Design, Synthesis and binding studies of Trisubstitutedpyrazolo[3,4-d]pyrimidines

A thesis submitted in partial fulfillment
of the requirements for admission
to the degree of

Doctor of Philosophy (PhD)

By

Khoa Quang Do

Faculty of Science and Technology

Griffith University

July, 2005

Statement

The work described in this thesis was carried out in the Faculty of Science and Technology, Griffith University under the supervision of Professor Ron Quinn. Unless otherwise stated, it is the work of the author and has not been and is not currently being submitted for any other degree.

Signed

July 2005

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Ron Quinn, for his patient, guidance, advice and financial supports.

I would like to thank Dr Gregory Fechner for the help with radioligand binding assays, Dr Sue Boyd for the training of nuclear magnetic resonance spectrometer, Mr Ross Steven for the training of mass spectrometer, Sonya for the training of cell culture techniques, Mary for obtaining the 1 D and 2 D spectra of several compounds on 600 MHz , Heather for setting up running 384 crude compounds on Mariner Mass Spectrometer, my co-supervisor Dr Juliette Neve for her assistance when I work at the lab at NPD and Matthew McKay for the training of high pressure liquid chromatography.

I would also like to thank the administrative staffs at Natural Product Discovery; service room staffs and secretary staffs at Griffith University; and biology and chemistry staffs at Natural Product Discovery for their help while I worked there.

Finally, my biggest thank you is reserved for my parents, brother and sisters and my girlfriend.

Synopsis

Pyrazolo[3,4-d]pyrimidines were known as adenosine antagonists at the rat A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors based on our previous studies. In this study, 245 pyrazolo[3,4-d]pyrimidines derivatives with various benzyl substitutents at $\mathrm{N}-1$ and various hydrophobic side chains at C-4 and C-6 were synthesized and screened at the human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} adenosine receptors. 14 out of 245 compounds were resynthesized and purified to determine the K_{i} values of these compounds at the human A_{1} adenosine receptor.

Chapter 1 of the thesis is a literature review of adenosine research. It describes the physiology of adenosine and the discovery and characterization of all adenosine receptors namely $A_{1}, A_{2 A}, A_{2 B}$ and A_{3}. It also looks at the medical application of adenosine, adenosine analogs, adenosine agonists and adenosine antagonists. The final part of the chapter discusses the discovery and development of adenosine agonists and antagonists

Chapter 2 of the thesis describes the rational design of the pyrazolo[3,4$d]$ pyrimidines template using ligand-based molecular modelling technique and describes the synthesis of the template.

Chapter 3 and chapter 4 describe the application of silicon chemistry and attempts to synthesise a series of pyrazolo[3,4-d]pyrimidines heterocycle by solid phase synthesis.

Chapter 5 and chapter 6 describe the synthesis of a series of pyrazolo[3,4$d]$ pyrimidines heterocycle using the solution phase parallel synthesis and the binding studies of a library of 245 compounds and the resynthesis of 14 target compounds.

Chapter 7 describes the cell culture and membrane preparation of the human A_{1}, $\mathrm{A}_{2 \mathrm{~A}}, \mathrm{~A}_{2 \mathrm{~B}}$ and A_{3} adenosine receptors and radioligands binding assays.

Table of Contents

Statement of Originality i
Acknowledgments ii
Synopsis iii
Table of Contents iv
Abbreviations viii
List of Figures xii
List of Schemes xiv
List of Tables xvi
Chapter 1: Introduction 1
1.1 Physiology of adenosine 1
1.2 Adenosine receptors 4
1.2.1 $\quad \mathrm{A}_{1}$ adenosine receptor 6
Molecular biology 6
Signal Transduction Mechanisms 7
Pharmacology 7
1.2.2 $\quad \mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor 9
Molecular biology 10
Signal Transduction Mechanisms 11
Pharmacology 11
1.2.3 $\quad \mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor 13
Molecular biology 13
Signal Transduction Mechanisms 14
Pharmacology 14
1.2.4 $\quad \mathrm{A}_{3}$ adenosine receptor 16
Molecular biology 16
Signal Transduction Mechanisms 17
Pharmacology 17
1.3 Therapeutic potentials of ligands at the adenosine receptors 19
Lung 20
Parkinson's disease 20
Neuroprotective 20
Anticonvulsant 21
Cognition Enhancer 21
Renal function 21
Cardiovascular System 21
Immune Function 22
1.4 Structure-activity relationship of ligands at adenosine receptors 22
1.4.1 Adenosine receptor agonists 23
Ribose Modifications 24
N^{6} modifications 26
C2 modifications 27
Multiple modifications 28
Purine ring modifications 29
1.4.2 Adenosine receptor antagonists 30
Xanthine antagonists 33
Non-xanthine antagonists 35
1.4.3 Adenosine receptor partial agonists 39
1.5 References 40
Chapter 2: Design of Template for library development 59
2.1 Introduction 59
2.2 Results and Discussion 63
2.2.1 Rational Design of Pyrazolo[3,4-d]pyrimidines template 63
2.2.2 Synthesis 69
2.3 Conclusion 78
2.4 Experimental 79
2.5 References 85
Chapter 3: Application of Silicon Chemistry in synthesis of diversified 87 library
3.1 Introduction 87
3.2 Results and Discussion 88
3.2.1 Protection and deprotection of the intermediate (27) 88
3.2.2 $1^{\text {st }}$ attempted incorporation of silyl group into phenyl ring 93
3.2.3 $\quad 2^{\text {nd }}$ attempted incorporation of silyl group into phenyl ring 94
3.3 Conclusion 100
3.4 Experimental 101
3.5 References 110
Chapter 4: Attempted attachment of silyl intermediates to the 113 polymeric support
4.1 Introduction 113
4.2 Results and Discussion 114
4.3 Conclusion 116
4.4 Experimental 117
4.5 References 119
Chapter 5: Parallel synthesis of pyrazolopyrimidine derivatives 120
5.1 Introduction 120
5.2 Results and Discussion 121
5.2.1 Synthesis of pyrazolo[3,4-d]pyrimidine dithione scaffolds 121
5.2.2 Synthesis of pyrazolo[3,4- d]pyrimidine derivatives 123
5.2.3 Radio-Ligand Binding Results 125
5.3 Conclusion 153
5.4 Experimental 153
5.5 References 159
6.1 Introduction 160
6.2 Results and Discussion 160
6.2.1 Synthesis of 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidine 160
6.2.2 Synthesis of 6-alkylthio-4-alkylamino-pyrazolo[3,4-d]pyrimidine 161
6.2.2 Radio-ligand binding results 163
6.3 Conclusion 167
6.4 Experimental 168
6.5 References 192
Chapter 7: Cell cultures, membrane preparation and radioligand 193 binding assays
7.1 Introduction 193
7.2 Materials 194
7.3 Cell culture 194
7.4 Membrane preparation 195
7.5 Protein estimation 196
7.6 Radioligand binding 197
7.6.1 $\quad \mathrm{A}_{1}$ receptor binding assay 197
7.6.2 $\quad \mathrm{A}_{2 \mathrm{~A}}$ receptor binding assay 198
7.6.3 $\quad \mathrm{A}_{3}$ receptor binding assay 198
7.7 References 199

Abbreviations

AB-MECA	N^{6}-(4-Amino-3-iodobenzyl)-adenosine-5'-
	N-methyl-uronamide
a.m.u	Atomic mass unit
Anal. calcd	Analysis calculated
APNEA	N^{6}-2-(4-Aminophenyl)ethyl-adenosine
Ar	Aromatic
ATP	Adenosine triphosphate
AMP	Adenosine monophosphate
cAMP	Adenosine-3',5'-cyclic monophosphate
9-BBN	9-borabicyclo[3.3.1]nonane
Bn	Benzyl
bp	Boiling point
BSA	Bovine serum albumin
Bu	Butyl
BuLi	Butyllithium
${ }^{\mathrm{n}} \mathrm{BuLi}$	Butyllithium
${ }^{\text {t }} \mathrm{BuLi}$	Tertiary Butyllithium
2-CADO	2-Chloroadenosine
cat	Catalyst
CCPA	2-Chloro- N^{6}-cyclopentyladenosine
CGS 15943	5-Amino-9-chloro-2-(2-furyl)-1,2,4-triazolo
	[1,5-c]quinazoline
CGS 21680	(2-p-Carboxyethyl)phenylamino-5'-Nethylcarboxamidoadenosine
CHA	N^{6}-Cyclohexyladenosine
CHO	Chinese hamster ovary
CNS	Central nervous system
COS-7	African green monkey kidney
CPA	N^{6}-Cyclopentyladenosine

DABCO	1,4-Diazabicyclo[2.2.2]octane
DCM	Dichloromethane
DIPEA	Diisopropylethylamine
DMBA	Dimethylbarbituric acid
cDNA	Complementary deoxyribonucleic acid
DMF	Dimethylformamide
DMPA	N^{6}-[2-(3,5-dimethoxyphenyl)-2- (2-methylphenyl)ethyl]adenosine
DMSO	Dimethyl sulfoxide
DMSO-d ${ }_{6}$	Deuterated dimethyl sulfoxide
$\mathrm{D}_{2} \mathrm{O}$	Deuterium oxide
DPCPX	8-Cyclopentyl-1,3-dipropylxanthine
EDTA	Ethylinediamine tetraacetate
eq	Equivalent
ESMS	Electrospray mass spectrometer
Et	Ethyl
g	Gram
GDP	Guanine diphosphate
GPCR	G-protein-coupled receptor
GTP	Guanine-5'-triphosphate
G-protein	Guanine nucleotide-binding regulatory protein
h	Hour
HEK 293	Human embryonic kidney
Hz	Hertz
IB-MECA	N^{6}-(3-iodobenzyl)-adenosine-5'- N -methyl-uronamide
IC_{50}	Concentration of test compound to cause 50% inhibition of radioligand binding to receptor
IR	Infrared
IUPHAR	International Union of Pharmacology
K_{i}	Dissociation constant of test compound

$\mathrm{K}_{\text {d }}$	Dissociation constant of radioligand
M	Molar
Me	Methyl
MECA	5'-N-methylcarboxamidoadenosine
mg	Milligram
min	Minute
ml	Millimetre
mm	Millilitre
mmol	Millimole
mol	Mole
$\mu \mathrm{l}$	Micorlitre
$\mu \mathrm{M}$	Micromolar
mp	Melting point
MRE-3008-F20	5-N-(4-Methoxyphenyl-carbamoyl)amino-8-
	Propyl-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo
	[1,5-c]pyrimidine
MSX-2	3-(3-Hydroxypropyl)-8-(m-methoxystyryl)-1propargylxanthine
NECA	5'-N-ethylcarboxamidoadenosine
NI	Negative ionisation
nM	Nanomolar
n.m.r or NMR	nuclear magnetic resonance
O/N	Overnight
PBS	Phosphate buffered saline
PEI	Polyethyleneimine
Ph	Phenyl
PI	Positive ionisation
PIA	N^{6}-phenylisopropyladenosine
PNS	Peripheral nervous system
ppm	Parts per million
Pyr	Pyridine

R-PIA	N^{6}-(L-2-phenylisopropyl)adenosine
RT	Room temperature
SCH 58261	(5-Amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo
	$[4,3-e]-1,2,4$-triazolo[1,5-c]pyrimidine
SDS	Sodium dodecyl sulfate
δ	Chemical shift
SM	Starting material
THF	Tetrahydrofuran
Tris	Tris[hydroxymethyl]aminomethane
	hydrochloric acid
p-TsOH	p-Toluenesulfonic acid monohydrate
U	Unit
XAC	$8-\{4-[([\{(2-A m i n o e t h y l) a m i n o\}$ carbonyl]methyl)
	oxy]phenyl-1,3-dipropyl-xanthine $\}$
ZM 241385	$4-(2-[7-A m i n o-2-(2-f u r y l)[1,2,4]$ triazolo[2,3-a]-
	$[1,3,5]$ triazin-5-yl-amino]ethyl)phenol

List of Figures

Figure 1.1: Adenosine's role in energy supply/demand balance
Figure 1.2: Diversity of GPCR signal transduction pathways 4
Figure 1.3: Schematic of the adenosine receptors 5
Figure 1.4: Sequence homology for the cloned A_{1} adenosine receptors... 7
Figure 1.5: The chemical structure of some agonists and antagonists at $\mathrm{A}_{1} \ldots$... 8
Figure 1.6: Sequence homology for the cloned $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors ... 10
Figure 1.7: The chemical structure of some agonists and antagonists at $\mathrm{A}_{2 \mathrm{~A}} \ldots 12$
Figure 1.8: Sequence homology for the cloned $A_{2 B}$ adenosine receptors... 14
Figure 1.9: The chemical structure of an agonist (NECA) and antagonists... 15
Figure 1.10: Sequence homology for the cloned A_{3} adenosine receptors... 17
Figure 1.11: The chemical structure of some agonists and antagonists at $\mathrm{A}_{3} \ldots 18$
Figure 1.12: Adenosine and Adenosine agonists 23
Figure 1.13: Sites of substitution leading to (a) A_{1}, (b) $A_{2 A}$, (c) $A_{2 B} \ldots \quad 24$
Figure 1.14: Chemical structure of antagonists 32
Figure 1.15: Theophylline and selective and potent antagonists 33
Figure 1.16: Non-nitrogen containing antagonists 36
Figure 1.17: Nitrogen containing antagonists 37
Figure 1.18: Sites of substitution that can cause partial agonism 40
Figure 2.1: Pyrazolo[3,4- d]pyrimidines core structure (1) 59
Figure 2.2: Structures of heterocycles tested for affinity at the A_{1} adenosine... 60
Figure 2.3: Superimposition of adeonise (blue) theophylline (red) according... 63
Figure 2.4: Superimposition of CPA (blue) and DPCPX (red) according to... 64
Figure 2.5: Superimposition of CPA (blue) and DPCPX (red) according to... 65
Figure 2.6: Superimposition of A_{1} agonist CPA (blue), A_{1} antagonist... 66
Figure 2.7: Hydrophobic, aromatic and ribose binding domains as proposed... 66
Figure 2.8: The superimposition of α-((4-thioxo-1-phenylpyrazolo[3,4- $d] \ldots$... 67
Figure 2.9: α-[(4-amino-1-phenylpyrazolo[3,4- d]pyrimidin-6-yl)thio]... 67
Figure 2.10: Highly selective agonist ligands for the adenosine A_{3} receptor 68
Figure 2.11: The superimposition of α-[(4-amino-1-phenylpyrazolo[3,4-d]... 69

Figure 2.12: Rational design of A_{3} adenosine receptor antagonist with three... 69
Figure 2.13: The imidazo[4,5-d]pyrimidine (purine) (34) and pyrazolo... 77
Figure 5.1: Proposed binding sites of (5) 120
Figure 5.2: Highly potent and selective ligands at the rat adenosine $\mathrm{A}_{1} \ldots$. 121
Figure 5.3: Alkylating Agents 123
Figure 5.4: Nucleophilic Substituting Agents 125
Figure 5.5: Mass spectrum of crude (421) 126
Figure 6.1: The curves of competition binding of the target compounds... 163
Figure 6.2: The curves of competition binding of the target compounds... 164
Figure 6.3: The curves of competition binding of the target compounds... 164
Figure 6.4: 1,8-naphthyridine derivative 168
Figure 7.1: Percentage activity equation 193
Figure 7.2: Cheng-Prusoff equation 194
Figure 7.3: The graph of BSA concentration versus absorbance 196

List of Schemes

Scheme 2.1 70
Scheme 2.2 71
Scheme 2.3 71
Scheme 2.4 72
Scheme 2.5 72
Scheme 2.6 73
Scheme 2.7 74
Scheme 2.8 75
Scheme 2.9 76
Scheme 2.10 78
Scheme 3.1 87
Scheme 3.2 87
Scheme 3.3 89
Scheme 3.4 89
Scheme 3.5 90
Scheme 3.6 90
Scheme 3.7 91
Scheme 3.8 91
Scheme 3.9 92
Scheme 3.10 93
Scheme 3.11 94
Scheme 3.12 95
Scheme 3.13 95
Scheme 3.14 96
Scheme 3.15 97
Scheme 3.16 98
Scheme 3.17 100
Scheme 4.1 113
Scheme 4.2 114
Scheme 4.3 115
Scheme 4.4 115
Scheme 4.5 116
Scheme 5.1 122
Scheme 5.2 124
Scheme 5.3 125
Scheme 6.1 161
Scheme 6.2 162

List of Tables

Table 1.1: Physiological effects of adenosine in different tissues and organs
Table 1.2: Characterisation of A_{1} adenosine receptor 9
Table 1.3: Characterisation of $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor 13
Table 1.4: Characterisation of $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor 15
Table 1.5: Characterisation of A_{3} adenosine receptor 19
Table 1.6: Binding affinities of modified ribose adenosine expressed as K_{i} in... 26
Table 1.7: Binding affinities of N^{6} substituted adenosine expressed as K_{i} in... 27
Table 1.8: Binding affinities of $\mathrm{C}-2$ substituted adenosine expressed as K_{i} in... 28
Table 1.9: Binding affinities of multiple substituted adenosine expressed as... 29
Table 1.10: Binding affinities of modified ribose adenosine expressed as $K_{i} \ldots \quad 30$
Table 1.11: Binding affinities of xanthine derivatives expressed as K_{i} in $n M \ldots \quad 34$
Table 1.12: Binding affinities of non-xanthine derivatives expressed as K_{i} in... 38
Table 2.1: Binding affinity of pyrazolo[3,4-d]pyrimidines expressed as K_{i} in... 61
Table 2.2: Binding affinity of C-4 and C-6 substituted 1-phenylpyrazolo... 62
Table 3.1: Comparison of protection methods of 1-(3-bromobenzyl)-5-amino... 91
Table 3.2: Comparison of deprotection methods to generate... 93
Table 5.1: Binding affinity of the crude pyrazolo[3,4-d]pyrimidines... 127
Table 5.2: Binding affinity of the crude pyrazolo[3,4-d]pyrimidines... 135
Table 5.3: Binding affinity of the crude pyrazolo[3,4-d]pyrimidines... 143
Table 6.1: Binding results of (T) expressed as K_{i} in $\mu \mathrm{M}$ at human $\mathrm{A}_{1} \ldots$. 165
Table 7.1: Preparation of the standard for protein estimation 196
Table 7.2: Preparation of the unknown for protein estimation 197

CHAPTER 1

Introduction

1.1 Physiology of adenosine

The adenosine regulation of mammalian tissue function was first described in 1929 by Drury and Szent-Gyorgyi. ${ }^{1}$ Adenosine, extracted from heart muscle, was reported to have pronounced physiological effects including heart block, arterial dilatation, lowering of blood pressure and inhibition of intestinal contraction. This discovery by Drury and Szent-Gyorgyi led Honey et al. ${ }^{2}$ to explore the therapeutic potential of adenosine in 1930. The discovery of the short half-life of adenosine in the body's circulation by Honey et al. limited the investigation into the role of this endogenous nucleoside in the mammalian tissues for three decades.

The physiological role of endogenous adenosine was further examined following the study showing that adenosine played an important role during hypoxia. ${ }^{3}$ In 1963, Berne hypothesized that the levels of adenosine increased during the ischaemia/hypoxia and its role in regulating the amount of oxygen supply and demand to the organ in the body. Figure $\mathbf{1 . 1}$ shows adenosine's role in regulating the amount of oxygen supply/demand and in restoring the energy supply/demand balance within tissue. ${ }^{4}$ An increase in oxygen demand of tissue during exercise or a decrease in the oxygen supply during ischaemia or hypoxia results in an increase in adenosine levels because of the degradation of released ATP. Adenosine is transported out of the cell and interacts with the cell surface receptors to produce a response and hence to restore the energy supply/demand balance within the tissue.

Figure 1.1: Adenosine's role in energy supply/demand balance. ${ }^{4}$

Adenosine's role has been extensively studied after the discovery of the presence of cell surface receptors ${ }^{5}$ for adenosine and the competitive studies between adenosine and methylxanthines in the heart ${ }^{6}$ and in the brain. ${ }^{6}$ Some of the physiological effects of adenosine and its analogues on different tissues and organs are summarized in Table 1.1.

Table 1.1: Physiological effects of adenosine in different tissues and organs.

Tissue/Organ	Physiological effects of adenosine and its analogues
Adipocytes	Inhibition of lipolysis ${ }^{7,8}$
Cardiovascular	Inhibition of platelet aggregation ${ }^{9-12}$ Vasodilation ${ }^{13}$
CNS	Anticonvulsant ${ }^{14,15}$ Antipsychotic ${ }^{16}$ Inhibition of neurotransmitters release ${ }^{17}$ Locomotor activity ${ }^{18}$
Heart	Antiarrhythmic ${ }^{19}$ Coronary vasodilation ${ }^{3,5,20-22}$ Ischaemic preconditioning ${ }^{23,24}$
Immune system	Antiinflammatory ${ }^{25-27}$
Kidneys	Inhibition of rennin release ${ }^{28,29}$
Liver	Stimulation of glucagon secretion ${ }^{30}$
Muscle	Relaxation ${ }^{31}$ Inhibition of tumor cell growth ${ }^{32,33}$
Stomach	Inhibition of gastric acid secretion ${ }^{34,35}$

It was known that adenosine produced a large variety of effects throughout the body by interacting with the cell surface receptors. However, the mechanism of adenosine and cell surface receptor interaction which contributed to diseases was unclear. Therefore, an understanding of the molecular structure, mechanism and pharmacology of its cell surface receptor was fundamental to the realization of the
therapeutic potential for adenosine and ligands and provided a foundation for the continuation of active research in the adenosine field.

1.2 Adenosine receptors

Adenosine receptors are members of the G-protein-coupled family which also include many well known receptors such as dopamine receptors, adrenergic receptors, histamine receptors, serotonin receptors. They are responsible for the transduction of a diverse array of extracellular signals into the cells by activating one or more heterotrimeric G-proteins located on the cytoplasmic face of the plasma membrane and subsequently interacting with the effector systems including ion channels, phospholipases and adenylate cyclase (Figure 1.2). There are over 1000 members ${ }^{36}$ of the G-protein-coupled receptor which are responsible for many diseases, hence making them important targets for drug development. ${ }^{37}$

Figure 1.2: Diversity of GPCR signal transduction pathways. This figure was adapted from www.sigma-aldrich.com.

Similar to other G protein-coupled receptors, adenosine receptor consists of seven transmembrane helices which accommodate the binding site for ligands. Each helix is constituted by approximately 21 to 28 amino acids. The transmembrane helices are connected by three extracellular and three cytoplasmic loops of unequal size of amino acids. The N -terminal of the protein is on the extracellular side and the C-terminal on the cytoplasmic side of the membrane (Figure 1.3).

Figure 1.3: Schematic of the adenosine receptors. This figure was adapted from

$$
\text { Ralevic et al. }{ }^{38}
$$

The existence of adenosine receptors was first suggested by Cobbin ${ }^{5}$ et al. when they studied the coronary dilator actions of adenosine analogues. Burnstock ${ }^{39}$ first proposed the receptors for adenosine and adenine nucleotides and classified them as P1 and P2 purinergic receptors respectively. The classification was based on three criteria (i) the relative potencies of adenosine and adenine nucleotides; (ii) the selective antagonism of the effects of adenosine by methylxanthine; and (iii) the modulation of activity of adenylate cyclase by adenosine and stimulation of prostaglandin synthesis by adenine nucleotides. P1 receptors were later named as
adenosine receptors by the International Union of Pharmacology (IUPHAR) committee ${ }^{40,41}$ because the endogenous adenosine interacted with them.

Adenosine (or P 1) receptors have been further subdivided into four distinct subtypes namely $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}, \mathrm{~A}_{2 \mathrm{~B}}$ and A_{3}. Each of the subtypes has been characterized by molecular, biochemical and pharmacological studies.

1.2.1 A_{1} adenosine receptor

A_{1} adenosine receptor, one of the first four adenosine receptor subtypes, was first discovered and defined on the basis of the biochemical and pharmacological studies. Van Calker ${ }^{42}$ and Londos ${ }^{43}$ independently proposed the presence of A_{1} adenosine receptor based on the biochemical studies of adenylate cyclase activity and pharmacological studies of the relative potency of the two adnenosine analogues N^{6} (phenylisopropyl)adenosine and 5^{\prime} '- N -ethylcarboxamidoadenosine on adenylate cyclase activity in cultured mouse brain cells, rat adipocytes and Leydig tumor cells. The classification of A_{1} adenosine receptor was later confirmed by molecular biology studies, which allowed the determination of the primary structure of the receptor

Molecular biology

RDC7 was cloned from a canine thyroid cDNA library ${ }^{44,45}$ and characterized as an A_{1} adenosine receptor based on the binding of $\left[{ }^{3} \mathrm{H}\right] \mathrm{CPA}$ and inhibition of adenylate cyclase ${ }^{45}$ in forskolin-stimulated CHO cells stably transfected with RDC7. A_{1} adenosine receptors of rat brain ${ }^{46,47}$, bovine brain ${ }^{48,49}$, human brain ${ }^{50,51}$ were also cloned and characterized.

Comparison of the amino acid sequences of each cloned A_{1} adenosine receptor found small variation in the primary sequence of the A_{1} adenosine receptor. As seen from Figure 1.4, there was less than 5% difference in the primary sequence of the A_{1} adenosine receptor between human and guinea pig and less than 10% difference in the primary sequence between human, rat, dog and cow. The primary sequence for the A_{1} adenosine receptor comprises of 326-328 amino acid residues dependant on the species.

Percentage sequence identity (amino-acid)

Figure 1.4: Sequence homology for the cloned A_{1} adenosine receptors between species. This figure was redrawn from Fredholm et al. ${ }^{52}$

Signal Transduction Mechanisms

The A_{1} adenosine receptor transduces extracelluar signals to the cell interior by activating the heterotrimeric G_{i} proteins located on the cytoplasmic domain of the membrane. The G_{i} proteins consist of a complex made up of α, β and γ subunits. They interact with both A_{1} adenosine receptor and the effector. When a ligand binds to the A_{1} adenosine receptor, the ligand-receptor complex induces an exchange of GDP for GTP on the G_{i} protein α subunit followed by the dissociation of the GTP- α subunit complex from the $\beta \gamma$ dimer. The GTP- α subunit either inhibits adenylate cyclase to decrease the levels of cAMP production (Figure1.2) ${ }^{43,53}$; or activates phospholipase C to increase the production of inositol $1,4,5$-triphosphate ${ }^{54,55}$; or activates potassium ${ }^{56-}$ ${ }^{60}$ and calcium ${ }^{61,62}$ ion channels.

Pharmacology

The A_{1} adenosine receptor was first discovered ${ }^{42}$ and classified ${ }^{43}$ after two adenosine analogues, N^{6}-phenylisopropyladenosine and $5^{\prime}-\mathrm{N}$ ethylcarboxamidoadenosine, were used to study the stimulation and inhibition of
adenylate cyclase activity in the rat adipocyte and mouse brain cells. A variety of different classes of compounds were then developed in the search for more potent and selective ligands at the A_{1} adenosine receptor. Some of the ligands that have been developed and used in the classification of the A_{1} adenosine receptors are shown in

Figure 1.5.

Selective A_{1} receptor agonists

CHA
CPA
CCPA
R-PIA

Selective $\mathrm{A}_{\mathbf{1}}$ receptor antagonists

DPCPX

XAC

Figure 1.5: The chemical structure of some agonists and antagonists at A_{1} adenosine receptor.

Details regarding the molecular structure, signal transduction mechanisms and pharmacology of A_{1} adenosine receptor subtypes are summarized in Table 1.2.

Table 1.2: Characterisation of A_{1} adenosine receptor.

Tissue distribution	Central nervous system ${ }^{47,63}$: cerebral cortex, hippocampus, cerebellum, thalamus, brain stem and spinal cord. Peripheral tissue ${ }^{47,63,64}$: testis, white adipose tissue, stomach, spleen, pituitary, heart, aorta, liver, eye, bladder, lung, kidney and small intestine
Cloning	Human ${ }^{50,51}$, canine ${ }^{44}$, bovine 48,49, rabbit 65, rat 46,47, mouse ${ }^{66}$, pig ${ }^{67}$
Structural information	326-328 amino acids
Structural type	G protein-coupled: $\mathrm{G}_{\mathrm{i} 1 / 2 / 3}$ and G_{0}
Effects of G Protein Coupling	$\mathrm{G}_{\mathrm{i} / 1 / 2 / 3}$: Inhibition of adenylate cyclase \rightarrow decrease in cAMP ${ }^{43,53,68}$ $\mathrm{G}_{\mathrm{i} / 1 / 2 / 3}$: Activation of phospholipase $\mathrm{C} \rightarrow$ increase in $\mathrm{IP}_{3}{ }^{54,55,69}$ $\mathrm{G}_{\mathrm{i} / 1 / 2 / 3}$: Activation of K^{+}channels ${ }^{56,57}$ $\mathrm{G}_{\mathrm{i} / 1 / 2 / 3}$: Inactivation of Ca^{2+} channels ${ }^{61,62}$
Pharmacological profile	Selective agonist ${ }^{70,71}$: CHA, CPA, CCPA and R-PIA Selective antagonist ${ }^{70}$: DPCPX and XAC

1.2.2 $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor

Like the A_{1} adenosine receptor, the A_{2} adenosine receptor was identified independently by two research groups Londos et al. ${ }^{43}$ and Van Calker et al. ${ }^{42}$ based on the relative potency of adenosine analogues N^{6}-(phenylisopropyl)adenosine and $5^{\prime}-\mathrm{N}$ ethylcarboxamidoadenosine which stimulated cAMP formation in hepatocytes and cultured mouse brain cells. The A_{2} adenosine receptor was further subdivided into two classes $\mathrm{A}_{2 \mathrm{~A}}$ and $\mathrm{A}_{2 \mathrm{~B}}$ based on high affinity binding sites and low affinity binding sites for stimulation of adenylate cyclase. ${ }^{72,73}$ Molecular cloning of two different adenosine A_{2} receptors, $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor and $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor, and pharmacological studies confirmed the existence of these two subtypes.

Molecular biology

RDC8 was characterized as an $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor based on the activation of adenylate cyclase and on the binding of $\left[{ }^{3} \mathrm{H}\right]$ CGS 21680 and $\left[{ }^{3} \mathrm{H}\right]$ NECA in cells transfected with RDC8. ${ }^{74} \quad \mathrm{~A}_{2 \mathrm{~A}}$ adenosine receptors of rat brain ${ }^{75,76}$, human hippocampus ${ }^{77}$ and guinea pig brain ${ }^{78}$ have also been cloned.

Analysis of the amino acid sequences of each cloned $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor found that the carboxy terminal domain of the $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor was longer than that of other adenosine receptor subtypes. $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor therefore had a greater molecular weight compared to other adenosine receptors. In common with the other adenosine receptors, there is a variation in the primary sequence of the $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor between species (Fig 1.6). For example there is 16% difference in the primary sequence between human and rat ${ }^{75-77,79}$ The primary sequence for the $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor contains 409-411 amino acid residues dependant on the species (Table 1.3).

Percentage seauence identitv (amino-acid)

Figure 1.6: Sequence homology for cloned $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors between species. This figure was redrawn from Fredholm et al. ${ }^{52}$

Signal Transduction Mechanisms

The most recognized signal transduction mechanism for the $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor is the activation of adenylate cyclase. The $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor is coupled to the heterotrimeric G_{s} proteins located on the cytoplasmic domain of the membrane. The free GTP- α subunit $\left(\mathrm{G}_{\mathrm{s}}\right)$ stimulates the enzyme adenylate cyclase to increase the levels of cAMP productions (Fig 1.2).
cAMP-independent signal transduction has been suggested for $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor on striatal nerve terminals ${ }^{80}$ and striatal cholinergic nerve terminals. ${ }^{81}$ In striatal nerve terminals, $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor mediated dual signaling via P - and N type Ca^{2+} channels linked to $\mathrm{G}_{s} /$ adenylate cyclase/PKA and cholera toxin-insensitive G protein/PKC respectively. ${ }^{81}$

Pharmacology

NECA, which is not a selective adenosine receptor agonist, has been used as an $\mathrm{A}_{2 \mathrm{~A}}$ receptor agonist since the discovery of the $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor in 1979 by Van Calker ${ }^{42}$ and Londos. ${ }^{43}$ However, CGS 21680, a derivative of NECA, has been used to discriminate $\mathrm{A}_{2 \mathrm{~A}}$ receptor from $\mathrm{A}_{2 \mathrm{~B}}$ receptor subtype when they were coexpressed since it has a very low affinity at the $\mathrm{A}_{2 \mathrm{~B}}$ receptors. ${ }^{82,83}$ It is 140 -fold selective for the $\mathrm{A}_{2 \mathrm{~A}}$ receptor over A_{1} receptor. ${ }^{84}$

Over the years, several non-xanthine $\mathrm{A}_{2 \mathrm{~A}}$ receptor antagonists were also developed for pharmacological studies. The most selective antagonists are ZM 241385^{85} and SCH 58261. ${ }^{86,87}$ Some of the ligands that have been developed and used in the classification of the $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors are shown in Figure 1.7.

Selective $A_{2 A}$ receptor agonists

CGS 21680
DPMA

Selective $A_{2 A}$ receptor antagonists

SCH 58261
MSX-2

ZM 241385

Figure 1.7: The chemical structure of some agonists and antagonists at $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor.

Details regarding the molecular structure, signal transduction mechanisms and pharmacology of $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor subtypes are summarized in Table 1.3 below.

Table 1.3: Characterisation of $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor.

Tissue distribution	CNS^{88} : striatum, nucleus accumbens and olfactory tubercle $\mathrm{PNS}^{63,89}$: immune tissues, eye, skeletal muscle, heart, lung, bladder, kidney, small intestine, spleen, stomach, testis
Cloning	Human ${ }^{77}$, canine ${ }^{44,74}$, rat 75,76, guinea- pig 78 and mouse ${ }^{66}$
Structural information	409-411 amino acids
Structural type	G protein-coupled: G_{s}
Effects of G Protein Coupling	G_{s} : Activation of adenylate cyclase \rightarrow increase in cAMP ${ }^{90}$
Pharmacological profile	Selective agonist ${ }^{70,91}$: CGS 21680 and DPMA Selective antagonist ${ }^{92,93}$: SCH 58261, ZM 241385 and MSX-2

1.2.3 $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor

There are no selective agonists or antagonists for $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor. Activation of adenylate cyclase in membranes and accumulation of cAMP in cells was used to characterize the $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor. Molecular cloning of the $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor in 1992 followed by pharmacological studies confirmed the evidence for the existence of the $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor subtype.

Molecular biology

RFL9 has been cloned from a rat brain cDNA library using a probe generated by polymerase chain reaction. ${ }^{64,94}$ It was characterized as an adenosine $\mathrm{A}_{2 \mathrm{~B}}$ receptor based on the cAMP responses to drug treatments in the Chinese hamster ovary cells transfected with RFL9. The $\mathrm{A}_{2 \mathrm{~B}}$ receptor has also been cloned from human hippocampus ${ }^{95}$ and mouse bone marrow-derived mast cells. ${ }^{66}$ The human $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor was also characterized by examining the activity of adenylate
cyclase in response to the treatment of $\left[{ }^{3} \mathrm{H}\right]$ NECA in stably transfected Chinese hamster ovary cells. ${ }^{95}$

The $\mathrm{A}_{2 \mathrm{~B}}$ receptor encodes a protein of 328 to 332 amino acids dependant on the species. Like other adenosine receptor subtypes, there is a difference in the amino acid sequences of the $\mathrm{A}_{2 \mathrm{~B}}$ receptor between species; for example there is approximately 86% amino acid sequence homology between the rat and human $\mathrm{A}_{2 \mathrm{~B}}$ receptor (Fig 1.8). ${ }^{64,95}$

Percentage seauence identitv (amino-acid)

Figure 1.8: Sequence homology for the cloned $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptors between species. This figure was redrawn from Fredholm et al. ${ }^{52}$

Signal Transduction Mechanisms

The mechanism for the $A_{2 B}$ adenosine receptor coupled to G proteins to transduce the extracellular signals into the interior of cells is very similar to that of the $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor. Activation of the $\mathrm{A}_{2 \mathrm{~B}}$ receptor stimulated the formation of cAMP accumulation and mobilization of intracellular calcium. ${ }^{96,97}$ Activation of the $\mathrm{A}_{2 \mathrm{~B}}$ receptor also increased a chloride conductance in xenopus oocytes by stimulating phospholipase C. ${ }^{98}$

Pharmacology

There are no selective agonists or antagonists for the $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor. NECA is currently the most potent agonist at the $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor with low micromolar affinity. ${ }^{70,99}$ The non-xanthine alloxazine, CGS 15943 and MRS 1754 were used as antagonists at the $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor. ${ }^{99-101}$ These ligands were less
useful in characterization of $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptors in cells or tissues in which $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors were coexpressed because they are non-selective. Some of the ligands used in the classification of the $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptors are shown in Figure
1.9.

$A_{2 B}$ receptor agonist

$\mathrm{A}_{2 \mathrm{~B}}$ receptor antagonists

NECA

CGS-15943

MRS-1754

Figure 1.9: The chemical structure of an agonist (NECA) and antagonists (CGS15943, MRS-1754) at $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor.

Details regarding the molecular structure, signal transduction mechanisms and pharmacology of $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor subtypes are summarized in Table 1.4 below.

Table 1.4: Characterisation of $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptor.

Tissue distribution 64	Caecum, large intestine and urinary bladder
Cloning	Human 95, rat 64,94 and mouse ${ }^{66}$
Structural information	$328-332$ amino acids
Structural type	G^{66} protein-coupled: G_{s} and $\mathrm{G}_{\mathrm{q} / 11}$
Effects of G Protein Coupling	$\mathrm{G}_{\mathrm{s}}:$ Activation of adenylate cyclase \rightarrow increase in cAMP ${ }^{95}$ $\mathrm{G}_{\mathrm{q} / 11}:$ Activation of phospholipase $\mathrm{C} \rightarrow$ increase in $\mathrm{IP}_{3}{ }^{96}$
Pharmacological profile	Agonist ${ }^{99,100}:$ NECA Antagonist ${ }^{100,101}:$ MRS 1754, CGS 15943

1.2.4 A_{3} adenosine receptor

The A_{3} receptor subtype is the youngest member of the adenosine receptor family. It was isolated by Meyerhof ${ }^{102}$ in 1991 from a rat testis cDNA library using a PCR-amplified cDNA fragment as a hybridization probe and was later claimed to be a novel adenosine receptor subtype by Zhou ${ }^{103}$ in accordance with the suggestions of IUPHAR committee on Receptor Nomenclature and Drug Classification. ${ }^{40}$ In contrast to the other three adenosine receptor subtypes, the A_{3} adenosine receptor was discovered by molecular biology studies followed by biochemical and pharmacological studies.

Molecular biology

The first cloned A_{3} adenosine receptor was obtained from a rat testis cDNA libray by Meyerhof et al. ${ }^{102}$ in 1991 but the authors did not characterize this novel putative G protein-coupled receptor because could not identify ligands for its binding. However, they noted that the novel cloned G protein-coupled receptor showed 47% and 42% sequence homology to the canine A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors respectively. In 1992, Zhou reported the isolation of a full length cDNA clone R226 from a rat brain cDNA library. ${ }^{103}$ The cDNA clone R226 was identical to a clone isolated from a rat testis cDNA by Meyerhof et al. The cDNA clone R226 encoded for a protein of 320 amino acids that could be organized into seven transmembrane domains. It was claimed as a novel adenosine receptor and named as the A_{3} adenosine receptor after pharmacological and biochemical studies.
A_{3} adenosine receptors were cloned from sheep pars tuberalis ${ }^{104}$, human striatum ${ }^{105}$, human heart ${ }^{106}$ and rabbit. ${ }^{107}$ In contrast to other adenosine receptor subtypes where the homologies of the adenosine receptor between the species were very low, the interspecies differences in A_{3} receptor structure were large. For example, the rabbit A_{3} receptor showed only 76% and 75% sequence homology with human and sheep A_{3} receptors respectively. The rat A_{3} receptor shared 74% sequence homology to the sheep and human A_{3} receptors. The homologies of the cloned adenosine A_{3} receptors between species is summarized in Fig 1.10.

Percentage sequence identity (amino-acid)

Figure 1.10: Sequence homology for the cloned A_{3} adenosine receptors between species. This figure was redrawn from Fredholm et al. ${ }^{52}$

Signal Transduction Mechanisms

The adenosine A_{3} receptor belongs to the class of G protein-coupled receptors. The adenosine A_{3} receptor couples to $G_{i 2,3}$ and $G_{q / 11}$ proteins located on the cytoplasmic domain of the membrane and hence activation of the A_{3} receptor would result in stimulation or inhibition of different effectors. Activation of A_{3} receptor has been shown to inhibit adenylate cyclase activity via $G_{i 2}$ and $G_{i 3}$ proteins ${ }^{108,109}$ and hence results in a decrease in cAMP production (Fig 1.2). Activation of A_{3} receptor also stimulated phospholipase C via $\mathrm{G}_{q / 11}$ and hence elevated IP_{3} concentration and intracellular Ca^{2+} concentratrion. ${ }^{110-112}$

Pharmacology

The A_{3} receptor was first characterized pharmacologically by Zhou ${ }^{103}$ after cloning and expression of the rat adenosine A_{3} receptor in COS-7 and CHO cells. Many ligands including the A_{1} selective antagonist DPCPX, the A_{2} selective agonist CGS 21680 and the non-selective agonist NECA were used to characterize the cDNA cloned R226. Based on these observations Zhou concluded that R226 encoded an adenosine receptor with non $-\mathrm{A}_{1}$ and non- A_{2} specificity and named it the A_{3} adenosine receptor.

It was thought that modifications at the N^{6} and 5^{\prime}-position of the adenosine structure could produce the potent and selective agonists. N^{6}-(3-iodobenzyl-adenosine-5'-N-methyl-uronamide (IB-MECA) was the first highly potent and selective A_{3} agonist both in vitro and in vivo. ${ }^{113}$ Substitution at the 2-position of adenosine in combination with modifications at the N^{6} and 5^{\prime} 'positions further enhanced A_{3} affinity and selectivity. 2-chloro-IB-MECA was found to be highly selective for A_{3} versus A_{1} and $A_{2 A}$ receptors by 2500 and 1400 fold respectively. ${ }^{114}$

Several classes of compounds have been developed as A_{3} receptor antagonists. One class comprised xanthines and their derivatives and the other was non-xanthine heterocycles. Xanthines tend to bind weakly to A_{3} receptor. ${ }^{104,105,115}$ Thus, nonxanthine structures were screened for leads and then optimized through iterative cycles of chemical synthesis, pharmacological and biochemical studies. Of all the non-xanthine heterocycles, MRE-3008-F20 was one of the most selective antagonists at the human A_{3} receptor. ${ }^{116}$ Some of the A_{3} receptor agonists and A_{3} receptor antagonists that have been developed recently are shown in Figure 1.11.

Selective \mathbf{A}_{3} receptor agonists

IB-MECA

Cl-IB-MECA

Selective A_{3} receptor antagonist

MRE 3008-F20

Figure 1.11: The chemical structure of agonists and antagonist at A_{3} adenosine receptor.

Details regarding the molecular structure, signal transduction mechanisms and pharmacology of A_{3} adenosine receptor subtypes are summarized in Table 1.5 below.

Table 1.5: Characterisation of A_{3} adenosine receptor.

Tissue distribution ${ }^{64}$	Caecum, large intestine and urinary bladder
Cloning	Human ${ }^{105,106}$, sheep ${ }^{104}$, rabbit ${ }^{107}$, rat ${ }^{102,103}$
Structural information	317-320 amino acids
Structural type	G protein-coupled: $\mathrm{G}_{\mathrm{i} 2,3}$ and $\mathrm{G}_{\mathrm{q} / 11}$
Effects of G Protein Coupling	$\mathrm{G}_{\mathrm{i} 2,3}$: Inhibition of adenylate cyclase: decrease in cAMP ${ }^{108}$ $\mathrm{G}_{\mathrm{q} / 11}$: Activation of phospholipase C : increase in $\mathrm{IP}_{3}{ }^{108}$
Pharmacological profile	$\begin{aligned} & \text { Selective agonist }{ }^{70,117}: \text { Cl-IB-MECA and IB-MECA } \\ & \text { Selective antagonist }{ }^{116}: \text { MRE 3008-F20 } \end{aligned}$

1.3 Therapeutic potentials of ligands at the adenosine receptors

Adenosine has been known to produce a wide range of physiological effects since the initial reports on the its cardiovascular actions in 1929. ${ }^{1}$ Adenosine, marketed as Adenocard ${ }^{\mathrm{TM}}$, was approved as a therapeutic drug in 1989 and is used in the treatment of the supraventricular tachyarrhythmias. ${ }^{118}$ Due to the metabolic lability of adenosine, the discovery of the existence of at least 4 distinct adenosine receptors subtypes, interspecies differences in the 4 distinct adenosine receptor subtypes in terms of pharmacology and the variability of physiological responses mediated by short-lived Adenocard, there is an interest in the discovery and development of newer potential therapeutic agents.

Many therapeutic applications of adenosine agonists and antagonists of the 4 distinct adenosine receptor subtypes have been suggested. The following subsections outline the potential therapeutic uses of some ligands and some patho-physiology of the 4 distinct adenosine receptors.

Lung

Administered adenosine caused bronchoconstriction in asthmatic patients and promoted the release of inflammatory mediators from mast cells via stimulation of the A_{3} receptor in the lung. ${ }^{119,120}$ The mechanism by which adenosine produced bronchoconstriction was not fully understood. Ramkumar ${ }^{111}$ found that the binding of the A_{3} agonist NECA to mast cells expressing A_{3} receptor induced secretion of inflammatory mediators. A_{3} agonists also inhibited the lypopolysaccharide-induced stimulation of inflammatory cytokines TNF production and the release of inflammatory mediators from human macrophages and eosinophils. ${ }^{121,122}$ These observations suggest that selective adenosine A_{3} antagonists and agonists could be utilised as antiasthmatic and anti-inflammatory agents. ${ }^{111,121-123}$

Parkinson's disease

Parkinson's disease is an age-related disease arising from the degeneration of dopaminergic nigrostriatal neurones of the basal ganglia resulting in bradykinesia, tremor and rigidity. $\mathrm{A}_{2 \mathrm{~A}}$ receptors were found to be localized in dopamine-rich regions in the central nervous system ${ }^{124,125}$ and mediated the inhibition of locomotor activity. Since adenosine inhibited the release of dopamine from central synaptic terminals and $\mathrm{A}_{2 \mathrm{~A}}$ receptor agonists were found to reduce locomotor activity ${ }^{126}, \mathrm{~A}_{2 \mathrm{~A}}$ receptor antagonists might increase the release of dopamine and consequently reduce some Parkinsonism symptoms.

Neuroprotective

Adenosine is present in most tissues of the body including the central nervous system and its levels increased dramatically in response to energy depletion induced by hypoxia and ischemia. ${ }^{127-129}$ Adenosine protected tissues from ischemic brain damage by inhibiting the neurotransmitter release from presynaptic adenosine receptors during hypoxia and ischemic conditions ${ }^{130-132}$ because the neurotransmitters were responsible for neural degeneration and neutral death and caused brain damage or death. Adenosine agonists have been shown to reduce ischemic injury to the brain. ${ }^{133,134}$

Anticonvulsant

Adenosine has been known to act as an anticonvulsant ${ }^{15,135,136}$ and as an antiepileptic agent ${ }^{14}$ by inhibiting the release of glutamate from excitory neurons and inhibiting neuronal firing. A non-selective A_{3} agonist N^{6}-2-(4-Aminophenyl)ethyladenosine (APNEA) has been shown to enhance the anticonvulsive activity of antiepileptic drugs. ${ }^{137}$ Adenosine agonists might therefore have potential as antiepileptic agents.

Cognition Enhancer

Caffeine and other adenosine antagonists stimulated the activity of the central nervous system and have proven to be effective as cognition enhancers. ${ }^{138}$ Selective antagonists might have therapeutic potential in the treatment of memory related diseases such as dementia and Alzheimer's disease.

Renal function

Adenosine mediated diverse effects of renal function including renal blood flow, renin secretion, glomecular filtration rate and urine flow. ${ }^{28}$ It plays a key role in mediating the haemodynamic changes associated with acute renal failure. Adenosine receptor antagonists like theophylline and caffeine antagonized the renal effects of adenosine; hence have potential as renal protective agents. The xanthine antagonist KW3902 ${ }^{139,140}$, 1,3-Dipropyl-8-(3-noradamantyl)xanthine and non-xanthine antagonist FK453 ${ }^{141}$, (+)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl) acryloyl]-2-piperidine ethanol and FK838 ${ }^{142}$, 6-Oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)$1(6 \mathrm{H})$-pyridazinebutanoic acid are used in the treatment of acute renal failure. KW3902, 1,3-Dipropyl-8-(3-noradamantyl)xanthine is undergoing clinical trials as a renal protective agent. ${ }^{143}$

Cardiovascular System

As mentioned in section 1.2, the levels of endogenous adenosine increased during hypoxia and ischaemia. One of its effects was to modulate the myocardial
oxygen supply-demand balance; hence suggesting that it played a role in the protection of the ischemic myocardium. Adenosine agonists thus might have potential as cardioprotective agents.

Adenosine is an antiarrythmic agent since adenosine has been shown to affect both sinoatrial and atrioventricular nodal conduction. It exerts protective effects in the heart through negative chronotropic, dromotropic and inotropic effects via activation of adenosine receptors. ${ }^{19,144-146}$ Adenosine is used to treat supraventricular tachycardias ${ }^{118}$ by slowing of the cardiac rhythms on the atrioventricular node while adenosine antagonists have been used in the treatment of bradyarrhythmias. ${ }^{147}$

Adenosine is also a potent regulator of coronary blood flow. ${ }^{3,13,127}$ Many adenosine agonists act as hypotensive agents either by vasodilation or reduction of cardiac output. ${ }^{148}$ The $\mathrm{A}_{2 \mathrm{~A}}$ selective agonist, CGS21680, acts as hypotensive agents. ${ }^{149}$

Immune Function

Adenosine was released from immune cells when the sympathetic nerve terminals in the immune organs were stimulated or during hypoxia and ischemia. ${ }^{150}$ Adenosine decreased the antibacterial defense mechanisms of macrophages by suppressing the production of superoxide ${ }^{151,152}$ and nitric oxide ${ }^{153-156}$, both of which were essential in killing phagocytosed bacteria. Adenosine has been shown to suppress interleukin-2 (IL-2) production and lymphocyte proliferation. ${ }^{26,157-161}$ Adenosine contributed to immune paralysis. However, adenosine might also have other beneficial effects outside the immune system since adenosine receptors are present in virtually every organ system in the body. ${ }^{38,52,162}$ The development of selective blockade of immune cells expressing adenosine receptors seems to be a more rational approach.

1.4 Structure-activity relationship of ligands at adenosine receptors

Due to the metabolic lability of adenosine, a large number of adenosine receptor agonists and antagonists have been synthesized and evaluated for affinity at
adenosine receptors. These extensive structure-activity relationships have enhanced the understanding of the binding sites of adenosine receptors and provided information on the key structural features required for receptor affinity and subtype selectivity. These structure-activity relationships combined with molecular modeling and site-directed mutagenesis studies help to identify the pharmacophore of each adenosine receptor subtypes and hence to develop drugs targeted to a specific receptor.

1.4.1 Adenosine receptor agonists

Adenosine receptor agonists are derivatives of endogenous adenosine containing a ribose moiety and purine ring system. The ribose moiety, containing α cis 2^{\prime} '- and 3^{\prime} '- hydroxyls, is required for affinity and intrinsic activity. ${ }^{163,164}$ A number of ring systems have been studied including 7-deazaadenosines, 3deazaadenosines, 1-deazaadenosines, 2-azaadenosines and 7-deaza-8-azaadenosine (pyrazolo[3,4-d]pyrimidineribonucleosides) (Figure1.12). ${ }^{165,166}$

Adenosine

7-deaza-8-azaadenosine

3-Deazaadenosine

2-Azaadenosine

1-Deazaadenosine

7-Deazaadenosine

Figure 1.12: Adenosine and Adenosine agonists.

Modifications of the adenosine structure enhanced the stability of adenosine in biological systems. It might also lead to more or less potent and selective agonists for the 4 distinct adenosine receptor subtypes (Figure 1.13). ${ }^{167}$

(a)

(c)

(b)

(d)

Figure 1.13: Sites of substitution leading to (a) A_{1}, (b) $A_{2 A}$, (c) $A_{2 B}$ and (d) A_{3} agonists.

Ribose Modifications

Structure-activity relationships for adenosine with modifications in the ribose moiety have been studied at the $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} adenosine receptor (Table 1.6). ${ }^{72,113,164,165,168,169}$ Alterations of either structure or stereochemistry of the ribose moiety of adenosine were very strict. It could result in a loss of agonist activity and become an antagonist or partial agonist.

Endogenous adenosine is the β-D-adenosine isomer. Both β-L-adenosine and α-D-adenosine were virtually inactive at adenosine receptors. ${ }^{164,165}$ Inversion of chirality at the 2^{\prime} - and 3^{\prime}-hydroxyl groups resulted in a loss of activity. These results showed that strict stereochemical requirements for the ribose moiety of adenosine were needed for agonist activity.

2'- And 3'-hydroxyls

Modifications of the 2'- and 3'-hydroxyls were not well tolerated. Substitution or deletion of 2^{\prime} - or 3 '-hydroxyls led to partial agonists with reduced affinity. 2'deoxyadenosine, 3'-deoxyadenosine, 2'-O-methyladenosine and 3'-Omethyladenosine all exhibited low binding affinity (Table 1.6). ${ }^{165,169}$

5'-Position

Modification of the 5^{\prime}-hydroxyl group of adenosine was better tolerated at adenosine receptors than modifications of the 2'- and 3'-hydroxyls group. 5deoxyadenosine had a K_{i} values in the $1-10 \mu \mathrm{M}$ range at the $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$, and A_{3} receptor subtypes. Replacement of the 5^{\prime} '-hydroxyl group by a 5^{\prime}-uronamide resulted in good affinity, ${ }^{113}$ with the 5^{\prime}-N-ethylcarboxamide derivative (NECA) having the greatest potency at the A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ receptor subtypes and 5^{\prime} - N -methylcarboxamide derivative (MECA) having the greatest potency at the A_{3} receptor subtype (Table 1.6).

Table 1.6: Binding affinities of modified ribose adenosine expressed as K_{i} in nM or $\%$ displacement at $10^{-4} \mathrm{M} .{ }^{113,164,165,169}$

Compound	$\mathrm{A}_{1} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{a}}$	$\mathrm{A}_{2 \mathrm{~A}} \mathrm{~K}_{\mathrm{i}}^{\mathrm{b}}$	$\mathrm{A}_{3} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{c}}$
β-L-adenosine ${ }^{164,165}$	29000	25.4%	9.5%
α-D-adenosine ${ }^{164,165}$	350000	128000	14.2%
2'-deoxyadenosine 165,169	31%	39%	28%
3'-deoxyadenosine 165,169	5.8%	26.3%	32.7%
5'-deoxyadenosine $^{\mathrm{II3}}$	269	596	2830
2'-O-methyladenosine 165,169	29%	49%	43%
3'-O-methyladenosine 165,169	0%	8%	11%
NECA 113	6.3	10.3	113
MECA $^{\text {I13 }}$	83.6	66.8	72

${ }^{\mathrm{a}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ PIA or $\left[{ }^{3} \mathrm{H}\right]$ CHA binding at rat brain membranes.
${ }^{\mathrm{b}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS-21680 or $\left[{ }^{3} \mathrm{H}\right]$ NECA binding at rat striatal membranes.
${ }^{\mathrm{c}}$ Displacement of specific [${ }^{125}$ I]AB-MECA or $\left[{ }^{125}\right.$ I $]$ APNEA binding at rat receptor in CHO cell membranes.

\mathbf{N}^{6} modifications

The structure activity relationship for this position has been well studied. ${ }^{16,22,91,170-175}$ In general, the majority of N^{6} substituted adenosines exhibited high A_{1} potency and selectivity with some exceptions such as N^{6} benzyl substitutent where introduction of a sulfonic group on the phenyl ring shifted the affinity towards better A_{3} selectivity ${ }^{168}$ and N, N-disubstituted derivatives lost activity at the adenosine receptor. ${ }^{165}$

The structure activity relationships of N^{6} substituted adenosine showed that the N^{6} hydrogen might act as a proton donor in the formation of a hydrogen bond with the receptor protein. They also indicated that the N^{6} binding domain tolerated large hydrophobic groups but didn't tolerate hydrophilic groups. Finally the N^{6} binding domain recognized the stereoselectivity as evidenced for example by the superior
potency of $\mathrm{N}^{6}-\left(R\right.$-phenylisopropyl)adenosine relative to $\mathrm{N}^{6}-(S-$ phenylisopropyl)adenosine. A variety of N^{6} substituted adenosines with their potency are presented in Table 1.7.

Table 1.7: Binding affinities of N^{6} substituted adenosine expressed as K_{i} in $\mathrm{nM} .{ }^{168}$

Compound	$\mathrm{A}_{1} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{a}}$	$\mathrm{A}_{2 \mathrm{~A}} \mathrm{~K}_{\mathrm{i}}^{\mathrm{b}}$	$\mathrm{A}_{3} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{c}}$
N^{6}-(cyclohexyl)adenosine	1.3	514	167
$\mathrm{~N}^{6}$-(cyclopentyl)adenosine	0.59	462	240
$\mathrm{~N}^{6}$-(dimethyl)adenosine	1000	28900	32500
$\mathrm{~N}^{6}$-(phenethyl)adenosine	12.7	161	240
$\mathrm{~N}^{6}$-(phenyl)adenosine	4.62	663	802
$\mathrm{~N}^{6}$-(R-phenylisopropyl)adenosine	1.2	124	158
$\mathrm{~N}^{6}$-(S-phenylisopropyl)adenosine	49.3	1820	920

${ }^{\text {a }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ PIA or $\left[{ }^{3} \mathrm{H}\right]$ CHA binding at rat brain membranes.
${ }^{\text {b }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS-21680 or $\left[{ }^{3} \mathrm{H}\right]$ NECA binding at rat striatal membranes.
${ }^{\mathrm{c}}$ Displacement of specific [$\left.{ }^{125} \mathrm{I}\right]$ AB-MECA or $\left[{ }^{125}\right.$ I]APNEA binding at rat receptor in CHO cell membranes.

C2 modifications

Synthesis of C-2 substituted adenosine was more difficult than that of N^{6} substituted adenosines, hence the structure activity relationships of C-2 substituted adenosine have not been extensively studied. ${ }^{176}$ Several structure activity relationship studies ${ }^{84,176-179}$ have shown that modifications of the C-2 position generally lead to $\mathrm{A}_{2 \mathrm{~A}}$ selective agonists as a result of reducing the efficacy of adenosine derivatives acting at the A_{1} and A_{3} adenosine receptors. Table 1.8 shows a selection of $\mathrm{C}-2$ substituted adenosine and their relative potencies at $A_{1}, A_{2 A}$ and A_{3} adenosine receptors.

Table 1.8: Binding affinities of $\mathrm{C}-2$ substituted adenosine expressed as K_{i} in nM or \% inhibition of radioligand at $10 \mu \mathrm{M} .{ }^{168,179}$

Compound	$\mathrm{A}_{1} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{a}}$	$\mathrm{A}_{2 \mathrm{~A}} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{b}}$	$\mathrm{A}_{3} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{c}}$
2-CADO 168	9.3	63	1890
2-(phenylamino)adenosine 168	560	119	4390
2-(1-hexynyl)adenosine $^{\mathrm{I} 79}$	63.7%	6	16.9^{d}
2-Iodoadenosine 179	36.1%	4200	297
2-(N'-3-Methyl-1- butylidenehydrazino)adenosine			
179	18.9%	20	38.3

${ }^{\text {a }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ PIA or $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$ or $\left[{ }^{3} \mathrm{H}\right]$ DPCPX binding at rat brain or rat cortical membranes.
${ }^{\mathrm{b}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS-21680 or $\left[{ }^{3} \mathrm{H}\right]$ NECA or $\left[{ }^{3} \mathrm{H}\right]$ ZM-241385 binding at rat striatal membranes.
${ }^{c}$ Displacement of specific [${ }^{125}$ I]APNEA binding at rat receptor in CHO cell membranes.
${ }^{d}$ Displacement of specific [${ }^{125}$ I]AB-MECA binding at human receptor in HEK 293 cells.

Multiple modifications

Structural modifications at the C-2 position or N^{6} position or ribose moiety of endogenous adenosine yielded a variety of stable adenosine analogs with different potency and selectivity for each receptor subtype. A combination of modifications at these positions might lead to more or less potent and selective ligands for each receptor subtype since each substituent may interact with independent sites on the adenosine receptor and when combined could have an additive effect on affinity.

Structure activity relationships of multiple substituted adenosines have been extensively studied. ${ }^{114,117,149,180-185}$ Modifications at the $\mathrm{C}-2$ and N^{6} positions of adenosine resulted in a highly selective agonist CCPA at A_{1} adenosine receptor. ${ }^{182,183}$ Modifications at the C-2 position in combination with the 5 '-position produced the $\mathrm{A}_{2 \mathrm{~A}}$ selective adenosine agonist, CGS 21680, with preferential hypotensive activity. ${ }^{149}$

The combination of modifications at N^{6} and 5^{\prime} - positions produced the first potent and selective agonist, IB-MECA, at A_{3} adenosine receptor. ${ }^{113}$ Substitution at the C-2 position in combination with modifications at N^{6} and 5^{\prime} - positions was found to enhance A_{3} selectivity. ${ }^{114}$

A selection of the most potent and selective agonists at 4 distinct adenosine receptor subtypes produced by a combination of substituents are summarized in Table 1.9 .

Table 1.9: Binding affinities of multiple substituted adenosine expressed as K_{i} in $\mathrm{nM} .{ }^{113,114,186}$

Compound	$\mathrm{A}_{1} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{a}}$	$\mathrm{A}_{2 \mathrm{~A}} \mathrm{~K}_{\mathrm{i}}^{\mathrm{b}}$	$\mathrm{A}_{3} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{c}}$
CCPA 186	0.8^{d}	2300^{e}	42^{f}
CGS-21680 186	290^{d}	27^{e}	67^{f}
IB-MECA 113	54	56	1.1
2 -Cl-IB-MECA ${ }^{114}$	820	470	0.33

${ }^{\text {a }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ PIA or $\left[{ }^{3} \mathrm{H}\right]$ CHA binding at rat brain membranes.
${ }^{\mathrm{b}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS-21680 or $\left[{ }^{3} \mathrm{H}\right]$ NECA binding at rat striatal membranes.
${ }^{\text {c }}$ Displacement of specific [$\left.{ }^{125} \mathrm{I}\right]$ AB-MECA or $\left[{ }^{125} \mathrm{I}\right]$ APNEA binding at rat receptor in CHO cell membranes.
${ }^{d}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ DPCPX or $\left[{ }^{3} \mathrm{H}\right]$ CCPA binding at human receptors in CHO membranes.
${ }^{\text {e }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ NECA binding at human receptors in CHO membranes.
${ }^{f}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ NECA binding at human receptors in CHO membranes.

Purine ring modifications

Modifications of the purine heterocyclic ring of endogenous adenosine have also been studied to investigate the important of the purine nitrogens on binding to
adenosine receptors (Table 1.10). ${ }^{169,187-189}$ It was found that deletion of the purine nitrogen resulted in the loss of affinitiy. 1-deazaadenosine was less active than adenosine but still displayed the highest affinity for adenosine receptors whereas 3deazaadenosine had very little activity. 7-deaza- and 1,3-dideazaadenosine were found to be inactive.

A series of 1-deaza analogues of 2-chloroadenosine (2-CADO), R-PIA, CHA, and NECA have also been synthesized and evaluated in radioligand binding studies for their affinity at adenosine receptors. ${ }^{169,189}$ In general, 1-deaza analogues were less active than adenosine analogues.

Table 1.10: Binding affinities of modified ribose adenosine expressed as K_{i} in nM or $\%$ inhibition of radioligand at $10^{-4} \mathrm{M} .{ }^{169}$

Compound	$\mathrm{A}_{1} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{a}}$	$\mathrm{A}_{2 \mathrm{~A}} \mathrm{~K}_{\mathrm{i}}{ }^{\mathrm{b}}$	$\mathrm{A}_{3} \mathrm{~K}_{\mathrm{i}}^{\mathrm{c}}$
3-deazaadenosine	21500	59800	61700
7-deazaadenosine	>100000	48%	39%
2-CADO	9.3	63	1890
1-deaza-2-CADO	226	163	2480
NECA	6.3	10.3	113
1-deaza-NECA	51	580	703

${ }^{\text {a }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ PIA binding at rat brain membranes.
${ }^{\mathrm{b}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS- 21680 binding at rat striatal membranes.
${ }^{\text {c }}$ Displacement of specific $\left[{ }^{125} \mathrm{I}\right] \mathrm{AB}-\mathrm{MECA}$ binding at rat receptor in CHO cell membranes.

1.4.2 Adenosine receptor antagonists

In contrast to agonists, adenosine antagonists are diverse in structure compared to adenosine agonists which are the derivatives of physiological adenosine. Numerous lead structures of antagonists for adenosine receptors have been discovered and developed. They all shared these common structural features: (i) planar; (ii) aromatic or π electron rich and (iii) nitrogen containing heterocycles. ${ }^{71}$ The
heterocycles are fused bicyclic or fused tricyclic compounds. There are some exceptions to these generalizations including flavonoid, ${ }^{190,191}$ benzofuran ${ }^{192,193}$ and tetrahydrobenzothiophenone ${ }^{194}$ (Figure 1.14). Also, adenosine receptor antagonists lack the ribose moiety and this might limit their solubility especially for in vivo studies. Therefore, a polar moiety was needed to be attached to the antagonist to increase the water solubility of the antagonist.

Adenine

7-Deazaadenine

8-Azaadenine

1,8-naphthyridines

Pyrazolopyrimidine
Pyrazolopyridine

Triazolopyrimidine

Pyrazolotriazolopyrimidine Triazolotriazolopyrimidine

Triazoloquinazoline
Triazoloquinoxaline Imidazotriazine

Triazolotriazine

Thiazole Thiadiazole
Benzo[b]furan
Flavonoid
Tetrahydrobenzothiophenones

Figure 1.14: Chemical structure of antagonists.

There are two types of antagonists, xanthine antagonists and non-xanthine antagonists.

Xanthine antagonists

The first adenosine receptor antagonists identified were the naturally occurring xanthines caffeine and theophylline. ${ }^{6}$ These compounds are weak and non-selective at the adenosine receptors. Similar to agonists, structure activity relationships of the xanthines have been extensively studied in an attempt to improve the potency and selectivity at adenosine receptors. ${ }^{139,195-205}$ Substitutions at N1, N3, N7 and/or C8 of the xanthines led to high affinity and selectivity at $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and $\mathrm{A}_{2 \mathrm{~B}}$ receptors (Figure 1.15). A selection of the most potent and selective antagonists are summarized in

Table 1.11.

Theophylline ${ }^{6}$

DPCPX ${ }^{70,206-209}$
A_{1} selective

BG-9719 ${ }^{210}$
A_{1} selective

MSX- 2^{93}
$\mathrm{A}_{2 \mathrm{~A}}$ selective

MRS-1754 ${ }^{101,211}$
$A_{2 B}$ selective

Figure 1.15: Theophylline and selective and potent antagonists.

Table 1.11: Binding affinities of xanthine derivatives expressed as K_{i} in nM or \% inhibition of radioligand at $10 \mu \mathrm{M} .{ }^{93,101,210,213,215}$
(ref
${ }^{\text {a }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CHA or $\left[{ }^{3} \mathrm{H}\right]$ PIA or $\left[{ }^{3} \mathrm{H}\right]$ MSX-2 binding at rat brain membranes.
${ }^{\mathrm{b}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS-21680 or $\left[{ }^{3} \mathrm{H}\right]$ NECA binding at rat brain membranes.
${ }^{c}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right] \mathrm{ZM}-241385$ binding at human receptor in CHO cell membranes.
${ }^{d}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ NECA binding at human receptor in CHO cell membranes.
${ }^{\text {e }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CCPA binding at human receptor in CHO cell membranes.
${ }^{\mathrm{f}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS- 21680 binding at human receptor in CHO cell membranes.
${ }^{\mathrm{g}}$ Displacement of specific [$\left.{ }^{125} \mathrm{I}\right]$ IABA binding at human receptor in HEK-293 cell membranes.
${ }^{\text {h }}$ Displacement of specific [${ }^{125}$ I]iodo-ZM241385 binding at human receptor in HEK293 cell membranes.
${ }^{\text {i }}$ Displacement of specific [${ }^{125}$ I]ZM241385 or [${ }^{125}$ I]IABOPX binding at human receptor in HEK-293 cell membranes.
${ }^{\mathrm{j}}$ Displacement of specific $\left[{ }^{125} \mathrm{I}\right]$ IAB-MECA or $\left[{ }^{125} \mathrm{I}\right]$ IABA binding at human receptor in HEK-293 cell membranes
${ }^{\mathrm{k}}$ The binding data studies were obtained from the abstract ${ }^{210}$. They were carried out in human receptors but the author didn't mention which cell membranes and radioligands were used.
ND: Not Determined.

Non-xanthine antagonists

Since xanthine and its derivatives were less potent at the A_{3} receptor, a large number of non-xanthine structures have been screened to search for A_{3} antagonists. Numerous classes of heterocycles were identified as antagonists at the A_{3} receptor and other receptor subtypes as well. These compounds included non-nitrogen containing heterocycles such as benzofuran derivatives, ${ }^{192,193}$ flavonoid derivatives ${ }^{190,191}$ and tetrahydrobenzothiophenone (Figure 1.16); ${ }^{194}$ and nitrogen containing heterocycles such as adenine derivatives, ${ }^{216-218}$ deazaadenine derivatives, ${ }^{219-221}$ azaadenine derivatives, ${ }^{218,222}$ naphthyridine derivatives, ${ }^{223}$ pyridine derivatives, ${ }^{224,225}$ pyrazolopyridine derivatives, ${ }^{141,142,226}$ isoquinoline derivatives, ${ }^{227-229}$ quinazoline derivatives, ${ }^{230}$ triazoloquinazoline derivatives, ${ }^{231,232}$ triazoloquinoxaline
derivatives, ${ }^{233,234}$ imidazotriazine derivatives, ${ }^{235}$ triazolotriazine derivatives, ${ }^{236}$ and thiazole and thiadiazole derivatives ${ }^{237-239}$ (Figure 1.17).

Benzofuran ${ }^{192,193}$

Flavonoid ${ }^{190,191}$
Tetrahydrobenzothiophenone ${ }^{194}$

Figure 1.16: Non-nitrogen containing antagonists.

Adenine

Pyridine

Deazaadenine

Azaadenine
Naphthyridine

Pyrazolotriazolopyrimidine Triazolotriazolopyrimidine

Isoquinoline

Triazoloquinazoline
Triazoloquinoxaline
Imidazotriazine

Triazolotriazine

Thiazole

Thiadiazole

Figure 1.17: Nitrogen containing antagonists.

Structure activity relationship of those non-xanthine heterocycles has been extensively studied. A number of high potent and selective antagonists have been synthesized (Table 1.12)

Table 1.12: Binding affinities of non-xanthine derivatives expressed as K_{i} in nM or $\%$ inhibition of radioligand at $10 \mu \mathrm{M} .^{92,223,240,241}$
(ref
${ }^{\text {a }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right] \mathrm{CHA}$ binding at bovine membranes.
${ }^{\mathrm{b}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS 21680 binding at bovine membranes.
${ }^{\text {c }}$ Displacement of specific [${ }^{3} \mathrm{H}$]DPCPX binding at human receptors in HEK-293 cell membranes.
${ }^{d}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right](\mathrm{R})$-PIA binding at rat membranes.
${ }^{\text {e }}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ DPCPX binding at human receptor in CHO cell membranes.
${ }^{\mathrm{f}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ SCH 58261 or $\left[{ }^{3} \mathrm{H}\right]$ ZM 241385 binding at human receptor in HEK-293 cell membranes.
${ }^{\mathrm{g}}$ Displacement of specific [${ }^{3125}$ I]AB-MECA or $\left[{ }^{3} \mathrm{H}\right]$ MRE 3008-F20 binding at human receptor in HEK-293 cell membranes.
ND: Not Determined.

1.4.3 Adenosine receptor partial agonists

A partial agonist is a compound whose intrinsic activity is less than that of a full agonist. It might selectively induce the desired therapeutic effect while reducing side effects because of its decreased efficacy. There are several potential advantages of using adenosine receptor partial agonists compared to adenosine receptor agonists: ${ }^{20,168,242-248}$ (i) circumvent the side effects caused by the actions of adenosine receptor agonists since the adenosine receptor was ubiquitously distributed in the body; (ii) partial agonists might be more receptor subtype selective (iii) partial agonists induced less receptor downregulation and desensitization For example, chronic administration of adenosine A_{3} receptor agonists has been found to be cerebro and cardioprotective ${ }^{249}$ but it also stimulated the receptors in the lungs and immune system to cause bronchoconstriciton and the release of allergic mediators respectively.

Adenosine agonist-antagonist hybrid structures (ie ribose-xanthine) was firstly reported as a partial agonists in $1990 .{ }^{250} 1,3$-dibutylxanthine-7-ribose was shown to act as a partial agonist at the rat adenosine A_{3} receptor. ${ }^{168} \mathrm{~A}$ number of partial agonists have been synthesized by substituting the 8-position of adenosine agonists; by removing the 2^{\prime} - or 3^{\prime}-hydroxyl groups of the ribose moiety; or by a combination of substitutions of C-2, C-8, $\mathrm{N}^{6}, 2^{\prime}-$, 3^{\prime} '- or 5^{\prime} '- positions (Fig 1.18). ${ }^{244,245,251-257}$

$$
\text { Substitution: partial agonism } \longrightarrow \mathrm{HO} \longrightarrow \text { Deletion: partial agonism }
$$

Figure 1.18: Sites of substitution that can cause partial agonism.

1.5 References

(1) Drury, A. N.; Szent-Gyorgyi, A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. Journal of Physiology (Cambridge, United Kingdom) 1929, 68, 213-237.
(2) Honey, R. M.; Ritchie, W. T.; Thompson, W. A. R. The action of adenosine upon the human heart. Quarterly Journal of Medicine 1930, 23, 485-489.
(3) Berne, R. M. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. American Journal of Physiology 1963, 204, 317-322.
(4) Bruns, R. F. Role of adenosine in energy supply/demand balance. Nucleosides \& Nucleotides 1991, 10, 931-943.
(5) Cobbin, L. B.; Einstein, R.; Maguire, M. H. Studies on the coronary dilator actions of some adenosine analogues. BRITISH JOURNAL OF PHARMACOLOGY 1974, 50, 25-33.
(6) Sattin, A.; Rall, T. W. Effect of adenosine and adenine nucleotides on the cyclic adenosine $3^{\prime}, 5$ '-phosphate content of guinea pig cerebral cortex slices. Molecular Pharmacology 1970, 6, 13-23.
(7) Londos, C.; Cooper, D. M. F.; Schlegel, W.; Rodbell, M. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: Basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proceedings of the National Academy of Sciences of the United States of America 1978, 75, 5362-5366.
(8) Fain, J. N. Inhibition of adenosine cyclic 3', 5'-monophosphate accumulation in fat cells by adenosine, N6-(phenylisopropyl) adenosine, and related compounds. MOLECULAR PHARMACOLOGY FIELD Publication Date:1973 Sep 1973, 9, 595-604. FIELD Reference Number: FIELD Journal Code:0035623 FIELD Call Number:.
(9) Agarwal, K. C.; Parks, R. E., Jr. Adenosine analogs and human platelets. Effects on nucleotide pools and the aggregation phenomenon. Biochemical Pharmacology 1975, 24, 2239-2248.
(10) Agarwal, K. C.; Parks, R. E., Jr. 5'-Methylthioadenosine and 2',5'dideoxyadenosine blockade of the inhibitory effects of adenosine on ADP-
induced platelet aggregation by different mechanisms. Biochemical Pharmacology 1980, 29, 2529-2532.
(11) Cusack, N. J.; Hourani, S. M. O. 5'-N-Ethylcarboxamidoadenosine: a potent inhibitor of human platelet aggregation. British Journal of Pharmacology 1981, 72, 443-447.
(12) Cristalli, G.; Vittori, S.; Thompson, R. D.; Padgett, W. L.; Shi, D. et al. Inhibition of platelet aggregation by adenosine receptor agonists. NaunynSchmiedeberg's Archives of Pharmacology 1994, 349, 644-650.
(13) Sollevi, A. Cardiovascular effects of adenosine in man; possible clinical implications. Progress in Neurobiology (Oxford, United Kingdom) 1986, 27, 319-349.
(14) Dunwiddie, T. V.; Worth, T. Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. Journal of Pharmacology and Experimental Therapeutics 1982, 220, 70-76.
(15) Dragunow, M.; Goddard, G. V.; Laverty, R. Is adenosine an endogenous anticonvulsant? EPILEPSIA FIELD Publication Date:1985 Sep-Oct 1985, 26, 480-487. FIELD Reference Number: FIELD Journal Code:2983306R FIELD Call Number:.
(16) Bridges, A. J.; Moos, W. H.; Szotek, D. L.; Trivedi, B. K.; Bristol, J. A. et al. N6-(2,2-diphenylethyl)adenosine, a novel adenosine receptor agonist with antipsychotic-like activity. Journal of Medicinal Chemistry 1987, 30, 17091711.
(17) Stone, T. W. Physiological roles for adenosine and adenosine 5'-triphosphate in the nervous system. Neuroscience 1981, 6, 523-555.
(18) Barraco, R. A.; Coffin, V. L.; Altman, H. J.; Phillis, J. W. Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Research 1983, 272, 392-395.
(19) Belardinelli, L.; Linden, J.; Berne, R. M. The cardiac effects of adenosine. PROGRESS IN CARDIOVASCULAR DISEASES FIELD 1989, 32, 73-97.
(20) Olsson, R. A.; Khouri, E. M.; Bedynek, J. L., Jr.; McLean, J. Coronary vasoactivity of adenosine in the conscious dog. Circulation Research 1979, 45, 468-478.
(21) Dutta, P.; Mustafa, S. J. Binding of adenosine to the crude plasma membrane fraction isolated from dog coronary and carotid arteries. Journal of Pharmacology and Experimental Therapeutics 1980, 214, 496-502.
(22) Daly, J. W.; Padgett, W.; Thompson, R. D.; Kusachi, S.; Bugni, W. J. et al. Structure-activity relationships for N6-substituted adenosines at a brain A1adenosine receptor with a comparison to an A2-adenosine receptor regulating coronary blood flow. Biochemical Pharmacology 1986, 35, 2467-2481.
(23) Liu, G. S.; Richards, S. C.; Olsson, R. A.; Mullane, K.; Walsh, R. S. et al. Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovascular Research 1994, 28, 1057-1061.
(24) de Jong, J. W.; de Jonge, R.; Keijzer, E.; Bradamante, S. The role of adenosine in preconditioning. Pharmacology \& Therapeutics 2000, 87, 141-149.
(25) Bajaj, S.; Insel, J.; Quagliata, F.; Hirschhorn, R.; Silber, R. Adenosine and adenosine analogues are more toxic to chronic lymphocytic leukemia than to normal lymphocytes. Blood 1983, 62, 75-80.
(26) Gilbertsen, R. B. Adenosine and adenosine receptors in immune function. Minireview and meeting report. AGENTS AND ACTIONS 1987, 22, 91-98.
(27) Schrier, D. J.; Imre, K. M. The effects of adenosine agonists on human neutrophil function. Journal of Immunology 1986, 137, 3284-3289.
(28) Osswald, H. The role of adenosine in the regulation of glomerular filtration rate and renin secretion. Trends in Pharmacological Sciences 1984, 5, 94-97.
(29) Itoh, S.; Carretero, O. A.; Murray, R. D. Possible role of adenosine in the macula densa mechanism of renin release in rabbits. Journal of Clinical Investigation 1985, 76, 1412-1417.
(30) Weir, G. C.; Knowlton, S. D.; Martin, D. B. Nucleotide and nucleoside stimulation of glucagon secretion. Endocrinology 1975, 97, 932-936.
(31) McKenzie, S. G.; Frew, R.; Bar, H. P. Characteristics of the relaxant response of adenosine and its analogs in intestinal smooth muscle. European Journal of Pharmacology 1977, 41, 183-192.
(32) Djaldetti, M.; Sredni, B.; Zigelman, R.; Verber, M.; Fishman, P. Muscle cells produce a low molecular weight factor with anti-cancer activity. Clinical \& Experimental Metastasis 1996, 14, 189-196.
(33) Fishman, P.; Bar-Yehuda, S.; Vagman, L. Adenosine and other low molecular weight factors released by muscle cells inhibit tumor cell growth. Cancer Research 1998, 58, 3181-3187.
(34) Gerber, J. G.; Fadul, S.; Payne, N. A.; Nies, A. S. Adenosine: a modulator of gastric acid secretion in vivo. Journal of Pharmacology and Experimental Therapeutics 1984, 231, 109-113.
(35) Westerberg, V. S.; Geiger, J. D. Adenosine analogs inhibit gastric acid secretion. European Journal of Pharmacology 1989, 160, 275-281.
(36) Marchese, A.; George, S. R.; Kolakowski, L. F.; Lynch, K. R.; O'Dowd, B. F. Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology. Trends in Pharmacological Sciences 1999, 20, 370-375.
(37) Drews, J. Drug discovery: A historical perspective. Science (Washington, D. C.) 2000, 287, 1960-1963.
(38) Ralevic, V.; Burnstock, G. Receptors for purines and pyrimidines. Pharmacological Reviews 1998, 50, 413-492.
(39) Burnstock, G. A basis for distinguishing two types of purinergic receptor. In Cell membrane receptors for drugs and hormones; Raven Press, New York, 1978; 107-118.
(40) Kenakin, T. P.; Bond, R. A.; Bonner, T. I. International union of pharmacology committee on receptor nomenclature and drug classification. II. Definition of pharmacological receptors. Pharmacological Reviews 1992, 44, 351-362.
(41) Fredholm, B. B.; Abbracchio, M. P.; Burnstock, G.; Daly, J. W.; Harden, T. K. et al. Nomenclature and classification of purinoceptors.
PHARMACOLOGICAL REVIEWS 1994, 46, 143-156.
(42) Van Calker, D.; Mueller, M.; Hamprecht, B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. Journal of Neurochemistry 1979, 33, 999-1005.
(43) Londos, C.; Cooper, D. M. F.; Wolff, J. Subclasses of external adenosine receptors. Proceedings of the National Academy of Sciences of the United States of America 1980, 77, 2551-2554.
(44) Libert, F.; Parmentier, M.; Lefort, A.; Dinsart, C.; Van Sande, J. et al. Selective amplification and cloning of four new members of the G protein-
coupled receptor family. Science (Washington, DC, United States) 1989, 244, 569-572.
(45) Libert, F.; Schiffmann, S. N.; Lefort, A.; Parmentier, M.; Gerard, C. et al. The orphan receptor cDNA RDC7 encodes an A1 adenosine receptor. EMBO Journal 1991, 10, 1677-1682.
(46) Mahan, L. C.; McVittie, L. D.; Smyk-Randall, E. M.; Nakata, H.; Monsma, F. J., Jr. et al. Cloning and expression of an A1 adenosine receptor from rat brain. Molecular Pharmacology 1991, 40, 1-7.
(47) Reppert, S. M.; Weaver, D. R.; Stehle, J. H.; Rivkees, S. A. Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Molecular Endocrinology 1991, 5, 1037-1048.
(48) Olah, M. E.; Ren, H.; Ostrowski, J.; Jacobson, K. A.; Stiles, G. L. Cloning, expression, and characterization of the unique bovine A1 adenosine receptor. Studies on the ligand binding site by site-directed mutagenesis. Journal of Biological Chemistry 1992, 267, 10764-10770.
(49) Tucker, A. L.; Linden, J.; Robeva, A. S.; D'Angelo, D. D.; Lynch, K. R. Cloning and expression of a bovine adenosine A1 receptor cDNA. FEBS LETTERS 1992, 297, 107-111.
(50) Libert, F.; Van Sande, J.; Lefort, A.; Czernilofsky, A.; Dumont, J. E. et al. Cloning and functional characterization of a human A1 adenosine receptor. Biochemical and Biophysical Research Communications 1992, 187, 919-926.
(51) Townsend-Nicholson, A.; Shine, J. Molecular cloning and characterization of a human brain A1 adenosine receptor cDNA. Molecular Brain Research 1992, 16, 365-370.
(52) Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K.-N.; Linden, J. International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews 2001, 53, 527-552.
(53) Van Calker, D.; Mueller, M.; Hamprecht, B. Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 1978, 276, 839841.
(54) Megson, A. C.; Dickenson, J. M.; Townsend-Nicholson, A.; Hill, S. J. Synergy between the inositol phosphate responses to transfected human adenosine A1-receptors and constitutive P2-purinoceptors in CHO-K1 cells. British Journal of Pharmacology 1995, 115, 1415-1424.
(55) Gerwins, P.; Fredholm, B. B. Stimulation of adenosine A1 receptors and bradykinin receptors, which act via different G proteins, synergistically raises inositol 1,4,5-trisphosphate and intracellular free calcium in DDT1 MF-2 smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 7330-7334.
(56) Belardinelli, L.; Shryock, J. C.; Song, Y.; Wang, D.; Srinivas, M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB Journal 1995, 9, 359-365.
(57) Ito, H.; Hosoya, Y.; Inanobe, A.; Tomoike, H.; Endoh, M. Acetylcholine and adenosine activate the G protein-gated muscarinic K+ channel in ferret ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology 1995, 351, 610-617.
(58) Trussell, L. O.; Jackson, M. B. Adenosine-activated potassium conductance in cultured striatal neurons. Proceedings of the National Academy of Sciences of the United States of America 1985, 82, 4857-4861.
(59) Greene, R. W.; Haas, H. L. The electrophysiology of adenosine in the mammalian central nervous system. Progress in Neurobiology (Oxford, United Kingdom) 1991, 36, 329-341.
(60) Pan, W. J.; Osmanovic, S. S.; Shefner, S. A. Characterization of the adenosine A1 receptor-activated potassium current in rat locus ceruleus neurons. Journal of Pharmacology and Experimental Therapeutics 1995, 273, 537-544.
(61) Dolphin, A. C.; Forda, S. R.; Scott, R. H. Calcium-dependent currents in cultured rat dorsal root ganglion neurons are inhibited by an adenosine analog. Journal of Physiology (Cambridge, United Kingdom) 1986, 373, 47-61.
(62) Scholz, K. P.; Miller, R. J. Analysis of adenosine actions on calcium currents and synaptic transmission in cultured rat hippocampal pyramidal neurones. Journal of Physiology (Cambridge, United Kingdom) 1991, 435, 373-393.
(63) Dixon, A. K.; Gubitz, A. K.; Sirinathsinghji, D. J. S.; Richardson, P. J.; Freeman, T. C. Tissue distribution of adenosine receptor mRNAs in the rat. British Journal of Pharmacology 1996, 118, 1461-1468.
(64) Stehle, J. H.; Rivkees, S. A.; Lee, J. J.; Weaver, D. R.; Deeds, J. D. et al. Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Molecular Endocrinology 1992, 6, 384-393.
(65) Bhattacharya, S.; Dewitt, D. L.; Burnatowska-Hledin, M.; Smith, W. L.; Spielman, W. S. Cloning of an adenosine A1 receptor-encoding gene from rabbit. GENE FIELD Publication Date:1993 Jun 30 1993, 128, 285-288. FIELD Reference Number: FIELD Journal Code:7706761 FIELD Call Number:.
(66) Marquardt, D. L.; Walker, L. L.; Heinemann, S. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. Journal of Immunology 1994, 152, 4508-4515.
(67) Meng, F.; Xie, G.-x.; Chalmers, D.; Morgan, C.; Watson, S. J., Jr. et al. Cloning and characterization of a pharmacologically distinct A1 adenosine receptor from guinea pig brain. Molecular Brain Research 1994, 26, 143-155.
(68) Freissmuth, M.; Selzer, E.; Schuetz, W. Interactions of purified bovine brain A1-adenosine receptors with G-proteins. Reciprocal modulation of agonist and antagonist binding. Biochemical Journal 1991, 275, 651-656.
(69) Jockers, R.; Linder, M. E.; Hohenegger, M.; Nanoff, C.; Bertin, B. et al. Species difference in the G protein selectivity of the human and bovine A1adenosine receptor. Journal of Biological Chemistry 1994, 269, 32077-32084.
(70) Klotz, K. N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B. et al. Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg's Archives of Pharmacology 1998, 357, 1-9.
(71) Jacobson, K. A.; Van Galen, P. J. M.; Williams, M. Adenosine receptors: pharmacology, structure-activity relationships, and therapeutic potential. Journal of Medicinal Chemistry 1992, 35, 407-422.
(72) Bruns, R. F.; Lu, G. H.; Pugsley, T. A. Characterization of the A2 adenosine receptor labeled by $[3 \mathrm{H}] \mathrm{NECA}$ in rat striatal membranes. Molecular Pharmacology 1986, 29, 331-346.
(73) Daly, J. W.; Butts-Lamb, P.; Padgett, W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. CELLULAR AND MOLECULAR NEUROBIOLOGY FIELD Publication Date:1983 Mar 1983, 3, 69-80. FIELD Reference Number: FIELD Journal Code:8200709 FIELD Call Number:.
(74) Maenhaut, C.; Van Sande, J.; Libert, F.; Abramowicz, M.; Parmentier, M. et al. RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochemical and Biophysical Research Communications 1990, 173, 1169-1178.
(75) Chern, Y.; King, K.; Lai, H. L.; Lai, H. T. Molecular cloning of a novel adenosine receptor gene from rat brain. Biochemical and Biophysical Research Communications 1992, 185, 304-309.
(76) Fink, J. S.; Weaver, D. R.; Rivkees, S. A.; Peterfreund, R. A.; Pollack, A. E. et al. Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Molecular Brain Research 1992, 14, 186-195.
(77) Furlong, T. J.; Pierce, K. D.; Selbie, L. A.; Shine, J. Molecular characterization of a human brain adenosine A2 receptor. Molecular Brain Research 1992, 15, 62-66.
(78) Meng, F.; Xie, G. X.; Chalmers, D.; Morgan, C.; Watson, S. J., Jr. et al. Cloning and expression of the A2a adenosine receptor from guinea pig brain. Neurochemical Research 1994, 19, 613-621.
(79) Linden, J. Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends in Pharmacological Sciences 1994, 15, 298-306.
(80) Kirk, I. P.; Richardson, P. J. Inhibition of striatal GABA release by the adenosine A2a receptor is not mediated by increases in cyclic AMP. Journal of Neurochemistry 1995, 64, 2801-2809.
(81) Gubitz, A. K.; Widdowson, L.; Kurokawa, M.; Kirkpatrick, K. A.; Richardson, P. J. Dual signalling by the adenosine A2a receptor involves activation of both N - and P-type calcium channels by different G proteins and protein kinases in the same striatal nerve terminals. Journal of Neurochemistry 1996, 67, 374-381.
(82) Jarvis, M. F.; Schulz, R.; Hutchison, A. J.; Do, U. H.; Sills, M. A. et al. [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. Journal of Pharmacology and Experimental Therapeutics 1989, 251, 888-893.
(83) Lupica, C. R.; Cass, W. A.; Zahniser, N. R.; Dunwiddie, T. V. Effects of the selective adenosine A2 receptor agonist CGS 21680 on in vitro electrophysiology, cAMP formation and dopamine release in rat hippocampus and striatum. Journal of Pharmacology and Experimental Therapeutics 1990, 252, 1134-1141.
(84) Hutchison, A. J.; Williams, M.; De Jesus, R.; Yokoyama, R.; Oei, H. H. et al. 2-(Arylalkylamino)adenosin-5'-uronamides: a new class of highly selective adenosine A2 receptor ligands. Journal of Medicinal Chemistry 1990, 33, 1919-1924.
(85) Poucher, S. M.; Keddie, J. R.; Singh, P.; Stoggall, S. M.; Caulkett, P. W. R. et al. The in vitro pharmacology of ZM 241385, a potent, non-xanthine, A2a selective adenosine receptor antagonist. British Journal of Pharmacology 1995, 115, 1096-1102.
(86) Zocchi, C.; Ongini, E.; Conti, A.; Monopoli, A.; Negretti, A. et al. The nonxanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist. Journal of Pharmacology and Experimental Therapeutics 1996, 276, 398-404.
(87) Dionisotti, S.; Ongini, E.; Zocchi, C.; Kull, B.; Arslan, G. et al. Characterization of human A2A adenosine receptors with the antagonist radioligand [3H]-SCH 58261. British Journal of Pharmacology 1997, 121, 353-360.
(88) Ongini, E.; Fredholm, B. B. Pharmacology of adenosine A2A receptors. Trends in Pharmacological Sciences 1996, 17, 364-372.
(89) Peterfreund, R. A.; MacCollin, M.; Gusella, J.; Fink, J. S. Characterization and expression of the human A2a adenosine receptor gene. Journal of Neurochemistry 1996, 66, 362-368.
(90) Olah, M. E. Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. Journal of Biological Chemistry 1997, 272, 337-344.
(91) Bridges, A. J.; Bruns, R. F.; Ortwine, D. F.; Priebe, S. R.; Szotek, D. L. et al. N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and its uronamide derivatives. Novel adenosine agonists with both high affinity and high selectivity for the adenosine A2 receptor. Journal of Medicinal Chemistry 1988, 31, 1282-1285.
(92) Ongini, E.; Dionisotti, S.; Gessi, S.; Irenius, E.; Fredholm, B. B. Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn-Schmiedebergs Archives of Pharmacology 1999, 359, 7-10.
(93) Sauer, R.; Maurinsh, J.; Reith, U.; Fulle, F.; Klotz, K. N. et al. Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, $\mathrm{A}(2 \mathrm{~A})$ selective adenosine receptor antagonists. JOURNAL OF MEDICINAL CHEMISTRY 2000, 43, 440-448.
(94) Rivkees, S. A.; Reppert, S. M. RFL9 encodes an A2b-adenosine receptor. Molecular Endocrinology 1992, 6, 1598-1604.
(95) Pierce, K. D.; Furlong, T. J.; Selbie, L. A.; Shine, J. Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochemical and Biophysical Research Communications 1992, 187, 86-93.
(96) Linden, J.; Thai, T.; Figler, H.; Jin, X.; Robeva, A. S. Characterization of human A2B adenosine receptors: radioligand binding, Western blotting, and coupling to Gq in human embryonic kidney 293 cells and HMC-1 mast cells. Molecular Pharmacology 1999, 56, 705-713.
(97) Feoktistov, I.; Biaggioni, I. Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells: an enprofylline-sensitive mechanism with implications for asthma. Journal of Clinical Investigation 1995, 96, 19791986.
(98) Yakel, J. L.; Warren, R. A.; Reppert, S. M.; North, R. A. Functional expression of adenosine A2b receptor in Xenopus oocytes. Molecular Pharmacology 1993, 43, 277-280.
(99) Brackett, L. E.; Daly, J. E. Functional characterization of the A2b adenosine receptor in NIH 3 T3 fibroblasts. Biochemical Pharmacology 1994, 47, 801814.
(100) Alexander, S. P. H.; Copper, J.; Shine, J.; Hill, S. J. Characterization of the human brain putative A2B adenosine receptor expressed in Chinese hamster ovary (CHO.A2B4) cells. British Journal of Pharmacology 1996, 119, 12861290.
(101) Kim, Y.-C.; Ji, X.-d.; Melman, N.; Linden, J.; Jacobson, K. A. Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and
selective antagonists at human A2B adenosine receptors. Journal of Medicinal Chemistry 2000, 43, 1165-1172.
(102) Meyerhof, W.; Mueller-Brechlin, R.; Richter, D. Molecular cloning of a novel putative G-protein coupled receptor expressed during rat spermiogenesis. FEBS Letters 1991, 284, 155-160.
(103) Zhou, Q. Y.; Li, C.; Olah, M. E.; Johnson, R. A.; Stiles, G. L. et al. Molecular cloning and characterization of an adenosine receptor: The A3 adenosine receptor. Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 7432-7436.
(104) Linden, J.; Taylor, H. E.; Robeva, A. S.; Tucker, A. L.; Stehle, J. H. et al. Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. MOLECULAR PHARMACOLOGY 1993, 44, 524-532.
(105) Salvatore, C. A.; Jacobson, M. A.; Taylor, H. E.; Linden, J.; Johnson, R. G. Molecular cloning and characterization of the human A3 adenosine receptor. Proceedings of the National Academy of Sciences of the United States of America 1993, 90, 10365-10369.
(106) Sajjadi, F. G.; Firestein, G. S. CDNA cloning and sequence analysis of the human A3 adenosine receptor. Biochimica et Biophysica Acta 1993, 1179, 105-107.
(107) Hill, R. J.; Oleynek, J. J.; Hoth, C. F.; Ravi Kiron, M. A.; Weng, W. et al. Cloning, expression and pharmacological characterization of rabbit adenosine A1 and A3 receptors. Journal of Pharmacology and Experimental Therapeutics 1997, 280, 122-128.
(108) Palmer, T. M.; Gettys, T. W.; Stiles, G. L. Differential interaction with and regulation of multiple G-proteins by rat A3 adenosine receptor. Journal of Biological Chemistry 1995, 270, 16895-16902.
(109) Abbracchio, M. P.; Ceruti, S.; Burnstock, G.; Cattabeni, F. Purinoceptors on glial cells of the central nervous system: Functional and pathologic implications. Adenosine and Adenine Nucleotides: From Molecular Biology to Integrative Physiology, [Proceedings of the International Symposium on Adenosine and Adenine Nucleotides] -- 5th, Philadelphia, May 9-13, 1994 1995, 271-280.
(110) Abbracchio, M. P.; Brambilla, R.; Ceruti, S.; Kim, H. O.; Von Lubitz, D. K. J. E. G protein-dependent activation of phospholipase C by adenosine A3 receptors in rat brain. Molecular Pharmacology 1995, 48, 1038-1045.
(111) Ramkumar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. Journal of Biological Chemistry 1993, 268, 1688716890.
(112) Ali, H.; Cunha-Melo, J. R.; Saul, W. F.; Beaven, M. A. Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. Journal of Biological Chemistry 1990, 265, 745-753.
(113) Gallo-Rodriguez, C.; Ji, X.-d.; Melman, N.; Siegman, B. D.; Sanders, L. H. et al. Structure-Activity Relationships of N6-Benzyladenosine-5'-uronamides as A3-Selective Adenosine Agonists. Journal of Medicinal Chemistry 1994, 37, 636-646.
(114) Kim, H. O.; Ji, X.-d.; Siddiqi, S. M.; Olah, M. E.; Stiles, G. L. et al. 2Substitution of N6-Benzyladenosine-5'-uronamides Enhances Selectivity for

A3 Adenosine Receptors. Journal of Medicinal Chemistry 1994, 37, 36143621.
(115) Ji, X.-D.; von Lubitz, D.; Olah, M. E.; Stiles, G. L.; Jacobson, K. A. Species differences in ligand affinity at central A3-adenosine receptors. Drug Development Research 1994, 33, 51-59.
(116) Varani, K.; Merighi, S.; Gessi, S.; Klotz, K.-N.; Lfung, E. et al. [3H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A3 adenosine receptors. Molecular Pharmacology 2000, 57, 968-975.
(117) Klotz, K.-N.; Camaioni, E.; Volpini, R.; Kachler, S.; Vittori, S. et al. 2Substituted N -ethylcarboxamidoadenosine derivatives as high-affinity agonists at human A3 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology 1999, 360, 103-108.
(118) DiMarco, J. P.; Sellers, T. D.; Lerman, B. B.; Greenberg, M. L.; Berne, R. M. et al. Diagnostic and therapeutic use of adenosine in patients with supraventricular tachyarrhythmias. Journal of the American College of Cardiology 1985, 6, 417-425.
(119) Jacobson, M. A.; Bai, T. R. The role of adenosine in asthma. Purinergic Approaches in Experimental Therapeutics 1997, 315-331.
(120) Jacobson, K. A. Adenosine A3 receptors: novel ligands and paradoxical effects. Trends in Pharmacological Sciences 1998, 19, 184-191.
(121) Fishman, P.; Bar-Yehuda, S. Pharmacology and therapeutic applications of A3 receptor subtype. Current topics in medicinal chemistry 2003, 3, 463-469.
(122) Mueller, C. E. Medicinal chemistry of adenosine A3 receptor ligands. Current topics in medicinal chemistry 2003, 3, 445-462.
(123) Beaven, M. A.; Ramkumar, V.; Ali, H. Adenosine A3 receptors in mast cells. Trends in Pharmacological Sciences 1994, 15, 13-14.
(124) Jarvis, M. F.; Williams, M. Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]CGS 21680. European Journal of Pharmacology 1989, 168, 243-246.
(125) Parkinson, F. E.; Fredholm, B. B. Autoradiographic evidence for G-protein coupled A2-receptors in rat neostriatum using [3H]-CGS 21680 as a ligand. Naunyn-Schmiedebergs Archives of Pharmacology 1990, 342, 85-89.
(126) Barraco, R. A.; Martens, K. A.; Parizon, M.; Normile, H. J. Adenosine A2a receptors in the nucleus accumbens mediate locomotor depression. Brain Research Bulletin 1993, 31, 397-464.
(127) Berne, R. M.; Rubio, R.; Curnish, R. R. Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circulation Research 1974, 35, 262-271.
(128) Phillis, J. W.; Walter, G. A.; Simpson, R. E. Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: effects of the adenosine deaminase inhibitor deoxycoformycin. Journal of Neurochemistry 1991, 56, 644-650.
(129) Van Wylen, D. G. L.; Park, T. S.; Rubio, R.; Berne, R. M. Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. Journal of Cerebral Blood Flow and Metabolism 1986, 6, 522-528.
(130) Fredholm, B. B.; Dunwiddie, T. V. How does adenosine inhibit transmitter release? Trends in Pharmacological Sciences 1988, 9, 130-134.
(131) Rudolphi, K. A.; Schubert, P.; Parkinson, F. E.; Fredholm, B. B. Neuroprotective role of adenosine in cerebral ischemia. Trends in Pharmacological Sciences 1992, 13, 439-445.
(132) Dragunow, M.; Faull, R. L. Neuroprotective effects of adenosine. TRENDS IN PHARMACOLOGICAL SCIENCES FIELD Publication Date:1988 Jun 1988, 9, 193-194. FIELD Reference Number: 125 FIELD Journal Code:7906158 FIELD Call Number:.
(133) Evans, M. C.; Swan, J. H.; Meldrum, B. S. An adenosine analogue, 2chloroadenosine, protects against long term development of ischaemic cell loss in the rat hippocampus. NEUROSCIENCE LETTERS 1987, 83, 287-292.
(134) Von Lubitz, D. K. J. E.; Dambrosia, J. M.; Kempski, O.; Redmond, D. J. Cyclohexyladenosine protects against neuronal death following ischemia in the CA1 region of gerbil hippocampus. Stroke 1988, 19, 1133-1139.
(135) Dragunow, M. Purinergic mechanisms in epilepsy. Progress in Neurobiology (Oxford, United Kingdom) 1988, 31, 85-108.
(136) Malhotra, J.; Gupta, Y. K. Effect of adenosine receptor modulation on pentylenetetrazole-induced seizures in rats. British Journal of Pharmacology 1997, 120, 282-288.
(137) Borowicz, K. K.; Kleinrok, Z.; Czuczwar, S. J. N6-2-(4-Aminophenyl)ethyladenosine enhances the anticonvulsive activity of antiepileptic drugs. European Journal of Pharmacology 1997, 327, 125-133.
(138) Schingnitz, G.; Kuefner-Muehl, U.; Ensinger, H.; Lehr, E.; Kuhn, F. J. Selective A1-antagonists for treatment of cognitive deficits. Nucleosides \& Nucleotides 1991, 10, 1067-1076.
(139) Shimada, J.; Suzuki, F.; Nonaka, H.; Ishii, A. 8-Polycycloalkyl-1,3dipropylxanthines as potent and selective antagonists for A1-adenosine receptors. Journal of Medicinal Chemistry 1992, 35, 924-930.
(140) Shimada, J.; Suzuki, F.; Nonaka, H.; Karasawa, A.; Mizumoto, H. et al. 8-(Dicyclopropylmethyl)-1,3-dipropylxanthine: a potent and selective adenosine A1 antagonist with renal protective and diuretic activities. Journal of Medicinal Chemistry 1991, 34, 466-469.
(141) Terai, T.; Kusunoki, T.; Kita, Y.; Akahane, A.; Shiokawa, Y. et al. FK453: a novel non-xanthine adenosine A 1 receptor antagonist as diuretic. Cardiovascular Drug Reviews 1997, 15, 44-58.
(142) Akahane, A.; Katayama, H.; Mitsunaga, T.; Kato, T.; Kinoshita, T. et al. Discovery of 6-Oxo-3- (2-phenylpyrazolo[1,5-a]pyridin-3-yl)- 1(6H)pyridazinebutanoic Acid (FK 838): A Novel Non-Xanthine Adenosine A1 Receptor Antagonist with Potent Diuretic Activity. Journal of Medicinal Chemistry 1999, 42, 779-783.
(143) Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J. et al. KW3902, a selective high affinity antagonist for adenosine A1 receptors. British Journal of Pharmacology 1996, 117, 1645-1652.
(144) Belardinelli, L.; Lerman, B. B. Electrophysiological basis for the use of adenosine in the diagnosis and treatment of cardiac arrhythmias. British Heart Journal 1990, 63, 3-4.
(145) Clemo, H. F.; Belardinelli, L. Effect of adenosine on atrioventricular conduction. II: Modulation of atrioventricular node transmission by adenosine in hypoxic isolated guinea pig hearts. Circulation Research 1986, 59, 437-446.
(146) Olsson, R. A.; Pearson, J. D. Cardiovascular purinoceptors. Physiological Reviews 1990, 70, 761-845.
(147) Williams, M. Purinergic pharmaceuticals for the 1990s. Nucleosides \& Nucleotides 1991, 10, 1087-1099.
(148) Williams, M. Adenosine: the prototypic neuromodulator. Neurochemistry International 1989, 14, 249-264.
(149) Hutchison, A. J.; Webb, R. L.; Oei, H. H.; Ghai, G. R.; Zimmerman, M. B. et al. CGS 21680 C , an A2 selective adenosine receptor agonist with preferential hypotensive activity. Journal of Pharmacology and Experimental Therapeutics 1989, 251, 47-55.
(150) Sperlagh, B.; Doda, M.; Baranyi, M.; Hasko, G. Ischemic-like condition releases norepinephrine and purines from different sources in superfused rat spleen strips. Journal of Neuroimmunology 2000, 111, 45-54.
(151) Edwards, C. K., 3rd; Watts, L. M.; Parmely, M. J.; Linnik, M. D.; Long, R. E. et al. Effect of the carbocyclic nucleoside analogue MDL 201,112 on inhibition of interferon-gamma-induced priming of Lewis (LEW/N) rat macrophages for enhanced respiratory burst and MHC class II Ia + antigen expression. Journal of Leukocyte 1994, 56, 133-144.
(152) Si, Q.-s.; Nakamura, Y.; Kataoka, K. Adenosine inhibits superoxide production in rat peritoneal macrophages via elevation of cAMP level. Immunopharmacology 1997, 36, 1-7.
(153) Park, Y. C.; Park, S. J.; Jun, C. D.; Kim, G. E.; Park, K. I. et al. Cyclic AMP analog as a triggering signal for the induction of nitric oxide synthesis in murine peritoneal macrophages. Cellular Immunology 1997, 179, 41-47.
(154) Xaus, J.; Mirabet, M.; Lloberas, J.; Soler, C.; Lluis, C. et al. IFN-.gamma. upregulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. Journal of Immunology 1999, 162, 3607-3614.
(155) Hasko, G.; Szabo, C.; Nemeth, Z. H.; Kvetan, V.; Pastores, S. M. et al. Adenosine receptor agonists differentially regulate IL-10, TNF-.alpha., and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. Journal of Immunology 1996, 157, 4634-4640.
(156) Mullet, D.; Fertel, R. H.; Kniss, D.; Cox, G. W. An increase in intracellular cyclic AMP modulates nitric oxide production in IFN-.gamma.-treated macrophages. Journal of Immunology 1997, 158, 897-904.
(157) Nishida, Y.; Kamatani, N.; Morito, T.; Miyamoto, T. Differential inhibition of lymphocyte function by 2-chloroadenosine. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1984, 6, 335-338.
(158) Gessi, S.; Varani, K.; Merighi, S.; Ongini, E.; Borea, P. A. A2A adenosine receptors in human peripheral blood cells. British Journal of Pharmacology 2000, 129, 2-11.
(159) Mirabet, M.; Herrera, C.; Cordero, O. J.; Mallol, J.; Lluis, C. et al. Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation. Journal of Cell Science 1999, 112, 491-502.
(160) Gessi, S.; Varani, K.; Merighi, S.; Morelli, A.; Ferrari, D. et al. Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. British Journal of Pharmacology 2001, 134, 116-126.
(161) DosReis, G. A.; Nobrega, A. F.; Paes de Carvalho, R. Purinergic modulation of T-lymphocyte activation: differential susceptibility of distinct activation steps and correlation with intracellular $3^{\prime}, 5$ '-cyclic adenosine monophosphate accumulation. Cellular Immunology 1986, 101, 213-231.
(162) Linden, J. Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annual Review of Pharmacology and Toxicology 2001, 41, 775-787.
(163) Bruns, R. F.; Daly, J. W.; Snyder, S. H. Adenosine receptor binding: Structure-activity analysis generates extremely potent xanthine antagonists. Proceedings of the National Academy of Sciences of the United States of America 1983, 80, 2077-2080.
(164) Taylor, M. D.; Moos, W. H.; Hamilton, H. W.; Szotek, D. S.; Patt, W. C. et al. Ribose-modified adenosine analogues as adenosine receptor agonists. Journal of Medicinal Chemistry 1986, 29, 346-353.
(165) Bruns, R. F. Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Canadian Journal of Physiology and Pharmacology 1980, 58, 673-691.
(166) Hamilton, H. W.; Bristol, J. A. C4-Substituted 1-.beta.-D-ribofuranosylpyrazolo[3,4-d]pyrimidines as adenosine agonist analogs. Journal of Medicinal Chemistry 1983, 26, 1601-1606.
(167) Van Muijlwijk-Koezen, J. E.; Timmerman, H.; Ijzerman, A. P. The adenosine A3 receptor and its ligands. Progress in Medicinal Chemistry 2001, 38, 61113.
(168) van Galen, P. J. M.; van Bergen, A. H.; Gallo-Rodriguez, C.; Melman, N.; Olah, M. E. et al. A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Molecular Pharmacology 1994, 45, 1101-1111.
(169) Siddiqi, S. M.; Jacobson, K. A.; Esker, J. L.; Olah, M. E.; Ji, X.-d. et al. Search for New Purine- and Ribose-Modified Adenosine Analogs as Selective Agonists and Antagonists at Adenosine Receptors. Journal of Medicinal Chemistry 1995, 38, 1174-1188.
(170) Van Galen, P. J. M.; Leusen, F. J. J.; Ijzerman, A. P.; Soudijn, W. Mapping the N6-region of the adenosine A1 receptor with computer graphics. European Journal of Pharmacology, Molecular Pharmacology Section 1989, 172, 19-27.
(171) Kusachi, S.; Thompson, R. D.; Bugni, W. J.; Yamada, N.; Olsson, R. A. Dog coronary artery adenosine receptor: structure of the N6-alkyl subregion. Journal of Medicinal Chemistry 1985, 28, 1636-1643.
(172) Moos, W. H.; Szotek, D. S.; Bruns, R. F. N6-Cycloalkyladenosines. Potent, A1-selective adenosine agonists. Journal of Medicinal Chemistry 1985, 28, 1383-1384.
(173) Trivedi, B. K.; Bristol, J. A.; Bruns, R. F.; Haleen, S. J.; Steffen, R. P. N6(Arylalkyl)adenosines. Identification of N6-(9-fluorenylmethyl)adenosine as a highly potent agonist for the adenosine A2 receptor. Journal of Medicinal Chemistry 1988, 31, 271-273.
(174) Trivedi, B. K.; Bridges, A. J.; Patt, W. C.; Priebe, S. R.; Bruns, R. F. N6Bicycloalkyladenosines with unusually high potency and selectivity for the adenosine A1 receptor. Journal of Medicinal Chemistry 1989, 32, 8-11.
(175) Trivedi, B. K.; Blankley, C. J.; Bristol, J. A.; Hamilton, H. W.; Patt, W. C. et al. N6-Substituted adenosine receptor agonists: potential antihypertensive agents. Journal of Medicinal Chemistry 1991, 34, 1043-1049.
(176) Ueeda, M.; Thompson, R. D.; Arroyo, L. H.; Olsson, R. A. 2Alkoxyadenosines: potent and selective agonists at the coronary artery A2 adenosine receptor. Journal of Medicinal Chemistry 1991, 34, 1334-1339.
(177) Francis, J. E.; Webb, R. L.; Ghai, G. R.; Hutchison, A. J.; Moskal, M. A. et al. Highly selective adenosine A2 receptor agonists in a series of N -alkylated 2aminoadenosines. Journal of Medicinal Chemistry 1991, 34, 2570-2579.
(178) Ueeda, M.; Thompson, R. D.; Arroyo, L. H.; Olsson, R. A. 2aralkoxyadenosines: potent and selective agonists at the coronary artery A2 adenosine receptor. Journal of Medicinal Chemistry 1991, 34, 1340-1344.
(179) van Tilburg, E. W.; von Kuenzel, J.; de Groote, M.; Ijzerman, A. P. 2,5'Disubstituted Adenosine Derivatives: Evaluation of Selectivity and Efficacy for the Adenosine A1, A2A, and A3 Receptor. Journal of Medicinal Chemistry 2002, 45, 420-429.
(180) DeNinno, M. P.; Masamune, H.; Chenard, L. K.; DiRico, K. J.; Eller, C. et al. 3'-Aminoadenosine-5'-uronamides: Discovery of the First Highly Selective Agonist at the Human Adenosine A3 Receptor. Journal of Medicinal Chemistry 2003, 46, 353-355.
(181) Baraldi, P. G.; Cacciari, B.; Pineda de Infantas, M. J.; Romagnoli, R.; Spalluto, G. et al. Synthesis and Biological Activity of a New Series of N6Arylcarbamoyl, 2-(Ar)alkynyl-N6-arylcarbamoyl, and N6-Carboxamido Derivatives of Adenosine-5'-N-ethyluronamide as A1 and A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry 1998, 41, 3174-3185.
(182) Lohse, M. J.; Klotz, K. N.; Schwabe, U.; Cristalli, G.; Vittori, S. et al. 2-Chloro-N6-cyclopentyladenosine: a highly selective agonist at A1 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology 1988, 337, 687689.
(183) Klotz, K. N.; Lohse, M. J.; Schwabe, U.; Cristalli, G.; Vittori, S. et al. 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CPPA) - a high affinity agonist radioligand for A1 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology 1989, 340, 679-683.
(184) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Ji, X.-d.; Olah, M. E. et al. Novel N6-(Substituted-phenylcarbamoyl)adenosine-5'-uronamides as Potent Agonists for A3 Adenosine Receptors. Journal of Medicinal Chemistry 1996, 39, 802-806.
(185) Cappellacci, L.; Barboni, G.; Palmieri, M.; Pasqualini, M.; Grifantini, M. et al. Ribose-Modified Nucleosides as Ligands for Adenosine Receptors: Synthesis, Conformational Analysis, and Biological Evaluation of 1'-C-Methyl Adenosine Analogues. Journal of Medicinal Chemistry 2002, 45, 1196-1202.
(186) Cristalli, G.; Camaioni, E.; Costanzi, S.; Vittori, S.; Volpini, R. et al. Characterization of potent ligands at human recombinant adenosine receptors. Drug Development Research 1998, 45, 176-181.
(187) Ijzerman, A. P.; von Frijtag Drabbe Kuenzel, J. K.; Vittori, S.; Cristalli, G. Purine-substituted adenosine derivatives with small N6-substituents as adenosine receptor agonists. Nucleosides \& Nucleotides 1994, 13, 2267-2281.
(188) Cristalli, G.; Grifantini, M.; Vittori, S.; Balduini, W.; Cattabeni, F. Adenosine and 2-chloroadenosine deaza analogs as adenosine receptor agonists. Nucleosides \& Nucleotides 1985, 4, 625-639.
(189) Cristalli, G.; Franchetti, P.; Grifantini, M.; Vittori, S.; Klotz, K. N. et al. Adenosine receptor agonists: synthesis and biological evaluation of 1-deaza analogues of adenosine derivatives. Journal of Medicinal Chemistry 1988, 31, 1179-1183.
(190) Karton, Y.; Jiang, J. L.; Ji, X. D.; Melman, N.; Olah, M. E. et al. Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. Journal of Medicinal Chemistry 1996, 39, 2293-2301.
(191) Ji, X.-d.; Melman, N.; Jacobson, K. A. Interactions of Flavonoids and Other Phytochemicals with Adenosine Receptors. Journal of Medicinal Chemistry 1996, 39, 781-788.
(192) Hutchinson, S. A.; Luetjens, H.; Scammells, P. J. A new synthesis of the benzofuran adenosine antagonist XH-14. Bioorganic \& Medicinal Chemistry Letters 1997, 7, 3081-3084.
(193) Yang, Z.; Hon, P. M.; Chui, K. Y.; Xu, Z. L.; Chang, H. M. et al. Naturally occurring benzofuran: isolation, structure elucidation and total synthesis of 5-(3-hydroxypropyl)-7-methoxy-2-(3'-methoxy-4'-hydroxyphenyl)-3benzo[b]furancarbaldehyde, a novel adenosine A1 receptor ligand isolated from Salvia miltiorrhiza Bunge (Danshen). Tetrahedron Letters 1991, 32, 2061-2064.
(194) van Rhee, A. M.; Siddiqi, S. M.; Melman, N.; Shi, D.; Padgett, W. L. et al. Tetrahydrobenzothiophenone Derivatives as a Novel Class of Adenosine Receptor Antagonists. Journal of Medicinal Chemistry 1996, 39, 398-406.
(195) Kim, S.-A.; Marshall, M. A.; Melman, N.; Kim, H. S.; Mueller, C. E. et al. Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, $7-$, and 8 -positions. Journal of Medicinal Chemistry 2002, 45, 2131-2138.
(196) Daly, J. W.; Padgett, W.; Shamim, M. T.; Butts-Lamb, P.; Waters, J. 1,3-Dialkyl-8-(p-sulfophenyl)xanthines: potent water-soluble antagonists for A1and A2-adenosine receptors. Journal of Medicinal Chemistry 1985, 28, 487492.
(197) Jacobson, K. A.; Kirk, K. L.; Padgett, W. L.; Daly, J. W. Functionalized congeners of 1,3-dialkylxanthines: preparation of analogues with high affinity for adenosine receptors. JOURNAL OF MEDICINAL CHEMISTRY FIELD Publication Date:1985 Sep 1985, 28, 1334-1340. FIELD Reference Number: FIELD Journal Code:9716531 FIELD Call Number:.
(198) Daly, J. W.; Padgett, W. L.; Shamim, M. T. Analogues of caffeine and theophylline: effect of structural alterations on affinity at adenosine receptors. Journal of Medicinal Chemistry 1986, 29, 1305-1308.
(199) Daly, J. W.; Padgett, W. L.; Shamim, M. T. Analogs of 1,3-dipropyl-8phenylxanthine: enhancement of selectivity at A1-adenosine receptors by aryl substituents. Journal of Medicinal Chemistry 1986, 29, 1520-1524.
(200) Shamim, M. T.; Ukena, D.; Padgett, W. L.; Daly, J. W. Effects of 8-phenyl and 8 -cycloalkyl substituents on the activity of mono-, di, and trisubstituted alkylxanthines with substitution at the 1-, 3-, and 7-positions. Journal of Medicinal Chemistry 1989, 32, 1231-1237.
(201) Jacobson, K. A.; Nikodijevic, O.; Padgett, W. L.; Gallo-Rodriguez, C.; Maillard, M. et al. 8-(3-Chlorostyryl)caffeine (CSC) is a selective A2adenosine antagonist in vitro and in vivo. FEBS LETTERS 1993, 323, 141144.
(202) Jacobson, K. A.; Gallo-Rodriguez, C.; Melman, N.; Fischer, B.; Maillard, M. et al. Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. Journal of Medicinal Chemistry 1993, 36, 1333-1342.
(203) Muller, C. E.; Sandoval-Ramirez, J.; Schobert, U.; Geis, U.; Frobenius, W. et al. 8-(Sulfostyryl)xanthines: water-soluble A2A-selective adenosine receptor antagonists. Bioorganic \& medicinal chemistry 1998, 6, 707-719.
(204) Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Romagnoli, R. et al. Design, Synthesis, and Biological Evaluation of New 8-Heterocyclic Xanthine Derivatives as Highly Potent and Selective Human A2B Adenosine Receptor Antagonists. Journal of Medicinal Chemistry 2004, 47, 1434-1447.
(205) Jacobson, K. A.; Ijzerman, A. P.; Linden, J. 1,3-Dialkylxanthine derivatives having high potency as antagonists at human A2b adenosine receptors. Drug Development Research 1999, 47, 45-53.
(206) Ji, X. D.; Jacobson, K. A. Use of the triazolotriazine [3H]ZM 241385 as a radioligand at recombinant human A2B adenosine receptors. Drug design and discovery 1999, 16, 217-226.
(207) Kim, H. O.; Ji, X.-d.; Melman, N.; Olah, M. E.; Stiles, G. L. et al. StructureActivity Relationships of 1,3-Dialkylxanthine Derivatives at Rat A3 Adenosine Receptors. Journal of Medicinal Chemistry 1994, 37, 3373-3382.
(208) Bruns, R. F.; Fergus, J. H.; Badger, E. W.; Bristol, J. A.; Santay, L. A. et al. Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3dipropylxanthine to rat brain membranes. Naunyn-Schmiedeberg's Archives of Pharmacology 1987, 335, 59-63.
(209) Lohse, M. J.; Klotz, K. N.; Lindenborn-Fotinos, J.; Reddington, M.; Schwabe, U. et al. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) - a selective high affinity antagonist radioligand for A1 adenosine receptors. NaunynSchmiedeberg's Archives of Pharmacology 1987, 336, 204-210.
(210) Petter, R. C. BG9719: A highly specific A1 adenosine receptor antagonist. Book of Abstracts, 215th ACS National Meeting, Dallas, March 29-April 2 1998, MEDI-094.
(211) Ji, X.; Kim, Y. C.; Ahern, D. G.; Linden, J.; Jacobson, K. A. 3H]MRS 1754, a selective antagonist radioligand for $\mathrm{A}(2 \mathrm{~B})$ adenosine receptors. Biochemical pharmacology 2001, 61, 657-663.
(212) Muller, C. E.; Scior, T. Adenosine receptors and their modulators. Pharmaceutica Acta Helvetiae 1993, 68, 77-111.
(213) Muller, C. E.; Schobert, U.; Hipp, J.; Geis, U.; Frobenius, W. et al. Configurationally stable analogs of styrylxanthines as A2A adenosine receptor antagonists. European Journal of Medicinal Chemistry 1997, 32, 709-719.
(214) Mueller, C. E.; Geis, U.; Hipp, J.; Schober, U.; Frobeniu, W. et al. Synthesis and Structure-Activity Relationships of 3,7-Dimethyl-1-propargylxanthine Derivatives, A2A-Selective Adenosine Receptor Antagonists. Journal of Medicinal Chemistry 1997, 40, 4396-4405.
(215) Hayallah Alaa, M.; Sandoval-Ramirez, J.; Reith, U.; Schobert, U.; Preiss, B. et al. 1,8-disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. Journal of medicinal chemistry 2002, 45, 1500-1510.
(216) Thompson, R. D.; Secunda, S.; Daly, J. W.; Olsson, R. A. N6,9-Disubstituted adenines: potent, selective antagonists at the A1 adenosine receptor. Journal of Medicinal Chemistry 1991, 34, 2877-2882.
(217) Martin, P. L.; Wysocki, R. J., J..; Barrett, R. J.; May, J. M.; Linden, J. Characterization of 8-(N-methylisopropyl)amino-N6-(5'-endohydroxy-endonorbornyl)-9-methyladenine (WRC-0571), a highly potent and selective,
non-xanthine antagonist of A1 adenosine receptors. Journal of Pharmacology and Experimental Therapeutics 1996, 276, 490-499.
(218) Biagi, G.; Giorgi, I.; Leonardi, M.; Livi, O.; Pacchini, F. et al. New N6- or $\mathrm{N}(9)$-hydroxyalkyl substituted 8 -azaadenines or adenines as effective A1 adenosine receptor ligands. European Journal of Medicinal Chemistry 2003, 38, 801-810.
(219) Hess, S.; Mueller, C. E.; Frobenius, W.; Reith, U.; Klotz, K.-N. et al. 7Deazaadenines Bearing Polar Substituents: Structure-Activity Relationships of New A1 and A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry 2000, 43, 4636-4646.
(220) Castelhano, A. L.; McKibben, B.; Witter, D. J. Preparation of pyrrolo[2,3d]pyrimidinamines as selective adenosine A1 receptor inhibitors for treatment of asthma, COPD, and other conditions. In U.S. Pat. Appl. Publ.; (OSI Pharmaceuticals, Inc., USA). Us, 2003; pp 79 pp.
(221) Campbell, R. M.; Cartwright, C.; Chen, W.; Chen, Y.; Duzic, E. et al. Selective A1-adenosine receptor antagonists identified using yeast Saccharomyces cerevisiae functional assays. Bioorganic \& medicinal chemistry letters 1999, 9, 2413-2418.
(222) Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V. N(9)-Substituted 2-phenyl-N(6)-benzyl-8-azaadenines: A1 adenosine receptor affinity. A comparison with the corresponding $\mathrm{N}(6)$-substituted 2 -phenyl-N(9)-benzyl-8-azaadenines. Farmaco 1996, 51, 395-399.
(223) Ferrarini, P. L.; Mori, C.; Manera, C.; Martinelli, A.; Mori, F. et al. A novel class of highly potent and selective A1 adenosine antagonists: structureaffinity profile of a series of 1,8-naphthyridine derivatives. Journal of Medicinal Chemistry 2000, 43, 2814-2823.
(224) Li, A. H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X. D. et al. Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2, 4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. Journal of medicinal chemistry 1999, 42, 706-721.
(225) van Rhee, A. M.; Jiang, J. L.; Melman, N.; Olah, M. E.; Stiles, G. L. et al. Interaction of 1,4-dihydropyridine and pyridine derivatives with adenosine receptors: selectivity for A3 receptors. Journal of Medicinal Chemistry 1996, 39, 2980-2989.
(226) Kuroda, S.; Akahane, A.; Itani, H.; Nishimura, S.; Durkin, K. et al. Discovery of FR166124, a novel water-soluble pyrazolo-[1,5-a]pyridine adenosine A1 receptor antagonist. Bioorganic \& Medicinal Chemistry Letters 1999, 9, 19791984.
(227) van Muijlwijk-Koezen, J. E.; Timmerman, H.; van der Goot, H.; Menge, W. M.; Frijtag Von Drabbe Kunzel, J. et al. Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A(3) receptor. Journal of Medicinal Chemistry 2000, 43, 2227-2238.
(228) van Muijlwijk-Koezen, J. E.; Timmerman, H.; Link, R.; van der Goot, H.; IJzerman, A. P. A novel class of adenosine A3 receptor ligands. 1. 3-(2Pyridinyl)isoquinoline derivatives. Journal of Medicinal Chemistry 1998, 41, 3987-3993.
(229) van Muijlwijk-Koezen, J. E.; Timmerman, H.; Link, R.; van der Goot, H.; Ijzerman, A. P. A novel class of adenosine A3 receptor ligands. 2. Structure affinity profile of a series of isoquinoline and quinazoline compounds. Journal of Medicinal Chemistry 1998, 41, 3994-4000.
(230) Webb, T. R.; Lvovskiy, D.; Kim, S.-A.; Ji, X.-d.; Melman, N. et al. Quinazolines as adenosine receptor antagonists: SAR and selectivity for A2B receptors. Bioorganic \& Medicinal Chemistry 2003, 11, 77-85.
(231) Kim, Y. C.; de Zwart, M.; Chang, L.; Moro, S.; von Frijtag Drabbe Kunzel, J. K. et al. Derivatives of the triazoloquinazoline adenosine antagonist (CGS 15943) having high potency at the human A2B and A3 receptor subtypes. Journal of medicinal chemistry 1998, 41, 2835-2845.
(232) Francis, J. E.; Cash, W. D.; Psychoyos, S.; Ghai, G.; Wenk, P. et al. Structureactivity profile of a series of novel triazoloquinazoline adenosine antagonists. Journal of Medicinal Chemistry 1988, 31, 1014-1020.
(233) Matuszczak, B.; Pekala, E.; Mueller, C. E. 1-Substituted 4-(chloropyrazolyl)-1,2,4-triazolo[4,3-a]quinoxalines. Synthesis and structure-activity relationships of a new class of benzodiazepine and adenosine receptor ligands. Archiv der Pharmazie 1998, 331, 163-169.
(234) Trivedi, B. K.; Bruns, R. F. [1,2,4]Triazolo[4,3-a]quinoxalin-4-amines: a new class of A1 receptor selective adenosine antagonists. Journal of Medicinal Chemistry 1988, 31, 1011-1014.
(235) Novellino, E.; Abignente, E.; Cosimelli, B.; Greco, G.; Iadanza, M. et al. Design, Synthesis and Biological Evaluation of Novel N-Alkyl- and N-Acyl-(7-substituted-2-phenylimidazo[1,2-a][1,3,5]triazin-4-yl)amines (ITAs) as Novel A1 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry 2002, 45, 5030-5036.
(236) De Zwart, M.; Vollinga, R. C.; Beukers, M. W.; Sleegers, D. F.; Von Frijtag Drabbe Kunzel, J. K. et al. Potent antagonists for the human adenosine A2B receptor. Derivatives of the triazolotriazine adenosine receptor antagonist ZM241385 with high affinity. Drug Development Research 1999, 48, 95-103.
(237) van Tilburg, E. W.; van der Klein, P. A. M.; de Groote, M.; Beukers, M. W.; Ijzerman, A. P. Substituted 4-Phenyl-2-(phenylcarboxamido)-1,3-thiazole Derivatives as Antagonists for the Adenosine A1 Receptor. Bioorganic \& Medicinal Chemistry Letters 2001, 11, 2017-2019.
(238) Jung, K.-Y.; Kim, S.-K.; Gao, Z.-G.; Gross, A. S.; Melman, N. et al. Structureactivity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorganic \& Medicinal Chemistry 2004, 12, 613-623.
(239) van Muijlwijk-Koezen, J. E.; Timmerman, H.; Vollinga, R. C.; von Kuenzel, J. F.; de Groote, M. et al. Thiazole and thiadiazole analogs as a novel class of adenosine receptor antagonists. Journal of Medicinal Chemistry 2001, 44, 749-762.
(240) Maconi, A.; Pastorin, G.; Da Ros, T.; Spalluto, G.; Gao, Z.-g. et al. Synthesis, Biological Properties, and Molecular Modeling Investigation of the First Potent, Selective, and Water-Soluble Human A3 Adenosine Receptor Antagonist. Journal of Medicinal Chemistry 2002, 45, 3579-3582.
(241) Pastorin, G.; Da Ros, T.; Spalluto, G.; Deflorian, F.; Moro, S. et al. Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives as Adenosine Receptor Antagonists. Influence of the N5 Substituent on the Affinity at the Human A3 and A2B Adenosine Receptor Subtypes: A Molecular Modeling Investigation. Journal of Medicinal Chemistry 2003, 46, 4287-4296.
(242) Ijzerman, A. P.; van der Wenden, E. M.; von Frijtag Drabbe Kunzel, J. K.; Mathot, R. A. A.; Danhof, M. et al. Partial agonism of theophylline-7-riboside
on adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology 1994, 350, 638-645.
(243) Fozard, J. R.; Carruthers, A. M. Adenosine A3 receptors mediate hypotension in the angiotensin II-supported circulation of the pithed rat. British Journal of Pharmacology 1993, 109, 3-5.
(244) Lorenzen, A.; Sebastiao, A. M.; Sellink, A.; Vogt, H.; Schwabe, U. et al. Biological activities of N6,C8-disubstituted adenosine derivatives as partial agonists at rat brain adenosine A1 receptors. European Journal of Pharmacology 1997, 334, 299-307.
(245) Van Tilburg, E. W.; von Kuenzel, J.; de Groote, M.; Vollinga, R. C.; Lorenzen, A. et al. N6,5'-Disubstituted Adenosine Derivatives as Partial Agonists for the Human Adenosine A3 Receptor. Journal of Medicinal Chemistry 1999, 42, 1393-1400.
(246) Mathot, R. A. A.; van Schaick, E. A.; Langemeijer, M. W. E.; Soudijn, W.; Breimer, D. D. et al. Pharmacokinetic-pharmacodynamic relationship of the cardiovascular effects of adenosine A1 receptor agonist N6cyclopentyladenosine in the rat. Journal of Pharmacology and Experimental Therapeutics 1994, 268, 616-624.
(247) Broadley, K. J. Drugs modulating adenosine receptors as potential therapeutic agents for cardiovascular diseases. Expert Opinion on Therapeutic Patents 2000, 10, 1669-1692.
(248) Van Der Graaf, P. H.; Van Schaick, E. A.; Visser, S. A. G.; De Greef, H. J. M. M.; Ijzerman, A. P. et al. Mechanism-based pharmacokineticpharmacodynamic modeling of antilipolytic effects of adenosine A1 receptor agonists in rats: prediction of tissue-dependent efficacy in vivo. Journal of Pharmacology and Experimental Therapeutics 1999, 290, 702-709.
(249) Jacobson, K. A.; von Lubitz, D. K. J. E.; Daly, J. W.; Fredholm, B. B. Adenosine receptor ligands: differences with acute versus chronic treatment. Trends in Pharmacological Sciences 1996, 17, 108-113.
(250) Van Galen, P. J. M.; Ijzerman, A. P.; Soudijn, W. Xanthine-7-ribosides as adenosine A1 receptor antagonists: further evidence for adenosine's anti mode of binding. Nucleosides \& Nucleotides 1990, 9, 275-291.
(251) Van der Wenden, E. M.; Hartog-Witte, H. R.; Roelen, H. C. P. F.; von Frijtag Drabbe Kuenzel, J. K.; Pirovano, I. M. et al. 8-Substituted adenosine and theophylline-7-riboside analogs as potential partial agonists for the adenosine A1 receptor. European Journal of Pharmacology, Molecular Pharmacology Section 1995, 290, 189-199.
(252) van der Wenden, E. M.; von Frijtag Drabbe Kunzel, J. K.; Mathot, R. A.; Danhof, M.; P, I. J. A. et al. Ribose-modified adenosine analogues as potential partial agonists for the adenosine receptor. Journal of Medicinal Chemistry 1995, 38, 4000-4006.
(253) Mathot, R. A. A.; Van der Wenden, E. M.; Soudijn, W.; Ijzerman, A. P.; Danhof, M. Deoxyribose analogs of N6-cyclopentyladenosine (CPA): partial agonists at the adenosine A1 receptor in vivo. British Journal of Pharmacology 1995, 116, 1957-1964.
(254) Mathot, R. A. A.; Van der Wenden, E. M.; Soudijn, W.; Breimer, D. D.; Ijzerman, A. P. et al. Partial agonism of the nonselective adenosine receptor agonist 8-butylaminoadenosine at the A1 receptor in vivo. Journal of Pharmacology and Experimental Therapeutics 1996, 279, 1439-1446.
(255) Roelen, H.; Veldman, N.; Spek, A. L.; von Frijtag Drabbe Kunzel, J.; Mathot, R. A. et al. N6,C8-distributed adenosine derivatives as partial agonists for adenosine A1 receptors. Journal of Medicinal Chemistry 1996, 39, 1463-1471.
(256) van der Wenden, E. M.; Carnielli, M.; Roelen, H. C. P. F.; Lorenzen, A.; von Kuenzel, J. K. et al. 5'-Substituted Adenosine Analogs as New High-Affinity Partial Agonists for the Adenosine A1 Receptor. Journal of Medicinal Chemistry 1998, 41, 102-108.
(257) van Tilburg, E. W.; Gremmen, M.; von Frijtag Drabbe Kunzel, J.; de Groote, M.; Ijzerman, A. P. 2,8-Disubstituted adenosine derivatives as partial agonists for the adenosine A2A receptor. Bioorganic \& Medicinal Chemistry 2003, 11, 2183-2192.

CHAPTER 2

Design of Template for library development

2.1 Introduction:

Pyrazolo[3,4- d]pyrimidines (1) (Figure 2.1) have been identified as antagonists with micromolar affinity at the rat adenosine A_{1} receptor during a study of eleven novel nitrogen containing heterocycles structurally related to xanthine, caffeine and theophylline. ${ }^{1,2}$ The eleven heterocyclic rings included thiazolo[5,4-d]pyrimidines (A), pyrazolo[3,4-d]pyrimidines (B), s-triazolo[4,3-a]pyrimidines (C), s-triazolo[1,5c]pyrimidines (D), s-triazolo[4,3-c]pyrimidines (E), s-triazolo[1,5-a]pyrimidines (F), benzothiazoles (G), pyridin-2'-ylpyrimidines (H), quinazolines (I), pyrazolylpyrimidiens (J) and s-triazolo[3,4-d]benzothiazoles (K) (Figure 2.2).

1

Figure 2.1: Pyrazolo[3,4-d]pyrimidines core structure (1)

(A)

(E)

(B)

(F)

(C)

(G)

(H)

(I)

(J)

(K)

Figure 2.2: Structures of heterocycles tested for affinity at the A_{1} adenosine receptor.

From the eleven heterocyclic systems, the pyrazolo[3,4-d]pyrimidines were found to be the most active at adenosine receptors. Table 2.1 shows the structures of the pyrazolo[3,4- d]pyrimidines and their binding affinities at the rat A_{1} adenosine receptor. The most active compounds of the pyrazolo[3,4-d]pyrimidines were the ones which contained the phenyl substituent at the $\mathrm{N}-1$. In the phenyl series, monosubstitution at C-4 (2 \& 4) led to poor affinity (compare with 1) while bissubstitution at C-4 and C-6 ($\mathbf{3} \& 5$) generated the most potent compounds (compare with 1 and mono-substitution).

Compound 5 was the most active compound in the phenyl series with a K_{i} value of $0.37 \pm 0.06 \mu \mathrm{M}$ and was 52 -fold more potent than theophylline ($19.4 \mu \mathrm{M}$). But when the phenyl substituent (5) was changed to a smaller substituent such as methyl (6) and hydrogen (7), the affinity decreased by 38 -fold and 79 -fold respectively.

Table 2.1: Binding affinity of pyrazolo[3,4-d]pyrimidines expressed as K_{i} in $\mu \mathrm{M}$ or $\%$ displacement at $10 \mu \mathrm{M} .{ }^{1}$

Compound	R^{4}	R^{6}	R^{1}	$\mathrm{K}_{\mathrm{i}}(\mu \mathrm{M})$ or \% inhibition at10 $\mu \mathrm{M}$
$\mathbf{1}$	SH	H	Ph	18.3 ± 2.9
$\mathbf{2}$	$\mathrm{SCH}_{2} \mathrm{CONH}_{2}$	H	Ph	$47.7 \pm 4.2 \%$
$\mathbf{3}$	$\mathrm{SCH}_{2} \mathrm{CONH}_{2}$	$\mathrm{SCH}_{2} \mathrm{CONH}_{2}$	Ph	1.7 ± 0.5
$\mathbf{4}$	${\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}}^{5}$	H	Ph	$45.6 \pm 6.8 \%$
$\mathbf{5}$	$\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}$	$\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}$	Ph	0.37 ± 0.06
$\mathbf{6}$	${\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}}^{2}$	$\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}$	Me	14.2 ± 1.6
$\mathbf{7}$	$\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}$	$\mathrm{SCH}\left(\mathrm{CH}_{3}\right) \mathrm{CONH}_{2}$	H	29.4 ± 2.7
Theophylline				

${ }^{\mathrm{a}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ PIA binding at the rat brain membranes.

Quinn et al. ${ }^{3-5}$ expanded on the findings of Davies et al. ${ }^{1,2}$ by studying the effects of the substitutions at the C-4 and C-6 positions of pyrazolo[3,4-d]pyrmidines on the adenosine A_{1} and $A_{2 A}$ receptor binding. The studies probed the effects of a mercaptol, methylthio, and amino substitution at C-4 for hydrogen-bonding sites and steric tolerance (Table 2.2). They found that the amino substituent $(\mathbf{1 6 , 1 7 , 1 8} \& \mathbf{1 9})$ at C-4 was more potent than the methylthio $(\mathbf{1 2 , 1 3 , 1 4} \& 15)$ and the mercapto $(\mathbf{8 , 9 , 1 0} \&$ 11) substituents. The methylthio substituent $(\mathbf{1 2 , 1 3 , 1 4} \& 15)$ at $C-4$ was more potent than the mercapto substituent $(\mathbf{8 , 9 , 1 0} \& \mathbf{1 1})$. Secondary amine substituent at C-4 (20) also led to an increase in receptor affinity and selectivity (compare 20 with 19). These further studies have provided a useful starting point to further investigate the structure-activity relationships of pyrazolo[3,4-d]pyrmidines at all adenosine receptor subtypes.

Table 2.2: Binding affinity of C-4 and C-6 substituted 1-phenylpyrazolo[3,4d] pyrimidines expressed as K_{i} in nM or $\%$ inhibition at $\mathrm{nM} .{ }^{5}$

Compound	R^{4}	R^{6}	$\mathrm{~A}_{1} \mathrm{~K}_{\mathrm{i}}(\mathrm{nM})^{\mathrm{a}}$	$\mathrm{A}_{2 \mathrm{~A}} \mathrm{~K}_{\mathrm{i}}(\mathrm{nM})^{\mathrm{b}}$ or \% inhibition (nM)
$\mathbf{8}$	SH	Et	155 ± 5	8750 ± 1100
$\mathbf{9}$	SH	$i-\mathrm{Pr}$	256 ± 4	$44 \%(20000)$
$\mathbf{1 0}$	SH	Pr	56.3 ± 4.5	4450 ± 790
$\mathbf{1 1}$	SH	Bu	37.2 ± 0.8	$52 \%(10000)$
$\mathbf{1 2}$	SCH_{3}	Et	8.4 ± 0.32	796 ± 135
$\mathbf{1 3}$	SCH_{3}	$i-\mathrm{Pr}$	15.7 ± 0.6	$37 \%(20000)$
$\mathbf{1 4}$	SCH_{3}	Pr	7.55 ± 2.32	4380 ± 410
$\mathbf{1 5}$	SCH_{3}	Bu	6.81 ± 0.61	$12 \%(40000)$
$\mathbf{1 6}$	NH_{2}	Et	1.56 ± 0.09	44.5 ± 12.6
$\mathbf{1 7}$	NH_{2}	$i-\mathrm{Pr}$	2.73 ± 0.12	147 ± 17
$\mathbf{1 8}$	NH_{2}	Pr	1.08 ± 0.30	35.3 ± 2.2
$\mathbf{1 9}$	NH_{2}	Bu	0.939 ± 0.341	88.3 ± 3.8
$\mathbf{2 0}$	NHCH_{3}	Bu	0.745 ± 0.045	247 ± 42

${ }^{\mathrm{a}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ PIA binding at the rat brain membranes
${ }^{\mathrm{b}}$ Displacement of specific $\left[{ }^{3} \mathrm{H}\right]$ CGS 21680 at the rat striatal membranes
${ }^{\mathrm{c}}$ Lack of solubility at high concentrations precluded determination of IC_{50}

2.2 Results and Discussion

2.2.1 Rational Design of Pyrazolo[3,4-d]pyrimidines template

Our strategy in the design of ligands for adenosine receptors was to use ligand-based molecular modelling technique to develop a pharmacophore which then would rationally direct the future design of potent and selective ligands. The method was to superimpose the known adenosine receptor ligands and propose ligands with the assumption that adenosine agonists and antagonists bind to a common binding site of the receptor. ${ }^{6-8}$ The superimposition of the ligands possessed good steric, hydrophobic and electrostatic overlap; and placed potential hydrogen bonding sites in close proximity to maximize ligand-receptor binding interations. There are 4 different types of ligand-based model in the literature termed the standard model, flipped model, $\mathrm{N}^{6} / \mathrm{C} 8^{\prime}$ model and $\mathrm{C} 2 / \mathrm{N}^{6} / \mathrm{C} 8^{\prime}$ model.

The 'standard' or 'all nitrogen' model ${ }^{9}$ had the atoms N1, N3, N7 and N9 of both xanthine antagonist and adenosine agonist map onto each other and possessed good steric, hydrophobic and electrostatic overlap (Figure 2.3).

Figure 2.3: Superimposition of adenosine (blue) theophylline (red) according to 'standard' model.

The 'flipped' model ${ }^{9}$ was an improved 'standard model' in which it rotated the xanthine antagonist by $180^{\circ} \mathrm{C}$ about its long axis relative to xanthine antagonists in the 'standard' model to improve the electrostatic overlap but at the same time maintain the steric and hydrophobic overlap of the standard model. Thus N1, N3, N7 and N9 of
adenosine agonist mapped on to C2, C6, N9 and N7 of xanthine antagonist. An example of this was when an A_{1} selective N^{6}-substituted agonist CPA (blue) was modelled via the 'standard' model with an A_{1} selective C 8 -substituted xanthine DPCPX (red), the exocyclic N^{6} - and C8- substituents occupied different spatial regions and did not enhance the steric, hydrophobic or electrostatic overlap while in the 'flipped' model rotation of the xanthine by $180^{\circ} \mathrm{C}$ around its long axis improved the electrostatic overlap (Figure 2.4).
(a)

(b)

Figure 2.4: Superimposition of CPA (blue) and DPCPX (red) according to (a) 'standard' model and (b) 'flipped' model.

The ' $\mathrm{N}^{6} / \mathrm{C} 8$ ' model 7 hypothesized that the N^{6}-substituent of adenosine agonists and C 8 -substituent of xanthine antagonists bind to the same region of the receptor (Fig 2.5), i.e these binding domains were not discrete. This model possessed good steric, electrostatic and hydrophobic overlap and also placed potential hydrogen
bonding sites in close proximity. Comparison of this model with the 'standard' model and 'flipped' model showed significant differences in terms of steric, electrostatic and hydrophobic overlap as well as correlation of hydrogen bonding donor and acceptor when the more potent and selective $\mathrm{A}_{1} \mathrm{~N}^{6}$-substituted adenosine derivative agonist CPA (blue) and C8-substituted xanthine derivative antagonist DPCPX (red) were modelled (Figure 2.4 and 2.5).

Figure 2.5: Superimposition of CPA (blue) and DPCPX (red) according to ' $\mathrm{N}^{6} / \mathrm{C} 8$ ' model.

The ' $\mathrm{C} 2 / \mathrm{N}^{6} / \mathrm{C} 8$ ' model ${ }^{6,10}$ developed by Quinn et al. could be seen as an extension of the ' N / $/ \mathrm{C} 8$ ' model by including the C 2 substituent. This model proposed that the common region of the receptor was occupied by the $\mathrm{N}^{6}, \mathrm{C} 8$ and C 2 hydrophobic binding domains (Figure 2.6). This model possessed good steric, electrostatic and hydrophobic overlap and placed potential hydrogen bonding in close proximity. In addition to the hydrophobic binding domain, the 'three binding domain' model also proposed the central aromatic binding domain and the ribose binding domain in the A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ receptors (Figure 2.7).

Figure 2.6: Superimposition of A_{1} agonist CPA (blue), A_{1} antagonist DPCPX (red) and $\mathrm{A}_{2 \mathrm{~A}}$ agonist CGS 21680 (green) according to ' $\mathrm{C} 2 / \mathrm{N}^{6} / \mathrm{C} 8^{\prime}$ ' model or 'three binding domain'.
(a)

A_{1} ribose domain
(b)

$\mathrm{A}_{2 \mathrm{~A}}$ ribose domain

Figure 2.7: Hydrophobic, aromatic and ribose binding domains as proposed by the $\mathrm{C} 2 / \mathrm{N}^{6} / \mathrm{C} 8$ ' model. (a) A_{1} agonist CPA (blue) and (b) $\mathrm{A}_{2 \mathrm{~A}}$ agonist CGS 21680 (red).

Our previous studies have used the ' $\mathrm{C} 2 / \mathrm{N}^{6} / \mathrm{C} 8$ ' model to superimpose $\alpha-((4-$ thioxo-1-phenylpyrazolo[3,4-d]pyrimidin-6-yl)thio)propionamide (blue) and A_{1} agonist R-PIA (red) to maximize lipophilic factors. ${ }^{6}$ Figure 2.8 showed the highest electrostatic, steric, and lipophilic correlations between these two ligands. Modifications at C-4 and C-6 of α-((4-thioxo-1-phenylpyrazolo[3,4- d]pyrimidin-6yl)thio)propionamide produced α-[(4-amino-1-phenylpyrazolo[3,4-d]pyrimidin-6yl)thio]hexanamide (21) (Figure 2.9) as one of the most potent seletive antagonist ever reported with a $K_{i} A_{1}$ value of $0.745 \pm 0.045 \mathrm{nM}$ and 332 -fold selectivity for the A_{1} receptor over the $A_{2 A}$ receptor. ${ }^{5}$

Figure 2.8: The superimposition of α-((4-thioxo-1-phenylpyrazolo[3,4- d]pyrimidin-6-yl)thio)propionamide (blue) and A_{1} agonist R-PIA (red).

21

Figure 2.9: α-[(4-amino-1-phenylpyrazolo[3,4-d]pyrimidin-6-yl)thio]hexanamide
(21).

Jacobson et al. ${ }^{11}$ have reported that a benzyl (22) or a 3-iodobenzyl (23) substituent at the N^{6}-position of adenosine resulted in high affinity and selective agonists for the adenosine A_{3} receptor (Figure 2.10). (22) had a $K_{i} A_{3}$ values of 6.8 nM and was 13 -fold selective for the A_{3} receptor over the A_{1} receptor and 14 -fold selective for the A_{3} receptor over $A_{2 A}$ while (23) was reported to have a K_{i} of 1.1 nM and 50 -fold selectivity for the A_{3} receptor over A_{1} and $\mathrm{A}_{2 \mathrm{~A}}$ receptors.

22

23

Figure 2.10: Highly selective agonist ligands for the adenosine A_{3} receptor.

We propose that modification of the hydrophobic binding domain of phenyl substituent at the $\mathrm{N}-1$ position of the α-[(4-amino-1-phenylpyrazolo[3,4-d]pyrimidin-6-yl)thio]hexanamide (21) with bulky substituents such as benzyl and iodobenzyl could generate both potent and selective antagonist ligands for the adenosine A_{3} receptor (Figure 2.11 and Figure 2.12). The effects of substituents at the C4 and C6 positions of (21) will also be examined in order to determine the effects on selectivity and potency. Figure 2.11 shows the superimposition of α-[(4-amino-1-phenylpyrazolo[3,4-d]pyrimidin-6-yl)thio]hexanamide (21) (blue) and (22) or (23) (red)

Figure 2.11: The superimposition of α-[(4-amino-1-phenylpyrazolo[3,4- d]pyrimidin6 -yl)thio]hexanamide (21) and (23).

Figure 2.12: Rational design of A_{3} adenosine receptor antagonist with three-point diversity.

2.2.2 Synthesis

Our synthetic approach to the target molecules (24) was based on previous work in which the 1-benzyl-pyrazolo[3,4-d]pyrimidine substituted at C-4 and C-6 was
synthesized from 1-benzyl-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (25). Syntheses of a series of 1-phenyl-pyrazolo[3,4-d]pyrimidines with phenyl as the substitutent at $\mathrm{N}-1$ showed that an alkylthio substituent at $\mathrm{C}-4$ could act as a leaving group to allow nucleophilic substitution by amines to occur. ${ }^{3-5,13,14}$ The core structure 1-benzyl-pyrazolo[3,4-d]pyrimidine-4,6-dithione (25) could be synthesized from readily available benzyl bromide (Scheme 2.1).

Scheme 2.1

Our attention focussed on the synthesis of pyrazolo[3,4-d]pyrimidines substituted with bulky substituents such as benzyl and iodobenzyl at $\mathrm{N}-1$. As the benzyl ring was the starting material, starting from different substituted benzyl halides would require the same number of steps. The silicon directed ipso-substitution of aryl silanes has been extensively studied. ${ }^{15}$ Electrophilic demetalations of aryl silanes with electrophiles ${ }^{15,16}$ such as $\mathrm{H}^{+}, \mathrm{I}^{+}, \mathrm{Br}^{+}$and NO_{2}^{+}would provide substituted aromatic compounds and hence allowed the generation of diversified libraries in the final cleavage step (Scheme 2.2)

$$
\text { Ref } 15
$$

Ref 16

Scheme 2.2

We firstly focussed on the synthesis of 1-(3-bromobenzyl)-pyrazolo[3,4d]pyrimidines substituted at C-4 and C-6 from 3-bromobenzyl halide because it could later incorporate a silyl group into the phenyl ring to allow a desired diversified library (Scheme 2.3).

Scheme 2.3

The first step of the synthesis of 1-(3-bromobenzyl)-pyrazolo[3,4$d]$ pyrimidines substituted at $\mathrm{C}-4$ and $\mathrm{C}-6$ involved $\mathrm{S}_{\mathrm{N}} 2$ addition of hydrazine monohydrate to 3-bromobenzyl chloride in refluxing ethanol for 4 h to give 3bromobenzyl hydrazine (26) in 83% yield as a clear oil after purification by reduced pressure distillation. The hydrazine (26) was unstable and therefore it was
immediately used in the preparation of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) (Scheme 2.4). Nucleophilic addition of 3-bromobenzyl hydrazine to malononitrile followed by intramolecular cyclization gave 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) as white solid in 55% yield. A proposed mechanism for the formation of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) is presented in

Scheme 2.5.

Scheme 2.4: Reagents and conditions: (i) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux, $4 \mathrm{~h}, 83 \%$; (ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{C}(\mathrm{CN})_{2}$, EtOH, reflux, $2 \mathrm{~h}, 55 \%$.

Scheme 2.5

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) showed a singlet at $\delta_{\mathrm{H}} 6.78 \mathrm{ppm}$ assigned to amino protons. The disappearance of this singlet upon $\mathrm{D}_{2} \mathrm{O}$ addition confirmed that there were NH_{2} protons present in the molecule. A singlet at $\delta_{\mathrm{H}} 5.17 \mathrm{ppm}$ was assigned to benzylic proton and a singlet at δ_{H} 7.61 ppm was assigned to the $\mathrm{H}-3$ proton. The IR spectrum showed a broad peak at
$3400 \mathrm{~cm}^{-1}$ assigned to NH_{2} and a weak absorbance at $2200 \mathrm{~cm}^{-1}$ assigned to CN . The ESMS (NI) of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) exhibited molecular ions at $\mathrm{m} / \mathrm{z} 275$ and 277 a.m.u which were consistent with the molecular formulas $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{4}{ }^{79} \mathrm{Br}$ and $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{4}{ }^{81} \mathrm{Br}$.

The next step in the synthesis involved refluxing 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) with potassium O-ethylxanthogenate in DMF at $140^{\circ} \mathrm{C}$ for 2 h . The intermediate was then rearranged to produce 1 -(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidines-4,6-dithione (28) as a light cream solid in 96% yield (Scheme 2.6).

Scheme 2.6: Reagents and conditions: (i) $\mathrm{EtOCS}_{2}{ }^{-} \mathrm{K}^{+}$, DMF, $140^{\circ} \mathrm{C}$, reflux, 2 h ; (ii) $\mathrm{NaOH}(2.0 \mathrm{M})$, RT, 45 min ; (iii) $\mathrm{HCl}(2.0 \mathrm{M}), 96 \%$.

A proposed mechanism for this reaction is shown in (Scheme 2.7). Nucleophilic attack by O-xanthogenate anion at the ortho nitrile of cyanopyrazole (27) and nucleophilic attack by amino nitrogen of the cyanopyrazole (27) at the thiocarbonyl carbon of the O -xanthogenate anion formed the intermediate (29). Treatment of (29) with base, $\mathrm{NaOH}(2.0 \mathrm{M})$, at room temperature opened the ring followed by bond rotation and ring closure gave (30). Protonation of (30) with HCl (2.0 M) gave 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4- d]pyrimidine-4,6-dithione (28). This rearrangement is called a Dimroth Rearrangment. ${ }^{17,18}$

Scheme 2.7

The $\quad{ }^{1} \mathrm{H} \quad$ n.m.r \quad spectrum of 1 -(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) showed the disappearance of the amino protons singlet and appearance of two broad singlets at $\delta_{\mathrm{H}} 8.18 \mathrm{ppm}$ and $\delta_{\mathrm{H}} 11.25 \mathrm{ppm}$ which were assigned to NH protons at N-7 and N-5 respectively. The H-3 proton at $\delta_{\mathrm{H}} 7.80 \mathrm{ppm}$ in 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) was shifted downfield relative to the $\mathrm{H}-3$ proton at $\delta_{\mathrm{H}} 7.61 \mathrm{ppm}$ in 1-(3-bromobenzyl)-5-amino4 -cyanopyrazole (27). Two additional peaks at $\delta_{\mathrm{C}} 176.4 \mathrm{ppm}$ and $\delta_{\mathrm{C}} 179.0 \mathrm{ppm}$ in the
${ }^{13} \mathrm{C}$ n.m.r spectrum of (28) were assigned as C-4 and C-6 respectively. The ESMS (NI) of 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione exhibited molecular ions at $\mathrm{m} / \mathrm{z} 351$ and 353 a.m.u which were consistent with the molecular formulas $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}$ and $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{81} \mathrm{Br}$.

1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) was then either alkylated at C-6 followed by methylation at C-4 or bis-alkylated at C-6 and C-4 to make a good leaving group at C-4 before the nucleophilic substitution by amines at C-4 could take place. S-methyl and S-alkyl at C-4 were both good leaving groups. The first strategy required weak base to remove the more acidic $\mathrm{N}-7$ proton, hence generated the sulphur anion at C-6, to alkylate at C-6 followed by strong base to remove the $\mathrm{N}-5$ proton to methylate at $\mathrm{C}-4$. The second strategy required very strong base to remove both $\mathrm{N}-7$ and $\mathrm{N}-5$ protons to generate sulphur anion at C 6 and C-4.

1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) was treated with a weak base, pyridine, and 1.0 equivalents of 3-bromobenzylbromide at room temperature to obtain 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-mercaptopyrazolo[3,4-d]pyrimidine (31). Since (31) was difficult to purify, the pyridine was removed from the reaction mixture and the crude product (31) was methylated with excess of methyl iodide in dioxane: $\mathrm{NaOH}(2.0 \mathrm{M})(1: 1)$ at room temperature to afforded 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylthio-pyrazolo[3,4-d]pyrimidine (32) in 49% yield and a small amount of 1-(3-bromobenzyl)-4,6-bis-methylthiopyrazolo[3,4-d]pyrimidine (Scheme 2.8).

Scheme 2.8: Reagents and conditions: (i) 3-BrBnBr, Pyr, RT, 20 h ; (ii) MeI, NaOH (2.0 M): Dioxane, RT, 1 h, 49\%.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylthio-pyrazolo[3,4-d]pyrimidine (32) exhibited three singlets at $\delta_{\mathrm{H}} 2.65 \mathrm{ppm}, \delta_{\mathrm{H}}$ 4.41 ppm and $\delta_{\mathrm{H}} 5.49 \mathrm{ppm}$ which were assigned to $\mathrm{SCH}_{3}, \mathrm{SCH}_{2}$ and $\mathrm{N}-\mathrm{CH}_{2}$ respectively. The ${ }^{13} \mathrm{C}$ n.m.r spectrum of (32) showed two additional peaks at $\delta_{\mathrm{C}} 12.2$ ppm and $\delta_{\mathrm{C}} 35.1 \mathrm{ppm}$, assigned to SCH_{3} and SCH_{2} carbons respectively, confirmed the structure of (32). The ESMS (PI) of 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylthio-pyrazolo[3,4-d]pyrimidine (32) exhibited molecular ions at $\mathrm{m} / \mathrm{z} 534,536$ and 538 a.m.u which were consistent with the molecular formulas $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{79} \mathrm{Br}, \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}$ and $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{81} \mathrm{Br}^{81} \mathrm{Br}$.

Attempted bis-benzylation of 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) with excess of 3-bromobenzyl bromide at room temperature using strong base, $\mathrm{NaOH}(2.0 \mathrm{M})$, afforded 1-(3-bromobenzyl)-4,6-bis-(3-bromobenzylthio)-pyrazolo[3,4-d]pyrimidine (33) in 14 h. Bis-alkylation proceeded stepwise via alkylation firstly at the C-6 position followed by the C-4 position since the base firstly removed the more acidic $\mathrm{N}-7$ proton. The reaction went very slowly and was stirred very vigorously since the insoluble 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-mercaptopyrazolo[3,4- d]pyrimidine (31) precipitated from the reaction mixture. Mix-solvent of $\mathrm{NaOH}(2.0 \mathrm{M})$ and dioxane however facilitated the reaction since it formed a homogenous reaction mixture (Scheme 2.9).

28

Scheme 2.9: Reagents and conditions: 3-BrBnBr, NaOH (2.0 M) : Dioxane, RT, 10 h, 50%.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 1-(3-bromobenzyl)-4,6-bis-(3-bromobenzylthio)-pyrazolo[3,4-d]pyrimidine (33) exhibited three singlets at $\delta_{\mathrm{H}} 4.39 \mathrm{ppm}, \delta_{\mathrm{H}} 4.49 \mathrm{ppm}$ and $\delta_{\mathrm{H}} 5.49 \mathrm{ppm}$ which were assigned to benzylic protons at $\mathrm{C}-6, \mathrm{C}-4$ and $\mathrm{N}-1$ positions respectively. The ${ }^{13} \mathrm{C}$ n.m.r spectrum of (33) showed two additional peaks at $\delta_{\mathrm{C}} 32.6 \mathrm{ppm}$ and $\delta_{\mathrm{C}} 35.1 \mathrm{ppm}$, assigned for two additional benzylic carbons at $\mathrm{C}-4$ and C-6 respectively, confirming the structure of (33). The ESMS (PI) of 1-(3-bromobenzyl)-4,6-bis-(3-bromobenzylthio)-pyrazolo[3,4-d]pyrimidine (33) exhibited molecular ions at $\mathrm{m} / \mathrm{z} 688,690,692$ and 694 a.m.u which were consistent with the molecular formulas $\quad \mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{79} \mathrm{Br}^{79} \mathrm{Br}, \quad \mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{79} \mathrm{Br}^{81} \mathrm{Br}$, $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{81} \mathrm{Br}$ and $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{81} \mathrm{Br}^{81} \mathrm{Br}^{81} \mathrm{Br}$.

Having successful alkylated at C-4 and C-6, the desired targer molecule could be formed by substituting S-alkyl leaving group with nucleophilic amine. Since nucleophilic substitution of purines occurred preferentially at C-6, ${ }^{19,20}$ pyrazolop[3,4$d]$ pyrimidines would undergo nucleophilic substitution at C-4 because the C-6 position in purines corresponded to the C-4 position in pyrazolop[3,4-d]pyrimidines (Figure 2.10). 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylthio-pyrazolo[3,4d]pyrimidine (32) and 1-(3-bromobenzyl)-4,6-bis-(3-bromobenzylthio)-pyrazolo[3,4d]pyrimidine (33) both could undergo nucleophilic displacement with secondary amines. However, (33) was chosen as a starting material since it could be prepared in only one step from 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) without any difficulties in comparison with the preparation of (32).

34

1

Figure 2.13: The imidazo[4,5-d]pyrimidine (purine) (34) and pyrazolo[3,4d]pyrimidine (1) heterocycles.

1-(3-bromobenzyl)-4,6-bis(3-bromobenzylthio)-pyrazolo[3,4-d]pyrimidine
(33) was treated with excess of methylamine in methanol for 8 h at $60^{\circ} \mathrm{C}$ to produce 1-
(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylamino-pyrazolo[3,4-d]pyrimidine (35) in 52% yield. The ${ }^{1} \mathrm{H}$ n.m.r spectrum of (35) showed the absence of the singlet at $\delta_{\mathrm{H}} 4.49 \mathrm{ppm}$ and appearance of doublet at $\delta_{\mathrm{H}} 2.90 \mathrm{ppm}(J=4.8 \mathrm{~Hz})$ which confirmed the substitution of S-benzylic by N-methyl at C-4. The ${ }^{13} \mathrm{C}$ n.m.r spectrum of (35) also exhibited the signal at $\delta_{\mathrm{C}} 27.6 \mathrm{ppm}$ assigned to NCH_{3} and no signal at $\delta_{\mathrm{C}} 32.6 \mathrm{ppm}$ due to the substitution of S-3-bromobenzyl by methyl amine. The ESMS (PI) of 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylamino-pyrazolo[3,4-d]pyrimidine (35) exhibited molecular ions at $m / z 518,520$ and 522 a.m.u which were consistent with the molecular formulas $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}^{79} \mathrm{Br}^{79} \mathrm{Br}, \quad \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}^{79} \mathrm{Br}^{81} \mathrm{Br} \quad$ and $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}^{81} \mathrm{Br}^{81} \mathrm{Br}$.

Scheme 2.10: Reagents and conditions: $\mathrm{CH}_{3} \mathrm{NH}_{2}$ in $\mathrm{MeOH}, 60^{\circ} \mathrm{C}, 8 \mathrm{~h}, 52 \%$.

2.3 Conclusion

The synthesis of 3-bromobenzylpyrazolo[3,4-d]pyrimidines substituted at C-6 and C-4 from 3-bromobenzyl chloride was achieved. It was next to incorporate a silyl group into the phenyl ring of 3-bromobenzyl substituted pyrazolo[3,4- d]pyrimidines to allow molecular diversity generation.

2.4 Experimental

Melting points were recorded on a Gallenkamp digital melting point apparatus and are uncorrected. Infra-red absorption spectra were obtained on a Perkin Elmer FT-IR spectrophotometer using sodium chloride plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (n.m.r) spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer, Varian Unity-400 (400 MHz) spectrometer or Varian Unity Plus-600 $(600 \mathrm{MHz})$ spectrometer. All samples were dissolved in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ containing tetramethylsilane (TMS) as an internal reference unless otherwise stated. The signals are recorded in terms of chemical shift in parts per million (ppm) downfield from TMS $(\delta=0)$ for protons or $\mathrm{CDCl}_{3}(\delta=77)$ for carbon atoms. The signals are recorded in terms of chemical shift $\left(\delta_{H}\right)$, relative integral, multiplicity, coupling constants (J Hz) and assignments, in that order. The following abbreviations for multiplicity are used: $\mathrm{s}=$ singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were assigned with the aid of HMQC (Heteronuclear Multiple-Quantum Coherence), HMBC (Heteronuclear Multiple-Bond Coherence) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Correlation Spectroscopy). Electrospray mass spectra (ESMS) were recorded on a Fisons VG Platform mass spectrometer with MassLynx Data System software.

Microanalytical data was obtained from University of Queensland Microanalytical Service.

Analytical thin layer chromatography (TLC) was performed using precoated $(0.2 \mathrm{~mm})$ Merck silica gel plates (Merck Kieselgel $60 \mathrm{~F}_{254}$). Flash chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) with the indicated solvents.

All solvents for chromatography were distilled before use, unless otherwise stated. Ether refers to diethyl ether and hexane refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$. Mixed solvent compositions are quoted as v / v.

Solvents and reagents were purified according to the standard techniques of Perrin, Perrin and Amarego. ${ }^{21}$

1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27)

To a refluxing solution of hydrazine monohydrate $(46.44 \mathrm{~g}, 45.0 \mathrm{ml}, 0.93 \mathrm{~mol})$ in ethanol $(150 \mathrm{ml})$, a solution of 3-bromobenzyl chloride $(20.26 \mathrm{~g}, 12.6 \mathrm{ml}, 0.099$ mol) in ethanol (50 ml) was added dropwise over a period of 1 h . The reaction mixture was refluxed for additional 3 h before the solvent was removed in vacuo. The remaining pale yellow liquid was extracted with ether ($3 \times 50 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to yield crude oil. The crude oil was purified by distillation under reduced pressure through a Vigreux column to yield 3-bromobenzylhydrazine (26) $(16.50 \mathrm{~g}, 83 \%)$ as a clear oil, bp 99-100 ${ }^{\circ} \mathrm{C}$, at 0.6 mm Hg . The 3-bromobenzylhydrazine (26) was unstable and hence it was not fully characterised; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 3.46\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{NH}-\mathrm{NH}_{2}\right), 3.73(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $7.27\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.31\left(\mathrm{dt}, J_{\text {ortho }}=7.6 \mathrm{~Hz}, J_{\text {meta }}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $7.42\left(\mathrm{dt}, J_{\text {ortho }}=7.6 \mathrm{~Hz}, J_{\text {meta }}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.52\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$; ESMS (PI) 201 and 203. calcd for $\left(\mathrm{C}_{7} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{2}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{7} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{2}+1[\mathrm{H}]\right)$ respectively. Found 201 and 203.

To a stirred solution of ethoxymethylenemalononitrile $(9.9 \mathrm{~g}, 0.081 \mathrm{~mol})$ in ethanol (100 ml) under argon, a solution of 3-bromobenzylhydrazine (26) (16.30 g , 0.081 mol) in ethanol (20 ml) was added dropwise. The resultant mixture was refluxed over 2 h and a deep red colour solution was produced. The reaction mixture was left to cool to room temperture and yellow crystalline material precipitated. Precipitation was further enhanced by cooling in the fridge overnight before it was filtered and the solid was washed with cold ethanol. The crude solid was purified by flash chromatography (50\% ethyl acetate-hexane) to afford 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) ($12.34 \mathrm{~g}, 55 \%$) as white solid, $\mathrm{mp} 101.5 \pm 0.5{ }^{\circ} \mathrm{C}$; δ_{H} (400 MHz, DMSO-d $\mathrm{d}_{6} 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$,
$6 '-\mathrm{H}), 7.30\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{t}, J_{\mathrm{meta}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.49(\mathrm{~d}, J=8.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.61(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 49.3\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{C}-$ 4), 115.1 (CN), 121.7 (C-3'), 126.4 (C-6'), 130.1 (C-2'), 130.4 (C-4'), 130.7 (C-5'), 139.3 (C-1'), $140.8(\mathrm{C}-3)$ and $151.7(\mathrm{C}-5) ; v_{\max }(\mathrm{NaCl}$ plates $) / \mathrm{cm}^{-1} 3400\left(\mathrm{NH}_{2}\right)$ and 2200 (CN). Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{4}$: C, 47.68; H, 3.27; N, 20.22C. Found C, 47.80; H, 3.17; N, 20.30\%; ESMS (NI) 275 and 277. calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ respectively. Found 275 and 277.

1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28)

To a solution of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) (8.32 g, 30.0 mmol) in dry DMF (50 ml) under argon was added potassium-Oethylxanthogenate $(9.62 \mathrm{~g}, 60.0 \mathrm{mmol})$. The reaction mixture was heated to $140{ }^{\circ} \mathrm{C}$ for 2 h under argon. The initial orange and opaque solution turned to dark brown after 2 h . The reaction mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure to afford crude brown oil. $\mathrm{NaOH}(2.0 \mathrm{M}, 30 \mathrm{ml}$) was added to the remaining brown oil and stirred at room temperature for 45 min . The basic solution was filtered to give a transparent orange filtrate. $\mathrm{HCl}(2.0 \mathrm{M})$ was added dropwise to the filtrate until the neutral pH was reached. A creamy coloured precipitate was formed upon the neutralisation of the filtrate. The crude product was collected by suction filtration and recrystallised from DMSO and water to afford 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) (10.18 g, 96\%) as light cream solid, $\mathrm{mp}>230^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) 5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.08(\mathrm{~d}$, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.22\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.29\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.40(\mathrm{~d}, J=$ $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{H}\right), 7.80(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.18(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and $11.25(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ (100 MHz, DMSO-d 6) 49.2 (CH_{2}), 112.7 (C-3a), 122.4 (C-3'), 126.9 (C-6'), 130.5 (C-

2'), 130.9 (C-4'), 131.4 (C-5'), 137.4 (C-3), 140.8 (C-1'), 150.4 (C-7a), 176.4 (C-4) and 179.0 (C-6); ESMS (NI) 351 and 353. calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4} \mathrm{~S}_{2}-1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{12} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{4} \mathrm{~S}_{2}-1[\mathrm{H}]\right)$ respectively. Found 351 and 353.

1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylthiopyrazolo[3,4-d]pyrimidine (32)

To a solution of 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine4,6dithione (28) ($0.2 \mathrm{~g}, 0.566 \mathrm{mmol}$) in dry pyridine (5 ml) under argon was added 3bromobenzyl bromide $(0.141 \mathrm{~g}, 0.564 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 20 h . The solvent was removed from reaction mixture under reduced pressure to afford the crude material, 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-mercaptopyrazolo[3,4-d]pyrimidine (31). The crude material (31) was dissolved in $\mathrm{NaOH}(2.0 \mathrm{M})(5 \mathrm{ml}) /$ Dioxane (5 ml). Methyliodide ($45 \mu \mathrm{l}, 0.722$ mmol) was added and the reaction mixture was stirred at room temperature for 1 h . The reaction mixture was extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The resultant residue was purified by flash chromatography (10% ethyl acetate-hexane) to yield 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylthiopyrazolo[3,4-d]-pyrimidine (32) (148 mg, 49\%) as white solid, mp $109.5 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.10-7.65(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.95(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 12.2$ $\left(\mathrm{CH}_{3}\right), 35.1\left(\mathrm{CH}_{2}\right), 50.3\left(\mathrm{CH}_{2}\right), 109.9(\mathrm{C}-3 \mathrm{a}), 122.6-132.6(11 \mathrm{Ar}-\mathrm{C}), 138.5(\mathrm{C}-3)$, 140.4 (Ar-C), 151.9 (C-7a), 165.9 (C-4) and 167.9 (C-6); Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{Br}_{2}$: C, 44.79; H, 3.01; N, 10.45. Found C, 47.92; H, 3.83; N, 9.02%; ESMS (PI) 534, 536 and 538. calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{79} \mathrm{Br}+1[\mathrm{H}]\right)$,
$\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}+1[\mathrm{H}]\right)$ and $\left.\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{81} \mathrm{Br}^{81} \mathrm{Br}+1[\mathrm{H}]\right)$ respectively. Found 534, 536 and 538.

1-(3-bromobenzyl)-4,6-bis-(3-bromobenzylthio)pyrazolo[3,4-d]pyrimidine (33)

28

33

To a solution of 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine4,6dithione (28) ($0.26 \mathrm{~g}, 0.736 \mathrm{mmol}$) in $\mathrm{NaOH}(2.0 \mathrm{M})(10 \mathrm{ml}) /$ Dioxane $(10 \mathrm{ml})$ was added 3-bromobenzyl bromide ($0.46 \mathrm{~g}, 1.84 \mathrm{mmol}$). After stirring at room temperature for 10 h , the reaction mixture was extracted with ethyl acetate (3×30 $\mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The resultant residue was purified by flash chromatography (10% ethyl acetate-hexane) to yield 1-(3-bromobenzyl)-4,6-bis-(3-bromobenzylthio)pyrazolo[3,4-d]pyrimidine (33) (254 mg , 50%) as white solid, $\mathrm{mp} 116.5 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.49(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $5.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.10-7.70(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.91(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}) 32.2\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 50.4\left(\mathrm{CH}_{2}\right), 109.6(\mathrm{C}-3 \mathrm{a}), 122.7-132.5(16 \mathrm{Ar}-\mathrm{C})$, 138.4 (C-3), 139.5 (Ar-C), 140.2 (Ar-C), 152.1 (C-7a), 164.1 (C-4) and 167.0 (C-6); Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{Br}_{3}$: C, 45.17; H, 2.77; N, 8.10. Found C, 45.05; H, 2.55; N, 7.97%; ESMS (PI) 688, 690, 692 and 694. calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{79} \mathrm{Br}^{79} \mathrm{Br}+\right.$ $1[\mathrm{H}]),\left(\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{79} \mathrm{Br}^{81} \mathrm{Br}+1[\mathrm{H}]\right),\left(\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{81} \mathrm{Br}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{81} \mathrm{Br}^{81} \mathrm{Br}^{81} \mathrm{Br}+1[\mathrm{H}]\right)$ respectively. Found 688, 690, 692 and 694.

1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylamino-pyrazolo[3,4-d]-

 pyrimidine (35)

To a solution of methylamine in methyl alcohol ($10 \mathrm{ml}, 2.0 \mathrm{M}, 10 \mathrm{mmol}$) was added 1-(3-bromobenzyl)-4,6-bis-(3-bromobenzylthio)pyrazolo[3,4-d]pyrimidine (33) $(0.150 \mathrm{~g}, 0.217 \mathrm{mmol})$ and the mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was concentrated and purified by flash chromatography (2.5% methanolDCM) to yield 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylamino-pyrazolo[3,4-d]pyrimidine (35) (59 mg, 52\%) as white solid, mp $161.5 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ (400 MHz, DMSO-d d_{6}) $2.90\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 4.34 (s, 2H, CH 2), 5.41 (s, 2H, CH_{2}), 7.05-7.45 (m, 7H, Ar-H), 7.59 ($\mathrm{s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}$ at C-6), 7.97 ($\mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}$), and 8.37 $(\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 27.6\left(\mathrm{NCH}_{3}\right), 34.1\left(\mathrm{SCH}_{2}\right), 49.6$ $\left(\mathrm{CH}_{2}\right), 99.1$ (C-3a), 122.0-132.2 (10 Ar-C + C-3), 140.6 (Ar-C), 142.8 (Ar-C), 153.8 (C-7a), 156.6 (C-4) and 168.2 (C-6); Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{SBr}_{2}$: C, 46.26; H, 3.30; N, 13.49. Found C, 45.64; H, 3.26; N, 12.98\%; ESMS (PI) 518, 520 and 522. calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}^{79} \mathrm{Br}^{79} \mathrm{Br}+1[\mathrm{H}]\right),\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}^{79} \mathrm{Br}^{81} \mathrm{Br}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{~S}^{81} \mathrm{Br}^{81} \mathrm{Br}\right.$ $+1[\mathrm{H}])$ respectively. Found, 518, 520 and 522.

2.5 References

(1) Davies, L. P.; Chow, S. C.; Skerritt, J. H.; Brown, D. J.; Johnston, G. A. R. Pyrazolo[3,4-d]pyrimidines as adenosine antagonists. Life Sciences 1984, 34, 2117-2128.
(2) Davies, L. P.; Brown, D. J.; Chow, S. C.; Johnston, G. A. R. Pyrazolo[3,4d]pyrimidines, a new class of adenosine antagonists. Neuroscience Letters 1983, 41, 189-193.
(3) Chebib, M.; Quinn, R. J. Pyrazolo[3,4-d]pyrimidines; adenosine receptor selectivity. Bioorganic \& Medicinal Chemistry Letters 1995, 5, 2409-2412.
(4) Chebib, M.; McKeveney, D.; Quinn, R. J. 1-Phenylpyrazolo[3,4d]pyrimidines; structure-activity relationships for C6 substituents at A1 and A2A adenosine receptors. Bioorganic \& Medicinal Chemistry 2000, 8, 25812590.
(5) Poulsen, S.-A.; Quinn, R. J. Synthesis and Structure-Activity Relationship of Pyrazolo[3,4-d]pyrimidines: Potent and Selective Adenosine A1 Receptor Antagonists. Journal of Medicinal Chemistry 1996, 39, 4156-4161.
(6) Dooley, M. J.; Quinn, R. J. The three binding domain model of adenosine receptors: molecular modeling aspects. Journal of Medicinal Chemistry 1992, 35, 211-216.
(7) Peet, N. P.; Lentz, N. L.; Meng, E. C.; Dudley, M. W.; Ogden, A. M. L. et al. A novel synthesis of xanthines: support for a new binding mode for xanthines with respect to adenosine at adenosine receptors. Journal of Medicinal Chemistry 1990, 33, 3127-3130.
(8) Van Galen, P. J. M.; Van Vlijmen, H. W. T.; Ijzerman, A. P.; Soudijn, W. A model for the antagonist binding site on the adenosine A1 receptor, based on steric, electrostatic, and hydrophobic properties. Journal of Medicinal Chemistry 1990, 33, 1708-1713.
(9) Van der Wenden, E. M.; Ijzerman, A. P.; Soudijn, W. A steric and electrostatic comparison of three models for the agonist/antagonist binding site on the adenosine A1 receptor. Journal of Medicinal Chemistry 1992, 35, 629635.
(10) Quinn, R. J.; Dooley, M. J.; Escher, A.; Harden, F. A.; Jayasuriya, H. A computer generated model of adenosine receptors rationalising binding and selectivity of receptor ligands. Nucleosides \& Nucleotides 1991, 10, 11211124.
(11) Gallo-Rodriguez, C.; Ji, X.-d.; Melman, N.; Siegman, B. D.; Sanders, L. H. et al. Structure-Activity Relationships of N6-Benzyladenosine-5'-uronamides as A3-Selective Adenosine Agonists. Journal of Medicinal Chemistry 1994, 37, 636-646.
(12) Tucker, A. L.; Robeva, A. S.; Taylor, H. E.; Holeton, D.; Bockner, M. et al. A1 adenosine receptors. Two amino acids are responsible for species differences in ligand recognition. Journal of Biological Chemistry 1994, 269, 27900-27906.
(13) Chebib, M.; Quinn, R. J. 1-Phenylpyrazolo[3,4-d]pyrimidines as adenosine antagonists: the effects of substituents at C4 and C6. Bioorganic \& Medicinal Chemistry 1997, 5, 311-322.
(14) Poulsen, S.-A.; Quinn, R. J. Pyrazolo[3,4-d]pyrimidines: C4, C6 substitution leads to adenosine A1 receptor selectivity. Bioorganic \& Medicinal Chemistry Letters 1996, 6, 357-360.
(15) Chan, T. H.; Fleming, I. Electrophilic substitution of organosilicon compounds - applications to organic synthesis. Synthesis 1979, 761-786.
(16) Eaborn, C. Cleavages of aryl-silicon and related bonds by electrophiles. Journal of Organometallic Chemistry 1975, 100, 43-57.
(17) Dimroth, O. Intramolecular Rearrangements. Ann. 1909, 364, 183-226.
(18) Dimroth, O.; Michaelis, W. Intramolecular rearrangement of 5-amino-1,2,3triazole. Ann. 1927, 459, 39-46.
(19) Lister, J. H. In Fused Pyrimidines. Part II: Purines. Ed. Brown, D. J. WileyInterscience, New York. 1971.
(20) Lunt, E. Purines and analogues, 1979; 497-521.
(21) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition, 1997; 512 pp.

CHAPTER 3

Application of Silicon Chemistry in synthesis of diversified library

3.1 Introduction:

Introduced in the early 1990's, combinatorial chemistry and parallel synthesis techniques ${ }^{1}$ were regarded as an important tools in lead generation and lead optimization in the drug discovery process because they had the potential to synthesize compounds faster than classical organic synthesis. The aims of the project were to synthesize a series of pyrazolo[3,4-d]pyrimidines with bulky substituents such as benzyl and iodobenzyl at $\mathrm{N}-1$. They could be synthesized by parallel solution synthesis but required the same number of steps. In the last 10 years, silicon was developed as a linkage element to the solid support in the solid phase synthesis ${ }^{2,3}$ since it could be cleaved with a variety of electrophiles such as $\mathrm{H}^{+}, \mathrm{I}^{+}, \mathrm{Br}^{+}, \mathrm{Cl}^{+}, \mathrm{Ac}^{+}$, $\mathrm{NO}_{2}{ }^{+}$, etc to produce diversified libraries (Scheme 3.2 and Scheme 3.3). ${ }^{4-15}$

Scheme 3.1

Scheme 3.2: E is the electrophiles such as $\mathrm{H}^{+}, \mathrm{I}^{+}, \mathrm{Br}^{+}, \mathrm{Cl}^{+}, \mathrm{Ac}^{+}, \mathrm{NO}_{2}^{+}$, etc.

Having successful synthesized pyrazolo[3,4-d]pyrimidines with 3bromobenzyl substituted at $\mathrm{N}-1$, we attemped to synthesize a series of pyrazolo[3,4$d]$ pyrimidines heterocylce by solid phase synthesis because solid phase synthesis had several advantages over solution phase synthesis such as easy work-up procedures; high yields by employing excess reagents; and amenability to automation. In order to undertake a solid phase synthesis of pyrazolo[3,4-d]pyrimidines, a silyl group was firstly incorporated into the phenyl ring of 3-bromobenzyl substituted pyrazolo[3,4d]pyrimidines.

3.2 Results and Discussion

3.2.1 Protection and deprotection of the intermediate (27)

Solution phase synthesis of 1-(3-bromobenzyl)-pyrazolo[3,4-d]pyrimidines substituted at C-4 and C-6 had been successfully completed as a feasibility study of the combinatorial synthetic work (Scheme 3.3). An intermediate 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) in this pathway was considered a suitable intermediate for incorporation of a silyl group into the phenyl ring (Scheme 3.4).

33

Scheme 3.3

27

Scheme 3.4

The 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) was first protected before incorporation of the silyl into the phenyl ring via lithium-halogen exchange with butyl lithium. The allyl group was chosen as a protecting group for the amino
functional group since it was very stable to acid and base conditions; inert to nucleophiles such as butyllithium reagent or Grignard reagent and could be readily removed by isomerization to the enanmine ${ }^{16}$ or by rhodium-catalyzed isomerization ${ }^{17}$ (Scheme 3.5).

27
36

Scheme 3.5

The protection of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) was attempted with diisopropylethylamine and allyl bromide using Laguzza's procedure in the synthesis of anticapsin (Scheme 3.6) but was unsuccessful. However, 5-allylamino-1-(3-bromobenzyl)-4-cyanopyrazole (37) was produced as a major product (Scheme 3.7). A stronger base, sodium hydride, was used to generate amide anion which was then added to allylbromide. A mixture of 5-allylamino-1-(3-bromobenzyl)-4-cyanopyrazole (37) and 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) were produced when 2.3 equivalents of sodium hydride was used. The 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) was produced as only major product when 4.4 equivalents of sodium hydride was used (Scheme 3.8) (Table 3.1).

Scheme 3.6: Reagents and conditions: DIPEA, Allylbromide, Toluene, reflux, 84\%.

Scheme 3.7: Reagents and conditions: DIPEA, Allylbromide, THF, reflux, 24 h, 78\%.

Scheme 3.8: Reagents and conditions: NaH, Allylbromide, THF, RT, 3 h, 97%.

Table 3.1: Comparison of protection methods of 1-(3-bromobenzyl)-5-amino-4cyanopyrazole (27).

Solvent	Reagents	Conditions	Yields
THF	DIPEA (6.0 eq)	$85^{\circ} \mathrm{C}, 24 \mathrm{~h}$	78 \% Monoallylated product (37)
	Allyl bromide		
THF	NaH (2.3 eq)	RT, 3 h	38 \% Monoallylated product (37)
	Allyl bromide		57 \% Diallylated product (36)
THF	NaH (4.4 eq) Allyl bromide	RT, 3 h	97 \% Diallylated product (36)

The structure of 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) was confirmed by the absence of the amino protons singlet at $\delta_{\mathrm{H}} 6.78 \mathrm{ppm}$ and the
addition of allyl protons at $\delta_{\mathrm{H}} 3.60-3.65 \mathrm{ppm}, \delta_{\mathrm{H}} 5.10-5.20 \mathrm{ppm}$ and $\delta_{\mathrm{H}} 5.59-5.71 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ n.m.r spectrum. ${ }^{13} \mathrm{C}$ n.m.r spectrum of (36) contained three additional peaks for allyl carbons at $\delta_{\mathrm{C}} 56.3, \delta_{\mathrm{C}} 119.9$ and δ_{C} 132.8. The ESMS (NI) of 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) exhibited molecular ions at $\mathrm{m} / \mathrm{z} 355$ and 357 a.m.u which were consistent with the molecular formulas $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{4}{ }^{79} \mathrm{Br}$ and $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{4}{ }^{81} \mathrm{Br}$.

Having achieved the protection of the 1-(3-bromobenzyl)-5-amino-4cyanopyrazole (27), the deprotection of diallylamine was investigated using mild conditions so that it wouldn't cleave the proposed aromatic silicon-carbon bond. Laguzza ${ }^{17}$ reported a procedure wherein 1-adamantyldiallylamine was deallylated to 1-adamantylamine via a isomerisation of the double bond in the present of the transition metals (Scheme 3.9). Laguzza's procedure was used to attempt to deprotect 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) but only starting material was recovered from the reaction.

Scheme 3.9: Reagents and conditions: $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}, \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$, reflux, $2 \mathrm{~h}, 65 \%$.

Palladium catalyst was also used but it was unsuccessful. However, Palladium catalysts did remove the allyl protecting group from 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) in the present of dimethyl barbituric acid (DMBA), a carbon nucleophile which acted as an allyl scavenger (Scheme 3.10) (Table 3.2). ${ }^{18-20}$ The structure of the product obtained from the deprotection reaction was confirmed by the n.m.r data of the mixed sample of the product obtained from the reaction and the synthesized 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27).

Scheme 3.10: Reagents and conditions: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \% \mathrm{eq})$, $\mathrm{DMBA}(6 \mathrm{eq}), \mathrm{DCM}, 40^{\circ} \mathrm{C}, 3 \mathrm{~h}, 94 \%$.

Table 3.2: Comparison of deprotection methods to generate 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27).

Solvents	Reagents	Conditions	Comments
$\mathrm{H}_{2} \mathrm{O}: \mathrm{THF}$ $(8: 2)$	Wilkinson cat (8\% eq)	$75^{\circ} \mathrm{C}, 15 \mathrm{~h}$	Recovered SM
$\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}$ $(8: 2)$	Wilkinson cat (8\% eq)	$95^{\circ} \mathrm{C}, 16 \mathrm{~h}$	Recovered SM
$\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}$ $(8: 2)$	Wilkinson cat $(8 \% \mathrm{eq}) /$ DABCO $(0.4 \mathrm{eq})$	$95^{\circ} \mathrm{C}, 15 \mathrm{~h}$	Recovered SM
THF	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \% \mathrm{eq})$	$75^{\circ} \mathrm{C}, 14 \mathrm{~h}$	Recovered SM
DCM	$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \% \mathrm{eq}) /$ $\mathrm{DMBA}^{(6 ~ e q)}$	$40^{\circ} \mathrm{C}, 3 \mathrm{~h}$	$94 \%(27)$

3.2.2 $1^{\text {st }}$ attempted incorporation of silyl group into phenyl ring

Having successfully achieved the protection and deprotection of the intermediate 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27), a silyl group was then incorporated into the phenyl ring so that the diversified libraries of pyrazolo[3,4$d]$ pyrimidines could be generated in the final stage of the synthesis. Attempts to treat the 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) with nBuLi or Mg followed by quenching with allylchlorodimethylsilane were unsuccessful. However,
silylation occurred at the benzylic carbon rather than at lithium-halogen exchange position when ${ }^{\text {t }} \mathrm{BuLi}$ was used (Scheme 3.11).

Scheme 3.11: Reagents and conditions: ${ }^{\mathrm{t}} \mathrm{BuLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, allylchlorodimethylsilane, 70%.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 1-(1-allyldimethylsilyl-1-(3-bromophenyl)methyl)-N,N-bisallyl-4-cyanopyrazole (38) showed the addition of peaks corresponding to the allyldimethylsilane. Two methyl proton singlets at $\delta_{\mathrm{H}} 0.030 \mathrm{ppm}$ and $\delta_{\mathrm{H}} 0.035$ indicated that the two methyl groups attached to silicon were present. Two doublet of doublets with $J_{\mathrm{gem}}=13.6 \mathrm{~Hz}$ and $J=8.0 \mathrm{~Hz}$ at $\delta_{\mathrm{H}} 1.51 \mathrm{ppm}$ and $\delta_{\mathrm{H}} 1.61 \mathrm{ppm}$ were assigned to the methylene protons next to the silicon carbon. Two multiplets at δ_{H} 4.73-4.85 ppm and $\delta_{\mathrm{H}} 5.47-5.66 \mathrm{ppm}$ were assigned to two vinylic protons $\left(\mathrm{CH}_{2}\right)$ and the remaining vinylic proton of the allyl group attached to silicon atom. The benzylic proton singlet at $\delta_{\mathrm{H}} 4.95$ confirmed the position of the silylation. The ESMS (PI) of 1-(1-allyldimethylsilyl-1-(3-bromophenyl)methyl)-N,N-bisallyl-4-cyanopyrazole exhibited molecular ions at $\mathrm{m} / \mathrm{z} 455$ and 457 a.m.u which were consistent with the molecular formulas $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{Si}^{79} \mathrm{Br}$ and $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{Si}^{81} \mathrm{Br}$.

3.2.3 $2^{\text {nd }}$ attempted incorporation of silyl group into phenyl ring

The first attempted incorporation of a silyl group in an intermediate 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) to obtain 1-(3-allyldimtheylsilylbenzyl)5 -amino-4-cyanopyrazole (39) was unsuccessful. An alternative synthetic route was devised with the incorporation of a silyl group at the early stages of a longer
synthesis. The new proposed route for the synthesis of 1-(3-allyldimethysilyllbenzyl)5 -amino-4-cyanopyrazole (39) is outlined in Scheme 3.12.

Scheme 3.12

The synthetic route required the protection of the hydroxyl group prior to incorporation of the desired silyl side chain. Tetrahydropyranyl (THP) was chosen as a protecting group since it is very cheap and generally proceeds in very high yield. It is stable to alkali and lithium alkyl and can be removed very easily. The protection of 3-bromobenzyl alcohol (40) was achieved by mixing the alcohol with dihydropyran in the presence of acid catalysis. Once the hydroxyl group was protected, a silyl side chain was introduced into a phenyl ring by reacting with nBuLi followed by quenching with allylchlorodimethylsilane to produce O-tetrahydropyranyl-3allyldimethylsilylbenzyl ether (41) (Scheme 3.13).

Scheme 3.13: Reagents and conditions: (i) 3,4-dihydro-2H-pyran, p-TsOH, DCM, RT, 5 h, 99%; (ii) n - BuLi , THF, $-78{ }^{\circ} \mathrm{C}$, allylchlorodimethylsilane, 70%.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of O-tetrahydropyranyl-3-allyldimethylsilylbenzyl ether (41) showed the addition of peaks corresponding to the allyldimethylsilyl side chain. A methyl protons singlet at $\delta_{\mathrm{H}} 0.030 \mathrm{ppm}$ indicated that the two methyl groups attached to silicon were symmetrical. A multiplet at $\delta_{\mathrm{H}} 4.72-5.00 \mathrm{ppm}$ was assigned to two vinylic protons $\left(\mathrm{CH}_{2}\right)$ and a multiplet at $\delta_{\mathrm{H}} 5.68-5.96 \mathrm{ppm}$ was assigned to the remaining vinylic proton of the allyl group. The ${ }^{13} \mathrm{C}$ n.m.r spectrum of (41) showed a signal at $\delta_{\mathrm{C}}-3.1 \mathrm{ppm}$ confirmed the presence of the two methyl groups attached to silicon. The ESMS (PI) of O-tetrahydropyranyl-3-allyldimethylsilylbenzyl ether (41) exhibited molecular ions at $m / z 291$ a.m.u which was consistent with the molecular formula $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$.

Having successful incorporated a desired silyl side chain into a phenyl ring, tetrahydropyranyl (THP) was then removed to obtain an alcohol which could then be converted into a corresponding bromide using a mild reagent of triphenylphosphine and carbon tetrabromide. O-tetrahydropyranyl-3-allyldimethylsilylbenzyl ether (41) was treated with p-toluenesulfonic acid in methanol at room temperature for 14 h to obtain 3-allyldimethylbenzyl alcohol (42). It was found that leaving the deprotection reaction for more than 20 h led to the loss of 3-allyldimethylbenzyl alcohol (42) (Scheme 3.14).

Scheme 3.14: Reagents and conditions: TsOH, MeOH, RT, 14 h, 80%.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 3-allyldimethylbenzyl alcohol (42) showed the loss of peaks corresponding to the tetrahydropyranyl protecting group. A singlet at $\delta_{\mathrm{H}} 0.26$ ppm, a doublet of triplets with $J=8.0 \mathrm{~Hz}$ and $J=1.2 \mathrm{~Hz}$ at $\delta_{\mathrm{H}} 1.73 \mathrm{ppm}$ and two
multiplets at $\delta_{\mathrm{H}} 4.79-4.87 \mathrm{ppm}$ and $\delta_{\mathrm{H}} 5.68-5.80 \mathrm{ppm}$ were assigned to methyl protons, methylene protons and vinylic protons of the allyl group respectively. A triplet with $J=6.0 \mathrm{~Hz}$ at $\delta_{\mathrm{H}} 1.65 \mathrm{ppm}$ was assigned to the hydroxyl proton and a doublet with $J=6.0 \mathrm{~Hz}$ at $\delta_{\mathrm{H}} 4.67 \mathrm{ppm}$ was assigned to the benzylic protons. The ${ }^{13} \mathrm{C}$ n.m.r spectrum of (42) showed a signal at $\delta_{\mathrm{C}}-3.3 \mathrm{ppm}$ confirmed the presence of the two methyl groups attached to silicon and a signal at $\delta_{\mathrm{C}} 65.8 \mathrm{ppm}$ confirmed the loss of the tetrahydropyranyl protecting group. The ESMS (PI) of 3-allyldimethylbenzyl alcohol (42) exhibited molecular ions at $m / z 207$ a.m.u which was consistent with the molecular formula $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OSi}$.

3-allyldimethylbenzyl alcohol (42) was then converted into the corresponding bromide using a mild reagent of triphenylphosphine and carbon tetrabromide in dichloromethane. The crude 3-allyldimethylbenzyl bromide (43) was produced as a gum after removal of dicholoromethane. This gum was first triturated with 1:1 ethyl acetate/hexane and filtered off. The combined filtrate was then concentrated and purified by flash chromatography to give 3-allyldimethylsilylbenzyl bromide (43) as clear oil in 62% yield (Scheme 3.15).

Scheme 3.15: Reagents and conditions: $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{DCM}, 2 \mathrm{~h}, 62 \%$.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 3-allyldimethylsilylbenzyl bromide (43) showed the disappearance of a hydroxyl proton triplet with $J=6.0 \mathrm{~Hz}$ at $\delta_{\mathrm{H}} 1.65 \mathrm{ppm}$ and a benzylic protons singlet at $\delta_{\mathrm{H}} 4.48 \mathrm{ppm}$ indicates the successful conversion of an alcohol into a corresponding bromide. The ${ }^{13} \mathrm{C}$ n.m.r spectrum of (43) also exhibited the signal at $\delta_{\mathrm{C}} 34.0 \mathrm{ppm}$ and no signal at $\delta_{\mathrm{C}} 65.8 \mathrm{ppm}$ due to the conversion of an alcohol into a corresponding bromide.

Having successful synthesized the 3-allyldimethylsilylbenzyl bromide, 1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39) could then be synthesized using the established conditions for the synthesis of 1-(3-bromobenzyl)-5-amino-4cyanopyrazole (27). Since the 3-allyldimethylsilylbenzyl bromide (43) was an air and moisture sensitive, the prepared hydrazine in THF solvent was substituted for hydrazine monohydrate in ethanol. 3-allyldimethylsilylbenzyl bromide (43) and an excess of hydrazine in THF was refluxed for 4 h under the argon to yield 3allyldimethylsilylbenzyl hydrazine as light yellow oil upon the removal of THF and a quick extraction with diethyl ether. The crude unstable 3-allyldimethylsilylbenzyl hydrazine was then refluxed with 1 equivalent of ethoxymethylenemalononitrile in dried ethanol for 2 h to produce 1-(3-allyldimethylsilylbenzyl)-5-amino-4cyanopyrazole (39) as white solid in 25% yield over 2 steps (Scheme 3.16).

Scheme 3.16: Reagents and conditions: (i) $\mathrm{N}_{2} \mathrm{H}_{4}$ in THF, reflux, 3 h ; (ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{C}(\mathrm{CN})_{2}, \mathrm{EtOH}$, reflux, $2 \mathrm{~h}, 25 \%$.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 1-(3-allyldimethylsilylbenzyl)-5-amino-4cyanopyrazole (39) showed a singlet at $\delta_{\mathrm{H}} 0.23 \mathrm{ppm}$ which was assigned to methyl protons. The doublet with $J=8.0 \mathrm{~Hz}$ at $\delta_{\mathrm{H}} 1.69 \mathrm{ppm}$ was assigned to methylene protons. The broad singlet at $\delta_{\mathrm{H}} 4.39 \mathrm{ppm}$ was assigned to amino protons. It was confirmed by its disappearance upon $\mathrm{D}_{2} \mathrm{O}$ addition. A singlet at $\delta_{\mathrm{H}} 5.11 \mathrm{ppm}$ was assigned to the benzylic protons and a singlet at $\delta_{\mathrm{H}} 7.46 \mathrm{ppm}$ was assigned to the $\mathrm{H}-3$ proton. The ${ }^{13} \mathrm{C}$ n.m.r spectrum of (39) exhibited methyl carbons at $\delta_{\mathrm{C}}-3.3 \mathrm{ppm}$, a methylene carbon at $\delta_{\mathrm{C}} 23.7 \mathrm{ppm}$, a benzylic carbon at $\delta_{\mathrm{C}} 52.5 \mathrm{ppm}$ and aromatic carbons in the region $\delta_{\mathrm{C}} 127-141 \mathrm{ppm}$. The ESMS (PI) of 1-(3-
allyldimethysilyllbenzyl)-5-amino-4-cyanopyrazole (39) exhibited molecular ions at $\mathrm{m} / \mathrm{z} 297 \mathrm{a}$.m.u which was consistent with the molecular formula $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Si}$.

1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39) had been successfully synthesized but in very low yield. The yield might improve if the reaction was carried out in different solvents and/or at different temperature since 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) was obtained in a 46% yield over 2 steps from 3-bromobenzyl chloride (Section 2.2). Although the yield has not optimized, 1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39) was used to complete the synthesis of 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44) using the same procedure as in the preparation of 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28).

The mixture of 1-(3-allyldimethysilyllbenzyl)-5-amino-4-cyanopyrazole (39) and potassium O-ethylxanthogenate in DMF was initially heated at $110^{\circ} \mathrm{C}$ to avoid loosing a precious 1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39). The reaction mixture was monitored by the electrospray mass spectrometer which indicated that 1-(3-allyldimethysilyllbenzyl)-5-amino-4-cyanopyrazole (39) was still present after heating for more than 3 h . However, it disappeared when the reaction mixture was raised to $135{ }^{\circ} \mathrm{C}$ after 1.5 h . This indicated that the nucleophilic attack between the O-ethylxanthogenate anion of the potassium O-ethylxanthogenate and the amino of the cyanopyrazole (39) would not occur at low temperature. Therefore, the 1-(3-allyldimethysilyllbenzyl)-5-amino-4-cyanopyrazole (39) and potassium Oethylxanthogenate in DMF was heated at $135^{\circ} \mathrm{C}$ for 2 h under the argon to produce an intermediate which was rearranged upon treatment with base followed by neutralization with acid at room temperature to produce 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44) as a light cream solid in 78\% yield (Scheme 3.17).

Scheme 3.17: Reagents and conditions: (i) $\mathrm{EtOCS}_{2}{ }^{-} \mathrm{K}^{+}, \mathrm{DMF}, 135^{\circ} \mathrm{C}$, reflux, 2 h ; (ii) $\mathrm{NaOH}(2.0$ M), RT, 45 min ; (iii) $\mathrm{HCl}(2.0 \mathrm{M}), 78 \%$.

The ${ }^{1} \mathrm{H}$ n.m.r spectrum of 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidines-4,6-dithione (44) showed the disappearance of an amino protons δ_{H} 4.39 ppm and appearance of the two broad singlets at $\delta_{\mathrm{H}} 7.00-7.40 \mathrm{ppm}$ and $\delta_{\mathrm{H}} 10.99$ ppm which were assigned to NH protons at N-7 and N-5 respectively. $\mathrm{H}-3$ protons at $\delta_{\mathrm{H}} 7.78 \mathrm{ppm}$ in 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidines-4,6-dithione (44) were shifted downfield relative to $\mathrm{H}-3$ protons at $\delta_{\mathrm{H}} 7.46 \mathrm{ppm}$ in 1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanaopyrazole (39). The ESMS (NI) of 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidines-4,6-dithione exhibited molecular ions at $\mathrm{m} / \mathrm{z} 371 \mathrm{a} . \mathrm{m} . \mathrm{u}$ which was consistent with the molecular formulas $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{Si}$.

3.3 Conclusion

The protection and deprotection of the intermediate 1-(3-bromobenzyl)-5-amino-4-cyanaopyrazole (27) had been achieved. However, incorporation of a silyl group into the phenyl ring of 3-bromobenzyl substituted pyrazolo[3,4-d]pyrimidines was unsuccessful. An alternative synthetic route was devised with the incorporation of a silyl group at the early stages of a longer synthesis. It took 7 steps to achieve the silicon-containing scaffolds. Some intermediates were unstable and produced in a low yield. The solid phase model reactions with silicon-containing intermediates were next to being investigated.

3.4 Experimental

Melting points were recorded on a Gallenkamp digital melting point apparatus and are uncorrected. Infra-red absorption spectra were obtained on a Perkin Elmer FT-IR spectrophotometer using sodium chloride plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (n.m.r) spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer, Varian Unity-400 (400 MHz) spectrometer or Varian Unity Plus-600 $(600 \mathrm{MHz})$ spectrometer. All samples were dissolved in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ containing tetramethylsilane (TMS) as an internal reference unless otherwise stated. The signals are recorded in terms of chemical shift in parts per million (ppm) downfield from TMS $(\delta=0)$ for protons or $\mathrm{CDCl}_{3}(\delta=77)$ for carbon atoms. The signals are recorded in terms of chemical shift $\left(\delta_{H}\right)$, relative integral, multiplicity, coupling constants $(\mathrm{J} \mathrm{Hz})$ and assignments, in that order. The following abbreviations for multiplicity are used: $\mathrm{s}=$ singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were assigned with the aid of HMQC (Heteronuclear Multiple-Quantum Coherence), HMBC (Heteronuclear Multiple-Bond Coherence) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Correlation Spectroscopy). Electrospray mass spectra (ESMS) were recorded on a Fisons VG Platform mass spectrometer with MassLynx Data System software.

Microanalytical data was obtained from University of Queensland Microanalytical Service.

Analytical thin layer chromatography (TLC) was performed using precoated $(0.2 \mathrm{~mm})$ Merck silica gel plates (Merck Kieselgel $60 \mathrm{~F}_{254}$). Flash chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) with the indicated solvents.

All solvents for chromatography were distilled before use, unless otherwise stated. Ether refers to diethyl ether and hexane refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$. Mixed solvent compositions are quoted as v / v.

Solvents and reagents were purified according to the standard techniques of Perrin, Perrin and Amarego. ${ }^{21}$

1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36)

To a solution of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) (0.35 g, 1.26 mmol) in THF (10 ml) under nitrogen was added slowly sodium hydride (133 $\mathrm{mg}, 5.54 \mathrm{mmol})$. Allyl bromide ($0.96 \mathrm{ml}, 11.09 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for 3 h . The initial yellowish solution turned to red solution after 3 h . The reaction mixture was quenched with methanol (5 ml) and diluted with water (10 ml). The mixture was then extracted with DCM ($2 \times 20 \mathrm{ml}$), washed with water $(2 \times 10 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The resultant residue was purified by flash chromatography ($100 \% \mathrm{DCM}$) to yield 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) (436 mg, 97\%) as yellow oil; δ_{H} (400 MHz) $3.63\left(\mathrm{dt}, J=6.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right.$), $5.10-5.20\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}+2\right.$ x CH2), $5.60-5.70(\mathrm{~m}, 2 \times 1 \mathrm{H}, \mathrm{CH}), 7.06\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.28\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.37\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.66(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}$ $(100 \mathrm{MHz}) 51.2\left(\mathrm{CH}_{2}\right), 56.3\left(\mathrm{CH}_{2}\right), 86.4(\mathrm{C}-4), 114.3(\mathrm{CN}), 119.9\left(2 \mathrm{xCH}_{2}\right), 123.0$ (C-3'), 126.2 (C-6'), 130.5 (C-2'), 130.7 (C-4'), 131.4 (C-5'), 132.8 ($2 \times \mathrm{CH}$), 138.2 (C$\left.1^{\prime}\right), 142.2$ (C-3) and 153.7 (C-5); Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{Br}$: C, 57.15; H, 4.80; N, 15.68. Found C, 57.25 ; H, 4.83; N, 15.68\%; ESMS (NI) 355 and 357. calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{17}{ }^{79} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{17} \mathrm{H}_{17}{ }^{81} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ respectively. Found 355 and 357.

5-allylamino-1-(3-bromobenzyl)-4-cyanopyrazole (37)

To a solution of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) (1.90 g, 6.86 mmol) in THF (15 ml) under argon at $0^{\circ} \mathrm{C}$ was added diisopropylamine (3.2 ml , 18.4 mmol) followed by allyl bromide ($1.5 \mathrm{ml}, 17.3 \mathrm{mmol}$). The resulting solution was refluxed for 4 h at $85^{\circ} \mathrm{C}$. The reaction mixture was monitored by TLC and mass spectrometer. Allyl bromide ($3.0 \mathrm{ml}, 34.7 \mathrm{mmol}$) was added and the reaction mixture was refluxed for 16 h at $85^{\circ} \mathrm{C}$. The initial orange solution turned to yellow solution and white precipitate was formed in the solution. Diisopropylamine ($2.8 \mathrm{ml}, 16.1$ mmol) was added to the solution followed by allyl bromide ($3.0 \mathrm{ml}, 17.3 \mathrm{mmol}$). The resulting mixture was refluxed for additional 4 h at $85{ }^{\circ} \mathrm{C}$. After cooling, the precipitate was filtered and washed several time with DCM. The combined organic filtrate was concentrated in vacuo. The resultant residue was purified by flash chromatography (2.5:7.5 ethyl acetate/hexane) to yield 5-allylamino-1-(3-bromobenzyl)-4-cyanopyrazole (37) ($1.90 \mathrm{~g}, 78 \%$) as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 4.00$ (dt, $J=5.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $5.05-5.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}_{2}\right), 5.26(\mathrm{~s}, 1 \mathrm{H}$, NH), 5.74-5.85 (m, 1H, CH), 7.02 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6 '-\mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right), 7.26\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.43\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.53(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}) 47.2\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{2}\right), 94.6(\mathrm{C}-4), 115.3(\mathrm{CN}), 117.5\left(\mathrm{CH}_{2}\right), 123.5(\mathrm{C}-3)^{\prime}\right)$, 125.5 (C-6'), 130.1 (C-2'), 131.0 (C-4'), 131.9 (C-5'), 133.7 (CH), 137.0 (C-1'), 142.0 (C-3) and 150.1 (C-5); Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{Br}$: C, 53.01; H, 4.13; N, 17.66. Found C, 51.31; H, 4.39; N, 16.29\%; ESMS (NI) 315 and 317. calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{14} \mathrm{H}_{13}{ }^{81} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ respectively. Found 315 and 317.

A solution of 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) (305 mg, $0.85 \mathrm{mmol})$ in dry $\mathrm{DCM}(5 \mathrm{ml})$ was added dropwise to tetrakis(triphenylphosphine)palladium (0) (22 mg, 1.76\% mmol) and $\mathrm{N}, \mathrm{N}-$ dimethylbarbituric acid $(0.8 \mathrm{~g}, 5.13 \mathrm{mmol})$ under argon. The reaction mixture was stirred for 3 h at $40^{\circ} \mathrm{C}$. After cooling, the solvent was removed from the reaction mixture and dissolved in 1:1 ether/ethyl acetate ($3 \times 30 \mathrm{ml}$). The resulting mixture was extracted with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 20 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The resultant residue was purified by flash chromatography (50% ethyl acetate-hexane) to afford 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) ($222 \mathrm{mg}, 94 \%$) as white solid, $\mathrm{mp} 101.5 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 5.17$ (s, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.16\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{t}, J_{\text {meta }}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.49\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.61(\mathrm{~s}, 1 \mathrm{H}$, $3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 49.3\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{C}-4), 115.1(\mathrm{CN}), 121.7\left(\mathrm{C}-3^{\prime}\right)$, 126.4 (C-6'), 130.1 (C-2'), 130.4 (C-4'), 130.7 (C-5'), 139.3 (C-1'), 140.8 (C-3) and 151.7 (C-5); $v_{\max }\left(\mathrm{NaCl}\right.$ plates) $/ \mathrm{cm}^{-1} 3400\left(\mathrm{NH}_{2}\right)$ and $2200(\mathrm{CN})$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{4}: \mathrm{C}, 47.68$; H, 3.27; N, 20.22C. Found C, 47.80; H, 3.17; N, 20.30\%; ESMS (NI) 275 and 277. calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ respectively. Found 275 and 277.

1-(1-allyldimethylsilyl-1-(3-bromophenyl)methyl)-N,N-bisallyl-4-cyanopyrazole

 (38)

36

38

To a solution of 1-(3-bromobenzyl)-N,N-bisallyl-4-cyanopyrazole (36) (1.99 $\mathrm{g}, 5.57 \mathrm{mmol}$) in dried THF (50 ml) under argon at $-78{ }^{\circ} \mathrm{C}$ was added dropwise tbutyllithium ($3.7 \mathrm{ml}, 1.6 \mathrm{M}, 5.92 \mathrm{mmol}$) over a period of 5 min . The initial yellow solution turned to dark orange solution. After 15 min of further stirring at $-78{ }^{\circ} \mathrm{C}$, allylchlorodimethylsilane $(0.88 \mathrm{ml}, 0.78 \mathrm{~g}, 5.79 \mathrm{mmol})$ in dried THF (5 ml) was added dropwise over a period of 5 min . After stirring for 15 min , the reaction mixture was allowed to warm to room temperature. After 30 min of further stirring, the reaction mixture was quenched with MeOH and solvent removed in vacuo. The resultant residue was purified by flash chromatography (15% ethyl acetate/hexane) to yield 1-(1-allyldimethylsilyl-1-(3-bromophenyl)methyl)-N,N-bisallyl-4cyanaopyrazole (38) $(1.77 \mathrm{~g}, 70 \%)$ as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.035\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.51\left(\mathrm{dd}, J_{\mathrm{gem}}=13.6 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61\left(\mathrm{dd}, J_{\mathrm{gem}}=\right.$ $\left.13.6 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42-3.56\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 4.73-4.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.03-5.12\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 5.47-5.66(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH}), 7.00(\mathrm{~d}, \mathrm{~J}$ $\left.=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.11$ (t, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.23\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.30(\mathrm{~d}, J=8.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.68(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz})-4.2\left(\mathrm{CH}_{3}\right),-4.0\left(\mathrm{CH}_{3}\right), 21.9(\mathrm{Si}-$ $\left.\mathrm{CH}_{2}\right), 54.1\left(\mathrm{~N}^{2} \mathrm{CH}_{2}\right), 55.9\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 85.9(\mathrm{C}-4), 114.5\left(\mathrm{CH}_{2}\right), 114.6(\mathrm{CN}), 119.4(2 \mathrm{x}$ CH_{2}), 122.8 ($\left.\mathrm{C}-3^{\prime}\right), 125.0\left(\mathrm{C}-6^{\prime}\right), 129.3$ ($\left.\mathrm{C}-2^{\prime}\right), 129.8\left(\mathrm{C}-4^{\prime}\right), 130.2$ (C-5'), 133.1 (2 x CH), 133.7 (CH), 141.1 (C-3), 141.8 (C-1') and 153.7 (C-5); Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BrN}_{4} \mathrm{Si}: \mathrm{C}, 58.01$; H, 5.98; N, 12.30 Found C, 58.10 ; H, 6.02; N, 12.26%; ESMS (PI) 455 and 457. calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{27}{ }^{79} \mathrm{BrN} \mathrm{N}_{4} \mathrm{Si}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{22} \mathrm{H}_{27}{ }^{81} \mathrm{BrN} \mathrm{N}_{4} \mathrm{Si}+\right.$ $1[\mathrm{H}])$ respectively. Found 455 and 457.

O-tetrahydropyranyl-3-bromobenzyl ether (40)

40

To a solution of 3-bromobenzyl alcohol $(9.90 \mathrm{~g}, 52.9 \mathrm{mmol})$ and 3,4-dihydro-2H-pyran ($5.3 \mathrm{ml}, 4.89 \mathrm{~g}, 58.1 \mathrm{mmol}$) in DCM (150 ml) was added p-TsOH (200 $\mathrm{mg})$. After stirring at room temperature for 5 h , the reaction mixture was concentrated and the resultant residue was purified by flash chromatography (1:6 ethyl acetate/hexane) to yield O-tetrahydropyranyl-3-bromobenzyl ether (40) (14.0 g, 99\%) as clear oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.40-1.90\left(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{x} \mathrm{CH}_{2}\right), 3.48-3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82-$ $3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.44\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{gem}}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.67(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})$, $4.72\left(\mathrm{~d}, J_{\mathrm{gem}}=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.18\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 6 \mathrm{6}^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.45\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 19.5\left(\mathrm{CH}_{2}\right), 25.6$ $\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 62.3\left(\mathrm{CH}_{2}\right), 68.2\left(\mathrm{CH}_{2}\right), 98.1(\mathrm{CH}), 122.7(\mathrm{C}-3 '), 126.4(\mathrm{Ar}-\mathrm{C})$, 130.1 (Ar-C), 130.7 (Ar-C), 130.8 (Ar-C) and 140.9 (C-1'); Anal.calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrO}_{2}$: C, 53.15; H, 5.58. Found C, 52.87; H, 5.53\%.

O-tetrahydropyranyl-3-allyldimethylbenzyl ether (41)

To a solution of O-tetrahydropyranyl-3-bromobenzyl ether (40) (10.11 g, 37.3 mmol) in dried THF (50 ml) under argon at $-78{ }^{\circ} \mathrm{C}$ was added dropwise n -
butyllithium ($15.6 \mathrm{ml}, 2.4 \mathrm{M}, 37.4 \mathrm{mmol}$) over a period of 10 min . After 30 min of further stirring at $-78{ }^{\circ} \mathrm{C}$, allylchlorodimethylsilane ($5.65 \mathrm{ml}, 5.03 \mathrm{~g}, 37.3 \mathrm{mmol}$) in dried THF (20 ml) was added dropwise over a period of 30 min and the reaction mixture was allowed to warm to room temperature. After 30 min of further stirring, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{ml})$ and solvent removed in vacuo. The resultant residue was purified by flash chromatography (1:10 ethyl acetate/hexane) to yield O-tetrahydropyranyl-3-allyldimethylsilylbenzyl ether (41) ($7.58 \mathrm{~g}, 70 \%$) as clear oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.03\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right.$), 1.40-2.00 (m, $8 \mathrm{H}, 4 \mathrm{x}$ CH_{2}), 3.50-3.70 (m, 1H, CH2 $), 3.90-4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.54\left(\mathrm{~d}, J_{\mathrm{gem}}=11.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CH_{2}), 4.72-5.00 (m, 4H, $\mathrm{CH}_{2}+1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}+\mathrm{CH}\right), 5.68-5.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$ and 7.28$7.58(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})-3.1\left(2 \mathrm{x} \mathrm{CH}_{3}\right)$, $19.7\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 25.8$ $\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{CH}_{2}\right), 62.5\left(\mathrm{CH}_{2}\right), 69.3\left(\mathrm{CH}_{2}\right), 98.0(\mathrm{CH}), 113.6\left(\mathrm{CH}_{2}\right)$ and 128.0-140.0 (6 x Ar-C +CH); Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: C, 70.29 ; H, 9.02 Found C, $70.40 ; \mathrm{H}$, 9.15\%; ESMS (PI) 291. calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}+1[\mathrm{H}]\right)$. Found 291.

3-allyldimethylsilylbenzyl alcohol (42)

To a solution of O-tetrahydropyranyl-3-allyldimethylsilylbenzyl ether (41) $(6.65 \mathrm{~g}, 22.89 \mathrm{mmol})$ in methanol (150 ml) under nitrogen was added $\mathrm{p}-\mathrm{TsOH}$ (120 mg). After stirring at room temperature for 14 h , the reaction mixture was concentrated and purified by flash chromatography (1.5:4.5 ethyl acetate/ hexances) to yield 3-allyldimethylsilylbenzyl alcohol (42) (3.77 g, 80\%) as clear oil; $\delta_{\mathrm{H}}(400$ MHz) 0.26 ($\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), $1.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 1.73$ (dt, $J=8.0 \mathrm{~Hz}, J=1.2$ $\mathrm{Hz} 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.67 (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.79-4.87 (m, 2H, CH2), 5.68-5.80 (m, $1 \mathrm{H}, \mathrm{CH})$ and $\left.7.22-7.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})-3.3\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 23.8\left(\mathrm{Si}_{\mathrm{CH}}\right)^{2}\right)$, $65.8\left(\mathrm{CH}_{2}\right), 113.7\left(\mathrm{CH}_{2}\right)$ and 128.0-140.2 (6 x Ar-C +CH$)$; Anal. calcd for
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OSi}$ C, 69.84; H, 8.79 Found C, 69.78 ; H, 9.02\%; ESMS (PI) 207. calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OSi}+1[\mathrm{H}]\right)$. Found 207.

3-allyldimethylsilylbenzyl bromide (43)

To a solution of 3-allyldimethylsilylbenzyl alcohol (42) (12.83 g, 62.2 mmol) and triphenylphosphine ($16.33 \mathrm{~g}, 62.2 \mathrm{mmol}$) in $\mathrm{DCM}(150 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added carbon tetrabromide ($20.63 \mathrm{~g}, 62.2 \mathrm{mmol}$) portionwise over a period of 10 min . The reaction mixture was allowed to warm to room temperature. After stirring at room temperature for 2 h , the reaction mixture was concentrated. The resultant residue was triturated with $1: 1$ ethyl acetate/hexane ($2 \times 200 \mathrm{ml}$). The combined filtrate was concentrated and purified by flash chromatography (1:30 ethyl acetate/hexanes) to yield 3-allyldimethylsilylbenzyl bromide (43) (6.53 g, 62\%) as clear oil; $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 0.26\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.73\left(\mathrm{dt}, J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.48(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $4.82\left(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.83-4.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.68-5.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 7.28-7.50 (m, 4H, Ar-H); $\delta_{\mathrm{C}}(100 \mathrm{MHz})-3.3\left(2 \times \mathrm{CH}_{3}\right), 23.7\left(\mathrm{Si}^{2} \mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right)$, $113.8\left(\mathrm{CH}_{2}\right)$ and 128.0-140.0 ($6 \mathrm{x} \mathrm{Ar}-\mathrm{C}+\mathrm{CH}$); Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrSi}$ C, 53.53; H, 6.36 Found C, 53.58; H, 6.44\%.

1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39)

To a refluxing solution of hydrazine in THF ($150 \mathrm{ml}, 1.0 \mathrm{M}$ solution in THF, 150 mmol) under argon was added dropwise a solution of 3-allyldimethylsilylbenzyl bromide (43) $(5.40 \mathrm{~g}, 0.020 \mathrm{~mol})$ in dried THF (10 ml) over a period of 10 min . The reaction mixture was refluxed for 3 h before the solvent was removed in vacuo. The remaining pale yellow liquid was extracted with ether ($2 \times 20 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to yield the 3allyldimethylsilylbenzylhydrazine ($4.01 \mathrm{~g}, 91 \%$) as a crude oil. The crude product was used in the preparation of 1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39) without further purification.

To a stirred solution of ethoxymethylenemalononitrile $(2.22 \mathrm{~g}, 18.2 \mathrm{~mol})$ in dried ethanol (25 ml) under argon was added dropwsie a solution of 3allyldimethylsilylbenzylhydrazine $(4.01 \mathrm{~g}, 18.2 \mathrm{mmol})$ in dried ethanol (5 ml). The resultant mixture was refluxed for 2 h and a deep red colour solution was produced. The reaction mixture was left to cool to room temperture and yellow crystalline material precipitated. Precipitation was further enhanced by cooling in the fridge overnight before it was filtered and the solid was washed with cold ethanol. The crude solid was purified by flash chromatography (40% ethyl acetate-hexane) to afford 1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39) (1.34 g, 25\%) as white solid, mp $91.0 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.23\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.69(\mathrm{~d}, J=8.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.76-4.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 5.63$5.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.04-7.44(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.46(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})-3.3$ $\left(2 \times \mathrm{CH}_{3}\right), 23.7\left(\mathrm{Si}_{\mathrm{CH}}^{2}\right), 52.5\left(\mathrm{CH}_{2}\right), 113.9\left(\mathrm{CH}_{2}\right), 114.6(\mathrm{CN}), 127.0-140.1(6 \mathrm{x} \mathrm{Ar}-$ $\mathrm{C}+\mathrm{CH}+\mathrm{C}-3$) and 150.4 (C-5); Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Si}: \mathrm{C}, 64.83$; H, 6.80; N, 18.90. Found C, 64.69; H, 7.02; N, 18.41\%; ESMS (PI) 297. calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Si}+\right.$ 1[H]). Found 297.

1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44)

To a solution of 1-(3-allyldimethylsilylbenzyl)-5-amino-4-cyanopyrazole (39) $(1.05 \mathrm{~g}, 3.54 \mathrm{mmol})$ in dry DMF (15 ml) under argon was added potassium-Oethylxanthogenate $(1.14 \mathrm{~g}, 7.11 \mathrm{mmol})$. The reaction mixture was heated to $135{ }^{\circ} \mathrm{C}$ for 2 h under argon. The initial orange and opaque solution turned to dark brown after 2 h . The reaction mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure to afford the crude brown oil. 2.0 M NaOH (3.6 $\mathrm{ml})$ was added to the remaining brown oil and stirred at room temperature for 45 min . The basic solution was filtered to give a transparent orange filtrate. 2.0 M HCl was added dropwise to the filtrate until the neutral pH was reached. A creamy coloured precipitate was formed upon the neutralisation of the filtrate. The crude product was collected by suction filtration and recrystallised from DMSO and water to afford 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44) (1.03 g, 96%) as light cream solid, $\mathrm{mp}>230{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) $0.17(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x}$ CH_{3}), $1.67\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.70-4.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.25\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.60-$ 5.75 (m, 1H, CH), 7.00-7.40 (m, 5H, $4 \times \mathrm{Ar}-\mathrm{H}+\mathrm{NH}$), 7.78 ($\mathrm{s}, 1 \mathrm{H}, 3-\mathrm{H}$) and 10.99 (br s, $1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)-2.8\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 23.6\left(\mathrm{Si}^{\left.-\mathrm{CH}_{2}\right), 50.0\left(\mathrm{CH}_{2}\right),}\right.$ 112.6 (C-3a), $114.2\left(\mathrm{CH}_{2}\right), 128.0-140.0(6 \mathrm{x} \mathrm{Ar}-\mathrm{C}+\mathrm{CH}+\mathrm{C}-3), 150.6(\mathrm{C}-7 \mathrm{a}), 176.4$ (C-4) and 178.8 (C-6); ESMS (NI) 371. calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~S}_{2} \mathrm{Si}-1[\mathrm{H}]\right)$. Found 371.

3.5 References

(1) Terrett, N. K.; Gardner, M.; Gordon, D. W.; Kobylecki, R. J.; Steele, J. Combinatorial synthesis - the design of compound libraries and their application to drug discovery. Tetrahedron 1995, 51, 8135-8173.
(2) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. Solid-phase organic reactions. III. A review of the literature Nov 96-Dec 97. Tetrahedron 1998, 54, 15385-15443.
(3) James, I. W. Linkers for Solid Phase Organic Synthesis. Tetrahedron 1999, 55, 4855-4946.
(4) Han, Y.; Walker, S. D.; Young, R. N. Silicon directed ipso-substitution of polymer bound arylsilanes: preparation of biaryls via the Suzuki crosscoupling reaction. Tetrahedron Letters 1996, 37, 2703-2706.
(5) Woolard, F. X.; Paetsch, J.; Ellman, J. A. A Silicon Linker for Direct Loading of Aromatic Compounds to Supports. Traceless Synthesis of Pyridine-Based Tricyclics. Journal of Organic Chemistry 1997, 62, 6102-6103.
(6) Plunkett, M. J.; Ellman, J. A. A Silicon-Based Linker for Traceless SolidPhase Synthesis. Journal of Organic Chemistry 1995, 60, 6006-6007.
(7) Plunkett, M. J.; Ellman, J. A. Germanium and Silicon Linking Strategies for Traceless Solid-Phase Synthesis. Journal of Organic Chemistry 1997, 62, 2885-2893.
(8) Newlander, K. A.; Chenera, B.; Veber. Daniel, F.; Yim, N. C. F.; Moore, M. L. Simple Silyl Linker for the Solid Phase Organic Synthesis of ArylContaining Molecules. Journal of Organic Chemistry 1997, 62, 6726-6732.
(9) Finkelstein, J. A.; Chenera, B.; Veber, D. F. Protodetachable Arylsilane Polymer Linkages for Use in Solid Phase Organic Synthesis. Journal of the American Chemical Society 1995, 117, 11999-12000.
(10) Schuster, M.; Lucas, N.; Blechert, S. Ruthenium-catalyzed cross metathesis binding of functionalized olefins to polystyrene resin via a novel allylsilyl linker suitable for electrophilic cleavage. Chemical Communications 1997, 823-824.
(11) Boehm, T. L.; Showalter, H. D. H. Development of a Novel Silyl Ether Linker for Solid-Phase Organic Synthesis. Journal of Organic Chemistry 1996, 61, 6498-6499.
(12) Brown, S. D.; Armstrong, R. W. Parallel Synthesis of Tamoxifen and Derivatives on Solid Support via Resin Capture. Journal of Organic Chemistry 1997, 62, 7076-7077.
(13) Hu, Y.; Porco, J. A., Jr. Alcoholysis and carbonyl hydrosilylation reactions using a polymer-supported trialkylsilane. Tetrahedron Letters 1998, 39, 27112714.
(14) Hone, N. D.; Davies, S. G.; Devereux, N. J.; Taylor, S. L.; Baxter, A. D. A highly acid labile silicon linker for solid phase synthesis. Tetrahedron Letters 1998, 39, 897-900.
(15) Lee, Y.; Silverman, R. B. Efficient Solid-Phase Synthesis of Compounds Containing Phenylalanine and Its Derivatives via Side-Chain Attachment to the Polymer Support. Journal of the American Chemical Society 1999, 121, 8407-8408.
(16) Gigg, R.; Conant, R. The allyl group for protection in carbohydrate chemistry. Part 13. The N -allylbenzylamino group for protection in the amino-sugar series. Journal of Carbohydrate Chemistry 1983, 1, 331-336.
(17) Laguzza, B. C.; Ganem, B. Shikimate-derived metabolites. Part 8. A new protecting group for amines. Synthesis of anticapsin from L-tyrosine. Tetrahedron Letters 1981, 22, 1483-1486.
(18) Lemaire-Audoire, S.; Savignac, M.; Genet, J. P.; Bernard, J.-M. Selective deprotection of allyl amines using palladium. Tetrahedron Letters 1995, 36, 1267-1270.
(19) Garro-Helion, F.; Merzouk, A.; Guibe, F. Mild and selective palladium(0)catalyzed deallylation of allylic amines. Allylamine and diallylamine as very convenient ammonia equivalents for the synthesis of primary amines. Journal of Organic Chemistry 1993, 58, 6109-6113.
(20) Zhang, H. X.; Guibe, F.; Balavoine, G. Selective palladium-catalyzed deprotection of the allyl and allyloxycarbonyl groups in phosphate chemistry and in the presence of propargyl and propargyloxycarbonyl groups. Tetrahedron Letters 1988, 29, 623-626.
(21) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition, 1997; 512 pp.

CHAPTER 4

Attempted attachment of silyl intermediates to the polymeric support

4.1 Introduction

The use of silicon as a linkage element for solid support in solid phase synthesis had been extensively studied. ${ }^{1-9}$ The first silicon-based cleavable linker was reported in 1996 in a solid phase synthesis of 1,4-benzodiazepine derivatives ${ }^{7}$. The silylaromatic intermediates were either attached to a solid support via a silyl ether bond 3 or via a silylalkyl bond ${ }^{9}$ (Scheme 4.1). Herein, the silicon-containing scaffolds were attempted to link to a solid support via an alkylsilane bond.

Scheme 4.1: Reagents and conditions: (a) ${ }^{3}$ DIPEA, Wang resin, DMF, $40-50^{\circ} \mathrm{C}, \mathrm{O} / \mathrm{N} ;(\mathrm{b})^{9} 9-\mathrm{BBN}$, THF, 5 h , then bromopolystyrene, DMF, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, 60^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

4.2 Results and Discussion

The synthesis of silicon-containing scaffold, 1-(3-allyldimethylsilylbenzyl)$5 \mathrm{H}, 7 \mathrm{H}$-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44) has been discussed in Chapter 3 (Scheme 4.2). This scaffold needs to be attached to a polystyrene resin to carry a solid phase synthesis of pyrazolo[3,4-d]pyrimidines. Suzuki coupling has been reported ${ }^{10}$ to proceed cleanly on solid support for aryl halides. Attempts to attach 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44) to bromopolystyrene resin via Hydroboration-Suzuki coupling using the literature procedures ${ }^{9}$ was unsuccessful and only starting material was recovered from the reaction (Scheme 4.3). The hydroboration did not proceed even when an excess amount of $9-\mathrm{BBN}(3 \mathrm{eq})$ was used. To the best of our knowledge, the hydroboration reaction has not yet been investigated on a system with thioamide bonds.

Scheme 4.2

44

45

Scheme 4.3: Reagents and conditions: $9-\mathrm{BBN}, \mathrm{THF}, \mathrm{RT}, 5 \mathrm{~h}$, then bromopolystyrene resin, DMF, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, 65^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

However, the intermediate 1-(1,1-dimethylallylsilylbenzyl)-5-amino-4cyanopyrazole (39) underwent Hydroboration-Suzuki coupling with bromopolystyrene resin ${ }^{11}$ to give the resin-bound 1-(1,1-dimethylallylsilylbenzyl)-5-amino-4-cyanopyrazole (46). The resin-bound cyanopyrazole (46) was prepared by hydroboration of the cyanopyrazole (39) with 9 -BBN in THF followed by in situ Suzuki coupling ${ }^{12}$ of the borane complex with bromopolystyrene resin ${ }^{11}, \operatorname{Pd}(0)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$, in THF. In order to prove (39) had been successfully loaded on to the resin via Hydroboration-Suzuki coupling, the resin-bound cyanopyrazole (46) was cleaved with $\mathrm{Br}_{2} /$ Pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to produce 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) (Scheme 4.4) which was prepared in solution studies (Section 2.2.2). The loading level of support was also determined from brominative cleavage of resins with $\mathrm{Br}_{2} /$ Pyridine. The loading level was $0.4 \mathrm{mmol} / \mathrm{g}$.

Scheme 4.4: Reagents and conditions: (a) 9-BBN, THF, RT, 5 h , then bromopolystyrene, DMF, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, 65^{\circ} \mathrm{C}, 24 \mathrm{~h} ;(\mathrm{b}) \mathrm{Br}_{2} / \mathrm{Pyr}, \mathrm{DCM}, 3 \mathrm{~h}$.

The resin-bound 1-(1,1-dimethylallylsilylbenzyl)-5-amino-4-cyanopyrazole (46) was then swelled in DMF and refluxed with potassium O-ethylxanthogenate using the established solution phase synthesis of 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44) (Scheme 4.5). Only starting material was recovered upon brominative cleavage of resin-bound cyanopyrazole (46) with $\mathrm{Br}_{2} /$ Pyridine. The reaction was also carried out at $155^{\circ} \mathrm{C}$ for several hours but only starting material was recovered.

Scheme 4.5: Reagents and conditions: (i) $\mathrm{EtOCS}_{2}{ }^{-} \mathrm{K}^{+}$, DMF, $140{ }^{\circ} \mathrm{C}$, reflux, 2 h ; (ii) $\mathrm{NaOH}(2.0 \mathrm{M}$); RT, 45 min (iii) $\mathrm{HCl}(2.0 \mathrm{M})$.

4.3 Conclusion

The synthesis of resin-bound 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (47), a resin-bound scaffold, was not successful either by direct attachment or by reaction from resin-bound cyanopyrazole (46). The hydroboration of (44) did not proceed possibly due to the presence of thioamide bonds. The synthetic route to 1-(3-allyldimethylsilylbenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (44) was lengthy, difficulty and had low yields. This prompted us to go back to the parallel solution phase synthesis of pyrazolo[3,4- d]pyrimidines derivatives.

4.4 Experimental

Melting points were recorded on a Gallenkamp digital melting point apparatus and are uncorrected. Infra-red absorption spectra were obtained on a Perkin Elmer FT-IR spectrophotometer using sodium chloride plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (n.m.r) spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer, Varian Unity-400 (400 MHz) spectrometer or Varian Unity Plus-600 $(600 \mathrm{MHz})$ spectrometer. All samples were dissolved in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ containing tetramethylsilane (TMS) as an internal reference unless otherwise stated. The signals are recorded in terms of chemical shift in parts per million (ppm) downfield from TMS $(\delta=0)$ for protons or $\mathrm{CDCl}_{3}(\delta=77)$ for carbon atoms. The signals are recorded in terms of chemical shift $\left(\delta_{H}\right)$, relative integral, multiplicity, coupling constants (J Hz) and assignments, in that order. The following abbreviations for multiplicity are used: $\mathrm{s}=$ singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were assigned with the aid of HMQC (Heteronuclear Multiple-Quantum Coherence), HMBC (Heteronuclear Multiple-Bond Coherence) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Correlation Spectroscopy). Electrospray mass spectra (ESMS) were recorded on a Fisons VG Platform mass spectrometer with MassLynx Data System software.

Microanalytical data was obtained from University of Queensland Microanalytical Service.

Analytical thin layer chromatography (TLC) was performed using precoated $(0.2 \mathrm{~mm})$ Merck silica gel plates (Merck Kieselgel $60 \mathrm{~F}_{254}$). Flash chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) with the indicated solvents.

All solvents for chromatography were distilled before use, unless otherwise stated. Ether refers to diethyl ether and hexane refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$. Mixed solvent compositions are quoted as v / v.

Solvents and reagents were purified according to the standard techniques of Perrin, Perrin and Amarego. ${ }^{13}$

Hydroboration and Suzuki coupling of (39) to the bromopolystyrene resin.

To a solution of 1-(1,1-dimethylallylsilylbenzyl)-5-amino-4-cyanopyrazole (39) ($111 \mathrm{mg}, 374.4 \mathrm{mmol}$) in dry THF $(3 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$ was added $9-\mathrm{BBN}(0.8 \mathrm{ml}, 0.5$ M solution in $\mathrm{THF}, 400.0 \mathrm{mmol}$) dropwise. The reaction mixture was gradually warmed to room temperature and stirred for $5 \mathrm{~h} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(13 \mathrm{mg}, 1.1 \mathrm{mmol} \%), 4-$ bromopolystyrene resin ($180 \mathrm{mg}, 1.95 \mathrm{mmol} / \mathrm{g}, 351.0 \mathrm{mmol}$), powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(155$ $\mathrm{mg}, 1.12 \mathrm{mmol})$, dry DMF $(3 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$ were then added to the reaction mixture and stirred for 24 h at $65^{\circ} \mathrm{C}$. The resin was filtered and washed with THF (2 x 5 ml), $1: 1 \mathrm{THF} /$ water ($2 \times 5 \mathrm{ml}$), water ($2 \times 5 \mathrm{ml}$), methanol ($2 \times 5 \mathrm{ml}$) and dried under the vacuum. The loading level of support was determined as follows: To the dried resin-bound 1-(1,1-dimethylallylsilylbenzyl)-5-amino-4-cyanopyrazole (46) in DCM $(4 \mathrm{ml})$ was added $\mathrm{Br}_{2}(100 \mu \mathrm{l})$ and pyridine $(90 \mu \mathrm{l})$. The reaction mixture was stirred for 3 h . The cleavage solution was filtered and rinsed with DCM (5 ml). The combined solution was concentrated to give 1-(3-bromobenzyl)-5-amino-4cyanopyrazole (27) ($20.0 \mathrm{mg}, 0.072 \mathrm{mmol}$, loading level $=0.4 \mathrm{mmol} / \mathrm{g}$) as solid, mp $101.5 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.16$ (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.30\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{t}, J_{\mathrm{meta}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\right.$ H), $7.49\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.61(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}) $49.3\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{C}-4), 115.1(\mathrm{CN}), 121.7(\mathrm{C}-3 '), 126.4(\mathrm{C}-6$ '), $130.1(\mathrm{C}-2$ '), $130.4(\mathrm{C}-$ $\left.4^{\prime}\right), 130.7$ (C-5'), 139.3 (C-1'), 140.8 (C-3) and 151.7 (C-5); $v_{\max }$ (NaCl plates) $/ \mathrm{cm}^{-1}$ $3400\left(\mathrm{NH}_{2}\right)$ and $2200(\mathrm{CN})$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{4}$: C, 47.68; H, 3.27; N, 20.22C. Found C, 47.80; H, 3.17; N, 20.30\%; ESMS (NI) 275 and 277. calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4}\right.$ $-1[\mathrm{H}])$ and $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ respectively. Found 275 and 277.

4.5 References

(1) Hone, N. D.; Davies, S. G.; Devereux, N. J.; Taylor, S. L.; Baxter, A. D. A highly acid labile silicon linker for solid phase synthesis. Tetrahedron Letters 1998, 39, 897-900.
(2) Plunkett, M. J.; Ellman, J. A. Germanium and Silicon Linking Strategies for Traceless Solid-Phase Synthesis. Journal of Organic Chemistry 1997, 62, 2885-2893.
(3) Han, Y.; Walker, S. D.; Young, R. N. Silicon directed ipso-substitution of polymer bound arylsilanes: preparation of biaryls via the Suzuki crosscoupling reaction. Tetrahedron Letters 1996, 37, 2703-2706.
(4) Gu, W.; Liu, S.; Silverman, R. B. Solid-Phase, Pd-Catalyzed Silicon-Aryl Carbon Bond Formation. Synthesis of Sansalvamide A Peptide. Organic Letters 2002, 4, 4171-4174.
(5) Stranix, B. R.; Liu, H. Q.; Darling, G. D. Functional Polymers from (Vinyl)polystyrene. Recyclable Polymer-Supported Organosilicon Protecting Groups for Solid-Phase Synthesis. Journal of Organic Chemistry 1997, 62, 6183-6186.
(6) Lee, Y.; Silverman, R. B. Silicon-based aromatic transferring linkers for traceless solid-phase synthesis of aryl-, polyaryl-, and heteroaryl-containing compounds. Tetrahedron 2001, 57, 5339-5352.
(7) Plunkett, M. J.; Ellman, J. A. A Silicon-Based Linker for Traceless SolidPhase Synthesis. Journal of Organic Chemistry 1995, 60, 6006-6007.
(8) Hu, Y.; Porco, J. A., Jr.; Labadie, J. W.; Gooding, O. W.; Trost, B. M. Novel polymer-supported trialkylsilanes and their use in solid-phase organic synthesis. Journal of Organic Chemistry 1998, 63, 4518-4521.
(9) Lee, Y.; Silverman, R. B. Efficient Solid-Phase Synthesis of Compounds Containing Phenylalanine and Its Derivatives via Side-Chain Attachment to the Polymer Support. Journal of the American Chemical Society 1999, 121, 8407-8408.
(10) Frenette, R.; Friesen, R. W. Biaryl synthesis via Suzuki coupling on a solid support. Tetrahedron Letters 1994, 35, 9177-9180.
(11) Farrall, M. J.; Frechet, J. M. J. Bromination and lithiation: two important steps in the functionalization of polystyrene resins. Journal of Organic Chemistry 1976, 41, 3877-3882.
(12) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews 1995, 95, 2457-2483.
(13) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition, 1997; 512 pp.

CHAPTER 5

Parallel synthesis of pyrazolopyrimidine derivatives

5.1 Introduction:

A potent and selective ligand often has several discrete domains so that a receptor can have an energetically favorable interaction. As discussed in chapter 2 (Section 2.1), compound (5), the pyrazolo[3,4-d]pyrimidine derivative, was a good lead compound for further development of adenosine antagonists. Molecular modeling studies ${ }^{1,2}$ have shown that compound (5) fitted the three binding domain model of the adenosine receptors in such a way that the phenyl ring at $\mathrm{N}-1$ occupied the hydrophobic binding domain, the purine ring system occupied the aromatic binding domain and the amide side chain at C-6 occupied the ribose domain (Figure 5.1).

5

Figure 5.1: Proposed binding sites of (5).

Quinn's previous studies ${ }^{3-5}$ have concentrated on modifying the length of the amide side chain at C-6, varying the substituents at C-4 and leaving the phenyl hydrophobic domain at $\mathrm{N}-1$ constant to optimize the receptor binding affinity and
subtype selectivity. A major outcome from these studies was the production of amino-1-phenylpyrazolo[3,4-d]pyrimidin-6-yl)thio]hexanamide (21), a highly potent and selective antagonist at the rat adenosine A_{1} receptor (Figure 5.2). ${ }^{5}$

21

Figure 5.2: Highly potent and selective ligands at the rat adenosine A_{1} receptor, $\alpha-[(4-$ amino-1-phenylpyrazolo[3,4-d]pyrimidin-6-yl)thio]hexanamide (21).

In this study, a library of pyrazolo[3,4-d]pyrimidines derivatives with different substituents at C-4, C-6 and N-1 was synthesized by parallel synthesis. Each crude mixture of a library was evaluated for receptor binding at the human adenosine A_{1}, $\mathrm{A}_{2 \mathrm{~A}}$ and A_{3} receptors was checked with mass spectrometer to confirm the presence of expected compound in the crude mixture.

5.2 Results and Discussion

5.2.1 Synthesis of pyrazolo[3,4-d]pyrimidine dithione scaffolds

The four benzyl-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione scaffolds (26), (28), (51) and (52) were synthesized from the corresponding benzyl halides. The synthesis of these dithione scaffolds used the procedures established in chapter 2 (section 2.2.2). For the synthesis of 1-(3-nitrobenzyl)-5-amino-4-cyanopyrazole (49), it was found that heating the reaction mixture above $120^{\circ} \mathrm{C}$ would decompose the product or the corresponding starting material. The reaction was successfully accomplished by heating the reaction mixture slowly and monitoring the reaction mixture by thin layer chromatography and mass spectrometry. When the expected
mass of the product was detected by mass spectrometry, the reaction mixture was heated at this temperature until no starting material was detected by the mass spectrometry. It was observed that the product was obtained when the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$. The same problem happened to the synthesis of 1-(3-nitrobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (51) from corresponding 1-(3-nitrobenzyl)-5-amino-4-cyanopyrazole (49), the compound (51) was lost when the reaction mixture was heated at $135^{\circ} \mathrm{C}$. Using the same technique as in obtaining its corresponding starting material, 1-(3-nitrobenzyl)-5-amino-4-cyanopyrazole (49), the product was successful obtained by heating the reaction mixture at $110^{\circ} \mathrm{C}$. The 1-(3-nitrobenzyl)-5-amino-4-cyanopyrazole (49) seemed to decompose in the solution at around $120^{\circ} \mathrm{C}$. The general synthetic route for the syntheses of four benzyl- $5 \mathrm{H}, 7 \mathrm{H}-$ pyrazolo[3,4-d]pyrimidine-4,6-dithione scaffolds was outlined in Scheme 5.1.

Scheme 5.1: Reagents and conditions: (i) $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, EtOH, reflux, 3-5 h; (ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}=\mathrm{C}(\mathrm{CN})_{2}$, EtOH, reflux, $2 \mathrm{~h}\left(45-65 \%\right.$ over 2 steps); (iii) (a) $\mathrm{EtOCS}_{2}{ }^{-} \mathrm{K}^{+}$, $\mathrm{DMF}, 135^{\circ} \mathrm{C}\left(110{ }^{\circ} \mathrm{C}\right.$ for $\left.\mathrm{R}=\mathrm{NO}_{2}\right)$, reflux, 2 h ; (b) $\mathrm{NaOH}(2.0 \mathrm{M}), \mathrm{RT}, 45 \mathrm{~min}$; (c) $\mathrm{HCl}(2.0 \mathrm{M}), 85-96 \%$.

The NMR assignments for these synthesized compounds are recorded in the experimental section (Section 5.4). The ${ }^{1}$ H n.m.r spectra of 5 -amino-4-cyanopyrazole structures (48, 49, 27 and 50) showed the presence of amino protons at $\delta_{\mathrm{H}} 6.70-6.80$ ppm , which disappeared upon $\mathrm{D}_{2} \mathrm{O}$ addition, and benzylic protons at $\delta_{\mathrm{H}} 5.00-5.30$ ppm. The ${ }^{1} \mathrm{H}$ n.m.r spectra of their corresponding $5 \mathrm{H}, 7 \mathrm{H}$-pyrazolo $[3,4-d]$ pyrimidine-4,6-dithione scaffolds (26,51, 28 and 52) showed the absence of amino protons at δ_{H} $6.70-6.80 \mathrm{ppm}$ and the presence of two broad singlets at $\delta_{\mathrm{H}} 7.00-8.20 \mathrm{ppm}$ and at δ_{H} 11.00-13.50 ppm which were assigned to NH protons at $\mathrm{N}-7$ and $\mathrm{N}-5$ respectively.

5.2.2 Synthesis of pyrazolo[3,4-d]pyrimidine derivatives

As discussed in Section 2.2.2, S-methyl and S-alkyl at C-4 of pyrazolo[3,4$d]$ pyrimidines are both good leaving groups and could undergo nucleophilic substitution reactions with secondary amines. Since some alkyl halides were expensive and some secondary amines were very bulky or had no carbon spacer, Salkyl at C-6 and S-methyl at C-4 for all four 5H,7H-pyrazolo[3,4-d]pyrimidine-4,6dithione scaffolds $(26,51,28$ and 52) were synthesized and chosen as a starting material for nuclephilic substitution reactions with amines.

Therefore, each of the four $5 \mathrm{H}, 7 \mathrm{H}$-pyrazolo[3,4-d]pyrimidine-4,6-dithione scaffolds (26,51, 28 and 52) was reacted with 1.0 equivalent of eight different alkyl halides (Figure 5.3) in a pyridine. The reaction mixtures were left to stir at room temperature for 48 h and each of these thirty two reaction mixtures was monitored by electrospray mass spectrometry to make sure each of the four scaffolds (26, 51, 28 and 52) was alkylated. It was found that the halides containing 1 carbon spacer such as 2-(bromomethyl)tetrahydro-2H-pyran reacted very slowly compared to the halides with 2 or more carbon spacer such as 4-(2-chloroethyl)morpholine hydrochloride. After stirring for 48 h at room temperature, each of these 32 reaction mixtures was concentrated and methylated with an excess of methyl iodide in dioxane: NaOH (2.0 M) (1:1) at room temperature. After stirring for 2 h at room temperature, each of 32 reaction mixtures was extracted with ethyl acetate, dried over anhydrous magnesium sulphate and concentrated to give thirty two crude methylated mixtures (Scheme 5.2).

Figure 5.3: Alkylating Agents.

Scheme 5.2: Reagents and conditions: (i) Alkyl halides, Pyr, RT, 48 h; (ii) MeI, NaOH (2.0 M): Dioxane, RT, 2 h.

Having synthesized the 32 desired crude starting materials for nucleophilic substitution reaction, a preliminary study of eight 1-(3-bromobenzyl)-6-(alkylthio)-4-methylthio-pyrazolo[3,4-d]pyrimidines was undertaken. The compounds were reacted with 12 different secondary amines (Figure 5.4) in n-butanol. These 96 modeled reactions were monitored by electrospray mass spectrometry. It found that the amines with low boiling points such as cyclopropyl amine were lost during the reactions and the amine with bulky group or no carbon spacer such as 4-amino-1-benzyl-piperidine underwent the nucleophilic substitution reaction extremely slow. Low boiling point amine was added every 12 h until no starting material was detected by electrospray mass spectrometry. The products and starting materials were found very stable after heating at $92{ }^{\circ} \mathrm{C}$ for 4 days. After the conditions were established, each of 32 crude methylated mixtures was reacted 12 different secondary amines in dimethylsulfoxide (DMSO) for 4 days at $92{ }^{\circ} \mathrm{C}$ (Scheme 5.3). DMSO was chosen as a substituting solvent for n-butanol because several crude methylated mixtures didn't dissolve in the protic solvents such as butanol and methanol and DMSO was used to dissolve tested compounds for screening with a final DMSO concentration of 1% or 2%. DMSO also had a high boiling point and was less corrosive to the sealing gaskets than chloroform.

Figure 5.4: Nucleophilic Substituting Agents.

Scheme 5.3: Reagents and conditions: Amino agents, DMSO, $92{ }^{\circ} \mathrm{C}, 4$ days.

5.2.3 Radio-Ligand Binding Results

The yields for synthesis of 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylthio-pyrazolo[3,4-d]pyrimidine (32) and 1-(3-bromobenzyl)-6-(3-bromobenzylthio)-4-methylaminopyrazolo[3,4-d]pyrimidine (35) (section 2.4) were 49% and 52% respectively. Assumed that the yields for each step leading to the
desired target pyrazolo[3,4-d]pyrimidines were 50% each. 384 crude mixtures were screened at an assumed $1.0 \mu \mathrm{M}$ to determine the inhibition of these compounds at the human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} receptors. Each crude mixture of the library was then checked with mass spectrometry to confirm the presence of the expected compound in the crude mixture. One representative mass spectrum of the crude compound (421) with correct mass is presented in Figure 5.5. 384 mass spectra of the crude pyrazolo[3,4$d]$ pyrimidines are recorded on the CD-rom (attachment). The binding results of these 384 crude compounds at human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} receptors are presented in Table 5.1, Table 5.2 and Table 5.3 respectively. The crude mixtures having compounds with the correct mass are not shaded.

(421)
m/z: 538 a.m.u

Figure 5.5: Mass spectrum of crude (421).

Table 5.1: Binding affinity of the crude pyrazolo[3,4-d]pyrimidines expressed as \% displacement at $1.0 \mu \mathrm{M}$. Displacement of specific [$\left.{ }^{3} \mathrm{H}\right]$ DPCPX binding from CHO cells transfected with A_{1} human adenosine receptor. The crude compounds with the corrected masses were not shaded.

Comp	Substituents		\%Activity ($1.0 \mu \mathrm{M})$			
			R^{1}			
	R^{4}	R^{6}	$\begin{aligned} & 3-\mathrm{I} \\ & \mathrm{Bn} \end{aligned}$	$\begin{gathered} 3-\mathrm{H} \\ \mathrm{Bn} \end{gathered}$	$\begin{gathered} 3-\mathrm{Br} \\ \mathrm{Bn} \\ \hline \end{gathered}$	$\begin{gathered} 3-\mathrm{NO}_{2} \\ \mathrm{Bn} \\ \hline \end{gathered}$
53-56			51	66	60	35
57-60			63	71	46	20
61-64			44	51	30	23
65-68			19	64	49	25
69-72			62	75	53	74
73-76			28	59	17	42
77-80			64	85	19	38
81-84		-S	64	61	29	46

85-88			72	57	72	20
89-92			46	81	31	14
93-96			51	66	26	22
97-100			88	61	48	25
101-104			85	64	52	39
105-108			72	40	20	31
109-112			62	42	59	17
113-116		-s	58	65	52	24
117-120			49	44	X	3
121-124			92	68	X	24
125-128			73	36	X	26
129-132			66	32	X	22
133-136			79	43	X	24

137-140			47	29	X	8
141-144			76	73	X	0
145-148		-S	76	74	X	28
149-152			64	30	42	22
153-156			56	51	35	17
157-160			27	39	13	30
161-164			19	20	53	8
165-168			83	36	57	21
169-172			55	27	39	17
173-176			55	37	41	10
177-180		-S	55	32	43	28
181-184			40	30	38	23
185-188			54	35	29	28

205-208

241-244		-s	73	53	42	31
245-248			70	92	75	38
249-252			87	100	78	29
253-256			60	66	26	22
257-260			58	50	48	30
261-264			75	70	38	56
265-268			45	67	38	29
269-272			77	100	55	25
273-276		-S	91	100	72	44
277-280			56	X	43	19
281-284			60	X	43	26
285-288			48	X	0	39
289-292			53	X	37	27

293-296			68	X	41	51
297-300			52	X	4	31
301-304			41	X	33	19
305-308		-S	62	X	33	43
309-312	- NH		72	89	77	39
313-316	$D-\mathrm{NH}$		94	100	94	45
317-320	$\bigcirc \mathrm{NH}$		78	64	55	29
321-324	$D-N H$		69	46	42	14
325-328	$D-N H$		70	75	59	27
329-332	$D-\mathrm{NH}$		61	71	55	24
333-336	$>\mathrm{NH}$		88	99	96	42
337-340	-NH	-S	95	97	93	48
341-344			69	31	28	21

$345-348$

397-400	-NH		63	88	81	11
401-404	-NH	-s	70	60	82	15
405-408	NH^{2}		63	64	63	74
409-412	NH		82	83	61	75
413-416	NH		83	62	0	71
417-420	$\mathrm{NH}^{\text {ren }}$		72	58	31	70
421-424	NH		91	85	72	77
425-428	NH		78	50	50	49
429-432	$\mathrm{NH}^{\text {N }}$		83	76	67	84
433-436	\sim_{NH}	-S	85	87	77	42

NB: X denotes the crude mixture was not tested.

Table 5.2: Binding affinity of the crude pyrazolo[3,4-d]pyrimidines expressed as $\%$ displacement at $1.0 \mu \mathrm{M}$. Displacement of specific [$\left.{ }^{3} \mathrm{H}\right]$ NECA binding from CHO cells transfected with $\mathrm{A}_{2 \mathrm{~A}}$ human adenosine receptor. The crude compounds with the corrected masses were not shaded.

Comp	Substituents		\%Activity ($1.0 \mu \mathrm{M}$)			
			R^{1}			
	R^{4}	R^{6}	$\begin{aligned} & \hline 3-\mathrm{I} \\ & \mathrm{Bn} \end{aligned}$	$3-\mathrm{H}$	$\begin{gathered} 3-\mathrm{Br} \\ \mathrm{Bn} \end{gathered}$	$\begin{gathered} 3-\mathrm{NO}_{2} \\ \mathrm{Bn} \end{gathered}$
53-56			30	23	0	54
57-60			27	23	7	54
61-64			0	6	8	18
65-68			0	0	15	27
69-72			0	0	0	17
73-76			0	9	0	24
77-80			16	25	0	66
81-84		-S	13	24	3	54

85-88			15	4	0	35
89-92			6	1	12	36
93-96			14	0	0	22
97-100			13	22	0	58
101-104			0	22	29	53
105-108			1	8	0	53
109-112			0	7	0	50
113-116		-s	0	16	0	41
117-120			35	14	53	35
121-124			10	13	56	62
125-128			0	6	51	47
129-132			6	0	27	43
133-136			5	0	23	18

137-140			0	6	25	32
141-144			28	32	70	85
145-148		-S	0	31	43	64
149-152			2	0	0	46
153-156			5	17	0	59
157-160			0	4	0	57
161-164			40	4	0	49
165-168			15	31	0	99
169-172			12	22	0	66
173-176			1	3	0	63
177-180		-S	15	18	8	57
181-184			0	6	0	31
185-188			8	16	0	39

205-208
241-244

293-296			0	0	0	9
297-300			0	15	24	19
301-304			24	30	7	84
305-308		-s	13	0	0	21
309-312	$D-N H$		10	19	24	9
313-316	$D-\mathrm{NH}$		0	85	11	28
317-320	$D-\mathrm{NH}$		0	54	13	24
321-324	$D-\mathrm{NH}$		0	68	4	46
325-328	$D-\mathrm{NH}$		17	26	0	54
329-332	$D-\mathrm{NH}$		1	0	11	44
333-336	$D-\mathrm{NH}$		0	0	0	20
337-340	$D-\mathrm{NH}$	-S	0	85	0	46
341-344			0	48	15	27

$345-348$

Table 5.3: Binding affinity of the crude pyrazolo[3,4-d]pyrimidines expressed as $\%$ displacement at $1.0 \mu \mathrm{M}$. Displacement of specific [$\left.{ }^{3} \mathrm{H}\right]$ NECA binding from CHO cells transfected with A_{3} human adenosine receptor. The crude compounds with the corrected masses were not shaded.

Comp	Substituents		\%Activity ($1.0 \mu \mathrm{M}$)			
			R^{1}			
	R^{4}	R^{6}	$\begin{aligned} & \hline 3-\mathrm{I} \\ & \mathrm{Bn} \end{aligned}$	$\begin{gathered} 3-\mathrm{H} \\ \mathrm{Bn} \\ \hline \end{gathered}$	$\begin{gathered} 3-\mathrm{Br} \\ \mathrm{Bn} \end{gathered}$	$\begin{gathered} 3-\mathrm{NO}_{2} \\ \mathrm{Bn} \\ \hline \end{gathered}$
53-56			47	0	38	50
57-60			44	0	40	39
61-64			38	0	33	58
65-68			31	0	16	29
69-72			38	7	3	41
73-76			34	0	8	26
77-80			48	0	27	12
81-84		-S	46	0	6	5

85-88			37	0	0	15
89-92			32	0	24	1
93-96			43	0	0	0
97-100			55	0	19	55
101-104			44	0	5	51
105-108			51	0	12	57
109-112			44	1	5	48
113-116		-s	50	2	19	47
117-120			34	0	28	30
121-124			40	4	29	0
125-128			34	0	34	0
129-132			36	0	22	20
133-136			34	0	19	4

137-140			33	0	9	16
141-144			52	15	19	36
145-148		-S	45	6	20	47
149-152			47	14	0	54
153-156			45	2	21	45
157-160			43	15	0	1
161-164			37	17	0	19
165-168			33	20	11	17
169-172			35	12	0	24
173-176			39	0	23	10
177-180		-S	41	27	14	16
181-184			43	28	4	13
185-188			20	28	3	0

205-208

241-244		-s	14	8	4	0
245-248			30	15	15	23
249-252			39	18	15	11
253-256			35	3	0	11
257-260			38	0	0	6
261-264			40	2	0	18
265-268			27	0	0	19
269-272			36	0	0	23
273-276		-S	30	0	1	31
277-280			38	29	9	8
281-284			27	29	0	6
285-288			14	20	0	0
289-292			16	18	0	7

293-296			11	15	0	6
297-300			16	19	0	13
301-304			9	40	0	0
305-308		-s	19	27	0	1
309-312	$>-\mathrm{NH}$		6	0	0	8
313-316	$D-\mathrm{NH}$		36	29	23	27
317-320	$D-\mathrm{NH}$		25	25	23	18
321-324	$D-\mathrm{NH}$		8	31	0	20
325-328	$D-\mathrm{NH}$		39	30	0	0
329-332	$D-\mathrm{NH}$		42	0	9	0
333-336	$D-\mathrm{NH}$		41	8	19	26
337-340	$D-\mathrm{NH}$	-S	44	11	28	17
341-344			21	0	0	23

$345-348$

Benzyl substituted pyrazolo[3,4-d]pyrimidines with the same substituents at C-4 and C-6 were expected to be more potent than their corresponding 3-nitrobenzyl substituted pyrazolo[3,4-d]pyrimidines due to their smaller size. Similarly, 3nitrobenzyl substituted pyrazolo[3,4-d]pyrimidines were expected to be more potent than their corresponding 3-bromobenzyl substituted pyrazolo[3,4-d]pyrimidines due
to the size of the bromo substituent in comparison to the nitro substituent. Based on the crude mixtures with the correct molecular weights in Tables 5.1, the binding data obtained showed that 3-bromobenzyl substituted pyrazolo[3,4-d]pyrimidines and 3nitrobenzyl substituted pyrazolo[3,4-d]pyrimidines were less potent than both benzyl substituted pyrazolo[3,4- d]pyrimidines and 3-iodobenzyl substituted pyrazolo[3,4$d]$ pyrimidines (for examples $\mathbf{5 7 - 6 0}$ and $\mathbf{7 7 - 8 0}$) at the A_{1} receptor. The results also showed that 3-bromobenzyl substituted pyrazolo[3,4- d]pyrimidines were less potent than 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines and less than 30% of 3 nitrobenzyl substituted pyrazolo[3,4- d]pyrimidines were successfully synthesized. For these reasons, only binding data of benzyl substituted pyrazolo[3,4- d]pyrimidines and 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines were compared.

Benzyl substituted pyrazolo[3,4-d]pyrimidines were more potent at the A_{1} receptor than 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines when benzylamine was at the C-4 position (53-84), the only exception being when a small substitutent was at the C-6 position.

When benzylamine at C-4 was replaced with 2-(aminomethyl)pyridine, the nitrogen on the phenyl ring may influence activity at the A_{1} receptor. When benzylamine was at C-4, benzyl substituted pyrazolo[3,4-d]pyrimidines $(\mathbf{7 0}, \mathbf{7 8})$ were more potent than their corresponding 3-iodobenzyl substituted pyrazolo[3,4$d]$ pyrimidines $(\mathbf{6 9}, 77)$ and benzyl substituted pyrazolo[3,4-d]pyrimidine (82) was less potent than 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidine (81). However, when 2-(aminomethyl)pyridine was at C-4, 3-iodobenzyl substituted pyrazolo[3,4$d]$ pyrimidines (101 and 109) were more potent than benzyl substituted pyrazolo[3,4$d]$ pyrimidines (102 and 110) and 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidine (114) was more potent than benzyl substituted pyrazolo[3,4-d]pyrimidine (113).

When the amine at C-4 had two or more carbon spacers, 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines (149, 153, 165, 169, 173, 177, 181, 185, 189, $193,197,341,345,353,357,361,365$ and 369) were generally more potent at the A_{1} receptor than benzyl substituted pyrazolo[3,4- d]pyrimidines (150, 154, 166, 170, 174, $178,182,186,190,194,198,342,346,354,358,362,366$ and 370). Several benzyl substituted pyrazolo[3,4-d]pyrimidines (158, 162, 202, 206, 210 and 350) were more
potent at the A_{1} receptor than 3-iodobenzyl substituted pyrazolo[3,4- d]pyrimidines (157, 161, 201, 205, 209 and 349).

When the amine at C-4 didn't have a carbon spacer, benzyl substituted pyrazolo[3,4-d]pyrimidines (246, 250, 270, 274, 310, 314, 334 and 338) were more potent than 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines (245, 249, 269, 273, 309, 313, 333 and 338). When the amine at C-4 was a straight chain with one or three carbon side chain, benzyl substituted pyrazolo[3,4-d]pyrimidines (382, 386, 390, 414, 418, 422, 425 and 430) were generally less potent than 3-iodobenzyl substituted pyrazolo[3,4- d]pyrimidines (381, 385, 389, 413, 417, 421, 424 and 429).

The binding data obtained showed that the percentage activity of these crude trisubstituted pyrazolo[3,4-d]pyrimidines were generally low at 1.0 micromolar concentration at human $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptor (Tables 5.2). Also, the goal of the project was to replace the hydrophobic phenyl substituent at $\mathrm{N}-1$ of pyrazolo[3,4$d]$ pyrimidines, A_{1} antagonist, with benzyl substituents to generate antagonist for A_{3} receptor. Several crude benzyl substituted pyrazolo[3,4-d]pyrimidines with high potency at $A_{2 A}$ were less active at the A_{1} or A_{3} receptors. Therefore, the binding data for these crude trisubstituted pyrazolo[3,4-d]pyrimidines at $\mathrm{A}_{2 \mathrm{~A}}$ receptor were not considered.

Benzyl substituted pyrazolo[3,4-d]pyrimidines with the same substituents at C-4 and C-6 were expected to be less potent than their corresponding 3-nitrobenzyl substituted pyrazolo[3,4-d]pyrimidines due to the size. Similarly, 3-nitrobenzyl substituted pyrazolo $[3,4-d]$ pyrimidines were expected to be less potent than the bigger 3-bromobenzyl substituted pyrazolo[3,4-d]pyrimidines at the A_{3} receptor. However, the binding data obtained showed benzyl substituted pyrazolo[3,4-d]pyrimidines to be more potent than both 3-nitrobenzyl substituted pyrazolo[3,4-d]pyrimidines and 3bromobenzyl substituted pyrazolo[3,4-d]pyrimidines (for example 205-208 and 377380 in Table 5.3). Therefore, only binding data of benzyl substituted pyrazolo[3,4$d]$ pyrimidines and 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines were compared.

Based on the crude mixtures with the correct molecular weights in Tables 5.3, 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines had greater affinity for the A_{3} receptor than benzyl substituted pyrazolo[3,4-d]pyrimidines. However, when the amine at C-4 was cyclohexane methylamine, benzyl substituted pyrazolo[3,4$d]$ pyrimidines ($282,286,294,298$ and 302) were more potent than the corresponding 3-iodobenzyl substituted pyrazolo[3,4-d]pyrimidines (281, 285, 293, 297 and 301).

Based on the crude mixtures that were tested at the same concentrations, these compounds had a higher potency at the A_{1} receptor than at the A_{3} receptor. For example compare the binding affinities of compounds $165,166,273,274,333,334$, 417 and 418 at the A_{1} receptor in Table 5.1 with the binding affinities of those compounds at the A_{3} receptor in Table 5.3.

5.3 Conclusion

A library of 384 compounds has been synthesized and each of these crude compounds were tested at the human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} adenosine receptors at an assumed concentration of $1.0 \mu \mathrm{M}$. In general, 3-iodobenzyl substituted pyrazolo[3,4d]pyrimidine derivatives were more potent at the A_{3} receptor than benzyl substituted pyrazolo[3,4- d]pyrimidine derivatives except when the amine at C - 4 was cyclohexane methylamine and all compounds had a higher potency at the A_{1} receptor than at the A_{3} receptor. Some of these compounds were re-synthesized, purified and tested at the A_{1} and A_{3} receptors.

5.4 Experimental

Melting points were recorded on a Gallenkamp digital melting point apparatus and are uncorrected. Infra-red absorption spectra were obtained on a Perkin Elmer FT-IR spectrophotometer using sodium chloride plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (n.m.r) spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer, Varian Unity-400 (400 MHz) spectrometer or Varian Unity Plus-600
$(600 \mathrm{MHz})$ spectrometer. All samples were dissolved in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ containing tetramethylsilane (TMS) as an internal reference unless otherwise stated. The signals are recorded in terms of chemical shift in parts per million (ppm) downfield from TMS $(\delta=0)$ for protons or $\mathrm{CDCl}_{3}(\delta=77)$ for carbon atoms. The signals are recorded in terms of chemical shift $\left(\delta_{H}\right)$, relative integral, multiplicity, coupling constants (J Hz) and assignments, in that order. The following abbreviations for multiplicity are used: $\mathrm{s}=$ singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were assigned with the aid of HMQC (Heteronuclear Multiple-Quantum Coherence), HMBC (Heteronuclear Multiple-Bond Coherence) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Correlation Spectroscopy). Electrospray mass spectra (ESMS) were recorded on a Fisons VG Platform mass spectrometer with MassLynx Data System software.

Microanalytical data was obtained from University of Queensland Microanalytical Service.

Analytical thin layer chromatography (TLC) was performed using precoated $(0.2 \mathrm{~mm})$ Merck silica gel plates (Merck Kieselgel $60 \mathrm{~F}_{254}$). Flash chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) with the indicated solvents.

All solvents for chromatography were distilled before use, unless otherwise stated. Ether refers to diethyl ether and hexane refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$. Mixed solvent compositions are quoted as v / v.

Solvents and reagents were purified according to the standard techniques of Perrin, Perrin and Amarego. ${ }^{6}$

1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27)

Method A: To a refluxing solution of hydrazine monohydrate ($46.44 \mathrm{~g}, 45.0 \mathrm{ml}$, $0.93 \mathrm{~mol})$ in ethanol (150 ml), a solution of 3-bromobenzyl chloride $(20.26 \mathrm{~g}, 12.6 \mathrm{ml}$, $0.099 \mathrm{~mol})$ in ethanol (50 ml) was added dropwise over a period of 1 h . The reaction mixture was refluxed for an additional 3 h before the solvent was removed in vacuo. The remaining pale yellow liquid was extracted with ether ($3 \times 50 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to yield crude oil. The crude oil was purified by distillation under reduced pressure through a Vigreux column to yield 3-bromobenzylhydrazine (26) $(16.50 \mathrm{~g}, 83 \%)$ as a clear oil, bp 99-100 ${ }^{\circ} \mathrm{C}$, at 0.6 mm Hg . The 3-bromobenzylhydrazine (26) was unstable and hence it was not fully characterised; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 3.46\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{NH}-\mathrm{NH}_{2}\right), 3.73(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $7.27\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.31\left(\mathrm{dt}, J_{\text {ortho }}=7.6 \mathrm{~Hz}, J_{\text {meta }}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $7.42\left(\mathrm{dt}, J_{\text {ortho }}=7.6 \mathrm{~Hz}, J_{\text {meta }}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.52\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$; ESMS (PI) 201 and 203. calcd for $\left(\mathrm{C}_{7} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{2}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{7} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{2}+1[\mathrm{H}]\right)$ respectively. Found 201 and 203.

Method B: To a stirred solution of ethoxymethylenemalononitrile $(9.9 \mathrm{~g}, 0.081$ mol) in ethanol (100 ml) under argon, a solution of 3-bromobenzylhydrazine (26) $(16.30 \mathrm{~g}, 0.081 \mathrm{~mol})$ in ethanol $(20 \mathrm{ml})$ was added dropwise. The resultant mixture was refluxed over 2 h and a deep red colour solution was produced. The reaction mixture was left to cool to room temperture and yellow crystalline material precipitated. Precipitation was further enhanced by cooling in the fridge overnight before it was filtered and the solid was washed with cold ethanol. The crude solid was purified by flash chromatography (50% ethyl acetate-hexane) to afford 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) ($12.34 \mathrm{~g}, 55 \%$) as white solid, mp 101.5 $\pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 5.17\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.16(\mathrm{~d}, J=$
$\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.30\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{t}, J_{\text {meta }}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, $7.49\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$ and $7.61(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) 49.3$ $\left.\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{C}-4), 115.1(\mathrm{CN}), 121.7\left(\mathrm{C}-3^{\prime}\right), 126.4\left(\mathrm{C}-6^{\prime}\right), 130.1\left(\mathrm{C}-2{ }^{\prime}\right), 130.4(\mathrm{C}-4)^{\prime}\right)$, 130.7 (C-5'), 139.3 (C-1'), 140.8 (C-3) and 151.7 (C-5); $v_{\max }\left(\mathrm{NaCl}\right.$ plates) $/ \mathrm{cm}^{-1} 3400$ $\left(\mathrm{NH}_{2}\right)$ and $2200(\mathrm{CN})$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrN}_{4}: \mathrm{C}, 47.68 ; \mathrm{H}, 3.27 ; \mathrm{N}, 20.22 \mathrm{C}$. Found C, 47.80; H, 3.17; N, 20.30\%; ESMS (NI) 275 and 277. calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4}\right.$ $-1[\mathrm{H}])$ and $\left(\mathrm{C}_{11} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{4}-1[\mathrm{H}]\right)$ respectively. Found 275 and 277.

1-benzyl-5-amino-4-cyanopyrazole (48)

Method B was used to prepare crude solid from benzylhydrazine. The crude solid was purified by flash chromatography (50% ethyl acetate-hexane) to afford 1-benzyl-5-amino-cyanopyrazole (48) (65% yield) as white solid, mp $181.5 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400$ MHz, DMSO- d_{6}) $5.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.10-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$ and $\left.7.55(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)\right) 50.6\left(\mathrm{CH}_{2}\right), 72.9(\mathrm{C}-4), 115.9(\mathrm{CN})$, 127.9 (C-2', C-6'), 128.1 (C-4'), 129.1 (C-3', C-5'), 137.4 (C-1'), 141.2 (C-3) and 152.3 (C-5); ESMS (NI) 197. calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4}-1[\mathrm{H}]\right)$. Found 197.

1-(3-nitrobenzyl)-5-amino-4-cyanopyrazole (49)

Method A was used to prepare crude 3-nitrobenzyl hydrazine from 3-nitrobenzyl bromide. Method B was used to prepare crude solid from 3-nitrobenzyl hydrazine. The crude solid was purified by flash chromatography (6.5% methanol-DCM) to afford 1-(3-nitrobenzyl)-5-amino-4-cyanopyrazole (49) (55\% yield over 2 steps) as light yellow solid, mp $152.0 \pm 0.5{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $6.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.54-7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.59(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.00-8.14(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) 49.8\left(\mathrm{CH}_{2}\right), 73.0(\mathrm{C}-4), 115.7(\mathrm{CN}), 122.0-148.5$ (6 x Ar-C + C-3), and 152.4 (C-5); Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 54.32; H, 3.73; N, 28.79. Found C, 54.14; H, 3.65; N, 28.41\%; ESMS (NI) 242. calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}-\right.$ 1[H]). Found 242.

1-(3-Iodobenzyl)-5-amino-4-cyanopyrazole (50)

Method A was used to prepare crude 3-iodobenzyl hydrazine from 3-iodobenzyl bromide. Method B was used to prepare crude solid from 3-iodobenzylhydrazine. The crude solid was purified by flash chromatography (45% ethyl acetate-hexane) to afford 1-(3-iodobenzyl)-5-amino-4-cyanopyrazole (50) (58\% yield over 2 steps) as white solid, mp $108.9 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.70(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.08-7.12 (m, 2H, ArH) and 7.49-7.64 (m, 3H, ArH + 3-H); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, DMSO-d d_{6} 49.8 (CH_{2}), 72.9 (C-4), 94.5 (C-3'), $115.7(\mathrm{CN}), 127.0-142.0(5 \times \mathrm{Ar}-\mathrm{C}+$ $\mathrm{C}-3$) and 152.3 (C-5); Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{IN}_{4}$: C, 40.76; H, 2.80; N, 17.29. Found C, 40.52; H, 2.59; N, 17.10\%; ESMS (NI) 323. calcd for ($\left.\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{IN} 4-1[\mathrm{H}]\right)$. Found 323.

1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28)

Method C: To a solution of 1-(3-bromobenzyl)-5-amino-4-cyanopyrazole (27) ($8.32 \mathrm{~g}, 30.0 \mathrm{mmol}$) in dry DMF (50 ml) under argon was added potassium-Oethylxanthogenate $(9.62 \mathrm{~g}, 60.0 \mathrm{mmol})$. The reaction mixture was heated to $140{ }^{\circ} \mathrm{C}$ for 2 h under argon. The initial orange and opaque solution turned to dark brown after 2 h . The reaction mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure to afford crude brown oil. $\mathrm{NaOH}(2.0 \mathrm{M}, 30 \mathrm{ml}$) was added to the remaining brown oil and stirred at room temperature for 45 min . The basic solution was filtered to give a transparent orange filtrate. $\mathrm{HCl}(2.0 \mathrm{M})$ was added dropwise to the filtrate until the neutral pH was reached. A creamy coloured precipitate was formed upon the neutralisation of the filtrate. The crude product was collected by suction filtration and recrystallised from DMSO and water to afford 1-(3-
bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) (10.18 g, 96\%) as light cream solid, $\mathrm{mp}>230^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right) 5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.08(\mathrm{~d}$, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.22\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.29\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.40(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{H}-\mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.18(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and $11.25(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ (100 MHz, DMSO-d 6) $49.2\left(\mathrm{CH}_{2}\right), 112.7$ (C-3a), 122.4 (C-3'), 126.9 (C-6'), 130.5 (C$\left.2^{\prime}\right), 130.9$ (C-4'), 131.4 (C-5'), 137.4 (C-3), 140.8 (C-1'), 150.4 (C-7a), 176.4 (C-4) and 179.0 (C-6); ESMS (NI) 351 and 353. calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{9}{ }^{79} \mathrm{BrN}_{4} \mathrm{~S}_{2}-1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{12} \mathrm{H}_{9}{ }^{81} \mathrm{BrN}_{4} \mathrm{~S}_{2}-1[\mathrm{H}]\right)$ respectively. Found 351 and 353.

1-benzyl-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (26)

Method C was used to prepare 1-benzyl-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6dithione (26) from 1-benzyl-5-amino-cyanopyrazole (48). Yield (90\%) as light cream solid, $\mathrm{mp}>230^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) 5.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.60-7.60(\mathrm{~m}, 6 \mathrm{H}$, ArH + NH), 7.99 (s, 1H, 3-H) and 13.23 (br, 1H, NH); ESMS (NI) 273. calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}_{2}-1[\mathrm{H}]\right)$. Found 273.

1-(3-nitrobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (51)

Method C was used to prepare 1-(3-nitrobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (51) from 1-(3-nitrobenzyl)-5-amino-cyanopyrazole (49). Yield (92\%) as light yellow solid, $\mathrm{mp}>230^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) 5.44$ (s, 2H, CH2), 7.50$7.90(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.97(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.06(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and $11.57(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ (100 MHz, DMSO-d d_{6}) $49.0\left(\mathrm{CH}_{2}\right), 112.9(\mathrm{C}-3 \mathrm{a}), 122.5-148.5$ ($6 \mathrm{x} \mathrm{Ar}-\mathrm{C}+\mathrm{C}-3$), 150.8 (C-7a), 174.9 (C-4) and 179.1 (C-6); ESMS (NI) 318. calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}_{2}\right.$ 1[H]). Found 318.

1-(3-iodobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (52)

Method C was used to prepare 1-(3-iodobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (52) from 1-(3-nitrobenzyl)-5-amino-cyanopyrazole (50). Yield (88\%) as light cream solid, $\mathrm{mp}>230^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) 5.23 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.08$7.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.79(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.16(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH})$ and $11.07(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}$
(100 MHz, DMSO-d d_{6}) $49.1\left(\mathrm{CH}_{2}\right), 95.6\left(\mathrm{C}-3^{\prime}\right), 112.7(\mathrm{C}-3 \mathrm{a}), 127.0-141.0(5 \mathrm{x} \mathrm{Ar}-\mathrm{C}$
$+\mathrm{C}-3$), 150.1 (C-7a), 176.1 (C-4) and 179.1 (C-6); ESMS (NI) 399. calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{IN}_{4} \mathrm{~S}_{2}-1[\mathrm{H}]\right)$. Found 399.

5.5 References

(1) Quinn, R. J.; Dooley, M. J.; Escher, A.; Harden, F. A.; Jayasuriya, H. A computer generated model of adenosine receptors rationalising binding and selectivity of receptor ligands. Nucleosides \& Nucleotides 1991, 10, 11211124.
(2) Dooley, M. J.; Quinn, R. J. The three binding domain model of adenosine receptors: molecular modeling aspects. Journal of Medicinal Chemistry 1992, 35, 211-216.
(3) Poulsen, S.-A.; Quinn, R. J. Pyrazolo[3,4-d]pyrimidines: C4, C6 substitution leads to adenosine A1 receptor selectivity. Bioorganic \& Medicinal Chemistry Letters 1996, 6, 357-360.
(4) Chebib, M.; Quinn, R. J. 1-Phenylpyrazolo[3,4-d]pyrimidines as adenosine antagonists: the effects of substituents at C4 and C6. Bioorganic \& Medicinal Chemistry 1997, 5, 311-322.
(5) Poulsen, S.-A.; Quinn, R. J. Synthesis and Structure-Activity Relationship of Pyrazolo[3,4-d]pyrimidines: Potent and Selective Adenosine A1 Receptor Antagonists. Journal of Medicinal Chemistry 1996, 39, 4156-4161.
(6) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition, 1997; 512 pp.

CHAPTER 6:

Structure-Activity relationships of selected compounds

6.1 Introduction

In previous chapter, a library of 256 crude 6 -alkylthio- 4 -alkyl(aryl)amino-pyrazolo[3,4- d]pyrimidine derivatives with the correct mass were synthesized and tested at human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} adenosine receptors at the same concentration. Based on the result obtained, most of these crude compounds were active at the human A_{1} adenosine receptor at micromolar concentration. Since each substituent interacted with the binding sites of the receptor, the size and shape of each substituent at $\mathrm{N}-1, \mathrm{C}$ 4 and C-6 of the pyrazolo[3,4-d]pyrimidine would have an effect on the binding affinity. In this study, 14 compounds with good and low biologically active were individually re-synthesized for characterization and structure-activity relationship studies. These compounds had various structure size and shape for each substituent.

6.2 Results and Discussion

6.2.1 Synthesis of 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidine

Ten 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidine (437-447) were synthesized from the corresponding pyrazolo[3,4-d]pyrimidines-4,6-dithiones in a mix-solvent of sodium hydroxide $(2.0 \mathrm{M})$ and dioxane $(1: 1)$ at room temperature. Bis-methylthio-pyrazolo[3,4- d]pyrimidines (437-439) were obtained in 1 h . Bis-(1-ethylpyrrolidinethio)-pyrazolo[3,4-d]pyrimidine (440-441), bis-(1-ethylpiperidinethio)-pyrazolo[3,4- d]pyrimidine (442-443), and bis-(4-(2-ethyl)morpholinethio)-pyrazolo[3,4-d]pyrimidine (444) were obtained in 4 h at room temperature. Bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (445-447)
were prepared by warming the reaction mixture to $50^{\circ} \mathrm{C}$ and stirred for 24 h since the alkyl side chain contained only one carbon spacer, hence it would hinder the second alkylation at the C-4 position. The general synthetic route for the syntheses of these 10 bis-alkylated pyrazolo[3,4-d]pyrimidines is outlined in Scheme 6.1.

Scheme 6.1: Reagents and conditions: Alkylhalide, NaOH (2.0 M): Dioxane (1:1), RT-50 ${ }^{\circ} \mathrm{C}, 1.0-24$ h, 55-75\%.

The NMR assignments for these compounds are recorded in the experimental section (Section 6.4). The ${ }^{1}$ H n.m.r spectra of these bis-alkylated products showed the presence of two SCH_{2} protons at $\delta_{\mathrm{H}} 3.30-3.60 \mathrm{ppm}\left(\delta_{\mathrm{H}} 2.60-2.70 \mathrm{ppm}\right.$ in place of SCH_{3} of bis-methylthio-pyrazolo[3,4-d]pyrimidines (437-439)) and their ${ }^{13} \mathrm{C}$ n.m.r spectra showed the presence of two SCH_{2} carbons at $\delta_{\mathrm{C}} 26.0-30.0 \mathrm{ppm}\left(\delta_{\mathrm{C}} 12.0-15.0\right.$ ppm in place of SCH_{3} of bis-methylthio-pyrazolo[3,4-d]pyrimidines (437-439)).

6.2.2 Synthesis of 6-alkylthio-4-alkylamino-pyrazolo[3,4-d]pyrimidine

Since all 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidines were soluble in dioxane, the target compounds (165, 166, 273, 274, 310, 315, 333, 334, 421, 422, 423, 433, 434 and 435) were prepared by refluxing them with the desired nucleophilic amine substituents in dioxane at $100{ }^{\circ} \mathrm{C}$. Cyclopropyl amine and butyl amine were added every 1 h and 4 h respectively since they were very volatile and had a low boiling points. Reaction mixtures containing bulky exo-2-aminonorbornane were
refluxed at this temperature for 4 days. The general synthetic route for the syntheses of these target compounds was summarized in Scheme 6.2.

$\mathrm{R}^{1}=$ Methyl;
$\mathrm{R}=\mathrm{H}$ (437), Br (438), I (439)
$\mathrm{R}^{1}=1$-ethylpyrrolidine;
$\mathrm{R}=\mathrm{H}$ (440), $\mathrm{R}=\mathrm{I}$ (441)
$\mathrm{R}^{1}=1$-ethylpiperidine;
$\mathrm{R}=\mathrm{H}$ (442), Br (443)
$\mathrm{R}^{1}=4$-(2-ethyl)morpholine;
$\mathrm{R}=\mathrm{H}$ (444)
$\mathrm{R}^{1}=$ 2-methyltetrahydropyran;
$\mathrm{R}=\mathrm{H}$ (445), Br (446), I (447)

$\mathrm{R}^{2}=4$-(2-ethyl) morpholine;
$\mathrm{R}^{1}=2$-methyltetrahydropyran;
$\mathrm{R}=\mathrm{I}(165), \mathrm{R}=\mathrm{H}(\mathbf{1 6 6)}$
$\mathrm{R}^{2}=$ Exo-2-norbornane;
$\mathrm{R}^{1}=$ Methyl; R = I (273), H (274)
$\mathrm{R}^{2}=$ Cyclopropyl;
$\mathrm{R}^{1}=$ 4-(2-ethyl)morpholine; $\mathrm{R}=\mathrm{H}$ (310)
$\mathrm{R}^{2}=$ Cyclopropyl;
$\mathrm{R}^{1}=1$-ethylpiperidine; $\mathrm{R}=\mathrm{Br}$ (315)
$\mathrm{R}^{2}=$ Cyclopropyl $; \mathrm{R}^{1}=1$-ethylpyrrolidine;
$\mathrm{R}=\mathrm{I}$ (333), $\mathrm{R}=\mathrm{H}$ (334)
$R^{2}=$ Butyl; $R^{1}=2$-methyltetrahydropyran;
$\mathrm{R}=\mathrm{I}$ (421), $\mathrm{R}=\mathrm{H}$ (422), $\mathrm{R}=\mathrm{Br}$ (423)
$\mathrm{R}^{2}=$ Butyl; $\mathrm{R}^{1}=$ methyl;
$R=I$ (433), H (434), Br (435)

Scheme 6.2: Reagents and conditions: Nucleophilic amine, dioxane, $100^{\circ} \mathrm{C}, 8-96 \mathrm{~h}, 45-65 \%$.

The NMR assignments for these target compounds are recorded in the experimental section (Section 6.4). The structures of these products showed the absence of SCH_{2} protons and carbons at C-4 and its related alkyl side chain (one SCH_{3} proton and one carbon were lost for 4,6-bis-methylthio compound (437-439)) in the ${ }^{1} \mathrm{H}$ n.m.r and ${ }^{13} \mathrm{C}$ n.m.r spectrum respectively. The change of the electronic properties at C-4 carbon from sulphur to nitrogen changed the chemical shifts of C-3a, C-4 and C-7a. The C-3a and C-4 in the target compounds, 6-alkylthio-4-alkylamino-pyrazolo[3,4-d]pyrimidines, were shifted to a higher field relative to C-3a and C-4 in
the starting materials, 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidine whereas C-7a was shifted to a lower field.

6.2.2 Radio-ligand binding results

14 target compounds and 2 of 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidines, 1-benzyl-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (437) and 1-benzyl-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (445) were tested for binding affinities at the human A_{1} and A_{3} adenosine receptors against $\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}$ and $\left[{ }^{3} \mathrm{H}\right]$ NECA. In the A_{3} receptor binding assays, all the compounds showed inhibition values less than 40% at $30 \mu \mathrm{M}$ and were therefore considered inactive. In the A_{1} receptor binding assays, 5 out of 14 target compounds and two 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidines showed inhibition values less than 40% at $30 \mu \mathrm{M}$ and were therefore considered inactive. The IC_{50} of the remaining target compounds were obtained by competitive binding against $\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}$ at the human A_{1} adenosine receptor (Figure 6.1, 6.2 and 6.3). The corresponding K_{i} values were then determined using the K_{d} value of 3.9 for $\left[{ }^{3} \mathrm{H}\right]$ DPCPX (See section 7.5). The binding results for these compounds are recorded in Table 6.1.

Figure 6.1: The curves of competition binding of the target compounds 165 and 166.

- Comp 310
- Comp 315
- Comp 333

Log [T]
Figure 6.2: The curves of competition binding of the target compounds 310, 315 and 333.

Figure 6.3: The curves of competition binding of the target compounds 422, 433, 434 and 435.

Table 6.1: Binding results of (T) expressed as K_{i} in $\mu \mathrm{M}$ at human A_{1} adenosine receptor.

Compound	R	R^{1}	R^{2}	$\mathrm{K}_{\mathrm{i}}(\mu \mathrm{M})^{\mathrm{a}}$
165	1			6.48 ± 1.0
166	H			17.1 ± 2.0
273	I	SCH_{3}		Inactive
274	H	SCH_{3}		Inactive
310	H		$D-\mathrm{NH}$	8.0 ± 1.5
315	Br		$D-\mathrm{NH}$	57.4 ± 3.0
333	I		$D-\mathrm{NH}$	8.19 ± 1.5
334	H		$D-\mathrm{NH}$	Inactive
421	I		\sim_{NH}	Inactive
422	H		\sim_{NH}	6.85 ± 1.0
423	Br		\sim_{NH}	Inactive
433	I	SCH_{3}	\sim_{NH}	20.0 ± 1.3

$\mathbf{4 3 4}$	H	SCH_{3}		15.53 ± 1.5
$\mathbf{4 3 5}$	Br	SCH_{3}	$\mathrm{NH}_{\mathrm{NH}}$	12.9 ± 2.0
$\mathbf{4 3 7}$	H	SCH_{3}	SCH_{3}	Inactive
$\mathbf{4 4 5}$	H			

${ }^{\text {a }}$ Displacement of $\left[{ }^{3} \mathrm{H}\right]$ DPCPX binding at human A_{1} receptor expressed in CHO cells. Data was the average of two independent experiments in duplicate. K_{d} of $\left.{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}$ was $3.9 \mathrm{nM} . \mathrm{K}_{\mathrm{i}}$ values were obtained from Cheng-Prusoff equation.

The binding studies showed that 4,6-bis-alkylthio-pyrazolo[3,4-d]pyrimidines, 1-benzyl-4,6-bis-methylthio-pyrazolo[3,4- d]pyrimidine (437) and 1-benzyl-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (445) were inactive at human A_{1} adenosine receptor whereas the corresponding 6-alkylthio-4-alkylamino-pyrazolo[3,4-d]pyrimidines were either active (165, 166, 422, 433-435) or inactive (273, 274, 421, 423). These results were consistent with the hypothesis, based on the previous studies at the rat A_{1} adenosine receptor ${ }^{1-3}$ which indicated that an amino substitutent at C-4 position of pyrazolo[3,4-d]pyrimidine was more potent than the corresponding alkylthio substituent at C-4 position. In the previous work, phenethyl at $\mathrm{N}-1$ and phenyl at $\mathrm{N}-1$ were more potent than the benzyl at $\mathrm{N}-1$ at the rat A_{1} receptor. ${ }^{1-3}$

Nine of sixteen pyrazolo[3,4-d]pyrimidines substituted at C-4, C-6 and N-1 showed low potency at the human A_{1} adenosine receptor with the K_{i} values in the micromolar range. Table 1 shows that there is no trends of K_{i} values in the trisubstituted pyrazolo[3,4-d]pyrimidines. Comparison of the values of K_{i} of compounds 165 and 333 (3-iodobenzyl at N-1) with those of compound 166 and 334 (benzyl at $\mathrm{N}-1$) showed that the potency increased at least 3-fold when 3-iodobenzyl group was at $\mathrm{N}-1$ position. But when the K_{i} values of compounds 421 (3-iodobenzyl at $\mathrm{N}-1$) and 422 (benzyl at $\mathrm{N}-1$) were compared, the benzyl group at the $\mathrm{N}-1$ position increased the potency. The comparision of the K_{i} values of compounds 433 (3iodobenzyl at $\mathrm{N}-1$) and 434 (benzyl at $\mathrm{N}-1$) also could not suggest which hydrophobic side chain at $\mathrm{N}-1$, benzyl or 3-iodobenzyl was important for potency of the trisubstituted pyrazolo[3,4-d]pyrimidines.

Similarly, comparison of the K_{i} value of compound 166 (ethylmorpholineamino at C-4) with that of compound 422 (butylamino at C-4) showed that ethylmorpholineamino at C-4 was unfavorable compared with butylamino at C-4. Compound 166 (ethylmorpholineamino at C-4) was nearly 3 times less potency than compound 422 (butylamino at C-4). But the ethylmorpholineamino at C-4 had the higher potency than butylamino at C-4 when comparing the K_{i} value of compound 165 (ethylmorpholineamino at C-4) with that of compound 421 (butylamino at C-4). Compounds 165 and 421 had an iodobenzyl substitutent at $\mathrm{N}-1$ compared to compound to compounds $\mathbf{1 6 6}$ and 422 with a benzyl substitutent at $\mathrm{N}-1$.

Similar results were also obtained when comparing the K_{i} value of compound 421 (2-methyltetrahydropyran at C-6) with that of compound 433 (methyl at C-6) and comparing the K_{i} value of compound 423 (2-methyltetrahydropyran) with that of compound 435 (methyl at C-6) where the substitutent at $\mathrm{N}-1$ was 3 -iodobenzyl or 3bromobenzyl, the introduction of methyl at C-6 increased potency. However the benzyl series (compare K_{i} values of compound 422 and 434) behaved differently, the potency was decreased by 2 -fold when the 2 -methyltetrahydropyran at C-6 was replaced by methyl at C-6.

In summary, compound 165 was the most active compound in this series of trisubstituted pyrazolo[3,4-d]pyrimidines with a K_{i} value of $6.48 \pm 1.0 \mu \mathrm{M}$ at the human A_{1} adenosine receptor.

6.3 Conclusion

Trisubstituted pyrazolo[3,4-d]pyrimidines with different benzyl substitutents at $\mathrm{N}-1$ and various substitutents at $\mathrm{C}-4$ and $\mathrm{C}-6$ were not very active at the human A_{1} as predicted from previous knowledge. The most active compound in the trisubstituted pyrazolo[3,4-d]pyrimidines was 165 with a K_{i} value of $6.48 \pm 1.0 \mu \mathrm{M}$ at human A_{1} adenosine receptor. They were inactive at the human A_{3} adenosine receptors. The design resulted in the desired reduction of A_{1} affinity but did not give the desired A_{3} affinity. The modeling hypothesis needs to be revisited.

The results of the present study did not confirm the hypothesis which proposed that the pyrazolo[3,4-d]pyrimidines with benzyl substitutents such as benzyl or 3iodobenzyl at $\mathrm{N}-1$ would generate potent and selective A_{3} antagonists.

The great differences in the human A_{1} potency of these benzyl substituted pyrazolo[3,4- d]pyrimidines with that of the rat A_{1} potency of phenyl substituted pyrazolo[3,4- d]pyrimidines ${ }^{1-3}$ could be explained by the differences in the dimensions of the active sites at the human and at the rat A_{1} adenosine receptors. Ferrarini et al. reported that their compound, 1,8-naphthyridine derivative, had a K_{i} value of 0.15 nM at the bovine adenosine A_{1} receptor ${ }^{4}$ but when retested at human A_{1} adenosine receptor, ${ }^{5}$ this compound had a K_{i} value of 300 nM (Figure 6.4).

Figure 6.4: 1,8-naphthyridine derivative.

The double substitutions of phenyl group at $\mathrm{N}-1$ and amide side chains at C-6 with benzyl group at $\mathrm{N}-1$ and hydrophobic side chains at C-6 may also contribute to the loss of the potency at the human A_{1} adenosine receptor. Since the potency of these trisubstituted pyrazolo[3,4-d]pyrmidines were in micromolar range at the human A_{1} adenosine receptor, these compounds were not tested at the rat brain A_{1} adenosine receptor to confirm these explainations.

6.4 Experimental

Melting points were recorded on a Gallenkamp digital melting point apparatus and are uncorrected. Infra-red absorption spectra were obtained on a Perkin Elmer FT-IR spectrophotometer using sodium chloride plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (n.m.r) spectra were recorded on a Varian Gemini-200 (200 MHz) spectrometer, Varian Unity-400 (400 MHz) spectrometer or Varian Unity Plus-600
$(600 \mathrm{MHz})$ spectrometer. All samples were dissolved in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ containing tetramethylsilane (TMS) as an internal reference unless otherwise stated. The signals are recorded in terms of chemical shift in parts per million (ppm) downfield from TMS $(\delta=0)$ for protons or $\mathrm{CDCl}_{3}(\delta=77)$ for carbon atoms. The signals are recorded in terms of chemical shift $\left(\delta_{H}\right)$, relative integral, multiplicity, coupling constants (JHz) and assignments, in that order. The following abbreviations for multiplicity are used: $\mathrm{s}=$ singlet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{m}=$ multiplet. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were assigned with the aid of HMQC (Heteronuclear Multiple-Quantum Coherence), HMBC (Heteronuclear Multiple-Bond Coherence) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY (Correlation Spectroscopy). Electrospray mass spectra (ESMS) were recorded on a Fisons VG Platform mass spectrometer with MassLynx Data System software.

Microanalytical data was obtained from University of Queensland Microanalytical Service.

Analytical thin layer chromatography (TLC) was performed using precoated $(0.2 \mathrm{~mm})$ Merck silica gel plates (Merck Kieselgel $60 \mathrm{~F}_{254}$). Flash chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) with the indicated solvents.

All solvents for chromatography were distilled before use, unless otherwise stated. Ether refers to diethyl ether and hexane refers to the fraction of b.p. $60-80^{\circ} \mathrm{C}$. Mixed solvent compositions are quoted as v / v.

Solvents and reagents were purified according to the standard techniques of Perrin, Perrin and Amarego. ${ }^{6}$

1-benzyl-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (437)

26
437

Method A: To a solution of 1-benzyl-5H,7H-pyrazolo[3,4- d]pyrimidine-4,6dithione (26) ($0.25 \mathrm{~g}, 0.911 \mathrm{mmol}$) in $2.0 \mathrm{M} \mathrm{NaOH} \mathrm{(} 10 \mathrm{ml}$) : Dioxane (10 ml) was added iodomethane $(0.25 \mathrm{ml}, 4.0 \mathrm{mmol})$. After stirring at room temperature for 1 h , the reaction mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The resultant residue was purified by flash chromatography (10% ethyl acetate-hexane) to yield 1-benzyl-4,6-bis-methylthio-pyrazolo[3,4- d]pyrimidine (437) ($179 \mathrm{mg}, 65 \%$) as white solid, $\mathrm{mp} 86.0 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ (400 MHz) $2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right.$), $2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right.$), $5.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.20-7.40(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $8.19(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 12.2\left(\mathrm{SCH}_{3}\right), 14.5\left(\mathrm{SCH}_{3}\right), 50.7$ $\left(\mathrm{CH}_{2}\right), 109.5$ (C-3a), 128.4 (C-4', C-2', C-6'), 129.2 (C-3', C-5'), 132.8 (C-3), 137.3 (C-1'), 152.0 (C-7a), 165.5 (C-4) and 168.7 (C-6); ESMS (PI) 303. calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 303.

1-(3-bromobenzyl)-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (438)

28
438

Method A was used to prepare 1-(3-bromobenzyl)-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (438) from 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28). Yield (68%) as white solid, mp $110.8 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ $(400 \mathrm{MHz}) 2.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.14\left(\mathrm{t}, J_{\text {ortho }}=\right.$ $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.22\left(\mathrm{dt}, J_{\text {ortho }}=8.0 \mathrm{~Hz}, J_{\text {meta }}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 6\right.$ '-H), $7.37\left(\mathrm{dt}, J_{\text {ortho }}=\right.$ $\left.8.0 \mathrm{~Hz}, J_{\text {meta }}=1.2 \mathrm{~Hz}, J_{\text {meta }}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.46\left(\mathrm{t}, J_{\text {meta }}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.91(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 12.2\left(\mathrm{SCH}_{3}\right), 14.6\left(\mathrm{SCH}_{3}\right), 50.4\left(\mathrm{CH}_{2}\right), 109.7(\mathrm{C}-3 \mathrm{a})$, 122.9 (C-3'), 127.0 (C-6'), 130.5 (C-5'), 131.3 (C-4'), 131.5 (C-2'), 132.5 (C-3), 138.6 (C-1'), 151.9 (C-7a), 165.5 (C-4) and 169.3 (C-6); Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{~S}_{2}$: C, 44.10; H, 3.44; N, 14.69. Found C, 44.12; H, 3.35; N, 14.47\%; ESMS (PI) 381 and 383. calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{13}{ }^{79} \mathrm{BrN}_{4} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{14} \mathrm{H}_{13}{ }^{81} \mathrm{BrN}_{4} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 381 and 383.

1-(3-iodobenzyl)-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (439)

52
439

Method A was used to prepare 1-(3-iodobenzyl)-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (439) from 1-(3-iodobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (52). Yield (62%) as white solid, mp $133.5 \pm 0.5{ }^{\circ} \mathrm{C}$; δ_{H} $(400 \mathrm{MHz}) 2.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.01(\mathrm{t}, \mathrm{J}=8.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.26\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.58\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.70(\mathrm{~s}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.91(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 12.1\left(\mathrm{SCH}_{3}\right), 14.7\left(\mathrm{SCH}_{3}\right), 50.2\left(\mathrm{CH}_{2}\right)$, 94.7 (C-3'), 109.7 (C-3a), 127.6 (C-6'), 130.6 (C-5'), 132.5 (C-3), 137.3 (C-4'), 137.4 (C-2'), 138.7 (C-1'), 152.1 (C-7a), 165.3 (C-4) and 169.3 (C-6); Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{~S}_{2}$: C, 39.26; H, 3.06; N, 13.08. Found C, 38.84; H, 3.30; N, 11.94\%; ESMS (PI) 429. calcd for $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{IN}_{4} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 429.

1-benzyl-4,6-bis-(1-ethylpyrrolidinethio)-pyrazolo[3,4-d]pyrimidine (440)

Method B: To a solution of 1-benzyl-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6dithione (26) ($0.200 \mathrm{~g}, 0.729 \mathrm{mmol}$) in $2.0 \mathrm{M} \mathrm{NaOH}(10 \mathrm{ml})$: Dioxane (10 ml) was added 1-(2-chloroethyl)pyrrolidine hydrochloride ($0.545 \mathrm{~g}, 3.2 \mathrm{mmol}$). After stirring at room temperature for 4 h , the reaction mixture was extracted with ethyl acetate (3 x $30 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The resultant residue was purified by flash chromatography (10% methanol-chloroform) to yield 1-benzyl-4,6-bis-(1-ethylpyrrolidinethio)-pyrazolo[3,4-d]pyrimidine (440) (188 mg, 55\%) as yellow oil; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz}\right.$, DMSO- d_{6}) $1.66\left(\mathrm{q}, 4 \mathrm{H}, J=3.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 1.68(\mathrm{q}, 4 \mathrm{H}, J$ $\left.=3.6 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right), 2.45-2.55\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{NCH}_{2}\right), 2.75\left(\mathrm{t}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}, 2 \times \mathrm{NCH}_{2}\right)$, 3.32 (t, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}$), $3.47\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right.$), $5.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.21-7.34 (m, 5H, Ar-H) and $8.21(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) 23.7(2 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 23.8\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 28.3\left(\mathrm{SCH}_{2}\right), 29.8\left(\mathrm{SCH}_{2}\right), 50.7\left(\mathrm{CH}_{2}\right), 53.9\left(2 \times \mathrm{NCH}_{2}\right), 54.0$ $\left(2 \times \mathrm{NCH}_{2}\right), 54.8\left(\mathrm{NCH}_{2}\right), 55.3\left(\mathrm{NCH}_{2}\right), 109.6(\mathrm{C}-3 \mathrm{a}), 128.2\left(\mathrm{C}-2^{\prime}, \mathrm{C}-6\right.$ '), $128.4\left(\mathrm{C}-4{ }^{\prime}\right)$, 129.3 (C-3', C-5'), 132.9 (C-3), 137.3 (C-1'), 152.0 (C-7a), 165.3 (C-4) and 168.2 (C6); ESMS (PI) 469. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 469.

1-(3-iodobenzyl)-4,6-bis-(1-ethylpyrrolidinethio)-pyrazolo[3,4-d]pyrimidine (441)

441

Method B was used to prepare 1-(3-iodobenzyl)-4,6-bis-(1-ethylpyrrolidinethio)-pyrazolo[3,4-d]pyrimidine (441) from 1-(3-iodobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (52). Yield (56 \%) as yellow oil; δ_{H} (600 MHz) 1.64-1.72 (m, 8H, $4 \times \mathrm{CH}_{2}$), 2.46-2.56 (m, 8H, $4 \times \mathrm{NCH}_{2}$), 2.72-2.80 (m, 4H, 2 x NCH_{2}), 3.33 (t, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}$), $3.48\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right.$), $5.52(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.12 (t, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.19\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6{ }^{\prime}-\mathrm{H}\right), 7.65(\mathrm{~d}, J=7.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.67\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $8.24(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 22.5\left(2 \mathrm{x} \mathrm{CH}_{2}\right)$, $22.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 27.2\left(\mathrm{SCH}_{2}\right), 28.5\left(\mathrm{SCH}_{2}\right), 48.7\left(\mathrm{CH}_{2}\right), 52.8(2 \mathrm{x} \mathrm{NCH} 2), 52.9(2 \mathrm{x}$ NCH_{2}), $53.8\left(2 \times \mathrm{NCH}_{2}\right), 94.6(\mathrm{C}-3 '), 108.6(\mathrm{C}-3 \mathrm{a}), 126.5(\mathrm{C}-6$ '), $130.3(\mathrm{C}-5$ '), 132.1 (C-3), 135.8 (C-4'), 135.9 (C-2'), 137.8 (C-1'), 150.9 (C-7a), 164.7 (C-4) and 167.7 (C-6); ESMS (PI) 595. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{IN}_{6} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 595.

1-benzyl-4,6-bis-(1-ethylpiperidinethio)-pyrazolo[3,4-d]pyrimidine (442)

Method B was used to prepare 1-benzyl-4,6-bis-(1-ethylpiperidinethio)-pyrazolo[3,4- d]pyrimidine (442) from 1-benzyl-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (26) and 1-(2-chloroethyl)piperidine monohydrochloride. Yield (60\%) as yellow oil; $\delta_{\mathrm{H}}(600 \mathrm{MHz}) 1.33-1.44\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.50-1.60\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{CH}_{2}\right)$, 2.36-2.53 (m, 8H, $4 \times \mathrm{CH}_{2}$), 2.60-2.72 (m, 4H, $2 \times \mathrm{CH}_{2}$), 3.26-3.34 (m, $2 \mathrm{H}, \mathrm{SCH}_{2}$), 3.40-3.46 (m, 2H, SCH $)$, $5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.10-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.87(\mathrm{~s}, 1 \mathrm{H}$, $3-\mathrm{H})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 24.4\left(\mathrm{CH}_{2}\right), 24.5\left(\mathrm{CH}_{2}\right), 26.0\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 26.1\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 26.4$ $\left(\mathrm{SCH}_{2}\right), 28.2\left(\mathrm{SCH}_{2}\right), 50.8\left(\mathrm{CH}_{2}\right), 54.5\left(2 \times \mathrm{NCH}_{2}\right), 54.6(2 \mathrm{x} \mathrm{NCH} 2), 58.1\left(\mathrm{NCH}_{2}\right)$, $58.6\left(\mathrm{NCH}_{2}\right)$, 109.7 (C-3a), 128.0 (C-2', C-6'), 128.1 (C-4'), 128.9 (C-3', C-5'), 132.4 (C-3), 136.6 (C-1'), 152.1 (C-7a), 165.0 (C-4) and 168.5 (C-6); Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{~S}_{2}$: C, 62.87; H, 7.30; N, 16.92. Found C, 61.90; H, 7.67; N, 16.34\%; ESMS (PI) 497. calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 497.

1-(3-bromobenzyl)-4,6-bis-(1-ethylpiperidinethio)-pyrazolo[3,4-d]pyrimidine

 (443)

443

Method B was used to prepare 1-(3-bromobenzyl)-4,6-bis-(1-ethylpiperidinethio)-pyrazolo[3,4- d]pyrimidine (443) from 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28) and 1-(2-chloroethyl)piperidine monohydrochloride. Yield (75 \%) as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ 1.34-1.50 (m, 4H, $2 \times$ CH_{2}), 1.54-1.70 (m, 8H, $4 \mathrm{x} \mathrm{CH}_{2}$), 2.42-2.62 (m, 8H, $4 \mathrm{x} \mathrm{CH}_{2}$), 2.68-2.80 (m, 4H, $2 \times$ NCH_{2}), 3.34-3.40 (m, 2H, SCH 2), 3.45-3.54 (m, 2H, SCH 2), $5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.13$ $\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.15\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.36\left(\mathrm{dt}, J_{\text {ortho }}=7.6 \mathrm{~Hz}, J_{\text {meta }}=\right.$ $\left.2.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.90(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 24.1\left(\mathrm{CH}_{2}\right)$,
$24.2\left(\mathrm{CH}_{2}\right), 25.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 25.7\left(2 \times \mathrm{CH}_{2}\right), 26.1\left(\mathrm{SCH}_{2}\right), 27.8\left(\mathrm{SCH}_{2}\right), 50.2\left(\mathrm{CH}_{2}\right)$, $54.5\left(2 \mathrm{x} \mathrm{NCH}_{2}\right), 54.6(4 \mathrm{x} \mathrm{NCH} 2), 57.8\left(\mathrm{NCH}_{2}\right), 58.3\left(\mathrm{NCH}_{2}\right), 109.8(\mathrm{C}-3 \mathrm{a}), 122.9$ (C-3'), 126.6 (C-6'), 130.5 (C-5'), 130.9 (C-2'), 131.3 (C-4'), 132.7 (C-3), 138.8 (C$\left.1^{\prime}\right), 152.2$ (C-7a), 165.1 (C-4) and 168.6 (C-6); ESMS (PI) 575 and 577. calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{35}{ }^{79} \mathrm{BrN}_{6} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{26} \mathrm{H}_{35}{ }^{81} \mathrm{BrN}_{6} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 575 and 577.

1-benzyl-4,6-bis-(4-(2-ethyl)morpholinethio)-pyrazolo[3,4-d]pyrimidine (444)

444

Method B was used to prepare 1-benzyl-4,6-bis-(4-(2-ethyl)morpholinethio)-pyrazolo[3,4- d]pyrimidine (444) from 1-benzyl-5H,7H-pyrazolo[3,4- d]pyrimidine-4,6-dithione (26) and 4-(2-chloroethyl)morpholine hydrochloride. Yield (58\%) as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 2.42-2.55(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{x} \mathrm{NCH} 2$), 2.64-2.74 (m, 4H, $2 \times$ NCH_{2}), $3.30\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right.$), $3.43\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{SCH}_{2}\right.$), 3.62-3.71 (m, $8 \mathrm{H}, 4 \times \mathrm{OCH}_{2}$), $5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.15-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.88(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}$ (100 MHz) $26.1\left(\mathrm{SCH}_{2}\right), 28.0\left(\mathrm{SCH}_{2}\right), 50.9\left(\mathrm{CH}_{2}\right), 53.6\left(2 \mathrm{x} \mathrm{NCH}_{2}\right), 53.7\left(2 \mathrm{~N} \mathrm{NCH}_{2}\right)$, $57.7\left(\mathrm{NCH}_{2}\right), 58.1\left(\mathrm{NCH}_{2}\right), 67.0\left(\mathrm{OCH}_{2}\right), 67.1\left(\mathrm{OCH}_{2}\right), 109.8(\mathrm{C}-3 \mathrm{a}), 128.0(\mathrm{C}-2 \mathrm{C}, \mathrm{C}-$ $\left.6^{\prime}\right), 128.2$ (C-4'), 128.9 (C-3', C-5'), 132.4 (C-3), 136.5 (C-1'), 152.1 (C-7a), 165.9 (C4) and 168.4 (C-6); Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 57.57; H, 6.44; N, 16.79. Found C, 57.21; H, 6.76; N, 16.95\%; ESMS (PI) 501. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 501.

1-benzyl-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (445)

26

445

Method C: To a solution of 1-benzyl-5H,7H-pyrazolo[3,4-d]pyrimidine4,6dithione (26) ($0.242 \mathrm{~g}, 0.882 \mathrm{mmol}$) in 2.0 M NaOH (10 ml) : Dioxane (10 ml) was added 2-(bromomethyl)tetrahydropyran ($0.5 \mathrm{ml}, 3.9 \mathrm{mmol}$). After stirring at 50 ${ }^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The resultant residue was purified by flash chromatography (10% ethyl acetate-hexane) to yield 1-benzyl-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (445) ($232 \mathrm{mg}, 56 \%$) as white solid, $\mathrm{mp} 82.0 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(600 \mathrm{MHz}) 1.30-2.00\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right), 3.25-3.40(\mathrm{~m}$, $3 \mathrm{H}, 1 \times \mathrm{SCH}_{2}+1 \mathrm{H}$ of SCH_{2}), $3.45-3.46\left(\mathrm{td}, 2 \times 1 \mathrm{H}, J_{6 \mathrm{a}, 5}=12 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{e}}=1.8 \mathrm{~Hz}\right.$, $\mathrm{H}_{6 \mathrm{a}}$), 3.50-3.7 (m, 3H, $2 \times \mathrm{CH}+1 \mathrm{H}$ of SCH_{2}), 4.00-4.10 (m, $2 \times 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{e}}$), $5.53(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.94(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 23.4\left(\mathrm{CH}_{2}\right)$, $23.5\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{SCH}_{2}\right), 36.8$ $\left(\mathrm{SCH}_{2}\right), 51.1\left(\mathrm{CH}_{2}\right), 68.9\left(\mathrm{CH}_{2}\right), 69.0\left(\mathrm{CH}_{2}\right), 76.6(\mathrm{CH}), 76.8(\mathrm{CH}), 109.8(\mathrm{C}-3 \mathrm{a})$, 128.2 (C-4'), 128.3 (C-2', C-6'), 128.9 (C-3', C-5'), 132.4 (C-3), 136.5 (C-1'), 151.9 (C-7a), 165.0 (C-4) and 168.3 (C-6); Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 61.25; H, 6.42; $\mathrm{N}, 11.90$. Found C, 61.04; H, 6.52; N, 11.70\%; ESMS (PI) 471. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 471.

1-(3-bromobenzyl)-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]-

 pyrimidine (446)

28
446

Method C was used to prepare 1-(3-bromobenzyl)-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (446) from 1-(3-bromobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (28). Yield (60 \%) as white solid, $\mathrm{mp} 83.5 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(600 \mathrm{MHz}) 1.30-1.90\left(\mathrm{~m}, 12 \mathrm{H}, 6 \mathrm{xCH}_{2}\right), 3.25-3.38$ $\left(\mathrm{m}, 3 \mathrm{H}, 1 \times \mathrm{SCH}_{2}+1 \mathrm{H}\right.$ of $\left.\mathrm{SCH}_{2}\right), 3.44\left(\mathrm{t}, 2 \times 1 \mathrm{H}, J_{6 \mathrm{a}, 5}=12 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}\right), 3.54-3.67(\mathrm{~m}$, $3 \mathrm{H}, 2 \times \mathrm{CH}+1 \mathrm{H}$ of SCH_{2}), $3.97-4.04\left(\mathrm{~m}, 2 \times 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{e}}\right), 5.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.16(\mathrm{t}, \mathrm{J}=$ $\left.7.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.23$ (d, $\left.J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.38\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.45$ $\left(\mathrm{s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.93(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 23.4\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{SCH}_{2}\right), 36.8\left(\mathrm{SCH}_{2}\right), 50.3\left(\mathrm{CH}_{2}\right)$, $68.9\left(\mathrm{CH}_{2}\right), 69.0\left(\mathrm{CH}_{2}\right), 76.5(\mathrm{CH}), 76.7(\mathrm{CH}), 109.8(\mathrm{C}-3 \mathrm{a}), 122.9(\mathrm{C}-3 '), 126.9(\mathrm{C}-$ $\left.6^{\prime}\right), 130.5$ (C-4'), 131.2 (C-5'), 131.3 (C-2'), 132.6 (C-3) 138.7 (C-1'), 152.0 (C-7a), 165.1 (C-4) and 168.6 (C-6); Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 52.45; H, 5.32; N, 10.20. Found C, 52.29; H, 5.31; N, 10.09\%; ESMS (PI) 549 and 551. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{29}{ }^{79} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{24} \mathrm{H}_{29}{ }^{81} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}+1[\mathrm{H}]\right)$. Found 549 and 551.

1-(3-iodobenzyl)-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]-

 pyrimidine (447)

447

Method C was used to prepare 1-(3-iodobenzyl)-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]-pyrimidine (447) from 1-(3-iodobenzyl)-5H,7H-pyrazolo[3,4-d]pyrimidine-4,6-dithione (52). Yield (57 \%) as white solid, mp $97.4 \pm 0.5{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.30-1.90\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{CH}_{2}\right), 3.23-3.39(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{x}$ $\mathrm{SCH}_{2}+1 \mathrm{H}$ of SCH_{2}), $3.44\left(\mathrm{td}, 2 \times 1 \mathrm{H}, J_{6 \mathrm{a}, 5}=11.6 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{e}}=2.4 \mathrm{~Hz} \mathrm{H}_{6 \mathrm{a}}\right), 3.53-3.69$ $\left(\mathrm{m}, 3 \mathrm{H}, 2 \times \mathrm{CH}+1 \mathrm{H}\right.$ of $\left.\mathrm{SCH}_{2}\right), 3.98-4.05\left(\mathrm{~m}, 2 \times 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{e}}\right), 5.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.03$ (t, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.27\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.60\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$, $7.67\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.95(\mathrm{bs}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 23.4\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 25.9$ $\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 34.5\left(\mathrm{SCH}_{2}\right), 36.8\left(\mathrm{SCH}_{2}\right), 50.2\left(\mathrm{CH}_{2}\right)$, $68.9\left(\mathrm{CH}_{2}\right), 69.0\left(\mathrm{CH}_{2}\right), 76.5(\mathrm{CH}), 76.7(\mathrm{CH}), 94.7\left(\mathrm{C}-3^{\prime}\right), 110.0(\mathrm{C}-3 \mathrm{a}), 127.6\left(\mathrm{C}-6{ }^{\prime}\right)$, 130.6 (C-5'), 132.7 (C-3), 137.1 (C-4'), 137.3 (C-2'), 138.7 (C-1'), 148.6 (C-7a), 165.3 (C-4) and 168.6 (C-6); Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{IN}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$: C, 48.32; H, 4.90; N, 9.39. Found C, 47.81; H, 4.90; N, 9.06\%; ESMS (PI) 597. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}+\right.$ 1[H]). Found 597.

1-(3-iodobenzyl)-6-(2-methyltetrahydropyranthio)-4-(2-ethyl)morpholineamino-pyrazolo[3,4-d]pyrimidine (165)

447

165

Method D: To a solution of 1-(3-iodobenzyl)-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]-pyrimidine (447) ($50 \mathrm{mg}, 0.082 \mathrm{mmol}$) in dioxane (4.0 ml) was added 4-(2-Aminoethyl)morpholine ($55 \mu \mathrm{l}, 0.42 \mathrm{mmol}$) and the mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was concentrated and purified by flash chromatography (10% methanol-chloroform) to yield 1-(3-iodobenzyl)-6-(2-methyltetrahydropyranthio)-4-(2-ethyl)morpholineamino-pyrazolo-[3,4-d]pyrimidine (165) ($24 \mathrm{mg}, 49 \%$) as yellow oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) 1.14$1.74\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 2.34-2.52\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{NCH}_{2}\right), 3.02-3.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 5}=6.8\right.$ $\mathrm{Hz}, \mathrm{H}_{6 \mathrm{a}}$), 3.18-3.58 (m, 9H, $2 \times \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2}+\mathrm{SCH}_{2}+\mathrm{CH}$), 3.77-3.84 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{e}, 5}$ $\left.=11.2 \mathrm{~Hz}, J_{6 \mathrm{e}, 6 \mathrm{a}}=2.0 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{e}}\right), 5.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.07\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.13$ (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.55\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.58\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 8.00(\mathrm{~s}$, $1 \mathrm{H}, 3-\mathrm{H})$ and $8.32(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) 23.5\left(\mathrm{CH}_{2}\right), 26.1$ $\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{SCH}_{2}\right), 37.9\left(\mathrm{NHCH}_{2}\right), 49.6\left(\mathrm{NCH}_{2}\right), 54.1\left(2 \times \mathrm{NCH}_{2}\right), 57.9$ $\left.\left.\left(\mathrm{NCH}_{2}\right), 66.8\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 68.2\left(\mathrm{CH}_{2}\right), 77.1(\mathrm{CH}), 95.5(\mathrm{C}-3)^{\prime}\right), 98.9(\mathrm{C}-3 \mathrm{a}), 127.6(\mathrm{C}-6)^{\prime}\right)$, 131.4 (C-5'), 133.1 (C-3), 136.7 (C-4'), 136.9 (C-2'), 140.5 (C-1'), 154.0 (C-7a), 156.1 (C-4) and 168.9 (C-6); ESMS (PI) 595. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 595.

1-benzyl-6-(2-methyltetrahydropyranthio)-4-(2-ethyl)morpholineamino-pyrazolo[3,4-d]pyrimidine (166)

Method D was used to prepare 1-benzyl-6-(2-methyltetrahydropyranthio)-4-(2-ethyl)morpholineamino-pyrazolo[3,4-d]pyrimidine (166) from 1-benzyl-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (445). Yield (57 \%) as yellow oil; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, DMSO-d d_{6}) 1.12-1.72 (m, $6 \mathrm{H}, 3 \times \mathrm{CH}_{2}$), 2.34-2.51 (m, $6 \mathrm{H}, 3 \times$ NCH_{2}), 3.02-3.10 (dd, $1 \mathrm{H}, \mathrm{J}_{6 \mathrm{a}, 5}=6.8 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}$), $3.17-3.57\left(\mathrm{~m}, 9 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{2}+\right.$ $\left.\mathrm{SCH}_{2}+\mathrm{CH}\right), 3.77-3.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 e, 5}=11.2 \mathrm{~Hz}, J_{6 \mathrm{e}, 6 \mathrm{a}}=2.4 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{e}}\right), 5.36(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), 7.12-7.29 (m, 5H, Ar-H), $7.99(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$ and $8.29(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ (100 MHz, DMSO-d $\left.{ }_{6}\right) 23.5\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{SCH}_{2}\right), 37.9$ $\left(\mathrm{NHCH}_{2}\right), 50.4\left(\mathrm{NCH}_{2}\right), 54.1\left(2 \times \mathrm{NCH}_{2}\right), 57.9\left(\mathrm{NCH}_{2}\right), 66.8\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 68.2\left(\mathrm{CH}_{2}\right)$, 77.1 (CH), 99.0 (C-3a), 128.1 (C-6', C-4', C-2'), 129.1 (C-3', C-5'), 132.9 (C-3), 138.0 (C-1'), 154.0 (C-7a), 156.1 (C-4) and 168.7 (C-6); ESMS (PI) 469. calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 469.

1-(3-iodobenzyl)-6-methylthio-4-(exo-2-norbornylamino)-pyrazolo[3,4-d]-

 pyrimidine (273)

Method E: To a solution of 1-(3-iodobenzyl)-4,6-bis-methylthio-pyrazolo[3,4d]pyrimidine (439) ($69 \mathrm{mg}, 0.161 \mathrm{mmol}$) in dioxane (4.0 ml) was added exo-2aminonorbornane ($95 \mu \mathrm{l}, 0.80 \mathrm{mmol}$) and the mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 4 days. The reaction mixture was concentrated and purified by flash chromatography $(2.5 \%$ methanol-DCM) to yield 1-(3-iodobenzyl)-6-methylthio-4-(exo-2-norbornylamino)-pyrazolo[3,4-d]-pyrimidine (273) ($36 \mathrm{mg}, 45 \%$) as light yellow solid, mp $99.0 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ 1.10-1.70 (m, 7H, norbornyl-H), 1.84-1.96 (m, 1 H , norbornyl-H), 2.26-2.40 (m, 2H, norbornyl-H), $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.50-3.90(\mathrm{br}$, 1 H , norbornyl-H), $5.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.00-6.50(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right), 7.25\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.56\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.68\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, and $7.80(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 14.4\left(\mathrm{SCH}_{3}\right), 26.4\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 35.8$ $\left(\mathrm{CH}_{2}\right), 36.0(\mathrm{CH}), 41.0\left(\mathrm{CH}_{2}\right), 42.6(\mathrm{CH}), 50.1\left(\mathrm{CH}_{2}\right), 56.8(\mathrm{CH}), 94.6(\mathrm{C}-3 '+\mathrm{C}-3 \mathrm{a})$, 127.7 (C-6'), 130.5 (C-5'), 133.9 (C-3), 137.2 (C-4'), 137.4 (C-2'), 138.9 (C-1'), 154.5 (C-7a), 155.4 (C-4) and 168.4 (C-6); ESMS (PI) 492. calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{IN}_{5} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 492.

1-benzyl-6-methylthio-4-(exo-2-norbornylamino)-pyrazolo[3,4-d]pyrimidine

 (274)

Method E was used to prepare 1-benzyl-6-methylthio-4-(exo-2-norbornylamino)-pyrazolo[3,4-d]pyrimidine (274) from 1-benzyl-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (437). Yield (65 \%) as white solid, mp $135.0 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ (400 MHz) 1.10-1.35 (m, 4H, norbornyl-H), 1.35-1.65 (m, 3H, norbornyl-H), 1.85$1.95\left(\mathrm{~m}, 1 \mathrm{H}\right.$, norbornyl-H), 2.27-2.37 (m, 2H, norbornyl-H), $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.60-$ 3.90 (br, 1 H , norbornyl-H), 5.46 (s, 2H, CH_{2}), 5.60-6.00 (br, 1H, NH), 7.17-7.36 (m, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$ and $7.78(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 14.3\left(\mathrm{SCH}_{3}\right), 26.4\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right)$, $35.7\left(\mathrm{CH}_{2}\right), 35.9(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 42.6(\mathrm{CH}), 50.8\left(\mathrm{CH}_{2}\right), 56.4(\mathrm{CH}), 97.4(\mathrm{C}-3 \mathrm{a})$, 128.0 (C-4'), 128.4 (C-2', C-6'), 128.8 (C-3', C-5'), 133.5 (C-3), 136.9 (C-1'), 154.7 (C-7a), 156.0 (C-4) and 168.9 (C-6); Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 65.72 ; \mathrm{H}, 6.34$; N, 19.16. Found C, 64.80; H, 6.41; N, 19.31\%; ESMS (PI) 366. calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{~S}+\right.$ 1[H]). Found 366.

1-benzyl-6-(4-(2-ethyl)morpholinethio)-4-cyclopropylamino-pyrazolo[3,4-d]pyrimidine (310)

Method F: To a solution of 1-benzyl-4,6-bis-(4-(2-ethyl)morpholinethio)-pyrazolo[3,4-d]pyrimidine (444) ($65 \mathrm{mg}, 0.13 \mathrm{mmol}$) in dioxane (4.0 ml) was added cyclopropylamine ($45 \mu \mathrm{l}, 0.65 \mathrm{mmol}$). The mixture was heated to $100{ }^{\circ} \mathrm{C}$ and monitored by electrospray mass spectrometer. Cyclopropylamine ($45 \mu \mathrm{l}, 0.65 \mathrm{mmol}$) was added every hour until no starting material was detected. After 8 h , the reaction mixture was concentrated and purified by flash chromatography (2.5% methanolDCM) to yield 1-benzyl-6-(4-(2-ethyl)morpholinethio)-4-cyclopropylamino-pyrazolo[3,4-d]-pyrimidine (310) ($26 \mathrm{mg}, 49 \%$) as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.68-$ 0.76 (br, 2H, CH2), 0.90-0.96 (dd, 2H, $J=5.2 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), 2.48-2.68 (br, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2}$), $2.79\left(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right.$), 2.82-2.92 (m, 1H, CH), 3.26-3.34 (m, $2 \mathrm{H}, \mathrm{SCH}_{2}$), 3.66-3.80 (br, 4H, $2 \times \mathrm{OCH}_{2}$), 5.47 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 6.10-6.60 (br, 1H, NH), 7.16-7.34 (m, 5H, Ar-H) and $8.05(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 9.1\left(2 \times \mathrm{CH}_{2}\right), 25.1$ $(\mathrm{CH}), 27.1\left(\mathrm{SCH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 53.3\left(2 \mathrm{x} \mathrm{NCH}_{2}\right), 58.3\left(\mathrm{CH}_{2}\right), 66.5\left(\mathrm{OCH}_{2}\right), 98.4(\mathrm{C}-$ 3a), 128.0 (C-2', C-6', C-4'), 128.8 (C-3', C-5'), 132.3 (C-3), 136.9 (C-1'), 155.1 (C$7 \mathrm{a}), 158.9$ (C-4) and 167.9 (C-6); ESMS (PI) 411. calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{OS}+1[\mathrm{H}]\right)$. Found 411.

1-(3-bromobenzyl)-6-(1-ethylpiperidinethio)-4-cyclopropylamino-pyrazolo[3,4-

 d]-pyrimidine (315)

Method F was used to prepare 1-(3-bromobenzyl)-6-(1-ethylpiperidinethio)-4-cyclopropylamino-pyrazolo[3,4-d]-pyrimidine (315) from 1-(3-bromobenzyl)-4,6-bis-(1-ethylpiperidinethio)-pyrazolo[3,4-d]pyrimidine (443) and cyclopropylamine. Yield (55%) as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.66-0.80\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.88-0.96(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=$ $5.2 \mathrm{~Hz}, \mathrm{~J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), 1.40-1.50 (br, 2H, CH2), 1.64-1.74 (br, 4H, $2 \times \mathrm{CH}_{2}$), 2.552.68 (br, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2}$), 2.80-2.90 (m, 3H, NCH +CH), 3.27-3.34 (m, 2H, SCH_{2}), $5.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.70-7.00(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.13\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5 \mathrm{~S}^{\prime}-\mathrm{H}\right), 7.17(\mathrm{~d}, J=$ $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.34\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.39\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $8.05(\mathrm{~s}, 1 \mathrm{H}, 3-$ H); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 8.8\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{2}\right), 23.8\left(2 \mathrm{xCH}_{2}\right), 25.1(\mathrm{CH}), 26.2\left(\mathrm{SCH}_{2}\right)$, $\left.\left.49.8\left(\mathrm{CH}_{2}\right), 53.8\left(2 \times \mathrm{NCH}_{2}\right), 57.5\left(\mathrm{NCH}_{2}\right), 98.5(\mathrm{C}-3 \mathrm{a}), 122.9(\mathrm{C}-3)^{\prime}\right), 126.7(\mathrm{C}-6)^{\prime}\right)$, 130.4 (C-5'), 130.9 (C-4'), 131.0 (C-2'), 134.7(C-3), 139.3(C-1'), 155.3 C-7a), 157.0 C-4) and 167.8 (C-6); ESMS (PI) 487 and 489. calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{27}{ }^{79} \mathrm{BrN}_{6} \mathrm{~S}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{22} \mathrm{H}_{27}{ }^{79} \mathrm{BrN}_{6} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 487 and 489.

1-(3-iodobenzyl)-6-(1-ethylpyrrolidinethio)-4-cyclopropylamino-pyrazolo[3,4-d]-

 pyrimidine (333)

Method F was used to prepare 1-(3-iodobenzyl)-6-(1-ethylpyrrolidinethio)-4-cyclopropylamino-pyrazolo[3,4-d]-pyrimidine (333) from 1-(3-iodobenzyl)-4,6-bis-(1-ethylpyrrolidinethio)-pyrazolo[3,4- d]pyrimidine (441) and cyclopropylamine. Yield (50%) as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.68-0.72\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.90-0.96(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.86-1.94 (br, 4H, $2 \times \mathrm{CH}_{2}$), 2.78-2.92 (br, $5 \mathrm{H}, 2 \times \mathrm{NCH}_{2}+\mathrm{CH}$), 2.98-3.04 (m, $2 \mathrm{H}, \mathrm{NCH}_{2}$), 3.32-3.40 (m, 2H, SCH 2), $5.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.70-7.00(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.99$ $\left(\mathrm{t}, J_{\text {ortho }}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.21\left(\mathrm{~d}, J_{\text {ortho }}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.55\left(\mathrm{dt}, J_{\text {ortho }}=7.6\right.$ $\left.\mathrm{Hz}, J_{\text {meta }}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.61\left(\mathrm{t}, J_{\text {meta }}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $8.06(\mathrm{br}, 1 \mathrm{H}, 3-\mathrm{H})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 8.9\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 23.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 25.1(\mathrm{CH}), 28.3\left(\mathrm{SCH}_{2}\right), 49.8\left(\mathrm{CH}_{2}\right)$, $54.1\left(2 \times \mathrm{NCH}_{2}\right), 55.7\left(\mathrm{NCH}_{2}\right), 94.7(\mathrm{C}-3 '), 98.5(\mathrm{C}-3 \mathrm{a}), 127.4\left(\mathrm{C}-6\right.$ '), $\left.130.5(\mathrm{C}-5)^{\prime}\right)$, 134.5 (C-3), 136.9 (C-2'), 137.0 (C-4'), 139.2 (C-1'), 153.5 (C-7a), 158.9 (C-4) and 170.8 (C-6); ESMS (PI) 521. calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{IN}_{6} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 521.

1-benzyl-6-(1-ethylpyrrolidinethio)-4-cyclopropylamino-pyrazolo[3,4-d]pyrimidine (334)

Method F was used to prepare 1-benzyl-6-(1-ethylpyrrolidinethio)-4-cyclopropylamino-pyrazolo[3,4-d]-pyrimidine (334) from 1-benzyl-4,6-bis-(1-ethylpyrrolidinethio)-pyrazolo[3,4-d]pyrimidine (440) and cyclopropylamine. Yield (45\%) as yellow oil; $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ 0.66-0.80 (br, $2 \mathrm{H}, \mathrm{CH}_{2}$), 0.88-0.96 (dd, $2 \mathrm{H}, \mathrm{J}=$ $5.2 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), $1.86\left(\mathrm{t}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 2.74-2.90\left(\mathrm{~m}, 5 \mathrm{H}, 2 \times \mathrm{NCH}_{2}+\mathrm{CH}\right)$, 2.94-3.04 (m, 2H, NCH 2), 3.28-3.37 (m, 2H, SCH 2), 5.47 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 6.70-7.00 (br, $1 \mathrm{H}, \mathrm{NH}$), 7.14-7.34 (m, 5H, Ar-H) and $8.05(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 8.9(2 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 23.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 25.1(\mathrm{CH}), 28.3\left(\mathrm{SCH}_{2}\right), 50.6\left(\mathrm{CH}_{2}\right), 53.9\left(2 \mathrm{x} \mathrm{NCH}_{2}\right), 55.7$ $\left(\mathrm{NCH}_{2}\right), 98.4$ (C-3a), 127.9 (C-4'), 128.1 (C-2', C-6'), 128.8 (C-3', C-5'), 134.2 (C-3), 137.0 (C-1'), 155.2 (C-7a), 159.0 (C-4) and 167.5 (C-6); ESMS (PI) 395. calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 395.

1-(3-iodobenzyl)-6-(2-methyltetrahydropyranthio)-4-butylamino-pyrazolo[3,4d]pyrimidine (421)

Method G: To a solution of 1-(3-iodobenzyl)-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (447) ($70 \mathrm{mg}, 0.117 \mathrm{mmol}$) in dioxane (4.0 ml) was added butylamine ($58 \mu \mathrm{l}, 0.586 \mathrm{mmol}$). The mixture was heated to $100{ }^{\circ} \mathrm{C}$ and monitored by electrospray mass spectrometer. Butylamine ($58 \mu \mathrm{l}, 0.586$ mmol) was added every 4 hour until no starting material was detected. After 8 h , the reaction mixture was concentrated and purified by flash chromatography (2.5% methanol-DCM) to yield 1-(3-iodobenzyl)-6-(2-methyltetrahydropyranthio)-4-butylamino-pyrazolo[3,4-d]pyrimidine (421) (38 mg, 60\%) as white solid, $\mathrm{mp} 97.4 \pm$ $0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.91\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20-1.84\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{xCH}_{2}\right)$, $3.25\left(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{SCH}_{2}\right), 3.39\left(\mathrm{td}, 1 \mathrm{H}, J_{6 \mathrm{a}, 5}=11.6 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{e}}=2.0 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}\right)$, 3.48-3.58 (m, 3H, NCH +CH), 3.92-3.99 (dd, $1 \mathrm{H}, J_{6 \mathrm{e}, 5}=11.2 \mathrm{~Hz}, J_{6 \mathrm{e}, 6 \mathrm{a}}=2.0 \mathrm{~Hz}$, $\mathrm{H}_{6 \mathrm{e}}$), 5.36 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $5.70-6.00(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.98$ (t, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}\right), 7.21$ (d, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.54\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.60\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.76(\mathrm{br}$, $1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 14.0\left(\mathrm{CH}_{3}\right)$, $20.3\left(\mathrm{CH}_{2}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right)$, $31.7\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{SCH}_{2}\right), 49.9\left(2 \times \mathrm{NCH}_{2}\right), 68.9\left(\mathrm{CH}_{2}\right), 77.2(\mathrm{CH}), 94.6(\mathrm{C}-3 \mathrm{C}+\mathrm{C}-3 \mathrm{a})$, 127.5 (C-6'), 130.5 (C-5'), 131.1 (C-3), 137.0 (C-4'), 137.1 (C-2'), 139.2 (C-1'), 154.5 (C-7a), 161.4 (C-4) and 169.3 (C-6); Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{IN}_{5} \mathrm{OS}: \mathrm{C}, 49.16$; H, 5.25; N, 13.03. Found C, 49.46; H, 5.39; N, 12.93\%; ESMS (PI) 538. calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{IN} 5 \mathrm{OS}+1[\mathrm{H}]\right)$. Found 538.

1-benzyl-6-(2-methyltetrahydropyranthio)-4-butylamino-pyrazolo[3,4-d]pyrimidine (422)

Method G was used to prepare 1-benzyl-6-(2-methyltetrahydropyranthio)-4-butylamino-pyrazolo[3,4-d]-pyrimidine (422) from 1-benzyl-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (445). Yield (58\%) as white solid, mp $94.0 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.91\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20-1.84(\mathrm{~m}$, $10 \mathrm{H}, 5 \mathrm{x} \mathrm{CH}_{2}$), $3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.38\left(\mathrm{td}, 1 \mathrm{H}, J_{6 \mathrm{a}, 5}=11.6 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{e}}=2.4 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}\right)$, 3.48-3.58 (m, 3H, NCH +CH), 3.93-4.00 (m, 1H, H6e), $5.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.70-6.10$ (br, 1H, NH), 7.16-7.32 (m, 5H, Ar-H) and 7.75 (br, 1H, 3-H); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 13.9$ $\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{SCH}_{2}\right), 40.8$ $\left(\mathrm{NHCH}_{2}\right), 50.8\left(\mathrm{NCH}_{2}\right), 68.9\left(\mathrm{CH}_{2}\right), 77.2(\mathrm{CH}), 98.7(\mathrm{C}-3 \mathrm{a}), 127.9(\mathrm{C}-4), 128.2\left(\mathrm{C}-2^{\prime}\right.$, C-6'), 128.8 (C-3', C-5'), 130.9 (C-3), 137.0 (C-1'), 154.3 (C-7a), 156.2 (C-4) and 169.1 (C-6); Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{OS}: \mathrm{C}, 64.20 ; \mathrm{H}, 7.10 ; \mathrm{N}, 17.02$. Found C, 64.40; H, 7.31; N, 16.91\%; ESMS (PI) 412. calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{OS}+1[\mathrm{H}]\right)$. Found 412.

1-(3-bromobenzyl)-6-(2-methyltetrahydropyranthio)-4-butylamino-pyrazolo-[3,4-d]pyrimidine (423)

Method G was used to prepare 1-(3-bromobenzyl)-6-(2-methyltetrahydropyranthio)-4-butylamino-pyrazolo-[3,4-d]pyrimidine (423) from 1-(3-bromobenzyl)-4,6-bis-(2-methyltetrahydropyranthio)-pyrazolo[3,4-d]pyrimidine (446) and butylamine. Yield (64%) as white solid, mp $83.5 \pm 0.5^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz})$ $0.92\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-1.85\left(\mathrm{~m}, 10 \mathrm{H}, 5 \mathrm{xCH}_{2}\right), 3.26(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}$, $\left.\mathrm{SCH}_{2}\right), 3.39\left(\mathrm{td}, 1 \mathrm{H}, J_{6 \mathrm{a}, 5}=11.6 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{e}}=2.4 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{a}}\right), 3.46-3.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2}+\right.$ CH), 3.92-4.01 (m, 1H, $\mathrm{H}_{6 \mathrm{e}}$), $5.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.30-6.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.12(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}$), 7.19 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.35\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.39$ $\left(\mathrm{s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.77(\mathrm{br}, 1 \mathrm{H}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 13.9\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{2}\right), 23.5$ $\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 31.6\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{SCH}_{2}\right), 50.1(2 \mathrm{x} \mathrm{NCH} 2), 68.9$ $\left(\mathrm{CH}_{2}\right), 77.2(\mathrm{CH}), 98.7$ (C-3a), 122.9 (C-3'), 126.9 (C-6'), 130.4 (C-5'), 131.2 (C-4', C$\left.2^{\prime}\right), 133.4$ (C-3), 139.0 (C-1'), 154.3 (C-7a), 156.3 (C-4) and 169.5 (C-6); Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BrN}_{5} \mathrm{OS}: \mathrm{C}, 53.87$; H, 5.75; N, 14.28. Found C, $53.84 ; \mathrm{H}, 5.85$; N, 14.19%; ESMS (PI) 490 and 492. calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{28}{ }^{79} \mathrm{BrN}_{5} \mathrm{OS}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{22} \mathrm{H}_{28}{ }^{81} \mathrm{BrN}_{5} \mathrm{OS}+\right.$ 1[H]). Found 490 and 492.

1-(3-iodobenzyl)-6-methylthio-4-butylamino-pyrazolo[3,4-d]pyrimidine (433)

433

Method G was used to prepare 1-(3-iodobenzyl)-6-methylthio-4-butylamino-pyrazolo[3,4-d]pyrimidine (433) from 1-(3-iodobenzyl)-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (439) and butylamine. Yield (50\%) as white solid, mp $117.5 \pm 0.5{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.94\left(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20-1.80(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{x}$ CH_{2}), $2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.48-3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.00(\mathrm{t}, \mathrm{J}=8.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.25\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.57\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.68$ (s, $1 \mathrm{H}, 2^{\prime}-\mathrm{H}$) and $7.79(\mathrm{br}, 1 \mathrm{H}, 3-\mathrm{H})$; Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{IN}_{5} \mathrm{~S}: \mathrm{C}, 45.04 ; \mathrm{H}, 4.45$; N, 15.45. Found C, 45.02; H, 4.69; N, 14.62\%; ESMS (PI) 454. calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{IN} 5 \mathrm{~S}+\right.$ 1[H]). Found 454.

1-benzyl-6-methylthio-4-butylamino-pyrazolo[3,4-d]pyrimidine (434)

437

434

Method G was used to prepare 1-benzyl-6-methylthio-4-butylamino-pyrazolo[3,4-d]pyrimidine (434) from 1-benzyl-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (437) and butylamine. Yield (58\%) as white solid, $\mathrm{mp} 84.5 \pm 0.5{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}$ $(400 \mathrm{MHz}) 0.92\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~s}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.63(\mathrm{q}, 2 \mathrm{H}$, $J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.75-6.15$ (br, 1H, NH), 7.19-732 (m, 5H, Ar-H) and 7.76 (br, 1H, 3-H); Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}: \mathrm{C}, 62.36 ; \mathrm{H}, 6.46$; N, 21.39. Found C, 62.20; H, 6.52; N, 21.39\%; ESMS (PI) 328. calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 328 .

1-(3-bromobenzyl)-6-methylthio-4-butylamino-pyrazolo[3,4-d]pyrimidine (435)

438

435

Method G was used to prepare 1-(3-bromobenzyl)-6-methylthio-4-butylamino-pyrazolo[3,4-d]pyrimidine (435) from 1-(3-bromobenzyl)-4,6-bis-methylthio-pyrazolo[3,4-d]pyrimidine (438) and butylamine. Yield (60\%) as white solid, mp $113.5 \pm 0.5^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.92\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40(\mathrm{~s}, 2 \mathrm{H}, \mathrm{J}$ $\left.=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.62\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.41\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.70-6.10(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.12\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 5{ }^{\prime}-\mathrm{H}\right), 7.21(\mathrm{~d}, J=$ $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.34\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.44\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ and $7.76(\mathrm{br}, 1 \mathrm{H}$, 3-H; Anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{5} \mathrm{~S}$: C, 50.25; H, 4.96; N, 17.24. Found C, 50.20; H, 4.97; N, 17.21\%; ESMS (PI) 406 and 408. calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{20}{ }^{79} \mathrm{BrN}_{5} \mathrm{~S}+1[\mathrm{H}]\right)$ and $\left(\mathrm{C}_{17} \mathrm{H}_{20}{ }^{81} \mathrm{BrN}_{5} \mathrm{~S}+1[\mathrm{H}]\right)$. Found 406 and 408.

6.5 References

(1) Poulsen, S.-A.; Quinn, R. J. Synthesis and Structure-Activity Relationship of Pyrazolo[3,4-d]pyrimidines: Potent and Selective Adenosine A1 Receptor Antagonists. Journal of Medicinal Chemistry 1996, 39, 4156-4161.
(2) Poulsen, S.-A.; Quinn, R. J. Pyrazolo[3,4-d]pyrimidines: C4, C6 substitution leads to adenosine A1 receptor selectivity. Bioorganic \& Medicinal Chemistry Letters 1996, 6, 357-360.
(3) Chebib, M.; Quinn, R. J. 1-Phenylpyrazolo[3,4-d]pyrimidines as adenosine antagonists: the effects of substituents at C4 and C6. Bioorganic \& Medicinal Chemistry 1997, 5, 311-322.
(4) Ferrarini, P. L.; Mori, C.; Manera, C.; Martinelli, A.; Mori, F. et al. A novel class of highly potent and selective A1 adenosine antagonists: structureaffinity profile of a series of 1,8-naphthyridine derivatives. Journal of Medicinal Chemistry 2000, 43, 2814-2823.
(5) Ferrarini, P. L.; Mori, C.; Manera, C.; Martinelli, A.; Mori, F. et al. Study on affinity profile toward native human and bovine adenosine receptors of a series of 1,8-naphthyridine derivatives. Journal of Medicinal Chemistry 2004, 47, 3019-3031.
(6) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Fourth Edition, 1997; 512 pp.

CHAPTER 7

Cell cultures, membrane preparation and radioligand binding assays

7.1 Introduction

The human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} receptors stably expressed in CHO (Chinese hamster ovary) cells were grown and the membranes were prepared for radioligand binding assays using the literature procedure. ${ }^{1}$ All synthesized compounds in this study were evaluated for their affinities against the radioligands at the adenosine A_{1}, $\mathrm{A}_{2 \mathrm{~A}}$ and A_{3} receptors. The percentage activity for each crude compound at these adenosine receptors was calculated using the equation in the Figure 7.1. The dissociation constants of the purified compounds (K_{i} values) at A_{1} and A_{3} receptors were determined from radioligand binding data using the Cheng-Prusoff equation (Figure 7.2). ${ }^{2}$

$$
\% \text { Activity }=100 \%-\left(\frac{\mathrm{Unk}-\mathrm{NSB}}{\mathrm{~TB}-\mathrm{NSB}}\right) \times 100 \%
$$

Unk is the counted filter bound radioactivity for the binding in the presence of test compound.

NSB (non-specific binding) is the counted filter bound radioactivity for the binding in the presence of unlabeled compound.

TB (total binding) is the counted filter bound radioactivity for the binding of labeled compound to the receptor.

Figure 7.1: Percentage activity equation.

$$
\mathrm{K}_{\mathrm{i}}=\frac{\mathrm{IC}_{50}}{1+\frac{\mathrm{L}}{\mathrm{~K}_{\mathrm{d}}}}
$$

K_{i} is the dissociation constant of the test compound IC_{50} is the concentration of test compound to cause 50% inhibition of labeled compound
K_{d} is the dissociation constant of the labeled compound
L is the concentration of labeled compound.

Figure 7.2: Cheng-Prusoff equation. ${ }^{2}$

7.2 Materials

The human $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} receptors stably expressed in CHO (Chinese hamster ovary) cells was obtained from Klotz, K. N, Institute of Pharmacology and Toxicology, University of Wurzburg, Germany. Cell culture media, fetal calf serum and penicillin ($100 \mathrm{unit} / \mathrm{ml}$) and streptomycin $(100 \mu \mathrm{~g} / \mathrm{ml})$ were purchased from Biowhittaker. L-glutamine and geneticin were purchased from Gibco-life technologies. $\left[{ }^{3} \mathrm{H}\right]$ NECA and $\left[{ }^{3} \mathrm{H}\right]$ DPCPX were purchased from Amersham pharmacia biotech. All other materials were purchased from Sigma-Aldrich.

7.3 Cell culture

Frozen CHO cells stably transfected with human A_{1} receptor were thawed in a warm water bath at $37^{\circ} \mathrm{C}$. Dulbecco's Modified Eagles Medium with nutrients F12 without nucleosides (DMEM/F12) (45 ml) containing 10% fetal calf serum, penicillin (100 units $/ \mathrm{ml}$), streptomycin ($100 \mu \mathrm{~g} / \mathrm{ml}$), L-glutamine (2 mM) and geneticin (0.2 $\mathrm{mg} / \mathrm{ml}$) was added. Cells and media were transferred to a 250 ml culture flask and placed in an incubator with $5 \% \mathrm{CO}_{2} / 95 \% \mathrm{O}_{2}$ air at $37{ }^{\circ} \mathrm{C}$. Once the cells were adhered to the surface of the flask and $80-90 \%$ confluent ($1-1.5$ days), the media was poured off (NB: don't pour medium over cells) and 0.02% EDTA in PBS (16 ml) was
added. The flask was placed back in an incubator for $10-15 \mathrm{~min}$. The flask was agitated slightly and cells came off surface into EDTA/PBS. Cells in PBS (16 ml) was split into $8 \times 250 \mathrm{ml}$ culture flasks and media (45 ml) was added to each flask. Two and half day later, the cells in each flask were $80-90 \%$ confluent. Cells in each flask were collected into EDTA/PBS ($20 \mathrm{ml} /$ flask) as before and then were split into 10 x 250 ml culture flasks. Media (45 ml) was added to each flask and 80 flasks of cells were left to grow. After 3 days, they were $80-90 \%$ confluent. They were then collected in EDTA/PBS ($15 \mathrm{ml} /$ flask) and pooled into $24 \times 50 \mathrm{ml}$ centrifuge tubes. They were spun for 10 mins at 1600 rpm and at $4{ }^{\circ} \mathrm{C}$ to remove EDTA/PBS. Cell pellets were kept at $0-4{ }^{\circ} \mathrm{C}$ for the membrane preparation.

CHO cells pellets stably transfected with human $\mathrm{A}_{2 \mathrm{~A}}$ and A_{3} receptors were also prepared using the same procedure.

7.4 Membrane preparation

The A_{1} cell pellets were suspended in an ice-cold hypotonic buffer (100 ml) (5 $\mathrm{mM} / \mathrm{Tris} / \mathrm{HCl}, 2 \mathrm{mM}$ EDTA, pH 7.4). The cell suspension was transferred to 6×25 ml high centrifuge tubes and homogenized on ice with ultra-turrax polytron twice at full speed (2×15 seconds). The homogenate was centrifuged for 35 min at 48000 rpm at $4{ }^{\circ} \mathrm{C}$. The membrane pellets were re-suspended in 50 mM Tris/ HCl buffer at pH 7.4 $(120 \mathrm{ml})$. The membranes were stored at $-80^{\circ} \mathrm{C}$ for protein estimation and for binding assays.

The $\mathrm{A}_{2 \mathrm{~A}}$ and A_{3} cell cell membranes were prepared using the same procedure. For $\mathrm{A}_{2 \mathrm{~A}}$ adenosine receptors, the membrane pellets were re-suspended in 50 mM Tris $/ \mathrm{HCl}$ and 10 mM MgCl 2 buffer at $\mathrm{pH} 7.4(140 \mathrm{ml})$. For A_{3} adenosine receptors, the membrane pellets were re-suspended in $50 \mathrm{mM} / \mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ and 1 mM EDTA buffer at $\mathrm{pH} 7.4(140 \mathrm{ml})$.

7.5 Protein estimation

Bovine serum albumin (BSA) (200 mg) was dissolved in phosphate buffered saline (PBS) (25 ml) to give a stock concentration of $8 \mathrm{mg} / \mathrm{ml}$. Each standard solution ($160 \mu \mathrm{l}$) was prepared as in Table 7.1. Each standard ($40 \mu \mathrm{l}$) was dispensed into each well. 10% sodium dodecyl sulfate (SDS) in water ($10 \mu \mathrm{l}$) was added to all experimental wells to digest the protein. Freshly prepared BCA protein estimation kit reagents A \& B (A/B:50/1) (200 $\mu \mathrm{l})$ was added to each well. The plate was incubated for 30 mins at $37{ }^{\circ} \mathrm{C}$. The optical density of each well was measured at wavelength of 540 nm .

Table 7.1: Preparation of the standard for protein estimation.

Standards	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathrm{mg} / \mathrm{ml}$	6.25	4.69	3.75	3.13	2.5	2.19	1.88	1.25	0.63	0.31	0.16	0
$\mathrm{mg} / \mathrm{ml}$	1	0.75	0.6	0.5	0.4	0.35	0.3	0.2	0.1	0.05	0.03	0
$\mathrm{~V}_{\mathrm{BSA}}(\mu \mathrm{l})$	125	94	75	63	50	44	38	25	13	6	3	0
$\mathrm{~V}_{\mathrm{H} 20}(\mu \mathrm{l})$	35	66	85	98	110	116	123	135	148	154	157	160

The curve of standard BSA concentration versus absorbance (Figure 7.3) was used to calculate the protein concentration of receptor in the buffer.

Figure 7.3: The graph of BSA concentration versus absorbance.

In the same plate, each dilution of unknown $(160 \mu \mathrm{l})$ was prepared as in Table 7.2 to give a dilution factor for each dilution. Similarly, each standard ($40 \mu \mathrm{l}$) was dispensed into each well. 10% sodium dodecyl sulfate (SDS) in water ($10 \mu \mathrm{l}$) was added to all experimental wells to digest the protein. The homogenate mixture went clear after addition of SDS. Freshly prepared BCA protein estimation kit reagents A \& B (A/B:50/1) $(200 \mu \mathrm{l})$ was added to each well. The plate was incubated for 30 mins at $37^{\circ} \mathrm{C}$. The optical density of each well was measured at a wavelength of 540 nm . Using the graph of standard BSA concentration versus absorbance, the protein concentration of the $A_{1}, A_{2 A}$ and A_{3} receptors could be determine from the value of the absorbance of each well.

Table 7.2: Preparation of the unknown for protein estimation.

Dilution of unknown	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Dilution factor	0.625	0.313	0.125	0.106	0.081	0.063
Dilution factor	$1 / 10$	$1 / 20$	$1 / 50$	$1 / 60$	$1 / 80$	$1 / 100$
$\mathrm{~V}_{\text {homogenate }}(\mu \mathrm{l})$	100	50	20	17	13	10
$\mathrm{~V}_{\mathrm{H} 20}(\mu \mathrm{l})$	60	110	140	143	148	150

The protein concentration of the $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$ and A_{3} receptors were $0.95 \mathrm{mg} / \mathrm{ml}$, $1.53 \mathrm{mg} / \mathrm{ml}$ and $0.309 \mathrm{mg} / \mathrm{ml}$.

7.6 Radioligand binding

7.6.1 A_{1} receptor binding assay

All synthesized compounds were tested for their ability to inhibit the binding of the A_{1} antagonist labeled ligand $\left[{ }^{3} \mathrm{H}\right] \mathrm{DPCPX}$ ([propyl- $\left.{ }^{3} \mathrm{H}\right] 8$-cyclopentyl-1,3dipropylxanthine) to the receptor using the literature procedure. ${ }^{1}$ The assays were carried out in 96-well microtitre plates. Each assay contained membrane protein (25 $\mu \mathrm{g}$, adenosine deaminase ($0.2 \mathrm{U} / \mathrm{ml}$), test compound in DMSO with a final DMSO concentration of 1% and $2 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ DPCPX in a total volume of $200 \mu \mathrm{l}$ binding buffer of $50 \mathrm{mM} \mathrm{Tris} / \mathrm{HCl} \mathrm{pH} 7.4$. Nonspecific binding was determined in the presence of
100μ M R-PIA (R-N ${ }^{6}$-phenylisopropyladenosine). The assay was incubated for 3 h at room temperature and then filtered through presoaked filtermats B in 0.1% polyethyleneimine (PEI) using the Brandel cell harvester. The filtermat was dried at $60^{\circ} \mathrm{C}$ for 1 h . It was then soaked with scintillant fluid (Wallac scintillation products) in a sealed bag. The filter bound radioactivity was counted using a Micro Beta ${ }^{\circledR}$ Trilux Wallace scintillation counter. The assays for crude products were performed in duplicate and the percentage activity was calculated using the equation in the Figure 7.1. The assays for purified compounds were performed twice in duplicate. All binding data was analyzed using a non-linear regression program (GraphPad Prism). K_{i} value for purified compound was calculated using the Cheng-Prusoff equation
(Figure 7.2).

7.6.2 $\mathrm{A}_{2 \mathrm{~A}}$ receptor binding assay

All synthesized compounds were tested for their ability to inhibit the binding of the $\mathrm{A}_{2 \mathrm{~A}}$ agonist labeled ligand $\left[{ }^{3} \mathrm{H}\right]$ NECA (5^{\prime} - N -Ethylcarboxamido[8(n)$\left.{ }^{3} \mathrm{H}\right]$ adenosine) to the receptor using the literature procedure. ${ }^{1}$ The assays were carried out in 96 -well microtitre plates. Each assay contained membrane protein ($50 \mu \mathrm{~g}$), adenosine deaminase ($0.2 \mathrm{U} / \mathrm{ml}$), test compound in DMSO with a final DMSO concentration of 1% and $50 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ NECA in a total volume of $200 \mu \mathrm{l}$ binding buffer of $50 \mathrm{Tris} / \mathrm{HCl}$ and $10 \mathrm{mM} \mathrm{MgCl} 2_{2}$ buffer at pH 7.4 . Nonspecific binding was determined in the presence of $100 \mu \mathrm{M}$ NECA. The assay was incubated for 3 h at room temperature and then filtered through presoaking filtermats B in 0.1% polyethyleneimine (PEI) using the Brandel cell harvester. The filtermat was dried at $60^{\circ} \mathrm{C}$ for 1 h . It was then soaked with scintillant fluid (Wallac scintillation products) in a sealed bag. The filter bound radioactivity was counted using a Micro Beta ${ }^{\circledR}$ Trilux Wallace scintillation counter. The assays for crude products were performed in duplicate and the percentage activity was calculated using the equation in the Figure 7.1.

7.6.3 A_{3} receptor binding assay

All synthesized compounds were tested for their ability to inhibit the binding of the $\mathrm{A}_{2 \mathrm{~A}}$ agonist labeled ligand $\left[{ }^{3} \mathrm{H}\right] \mathrm{NECA}$ (5^{\prime} - N -Ethylcarboxamido[8(n)-
$\left.{ }^{3} \mathrm{H}\right]$ adenosine) to the receptor using the literature procedure. ${ }^{1}$ The assays were carried out in 96 -well microtitre plates. Each assay contained membrane protein ($60 \mu \mathrm{~g}$), adenosine deaminase $(0.2 \mathrm{U} / \mathrm{ml})$, test compound in DMSO with a final DMSO concentration of 1% and $\left[{ }^{3} \mathrm{H}\right]$ NECA $(40 \mathrm{nM})$ in a total volume of $200 \mu \mathrm{l}$ binding buffer of $50 \mathrm{mM} / \mathrm{HCl}, 10 \mathrm{mM} \mathrm{MgCl} 2$ and 1 mM EDTA at pH 7.4. Nonspecific binding was determined in the presence of $100 \mu \mathrm{M}$ NECA. The assay was incubated for 3 h at room temperature and then filtered through presoaking filtermats B in 0.1% polyethyleneimine (PEI) using the Brandel cell harvester. The filtermat was dried at $60^{\circ} \mathrm{C}$ for 1 h . It was then soaked with scintillant fluid (Wallac scintillation products) in a sealed bag. The filter bound radioactivity was counted using a Micro Beta ${ }^{\circledR}$ Trilux Wallace scintillation counter. The assays for crude products were performed in duplicate. The assays for purified compounds were performed twice in duplicate and the percentage activity was calculated using the equation in the Figure 7.1.

7.7 References

(1) Klotz, K. N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B. et al. Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg's Archives of Pharmacology 1998, 357, 1-9.
(2) Cheng, Y. C. P., W H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzyme reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

