
8
8
1
I
1
2
2
2
3
3
3
4
4
4
5
5

Annealing
Length

loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
10000
1000
5000
10000
loo0
5000
loo00
loo0
5000
10000
1000
5000
10000
1000
5000
loo00
lo00
5000
loo00
loo0
5000
loo00
loo0
5oo0

Cost

Min

426
25754
25849
25643
25395
25395
25395
25395
25445
25627
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
721
704
70 1
678
680
676
688
68 1
682
683
678
676
683
677

Runtime

Min

309
37
72
196
123
194
373
21
715
519
46
158
318
8
8
8
6
6
6
76
639
426
9
9
9
16
66
140
I I
1 I
I I
125
55 1
1235
7
17
7
14
33

Med

429
29844.5
26764
26628.5
25395
25395
25395
25693
25680.5
26107
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
25395
776
735
715
686.5
682.5
68 1.5
720.5
696
689.5
689
682
683.5
701.5
685

(seconds)

Med

392
133.5
424
577.5
378
363.5
1093
37 1
1010.5
974
128.5
313.5
684.5
147
145
359
73.5
267
365
246.5
1067.5
970.5
82
219.5
323.5
426.5
177.5
333.5
111
67 1
946
147.5
758
1463
58
415
759
36
186.5

Max

435
32538
30356
28286
25597
25597
25395
28206
26381
29233
25507
25395
25395
25455
25395
25395
25395
25395
25395
25400
25395
25643
25395
25395
25395
795
748
734
695
688
686
743
714
723
707
693
686
719
695

IQR

3.5
740.25
888.75
435.5
0
0
0
148.75
235.75
816.25
0
0
0
0
0
0
0
0
0
0
0
84
0
0
0
46
22.75
11.75
6.75
4.75
3.5
9.75
14.75
27.25
8.5
4.25
5.25
19.5
4.25

Max

560
1560
1596
1525
1258
1244
1473
733
1539
1425
3 26
919
1536
849
290
734
210
849
1230
565
1364
1313
352
11 15
1270
943
782
1155
215
1162
1122
273
1538
1550
133
651
947
81
305

TQR

74.5
1045.25
83
665
733.25
247.75
643.25
271.5
635
47.75
107.75
339
838.5
172.25
192.5
280
67.5
520.5
46 1
108.5
586.5
8 14
133.75
244
17
556.5
272
518
47.25
255
179.25
5.5
344.5
197.25
75.5
96.5
181.5
4 1
47

SA Standard Results I
Problem Instance

GAP gapl-1

gap2- 1

Optimal l
Best
Known
cost

336

434

Transition
Set
Reference
Number
5
6
6
6
7
7
7
8
8
8
I
1
1
2
2
2
3
3
3
4
4
4
5
5
5
I
I
I
2
2
2
3
3
3
4
4
4
5
5

Annealing
Length

10000
1000
5000
10000
lo00
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000

Runtime

Min

395
43
402
793
24
29
36
10
24
694
0
0
0
I
4
8
2
9
17
1
6
12
I
6
13
0
0
0
0
0
0
3
13
25
2
9
18
2
9

IQR

2.5
4.5
5.5
1.75
18.25
7.5
4.25
4.5
3
2.25
44.75
44.75
44.75
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Cost

Min

680
678
678
676
681
677
676
687
676
678
27 1
27 1
27 1
336
336
336
336
336
336
336
336
336
336
336
336
349
349
349
434
434
434
434
434
434
434
434
434
434
434

(seconds)

Med

568
103
538
1006.5
42.5
560.5
1210
76.5
406
1097.5
0
0
0
1
4
8
2.5
9
17.5
1.5
6.5
13
1.5
7
13
4.5
17.5
33.5
1.5
6
12.5
6
15.5
30
3
9
19
2.5
I I

Med

683
690
68 1
68 1
695.5
682
684.5
693
684.5
682
297
297
297
336
336
336
336
336
336
336
336
336
336
336
336
433
433
433
434
434
434
434
434
434
434
434
434
434
434

Max

627
160
777
1426
173
995
1281
133
743
1448
26
120
39
I
4
8
5
12
21
3
7
16
4
8
15
12
353
36 1
2
7
14
10
27
37
4
10
2 1
5
13

Max

686
692
689
684
717
702
69 1
702
695
683
334
334
334
336
336
336
336
336
336
336
336
336
336
336
336
433
433
433
434
434
434
434
434
434
434
434
434
434
434

IQR

148.25
20.5
185
190
6 1.75
131.75
131.25
83.5
95.5
430.75
5
11
21.5
0
0
0
I
I
1.25
0.5
0
0
0.5
0.25
0.25
4.5
3
5
0.25
0.5
1.25
3
4
5.25
0.75
0.5
1.25
I
1.75

SA Standard Results I
Problem Instance

gap3- l

gap4- 1

gap5- l

Optimal l
Best
Known
cost

580

656

563

Transition
Set
Reference
Number
5
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1
I
2
2
2
3
3
3
4
4
4
5
5
5
1
1
1
2
2
2
3
3

Annealing
Length

loo00
1000
5000
10000
1000
5000
lo000
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
1 0000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000

Cost

Min

434
57 1
578
580
579
5 80
580
5 80
580
580
578
580
5 80
579
578
580
53 1
53 1
53 1
656
656
656
656
656
656
656
656
656
656
656
656
563
563
563
563
563
563
563
563

Runtime

Min

18
7
2 1
40
2
10
17
5
13
25
6
17
37
3
21
28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
30
55
0
0
0
8
26

Med

434
578
580
5 80
5 80
5 80
580
5 80
580
580
580
580
5 80
5 80
580
580
603
603
557.5
656
656
656
656
656
656
656
656
656
656
656
656
563
563
563
563
563
563
563
563

(seconds)

Med

19
15
40
65
4.5
13.5
21.5
11
20.5
34.5
11
3 1
49.5
4.5
40
37.5
4
13
27.5
5.5
17
32
12.5
40.5
63.5
9
21.5
56
8
25.5
50
12
38
72.5
5
17.5
34
12
38.5

Max

434
578
580
580
5 80
580
580
580
580
580
580
580
580
580
580
580
656
656
656
656
656
656
656
656
656
656
656
656
656
656
656
563
563
563
563
563
563
563
563

IQR

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
107
107
92
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Max

20
158
265
222
6
17
34
37
34
48
43
54
87
8
263
55
66
34
81
7
23
41
17
61
102
12
40
63
I 1
30
63
76
64
91
6
21
45
27
60

IQR

1.25
41
38
41.5
1
4.25
4.25
18.75
17.25
4.5
4
14
26.75
3
3 8
7.25
14.5
29.5
64.5
I
3.5
3.75
7.5
12.5
9.5
1
15.5
24
3.25
1.75
12.75
8.25
5.5
15.75
0.25
3.5
13.25
1.75
14.75

SA Standard Results I
Problem Instance

gap6- l

gap7- l

gap8- l

Transition
Set
Reference
Number
3
4
4
4
5
5
5
I
1
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1

Optimal l
Best
Known
cost

76 1

942

1133

Annealing
Length

10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
I000
5000
loo00
loo0
5000
10000
1000
5000
10000
loo0
5000
10000
loo0
5000
loo00
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000

Cost

Min

563
563
563
563
563
563
563
76 1
76 1
76 1
76 1
76 1
76 1
761
76 1
76 1
761
76 1
76 1
76 1
76 1
761
94 1
942
94 1
942
942
942
94 1
941
942
94 1
94 1
942
94 1
942
942
975
975

Runtime

Min

46
3
20
35
5
15
38
12
60
116
8
14
6 1
15
62
109
10
49
75
8
50
97
24
97
268
14
53
121
32
109
253
23
95
189
2 1
46
154
0
0

Med

563
563
563
563
563
563
563
76 1
76 1
76 1
76 1
76 1
761
761
76 1
76 1
76 1
76 1
76 1
76 1
76 1
76 1
942
942
942
942
942
942
942
942
942
942
942
942
942
942
942
1129
1130

(seconds)

Med

69.5
8
27
49.5
8
28.5
49.5
18
73.5
130.5
18.5
47.5
77.5
20.5
76.5
153
13
54.5
122
21
61
116
64.5
162.5
334.5
17.5
67.5
143.5
1 12.5
152
292.5
88.5
138
224
24
113
214.5
174.5
888

Max

563
563
563
563
563
563
563
761
76 1
76 1
76 1
76 1
76 1
761
76 1
76 1
76 1
76 1
76 1
76 1
76 1
76 1
942
942
942
942
942
942
942
942
942
942
942
942
942
942
942
1130
1131

IQR

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.75
0
0.75
0
0
0
0
0
0
0
0
0
0
0
0
1.75
0

Max

92
14
38
77
39
37
69
34
102
193
I l l
54
96
163
122
179
171
76
145
111
92
152
263
725
3 89
55
213
163
140
197
374
237
207
279
3 17
402
298
986
2194

IQR

11.5
1
8.25
23.25
3
9.5
20.5
6.25
23.75
28.25
21.25
7
22.5
56.25
8
38.5
10.75
11.75
3 1.75
30.25
19
15
138
24
80.25
9.5
21.75
9
76.25
19
74
57.5
49.25
9.5
163
46.75
59.25
257.75
569

-
3
'3 c
P:
B
5
E
i? cn
3

3
0

w
3

2

2

*

8

w

g
S'

2
E

1
= g

&
9'

X

2

B
E

e
g

mmv, mv, m m v,
Y Y Y T Y Y N N "?NY ? v,

m o w m w m o b - o b m m m m e N F m m m m m y
W b b b m W F b b N - w m m m m ?2Y:-b22mSg N ? N N N W b b
m - m m - ~ w m ~ w m m w w ~ m m m - m - w m N m m - e m m m ~ ~ ~ - - - m w

N w w m o w m b m m w o m - b b 'r&g8zZ~gW~"ONrlbOF W N W m m O b N N - 2 - m m b b m o m b m - m w m m w o ~ ~ ~ ~ ~ ~ g g $ $ - m - - - m - w - - - - - - - m ~ m b ~ w - - m m m w -

Y"? L C ! " F Y "? "?

8ogSZ838a8ZSfWPSi b ~ m w - ~ w ~ w b m m m - m m ~ ~ w w = ~ w ~ ~ m 6 ~ ~ ~ ~ = = = v , m m m m ? m F m Lo"?

m N W o m m m w b W m - N m m b w W w m m b w e
O ~ b ~ b ~ m m - m m ~ m m ~ b - - - m m w - - - - - - ~ ~ ~ m m m m m m w w

m m m m m m m m m vim m m
b b Y m m m m m m

0 - 0 0 - - 6 - - - 0 - 0 0 0 - 0 0 - N N - ~ - ~ N - ~ ~ ~ W 0 0 0 0 0 0 0 0 ? y e c ? ? '? ? ? ??????

- m m m m m m m m m m m m - - m m m m m m m m m m m m m o o 8 8 8 8 8 8 8 % % 8 8 8 % ; t ; t ; t Z Z Z Z Z Z Z Z
= = = = = = = = = = = = = z z " z z z r ; z L z z z z z z 2 2 2 2 2 2 2 2 2 2 2

"? Y
o ~ m m m N N m m N N m N

Y
m m m m m m m m m m m m m 8 S S 8 8 8 Z 8 8 8 8 8 Z 8 Z S ~ S i Z Z Z Z Z Z Z Z
- - - - - - - - - - - - - b W W b b b b b b b b b b b C N N N N N N N N N N N - m m m m m m m m m m m

- N N ~ O - - N N - N N ~ ~ W W W W 8 W ~ W W W W W W ~ ~ ~ ~ ~ m ~ v l W ~ m m m m m ~ m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
~ = = = = = = = = = = = = " " " " " " ~ ' 0 " " ' 0 ' 0 " ' 0 ' 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

.-

4 4

8
.;: .- 4 ; $
2 $ 5
c s t a

b

z e .- *
Zm S 2
O c P b i u

w
2
5
2 -
f
2
a

2

b W & Z - ~ ~ ~ m m m b b b m m m - - - ~ N N m m m e b b m m m - - - ~ ~ ~ m m m b w

w
m m m
'0 N m

0 s
l;i 3
2 2
3 ::

M

SA Standard Results I
Problem Instance

gapAl0-100

gapAIO-200

gapA20-100

Optimal 1
Best
Known
cost

1360

2623

1 158

Transition
Set
Reference
Number
4
5
5
5
1
1
I
2
2
2
3
3
3
4
4
4
5
5
5
I
1
1
2
2
2
3
3
3
4
4
4
5
5
5
I
1
I
2
2

Runtime

Min

6
4
4
4
I
I
l
I
I
1
1
1
I
1
1
I
1
1
1
4
4
4
6
6
6
8
8
8
4
4
4
6
6
6
2
2
2
2
2

Annealing
Length

10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
loo0
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000

(seconds)

Med

9.5
7
7
6.5
39
175
305.5
2.5
2.5
2.5
3.5
3.5
3.5
2.5
2.5
2.5
2.5
3
3
7
7
7
11.5
15
15
18.5
19.5
19.5
7.5
7.5
7.5
12
12
12
3.5
3.5
3.5
4.5
4.5

IQR

0
0.75
0.75
0.75
8.5
4.75
5.5
1
1
1
7.25
7.25
5.5
I
1
1
2.5
1.75
1.75
9
8
4.75
2.75
2.75
2
2
2
2
2.5
2.5
1.75
4.25
4.25
4.25
0
0
0
0
0

Cost

Min

3235
3235
3235
3235
1361
1361
1361
1360
1360
1360
1360
1360
1360
1360
1360
1360
1360
1360
1360
2326
2628
2624
2623
2623
2623
2625
2623
2623
2624
2624
2624
2623
2623
2623
1158
1158
1158
1158
1158

Max

49
16
16
16
1018
673
418
5
5
5
18
174
314
5
5
5
10
129
274
37
38
38
39
59
46
42
171
171
36
36
36
35
35
35
4
4
4
8
8

IQR

8
2
2
2
845
258.75
360
2
2
2
5.25
5.5
5.5
1
1
I
2.25
7
7
3
3
3
5.5
26
18.5
14.75
2 1
2 1
3.5
3.5
3.5
I I
I I
I I
2
2
2
2.25
2.25

Med

3235
3235
3235
3235
1372
1369
1369.5
1361
1361
1361
1364.5
1364.5
1364.5
1361
1361
1361
1361.5
1361
1361
2632
2633
2630.5
2625
2624.5
2626.5
2627.5
2626.5
2626.5
2626.5
2626.5
2626.5
2626
2626
2626
1158
1158
1158
1158
1158

Max

3236
3237
3237
3237
1375
1372
1374
1363
1363
1363
1374
1372
1370
1365
1365
1365
1377
1372
1370
2652
2652
2652
2629
2629
2630
263 1
2630
2630
2629
2629
2629
263 1
263 1
263 1
1160
1160
1160
1163
1163

r
SA Standard Results I
Problem Instance

gapA20-200

GPP G124.02

G124.04

G124.08

(3124.16

Transition
Set
Reference
Number
2
3
3
3
4
4
4
5
5
5
1
I
1
2
2
2
3
3
3
4
4
4
5
5
5
I
1
I
1
I
1
1
I
1
I
1

Optimal 1
Best
Known
cost

2339

13

63

178

449

Annealing
Length

10000
1000
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
I0000
1000
5000
10000
I000
5000
I0000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
1 0000
1000
5000
10000
1000
5000

Cost

Min

1158
1158
1158
1158
1158
1158
1158
1158
1158
1158
2339
2339
2339
2339
2339
2339
2339
2339
2339
2339
2339
2339
2339
2339
2339
13
13
13
63
63
64
178
178
179
449
449

Runtime

Min

2
2
2
2
2
2
2
2
2
2
4
5
5
9
25
25
9
9
9
12
12
12
10
10
10
7
7
2
3
949
3
187
18
14
166
649

Med

1158
1158
1158
1158
I158
1158
1158
1158
1158
1158
2341
2341
2342
2340.5
2339
2339
2339.5
2340.5
2339
2340.5
2339
2340.5
2340
2340
2340
13
13
16.5
64
63
69
178
178
181
449
449

Max

1163
1160
1158
1158
1158
1158
1158
1163
1163
1163
2345
2345
2345
2344
2342
2342
2344
2343
2344
234 1
2344
2343
2348
234 1
234 1
13
13
22
64
64
72
181
179
185
449
449

IQR

0
0
0
0
0
0
0
0
0
0
4.5
4.5
4.75
2.5
0
0
2.75
1.75
1.75
1
1.75
1.75
1
1.75
1.75
0
0
2.75
0.75
0
3.25
L .5
0
1.5
0
0

(seconds)

Med

4.5
3.5
4
4
4.5
4.5
4.5
4
4
4
15
15
15
24.5
50
41.5
21.5
24
24
25
29
29
25.5
37
37
256.5
1111.5
5
23 1
1143
14
24 1
890.5
61
187
834

Max

8
6
47
47
7
7
6
12
12
12
36
36
36
33
131
130
29
264
264
39
76
76
41
67
67
946
1179
190
340
1427
1302
599
1080
1307
356
1034

IQR

2.25
I .5
2
2
1.75
2
2
2
2
2
22
19.25
19.25
12.25
43
39.75
8.25
7.25
7.25
14.5
11
1 1
21.25
18
18
78.25
172.25
4
60
29 1.25
24
65.5
42.25
1235.25
151
209.5

'' Run lengths of 5000 and 10000 were too long for the time available for the standard runs and are not considered here.

SA Standard Results I
Problem Instance

~ 2 5 0 . 0 1 ' ~
(3250.02
(3250.04
(3250.08

MKP weingl

IJb6

Optimal /
Best
Known
cost

29
114
357
828
141278

776

Transition
Set
Reference
Number
1
1
1
1
I
1
1
I
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
1
1
2
2
2
3
3
3
4
4
4
5
5

Annealing
Length

10000
1000
1000
1000
I000
1000
5000
10000
1000
5000
lo000
1000
5000
10000
1000
5000
10000
I000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
1 0000
1000
5000
10000
1000
5000

Cost

Min

449
30
114
358
828
120468
127633
127633
89482
121442
121931
112471
127633
127633
127633
133615
133609
112327
125968
127633
1 11354
127243
127633
542
694
609
473
473
499
609
650
694
745
694
762
576
590

Runtime

Min

1069
908
928
217
660
0
1
1
0
0
1
0
I
1
0
0
0
0
1
I
0
I
1
0
0
0
0
1
2
0
0
0
0
1
1
0
0

Med

449
32
117
360
83 1
133303
137079
137226.5
122958.5
139718
140778
129921
133615
133615
140507
140605.5
140782
129700
133615
140662
132997
133615
133426
702
776
776
543
568.5
60 1
733
776
776
770.5
776
776
713
770.5

(seconds)

Med

1259
11 14.5
1041.5
1026.5
972
0
1.5
2
0
1
1.5
0
1
2
0
I
2
0.5
1
1.5
0.5
I
2.5
I
3.5
7
0
1.5
3
I
3.5
10.5
1
2.5
5
0.5
2

Max

45 1
32
120
364
837
140543
141278
141278
140618
141278
141278
140477
141278
141278
140543
140786
141278
140068
141278
141278
140618
141278
141278
776
776
776
678
762
776
776
776
776
776
776
776
776
776

IQR

0
I
3.5
3.75
5.5
5980.5
7391.5
7478
16032
1 1837
613.75
8772
5814
9682.5
6932.5
235
800.75
6072.25
12366.75
7667.5
5980.5
11 128.5
12893.5
156.5
11
65
135.25
129
130.25
I 11.5
14
0
13.25
0
0
79.25
14

Max

1582
1447
1407
1238
1514
0
2
4
0
2
4
I
2
3
1
2
10
I
3
5
1
2
9
2
17
14
1
5
6
2
9
76
5
51
23
2
8

IQR

153.25
258.75
244
170.75
446.25
0
0.25
1.25
0
0.5
0.5
0.25
0.25
1
0.25
0.75
2.25
0
0.25
1.25
0.25
0.5
I
1
2.25
4.5
0
1.5
I .5
0.75
4
10.75
1.25
6
3.25
0.5
3

SA Standard Results I
Problem Instance

weishl2

weishl5

Transition
Set
Reference
Number
5
6
6
6
I
I
I
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6

Optimal /
Best
Known
cost

6339

7486

Annealing
Length

10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
loo0
5000
10000
1000
5000
loo00
1000
5000
10000
1000
5000
10000
1000
5000
loo00
loo0
5000
10000
1000
5000
10000
1000
5000

Cost

Min

650
542
643
636
6170
6255
627 1
5084
5946
599 1
6285
6225
6285
6170
627 1
6285
6058
6170
6285
6131
6225
6285
6749
6800
7056
5589
6735
6762
6735
742 1
7486
6770
6770
7486
6735
6800
6829
6783
6783

Runtime

Min

0
0
0
0
0
0
7
0
1
3
I
1
1
0
0
0
0
I
I
0
1
1
I
3
3
0
1
2
I
I
1
I
1
1
I
3
7
1
1

Med

776
747
776
776
6288
6339
6339
6049.5
628 1
6332
6339
6339
6339
6285
6339
6339
6170
6339
6339
627 1.5
6339
6339
6928
7486
7486
6526
7121
7443.5
7486
7486
7486
7405
7486
7486
6783
7056
7486
6800
7249

(seconds)

Med

6
1
4
7.5
1
5
8.5
0.5
2
4
1
4.5
10
1
5.5
10
1.5
4
9
I
4
9
1.5
6.5
1 I
0.5
3.5
4.5
1.5
8
14
3
8.5
17.5
1.5
7
15.5
1.5
9.5

Max

776
776
776
776
6339
6339
6339
6326
6339
6339
6339
6339
6339
6339
6339
6339
6338
6339
6339
6339
6339
6339
7486
7486
7486
7415
7486
7486
7486
7486
7486
7486
7486
7486
7486
7486
7486
7486
7486

IQR

64.25
130.25
13.25
13.25
79
40.75
0
369.5
177.75
56
I
0
0
63.75
52.25
42
130.25
85.75
0
89.5
0.75
0
698.75
27.75
0
663
667.25
698.25
52.5
0
0
53 1.75
0
0
30
621.75
0
558.25
678.75

Max

11
2
7
77
2
12
94
1
7
5
11
7
17
3
40
28
3
8
57
4
14
17
6
78
219
I
5
7
4
19
24
6
24
29
2
42
91
6
82

IQR

3
I
2
11.75
I
6
1.75
0.5
3
I
1.75
1.75
5
I
6
13.25
1.25
2
7.25
0.75
4.75
6.5
2
4
7.5
0.25
2.25
2
I
3.5
12.25
2.5
5.25
6.5
1
5
8
1.5
9

-
Y
3

3
E
u
c m
ii;
5
m

Cr:
E

?

m m m m m m m m m ? - m m vl

??c ! N': "?LC!YLC!N - N ? & ? ? g L C ! ~ b ~ ~ ~ ~ ~ LC!ocLC!?? - - F C O L C ! W C O L C ! ~ ~ ~ ~ W m m m ~ ~ m m ~
m b - m o w ~ m N m - - N m m v t - m w c n w - P - b w N e m c n w w - m - - m

m w
g O g g w r c b ~ c n r ~ o W & w ~ P J ~ N ~ N m O m - % N W G -b-mm-,N,,mmbm-,,,,-:OmgOOli!md%;;z'o~=~~s~~

m
LC! X

8
J

B
3
3

Y

8

=
2

Cr:

P
E

P
E

c
2

cn w - - m - m m

b m m - m b N W I--m ~ r - b z m b F - - m
W ~ - N - N ~ ~ - ~ N N N N - N ~ - ~ P ~ ~ N M - N - - m ~ m ~ m w - - ~ b

m m m m m
N m v r m m y q Ir. m m m m m

Y LC! Y
m m - P i L C ! ? Y Y m e , Y ? " q ? Y q y z ?

o ~ ~ o ~ ~ ~ ~ n o ~ ~ o ~ ~ ~ ~ m - o ~ - - ~ - - - m w v r w ~ ~ m m c o w m - ~ m m w m c n w o - - - w m - - m

ggpp ;gppppppppgpEppo- -gmmz-N-NNo NN-NNNz2=z2E=
b W + ~ m W ~ P F P P + ~ P W P + b F ? p ~ W X ~ P F P F + C ~ P ' P - P - P - r ' F o \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ m

LC! Y LC! V! LC!LC!LC!LC!LC! LC! LC!
w e m m m m m m m m o N N w w N - m N m o o m 2 X - 2 - m - o o w N b - 0 - 0
% 2 3 K z % s 3 K K 3 : : % c E % q E 3 3 r F K % 3 c ? % g F % % F 3 G c g F
~ e ~ ~ w ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ e m m m ~ m m m w m m m m m m m m m m c n c n

w o t - w m m v - ~ W N N W W - ~ b w w m ~ m m ~ c n m e c n - m m m w m m - w
% ~ Z ~ ~ % ~ ~ E F ~ % K : ~ ~ F ~ ~ Z ~ G ~ ~ ~ N ~ G E ~ ~ S K G % ~ ~ ~ ~
~ w ~ ~ ~ w w ~ ~ ~ ~ ~ ~ w ~ ~ w ~ e m m m w e m m m m m m m m m m m m ~ m c n

w .- - Jz
5 4 - - m - - m - - m - - m - - m - - m - - m - - m - - W - - - - u, - - m

8 a = Z k 'g 2 a
2 % % 5

\

~ m ~ Z w - - - ~ ~ ~ m m m ~ ~ ~ m m m ~ w w - - - ~ ~ ~ ~ ~ m m ~ ~ ~ m m m w w w - -

Pi N m
r-

m
m m cn

a2

B m - N
d F! 2 %
2 .-
L(8 8 $

E w
H
2

Q.

SA Standard Results 1
Problem Instance

weish29

MCP johnson8-2-4

johnson16-2-4

Runtime

Min

35
1
3
5
4
15
5
4
17
25
4
10
1
3
4
7
2
10
19
I
3
3
5
37
3 1
2
10
10
5
15
32
3
7
7
0
0
0
0
0

Transition
Set
Reference
Number
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
I
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
1
1
1
1
I

Optimal l
Best
Known
cost

9410

0

0

(seconds)

Med

254
1.5
5.5
9
7
29
49.5
8
26.5
123
7
25.5
49.5
6.5
57
69
18.5
35.5
103
1
7
8.5
14.5
52
205
7.5
49.5
34
12
61
100
8.5
31.5
59
0
0
0
0
0

Annealing
Length

loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
loo00
loo0
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1 000
5000

Max

343
2
35
134
19
208
293
40
284
535
36
157
535
61
168
346
68
176
355
2
29
25
83
220
394
45
160
629
41
118
227
170
193
308
1
1
3
0
0

IQR

215.5
0.75
3
2.75
4.5
18.25
33.25
3.5
33.5
298
6.75
15.75
124.25
6.5
100.75
208.75
24
94
136.25
0.5
3.25
4.25
28.5
42.25
3 16.25
9.5
66
28
6.75
62
121.25
17
125.75
76.5
0
0
0
0
0

Cost

Min

9737
7866
9185
9598
9482
9784
8790
9710
9749
9788
8819
9223
9588
9536
8554
975 1
8799
8819
9056
6952
8341
8689
8244
8242
9056
9054
9244
9222
8521
8852
8983
8783
9050
9054
1
I
I
2
2

Max

9923
9552
9817
9886
9913
9939
9939
9939
9939
9939
9852
9939
9939
9896
9923
9923
9410
9287
9410
8595
889 1
9171
9318
9296
9318
9410
9410
9410
9521
9318
9410
925 1
9318
9318
1
1
1
2

- 2

Med

9770
8840
9538
9723
9742
9850
985 1
9841.5
9892
9923
9650.5
955 1
9792
9739
9756
9789
9063.5
9060.5
927 1
8188.5
8736.5
9033.5
8947
9060.5
9239
925 1
9304
9410
9148
9062
925 1
9045.5
9168
9239
I
1
1
2
2

IQR

37.75
955.25
235.75
102.75
238.75
133.75
136
166.5
150
16
230.5
198.25
132.75
88.75
173.75
3.25
138.25
304.75
62
504.25
2 16.25
250
358.75
249.5
202.75
135.75
135.25
73.25
277.5
147
252
65.25
185
198.25
0
0
0
0
0

SA Standard Results 1
Problem Instance

keller4

c-fat200-1

brock200-2

brock2OO-1

brock200-3

TTP ttgen 1

ttgen2

Optimal 1
Best
Known
cost

0

0

0

0

0

0

0

Transition
Set
Reference
Number
1
I
I
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I
2
2
2
3
3
3
4
4
4
5
5
5
I
1
I
2
2
2
3
3

Annealing
Length

10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000
10000
1000
5000

Cost

Min

2
0
0
0
1
I
1
3
3
3
3
3
3
3
3
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Runtime

Min

0
6
1
0
9
29
3
6
3
3
22
84
12
8
1
3
5
5
5
7
7
7
6
6
6
9
9
9
10
10
10
7
7
7
15
15
15
I I
I I

Med

2
0
0
0
1
1
1
3
3
3
3
3
3
4
4
I
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(seconds)

Med

0
13.5
24
0.5
17.5
38
60.5
11.5
32
60.5
42
139.5
190.5
22
66
60.5
9.5
9.5
9.5
19
19
19
12
12
12
19.5
19.5
19.5
13.5
13.5
13.5
10.5
10.5
10.5
20.5
20.5
20.5
16
16

Max

2
0
0
0
1
1
1
5
3
3
4
3
4
5
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

IQR

0
0
0
0
0
0
0
0
0
0
I
0
0
1.5
1.5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Max

0
46
90
1
40
94
77
150
68
115
373
229
489
514
359
77
23
23
23
24
24
24
24
24
24
3 1
3 1
3 1
17
17
17
15
15
15
38
38
38
26
26

IQR

0
7.25
12.25
0.5
22.25
29.25
5
5.75
12.25
40
32.5
75.25
166.25
27
37.25
5
7.5
7.5
7.5
7.25
7.25
7.25
5.5
5.5
5.5
10.75
10.75
10.75
3
3
3
3.25
3.25
3.25
8.5
8.5
8.25
9.25
9.25

SA Standard Results I
Problem Instance

hdtt7

hdtt8

Optimal l
Best
Known
cost

0

0

Transition
Set
Reference
Number
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
1
1
1
2
2
2
3
3
3
4
4

Annealing
Length

10000
1000
5000
10000
loo0
5000
10000
loo0
5000
10000
1000
5000
10000
1000
5000
loo00
1000
5000
loo00
1000
5000
10000
loo0
5000
loo00
1000
5000
10000
1000
5000
loo00
1000
5000
loo00
1000
5000
10000
1000
5000

Cost

Min

9
2
0
0
6
0
0
5
0
0
2
0
0
16
I I
9
5
0
0
9
4
0
3
2
0
5
0
0
10
6
6
5
2
0
9
5
2
10
2

Runtime

Min

11
32
40
40
22
87
87
3 1
63
65
27
83
83
26
30
30
44
73
72
45
152
320
29
67
1 1 1
46
103
125
49
64
64
49
140
176
68
181
185
65
185

Med

13
6
0
0
9
2
1
7
2
0
7
0
0
17
15.5
15.5
9.5
2
0
14
4.5
2
8
3
2
7
2
2
19
14
14
13.5
3.5
2
14
6
4
13.5
4

(seconds)

Med

33.5
37
91.5
106
44.5
203
242
43
92
162.5
35
173.5
179
48
66
66
53
199.5
263
57
28 1
437
60
131.5
356.5
56.5
228.5
262
76
156.5
156.5
71.5
302.5
485
84.5
298.5
528.5
77.5
348.5

Max

22
9
3
3
10
4
4
9
4
4
11
3
3
20
20
20
14
4
4
18
5
5
14
4
3
I I
4
4
23
19
19
16
6
4
17
10
7
15
7

IQR

3.75
2.75
2
1.5
2
1
3
2
2.5
3
1.5
2
0
1
3.75
3.75
3
0.75
2.75
2.75
I
0
3.25
0.75
2.75
2.75
0.75
0
6
5.5
5.5
3.25
2
3.75
3.75
I
2.5
1
1.75

Max

67
43
163
334
5 1
249
438
48
198
44 1
48
238
366
7 1
309
666
58
276
534
67
340
563
63
295
577
63
296
489
90
452
453
76
382
694
88
406
8 80
82
409

IQR

18.5
3.5
39.5
63.25
11.75
84.25
195
4
49.5
209
9
72
89
23.25
167
167
5.75
54.5
120.25
5.5
82
128.5
5.75
85.75
278.25
6
1 16.5
72
20
187
187.25
6.5
130.5
23 1.5
7
129.25
426
7
156.75

Table 45: Standard results for the SA engine.

SA Standard Results I

For the T S and GS standard runs, the most promising transition operator set (as determined form the SA trials) is used. The statistical analysis used to determine this is

outlined in Section 5.8.3.1.

Problem Instance Transition
Set
Reference
Number
4
5
5
5

Optimal l
Best
Known
cost

TS Standard Results 1
Problem Instance

CSP n20t 1

n20t2

n20t3

n20t4

n20t.5

n40t 1

n40t2

Annealing
Length

loo00
1000
5000
10000

OptimaU Best
Known cost
58

40

29

10

150

146

94

Cost

Runtime (seconds)
Min
6
0
1
I
0
0
7
1
3
1
1
0
0
0
0
66
7
13
13

Min

0
10
4
0

Runtime (seconds)

Neighbourhood
probability
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1

Min

184
69
198
367

Med
26
1
6
8
0.5
2
86
10.5
10.5
39
1.5
5
0.5
0.5
0
615.5
679.5
88.5
116.5

Med

2.5
14
4
2

Cost
Min

58
58
58
40
40
40
29
29
29
10
10
10
150
150
150
142
142
142
92

Med

476.5
81
255
549.5

Max
128
6
14
18
3
8
613
46
84
78
6
15
4
2
1
1464
1202
1232
1232

Max

4
17
6
4

Med
58
58
58
40
40
40
29
29
29
10
10
10
150
150
150
143
142
143

92.

IQR
77
1.25
2.25
5.75
0.75
3.5
164
18.25
14.5
18.5
1.5
7
1
0.75
0.25
600
788.75
441.25
415.75

IQR

1
2.75
1
1.75

Max

750
84
378
818

IQR

113
1.5
1 10.5
151.75

Max
58
58
58
40
40
40
29
29
29
10
10
10
150
150
150
145
143
145
92

IQR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.75
1
1.75
0

TS Standard Results I
Problem Instance

n40t3

n40t4

n40t5

n6011

n60t2

n60t3

n60t4

n60t5

n80t 1

n80t2

n80t3

n80t4

n80t5

- -

Optimal/ Best
Known cost

66

33

352

238

152

105

58

562

330

215

146

82

772

Neighbourhood
probability
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0. I
0.5
1 .O
0. I
0.5
I .O
0.1
0.5
I .O
0. I
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0. I
0.5
1 .O
0.1
0.5
1 .O

Cost
Min

92
92
66
65
65
32
32
32
354
3 54
354
227
228
227
144
144
147
104
102
1 04
54
54
54
558
558
558
311
312
3 12
196
198
196
143
140
142
76
76 .
76
762
762
770

Runtime (seconds)
Min
2
8
52
25
2
3
2
4
0
0
1
71
48
7 1
263
57
44
34
132
33
2
5
19
I
9
28
425
127
148
124
180
116
9
66
34
26
14
15
10
19
85

Med
92
92
67
65
66
32
32
32
354
362
354
228
228
228
144.5
147
150
105
103
105
54
54
54
566
566
566
313
314
3 15
199
200
218
143.5
142
143
77
76
77
778
778
780

Med
187
400
354
277
177.5
86.5
9
26
46
9
2.5
680.5
294
680.5
453
79 1
827.5
21 1
433.5
275.5
340.5
452.5
412
6.5
72.5
652.5
1174
779
877.5
452
73 1
567.5
302
967
75 1
92.5
477.5
244.5
44
136.5
260

Max
92
97
67
66
68
32
32
33
354
368
354
229
229
23 1
146
150
164
105
104
107
55
54
55
574
566
566
3 14
3 16
3 26
200
218
223
144
143
144
77
77
78
778
786
796

IQR
0
1.5
0
0
1
0
0
0
0
4.5
0
0.75
0
0.75
1
3
12
0
0
1
0.75
0
0.75
0
0
0
1
1.75
5
1.5
5.75
14 25
I
0.75
I
0
1
0
8
6
8

Max
141 1
1548
1134
1584
705
298
58
32 1
350
124
1075
1597
1474
1597
1134
1494
1521
1566
74 1
88 1
1150
1393
1320
1053
992
1549
1566
1211
1561
826
1499
1530
1268
1572
1516
233
1437
1457
126
1396
1193

IQR
185
8 86
283.5
577.75
408.5
77.75
34
38.5
101.75
73.5
26.25
1050.25
3 25
1049.75
242.5
66 1.25
788
600.5
33 1
394
408.75
559.5
71 1
8
225.25
902
477
584.25
740
368.75
989
453
587.25
552.75
577
109.25
695.5
562.25
67.5
685.5
247.5

TS Standard Results 1
Problem Instance

BIN binlal

binla2

bin l a4

binla6

bin2al

bin2a2

bin2a3

bin2a4

bin3al

bin3a2

bin3a3

bin3a4

MKP weingl

pb6

Optimal/ Best
Known cost
0

0

0

0

0

0

0

0

0

0

0

0

141278

776

Runtime (seconds)
Min
2
7
14
2
6
12
I 1
11
22
4
8
15
68
301
326
33
113
227
50
118
283
42
127
233
883
1540
1564
914
1506
1587
636
1547
1588
1082
1525
1574
0
9
0
0
1

Neighbourhood
probability
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5

Med
4.5
9.5
16.5
3
8
14.5
15
19
66.5
8.5
11.5
17.5
135
675.5
968
40
133
255.5
101
208
738.5
56.5
154
282.5
1300.5
1592.5
1590.5
1256.5
1581.5
1594
1212
1581
1592.5
1440
1593
1590
7
39
0.5
34
25.5

Cost
Min

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
30
197
4
31
171
0
23
175
7
55
229
141278
141278
135763
776
776

Max
10
3 1
69
6
15
27
36
55
457
13
26
84
381
1189
1470
55
181
439
160
473
1509
84
329
580
1477
1599
1600
1552
1600
1599
1480
1600
1597
1599
1599
1596
15
83
2
115
108

Med
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4.5
46
227.5
6
60
237.5
0
38.5
198
12.5
67.5
27 1.5
141278
141278
135763
776
776

IQR
2
14
17.75
2
1.75
3
5
12
32
6.5
4
26.25
63
422.5
511.75
9
16.75
33.5
44
99.5
757.25
3 1
36.25
139.75
202.5
34.5
10.75
270
43.5
9.75
149.5
30.5
5.5
292.25
8.75
4
5.5
54.25
0.25
61
43.5

Max
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
1
0
0
0
14
60
265
9
77
287
2
48
3 14
18
96
330
141278
141278
135763
776
776

IQR
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.75
0
0
0
0
0
0
0
0
0
2.75
7.25
36.75
3.75
21.75
30.25
0.75
1 1.75
48
3.5
8.5
12.75
0
0
0
0
0

TS Standard Results 1
Problem Instance OptimaU Best Neighbourhood Cost Runtime (seconds)

weishl2

weishl5

sent01

sent02

weish25

weish29

GRAPH C125.1

C125.5

C125.9

C250.1

C250.5

C250.9

Known cost

6339

7486

7772

8722

9939

9410

0

0

0

0

0

0

I
USApHMP ap20a2

1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .0
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0. I
0.5
1 .O

I 1 i3 I 172816.7 1 179884.91 201353.31 1 :532.63 1 i8 1 K5 1 ? I ::: I
ap20a3 151533.1 151547.63 152312.63 153828.77 779.66 619.5 1319 629.75

172846.7

704
6323
6292
6292
7417
7418
7416
7739
7739
7682
866 1
8587
8477
9761
9776
9832
9053
9084
9023
7
2
3
9
4
6
7
2
2
17
16
21
14
21
28
17
22
2 1

0.1

704
6339
6339
6292
7442.5
7486
7416
7740
7772
7682
8692.5
8721
8563
9828.5
9832
9832
9154.5
9130
9023
8.5
5
4.5
I I
6.5
8
7
3.5
4
24.5
22
30.5
24.5
24.5
32
22
24
28.5

172816.7
172816.7

704
6339
6339
6292
7486
7486
7416
7772
7772
7682
8704
8722
8693
9857
9832
9832
9345
9316
9023
9
6
7
13
9
9
8
5
7
26
24
33
28
28
41
24
28
38

172816.7
172816.7

IQR
0
0
0
0
5 1
24
0
16
27.5
0
10.5
0
1 13.25
56.5
15
0
150.75
37
0
1
1
3
1.5
1.75
I
1
1.75
1.75
5.25
3.5
6
5.5
1.75
4.75
3.5
1
3.25

175008.09
172816.7

Min
7
138
2 1
72
74
111
54
186
216
76
83
315
266
121
190
165
164
171
75
225
73
46
219
252
462
140
585
258
574
570
798
284
838
882
740
884
924

935.09

11.5
699
419.5
352
597.5
7 18.5
146
666
525.5
218
68 1
882.5
965.5
96 1.5
479.5
326
904
533.5
267
664
928
754.5
688
1015
784.5
946.5
845.5
1148.5
797
1186
1341
1167
1082
1422.5
1307
1299.5
1304.5

255

81
1508
1464
918
1515
1497
3 80
1595
1441
770
1575
1398
1583
1473
738
1128
1194
1590
630
1569
1553
1529
1227
1557
1362
1535
1283
1459
1454
1530
1587
1564
1460
1538
1543
1523
1557

8.25
196
602
608
613
415.75
189.75
1080.75
642
130.75
878
511.25
572.25
678
345.25
314
618.75
57 1.75
230.25
372.75
867.25
584.25
550
690.25
296
936.25
459.25
398
500.25
494
511.25
317
286
459.75
344.5
289
287.5

844 1570 77 1.75

m m m m m 10 m m m
m " : Y Y N N

- P O N N m d N P P m w m d m m , . ~ ~ b ~ P ~ - ~ ~ W W - ~ ~ - ~ ~ b W P d d W ~ d ~ ~ ~ d P ~ ~ P - O O O % N O - w O

w m m - m m , - m + m m S 8 E G % E ~ % Z -

Y P D O W O \ N W W W - 9 Y v ? ? v!
m w m w

N W d P -

m
q 2 3

z ! 2 " ~ " 2 0 0 0 f f 2 0 N N N 8

2 8,

f l m m m r - N Y C ! Y":Y"-!Y v) r - Y ~ N ~ d + g ~ g g g ~ $ p ~ g ~ m ~ m w - F : Y m m m - - ~ - r j ~

d w m m m m w N w w ~ - c a m $ - 8 Z m m m - w - m
E 2 2 2 G 2 2 2 2 2 = $ 2 S O " Y z 2 = 2 ~ ~ 2 S

Y Y m z'C!V!\o ? X - - Q m W Y I I I V !
- m m ~ d - m m * m P 8 F z % g Z 8 8 % & m - * P m e ~ ~ m ~ m m w m ~ w ~ ~ - - w ~ m - - m w m ~ ~ ~ w m ~ m m S m ~ m m ~ ~ ~ - ~ ~ - m o

m o m
~ E ~ ~ ~ ~ ~ ~ L ~ % " ~ ~ ~ L ~ ~ ~ O ~ ~ ~ ~ ~ ~ : S % % Z : Z ~ ~ ~ ~ ~ ~ ~ ~ ~

B
8
B .- * = .E

~ P ! ~ ~ ~ o ~ ~ ~ ~ o o ~ ! $ ~ ~ ~ ~

~ ~ m w w w m m m - - m a

- ~ ~ m m - - m m n m m m m w ~

m N O P Q 8 W W W W m m m W m M O N m m m ~ ~ m m o ~ - m m ~ ~ ~ m m m m m - .
~ 2 " " 2 2 2 2 z z 2 2 2 z " 2 9 2 2 1 3 z z ' 0 5 3 " " O = ~ % % % o O O ~ ~ ~ A A E

- - - - - - w m m - -

- P0-00-00-00-00-00-00-z2S~2S00-00-00-00-00-

d m
o! r- 00 -

m m 8 2 - - m m
P

P I
m ‘D - 2 ,

N m

m O O O O a o
bn n

a a a 4

- G E m $ Z m N m m m , , N m O m P $ ~ m ~ m ~ b m ~ ~ ~ ~ ~
~ " i + r j i " i o o o ~ & " i ~ o o m m m ~ m w m m w e o m - m F S % o Z S 8 8 S g Z Z 8 % % Z X f i
m ~ m w - w - - ~ w m m w ~ w ~ o w ~ o w w w m m m m ~ ~ - ~ ~ , m m m m $ m m m - m ~ o m o - w ~ w m m m m m m m m f :
- w p m

m ~ ~ m ~ - w m m b d - - - - - - - - - - a - - - - - * - - - - - - - - - - - - w m m

m m m - ~ - - Z m m ~ - - q q y ~ m o q q q - - ~ y q q q o q * 9 ~ ~ 9 * - m
~ $ $ ~ $ $ $ ~ g g ; ; ~ % ~ ~ g g s g 2 ~ s g z g ; ~ , 6 g g ~ S ~

m W O U 7 W W - - W m N b N
- - ~ - m n m m m r - m ~ m m o m m - ~ m

W W N N - - m m m - - - o m m o m m N N % F F g z s s p $ $ ~ F ~ m m m
n . ~ " i A + + + o o ~ r j - m d d w ~ ~ A 0 ; 0 ; 0 ; ~ A m - m m ~ ~ (m ~ ~ " :

m m N N N m m m m * d N m m m m w m m N O O O m P P - w O * * *
S E n 2 ~ % ~ 3 ~ ~ ~ ~ ~ ~ " Z Z % % % % % % % 2 ~ % ~ 8 ~ E ~ $ 6 6 E % g 6 s s s 2 2 2 ~ ~ z z 2 ~ ~ t 2 2 ~ " " 2 2 2 z 1 f l z z m m m 0 0

g 2 ? 9 - 9 9 - ? 9 - ? 9 - Y 9 - ? 9 - Y 9

- 9 2 m 2 m
d w * * - m * N m 2 m P

m m m m m m
8 6 2 2 ~ 2 2 2

m 8 n N m m n 8 n
0 m m m % N N N N N a 4 n a a a 4

2
e
2 s
g %
O C n .-

*
3
a tf

m
Y ":

- w 2 P t - m m m m m m *
o o = w m o ~ ~ m

C I C l m m m m

N N N m m m

- Y 9 - Y 9 - " - ! 9 - ' = ? 9 - Y 9

I. 2 m m m
P4 l- rn

- 00
0 N 2
2 2 2

-
Y -
a V)

d
2
'u
c

R

CY 4

8
3 .- -

B
B
u

E ?i <
5

CA
9'

n

2

TS Standard Results 1
Problem Instance

nug20

nug30

ste36a

tho40

esc64a

sko72

will00

TS P gr24

swiss42

hk48

ei15 1

brazil58

st70

kroA 100

Optimal/ Best
Known cost
1285

3062

4763

120258

58

33158

136522

1272

1273

11461

426

25395

675

2 1282

Neighbourhood
probability
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
I .O
0.1
0.5
1 .O
0. I
0.5
I .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5

Cost
Min

1285
1285
1285
3062
3062
3073
4774
4873
4944
120439
120319
12081 1
58
58
58
33197
3339 1
33482
137080
137202
137846
1272
1272
1272
1277
1273
1273
1 1533
11461
11461
434
427
426
25568
25395
25395
684
675
675
2 1828
21484

Runtime (seconds)
Min
115
1
0
248
42
7
225
35
15
108
224
15
4
8
19
677
856
778
700
1197
1347
102
I
0
20
4
7
2
28
102
10
59
47
79
39
4 1
18
37
321
176
660

Med
1285
1285
1318.5
3066.5
3064
3127.5
4782.5
5042.5
5225
120630
121032.5
123163
58
5 8
58
33348.5
33613
33713
137396
137685
13796 1
1272
1272
1272
1308.5
1273
1273
1 1786.5
11465.5
1 1470
442
427
427
25652.5
25395
25395
698.5
679
681.5
22120.5
2 1946.5

Max
1287
1285
1326
3078
3089
3163
4884
5270
5485
120852
122446
125789
58
60
60
33686
34030
341 11
137527
138216
138593
1279
1272
1272
1318
1273
1273
1 1870
1 1505
11484
447
428
428
25795
25416
25395
703
688
690
22670
2794 1

IQR
561.75
229.25
1.25
469
599.75
26
592
648
83.5
678
1014.5
179.25
38
18.25
17.25
654.25
460.75
577.25
183.25
145
43.75
379.25
4.25
2.5
994
60
35.25
829.25
834
505.5
584.25
45 1.25
523.25
465.25
367.5
378.5
582
4 18.5
723
750
351.5

Med
760.5
70
1
950
149
26
1289.5
565
95.5
1061.5
1179.5
87
23.5
15
29.5
1430.5
1402.5
1379
1495
1535.5
1580.5
598.5
2
1.5
804
64.5
33.5
510.5
779.5
830.5
259.5
263.5
833.5
365.5
164.5
524
482.5
910
983.5
1062
1015

IQR
0
0
17.75
6
16
36.25
67.5
159.25
237.25
263.25
899
1530
0
1.5
0
245.5
126.25
253.75
166.75
380.75
296.5
0
0
0
13.25
0
0
132.5
9
3
5.75
1
0
152.25
3.75
0
6.25
11.5
6.5
324.25
842.75

Max
1236
1373
7
1294
1563
136
1573
1523
483
1597
1516
3 24
539
86
106
1591
1550
1580
1591
1599
1593
1198
6
12
1396
136
106
1574
1300
1223
1511
1305
1568
958
868
1073
1592
1407
1530
1598
1491

TS Standard Results I
Problem Instance

ch130

a280

GAP gapl-l

gap2- l

gap3-1

gap4- l

gap5- l

gap6-l

gap7- 1

gap8- l

gapA5- 100

gapA5-200

gapA10-100

gapA10-200

Optimal/ Best
Known cost

61 10

2579

336

434

580

656

563

76 1

942

1133

1698

3235

1360

2623

Neighbourhood
probability
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0. I
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0. I
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1

Cost
Min

21717
6306
6287
6414
14229
2651 1
28866
336
336
336
434
434
434
579
580
580
656
656
656
561
563
563
759
76 1
76 1
939
942
942
1126
1131
1132
1699
1698
1698
3237
3236
3235
1361
1361
1360
2630

Runtime (seconds)
Min
1322
288
886
1579
1568
1503
1508
1
0
0
2
0
0
60
2
0
13
0
0
10
1
0
39
4
4
203
8
3
10
67
172
131
36
23
46
232
399
15
24
43
70

Med
22949.5
6396.5
6519
6605
15045.5
27799
30155
336
336
336
434
434
434
580
580
580
656
656
656
562.5
563
563
759.5
76 1
76 1
940
942
942
1127
1132
1132
1700.5
1698
1698
3241
3237
3235
1366
1361
1361
263.3

Med
1 444
735.5
1143.5
1595.5
1579
1527
1530
3.5
0.5
0.5
12.5
0
0
457.5
6.5
1.5
39.5
2
1.5
346.5
3.5
1
245.5
29
17
683
74.5
35.5
356
45 1
257.5
747.5
328.5
170
159
350.5
629
400.5
223
28 1
244

Max
23767
6499
6814
6988
15264
29001
31376
336
336
336
434
434
434
580
580
580
656
656
656
563
563
563
760
76 1
76 1
942
942
942
1129
1133
1133
1701
1699
1699
3243
3240
3237
1367
1362
1361
2636

IQR
429.5
99.5
79.75
194
287.25
341.25
482.5
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1.5
0
0
I
I
1
1.75
1
0
1.75
1.75
0.75
0.75
0
1
2.5

Max
1596
1582
1343
1599
1592
1536
1554
9
1
7
33
I
1
1102
24
10
158
18
17
1329
15
4
1415
178
144
1423
222
102
1132
1180
854
1194
829
937
1416
1035
101 1
895
1134
1306
1168

IQR
189.25
555.5
31 1
5
11.75
18
19
3.25
0.5
0.25
19.5
0.25
0.25
333.75
13.25
1.5
11 1.25
4.25
2.75
564
5
1.25
555
56
16.75
507.75
74.5
59
674
644
131.25
253.25
312.5
346.5
575.75
205.5
424
43 1.5
194
208
628.25

TS Standard Results I
Problem Instance

gapA20-100

gapA20-200

GPP GI 24.02

G 124.04

GI 24.08

(3124.16

G250.01

'3250.02

G250.04

G250.08

MCP johnsong-2-4

johnson16-2-4

keller4

Optimal/ Best
Known cost

1 158

2339

13

63

178

449

29

114

357

828

0

0

0

Neighbourbood
probability
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .o
0.1
0.5
1 .o
0.1
0.5
1 .o

Cost
Min

2625
2624
1165
1158
1158
2349
2342
2342
13
14
17
63
64
64
178
179
181
449
449
449
39
55
55
117
129
148
365
377
427
834
855
928
1
1
1
2
2 .
2
0
0
1

IQR
158.25
296
803.5
309.5
765.75
602
647
297.75
447
37 1.75
192.5
396.75
952.75
803
83 1.25
637
442.25
192.25
776
577.5
301.5
364
42.5
743.5
123.25
0
422
121
0.25
121
56.5
0
0
0
0
0
0
0
18.75
371.5
0

Med
2626
2625
1167
1159
1159
235 1
2344.5
2343
13
16.5
19
64
67
68
178
181.5
186.5
449
449
459.5
41
59.5
62.5
125
1 44
162.5
376
393
430
847
878.5
939
1
I
1
2
2
2
0
1
2 .

Max
1158
1423
1324
1166
1281
1451
1 444
1437
1153
1361
858
1531
1571
1482
1308
I449
1492
533
1421
1379
1563
1555
1599
1549
1587
1599
1598
1599
1599
1599
1600
1599
0
0
0
0
0
0
38
570
0

Runtime (seconds)
Min
236
458
105
46
130
74
284
503
256
254
198
27
51
120
180
112
206
104
158
113
933
77 1
1427
613
1002
1598
648
1316
1598
1316
1460
1598
0
0
0
0
0
0
0
0
0

Max
2629
2629
1168
1160
1161
2353
2347
2346
15
22
25
64
70
78
179
187
196
457
46 1
476
53
65
69
130
158
184
388
398
457
868
888
964
1
1
I
2
2
2
0
3
3

Med
324.5
893
366
325
754
636.5
750.5
839.5
583.5
634.5
647
229.5
682
65 1.5
874
342
785
288.5
867.5
624.5
1313
1283.5
1598.5
1467
1474.5
1598.5
1366.5
1513
1598.5
1513
1515
1598.5
0
0
0
0
0
0
6
3.5
0

IQR
2
1.75
1
1
0.75
1.5
1.75
1.75
0.75
2.5
4.75
0
2.75
6
0
3.5
8
6
1.5
15
3.5
5.5
6
2.5
11.5
15.25
8
9.25
7.25
16.25
15.25
7.5
0
0
0
0
0
0
0
1
2

Table 46: Standard results for the TS engine.

TS Standard Results I
Problem Instance

c-fat200-1

brock200-2

brock200-1

brock200-3

TI-P ttgen 1

ttgen2

hdtt4

hdtt5

hdtt6

hdtt7

hdtt8

Optimal/ Best
Known cost
0

0

0

0

0

0

0

0

0

0

0

Neighbourhood
probability
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
I .O
0. I
0.5
I .O
0. I
0.5
I .O
0. I
0.5
I .O
0.1
0.5
1 .O

Cost
Min

1
1
3
3
3
3
3
3
6
3
3
6
0
0
0
0
0
0
3
0
0
6
2
0
9
3
2
15
4
12
19
13
22

Med
I
2.5
4
3
3.5
6.5
3
5
9.5
3
5
8.5
0
0
I
0
0
0.5
5
0
0
8.5
2
2
13
6
6
17.5
I I
16.5
22
16.5
25.5

IQR
21.5
33.25
0
47
916.25
0
560
190.25
0.75
124.25
585.25
0.5
193.75
655.25
287
410
584.75
35 1
944
687.75
645.25
680.5
77 1
559
424.25
249.5
391.5
502.75
270.75
2 16.75
983.5
328.25
303.25

Runtime (seconds)
Min
0
0
0
2
1
1
5
3
3
2
1
1
104
3 20
378
243
I l l
904
22
120
162
41
136
156
163
646
774
436
679
1020
21 1
701
1034

Max
1
4
5
3
5
10
3
7
13
4
8
12
0
1
2
0
1
I
6
2
2
10
4
6
15
7
9
19
16
23
24
22
3 1

Med
5.5
6
0.5
14
157
I
370
5.5
4.5
58
36.5
1.5
374
732.5
796.5
499
1084.5
1204.5
781.5
557.5
666.5
530.5
407
938.5
545
1224.5
1231
988.5
1351.5
1469.5
891.5
1368.5
1401

IQR
0
2
0.75
0
2
3.25
0
2
2.5
I
2.5
3
0
0
0.75
0
0.75
I
1
0
0 .
1.75
0.75
0
1
1.75
2
1.75
5
4.75
1.5
4.75
5.25

Max
55
106
1
218
985
1
1289
758
5
89 1
1538
2
1361
1415
1498
1085
1580
1526
1515
1568
1228
1385
1598
1309
1175
1453
1554
1486
1567
1599
1548
1553
1599

GS Standard Results 1
Prohlem Instance

n60t4

n60t5

118011

n80t2

11800

n80t4

118015

BIN binlal

bin 1 a2

bin 1 a4

bin 1 a6

bin2al

bin2a2

bin2a3

Optimal/ Best
Known cost

58

562

330

215

146

82

772

0

0

0

0

0

0

0

Neighhourhood
probability
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0. I
0.5
I .O
0. I
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0. I
0.5
1 .O
0.1
0.5
1 .O
0. I

IQR
0.5
0
0.25
0.75
0
0.25
0.5
0.5
0.75
3.75
0.25
1.75
3.5
0.25
1.5
2
0.25
0.75
1.75
0
1.25
2
0.25
I
1.5
0.25
0.75
1
0.25
I
1.25
0.25
2
2.25
2.25
12.5
23.5
6.25
26.25
47.25
2.75

Max
4
0
2
4
0
2
4
2
7
16
2
8
16
1
7
15
I
7
15
2
8
14
2
7
15
2
7
14
2
9
17
2
9
14
22
102
204
24
115
212
21

Runtime (seconds)
Min
2
0
1
2
0
1
2
I
5
9
I
4
9
1
4
7
I
5
10
1
5
8
1
5
10
I
5
9
I
5
10
1
5
9
15
58
118
15
61
129
15

Cost
Min
106
67
59
55
576
572
572
338
325
323
230
215
210
149
146
146
89
82
78
810
780
784
3
0
0
3
0
0
20
I
1
12
0
0
44
24
13
12
0
4
64

Med
3
0
I .5
3
0
1.5
3
1.5
6.5
13.5
1
6
14
1
5.5
I I
1
5.5
11.5
I
6
11.5
1.5
6.5
11
1.5
6
10.5
1.5
7.5
I I
1.5
6.5
1 1
18
77
151.5
19
89
167.5
18

Med
108.5
75
62.5
59
604
589
593
356.5
340.5
336.5
267.5
248.5
238
153
149
148
98.5
85
84
837
803
810
10
6
4
13.5
2.5
1
54
9.5
21.5
45.5
11
17.5
91
58.5
52.5
5 1
20
19
105

Max
113
84
67
63
620
624
610
367
348
340
286
262
25 1
169
153
154
105
97
88
860
830
838
45
25
14
41
18
8
69
28
35
60
30
38
136
95
82
103
66
63
154

IQR
3.75
7
3.5
3.5
18
16
14.5
13.25
10
5.5
32.25
23.75
12
6.25
2.5
4.25
5.25
4.75
4.25
12.5
20.5
18
16.75
15
5
18.25
2.75
2.5
22
18.5
15.25
18.75
17.5
20
36.25
18.75
20.75
50.75
25.5
31.25
43

Neighbourhood
probability
0.5
I .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0. I
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
I .O
0.1
0.5
I .O
0.1
0.5
I .O
0. I
0.5
1 .O
0. I
0.5
1 .O
0.1
0.5
I .O

GS Standard Results I
Problem Instance

bin2a4

bin3al

bin3a2

bin3a3

bin3a4

M KP weingl

~ b 6

weish I2

weishl5

sent0 1

sent02

weish25

weish29

OptimaU Best
Known cost

0

0

0

0

0

141278

776

6339

7486

7772

8722

9939

9410

Cost
Min
20
20
24
35
18
155
101
173
194
123
157
134
7 1
148
176
141
210
22507
13558
30800
234
348
238
892
255 1
1562
3036
1562
2162
780
2678
2684
780
2678
2684
670
892
892
3818
892
892

IQR
19.75
27
2.5
9
17.5
16.5
85.25
7.5
15.5
99
9
15.25
89.25
6.25
9.5
108.75
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.25
0.25
0
2
0
0
0.25
0.25
0
2

Runtime (seconds)
Min
64
112
14
59
112
182
840
1562
189
149
1579
184
803
1572
195
799
1576
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Med
45
40.5
92
60.5
47
198.5
142.5
194.5
213
160
212.5
197
135
185.5
246
183.5
240
78507.5
103690
135568
457.5
438
496
4364
527 1
4269.5
543 1.5
3002
4449.5
3839
5584
6192
3824
447 1
5679
5189
2893.5
3525
6855.5
3526.5
3958.5

Med
87
155
16
65
138.5
208
937.5
1589
202.5
912.5
1590.5
205
932
1591
209.5
924
1588.5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Max
88
73
157
86
85
26 1
198
225
293
199
254
252
163
287
287
243
293
139508
135563
135673
629
646
646
5997
6107
5867
6797
5199
6908
7619
7439
7492
7837
8132
6996
6969
9832
7773
8223
6127
8872

Max
108
203
23
83
171
226
1086
1599
218
1069
1599
233
1105
1599
249
1054
1600
0
0
0
0
0
0
0
0
0
0
0
1
0
7
1
1
0
5
0
7
1
1
0
5

IQR
32.75
28.5
34.5
35.5
25.25
23.25
56.75
27
20.25
30.5
32
43.75
50
45.75
30.25
50
18.25
62733.5
39774
5805 1
97.5
57.5
53
1082.75
269 1.5
1953.25
1666.25
1811.25
995
2178
4196
1326
2178
4390
1566
207 1.75
1456.75
4103
2991.25
2416.25
5496.5

GS Standard Results I
Problem Instance

GRAPH C125.1

C125.5

C125.9

C250.1

C250.5

C250.9

USApHMP ap20a2

ap20a3

ap20a4

ap20a5

ap25a2

ap25a3

ap25a4

ap25a5

Neighbourhood
probability
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0. I
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5

Optimal/ Best
Known cost
0

0

0

0

0

0

172846.7

151533.1

135624.9

123130.1

175542.0

155256.3

139197.2

123574.3

Cost
Min
18
14
13
43
25
24
27
17
17
42
37
32
68
57
55
63
56
50
233530.88
175638.32
179884.84
206197.44
162662.77
1591 16.36
199164.77
150274.91
143641.97
158279.31
130424.72
126366.75
253240.83
188214.92
187950.1 1
187802.8
164168.44
163228.89
195984.84
149223.63
148521.67
156083.73
131935.94

IQR
0.25
4.25
5.25
0.5
1
1.75
0.25
0.5
1
12.75
28
79.75
3
8.5
11.75
2
10
12.5
0
0
0
0
0
0
0
0.25
0.25
0
0
0.25
0
0.25
0.25
0
0.25
1
0
0.25
0.25
0
0.5

Med
25
19.5
17
48
30
29.5
3 1
22
21
57
47
42
86
70
66.5
78
60.5
55
304352.21
22975 1.74
219489.93
269925.77
20727 1 .O 1
195730.8
239693.38
164348.25
160768.04
19395 1.73
139049.02
135365.77
294952.57
215822.65
21 1359.6
253 153.69
174893.87
178133.7
228987.92
156970.94
160001.87
19 1566.92
151471.9

Max
30
24
2 1
56
39
38
35
29
25
64
62
58
93
77
69
91
69
6 1
503992.56
282306.84
282306.84
401995.03
21 8225.59
2 14503.03
3 12220.66
193745.73
192892.05
390419.72
140874.13
147606.81
504773.94
30929 1.47
347292.39
40204 1.78
187440.48
188583.02
290637.06
184919.14
184919.19
3437 1 1.84
. 155406.77

Max
5
16
35
2
8
17
3
1 1
22
59
234
569
23
102
184
30
118
237
0
0
0
0
0
1
0
I
2
0
I
2
0
1
2
0
2
3
0
2
4
0
3

IQR
5
4.75
3.5
3.5
5.25
9
4.25
3.5
3.75
13.25
4.25
9.5
14.5
7.75
4.75
15.25
10
6.75
157399.63
48856.14
33237.34
78571.9
29053.31
30715.42
32353.52
1 1627.36
9724.58
34389.45
5474.04
4973.03
6733 1.26
27667.06
21474.61
10508 1.53
12642.07
13567.05
5 1264.94
17878.67
14936.3
4521 8.95
8800.01

Runtime (seconds)
Min
2
10
19
I
7
11
2
9
18
29
137
3 24
16
70
158
21
96
195
0
0
0
0
0
1
0
0
I
0
1
I
0
0
1
0
I
I
0
1
2
0
2

Med
3.5
13
26
1.5
7.5
14.5
2.5
10
19
40.5
166.5
379
20
85.5
171
25.5
109.5
212
0
0
0
0
0
1
0
0
1
0
1
1.5
0
0.5
1
0
1
2.5
0
1.5
3.5
0
2

7~
3 -
$ a
2
'a

Gi

m m l n l n l n m m m l n
e q q e e e e q ? ? $2:

g - 0 - 0 - N O N l n w N - N

- b P- * 8 % %
E v l 0 0 0 0 0 - O O O O O O O O O O O O O O O O O O O C t ~ - m - - I - z * - N N - N -

m m Y"-!-,moCl- ~ v i 2 m c u
~ ~ ~ o o o o o o o o ~ o o o o o o o o o ~ ~ ~ ~ o o o ~ ~ ~ ~ G - ~ - ~ - ~ - - ~ -

P - b P - O N w
~ ~ m o - ~ o m w - ~ m ~ m - - m ~ m

m m m
m lnln vl m m m 3 y e ? Win v!m V, 2 q , + e n e ~ r-. ? ? e ~ , , O s 6 ? m m

g m w N m N b N l n - - l n N - N ~ m x z = s z 2 s z s G ; 3 s s g % D D z z z N 2 z z %

m w m -
m e - N O W d m I - W - b 7 Q\ N W O W l n b m m w m

m ~ - l n ~ - P - - N - m m w m o w o m o m w w ~ - W ~ W P - m ~ - m m w m g ~ g ~ g ~ g g g z ~ z " z " N = ; z ; ; p ~ $ 1 2 2 z g z g g g g z c " N g g ; ; ; 3 ; g g z

"-!

a

8 g
H .- *
2

*

3

a

P

3

.e

x

e m - b I - b m - d m N
\4" \4N."" - ! r : \4C' !

m ~ X ~ m m m O m m W b m

~ Z F D D ~ ~ O m o e ~ ~ m w N N l n ~ P - N " 0 8 3 2 0 6 2

m m - m m m N N m m -
" - ! e e - " " 9 e r : m e'?
8 P 8 % ? G ? % S ? 8 8 9 S S ? m m ~ - m ~ w b w ~ - l n m ~ - m

9 - N N m - m m N N -
- \4o" " - !eV! '? "e"?-

b N m m m - W m m m N m N 9 r : r : 9 9 ' ? r : r e o 4 * 9
v l m m ~ - m W - P - O W N - M m - - b o c n ~ - ~ m b m ~ m
a m - N I - W Q W O - N P - m

U ~ m m w w m m m m m m ~ o - - - - - - - - - - - - - - - - m N N W m m

B
2 2
2 5
S d

*
Jl r,
a 8

s g

a2

i?
i

$ 3
g

Y d

W m N
N m m

N
P - ~ N P -

~ . ~ - m W b N N b b m m O I - ~ W P - P P - I - W - W 0 6 ? 8 ~ % $ ~ S ? g % ~ % % O\ N W I - C Q N ln 0
- 0 O O m m b m w ~ m m m - - m - O N N N m W m b m ~ ~ - - m m m m m m - - - m m W W W W

8 s :

m 8 r: r: 03
m

m - b 2
g 00 vl 12 m 3 m P-

2 0 m

9 m n 2 m n
0 0 0 0 ~
4 n

~ ~ o - ~ o - ~ o - " - ! o - ~ o - ~ o ~ " - ! o - ~ o - ~ o - ? o ~ V ! o - V ! o - ? o - " - ! o -
a - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0

m m
N

m N m m N N
12 m

I- m 00 w w % m
w

- O N m N s? vl m
m -

N 12 0 N

$ 9 , - ~ g . 2 14

2

3 2
D

GS Standard Results I
Problem Instance

TSP gr24

swiss42

hk48

ei15 1

brazil58

st70

kroA 100

ch130

a280

GAP gapl-1

gap2-1

gap3-1

gap4- 1

Optimal/ Best
Known cost

1272

1273

11461

426

25395

675

21282

61 10

2579

336

434

580

656

Neighbourhood
probability
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0. I
0.5
I .O
0. I
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O

Cost
Min
137447
137852
1440
1320
1272
1429
1335
1294
13090
1 1908
11760
494
446
432
2723 1
25923
25400
744
686
687
23578
21947
21741
6668
6355
6414
14229
265 1 1
28866
27 1
288
294
345
385
403
500
539
554
567
620
637

IQR
61.75
149
0
0
0
0
0.25
0.75
0.25
0.5
0.75
0.25
0.25
1
0.5
1.5
3
0.5
3.25
3
7.25
39.5
102.25
8.75
34.75
9.75
9.5
18
19
0
0
0
0
0
0
0
0
0
0
0
0

Med
137952.5
138065.5
1741.5
1367
1308
1639
1373.5
1376
14097
12009
12127.5
545.5
456.5
455.5
2883 1
26636.5
2660 1.5
842.5
715
727.5
25822
22824
23339
7079.5
6723.5
6605
14844
27799
30155
299.5
307
3 20
374
418
418.5
525.5
562
571.5
598.5
644
644.5

Max
138524
138642
2034
1454
1415
1917
1508
1407
16478
12302
13023
593
475
465
31563
27457
27148
926
737
777
26942
23885
23983
7469
6996
6988
15264
2900 1
31376
31 1
321
330
406
427
429
553
577
578
626
656
654

IQR
605.75
263
254.5
74.5
78.25
176
53
41.5
869.5
223
243
45.25
14.75
11.5
1917
985.5
1422.75
46
27
26.25
1699
824.25
1027.5
448.5
213.25
213.5
235.5
341.25
482.5
13.25
12
12.75
45.25
6
9.75
10.75
6
3
29.5
10.75
5.75

Max
712
1553
0
0
0
1
3
6
1
6
I I
2
8
15
4
16
33
8
43
74
150
678
1387
186
893
1597
1598
1535
1553
0
0
0
0
0
0
0
0
0
0
0
0

Runtime (seconds)
Min
596
1272
0
0
0
0
2
5
1
5
10
1
6
13
3
12
27
6
33
65
123
5 87
1201
156
80 1
1466
1576
1502
1508
0
0
0
0
0
0
0
0
0
0
0
0

Med
686
1435.5
0
0
0
0.5
3
6
1
5.5
10.5
1.5
7
14
3
15
30
7
35
68.5
128
645.5
1279.5
171
840.5
1593
1589
1526.5
1529.5
0
0
0
0
0
0
0
0
0
0
0
0

m m 'rime m m m
? ? m ? 2 Y ? " "

~ w o m ~ - - t m m m

Nz,,,z2 z 2 Y r -

r-0 -r- m - w

m m
m m m m m r - m

? ? ? " ? ? - P i

m
Y Y ~ m w o m

- - N N N N N N W ~ - ~ - N - - ~ W

m m \ o w w

- 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0

m 00 m - W " 2 3

N d
0. c Ifl

% o o o o

P.

?5

a
3
8
J

B .- *
g

-
%

H

'5

.5

m m m
m m m
" " " ?

??'f"J-'W
O N " " ? "

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 - N ~ - - 0 - C J N - W O - O - m ~ O ~ ~ - ~ - N W W ~ ~

m o W N m m - m w m m m m - m -P I m - -
E 0 0 0 0 0 0 0 0 - 0 - - m - m w N ~ m O N m - m m - N N - N m ~ m - d m - m m - m

Y m

Y Y ~ ~ o m m m ~ ~ r - o m ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ " r -o T Y N N ~ Y ~ ~ G ~
~ Z o o o o o o o o o o o - m - m w - m w m - m

or- m m m m w w z z
m m

- d o 0
g E o o o o o o o o o o o - ~ m - m - m ~ m - ~ - - ~ ~ ~ m - ~ m ~ m r - m m r - m ~ r - m

m e : v ! m m ? m m m m m m m m m m m
,,,""*&?o ? m Y Y 2 Y ? " Y Y 2 Y w " ? m ? ? ? ? ? ? ?

g - - a m - m - r - m - w w - m - m m - - a m - w - N r - - m m N w w w r - m m r - w m - -

m m - r - r - m ~ w m m m m w ~ - - w r - b o r n
Z - m m w m ~ m m v m - m w o o w w m - w \ o w m m m m w w m ~ E s s ~ g ? ~ z g g ~ = = z z z ~ z ~ ~ ~ ~ s ~ ~ ~ = = g g g g z g ~ g g : ~ g $ $

" Y Y Y Y Y Y
Y m m o m m - ~ r - w r - m w m w m r - N N W ~ W

Z o Z m m - m m o r - r - o - ~ o o m m m m w w ~ m ~ - r - w w ~ ~ - m m m m m m ~ m o - - r - r - r - ~ ~ m m m m w w w ~ - - m m m ~ ~ m ~ r - w o m m m r -
Z m m m r - r - r - m m m - - - - - - m m m - - - m m ~

-co rn - w r - m m ~ 0 0 m m b ~ m ~ ~ d N
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 8 % ~ ~ ~ ~ ~ 3 ~ f ~ f 2 2 2 ~ ~ ~ o o m r - r n o m w m w w - - - m m m - - - N N N - - - N N N N N - r - w r - - - - d *

C,
a:
B a
c m
w n

*

d t;
a 8
a c 5 g
= f i g O M

~ ~ - ~ 9 - ~ 9 - ? O - ~ 9 - ~ q ; z ~ a z 9 - Y 9 - V) 9 - V ! 9 - Y 9 - Y 9 - Y 9 - Y n o o - o o - 0 0 - d o - o o

- m m m m m
m m m 0 w

- 2 2 m m
v, w r‘ X - 'D m 2 N N

0
0 5 8 g 0 s O P;1 9 P;1

" $ 9 - vi m 9 r?
w ' ~ c < z z " s a a $ a

d d
M M $ M M M

2 d ::
e:
'I!
'a
2 z
3

g
3 s

GS Standard Results I
Problem Instance

G250.01

G250.02

G250.04

(3250.08

MCP johnsong-2-4

johnson16-2-4

keller4

c-fat200- I

brock200-2

brock200-1

brock200-3

TTP tlgen 1

ttgen2

hdtt4

Optimal/ Best
Known cost

29

114

357

828

0

0

0

0

0

0

0

0

0

0

Neighbourhood
probability
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
I .O
0. I
0.5
I .o
0. I
0.5
I .O
0. I
0.5
I .O
0.1
0.5
1 .O
0. I
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
I .O
0.1
0.5
I .O
0. I
0.5
I .O
0.1

Cost
Min
457
50
55
55
135
130
148
378
377
427
868
855
928
1
1
1
5
5
5
21
21
21
29
29
29
39
33
35
96
96
89
52
52
52
3
0
1
I
1
0
16

IQR
39.25
9.25
50.25
42.25
23
161
0
51.5
199.5
0
32.25
250
0.5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5.5
27
67.75
4
13.5
53.75
0.5

Med
471.5
57.5
61
62.5
147.5
146.5
162.5
400.5
394
430
884
879
939
1.5
1
1.5
16.5
16.5
16.5
29.5
29
27.5
38.5
36
34
46
46
46
132.5
132.5
132.5
68
68
65.5
6
2
1.5
7
3.5
1
21.5

Max
119
189
968
1593
259
1481
1592
333
1507
1592
298
1595
1593
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
79
346
698
114
543
1039
4

Runtime (seconds)
Min
60
150
742
1421
206
824
1592
202
11 10
1592
200
1166
1592
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
61
275
562
93
425
855
3

Med
92
177.5
795.5
1592
224
1083
1592
247
1281
1592
275.5
1452.5
1592
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
68.5
320.5
609.5
104.5
485
933.5
3

Max
496
67
68
69
158
164
184
416
400
457
976
898
964
3
3
3
24
24
24
37
37
37
49
52
52
57
57
57
160
160
160
97
89
97
8
3
3
15
5
3

* 32

IQR
18.75
4.5
4.25
6
8.5
15.25
15.25
14.75
6
7.25
25.25
19.75
7.5
1
1
I
5.75
5.75
5.75
6.5
6.5
7
12.75
12.75
15.5
10
1 1.75
10
32.75
32.75
32.75
11.75
11.75
18
1.5
2
1
4
2
1.5
5.75

Table 47: Standard results for the GS engine.

GS Standard Results I
Problem Instance

hdtt5

hdtt6

hdtt7

hdtt8

Runtime (seconds) Neighbourhood
probability
0.5
1 .O
0.1
0.5
I .O
0.1
0.5
1 .O
0.1
0.5
1 .O
0.1
0.5
1 .O

OptimaV Best
Known cost

0

0

0

0

IQR
1.25
6
1
3.25
4
1
7.5
12
5.25
6.5
16.25
1.75
22.25
29

Max
18
41
9
45
85
18
87
168
33
158
383
58
253
547

Min
15
30
6
36
70
14
68
150
21
131
269
38
209
459

Cost
Med
16
33.5
8
40.5
74
15.5
80
162
28
142
293.5
49.5
229.5
475.5

Min
8
5
18
15
I 1
36
20
19
37
26
26
47
32
29

Med
13
8.5
30.5
16.5
16.5
39.5
23.5
21
46.5
32
3 1
51.5
38
35.5

Max
16
12
39
23
22
44
32
27
57
41
37
65
46
43

IQR
5.5
3
4.5
3.5
4
3.75
3.5
2.5
8
5.75
6.75
4.25
7.25
3.5

Appendix B: List Formulations of
Common COPS

This appendix contains the list formulations of the problems in Table 1 excluding those presented in

Section 3.3.2. The alternative formulations for BIN, GRAPH and MCP are also included here.

BIN -
Minimise Ixl

s. t.

Where:
N is the number of items.
x(i J) is the j'th item assigned to bin i.
W,,, is the maximum bin weight.
w(i) is the weight of item i.

GRAPH

Minimise Irl

Ix(k)l-l Ix(k)l x edge(x(k,i),x(k, j)) = 0 V k I S ~ S I X I
i=1 j=i+l

Where:
x(i j) is the j'th item with colour i .
edge(i j) is 1 if there exists and edge between vertex i and j, else it is 0.
N is the number of vertices.

Cavacitated Single Allocation p-Hub Median Problem

Minimise

7 y, w (x (i , j) , x(1, k)) 5 T(1) Vt 1 <l<lxl

Where:
x(ij) is the j'th node on the i'th hub (Note: x(i,l) is a hub).
P is the number of hubs.
N is the number of nodes.
W(i j) is the flow from node i to node j.
d(i j) is the distance from node i to node j.
fii) is the fixed cost of establishing i as a hub.
r(l) is the capacity of hub 1.
x is the collection cost coefficient.
6 is the distribution cost coefficient.
z is the transfer cost coefficient.

VRP -

Minimise z (z d (x (k , (i - l)) , x (k , i)) + d(x (k , l x (k) I),O))
k=l i=l

Where:
x(i j) is the number of the customer who is serviced by vehicle i on its j'th stop.
V is the number of vehicles in the fleet.
N is the number of customers.
T(i) is the capacity of vehicle i.

c(i) is the demand of customer i.
fli) is the drop time required for customer i.
g(i) is the total allowable timeldistance for vehicle i.
d(i J) is the distance from customer i to j (Note: customer 0 is the depot).

Knapsack Problem

Maximise x c(x(i))

Where:
x(i) is the i'th item in the knapsack.
c(i) is the profit of including an item i in the knapsack.
w(i) is the weight of item i.
W,, is the maximum weight that the knapsack can support.
N is the number of items.

Set Partitioning Problem

Minimise x c(x(i))

Where:
x(i) is the i'th column number in the solution.
c(i) is the cost of including column i.
a is the covering matrix.
M is the number of columns.
N is the number of rows.

Set Covering Problem

... .

Minimise x c(x(i))

Where:
x(i) is the i'th column number in the solution.
c(i) is the cost of including column i.
a is the covering matrix.
M is the number of columns.
N is the number of rows.

Aircraft Landing Problem

Minimise x c(i) ABS(t (x (i)) - t , (i))
i=l

Where:
c(i) is the cost per unit time for a delay or early landing.
x(i) is the time index of when aircraft i will land.
t(i) is the i'th possible landing time.
5(i) is the desired landing time of aircraft i.
te(i) is the earliest time to land for aircraft i.
t,(i) is the latest time to land for aircraft i.
I(i j) is the minimum number of time periods that aircraft i can land after aircraft j.
M is the total number of landing times.
N is the number of aircrafts.

Processor Allocation Problem

M Ix(i)l M Ix(k)l

Minimise 7 y, x x c (x (i , j) , x (k , l))

Ixl =M
Ix(i) I2 1 V i 1 S i l M
1 l x (i J) m V i I S i l M

V j I SjSlx(i) l
min-count(x)= 1
max-count(x)= 1

Where:
x(i J) is the j'th process on processor i .
N is the number of processes.
M is the number of processors.
c (i J) is the communication cost between process i and j.
R is the resource available on each processor.
r(i) is the resource required by process i .

O, i f (i = 0)
p(i>=

1 , otherwise

Sin~ le Layout Problems in FMS (Flexible Manufacturing Systems)

,, 2 ,

Minimise 7 7 w(i, j) . d (x (i) , x(j)) . a (x (i) , x(j))

Where:
x(i) is the location of station i.

i f (i > j) , l
a (i J) =

0, otherwise
N is the number of stations 1 locations.
d (i J) is the distance from location i to j .
w(i J) gives the number of parts that are routed from station i to j .

Personal Time Schedulin~ Problem

N Ix(i)l

Minimise x C (x (i , j) , j)

Where:
C(i J) is the cost of agent i performing overtime on job j.
a(i J) is 1 if job i and j clash, 0 otherwise.
N is the number of agents.
M is the number of jobs.

Number Partitioning Problem

Where:
x(iJ) is the j'th element of the set of real numbers in the i'th partition.
a(i) is the i'th real number in a sequence between 0 and 1.
N is the number of terms in the sequence.

Linear Ordering Problem

N - l N

Maximise x C (x (i) , X (j))

s. t.
Ixl =N
1 lx(i)SN
min-count(x)= 1
max-count(x)= 1

Where:
x(i) is the i'th ordered item.
N is the number of items.

C(i J) is the cost of ordering item i before j.

FPGA Placement Problem

Minimise
N - l N

C C w (i , j) - (A B S (P (~ (~) , ~) - p (x (j) , l)) + ABS(p(x(i) ,2) - p(x(j) , 2)))
i=I j= i+l

s. t.
Ixl =N
I lx(i)Gz V i 1 liSN
max-count(x)= 1

Where:
x(i) is the placement of block i .
N is the number of blocks.
n is the number of available co-ordinates on the grid.
w(i J) is the weight between block i and j.
p(iJ) represents the j'th component of the i'th co-ordinate. The set of co-ordinates on
a two dimensional grid is represented as a vector. j = l represents the horizontal
component and j=2 represents the vertical component. This is similar to the tuples
array in the time tabling problem (TTP).

MCP -
Maximise Ixl

Where:
x(i) is the i'th node assigned to the clique.
N is the number of nodes.
edge(i J) is 1 if there is an edge between nodes i and j.

Machine Scheduling 1 Job Sequencing Problem

N

Minimise w(x(i)) . man(0 ,g p(x(j)) - d (x (i)))
i=l j=l

Where:
N is the number of jobs.
w(i) is the tardiness penalty of job i.
p(i) is the processing time of job i.

d(i) is the due date of job i.

N Queens Problem

Minimise

'di 1 SiSn

Where:
n is the number of queens.
N is the number of available co-ordinates on the chessboard.
p(iJ) represents the j'th component of the i'th co-ordinate. The set of co-ordinates on
the chessboard is represented as a vector. j=l represents the horizontal component
and j=2 represents the vertical component.

l,q(i = j)
s(i, j) =

0, otherwise

cut tin^ Stock Problem

Minimise C W (X (~))
i=l

Where:
M is the number of boards.
N is the number of cutting configurations.
L is the number of shelf sizes.
P(i J) is the number of shelves of size i in configuration j.
R(i) is the required number of shelves of size i.

Appendix C: 0-1 ILP formulations of
the Test Problems

This appendix contains the 0-1 ILP formulations of the problems in Table 5. Note:

(a) refers to the formulation used to test the problems in this study while (b) is the

alternative formulation.

the various formulations for USApHMP and UMApHMP are contained in Ernst and

Krishnamoorthy (1996a, 1996b, 1997b).

a 0-1 ILP model could not be formulated for ?TP or BIN (a).

CSP -

Where:
xij is 1 if the j'th car is model i , 0 otherwise.
Po is the separation penalty for the j'th model separated by i places in the sequence.
N is the number of cars.
M is the number of models.
D; is the number of cars of model i in the sequence.

N N N N

Minimist? 7 ciujbyiujb

Where:
xu is 1 if facility i is placed at location j, 0 otherwise.
Cildh is the communication cost of assigning facility i to location a and facility j to
location b.
N is the number of facilities/locations.

TSP -
N N N N N

~ i n i m i s e C C C d , k ~ ~ (; - I) k +C C d j k y I j N k
i=2 j=l k = l , = I k=l

x, + xj, 5 yjkj, + 1 IF i=N THEN j= 1 ELSE j=i+l Vk#l IS ij,k,l W

Where:
xuis 1 if city i is the j'th city visited, 0 otherwise.
du is the distance between city i and city j.
N is the number of cities.

GRAPH

M N - l N

Minimise 7,y C y , edge,

Where:
xu is 1 if vertex j is assigned to colour i, 0 otherwise.
edgeij is 1 if there is an edge between vertex i and vertex j.

N is the number of vertices in the graph.
M is the number of colours.

Minimise x Ck

Where:
K is the maximum number of colours allowed.

BIN -
(b)

M

Minimise Ccj

Where:
xvis 1 if item i is assigned to bin j, 0 otherwise.
M is the maximum number of bins allowed.

GAP -
N M

Minimise z CC,X,

Where:
x,is 1 if job i is assigned to agent j, 0 otherwise.
cu is the cost of assigning job i to agent j .
aii is resource required by agent j to perform job i .
M is the number of agents.
N is the number of jobs.

MKP -

Where:
xi is 1 if project i is included in the project mix, 0 otherwise.
P i is the profit of including project i in the project mix.
N is the total number of projects.
wu is the number of units of resource i required by resource j .
bi is the maximum number of resource units available from resource i.

MCP -
N-l N

(a) Minimise x x y ,

s. 1.

x ; + x j 5 y , + 1
1 S i W - 1
i+ 1 S j W
$(i, j) 61 edge

N

i=l

xi€ {0,1) V i 1 5iSN
10,l) J u 'd i j 15iSN- 1 i+l<jSN

$(i, j) G edge
Where:

x; is 1 if node i is included in the clique, 0 otherwise.
N is the total number of nodes.
M is the number of nodes in the clique.

N

(b) Maximise xi

1 G9V- 1
i+ 1 5j9V
if (i, j) @ edge

GPP -
.. ..

Minimise C y, edgeg

Where:
xu is 1 if vertex i is assigned to partition j, 0 otherwise.
edgeij is 1 if there is an edge between vertex i and vertex j, 0 otherwise.
N is the number of vertices in the graph.

Appendix D: Algebraic Modelling
Language User Manual

User Manual:

A Text Based Language for the List Modelling System

D1.O Introduction

This manual describes how to compose list-based models of combinatorial optimisation problems for

the COSULOM solver package. The system converts this text-based description to a code description

that is compatible with COSULOM*. The syntax of the language is similar to that used in GAMS

(Brooke, Kendrick, Meeraus and Raman 1997). The main differences occur in relation to the specific

list modelling features of the language.

This manual concentrates on the syntax of the sections required to construct a valid problem model (see

Section D2.0). As well as this, a technique for separating problem specification and problem data into

different files is described.

D2.0 Writing A Problem Description

A description of the list model of a combinatorial optimisation problem is divided into a number of

distinct sections. These sections describe the problem data and the problem specifications.

Throughout this manual, a model of a small multiple knapsack problem (Beasley and Chu 1997) is

developed. The list model is:

1x1

Maxirnisr c(x(i))

Note: Parameters such as SA cooling length, tabu list size and transition operator probabilities are set at runtime rather than in
the problem description itself.

Where:
x(i) is the i'th project in the project mix.
c(i) is the profit of including project i in the project mix.
a(i j) is the number of units of resource j required by project i.
bG) is the maximum number of resource units available from resource j.
N is the number of projects.
M is the number of different resources.

For the following sections, the conventions that are used to explain syntax are as follows:

bold type: indicates reserved words, such as SCALAR, SETS and ;

italic type: indicates user-defined names and data, such as N, A(N) and 34

Examples of each of the sections are shown in courier font.

D2.1 Description Sections

D2.1.1 SCALAR

The SCALAR section defines the constants that are used in the problem model. Scalars can contain

either integer or floating point values. Typically the entries in the SCALAR section are related to the

size of the problem. The syntax of the SCALAR section is:

SCALAR
scalar-name-1 1 number 1
. . .
scalar-name-n 1 number I ;

An example for the multiple knapsack problem is:

SCALAR
N / 1 0 /
M / 4 / ;

D2.1.2 SETS

The SETS section is used to define range variables. Range variables are a useful means for defining

the lower and upper bounds on a summation operation or to define a group of similar constraints (see

Section D2.16). The syntax of the SETS section is:

SETS
set-name-1 1 number - number 1
. . .
set-name-n 1 nutnber - rzunzber l ;

In the above, number, may be either from the scalar list or an integer value. An example for the

multiple knapsack problem is:

SETS
J / 1 - M / ;

D2.1.3 PARAMETER

The PARAMETER section allows vectors of values to be defined. Like SCALAR, values may be

either integer or floating point. Integer and floating point values can also be mixed within the one

vector. For each vector definition, a name and the dimension of the vector are required. The syntax of

the PARAMETER section is:

PARAMETER
parameter-name-1 (N) 1 item(1) . . . item(N) 1
...
parameter-name-n (N) 1 item(1) . . . item(N) I ;

An example for the multiple knapsack problem is:

PARAMETER
C (N) / 1 2 1 0 2 0 2 4 9 1 7 1 6 8 1 5 7 /
B (M) / 1 7 1 9 2 5 22 / ;

D2.1.4 TABLE

The TABLE section allows matrices of values to be specified, in much the same way as in the

PARAMETER section. The syntax of the TABLE section is as follows:

TABLE
table-name-1 (M,N) 1 item(1,l) . . . item(1, N) . . . item(M,N) 1
...
table-name-n (M,N) I item(1,l) . . . item(1, N) . . . item(M, N) l ;

An example for the multiple knapsack problem is:

TABLE
A(M,N) / 3 9 7 5 4 4 8 6 5 2

2 3 1 8 4 7 2 3 5 4
1 5 6 3 2 7 5 4 1 0 1
2 3 3 4 2 7 5 6 1 5 / ;

D2.1.5 SOLUTION

The SOLUTION section is used to define the list constraints of the problem model. These include the

Size, Count and Value Range constraints (see Section 3.3.1 of the thesis). The syntax of the

SOLUTION section is:

SOLUTION
SIZE(x) relational-operator number
. . .
MIN-COUNT(x) = number
MAX-COUNT(x) = number
lowerbound relational-operator x relational-operator upperbound ;

The SIZE statement is used to set the bounds of the list (i.e. the number of sub-lists and the number of

elements on those sub-lists). For instance, if the model requires M sub-lists, SIZE (x) =M is used. The

relational-operator is from the set {<=,<,=,>,>=I. To denote the size of an individual sub-list, a

statement like SIZE (x (1)) <=N is used. This indicates that sub-list 1 on list x can contain no more

than N elements. Should SIZE be undefined, there are no limits on the number of sub-lists or the

number of elements that can be contained on the sub-lists.

The last line of the syntax description defines the range of legal values that can occur on the list. This

statement cannot be omitted.

An example for the multiple knapsack problem is:

SOLUTION
SIZE (X) =1
MAX-COUNT (X) =1
l<=X<=N;

D2.1.6 EQUATIONS

The EQUATIONS section is used to describe the objective cost, incremental cost expressions and the

constraints of the problem. The syntax of the EQUATIONS section is:

EQUATIONS
COST.. expression
ICOST(transition-operator): ic-expression
...
constraint-name-I: expression relational-operator expression
. . .
constraint-name-n: expression relational-operator expression;

COST.. indicates the objective cost. The objective cost is an arbitrary algebraic expression that can

consist of the following functions:

I Function name and arguments I Description I

The system can generate its own incremental cost expressions from the objective function. ~ o w e v ' e r

the user can provide their own for particular transition operators using ICOST statements.

transition-operator is from the set (move, swap, invert, reposition, add, drop, change). ic-expression

contains special incremental cost constants as well as all of the functions used in expression (explained

in Section 4.5 of the thesis). These are:

Function name and arguments
SIZEOF (i)
SUM(expression,i=j,k)

ABS (i)
minimum (expression-1, expression-2

maximum (expression-1, expression-2

min(expression,i,j,k)

max(expression,i,j,k)

occ (x, i)

list (x, i, j)

pred(i,j,k,l)

succ(i, j,k,l)

Description
The size of list i. Returns lit.
The sum of an expression between a lower and

k

an upper bound. Returns expression.
i= j

Returns the absolute value of i .
Returns the value of smallest expression of
expression-1 and express ion-2.
Returns the value of largest expression of
expression-1 and expression-2.
Returns the expression of least value between a

k

lower and upper bound. i.e. min(expression) .
i= j

Returns the expression of greatest value between
a lower and upper bound. i.e.

k

max(expression) .
i= j

Returns the number of times that value i occurs
on list x.
Returns the sub-list number of the j ' th
occurrence of the value i on list x.
Returns i-L unless i-l<j at which k is
returned.
Returns i+l unless i+l>j at which k is
returned.

The last part of the EQUATIONS section concerns the constraints of the problem. Each constraint is

Constant name and arguments
COST-OLD

E 1
E2
L 1
L 2
P1
P 2

given an individual name. If a range variable (from the SETS section) is used, it is possible to create a

Description
Returns the cost of the objective function before the transition was
made
Element 1
Element 2
Sub-list 1
Sub-list 2
Position 1
Position 2

number of constraints. This is often useful when the same constraint is associated with some or all of

the sub-lists. An example of an EQUATIONS section for the multiple knapsack problem is:

EQUATIONS
COST. . SUM(C(X(1)) ,I=l,SIZEOF(X(l))
ICOST (ADD) : COST-OLD + C (El)
ICOST (DROP) : COST-OLD - C (El)

ICOST (CHANGE) : COST-OLD - C(E1) + C(E2)
CAPACITY : SUM(A(J,X(I))<=B(J) ;

D2.1.7 SOLVE

The SOLVE statement is used to specify which search engine is to be used. The syntax is:

SOLVE USING engine

engine can be any of the following:

SA a simulated annealing search engine

TS a tabu search engine

GS a greedy search engine

D2.2 Complete Example File

The complete description file for the multiple knapsack problem (as used above) is:

SCALAR
N / 1 0 /
M / 4 / ;

SETS
J / 1 - M / ;

PARAMETER
C(N) / 12 10 20 24 9 17 16 8 15 7/
B(M) / 17 19 25 22 / ;

TABLE
A(M,N) / 3 9 7 5 4 4 8 6 5 2

2 3 1 8 4 7 2 3 5 4
1 5 6 3 2 7 5 4 1 0 1
2 3 3 4 2 7 5 6 1 5 / ;

SOLUTION
SIZE (X) =1
MAX-COUNT (X) =1
l<=X<=N;

EQUATIONS
COST. . SUM(C(X(1)) ,I=l,SIZEOF(X(l))
ICOST (ADD) : COST-OLD + C (El)
ICOST (DROP) : COST-OLD - C (El)
ICOST (CHANGE) : COST-OLD - C(E1) + C(E2)
CAPACITY : SUM(A(J,X(I))<=B(J) ;

SOLVE USING TS

D2.2 File Construction

The preprocessing directive # inc lude (as commonly found in C applications) can be used in the

language. The greatest benefit in this context is to separate data from the problem specification. Using

this approach, one specification file can be used for multiple data files (i.e. many instances of the same

problem). The syntax of the #include directive is:

filename is the name of the file that is to be included. An example using the multiple knapsack

problem is given below. The first file is called "mkp-problem-data" and contains the problem data.

The second is "mult-knapsack" and contains the specification of the list model, objective cost,

incremental cost expressions and constraints.

The file "mkp-problem-data":

SCALAR
N / 1 0 /
M / 4 / ;

SETS
J / 1 - M / ;

PARAMETER
C(N) / 12 10 20 24 9 17 16 8 15 7/
B(M) / 17 19 25 22 / ;

TABLE
A(M,N) 1 3 9 7 5 4 4 8 6 5 2

2 3 1 8 4 7 2 3 5 4
1 5 6 3 2 7 5 4 1 0 1
2 3 3 4 2 7 5 6 1 5 / ;

The file "mult-knapsack":

#include "mkp-problem-data"
SOLUTION

SIZE (X) =1
MAX.-COUNT (X) =1
l<=X<=N;

EQUATIONS
COST. . SUM(C(X(1)) ,I=l,SIZEOF(X(l))
ICOST (ADD) : COST-OLD + C (El)
ICOST (DROP) : COST-OLD - C (El)
ICOST (CHANGE) : COST-OLD - C(E1) + C(E2)
CAPACITY : SUM(A(J,X(I))<=B(J) ;

SOLVE USING TS

References

Beasley, J. and Chu, P. (1997) "A Genetic Algorithm for the Multiconstraint Knapsack Problem",
Working Paper.

Brooke, A., Kendrick, D., Meeraus, A. and Raman R. (1997) GAMS Language Guide, GAMS
Development Corporation, 305 pages.

Appendix E: Overview of the C
Problem Description Files

COSULOM uses two C files in order to represent a list problem model. These are named user.^" and

"user.hW. The first of these files represents the list constraints, objective function, incremental cost

expressions and constraints. "user.h" contains the data for a particular problem instance. Both of the

files are described in Section E1.O and E2.0 respectively. By way of example, the multiple knapsack

problem instance as given in Appendix D, is used to illustrate these two files (Section E3.0).

The files "misc.h", "1ist.h" and "user.h must be included within user.^". "1ist.h" and "misc.h"

contain the definition of list structures and some necessary function prototypes. user.^" consists of

four functions:

user-define-solution

user-evaluate-cost

user~evaluate~incremental~cost

user-evaluate-constraints

These are described below.

El.1 user-def ine-solution

This function is used by the system to create an appropriate list structure for the solution of a particular

problem. As such, the list constraints are specified in this function. The list constraints themselves are

implemented by calling the system functions described below.

The function prototype of user-def ine-solution is:

void user~define~solution(solution~1i~t~type)

solution-lis t-type is the C type that describes the list structure of the solution.

El.l.l set-min-count and set-max-count

These functions are used to specify the Count constraints. The function prototypes are:

void set~min~count(solution~1ist~type)

void set~max~count(solution~1ist~type)

The syntax for each function is:

se t-min-count (solution)

set-max-count (solution)

solution is a variable name used by the system to store the current solution state. For this

implementation, min-count and max-count are set to 1 if the appropriate function is called.

E1.1.2 set-size-bounds

This function is used to specify the shape and size of the solution list structure. The function prototype

is:

void set~size~bounds(solution~list~type, int, int, int)

The syntax is:

se t-s i ze-bounds (solution, list-identij?er, size-lowerbound, size-upperbound)

list-identijier is used to denote the list while size-lowerbound and size-upperbound set the limits of

how small and how large a list can become respectively. To specify the list of lists (i.e. the list that

supports the sub-list structures), 0 is used. For instance, to specify the structure of an M agent GAP

(i.e. there are M sub-lists), the following would be used:

As many problems such as the travelling salesman problem, quadratic assignment problem and

multiple knapsack problem have only one sub-list, se t-size-bounds (solution, 0,1,1) is

used. Sub-lists are numbered from 1 onwards.

E1.1.3 set-value-bounds

This function specifies the range of values for the list elements. The function prototype is:

void set~value~bounds(solution~1ist~type, int, int)

The syntax is:

set-value-bounds (solution, value-lowerbound, value-upperbound)

value-lowerbound and value-upperbound set the limits of the value range. For the multiple knapsack

problem, this becomes:

E1.1.4 A Complete user-define-solution Function

The complete function for the multiple knapsack problem becomes:

void user~define~solution(solution~1ist~type solution)
{

E1.2 user-evaluatecost

This function specifies the objective function of the combinatorial optimisation problem. The function

prototype is:

float user~evaluate~cost(solution~1ist~type)

Within this function, arbitrary C statements can be used in order to calculate the value of the objective

function. This usually involves the data (constants and arrays) declared in "user.h" (see Section

E2.0). The following system functions are available to user-evaluate-cost (as well other C

functions).

Description
Returns the value of the
element on the
sub-list-number sub-list at the
position-number position.
Returns the length of list
list-number.
Returns the minimum of i and
j.
Returns the maximum of i and
j.
Returns the number of times
that value i occurs on list x.
Returns the sub-list number of
the j'th occurrence of the value
i on list x.
Returns i-1 unless i-l<j at
which k is returned.
Returns i+l unless i+l>j at
which k is returned.

Function Prototype
int find-value-at(
solution-list-type, int,
int)

int get-sizeof-list(
solution-list-type, int
float fmin (f loat, float)

float fmax (f loat, float)

int occ (
solution-list-type, int)
int list (
solution-list-type, int,
int)

int pred (int, int, int,
int)
int succ (int, int, int,
int)

Function Syntax
f ind-value-at (solution
, sub-list-number,
position-number)

get-sizeof-list(
solution, list-number)
fmin (i,j)

fmax (i, j)

occ (x, i)

list (x, i,j)

pred (i,j, k, 1)

succ (i,j, k , 1)

The complete function for the multiple knapsack problem becomes:

float user~evaluate~cost(solution~1ist~type solution)
{

float sum=0.0;
int i;
for(i=l;i~=get~sizeof~list(solution,l);i++)

return sum;
1

This function is used to calculate the incremental cost resulting from the local search transition made

by the system. The function prototype is:

float u s e r ~ e v a l u a t e ~ i n c r e m e n t a l _ c o s t (s o l u t i o n ~ l i s t ~ t ~ e ,

last-transition-type, float)

The syntax is:

user~evaluate~incremental~cos t (solution, last-transition , cost-old)

last-transition-type is a C struct in which the information about the last transition is

recorded:

struct last-transition-struct
f

transit-type transition;
int elementl;
int listl;
int positionl;
int element2;
int list2;
int position2;

I ;

typedef struct last-transition-struct last-transition-type;

transit-type is given by:

enum tran{move-maint, move-rest, swap, invert, reposition, change,
add, drop 1 ;

typedef enum tran transit-type;

The use of the members of last-transition-type is similar to that specified in Section 4.5. A

switch statement is the most efficient means of selecting an appropriate incremental cost expression

to evaluate. The complete function for the multiple knapsack problem becomes:

float user~evaluate~incremental~cost(solution~1ist~type solution,
last-transition-type last-transition, float cost-old)
{

float cost-new;
switch(1ast-transition-transition)
{

case add:
cost~new=cost~old+c[last~transition.element1];
break;

case drop:
cost~new=cost~old-c[last-transition.elementl1;
break;

case change:
cost~new=cost~old-c[last-transition.elementl]
+c[last-transition.element21;
break;

1
return cost-new;

1

If incremental cost expressions are not available for a particular objective function,

user-evaluate-cost can be called from this function. For example:

float user~evaluate~incremental~cost(solution1isttype solution,
last-transition-type last-transition, float cost-old)
{

return user~evaluate~cost(so1ution);
1

This function is used to specify the constraints of the problem model. The function prototype is:

float user~evaluate~constraints(solution~1ist~type, int)

The syntax is:

user-evaluate-cons traint s (solution, constraint-number)

The function returns the amount of constraint violation for the constraint given by constraint-number.

Constraint violation is calculated according to Equations (44 - 49). The complete function for the

multiple knapsack problem becomes:

float user~evaluate~constraints(solution~1i~t~type solution, int
constraint)
{

float sum=0.0;
int i;
for(i=l;i<=get-sizeof_list(solution,l);i++)
{

sum+=a[find~value~at(solution,l,i)] [constraint];
I
return fmax(0.0,sum-b[constraint]);

I

If the problem model contains no problem constraints, the following should be used:

float user~evaluate~constraints(solution~1istte solution, int
constraint)
{

return 0.0;
1

This file stores the constants and arrays necessary to describe a problem instance. To declare the

constants, the standard #define directive is used. One constant is required to be present. This is

num_problem~constraints that tells the system how many problem constraints the problem

model has. For the multiple knapsack problem, it can be declared as:

provided that M has been previously declared. Arrays are declared and initialised in the customary C

manner.

E3.0 Complete Example Files for the Multiple Knapsack
Problem Instance

The file user.^" is:

.
* user.c for the MKP *
* Written by Marcus Randall *
.

#include <stdio.hz
#include <stdlib.h>
#include "misc.h"
#include "1ist.h"
#include "user.hn

void user~define~solution(solution~1ist~type solution)
{

set~max~count(so1ution);
set~size~bounds(solution,0,l,l);
set~value~bounds(solution,0,l,N);

1

float user~evaluate~cost(solution~1ist~type solution)
{

float sum=0.0;
int i;
for(i=l;i~=get~sizeof~list(solution,l);i++)
I

sum+=c[find~value~at(solution,l,i)l;
1
return sum;

I

float user~evaluate~incremental~cost(solution~1ist~type solution,
last-transition-type last-transition,float cost-old)
{

float cost-new;
switch(last~transition.transition)
{

case add:
c o s t ~ n e w = c o s t ~ o l d + c [l a s t _ t r a n s i t i o n . e l e m e n t l l ;
break;

case drop:
c o s t ~ n e w = c o s t ~ o l d - c [l a s t _ t r a n s i t i o n . e l e m e n t l l ;
break;

case change:
cost~new=cost~old-c[last_transition.elementll
+c[last-transition.element21;
break;

I
return cost-new;

1

float user~evaluate~constraints(solution~1ist~type solution,int
constraint)
{

float sum=0.0;
int i;
for(i=~;i~=get~sizeof_list(solution,l);i++) Continued.. .
I

sum+=a[find~value~at(solution,l,i)] [constraint] ;
I
return fmax(0.0,sum-b[constraint]);

I

The file "user.h" is:

.
* user.h for an MKP instance *
* Written by Marcus Randall *
.

#define N 10
#define M 4
#define num-problem-constraints M

int c [N] =
{

12, 10, 20, 24, 9, 17, 16, 8, 15, 7
I ,

b [MI =
{

17, 19, 25, 22
1 ,

a [MI [Nl =

3 , 9 , 7 , 5 , 4 , 4 , 8 , 6 , 5 , 2,
2 , 3 , 1 , 8 , 4 , 7 , 2 , 3 , 5 , 4,
1 , 5 , 6 , 3 , 2 , 7 , 5 , 4 , 1 0 , 1 ,
2 , 3 , 3 , 4 , 2 , 7 , 5 , 6 , 1 , 5

1 ;

Appendix F: "A Simulated Annealing
Code for General Integer Linear
Programs"
The following is a pre-print of the paper "A Simulated Annealing Code for General Integer Linear

Programs" by D. Abramson and M. Randall. This paper is to appear in the journal The Annals of

Operations Research.

Appendix G: Papers Arising from this
Study

Abramson, D., de Silva, A., Randall, M. and Postula, A. (1995) "Special Purpose Computer
Architectures for High Speed Optimisation", Proceedings of the Second Australasian
Conference on Parallel and Real Time Systems Conference, pp. 13 - 20.

Abramson, D., Logothetis, P., Postula, A. and Randall, M. (1997) "Application Specific
Computers for Combinatorial Optimisation" Proceedings of the Australian Computer
Architecture Workshop, February, Sydney.

Abramson, D. and Randall, M. (1998) "A Simulated Annealing Code for General Integer
Linear Programs" to appear in Annals of Operations Research.

Abramson, D., Logothetis, P., Postula, A. and Randall, M. (1998) "FPGA Based Custom
Computing Machines for Irregular Problems", Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture, (HPCA98), February 1-4, Las
Vegas, Nevada.

Randall, M. and Abramson, D. (1998) "An Empirical Study of State Encoding in Tabu
Search", in preparation (for journal publication).

Randall, M. and Abramson, D. (1998) "A General Meta-heuristic Based Solver for
Combinatorial Optimisation Problems", in preparation (for journal publication).

Randall, M. and Abramson, D. (1998) "A General Parallel Tabu Search Algorithm for
Combinatorial Optimisation Problems", in preparation (for journal publication).

Abramson, D., Logothetis, P., Randall, M. and Postula, A. (1998) "A Tail Of 2" Cities:
Performing Combinatorial Optimisation Using Linked Lists On Special Purpose Computers",
keynote address, Proceedings of the International Conference on Computational Intelligence
and Multimedia Applications, February, Gipsland, pp. 17-45.

	Text2: [image removed]
	Text1: [image removed]

