Characterisation of Campylobacter jejuni glycoprotease and its role in bacteria - host interactions

Zoran Klipic
B. Biomed Sci, B. Biomed Sci (Hon)

Department of Microbial Glycobiology, Institute for Glycomics Griffith University, Gold Coast, Australia

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

Supervisor: Assoc. Prof. Victoria Korolik Associate supervisor: Dr Jennifer Wilson

Abstract

The bacterial enzyme glycoprotease (gcp) was first discovered in the culture supernatant of Mannheimia (Pasteurella) haemolytica A1 associated with bovine pneumonic pasteurellosis. The enzyme is highly specific for O-sialoglycoproteins, but the function of the enzyme in bacterial homeostasis was not fully elucidated.

The in silico analysis of C. jejuni genome strain NCTC11168 has revealed Cj 1344 c , a protein with predicted amino acid sequence showing 55% similarity to the M. haemolytica O-sialoglycoprotease. The C. jejuni Cj 1344 c homologue was present in all to-date sequenced strains of C. jejuni with higher than 97% amino acid identity and an orthologue of this enzyme was present in other Campylobacter species, with greater than 70% amino acid similarity. The glycoprotease was also present in the genomes of Campylobacter related species, such as Helicobacter and Wollinella with $65-70 \%$ similarity to C. jejuni Cj1344c. Comparative analysis also identified presence of orthologues in bacterial species such as Bacillus anthracis, Staphylococcus aureus and Haemophilus influenzae, with more than 49% amino acid similarity to the predicted Cj 1344 c amino acid sequence.

In this study, the utilisation of gene mutagenesis approach demonstrated that a putative glycoprotease $(\mathrm{Cj} 1344 \mathrm{c})$ is required for C. jejuni survival and growth, as the inactivation of the gene by insertion of an antibiotic resistance gene cassette resulted in bacterial death. The gene products essential for bacterial growth in vitro and survival during infection constitute an initial set of protein targets for the development of antibacterial vaccines. The results of this study indicate that Cj1344c is a potential novel target for the development of antimicrobials against C. jejuni or a target for the development of a vaccine.

In order to utilise the protein in the immunisation and protection studies and to determine its potential as a vaccine candidate, the function of the protein needed to be determined. The protein was expressed and purified utilising a pET-19b system which enabled the overexpression of the protein in E. coli and its subsequent purification as a fusion protein with an N -terminal polyhistidine tag.

The role of the Cj 1344 c in the bacterium could not be elucidated due to the inability to generate the isogenic mutant. In order to gain an insight into the activity of the protein, the Cj1344c His-tagged protein was used. Analysis of the purified His-Cj1344c binding capability by glycan and small molecule array determined that it recognises methionine, lysine and arginine, suggesting that these amino acids are present in the sequences of glycoproteins that are recognised by Cj 1344 c . The enzyme was also shown to possess specificity to glycosylated structures as it was recognising bovine lactoferrin, but not recombinant lactoferrin which lacks sialic acid. In addition, the specificity of Cj 1344 c to MUC2 through the use of glycan array methodology was identified, which suggests a putative role for Cj 1344 c in the degradation of this molecule which was reported to be very important in the C. jejuni pathogenesis. Modification or degradation of the mucous layer of the gastrointestinal tract may play a role during the initial stages of C. jejuni adherence and invasion of epithelial cells. Enzymatic digestion of MUC2 with His-Cj1344c could not confirm the biological activity of the enzyme. It was speculated that the misfolding of the His-Cj1344c or absence of the enzyme co-factor was probable reason for the reduced enzymatic activity of His-Cj1344c observed in the study. The lack of the enzymatic activity made this protein a good antigen candidate for immunisation trial as it was speculated that its toxicity, due to the reduced activity, would be minimal.

The crucial role of the Cj 1344 c in the cell survival, its high degree of similarity between campylobacter species as well as its putatively important role in the bacterial pathogenesis through degradation of the mucous layer; makes this protein a potentially very good vaccine candidate. High antibody titres $(1: 65,000)$ obtained in the rabbit immunisation with His-Cj1344c provided encouraging preliminary results for the investigation of possible protective role of the Cj1344c against C. jejuni infection. The preliminary mouse immunisation trials, assessing different routes of antigen administration, have identified the subcutaneous immunisation to provide the best immune response to the His-Cj1344c. The minimal dose of $5 \mu \mathrm{~g}$ His-Cj1344c during immunisation did not produce any adverse effects in the mice; and produced high IgG antibody titres (1:65,000). The protection studies against C. jejuni infection have determined that the mice immunised with HisCj1344c show lower number of C. jejuni cells in their faeces and the small and large intestines, which was indicative of lower colonisation even though the results did not show statistical significance. The immunisation study has also identified that the non-vaccinated mice had His-Cj1344c specific antibodies, which would suggest that the His-Cj1344c specific antibodies have been produced in the non-vaccinated group of animals through a transient infection with C. jejuni or related species against the native protein. More importantly, these studies confirm that the enzyme is expressed by C. jejuni in vivo and is likely involved in the bacterial pathogenesis.

Statement of Originality

I declare that the work presented in this thesis was performed within the Institute for Glycomics, under the supervision of Associate Professor Victoria Korolik. This work has not been previously been submitted for a degree or a diploma in any university. To the best of my knowledge and belief the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Zoran Klipic

Table of contents

Abstract I
Statement of Originality IV
Table of contents V
List of Figures XIII
List of Tables XVII
Abbreviations XVIII
Acknowledgements XXI
Chapter 1 1
Introduction to Campylobacter jejuni 1
1.1 Historical perspectives and Campylobacter genus 3
1.2 Microbiology and genetics 4
1.3 Reservoirs and Transmission 5
1.4 Epidemiology 6
1.4.1 Developed Countries 7
1.4.2 Developing Countries 8
1.4.3 Campylobacter infections in HIV-infected patients 9
1.4.4 Epidemiology of Traveller's diarrhoea 9
1.5 Clinical features of infection 10
1.5.1 Guillain-Barré Syndrome 12
1.6 Treatment and Antibiotic resistance 15
1.7 Pathogenesis 16
1.7.1 Motility and Chemotaxis 16
1.7.2 Bacteria-Host Interactions 17
1.7.3 Toxins 22
1.8 Mucins and their role in pathogenesis of gastrointestinal bacteria 23
$1.9 \quad O$-sialoglycoprotease 24
1.10 Development of a C. jejuni vaccine 29
Chapter 2 33
Materials and Methods 33
2.1 General procedures 35
2.2 General Chemicals and Equipment. 35
2.3 Bacteriological Techniques 36
2.3.1 Media 36
2.3.2 Antibiotics 37
2.3.3 Stock solutions and Buffers 37
2.4 Bacterial strains and plasmids 39
2.4.1 C. jejuni strains and growth conditions 39
2.4.2 Preparation of conditioned media 40
2.4.3 Bacterial strains and growth conditions 41
2.4.4 Plasmids 42
2.4.5 Storage of bacterial strains 43
2.5 General Molecular Biological Techniques 44
2.5.1 Crude DNA isolation 44
2.5.2 Purification of plasmid DNA from E. coli 44
2.5.3 Standard Ethanol Precipitation 45
2.5.4 Quantitation of DNA 45
2.5.5 Agarose gel electrophoresis 46
2.5.6 Purification of DNA from agarose 46
2.5.7 Restriction endonuclease digestion of DNA 46
2.5.8 Polymerase Chain Reaction Procedures 47
2.5.9 DNA sequencing 50
2.6 General cloning techniques 51
2.6.1 Cloning DNA into the pGEM®-T Easy Vector 51
2.6.2 Dephosphorylation of plasmid DNA 51
2.6.3 Ligation of DNA into a vector 51
2.6.4 Preparation of E. coli competent cells 52
2.6.5 Transformation of competent cells 52
2.6.6 Natural transformation of C. jejuni 53
2.7 Protein techniques 54
2.7.1 Protein quantitation using the Bradford assay 54
2.7.2 Trichloroacetic acid (TCA) precipitation 54
2.7.3 Polyethylene Glycol (PEG) concentration 54
2.7.4 Preparation of samples for SDS-PAGE 55
2.7.5 SDS-PAGE resolution of proteins 55
2.7.6 Staining of SDS-polyacrylamide gels after electrophoresis 56
2.7.7 Western Blot Analysis of Proteins 56
2.7.8 Protein quantitation using the Bradford assay 57
2.7.9 Small scale protein expression 58
2.7.10 Cellular localization of recombinant protein 58
2.7.11 Optimisation of purification protocol. 59
2.7.12 Large scale protein expression. 60
2.8 STD NMR spectroscopy 62
2.8.1 Preparation of protein samples for NMR spectroscopy 62
2.8.2 STD NMR spectroscopy 62
2.9 Arrays 63
2.9.1 Amino Acid Arrays. 63
2.9.2 Glycan array 64
2.10 Purification of native protein using Dynabeads ${ }^{\circledR}$ M-280 Sheep anti-Rabbit IgG 64
2.11 Glycoprotease assays 64
2.12 In vivo methods 65
2.12.1 Animals 65
2.12.2 Mice vaccination 65
2.12.3 Blood sample collection and processing 66
2.12.4 Faecal sample collection and processing 66
2.12.5 Determination of immune responses by ELISA 66
2.12.6 Preparation of C. jejuni inoculums and mice inoculation. 67
2.12.7 Homogenisation of organs 67
2.13 Statistical analysis 68
Chapter 3 69
Expression, purification and characterisation of the putative
O-sialoglycoprotease from Campylobacter jejuni. 67
3.1 Introduction 71
3.2 Results 73
3.2.1 In silico analysis of Cj 1344 c 73
3.2.2 Amplification of the Cj1344c gene 77
3.2.3 Cloning of Cj1344c into pGEM-T Easy 78
3.2.4 Cloning of $C j 1344 c$ into the expression vector pET-19b 80
3.2.5 Small scale protein expression and confirmation 81
3.2.6 Optimisation of the recombinant protein purification protocols 83
3.2.7 Protein precipitation and solubility. 84
3.2.8 Identification of the substrate specificity by amino acid, glycan and glycoprotein array 85
3.2.9 Attempt to confirm the ligand-binding specificity by Saturation transfer difference NMR 87
3.2.10 Assessment of the enzymatic activity of His-Cj1344c fusion protein 88
3.3 Discussion 90
3.3.1 Conclusion 93
Chapter 4 95
Construction and characterisation of the $\mathbf{C j 1 3 4 4} \mathrm{c}$ isogenic mutant of
Campylobacter jejuni 95
4.1 Introduction 97
4.2 Results 99
4.2.1 In silico analysis of the $C j 1344 c$ gene locus 99
4.2.2 Strategy for positioning mutation sites to circumvent potential polar effects resulting from insertion of an antibiotic resistance cassette within ORF of Cj1344c 100
4.2.3 Construction of the suicide plasmid backbone for insertion of an antibiotic resistance cassette 102
4.2.4 Construction of suicide plasmids for mutagenesis of $\mathrm{Cjl344c}$ 104
4.2.5 Strategy for analysis of non-recoverable cross-over events during
C. jejuni transformations 117
4.2.6 Assessment of the cross-over event during C. jejuni transformation 117
4.2.7 Attempts to culture isogenic mutants of $C j 1344 c$ in conditioned media 119
4.3 Discussion 121
4.3.1 Conclusion 123
Chapter 5 125
Raising antibodies against the recombinant $\mathbf{C j 1 3 4 4}$ c protein in a rabbit; native protein purification and enzymatic analysis 125
5.1 Introduction 127
5.2 Results 128
5.2.1 Purification and preparation of His-tagged Cj 1344 c recombinant protein 128
5.2.2 Production and specificity of the anti-His-Cj1344c antibodies 129
5.2.3 Cell localisation of Cj 1344 c in C. jejuni and homologue detection in other bacterial species 131
5.2.4 Cj 1344 c homologue identification in selected bacterial species 134
5.2.5 Native protein purification 132
5.3 Discussion 136
5.3.1 Conclusions 138
Chapter 6 139
Evaluation of a His-tag purified glycoprotease homologue vaccine against Campylobacter jejuni infection in a mouse
model 139
6.1 Introduction 141
6.2 Results: 143
6.2.1 Protein expression and purification 143
6.2.2 anti-His-Cj1344c antibodies in mice prior to immunisation regimen 143
6.2.3 Immunisation with His-Cj1344c using subcutaneous delivery method 145
6.2.4 Immunisation with His-Cj1344c using intraperitoneal delivery method 150
6.2.5 Immunisation with His-Cj1344c using intranasal delivery method.154
6.2.6 Mice exposure to transient infection 158
6.3 Discussion 160
6.3.1 Conclusion 166
Chapter 7. 167
General discussion 167
7.1 Mutagenesis 170
7.2 Enzymatic specificity and function 173
7.3 Immunisation trial 176
7.4 Conclusion and further studies 180
Appendix A 183
Appendix B 184
Appendix C 191
Appendix D. 197
Appendix E 206
Appendix F 209
Appendix G 215
Appendix H. 221
Appendix I 228
References. 235

List of Figures

Figure 1.1 Scanning electron microscope image of C. jejuni, illustrating its corkscrew appearance and bipolar flagella (Altekruse et al., 1999) 4

Figure 1.2 Incidence of C. jejuni infections by age group in developed countries
\qquad
Figure 1.3 Presumed role of molecular mimicry in the Gillain-Barre syndrome (Ang et al., 2003)

Figure 1.4 Molecular mimicry of gangliosides and Campylobacter jejuni lipooligosaccharides (LOS) (Ang et al., 2003)... 14

Figure 1.5 Combined microscopic images and schematic illustration demonstrating the current working model of Campylobacter jejuni pathogenesis (Kopecko et al., 2001).

Figure 3.1 Bacterial species grouping according to the gcp amino acid sequence similarity ... 76

Figure 3.2 Gel electrophoresis of PCR amplification of Cjl344c
\qquad
Figure 3.3 PCR amplifications of $C j 1344 c$ gene from putative recombinant plasmids .. 78

Figure 3.4 Gel electrophoresis of recombinant plasmid pGU0501 NdeI/XhoI restriction enzyme cleavage... 79

Figure 3.5 Gel electrophoresis of recombinant plasmid pGU0513 restriction enzyme
\qquad
Figure 3.6 Small scale protein expression of His-Cj1344c fusion protein.

Figure 3.7 Western blot analysis using an anti-His antibody of the different cell
\qquad
Figure 3.8 Coomassie brilliant blue stained 12% SDS-PAGE gel showing purification of His-Cj1344c... 84

Figure 3.9 Comparative Fluorescence Results of Amino Acid Array Hybridisation.

Figure 3.10 Comparative Fluorescence Results of Glycoprotein Array hybridisation
\qquad
Figure 3.11 His-Cj1344c
digests
of
human
MUC2
89
Figure 4.1 Schematic diagram of the C. jejuni NCTC11168 Cj1344c gene cluster
\qquad
Figure 4.2 Schematic presentation of the different antibiotic resistance gene constructs used for creation of the suicide plasmids for Cj1344c mutagenesis .. 101

Figure 4.3 Schematic diagram of inverse PCR primers position within pGU0501 plasmid 102

Figure 4.4 Amplification of the inverse PCR product using pGU0501 as a template
\qquad
Figure 4.5 NotI restriction enzyme digest showing excision of a mutated copy of Cj1344c gene by insertion of cat cassette 106

Figure 4.6 Amplification of promoter-less aph(3')-III gene cassette
\qquad
Figure 4.7 Amplification of promoted aph(3')-III gene cassette
\qquad

Figure 4.8 Screening for the correct orientation of $\mathrm{P}_{\mathrm{oxa}-61}$ in relation to $\operatorname{aph}\left(3^{\prime}\right)$-III gene 114

Figure 4.9 Schematic representation of positions of a primer pair used for confirmation of double cross-over event in cases of the aph(3')-III gene cassette.. 117

Figure 4.10 DNA amplification from transformation mixture, confirming double cross-over event during C. jejuni transformation 118

Figure 4.11 Putative C. jejuni isogenic mutants growth in conditioned media
\qquad
Figure 5.1 Specificity of rabbit sera to Cj 1344 c protein present in the C. jejuni whole bacterial lysate 129

Figure 5.2 Rabbit sera IgG response to His-Cj1344c protein vaccination at different time intervals 130

Figure 5.3 Western blot analysis of the different cell fractions for the presence of Cj1344c protein 132

Figure 5.4 Western blot analysis of different bacterial lysates using an anti-His-
\qquad
Figure 5.5 Dot blot analysis of different bacterial lysates using an anti-His-Cj1344c rabbit antibody .. 134

Figure 6.1 Mouse sera IgG response to His-Cj1344c protein prior to vaccination 144

Figure 6.2 C. jejuni faecal load in subcutaneously vaccinated mice and their respective controls over the period of 6 days 148

Figure 6.3 C. jejuni bacterial load in different organs in subcutaneously vaccinated mice ... 149

Figure 6.4 C. jejuni faecal load in intraperitoneally vaccinated mice over the period of 6 days and their respective controls 152

Figure 6.5 C. jejuni bacterial load in different organs in intraperitoneally vaccinated
\qquad
Figure 6.6 C. jejuni faecal load in intranasally vaccinated mice over the period of 6 days and their respective controls 156

Figure 6.7 C. jejuni bacterial load in different organs in intranasally vaccinated mice
\qquad
Figure 6.8 Western blot analyses of different bacterial lysates and His-Cj1344c protein using mice sera pre and post vaccination 159

List of Tables

Table 2.1 C. jejuni strains used in this study 39
Table 2.2 Bacterial strains used in this study 41
Table 2.3 Plasmids used in this study 42
Table 2.4 List of primers used in the study 48
Table 3.1 Comparison of C. jejuni NCTC11168 Cj1344c to the putative Gcp
proteins from Campylobacter strains. 74
Table 4.1 Suicide vectors used for mutagenesis of $C j 1344 c$ 116
Table 6.1 His-Cj1344c specific immunoglobulin response in mice after $4^{\text {th }}$
booster injection delivered subcutaneously 146
Table 6.2 His-Cj1344c specific immunoglobulin response in mice after $4^{\text {th }}$
booster injection delivered intraperitoneally 151
Table 6.3 His-Cj1344c specific immunoglobulin response in mice after $4^{\text {th }}$
booster injection delivered intranasally 155

Abbreviations

A	Adenosine
A	Angstrom. Unit of distance 10^{-12} meters.
A549	Human lung adenocarcinoma epithelial cell line
bp	base pairs
C-	carboxy-
CaCo-2	Human Caucasian colon adenocarcinoma epithelial cell line
Cat	chloramphenicol resistance cassette
CcaA	Campylobacter chemotaxis aspartate receptor A
cDNA	Complementary DNA
cdt	cytolethal distending toxin
cfu	colony forming units
DMSO	dimethylsulphoxide
DNA	deoxyribonucleic acid
dNTPs	deoxyribonucleotides
DPP	dipeptide binding-protein
HCR	Glifi

HK	Histidine kinase
HRP	Horse radish peroxidase
IMS	Immunomagnetic separation
KDa	Kilodaltons
Km	Kanamycin
μ	micro, 10^{-6}
Mb	Megabase pairs
MBP	Maltose binding-protien
MEM	minimal essential media
MS	Methylation site
Neu5Ac	N -Acetylneuraminic acid
NMR	Nuclear magnetic resonance
ng	nanograms, 10^{-9}
PAGE	Polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PD	periplasmic domain
ppm	parts per million
PVDF	Polyvinylidene Fluoride
Q	Glutamine, methylation site of cytoplasmic domain
Q PCR	Quantitative PCR
RBP	Ribose binding-protein
RPMI	Media for tissue culture developed at Roswell Park Memorial
	Institute.
RNA	Ribonucleic acid

SDS	Sodium dodecylsulphate
STD	Saturation transfer difference
T	thymine
TAE	Tris/acetate/ethylene diamine tetracetic acid
TBS	tris buffered saline
TBS-T	Tris buffered saline-tween 20
TE	tris/ethylene diamine tetracetic acid
TEMED	N,N,N`,N`-tetramethylethylenediamine
Tris	Tris[hydroxymethyl]aminomethane
U	units

Acknowledgements

I would like to thank Griffith University, Institute for Glycomics for giving me the opportunity to work towards my Doctorate of Philosophy. I would like to express my deep and sincere gratitude to my supervisor, Associate Professor Victoria Korolik, Institute for Glycomics, Griffith University. Her wide knowledge and her logical way of thinking have been of great value. Her understanding, encouraging and personal guidance have been priceless through the years it took me to complete the work presented in these pages. I would also like to thank Dr Jennifer Wilson for her help and guidance with STD-NMR spectroscopy and constructive criticism in writing these pages.

I would like to thank Associate Professor Michael McGuckin at the Mater Medical Research Institute, Brisbane and late Professor Anthony Moran at National University of Ireland, Galway who provided invaluable advice on planning animal immunisation experiments.

I wish to express my warm and sincere thanks to the members of Korolik team, especially Lirio and Lauren for their invaluable help, support and understanding. My gratitude goes to all of them for giving up their valuable time to help me with the animal experiments which would've been difficult for me to complete by myself.

I owe my loving thanks to the people most important in my life; my brother Goran, my parents Damjan and Marjana, and last but not least my partner Shane. You have my deepest gratitude for your continued and unquestioning love, support and understanding. Without your encouragement and understanding it would have been impossible for me to finish this work. Finally, I dedicate this thesis to the loving memory of my grandma "Maja". Your love and support will forever guide me through my adventures.

CHAPTER 1

Introduction to Campylobacter jejuni

1.1 Historical perspectives and Campylobacter genus

Campylobacter spp. have been the focus of growing attention for the past 40 years because of the increasing frequency with which they have been isolated from man, animals, food and water. Recognised as a human pathogen in 1970s, campylobacters have probably caused illness in mankind for centuries. The first documented case of campylobacteriosis was published by Thomas Escherisch in 1886, describing spiral bacteria in the colons of children who had died of what he called "cholera infantum" (as reviewed in Butzler, 2004). The organisms were originally assigned to the Vibrio genus, due to their spiral appearance and were named by Smith in 1918 as Vibrio fetus as they were isolated from aborted bovine foetuses (as reviewed in Moore et al., 2005).

These observations, however, failed to attract worldwide recognition until 1970s. The breakthrough in the identification and classification of the organism was accomplished by the isolation of Campylobacter spp. from faeces in 1968 (Dekeyser et al., 1972). A few years later, the discovery of selective media for the growth of Campylobacter spp. by Skirrow, brought the research of campylobacters into a new era (Skirrow, 1977).

Campylobacter jejuni belongs to the epsilon class of proteobacteria, in the order Campylobacteriales; this order includes the other two genera, Helicobacter and Wolinella (Vandamme, 2000). Although the genus Campylobacter is composed of 16 described species (Vandamme, 2000), human illness is associated primarily with C. jejuni and C. coli and infrequently with C. upsaliensis, C. lari and C. fetus (Vandamme, 2000).

1.2 Microbiology and genetics

Campylobacter jejuni cells are small (1.5-6 $\mu \mathrm{m}$ long and $0.2-0.5 \mu \mathrm{~m}$ wide), spirally curved, Gram-negative bacilli (Figure 1.1) that exhibit rapid spinning motions by means of a single polar flagellum at one or both poles (Park, 2002). The organisms are generally considered to be microaerophilic, that is they are unable to grow in the presence of air and grow optimally in atmospheres containing 5\% oxygen (Thompson et al., 1990). In addition, campylobacters have a restricted temperature growth range and whilst they grow optimally at $42^{\circ} \mathrm{C}$, the organisms do not grow at temperatures below $30^{\circ} \mathrm{C}$ (Nachamkin et al., 2000b).

Figure 1.1 Scanning electron microscope image of C. jejuni, illustrating its corkscrew appearance and bipolar flagella (Altekruse et al., 1999)

As a consequence of environmental stress (temperature extremes, starvation, oxidative stress and pH extremes) the bacteria are believed to be able to enter a viable, non-culturable state which means that they are still infectious but cannot be cultured in the laboratory (Bovill \& Mackey, 1997).
C. jejuni has a small genome of 1.64 Mbp that is AT-rich with a GC ratio of 30.6% (Parkhill et al., 2000b). The C. jejuni genome is one of the densest bacterial genomes sequenced to date, with 94.3% of the genome encoding for proteins (Parkhill et al., 2000b). The small genome may reflect the bacteria's habitat of the
animal gastrointestinal tract, its requirements for complex-media and its inability to ferment carbohydrates and degrade complex compounds (Altekruse et al., 1999).

1.3 Reservoirs and Transmission

Campylobacter enteritis is considered to be a zoonosis, with many animals serving as possible reservoirs for human disease. Enteric campylobacters are frequently isolated from the faeces of many mammals and domestic and wild birds (Altekruse et al., 1999). The prevalence of C. jejuni in the majority of domestic animal sources (including cattle, pigs, sheep and poultry) ranged from 22% to 28% with poultry being highest at 41% (Ogden et al., 2009). Domesticated pets are known to harbour Campylobacter spp. in their digestive tracts (Horrocks et al.) and as such are a potential infection source.

Campylobacter appears to permanently colonise the gastrointestinal tract of birds with few noticeable effects and only occasionally is diarrhoea observed with Campylobacter infection in birds (Newell, 2001). In case of domestic birds, especially chickens, colonisation can occur with as few as 35 organisms (Kaino et al., 1988) and by four weeks most chickens in commercial operations are colonised (Humphrey et al., 2007). C. jejuni is often carried by migratory birds - cranes, ducks and geese (Luechtefeld et al., 1980). Shedding of campylobacter by wild birds causes contamination of waterways, and, as campylobacters can survive in water for weeks (Bolton et al., 1987), open waters may act as a source of infection in domestic animals.

The routes of transmission of C. jejuni in humans is most often by ingestion of contaminated poultry, raw milk (Crushell et al., 2004, Altekruse et al., 1999) and drinking contaminated water (Ashbolt, 2004). Poultry, however, is considered to be a
major source of transmission with epidemiological studies suggesting a significant link between infection with C. jejuni and the consumption of raw or undercooked chicken (Park, 2002). Studies have shown very high rates of Campylobacter contamination among supermarket chicken and meat products (as reviewed in Humphrey et al., 2007. Although traditional cooking methods kill Campylobacter, these organisms may survive the cooking process if the meat is not cooked sufficiently and pose a risk of infection (Allerberger et al., 2003).

1.4 Epidemiology

Since the discovery of C. jejuni as the causative agent of campylobacter enteritis, or campylobacteriosis, in the 1970s, the bacterium emerged as the most frequent cause of infectious diarrhoea (Skirrow, 1991, Ketley, 1997, MMWR, 2005). In the study of patients suffering from diarrhoea, Campylobacter spp. are frequently isolated from the faeces along with other causative agents of diarrhoea (Rotavirus, ETEC, EPEC, Aeromonas spp, Shigella sp. and Vibrio cholerae) (Albert et al., 1999). C. jejuni is, however, documented to be the major cause of gastroenteritis in humans (Ketley, 1997). Over 99% of reported Campylobacter isolates are C. jejuni which affects over 450 million people every year globally; and is responsible for a large economic burden (Friedman et al., 2000). However, the true number of infections may be much higher than the figures currently reported. The main reason for this is the fact that many of these infections go undiagnosed, and in passive surveillance, most diagnosed infections are not reported.

In the USA alone, the estimated number of cases of campylobacteriosis reaches 2.4 million cases annually (Crushell et al., 2004). In Australia, approximately 16,000 cases of gastroenteritis caused by C. jejuni are reported yearly, which accounts for
$73-80 \%$ of all reported gastrointestinal infections in this country (Liu et al., 2009). Considerably high numbers of C. jejuni-related gastrointestinal disease can be attributed to the combination of the wide spread of the bacteria in many countries and their commensal presence in poultry and other animal products; and a relatively low infectious dose of this microorganism in humans. The human infectious doses of C. jejuni have been reported to be as low as 500-800 organisms (as reviewed (Skirow \& Blaser, 2000), however, the incidence and the clinical manifestations of the disease vary in different parts of the world. Variations in incidence rate have been observed between countries and even between different regions within countries (Brieseman, 1990, NNDSS, 2003). In addition, the age-specific incidence of C. jejuni has also been repeatedly observed (Friedman et al., 2000, Coker et al., 2002), with a marked difference between developed and developing countries as explained below.

1.4.1 Developed Countries

The isolation rates of C. jejuni in developed countries vary, but most show an increased in number of C. jejuni cases over the last 20 years period. These differences in incidence rates between countries may be attributed to different carriage rates in food animals, differences in food preparation practices and patterns of food consumption (as reviewed in Friedman et al., 2000. Figure 1.2 shows that C. jejuni infections affect all age groups in different developed countries, but the main age groups affected are children (less than 4 years) and young adults (15 to 44 years). It has been speculated that the first peak could be due to increased sampling in this age group as parents are more likely to seek medical attention for children. The second peak could be attributed to the increased foreign travel in this age group (Friedman et al., 2000).

Figure 1.2 Incidence of C. jejuni infections by age group in developed countries (Friedman et al., 2000)

1.4.2 Developing Countries

The epidemiology of Campylobacter infections in the developing world differs markedly from that in the developed world. Beside the difference in climate, population density and ethnic background, the epidemiological differences in the developed and developing world are best explained by the increased exposure and high infection rates early in life in the developing-world populations (Oberhelman \& Taylor, 2000a). The main age group affected in the developing countries are children younger than five, with the incidence of Campylobacter infections as high as 40,000 per 100,000 (Oberhelman et al., 1999). At the same time, the disease does not appear to be important in adults. Poor hygiene and sanitation; and the close proximity to animals, causing drinking water contamination, in developing countries all contribute to ease and frequent acquisition of Campylobacter (Coker et al., 2002).

1.4.3 Campylobacter infections in HIV-infected patients

Patients with AIDS are usually more prone to Campylobacter spp. infections and in these patients the infection is usually more severe (Molina et al., 1995). Chronic carriage and recurrent enteritis, often with bacteraemia, is a typical problem. A study of Campylobacter infections in human immunodeficiency virus-infected patients showed that 10% had bacteraemia (Molina et al., 1995). Already immunocompromised, patients usually developed debilitating, febrile illness requiring multiple and prolonged courses of antimicrobial therapy (Tee \& Mijch, 1998). Overall, it has been estimated that the incidence of Campylobacter infections in patients with AIDS is 40 -fold higher than in immunocompetent patients (Sorvillo et al., 1991).

1.4.4 Epidemiology of Traveller's diarrhoea

Traveller's diarrhoea is the most common illness acquired by visitors to the developing countries, affecting $20-30 \%$ of the 35 million people who travel from industrialised countries each year (Adachi et al., 2000, Castelli \& Carosi, 1995). Campylobacters are reported to be the main causative agent of diarrhoea in travellers to the developing countries (Black, 1990). It is estimated that 3-50\% of all campylobacteriosis cases are associated with foreign travel, and usually result from the consumption of contaminated food or water (Butzler, 2004). The use of antimicrobial agents reduces the duration of the symptoms, but the success of treatment with these agents is becoming limited because of increasing bacterial resistance (Murphy et al., 1996). Education on hygiene and safe food practices remain an effective way in preventing many diarrhoeal diseases, including Campylobacter gastroenteritis.

1.5 Clinical features of infection

Infection with C. jejuni can induce a spectrum of disease symptoms and variable severity of disease in humans. The clinical presentation of patients with C. jejuni infections differs between developing and industrialised countries. Variations in bacterial virulence and host immune response each may play a role in these different phenotypic expressions of disease (Ketley, 1997). In the developing world, infections are usually asymptomatic or there may be mild non-inflammatory diarrhoea, predominantly effecting young children (Oberhelman \& Taylor, 2000b). In the industrialised world, acute self-limiting gastrointestinal illness, characterised by diarrhoea (ranging from a watery, non-bloody, non-inflammatory diarrhoea to a severe inflammatory diarrhoea), fever and abdominal cramps, is the most common presentation of C. jejuni infection (Butzler et al., 1992, Butzler \& Oosterom, 1991, Coker et al., 2002). The signs and symptoms of the disease are not very characteristic and cannot determine the causative agent of the illness, as they are very similar in presentation to those caused by Salmonella and Shigella (Butzler et al., 1992).

The mean incubation period of C. jejuni is 3.2 days, with a range of 18 hours to 8 days, but can last up to 10 days (Blaser \& Engberg, 2008). Further progress of infection is characterised by the onset of diarrhoea; and is estimated that 50% of the patients attending emergency rooms have 10 or more bowel motions per day (Skirrow \& Blaser, 2000). About 15\% of patients have reported blood in their stools, 1 to 2 days after the onset of diarrhoea (Skirrow \& Blaser, 2000). Once the diarrhoea stops (usually about 3 to 4 days) the discomfort and abdominal pain may persist for several more days. Examination of faecal samples usually shows numerous Campylobacter organisms and leukocytes (Butzler, 2004). Patients continue to
excrete Campylobacters in their faeces for several weeks after they have clinically recovered (Ketley, 1997). The average duration of illness is difficult to measure due to many variables, such as the immune status of the host, the virulence of the strain and criteria used to define illness, but usually lasts about 5 days, and sometimes extends to 7 days (Blaser \& Engberg, 2008).

Apart from campylobacteriosis, C. jejuni can also be responsible for rare cases of pseudoappendicitis, colitis, hepatitis, pancreatitis, renal and urinary tract infections (Skirow \& Blaser, 2000).

1.5.1 Guillain-Barré Syndrome

The most serious complication caused by C. jejuni infection is Guillain-Barré syndrome (GBS) with indications that C. jejuni infections precede GBS in 20 to 50% of cases reported in Europe, North and South America, Japan and Australia; while in countries such as China and Bangladesh the frequency can be even higher (Jacobs et al., 2008). In general, one in three GBS patients have suffered from a preceding C. jejuni infection (Hughes et al., 1999, Nachamkin et al., 2000a). GBS is the most common cause of acute neuromuscular paralysis, whereby the body's own immune system causes acute demyelination of the nerves in the peripheral nervous system (Nachamkin et al., 1998). Structural mimicry between the microbial pathogen surface molecules and particular host antigens (Figure 1.3) is the main factor in the development of this disease (Ang et al., 2003, Godschalk et al., 2004, Hughes et al., 1999, Tsang, 2002).

Figure 1.3 Presumed role of molecular mimicry in the Gillain-Barre syndrome (Ang et al., 2003)

Analysis of serum taken from GBS patients in the acute phase of the disease shows a notable presence of antibodies against gangliosides, major constituents of
the nerve cell membrane (Walsh et al., 1991), which are sialic acid-containing glycolipids implicated in cell growth and differentiation and signal transduction (Hughes et al., 1999). The main reason for molecular mimicry is the presence of sialic acid in the lipo-oligosaccharides (LOS) structures of some C. jejuni isolates, which mimic the human gangliosides (Figure 1.4) (Yuki et al., 1993, Ang et al., 2003). Further evidence in support of molecular mimicry comes from studies showing that anti-ganglioside antibodies from GBS patients recognise C. jejuni LOS (Ang et al., 2003).

Persons affected by GBS rapidly develop weakness of the limbs and the respiratory muscles and areflexia. Although most people do not require any treatment, a significant proportion of patients may require mechanical ventilation and an estimated 15 to 20% may exhibit a severe neurologic deficit (Nachamkin et al., 2000a). Mortality rates of GBS have been reduced to 2 to 3% in the developed world due to adequate medical support, but remain higher in the developing world (Nachamkin et al., 2000a).

1.6 Treatment and Antibiotic resistance

The gastroenteritis caused by C. jejuni is a self-limiting disease and most patients recover without any specific treatment (Skirrow \& Blaser, 2000). The most common form of treatment is replacing fluid and electrolytes (Piddock et al., 2000). In particularly severe cases, fluids are delivered intravenously for rapid volume expansion, but for mild cases re-hydration is performed orally (Altekruse et al., 1999). Antibiotic therapy is recommended for patients acutely ill with enteritis, having persistent fever and bloody diarrhoea or history of diarrhoea for more than 7 days (Butzler, 2004). Immunocompromised individuals are also encouraged to have antibiotic treatment due to their already compromised immune system (Butzler, 2004).

Antimicrobial chemotherapy has traditionally involved treatment with erythromycin and ciprofloxacin. Resistance of C. jejuni to a number of antibiotics such as tetracycline, erythromycin, ciprofloxacin, kanamycin and chloramphenicol has been reported (Piddock et al., 2000, Pratt \& Korolik, 2005, Gaudreau \& Gilbert, 2003, Taylor et al., 1987). The rate of resistance is rapidly increasing in both developed and developing countries; and world travel has increased the spread of
drug resistant strains of the bacteria. The use of antimicrobial drugs in poultry farming has also greatly increased resistance to antimicrobial drugs (Butzler, 2004). The increase in multi-antibiotic resistant strains of C. jejuni places an increased pressure on the medical system and challenges the current treatment regimes. The best treatment still remains the prevention of infection through education and better hygiene which have far greater roles in reducing infections than active treatment with antibiotics.

1.7 Pathogenesis

The association of C. jejuni with human enteric disease has increased interest in understanding the general clinical, microbiological and epidemiological aspects of infection. The molecular mechanisms involved in pathogenesis, however, are still poorly understood. The factors or virulence determinants required to establish an infection are multifactorial in nature and campylobacters are no exception to this. Few of the determinants involved in Campylobacter pathogenesis are known or have a proven role. Virulence determinants involved in pathogenesis include motility and chemotaxis; adherence and invasion; toxins, surface polysaccharide structures and flagella, all of which appear to be required for colonisation of the gut mucosa (Ketley, 1997).

1.7.1 Motility and Chemotaxis

Campylobacter species are highly motile by means of a single polar flagellum. The direction of the flagellum is controlled by the response regulatory transduction pathway called chemotaxis. Chemotaxis is the ability of an organism to detect and move up and down chemical gradients. Both motility and chemotaxis are essential
for C. jejuni colonisation (Korolik \& Ketley, 2008). This was shown by the creation of non-chemotactic mutants which were unable to colonise the intestine in animal models (Takata et al., 1992), while aflagellated mutants showed decreased colonisation when compared to the wild type strain (Nachamkin et al., 1993b)

The flagellum of C. jejuni, involved in chemotaxis process, consists of an unsheathed polymer of flagellin subunits, which are encoded by the adjacent flaA and fla B genes (Nuijten et al., 1995). The fla A and fla B genes show a very high degree of sequence identity (95%), however they exhibit both antigenic and phase variation (Nuijten et al., 1995). Flagellin amino acid sequences show considerable interstrain diversity, especially in the central region of the FlaA flagellin proteins (Penn, 2001), which may account for differences in the colonisation potential of different strains.

1.7.2 Bacteria-Host Interactions

Adherence and invasion are key determinants in bacterial pathogenesis and are crucial for bacterial survival and subsequent development of disease. Adherence ensures initial contact between bacteria and the host surface. Invasion provides a mechanism of survival and protection from the host immune system. Upon infection, C. jejuni crosses the mucus layer covering the epithelial cells and adheres to these cells, with a subsequent co-population of these bacteria invading the epithelial cells (Vliet \& Ketley, 2001)

1.7.2.1 Adherence

The ability of C. jejuni to bind to the cells lining the gastrointestinal tract is essential for the development of C. jejuni enteritis since it prevents the organism
from being swept away by mechanical cleansing forces. Upon infection, C. jejuni crosses the mucous layer covering the epithelial cells and attaches to these cells (Konkel et al., 2000). In vitro adherence assays have been extensively used to determine the factors that mediate bacterial binding to these cells (Ketley, 1997). It is evident that C. jejuni strains isolated from patients with fever and diarrhoea adhere to cultured cells at higher levels than strains isolated from individuals without these symptoms (Konkel et al., 2000). These finding may suggest that different strains utilise various adhesion molecules in the adherence process.

One of the first structures implicated in C. jejuni adherence is the flagellum. Wassenaar et al. reported that genetically defined C. jejuni fla A and fla B mutants adhered to host cells at levels lower to those of their isogenic wild-type counterparts (Wassenaar et al., 1991). These results were later confirmed by Yao et al. with a 50fold reduction of adherence of isogenic mutants (Yao et al., 1994). Furthermore, the tips of the flagellin were observed in contact with cells in scanning electron microscopy examinations of C. jejuni infected cells (Konkel et al., 2000) confirming a definite interaction between flagella and the host cells. Reduced adherence, rather than complete absence of adherence in these experiments suggests the presence of other adhesion molecules involved in the initial interactions between bacteria and host cells.

The early work of McSweegan and Walker (Konkel et al., 2000) proposed the role of Lipopolysaccharides (LPS) as the mediator of adherence to host cells. LPS are the major components of the outer membrane of many Gram-negative bacteria including C. jejuni. Identification of the genes involved in LPS biosynthesis has opened new perspectives in examining the potential role of these structures in adherence by means of defined LPS mutants (Fry et al., 1998). The inactivation of
the galE gene, encoding UDP-glucose 4-epimerase, an enzyme involved in LPS biosynthesis, significantly reduced C. jejuni adherence (Fry et al., 2000) confirming that the LPS play an important role in bacterial adherence.

Additionally, significant advances have been made in the characterisation of the outer membrane proteins that mediate the binding of C. jejuni to host cells. A vast number of candidate proteins have been identified. However, the roles and the mechanisms of action of these factors need to be further characterised before making any conclusive statements. One protein, suggested important in adherence was PEB1, identified by Pei et al., which shows homology to the binding components of other Gram-negative bacteria (Pei \& Blaser, 1993). Subsequent mutation of the gene caused 50 to 100 -fold reduction in adherence compared to wild type bacteria (Pei et al., 1998).

In addition to investigations of C. jejuni adhesins, a great deal of attention has focused over the past few years in the search for host cell structures involved in the initial contact with bacterial adhesins. Fibronectin, an extracellular matrix protein was found to be an attachment site for C. jejuni. Binding of C. jejuni cells to fibronectin was characterised by Konkel et al. who found that fibronectin specifically binds to C. jejuni 37 kDa outer membrane protein (Konkel et al., 1997). Subsequent cloning and mutation of the gene encoding this protein (termed cadF) confirmed the role of the protein in adherence, as the isogenic mutant bacteria of this gene could not any longer adhere to fibronectin at wild type levels. In addition to fibronectin, C. jejuni also binds to wide variety of lipids including phosphatidylethanolamine, phosphatidylcholine, phospatidylinositol, phosphatidylserine, phosphatidylglycerol and sphingomyelin (Konkel et al., 2000).

1.7.2.2 Invasion

Crossing of the epithelial mucosa is considered to be an essential virulence mechanism of several pathogenic bacteria, including Salmonella, Shigella, Yersinia and Listeria (Hu \& Kopecko, 2000). The results of studies of Campylobacter infection in infant animals suggest that invasion is also a key component of Campylobacter pathogenesis (as reviewed in Hu \& Kopecko, 2000. A variety of bacterial and host factors are involved in the process of invasion, none of which appear to be more important than the other. The pathways, the mechanisms and the functions of many of these factors are currently being investigated by different research groups around the world.

The current knowledge in the field recognises the ability of C. jejuni to invade different host cells. The level of invasion, however, differs between different strains and also depends on the host cells used in the experiments (Everest et al., 1992, Biswas et al., 2003, Monteville \& Konkel, 2002). It appears that different strains require different host cell cytoskeleton structures. Different groups of authors stress the importance of flagella and motility of C. jejuni for successful invasion (Grant et al., 1993). In addition, current knowledge suggests the importance of temperature and iron availability (Hu \& Kopecko, 2000). The majority of work done on invasion in C. jejuni has been done with 81-176 strain, strain originally isolated from patients with inflammatory diarrhoea. However, the difference in invasion between strains and their preference to certain cell lines that is observed in different studies suggests the complexity of C. jejuni and multiple factors associated in invasion process. The current model of invasion (Figure 1.5) suggests a microtubule-dependent entry into the intestinal epithelium with subsequent translocation to the basolateral surface of the cells and important role of CDT toxin (Kopecko et al., 2001).

Figure 1.5 Combined microscopic images and schematic illustration demonstrating the current working model of Campylobacter jejuni pathogenesis (Kopecko et al., 2001);

Legend: (a) and (b) have been enhanced and coloured. (a) Scanning electron micrograph looking down on apical surface of infected Caco-2 cells containing two C. jejuni (green) bound via flagella (yellow) to the tips of microvilli. (b) Immunofluorescence micrograph of differentially labelled, infected INT407 cells with microtubules (MTs) labelled with FITC (green) and C. jejuni labelled with Fast Red. During the early stages of infection, the host cell forms finger-like membrane protrusions that meet the adjacent bacteria (see arrows). (c) Schematic diagram illustrating the overall steps in C. jejuni gut invasion and pathogenesis.

1.7.3 Toxins

One important mechanism by which bacterial enteropathogens induce diarrhoea is through the production of potent toxins, which either damage membranes or act intracellularly (Wallis, 1994). Campylobacters reportedly produce a variety of toxins including a cholera-like toxin (CLT) as the genes encoding CLT have been identified; however, in vitro production has not been reported. In addition, several other cytotoxins were reported (Wassenaar, 1997), however the mechanism of action of these toxins is still not fully understood and their proposed mechanisms of action is based on comparison with other similar toxins.

Knowledge regarding one Campylobacter toxin has dramatically increased over the past few years; cytolethal distending toxin (CDT) was first described by Johnson and Lior as CLDT (as reviewed (Wassenaar, 1997). The toxin caused elevated intracellular cAMP levels and major elongation of cells followed by cell death. In 1996 Picket et al. (Pickett et al., 1996) reported the isolation and characterisation of the $c d t$ genes from C. jejuni, the first and until now only C. jejuni toxin-encoding genes. CDT activity is encoded by three genes named $c d t \mathrm{~A}, ~ c d t \mathrm{~B}$, and $c d t \mathrm{C}$ that show similarity with E. coli $c d t$ genes. $c d t$ genes were also analysed in three other Campylobacter species; C. coli strain RM2228, C. lari strain RM2100 and C. upsaliensis strain RM3195. The study shows that the $c d t \mathrm{~A}, c d t \mathrm{~B}$ and $c d t \mathrm{C}$ genes are conserved across the four Campylobacter species examined (Fouts et al., 2005).

Although all C. jejuni and C. coli strains tested contain the $c d t$ genes, there is a profound variation in CDT titres (Pickett et al., 1996), and this variation is yet to be explained. The role of CDT in C. jejuni pathogenesis is still not fully elucidated. The most suitable method of determining a contribution of CDT to diarrhoeal disease
would be to use an established animal model for C. jejuni diseases. So far the only study comparing CDT positive and CDT negative C. jejuni strains demonstrated that CDT(+) C. jejuni strains adhere to and invade epithelial cells more efficiently than CDT(-) strains. In addition these studies also found that CDT is responsible for the typical intestinal pathology of the colon in a murine model of C. jejuni infection (Jain et al., 2008).

1.8 Mucins and their role in pathogenesis of gastrointestinal bacteria

Intestinal mucins, the major protein component of the mucous covering the epithelium of the gastrointestinal tract, are highly glycosylated macromolecules distinguished by the presence of dense O-glycosylation on the amino acids serine and threonine (Robbe et al., 2004). Some of the functions of these structures include lubrication and modulation of water and electrolyte absorption. In addition, mucins play an important role in protecting the underlying epithelium from mechanical and chemical stress; and may also provide attachment sites for commensal and pathogenic microbes (Robbe et al., 2004). Constant regeneration of mucous layer also presents a challenge for pathogenic bacteria.

One of the ways pathogenic bacteria as well as bacteria of normal flora, have solved the problem of mucus lining is degradation of the mucin layer. Namely, production of mucinases, enzymes capable of degrading mucins enables some of bacteria to cross this barrier and invade host cells beneath this layer (Robbe et al., 2004). Variety of different proteases, sulphatases, sialidases, glycoproteases, neuraminidases all exert some effect on mucins. Unmasking of these glycoprotein structures by removal of terminal sugars may increase the binding opportunities and invasion of bacteria.

Intestinal mucins have long been recognised as a chemoattractant to C. jejuni (Hugdahl et al., 1988). In addition, they have been implicated in C. jejuni (De Melo \& Pechère, 1988) and C. upsaliensis (Sylvester et al., 1996) adhesion and internalisation in tissue culture cells. The transmembrane mucin-1 (MUC1) and secretory mucin-2 (MUC2) are two well characterised constituents of intestinal mucus (Dekker et al., 2002). MUC1 is speculated to have a protective role in C. jejuni colonisation as the levels of expression increased in mice after oral challenge with C. jejuni (McAuley et al., 2007). Bacteria were found in the spleen, lung and liver of most Muc1 $1^{-/}$mice (strain $129 / \mathrm{SvJ}$), but not in the wild-type mice, indicating that MUC1 contributes to innate defence against C. jejuni in mice (McAuley et al., 2007). MUC2, on the other hand, is the major secretory mucin in the intestine and may account for the chemoattractant property of intestinal mucus (Tu et al., 2008). In addition, it may also trigger the upregulation of the genes associated with virulence and invasion, as well as putative mucin-degrading enzymes (Tu et al., 2008).

One of relatively recent discoveries of such an enzyme is a sialoglycoprotease from Pasteurella (Mannheimia) haemolytica, the bacteria that cause bovine pneumonic pasteurellosis (Abdullah et al., 1991).

1.9 O-sialoglycoprotease

The O-sialoglycoprotease was first discovered in the culture supernatant of M. haemolytica A1 (Otulakowski et al., 1983), the principal microorganism associated with bovine pneumonic pasteurellosis and the major cause of sickness and death in cattle in North America (Whiteley et al., 1992). The glycoprotease of M. haemolytica is highly specific for O-linked, but not N -linked sialoterminal oligosaccharides of glycoproteins such as the sialylated membrane glycoprotein,
glycophorin A of human red blood cells (Abdullah et al., 1992, Mellors \& Jiang, 1998). The enzyme has a marked specificity for human CD34 (an antigen expressed on panhematopoietic stem cells in the bone marrow), human CD43 (a sialomucin that has been implicated in immune and human cell function and cell-signalling phenomena) and human CD44 (Sutherland et al., 1992). In addition, Hu et al. have demonstrated that the enzyme degrades epitectin and other mucin-type sialoglycoproteins (Hu et al., 1994).

It has been shown that a number of P. haemolytica glycoprotease-susceptible substrates become resistant to cleavage by the glycoprotease if they are first treated with sialidase form Clostridium perfringens or Vibrio cholerae (Sutherland et al., 1992). Thus, the proteolysis seems to be dependent on the presence of terminal sialyl residues. Abolition or reduction of the glycoprotease activity by desialylation has been shown for glycophorin A (Abdullah et al., 1992), CD34 and CD44 (Sutherland et al., 1992).

The predicted amino acid sequence for the O-sialoglycoprotein endopeptidase was thought to contain a putative metal-binding site, namely His ${ }^{110}$-His-Met-Glu-Gly-His. This site is conserved in the homologous open reading frames found in Haemophilus influenzae (Lo et al., 1994) and E. coli (Nesin et al., 1987). This site was originally proposed to be a zinc ion binding domain (Abdullah et al., 1991), but subsequent analysis of 12 types of zinc ion binding motifs (Hooper, 1994) has shown that the O-sialoglycoprotein endopeptidase putative metal-ion binding site does not fall into any of the known categories, since it shows a HHMEXH pattern rather than the general HEXXH sequence for Zn^{2+} binding. Although many metal ions have been tested for their ability to reactivate EDTA-inactivated and dialyzed O sialoglycoprotein endopeptidase, no metal ion activator has yet been found. The
glycoprotease may contain a tightly-bound $\mathrm{Zn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Co}^{2+}$ ions, or the transition metals such as Hg^{2+} and Cu^{2+} which commonly inactivate enzymes, may displace an essential metal ion activator from its binding site. The predicted amino acid sequence for the glycoprotease includes four cysteine residues, and the sensitivity of the glycoprotease to metal ions could be due to interactions with the cysteine thiols, though no effects of thiol-protecting reagents such as dithiothreitol has been detected (Otulakowski et al., 1983).

A homologue of the enzyme has been identified in every whole genome sequenced so far; and in all kingdoms of life. Enzymatic activity has, however, only been demonstrated in vitro for the protein from M. haemolytica, but the biological function of the enzyme is still unknown. Glycoproteases appear to have a variety of functions. Calves vaccinated with M. haemolytica sialoglycoprotease expressed in E. coli had a significantly lower percentage of pneumonic tissue necropsy than unvaccinated controls (Shewen et al., 2003), suggesting that the enzyme has a role in the induction of protective immunity. Furthermore, analysis of the bovine sera from calves vaccinated with the live M. haemolytica, show the presence of anti-Gcp antibodies, suggesting that the sialoglycoprotease is immunogenic and that the bacterium produces the enzyme in vivo (Lee et al., 1994). On the other hand, the Gcp homolog in E. coli, ygjY (56% similarity) has been shown, both by promoter analysis and Northern (RNA) blot analysis, to be expressed as an intracellular protein possibly involved in the regulation of the $r p s U d n a G-r p s D$ macromolecular synthesis operon (Nesin et al., 1987).

A recent publication by Katz et al. has provided an insight into the role and function of the glycoprotease encoded by the $y g j Y$ gene in E. coli. Using the gcp depletion approach, the study performed by Katz et al. showed the importance of the
enzyme in the metabolism of glycated proteins (Amadori-modified proteins (AMPs) and advanced glycated end products (AGEs)). AMPs are the products of non-enzymatic glycation formed by the reaction of reducing sugars with primary amine-containing amino acids in proteins (Horvat \& Jakas, 2004). These glycated proteins formed via a multistep reaction called an Amadori rearrangement can further develop into irreversible, highly stable compounds known as AGEs (Singh et al., 2001). The experiments performed by Katz et al. show that the depletion of gcp results in accumulation of AMPs, which serve as the potential for the development of AGEs. This finding suggests that Gcp is involved in Amadori product neutralisation by protein degradation (Katz et al., 2010). Though the enzymatic activity of the E. coli enzyme has not been examined, these findings suggest that the enzyme in E. coli does not have a specificity for the O-sialoglycoproteins observed in M. haemolytica gcp (Abdullah et al., 1992).

Another homologous open reading frame of unknown function has been found on chromosome IV of Saccharomyces cerevisiae where it is associated with genes essential for cellular function (Simon et al., 1994). However, in the cyanobacterium Synechocystis sp., mutation of the glycoprotease gene results in a reduction of salt tolerance and alters the pigmentation and cyanophycin accumulation (Zuther et al., 1998). This study revealed an increase in the amount of inclusion bodies containing the high-molecular-weight nitrogen storage polymer cyanophycin (polyaspartate and arginine). Cyanophycin accumulation was hypothesised to be caused by inactivation of the putative protease encoded by the $g c p$ gene which was responsible for cyanophycin degradation in the Synechocystis (Zuther et al., 1998).

In Staphylococcus aureus, a bacterium generating enormous public health concerns, a regulated gene expression approach demonstrated that the putative
glycoprotease is essential for staphylococcal growth in culture (Zheng et al., 2005), though the biological function of the enzyme could not be assigned. Gcp was demonstrated to be a critical mediator involved in the modification of cell wall biosynthesis through modification of cell wall peptidoglycans (Zheng et al., 2007). The gcp was also suggested to be involved in the regulation of expression and/or activity of some murein hydrolases associated with the modification of cell wall peptidoglycan synthesis. The consequences of down-regulating $g c p$ expression include increased bacterial tolerance to detergent-, penicillin-, and vancomycininduced lysis (Zheng et al., 2007), which, in turn, may have played an important role in bacterial viability (Zheng et al., 2005). These data indicate that Gcp is likely associated with extracellular hydrolase activity and possibly the posttranslational regulation of these hydrolases, confirming the findings by Otulakowski et al. that Gcp is a secreted enzyme (Otulakowski et al., 1983).

The sequence search of the C. jejuni genome strain 11168 has revealed a gene (Cj1344c) with similarity to the M. haemolytica sialoglycoprotease gene (this study). In the study of the C. jejuni response to human mucin MUC2, the expression of Cj1344c was upregulated suggesting a putative role for the enzyme in MUC2 degradation and its biological function in the gastrointestinal tract (Tu et al., 2008). As complex mucin structures made of high molecular weight glycoproteins are the main constituent of this mucous layer of gastrointestinal tract (Robbe et al., 2004), it can be speculated that the ability of C. jejuni to attach to these structures is beneficial for their survival in this hostile environment. Sylvester et al. showed that C. upsaliensis, a bacterium closely related to C. jejuni, is capable of binding to gangliotetraosylceramide $\left(\mathrm{Gg}_{4}\right)$, a structure derived from the cleavage of sialic acid residues of membrane GM_{1} gangliosides by enzymes produced by normal bacterial
flora (Sylvester et al., 1996). Hypothetically, an enzyme able to remove or cleave glycoproteins, the main constituents of mucous layer, may expose different glycoprotein structures and thus enhance attachment and subsequent internalisation of the pathogen. Grys et al. have demonstrated that another metalloprotease from enterohemorrhagic E. coli, StcE, cleaves glycoprotein 340 and mucin 7. In addition, adherence studies performed with the $s t c E$ mutant showed a difference in intimate adherence, allowing a closer interaction between the bacterium and host cell (Grys et al., 2005).

1.10 Development of a C. jejuni vaccine

Natural immunity in children and data obtained from volunteer challenge studies, suggest development of an effective Campylobacter vaccine is feasible. In the developing world, acquisition of immunity during the first 2 years of life has been shown to be accompanied by raising titres of Campylobacter-specific antibodies (Blaser et al., 1985). Similarly adult volunteers challenged with C. jejuni developed serum and intestinal antibodies and were protected from the subsequent illness, but not against colonisation, following challenge (Black et al., 1988).

Development of vaccine against C. jejuni is both, necessary and desirable but may be complicated due to a number of factors that include the tremendous antigenic diversity of the organism, a lack of understanding of the nature of acquired immunity, a lack of small animal models suitable for vaccine evaluation, as well as the fact that the protective epitopes are not clearly defined (Scot, 1997). Several antigens have been suggested and tested as vaccine candidates. The importance of flagellin in C. jejuni pathogenesis and high immunogenicity have suggested its use as a good vaccine candidate (Martin et al., 1989, Hu \& Kopecko, 1999). Flagellin-based
vaccines have been assessed for their role to prevent C. jejuni infections (Lee et al., 1999) however the variability of the flagellin proteins among C. jejuni strains due to highly variable regions and posttranslational modifications, as well as a low immunogenic response or recombinant flagellin presented problems and hindered further development of the vaccine. Different flagellar proteins were therefore assessed for their suitability as C. jejuni vaccine candidates.

Many Gram-negative pathogens use the type III secretion apparatus (TTSS) for transporting effector proteins to eukaryotic cells (Coburn et al., 2007). However, genes encoding structural proteins of TTSS were not found in the genomes of Campylobacter strains. In this bacterium, protein secretion, including secretion of several significant virulence factors, depends on the flagellar apparatus (Konkel et al., 2004). Among proteins secreted by this apparatus are FlaC, FspA1 and FspA2, whose immunogenicity and induced protective effect were tested in a mouse model (Baqar et al., 2008). Proteins purified from E. coli cells were intranasally administered to BALB/c mice, alone or with LT ${ }_{\text {R192G }}$ as an adjuvant. Although all three proteins were observed to be highly immunogenic, immunization did not provide a high protection level (Baqar et al., 2008).

The new approach to prevent human campylobacteriosis is by the introduction of a glycoconjugated vaccine. The first conjugated vaccine was developed against Heamophilus influenzae type b (Hib). Later, conjugated vaccines that offer protection against selected serotypes of Neisseria meningitidis and Streptococcus pneumoniae were introduced for routine infant immunization (Trotter et al., 2008). The Capsular Polysaccharides (CPS)-conjugated vaccine was tested in mice and in the New World monkey, Aotus nancymae and was found to induce significant serum immune response and protection. $\mathrm{CPS}_{81-176}-\mathrm{CRM}_{197}$ (C. jejuni 81-176 CPS
conjugated to diphtheria toxin mutant) immunization resulted in significant specific serum $\operatorname{IgM}, \operatorname{IgA}$ and IgG responses, and a reduction in the illness symptoms in mice after intranasal challenge with the homologous strain (Monteiro et al., 2009). Although vaccination of A. nancymae, does not induce serum IgA, it protects animals against diarrhoea but not against intestinal colonization after challenge with the homologous strain (Monteiro et al., 2009). Although preliminary experiments on CPS-conjugated vaccination provided promising results, many important issues concerning this type of vaccine still await clarification. These include surveillance of serotypes distribution, analysis of the capsular-switching phenomenon, crossreactivity and safety concerns.

A lack of defined epitopes and antigenic complexity among C. jejuni strains may suggest the development of a live attenuated vaccine or killed Campylobacter whole cell (CWC) vaccine as an answer to the problem. Challenge studies have shown that infection with a wild-type strain produce solid protective immunity in volunteers, so it is reasonable to expect that a live attenuated vaccine or killed CWC could produce same results. However, the paucity of information regarding the pathogenesis complicates this approach. In addition, the association between C. jejuni infection and GBS makes the development of the attenuated or killed CWC vaccine very difficult.

Sequencing the genomes of many Campylobacter strains as well as the development of transcriptomic and proteomic techniques have allowed a faster and more efficient identification of antigens that are potential candidates for vaccine development. Identification of O-sialoglycoprotease homologue $(\mathrm{Cj1344c})$ within C. jejuni genome and the high level of conservation between Campylobacter strains initiated studies to determine the role of this enzyme in C. jejuni pathogenesis. The
successful use of the M. haemolytica O-sialoglycoprotease in vaccination trials to prevent bovine pneumonic pasteurellosis (Shewen et al., 2003), also opened possibilities of using the C. jejuni glycoprotease in vaccination trials to combat diarrhoeal illness. The aims of this study were to examine the role of putative glycoprotease in C. jejuni pathogenesis and determine its action; and secondly to examine the possibility of using the glycoprotease in vaccination trials to eliminate C. jejuni colonisation in mice.

CHAPTER 2

Materials and Methods

2.1 General procedures

Media, glassware, and general solutions were sterilised by autoclaving at $121{ }^{\circ} \mathrm{C}$ for 20 minutes ($1,000 \mathrm{kPa}$), unless otherwise specified. Eppendorf pipettes were used to measure volumes ranging from $0.1 \mu \mathrm{~L}$ to 10 mL . Pipette tips were sterilized at $121{ }^{\circ} \mathrm{C}$ for 20 minutes ($1,000 \mathrm{kPa}$).

2.2 General Chemicals and Equipment

Chemicals used in this study were of analytical grade and were purchased from Sigma Chemical Co., Chem-Supply, Oxoid, Merck, Amresco, Fluka, Bio-Rad, Lancaster, APS Finechem or Applichem. Unless specified, chemicals were made up to the desired concentration in MilliQ purified water and sterilized by filter sterilization or autoclaving at $121^{\circ} \mathrm{C}$ for 20 minutes $(1,000 \mathrm{kPa})$. Enzymes used in this study were purchased from New England Biolabs, Promega or Roche. Plastic ware was purchased from Becton Dickson or Eppendorf, with the exception of plastic ware required for RNA which was acquired from Axygen.

Centrifuges used were: Beckman Coulter Allegra 25R with rotors TA-14-50, TA 10.250, Sigma 1-15 bench top microcentrifuge and Sigma 3-16 refrigerated benchtop centrifuge.

2.3 Bacteriological Techniques

2.3.1 Media

Horse Blood Agar: $39 \mathrm{~g} / \mathrm{L}$ Columbia agar base in deionised water. Autoclaved at $121^{\circ} \mathrm{C}$ for 15 minutes $(1,000 \mathrm{kPa})$, cooled to $50-55^{\circ} \mathrm{C}, 5 \%$ sterile defibrinated horse blood (IMVS) added. Campylobacter selective supplements; Skirrow also added (Oxoid) which comprises of 5 mg vancomycin, 2.5 mg trimethoprim and 1250 IU Polymyxin B. Agar poured into sterile Petri dishes and stored at $4^{\circ} \mathrm{C}$. For 2\% HBA plates, an additional 1% (w/v) Agar Bacteriological added prior to autoclaving.

Luria-Bertani (LB) agar: $25 \mathrm{~g} / \mathrm{L}$ Luria Broth Base (Oxoid) and $12 \mathrm{~g} / \mathrm{L}$ Bacteriological Agar in deionised water. Autoclaved at $121^{\circ} \mathrm{C}$ for 20 minutes ($1,000 \mathrm{kPa}$), cooled to $50-55^{\circ} \mathrm{C}$, antibiotics or other supplements if required were added, mixed and poured into sterile Petri dishes. Stored at $4{ }^{\circ} \mathrm{C}$.

Luria-Bertani (LB) broth: $25 \mathrm{~g} / \mathrm{L}$ Luria Broth Base (Oxoid) in deionised water. Autoclaved at $121{ }^{\circ} \mathrm{C}$ for 20 minutes ($1,000 \mathrm{kPa}$); cooled to room temperature, antibiotics or other supplements if required were added. Stored at $4^{\circ} \mathrm{C}$.

SOC media: $20 \mathrm{~g} / \mathrm{L}$ bacto-tryptone, $5 \mathrm{~g} / \mathrm{L}$ yeast extract, 10 mM NaCl and 2.5 mM KCl in distilled water and autoclaved at $121^{\circ} \mathrm{C}$ for 20 minutes ($1,000 \mathrm{kPa}$), with the addition of $10 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{MgSO} 4,20 \mathrm{mM}$ glucose (all filter sterilized with a 0.2 micron filter) when cooled.

Storage medium: 10% skim milk powder, 1% bacto-tryptone, 10 mM Tris-Cl pH 7.5 . Autoclaved at $109^{\circ} \mathrm{C}$ for 30 minutes.

X-gal agar: LB agar supplemented with $2 \% \mathrm{X}-\mathrm{Gal}$ and IPTG to a final concentration of 0.5 mM .

2.3.2 Antibiotics

Ampicillin: Stock solution of $50 \mathrm{mg} / \mathrm{mL}$ in distilled water, $0.22 \mu \mathrm{~m}$ filter sterilized.

Chloramphenicol: Stock solution of $25 \mathrm{mg} / \mathrm{mL}$ in 100% ethanol.
Kanamycin: Stock solution of $50 \mathrm{mg} / \mathrm{mL}$ in distilled water, $0.22 \mu \mathrm{~m}$ filter sterilized.

2.3.3 Stock solutions and Buffers

10X TBS: 24.2 g Tris base, 80 g NaCl . The pH adjusted to 7.6 with HCl . Made up to 1 L with deionised water.

1X SDS-PAGE sample buffer: 100 mM Tris- $\mathrm{Cl} \mathrm{pH} 6.8,2 \%$ SDS, 0.1% bromophenol blue, 10% glycerol, $5 \% \beta$-mercaptoethanol
$\mathbf{3 0 \%}$ acrylamide: 29.2% acrylamide, 0.8% bis-acrylamide in distilled water. $0.2 \mu \mathrm{~m}$ filter sterilized and stored in the dark at $4{ }^{\circ} \mathrm{C}$.

50X TAE: 242 g Tris base, 57.1 mL glacial acetic acid, 100 mL 0.5 M EDTA pH 8.0 , made up to 1 L with deionised water. Stored at room temperature in glass bottle.

5X TBE: 54 g Tris base, 27.5 g boric acid, 20 mL 0.5 M EDTA pH 8.0, made up to 1 L with deionised water.

6X Gel-loading sample buffer: 40% sucrose, 0.25% bromophenol blue, 0.25% xylene cyanol FF

Blocking buffer: 1X TBS, 0.1% Tween $20,1 \%$ non-fat dry milk powder.
Coomassie brilliant blue stain: 0.1% brilliant blue in 50% methanol, 40% deionised water, 10% acetic acid

Coomassie brilliant blue destaining solution: 50% methanol, 40% water, 10% acetic acid

ELISA blocking buffer: 3\% BSA in Tris-buffered saline, 0.05\% Tween 20
Plasmid Mini Preparation Solution I: 50 mM glucose, 25 mM Tris, 10 mM EDTA pH 8.0 containing $10 \mu \mathrm{~g}$ RNase

Plasmid Mini Preparation Solution II: $0.2 \mathrm{M} \mathrm{NaOH}, 1 \%[\mathrm{w} / \mathrm{v}]$ SDS
Plasmid Mini Preparation Solution III: 3 M potassium, 5 M acetate
Protein purification binding buffer: $50 \mathrm{mM} \mathrm{NaHPO} 4,0.3 \mathrm{M} \mathrm{NaCl}, 0.5 \%$ Triton X-100, 10 mM imidazole, pH 7.0

Protein purification elution buffer: $50 \mathrm{mM} \mathrm{NaHPO} 4,0.3 \mathrm{M} \mathrm{NaCl}, 500 \mathrm{mM}$ imidazole, pH 7.0

Protein purification wash buffer: $50 \mathrm{mM} \mathrm{NaHPO} 4,1.0 \mathrm{M} \mathrm{NaCl}, 20 \mathrm{mM}$ β-mercaptoethanol, 50 mM imidazole, pH 7.0

Tbf1 buffer: 30 mM potassium acetate, 100 mM potassium chloride, 60 mM calcium chloride and 15% glycerol, pH adjusted to 5.8 with 0.2 M acetic acid and $0.2 \mu \mathrm{~m}$ filter sterilized

Tbf2 buffer: 10 mM MOPS, 75 mM Calcium chloride, 10 mM Potassium chloride, 15% glycerol. pH adjusted to 6.5 with 1 M KOH and $0.2 \mu \mathrm{~m}$ filter sterilized

TBS/Tween wash buffer: 1X TBS + 0.1\% Tween20
TE buffer: 10 mM Tris-Cl and 1 mM EDTA, pH 8.0
Towbin buffer: 3 g Tris base, 14.4 g glycine, 800 mL MilliQ purified water, 200 mL methanol

Tris-glycine electrophoresis running buffer: 0.025 M Tris, 0.250 M glycine, 0.1% SDS

2.4 Bacterial strains and plasmids

2.4.1 C. jejuni strains and growth conditions

The C. jejuni strains used in this study are listed in Table 2.1. The C. jejuni NCTC11168 genome strain will be referred to as 11168 -GS, and the C. jejuni NCTC11168 original strain, kindly donated by D.G Newell, London, will be referred to as 11168-O. The bacteria were grown on Columbia agar supplemented with 5% defibrinated horse blood (HBA) with Skirrow antibiotic supplement (Oxoid) under microaerophilic conditions ($5 \% \mathrm{O}_{2}, 15 \% \mathrm{CO}_{2}, 80 \% \mathrm{~N}_{2} ; \mathrm{BOC}$ gases) for 48 hours at 42° ${ }^{\circ}$ C. C. jejuni was harvested from the agar plates in sterile Brucella Broth (Oxoid) and the $\mathrm{CFU} / \mathrm{mL}$ was determined by measuring OD_{600} and comparing to a standard growth curve.

Table 2.1 C. jejuni strains used in this study

C. jejuni strain	Isolated from	Original Source
$\mathbf{1 1 1 6 8 - G S}$	Human	D.G. Newell, Centre of Veterinary Laboratories, London, UK
$\mathbf{8 1 1 1 6}$	Human	D.G. Newell, Centre of Veterinary Laboratories, London, UK
$\mathbf{1 1 1 6 8 - O}$	Human	D.G. Newell, Centre of Veterinary Laboratories, London, UK

2.4.2 Preparation of conditioned media

"Conditioned" Brucella Broth to grow mutant C. jejuni bacteria was prepared by growing wild-type C. jejuni strain 11168 in Brucella Broth for 24 hours, removing the cells by centrifugation, and collecting and filtering the supernatant. The absence of viable cells in the supernatant was verified by plating it and observing no growth on the plates.

In addition, the Brucella Broth medium was supplemented with the E. coli expressed and purified His-Cj1344c protein to enhance the chance of mutant recovery.

2.4.3 Bacterial strains and growth conditions

Table 2.2 lists the E. coli, S. aureus and H. pylori strains used in this study. E. coli and S. aureus strains were cultured from frozen stocks onto LB agar plates (supplemented with ampicillin ($100 \mu \mathrm{~g} / \mathrm{mL}$), kanamycin $(50 \mu \mathrm{~g} / \mathrm{mL})$ or chloramphenicol ($10-20 \mu \mathrm{~g} / \mathrm{mL}$) when required) and incubated at $37^{\circ} \mathrm{C}$ for 18 hours under aerobic conditions. H. pylori and C. coli and C. fetus strains were grown on Columbia agar supplemented with 5\% defibrinated horse blood (HBA) with Skirrow antibiotic supplement (Oxoid) under microaerophilic conditions ($5 \% \mathrm{O}_{2}, 15 \% \mathrm{CO}_{2}$, $80 \% \mathrm{~N}_{2}$; BOC gases) at $42{ }^{\circ} \mathrm{C}$ for 72 and 48 hours respectively.

Table 2.2 Bacterial strains used in this study

Species	Strain	Genotype	Reference/source
E. coli	DH5 α	fhuA2 $\Delta($ argF-lacZ)U169 phoA glnV44 $\Phi 80$ $\Delta(l a c Z) M 15$ gyrA96 recA1 relAl endAl thi-1 hsdR17	Invitrogen
E. coli	XL1-blue	recAl endAl gyrA96 thi-1 hsdR17 supE44 relA1 lac	Stratagene
E. coli	BL21(DE3)	F^{-}ompT hsdS $\mathrm{B}_{\mathrm{B}}\left(\mathrm{r}_{\mathrm{B}}{ }^{-} \mathrm{m}_{\mathrm{B}}{ }^{-}\right)$gal dcm (DE3)	Novagen
H. pylori	26695		Clinical isolate
C. coli	18		Clinical isolate
C. fetus	82-40		Clinical isolate

2.4.4 Plasmids

Table 2.3 Plasmids used in this study

Plasmid	Features	Reference/source
pGEM-T Easy	$\mathrm{amp}^{\mathrm{R}},(100 \mu \mathrm{~g} / \mathrm{mL})$, blue/white screening	Promega
pET-19b	amp^{R}, (100 $\left.\mu \mathrm{g} / \mathrm{mL}\right)$ His-Tag	Novagen
pMW2	$\mathrm{km}^{\mathrm{R}},(50 \mu \mathrm{~g} / \mathrm{mL})$	(Wosten, M)
pAV110	$\mathrm{cat}^{\text {R }}$	(Ketley, J)
pGU0401	Km^{R}, oxa-61	(Alfredson, D)
pGU0501	$\mathrm{amp}^{\mathrm{R}}$, (100 $\left.\mu \mathrm{g} / \mathrm{mL}\right)$ Cj1344c	This study
pGU0501BglII	$\mathrm{amp}^{\mathrm{R}},(100 \mu \mathrm{~g} / \mathrm{mL})$ Cj1344c::BglII	This study
pGU0509	$\mathrm{amp}^{\mathrm{R}}, \mathrm{km}^{\mathrm{R}}$, promoted $\operatorname{amph}\left(3^{\prime}\right)$-III	This study
pGU0513	$\mathrm{amp}^{\mathrm{R}},(100 \mu \mathrm{~g} / \mathrm{mL})$ His-Tag Cj1344c	This study
pGU0522	$\mathrm{amp}^{\mathrm{R}}, \mathrm{km}^{\mathrm{R}}$, promoted $\operatorname{amph}\left(3^{\prime}\right)$-III, $P_{\text {oxa-61 }}$	This study
pGU0523	$\begin{aligned} & \mathrm{amp}^{\mathrm{R}}, \mathrm{~km}^{\mathrm{R}}, \text { Cj1344c::promoted } \operatorname{amph}\left(3^{\prime}\right)- \\ & \text { III, } P_{\text {oxa-61 }} \end{aligned}$	This study
pGU0706	$\mathrm{amp}^{\mathrm{R}}$, promoter-less $\operatorname{amph}\left(3^{\prime}\right)$-III	This study
pGU0707	$\mathrm{amp}^{\mathrm{R}}$, Cj1344c::promoter-less amph(3')-III	This study
pGU0613	$\begin{aligned} & \mathrm{amp}^{\mathrm{R}}, \mathrm{~km}^{\mathrm{R}}, C j 1344 c:: \text { promoted } \operatorname{amph}\left(3^{\prime}\right)- \\ & \text { III } \end{aligned}$	This study
pGU0804	amp $^{\text {R }}$, promoter-less cat	This study
pGU0805	$\mathrm{amp}^{\mathrm{R}}$, Cj1344c::promoter-less cat	This study

2.4.5 Storage of bacterial strains

For long term storage of Campylobacter and Helicobacter strains, microorganisms were stored using either storage medium or 20% glycerol. When using storage medium, an overnight lawn culture on appropriate media was grown, 2 mL storage media was pipetted onto a lawn culture plate using aseptic technique and harvested using a sterile spreader. 1 mL of liquid culture was pipetted into a cryovial and placed at $-80^{\circ} \mathrm{C}$. Storage media consisted of $10 \%(\mathrm{w} / \mathrm{v})$ skim milk powder, 1% (w/v) tryptone and 10 mM Tris-Cl, pH 7.5 , sterilised by autoclaving.

For long term storage of \boldsymbol{E}. coli, strains were grown overnight in LB media with the appropriate antibiotic. The cultures were spun down and then resuspended in sterile LB media containing 20% glycerol. 1 mL of the resuspension was added to cryovial and stored at $-80^{\circ} \mathrm{C}$.

For short term storage C. jejuni strains were stored up to six weeks in 10 mL bottles containing semisolid (0.4%) agar at $37{ }^{\circ} \mathrm{C}$. E. coli was stored for up to 4 weeks on LB agar plates at $4{ }^{\circ} \mathrm{C}$.

2.5 General Molecular Biological Techniques

2.5.1 Crude DNA isolation

DNA from the bacteria was extracted using the crude boiling method, where a colony or few colonies were selected from the plate and placed into $100 \mu \mathrm{~L}$ of sterile water and boiled for 5 min . The cell debris was removed by centrifugation at $14,000 \mathrm{~g}$ for 5 min , and the supernatant was stored at $-20^{\circ} \mathrm{C}$ or used immediately.

2.5.2 Purification of plasmid DNA from E. coli

Plasmid DNA was extracted from overnight cultures containing the appropriate antibiotic of E. coli using either the method outlined below or one of the following commercial extraction kits: Fast Plasmid mini prep kit (Eppendorf), PureLink HiPure mega prep kit (Invitrogen) or QIAGEN Plasmid midi prep kit (QIAGEN). Purifications were performed as per manufacturer's instructions with no modifications.

2.5.2.1 Alkaline lysis plasmid mini preparation

A plasmid DNA using the alkaline lysis method was prepared using the modified alkaline lysis plasmid mini preparation method outlined by Sambrook and associates (Sambrook \& Russel, 2001). A single colony of E. coli containing the recombinant plasmid was inoculated into 1.5 mL of broth containing the appropriate antibiotic. The culture was incubated at $37^{\circ} \mathrm{C}$ on an orbital shaker at 220 rpm for 18 hours. Cultures were pelleted by centrifugation at $14,000 \mathrm{rpm}$ for 1 minute. Supernatant was discarded and pellet re-suspended in $200 \mu \mathrm{~L}$ solution I $(50 \mathrm{mM}$
glucose, 25 mM Tris, 10 mM EDTA pH 8.0) containing $10 \mu \mathrm{~g}$ RNase A by vortexing. $200 \mu \mathrm{~L}$ of solution II ($0.2 \mathrm{M} \mathrm{NaOH}, 1 \%[\mathrm{w} / \mathrm{v}]$ SDS) was added and the tubes inverted 6-8 times. Samples were incubated on ice for 5 minutes. $150 \mu \mathrm{~L}$ of solution III (3 M potassium, 5 M acetate)) was added and the tubes were gently mixed for 10 seconds. Samples were incubated on ice for 10 minutes followed by a centrifugation at $14,000 \mathrm{rpm}$ for 10 minutes to remove unlysed cells. Supernatant was transferred to a new tube and an equal volume of isopropanol was added. Tubes were mixed, incubated at room temperature for 5 minutes and subsequently centrifuged for 10 minutes at $14,000 \mathrm{rpm}$. Supernatant was removed and the pellet washed with $100 \mu \mathrm{~L} 70 \%$ ethanol. Tubes were centrifuged for 2 minutes at 14,000 rpm. Supernatant was carefully removed and the pellets air dried for 5-10 minutes. DNA was resuspended in $25-50 \mu \mathrm{~L}$ of sterile distilled water and stored at $-20^{\circ} \mathrm{C}$.

2.5.3 Standard Ethanol Precipitation

Standard ethanol precipitation was performed without modification as outlined in Sambrook et al., 2001.

2.5.4 Quantitation of DNA

Quantification of DNA in samples was performed by the spectrophotometric method using $\mathrm{A}_{260 / 280}$. These methods are described in Sambrook et al. (2001) and used without modification.

2.5.5 Agarose gel electrophoresis

Agarose gel electrophoresis was performed for the size estimation of DNA fragments produced by PCR and restriction endonuclease digest products as well as estimation of DNA purity. Bio-Rad Power Pac 200, sub cell GT electrophoresis tanks and gel trays were utilized. $0.8 \%-2 \%$ (depending on the size of fragments to be discerned) biotechnology grade agarose was added to 1XTAE buffer and boiled in a microwave oven to dissolve the agarose. This was cooled to $\sim 50^{\circ} \mathrm{C}$ and $10 \mathrm{mg} / \mathrm{mL}$ ethidium bromide (Bio-Rad) was added to a final concentration of $0.5 \mu \mathrm{~g} / \mathrm{mL}$. Samples were loaded in 1X sample buffer and then electrophoresed at 100 V for 45 minutes. The DNA fragments were visualized with an UVP white/ultraviolet transilluminator and documented using BioRad Quantity One 1D Analysis Software. 100 bp and 1 kb DNA ladders from NEB were used as molecular weight markers.

2.5.6 Purification of DNA from agarose

DNA was electrophoresed through an appropriate percentage agarose gel containing ethidium bromide, then visualized with a UV transilluminator for excision of the desired fragment. The PerfectPrep Gel Clean-up (Eppendorf) kit was utilized for purification of DNA from the agarose. This method was used as per the manufacturer's instructions without modification.

2.5.7 Restriction endonuclease digestion of DNA

Restriction endonuclease digests were carried out as per the manufacturer's recommendation. Restriction endonuclease digestion was performed at a maximum volume of $50 \mu \mathrm{~L}$. The enzyme concentration was $20 \mathrm{U} / \mu \mathrm{g}$ DNA with the appropriate
buffer used, supplied by the manufacturer. The digestion reaction was supplemented with BSA, when necessary. The incubation temperature was $37^{\circ} \mathrm{C}$, for the time advised by the supplier of the endonuclease, unless specified otherwise. Where appropriate, the enzyme was heat inactivated.

2.5.8 Polymerase Chain Reaction Procedures

2.5.8.1 Primers used in this study

Oligonucleotide primers were synthesized by Invitrogen and received in a lyophilized form. They were re-suspended in sterile distilled water ($100 \mathrm{pmol} / \mu \mathrm{L}$) and stored at $-20^{\circ} \mathrm{C}$. Working stocks were created by making a one in four dilution of the original stock. Primers used in this study are listed in Table 2.4.

Table 2.4 List of primers used in the study

Primer name	Primer sequence	Restriction site incorporated	Reference	Purpose
T7	5' TAATACGACTCACTATAGGG 3'	None	Promega	PCR screening to identify insert DNA in cloning, sequencing
SP6	5' TATTTAGGTGACACTATAG 3'	None	Promega	PCR screening to identify insert DNA in cloning, sequencing
sgcp-NdeI-F	5' CATATGAAAAATCTTATCCTAGCTA 3'	$N d e \mathrm{I}$	This study	Amplification of Cj1344c for cloning into pGEM-T Easy
sgcp-XhoI-R	5' ${ }^{\text {CTCGAG }}$ (TTTTTTTCATCTATATCCTTG 3'	XhoI	This study	Amplification of Cj1344c for cloning into pGEM-T Easy
kana-BglII-F	5' GAAGATCTGCTCGGAATTAACCCT 3'	BglII	This study	Amplification of km^{R} gene including the promoter sequence
kana-BglII-R	5' GAAGATCTGCTCGGAATTAACCCT 3'	BglII	This study	Amplification of km^{R} gene including the promoter sequence
NP800-km-BglII-F	5' GAAGATCTCATGGCTAAAATGAGAATATC 3'	BglII	This study	Amplification of km^{R} gene excluding the promoter sequence
ampprom-XbaI-F	5' GCTCTAGACTTGATATCGAATTCCTGCAGCCC 3'	XbaI	This study	Amplification of oxa-61 promoter sequence
ampprom-XbaI-R2	5' GCTCTAGACACAAAATATCTTTCTATTTAAAT 3'	XbaI	This study	Amplification of oxa-61 promoter sequence

Table 2.4 List of primers used in the study (continued)

Primer name	Primer sequence	Restriction site incorporated	Reference	Purpose
Cat-BglII-F	5' AGATCTCATGATGCAATTCACAAAGATT 3'	BglII	This study	Amplification of cm^{R} gene excluding the promoter sequence
Cat-BglII-R	5' AGATCTTTATTTATTCAGCAAGTCTTG 3'	BglII	This study	Amplification of cm^{R} gene excluding the promoter sequence
inv-sgcp-BglII-F	5' AAGATCTGAGCTTTTAGCAAGTACAAATGATGATAGC 3'	BglII	This study	Creation of unique restriction enzyme site within Cj1344c for insertion of antibiotic resistance gene
inv-sgcp-BglII-R	5' A ${ }^{\text {AGATCTCCACCACTAACAAGCAAAATTCCCATATCT 3' }}$	BglII	This study	Creation of unique restriction enzyme site within Cj1344c for insertion of antibiotic resistance gene
Cj1343c-R	5' GGATCCTTACATTCCCCCTATTAAAAG 3'	BamHI	This study	Screening for cross over event during C. jejuni transformations
Kana-intr-F	5^{\prime} TCCAAAGGTCCTGCACTTTGAACG 3^{\prime}	-	This study	Screening for cross over event during C. jejuni transformations

2.5.8.2 DNA template preparation

DNA template for PCR reactions were performed by creating a crude lysis preparation (section 2.5 .1). Generally $2-5 \mu \mathrm{~L}$ of crude lysate was used per $20 \mu \mathrm{~L}$ reaction. A water control was always included for the PCR reactions.

2.5.8.3 PCR cycling conditions

PCR conditions are described in Sambrook, et al., 2001. Reaction temperatures and times were as follows, $94{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 45-55^{\circ} \mathrm{C}$ for 1 min and $68{ }^{\circ} \mathrm{C}$ for 2-5 min, for 35 cycles. All PCRs were carried out using an Eppendorf Mastercycler Personal.

2.5.9 DNA sequencing

Plasmid DNA products were sequenced using the ABI Big Dye Terminator Version 3.1, performed by the Australian Genome Research Facility, Brisbane. Purified DNA samples to be sequenced were sent with 6.4 pmol of the appropriate sequencing primer. DNA sequence chromatograms were visualized and sequences analysed using MacVector software (MacVector, Inc.).

2.6 General cloning techniques

2.6.1 Cloning DNA into the pGEM®-T Easy Vector

A general procedure was followed for cloning into the $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ Easy vector as per the manufacturer's instructions. The PCR product was ligated into $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ Easy and transformed into competent XL1-Blue or DH5 α E. coli cells. Transformations were plated onto media containing X-gal/IPTG for blue/white screening and ampicillin. Transformants were screened for recombinant plasmid by PCR using the $T 7$ and SP6 primers.

2.6.2 Dephosphorylation of plasmid DNA

To prevent plasmid re-ligation, the 5 ' phosphates were removed using either Shrimp Alkaline Phosphatase (Promega) or Antarctic Phosphatase (NEB). $1 \mathrm{U} / \mu \mathrm{g}$ DNA of enzyme was used in the reaction. Samples were incubated for 10-15 minutes at $37{ }^{\circ} \mathrm{C}$. Enzyme was heat-killed at $65^{\circ} \mathrm{C}$ for 20 minutes. Dephosphorylated vector was then used for ligation.

2.6.3 Ligation of DNA into a vector

DNA ligation was performed at a maximum volume of $10 \mu \mathrm{~L}$. The ligation reactions contained 10 x Ligation Buffer (Roche), 50 ng linearised plasmid DNA, 20-75 ng insert DNA (depending on size of fragment), T4 DNA ligase (3 Weiss $\mathrm{U} / \mu \mathrm{L})($ Roche $)$. For maximum transformants, the reaction was incubated overnight at $16^{\circ} \mathrm{C}$.

2.6.4 Preparation of \boldsymbol{E}. coli competent cells

The method used was a modification of the Inoue method (Inoue et al., 1990), where a single, fresh E. coli colony was inoculated into 5 mL LB and incubated for 18 hours at $37{ }^{\circ} \mathrm{C}, 200 \mathrm{rpm}$. This primary culture was added to 95 mL warm LB and shaken at $37{ }^{\circ} \mathrm{C}$ for another $2.5-3$ hours until the OD_{600} was $0.4-0.6$. The flask was then placed on ice for 10 minutes to cool. Culture was aliquoted into chilled 50 mL centrifuge tubes and spun at $3,000 \mathrm{~g}$ for 10 minutes at $4{ }^{\circ} \mathrm{C}$. Supernatant was discarded and the pellets re-suspended in a total of 40 mL ice cold Tbf1 buffer (30 mM potassium acetate, 100 mM potassium chloride, 60 mM calcium chloride and 15% glycerol, pH was adjusted to 5.8 with 0.2 M acetic acid and $0.2 \mu \mathrm{~m}$ filter sterilized). The cells were incubated on ice for 10 minutes and then centrifuged at $3,000 \mathrm{~g}$ for 10 minutes at $4{ }^{\circ} \mathrm{C}$. The supernatant was discarded and pellets resuspended and pooled in 4 mL ice cold Tbf 2 buffer (10 mM MOPS, 75 mM Calcium chloride, 10 mM Potassium chloride, 15% glycerol. pH was adjusted to 6.5 with 1 M KOH and $0.2 \mu \mathrm{~m}$ filter sterilized.) The cells were left on ice for further 15 minutes and then stored in small aliquots $-80^{\circ} \mathrm{C}$.

2.6.5 Transformation of competent cells

Transformations were carried out as per the $\mathrm{pGEM}^{\circledR}-\mathrm{T}$ Easy vector manual (Promega). Plasmid DNA and $50 \mu \mathrm{~L}$ competent cells were aliquoted into a tube on ice and gently mixed. The reactions were incubated for 20 minutes on ice and then heat shocked for 45 seconds at $42{ }^{\circ} \mathrm{C}$ and immediately returned to ice for 2 min . $950 \mu \mathrm{~L}$ of SOC medium at room temperature was added and incubated for 1.5 hours at $37{ }^{\circ} \mathrm{C}$ on a shaker. $100 \mu \mathrm{~L}$ of the transformation culture was plated onto LB plates
containing ampicillin, IPTG and X-gal or appropriate antibiotic. The plates were incubated overnight at $37^{\circ} \mathrm{C}$ and stored at $4^{\circ} \mathrm{C}$ to facilitate blue/white screening.

2.6.6 Natural transformation of \boldsymbol{C}. jejuni

C. jejuni was grown on 1% Columbia agar supplemented with 5\% defibrinated horse blood for 20 hours at $37{ }^{\circ} \mathrm{C}$ under microaerobic conditions. The cells were subcultured onto 4-6 fresh plates for $15-18$ hours at $37{ }^{\circ} \mathrm{C}$ under microaerobic conditions. The bacteria were harvested using 1 mL sterile Heart Infusion broth (Oxoid) and the OD_{600} was adjusted to 0.6 .1 mL of the bacterial suspension was added to 2 mL eppendorf tubes half filled with 2.0% Heart Infusion agar, and incubated at $37{ }^{\circ} \mathrm{C}$ for 3 hours under microaerobic conditions. 1-2 $\mu \mathrm{g}$ of plasmid DNA was added to the bacterial suspension, and mixed by gently pipetting. The bacterial suspension was then incubated for an additional 5 hours at $37{ }^{\circ} \mathrm{C}$ under microaerobic conditions. The bacteria were then gently removed from the tube, ensuring that all attached bacteria was washed from the agar by gentle pipetting. $100 \mu \mathrm{~L}$ of the bacterial suspension was plated out onto selective media, containing appropriate antibiotic, and incubated for $48-72$ hours at $37{ }^{\circ} \mathrm{C}$ under microaerobic conditions.

2.7 Protein techniques

2.7.1 Protein quantitation using the Bradford assay

Protein standards of BSA in PBS (pH 7.4) at concentrations of $0 \mathrm{mg} / \mathrm{mL}$, $0.25 \mathrm{mg} / \mathrm{mL}, ~ 0.5 \mathrm{mg} / \mathrm{mL}, ~ 0.75 \mathrm{mg} / \mathrm{mL}, ~ 1.0 \mathrm{mg} / \mathrm{mL}, ~ 1.25 \mathrm{mg} / \mathrm{mL}$ and $1.4 \mathrm{mg} / \mathrm{mL}$ were prepared. $5 \mu \mathrm{~L}$ of each standard in duplicate was added to a 96 well plate. $5 \mu \mathrm{~L}$ of each sample to be quantitated was added in duplicate also to this 96 well plate. $250 \mu \mathrm{~L}$ of room temperature Bradford reagent was the added to each well and incubated for 15-30 minutes before being read by a plate reader at 595 nm (VICTOR WALLAC 2). A linear regression was used to generate a standard curve and determine the protein concentration.

2.7.2 Trichloroacetic acid (TCA) precipitation

The TCA precipitation protocol was adopted entirely from the pET System Manual (Novagen, 2010). In the case of culture supernatant precipitation, 100 mL of culture was precipitated and resuspended in total volume of 1 mL of PBS.

2.7.3 Polyethylene Glycol (PEG) concentration

Concentration of a protein sample was performed using a dialysis membrane with a 10 kDa molecular mass cutoff. The membrane was prepared according to manufacturer's instructions.

One end was sealed with clips or string and the protein solution was poured into the tube. The tube was placed in 30% PEG, and dyalisis was performed until the sample was concentrated to required volume. Once the concentration was finished,
the outside of the tubing was gently washed with distilled water, and the concentrated solution of protein was removed by aspiration with a micropipette.

2.7.4 Preparation of samples for SDS-PAGE

SDS-PAGE sample buffer containing fresh 2-mercaptoethanol was added to the samples to a final 1X concentration as per Sambrook et al., 2001. Samples were boiled for 5 minutes to denature proteins and were briefly spun down at $14,000 \mathrm{rpm}$ before loading onto the appropriate percentage SDS-PAGE gel using a Hamilton microlitre syringe.

2.7.5 SDS-PAGE resolution of proteins

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was performed as per Sambrook et al., 2001 using the Laemmli (1970) method of discontinuous buffer system and addition of 0.1% SDS to all components of the system. 12% resolving gels and 5% stacking gels were used in all instances unless otherwise stated. Electrophoresis of samples was performed in a MINI-Protean 3 (BioRad) electrophoresis tank in a tris-glycine running buffer (0.025 M Tris, 0.250 M glycine, 0.1% SDS). A voltage of $8 \mathrm{~V} / \mathrm{cm}$ was applied as the samples moved through the stacking gel and $15 \mathrm{~V} / \mathrm{cm}$ as samples moved through the resolving gel. Electrophoresis was halted when the bromophenol blue dye front reached approximately 0.5 cm from the bottom of the gel. The Precision Plus All Blue Standard Prestained molecular weight marker was used for protein size determination (Bio Rad).

2.7.6 Staining of SDS-polyacrylamide gels after electrophoresis

Proteins in the SDS-polyacrylamide gels were stained by immersing the gel in at least 5 volumes of Coomassie brilliant blue stain (0.1% brilliant blue in 50% methanol, 40% deionised water, 10% acetic acid) and placing it on a slowly rotating platform for a minimum of 4 hours at room temperature. Gels were destained by soaking in the methanol:acetic acid solution (50\% methanol, 40% water, 10% acetic acid) on a slowly rotating platform for 2-3 hours, changing the destaining solution three or four times.

2.7.7 Western Blot Analysis of Proteins

Protein samples were resolved on a 12% SDS-PAGE and western blot was performed by the transfer of the protein resolved in the acrylamide gel to a $0.45 \mu \mathrm{M}$ PVDF membrane by Transblot semi-dry transfer cell (BioRad). The membrane was initially washed in methanol, rinsed with deionised water and soaked in Towbin buffer. Filter paper and gels were also soaked in Towbin buffer. Transfer was performed using Towbin buffer at 20 V for 60 minutes.

After transfer, the membrane was incubated in 25 mL blocking buffer (1XTBS, 0.1% Tween 20 , 1% skim milk powder) for 1 hour. Membrane was subsequently washed 3 times for 5 minutes each in 15 mL Tris-buffered saline containing 0.1% Tween20. Overnight incubation with the anti-His (NEB) antibody in 10 mL blocking buffer at a dilution of $1: 10,000$ was undertaken at $4{ }^{\circ} \mathrm{C}$ with agitation, as per the manufacturer's instructions. 3 washes of 5 minutes, each with 15 mL Tris-buffered saline containing 0.1% Tween 20 were performed. The membrane was incubated with a secondary goat-anti-mouse HRP conjugate (Biorad) at a ratio of 1:5,000 for 1 hour
at room temperature, as per the manufacturer's instructions. The membrane was washed 3 times 5 minutes each with 15 mL Tris-buffered saline containing 0.1% Tween20. Chemiluminescence detection was subsequently undertaken using the SuperSignal West Pico detection solutions (Thermo Scientific) as per manufacturer's instructions. Membranes were then exposed to X-ray film (CL-Xposure, Kodak) using an X-ray cassette. This X-ray film was developed (KodakGBX developer and replenisher), washed in deionised water and fixed (KodakGBX fixative and replenisher) before a final wash in deionised water.

2.7.8 Dot Blot Analysis of Proteins

The procedure for dot blots was adopted from abcam® technical manual. Briefly, $2 \mu \mathrm{~L}$ of samples were spotted onto the nitrocellulose membrane. The membrane was left to dry. Non-specific sites were blocked by soaking in 5\% BSA in TBS-T ($0.5-1 \mathrm{hr}, \mathrm{RT}$). The membrane was incubated with primary antibody (1:1,000 to $1: 100,000$ dilution for antiserum), dissolved in BSA/TBS-T for 30 min at RT, followed by three times washes with TBS-T (5 minutes each). The membrane was then incubated with secondary antibody conjugated with HRP (optimum dilution was performed as per the manufacturer's recommendation) for 30 min at RT. The membrane was washed three times with TBS-T $(15 \min \mathrm{x} 1,5 \min \mathrm{x} 2)$. Chemiluminescence detection was subsequently undertaken as described above in the Western blot protocol.

2.7.9 Small scale protein expression

The recombinant plasmid pGU0513 was transformed into the E. coli expression strain BL21(DE3), to form BL21(DE3)pGU0513. $50 \mu \mathrm{~L}$ of an overnight culture of E. coli BL21(DE3)pGU0513 was added to $950 \mu \mathrm{~L}$ of LB containing ampicillin, and incubated at $37^{\circ} \mathrm{C}$ with shaking at 200 rpm for 2 hours. IPTG was added to a final concentration of 1 mM , for an additional 2 hours to induce expression of the His-fusion protein. $100 \mu \mathrm{~L}$ of the cell suspension was spun down and resuspended in an equal volume of PBS. SDS-PAGE sample buffer containing fresh 2-mercaptoethanol was added to samples to a final 1X concentration and samples were boiled for 5 minutes to denature the proteins. $20 \mu \mathrm{~L}$ of the suspension was loaded onto a 12% SDS-PAGE gel and electrophoresed for 90 min at 100 V . The protein bands were visualised by Coomassie Brilliant Blue stain.

2.7.10 Cellular localization of recombinant protein

Analysis of soluble cytoplasmic fraction and the insoluble cytoplasmic fraction, including inclusion bodies is needed to determine if the recombinant protein is present in the soluble cytoplasmic fraction needed for the further purification of the recombinant protein. 1 mL of an overnight culture of E. coli BL21(DE3)pGU0513 was added to 19 mL of LB broth supplemented with ampicillin. The culture was incubated at $37^{\circ} \mathrm{C}$ for two hours with shaking. $500 \mu \mathrm{~L}$ of the culture was set aside as an un-induced sample while the rest of the culture was induced with IPTG (1 mM final concentration). The culture was incubated for an additional 2 hours and $500 \mu \mathrm{~L}$ was set aside as an induced sample. The cell pellet was removed by centrifugation at $4,000 g$ for 5 min . The supernatant was removed and the pellet was resuspended in 5 mL sterile Phosphate Buffered Saline (PBS). The
cell pellet was lysed by the addition of lysozyme ($200 \mu \mathrm{~g} / \mathrm{mL}$) and sonication. The unlysed cells were removed by centrifugation at $4,000 g$ for 5 min . The lysed cells were then centrifuged at $100,000 \mathrm{~g}$ for 90 min at $4^{\circ} \mathrm{C}$. The cell pellet and supernatant were analysed by SDS-PAGE gel electrophoresis.

2.7.11 Optimisation of purification protocol.

Purification of the His-Cj1344c protein was attempted using the following purification procedures. Firstly, purification was attempted using AKTA FPLC in conjunction with His-trap FF 5 mL column (GE Health Care). This procedure resulted in elution of the protein off the column, but there was a significant amount of co-eluting proteins present in elution samples. A pre-elution wash step incorporated in the method did not significantly reduce the amount of contaminating proteins. The yield of the recovery of the His-Cj1344c was also low. His-select Nickel affinity resin (Sigma) and Talon Cobalt affinity resin (Clontech) were assessed as means of purification of the His-Cj1344c protein. Protocols supplied by the manufacturer were followed. The purification protocols showed significantly less contaminating proteins present, when compared to AKTA FPLC. The yield of recovery of the His-Cj1344c was significantly higher using His-select Nickel affinity resin.

Modification of the manufacturers' existing protocols with the addition of $20 \mathrm{mM} \beta$-mercaptoethanol, 0.5% Tween 20 and 50 mM imidazole addition in various buffers, reduced non-specific interactions, yielding eluted recombinant proteins with 80-90\% purity.

2.7.12 Large scale protein expression.

In order to produce a large amount of the protein a 100 mL overnight culture of BL21(DE3)pGU0513 was used to inoculate one litre of LB containing ampicillin at $100 \mu \mathrm{~g} / \mathrm{mL}$ and was incubated at $37^{\circ} \mathrm{C}$ with aeration. Protein expression was induced using 1 mM IPTG when the OD_{600} of the culture reached 0.5 and was incubated for an additional 6 hours at $37{ }^{\circ} \mathrm{C}$ with aeration. The culture was centrifuged at $8,000 \mathrm{~g}$ for 20 min . The supernatant was removed and the cell pellet was resuspended in 30 mL of binding buffer ($50 \mathrm{mM} \mathrm{NaHPO} 4,0.3 \mathrm{M} \mathrm{NaCl}, 0.5 \%$ Triton X-100, 10 mM imidazole, pH 7.0) and lysed by the addition of lysozyme ($0.2 \mathrm{mg} / \mathrm{mL}$) overnight at $4{ }^{\circ} \mathrm{C}$ with subsequent sonication. An additional freeze/thaw step was performed to aid in cell lysis. DNaseI and protease inhibitors were added and the insoluble cell debris removed by centrifugation at $100,000 \mathrm{~g}$ for 80 min . The 30 mL of clarified supernatant was added to 1 mL of His-select nickel affinity resin (Sigma) and rotated overnight at $4{ }^{\circ} \mathrm{C}$ using a rotational mixer. The slurry mix was then packed by gravity into a 10 mL Bio-Rad chromatography column. The column was washed once with 25 mL binding buffer, then washed with 25 mL of wash buffer (50 mM NaHPO 4 , $1.0 \mathrm{M} \mathrm{NaCl}, 20 \mathrm{mM} \beta$-mercaptoethanol, 50 mM imidazole, pH 7.0) and the bound His-tagged protein was eluted with elution buffer $(50 \mathrm{mM} \mathrm{NaHPO} 4, ~ 0.3 \mathrm{M} \mathrm{NaCl}$, 500 mM imidazole, pH 7.0) in 0.5 mL volumes. All buffers were sterilised using a $0.22 \mu \mathrm{M}$ filter and were kept at $4{ }^{\circ} \mathrm{C}$. The procedure was performed at $4{ }^{\circ} \mathrm{C}$ to minimise protein degradation. Further purification of the His-Cj1344c fusion protein was achieved by Cobalt affinity chromatography. Imidazole was removed from the sample by dialysis in PBS, overnight at $4{ }^{\circ} \mathrm{C}$ and then mixed with 1 mL of the Talon® His-Tag Purification Resin (Clontech) overnight to ensure maximum binding. Purification was performed according to the manufacturer's protocols. The
purity of the sample was confirmed by SDS-PAGE analysis and Western Blot using anti-His antibodies (Bio-Rad).

2.8 STD NMR spectroscopy

2.8.1 Preparation of protein samples for NMR spectroscopy.

Purified His-Cj1344c protein was concentrated using an Amicon Ultra 5K centrifugal concentrator (Millipore), previously washed with deuterium oxide $\left(\mathrm{D}_{2} \mathrm{O}\right)$, $0.1 \mathrm{M} \mathrm{NaOH} / \mathrm{D}_{2} \mathrm{O}$, then $\mathrm{D}_{2} \mathrm{O}$ to remove NaOH . A series of five $5,000 g$ centrifugation steps at $4{ }^{\circ} \mathrm{C}$ were aimed to replace $\mathrm{H}_{2} \mathrm{O}$ with $\mathrm{D}_{2} \mathrm{O}$. Protein concentration was estimated by Bradford assay.

2.8.2 STD NMR spectroscopy

NMR samples were prepared by the addition of ligand (10 mM in $\mathrm{D}_{2} \mathrm{O}$) to $600 \mu \mathrm{~L}$ of His-Cj1344c, to give a His-Cj1344c:ligand ratio of 1:100. The ligands investigated included L-methionine, L-lysine and L-arginine (Sigma). All ${ }^{1} \mathrm{H}$ NMR experiments were acquired on a Bruker Avance 600 MHz spectrometer equipped with a 5 mm TCI cryoprobe with Z-axis gradients at 288 K . Spectra were acquired with 1 k scans, and a relaxation delay at least $>1 \mathrm{X} T_{1}$ value of the longest T_{1} of protons in the ligand being studied. ${ }^{1} \mathrm{H} T_{1}$ values were determined using the inversion recovery method. For the STD experiments the protein was saturated on-resonance at a frequency of -600 Hz in the aliphatic region of the spectrum and off-resonance at $20,000 \mathrm{~Hz}$ with a cascade of 40 selective Gaussian shaped pulses of 50 ms with a 100μ s delay between each pulse resulting in a total saturation time of 2 seconds. As a control experiment, identical ligand-only spectra were acquired; no signal was observed in the ligand-only spectra. On-resonance and off-resonance spectra were
subtracted to obtain a difference spectrum containing the STD signals of binding ligands.

2.9 Arrays

2.9.1 Amino Acid Arrays.

Amino acid arrays were performed as described by Day et al., 2009 (Day et al., 2009). Amino acids were solubilised in water and spotted on to epoxy functionalised glass slides (SuperEpoxy, ArrayIt) using a Piezorray (Perkin-Elmer) non-contact array printer in spots of 0.3-0.6 nL at a concentration of $10 \mathrm{mg} / \mathrm{mL}$. Appendix A lists the amino acids tested. The slides were neutralised as per manufacturer's instructions and stored at $4{ }^{\circ} \mathrm{C}$ under desiccating conditions. The purified His-Cj1344c fusion protein in PBS was pre-complexed with primary, secondary and tertiary antibodies labelled with Alexa-488 as described previously (Blixt et al., 2004). The antibodies used were Penta-His Alexa-488 mouse IgG (Qiagen) for the primary and the Signal amplification kit for mouse antibodies (Molecular Probes) for the secondary and tertiary. The labelled His-Cj1344c fusion protein was diluted to $25 \mu \mathrm{~g} / \mathrm{mL}$ in PBS and Tween- 20 was added to a final concentration of 0.025% (v/v). Each subarray was contained within a $65 \mu \mathrm{~L}$ adhesive frame (Abgene) to allow 3 simultaneous hybridisations. Hybridisation of the labelled His-Cj1344c fusion protein was performed at $37{ }^{\circ} \mathrm{C}$ for 15 minutes in the dark. The wash buffers, PBS with Tween-20 0.05\% (v/v) (buffer 1) and PBS (buffer 2), were filtered (22 $\mu \mathrm{m}$) and prewarmed before use. The array was placed in a 50 mL tube and washed in 45 mL of buffer 1 for 15 minutes and then washed in buffer 2 for 1 minute prior to being
dipped into filtered $(22 \mu \mathrm{~m})$ and pre-warmed water 3 times. The array was dried by centrifugation at $200 g$ for 2 minutes in a 50 mL conical centrifuge tube. In the event of high background signals, an additional wash of 15 minutes in buffer 1 was performed. The array was scanned by Proscan array scanner and the results analysed using Proscan software (Perkin-Elmer).

2.9.2 Glycan array.

Glycan arrays were performed as previously described by Day et al., 2008, and Appendix B lists the compounds tested. Test compounds printed on the array comprised of various carbohydrates and other glycoproteins.

2.10 Purification of native protein using Dynabeads ${ }^{\circledR}$ M-280 Sheep anti-Rabbit IgG

Attempts to isolate the native Cj 1344 c protein using the combination of Dynabeads ${ }^{\circledR}$ M-280 Sheep anti-Rabbit IgG system and polyclonal antibody raised in a rabbit were performed using the culture supernatant of C. jejuni and the cytoplasmic fraction of the cell. The procedure was performed as per manufacturer's instructions without modifications.

2.11 Glycoprotease assays

An aliquot of MUC2 and bovine lactoferrin were incubated with various amounts of His-Cj1344c in 50 mM HEPES buffer pH 7.4 , total volume $50 \mu \mathrm{~L}$, for 16 hours at $37{ }^{\circ} \mathrm{C}$. The substrate and products were separated by 1% agarose-SDS gel and 12% SDS-PAGE gel followed by Coomassie Blue staining.

2.12 In vivo methods

2.12.1 Animals

Male 129X1/SvJ mice aged between 6-8 weeks were purchased from Animal Resource Centre, Western Australia and were housed under clean conventional conditions in groups of 8 or 4 . Food and water were provided ad libitum. Once the mice were inoculated with C. jejuni, they were kept in isolation. During this time faecal samples were routinely cultured as described below to be certain the animals were free of campylobacter. The experiments were approved and conducted according to the principles set forth by the Griffith University Animal Ethics Committee (Approval number:BDD/03/08/AEC).

2.12.2 Mice vaccination

The animals were inoculated intra-peritoneally, subcutaneously and intranasally (3 groups of 8 animals), with $5 \mu \mathrm{~g}$ of purified His-Cj1344c previously mixed with an appropriate adjuvant. In each experiment a control group, kept in isolation, was included and was vaccinated (intra-peritoneally, subcutaneously and intranasally) with adjuvant alone. A total of 3 vaccinations for each administration (intraperitoneally, subcutaneously and intra-nasally) were delivered at 2-weeks interval. In case of intra-peritoneal and subcutaneous vaccination Freund's complete adjuvant (Sigma-Aldrich) was used for the first vaccination. Freund's incomplete adjuvant (Sigma-Aldrich) was used for the subsequent vaccinations. Cholera Toxin Subunit B ($5 \mu \mathrm{~g} / \mathrm{injection}$) (Sigma-Aldrich) was used as an adjuvant for intranasal vaccination.

2.12.3 Blood sample collection and processing

$100 \mu \mathrm{~L}$ of blood was collected from mice by the submandibular bleed method using the Goldenrod animal lancet (MEDIpoint International) 2 weeks after the second and third vaccination and the serum was separated and stored at $-20^{\circ} \mathrm{C}$ until assayed for immunoglobulin A (IgA), IgG and IgM.

2.12.4 Faecal sample collection and processing.

Faecal excretion of C. jejuni was routinely monitored during vaccination period on a weekly basis and daily for 7 days after bacterial challenge by culturing $100 \mu \mathrm{~L}$ of faecal homogenates (2 faecal pellets dissolved in 1 mL of Brucella broth) onto a campylobacter-selective agar.

2.12.5 Determination of immune responses by ELISA.

Serum $\operatorname{Ig} A$, IgG and IgM antibody responses to His-Cj1344c were quantitated using an enzyme immunosorbent assay (ELISA). The wells of the ELISA plates were coated with purified His-Cj1344c ($1 \mu \mathrm{~g} / \mathrm{mL}, 200 \mu \mathrm{~L} /$ well $)$ in PBS at $4{ }^{\circ} \mathrm{C}$ overnight. Plates were washed three times with wash solution consisting of PBS with 0.05% Tween 20, and blocked with $200 \mu \mathrm{~L} /$ well of blocking buffer (3% BSA in Trisbuffered saline, 0.05% Tween 20 (TBS-T)) for two hours at room temperature. Plates were washed three times with wash solution, and $200 \mu \mathrm{~L}$ of serum samples diluted in PBS (with 0.05% Tween 20) was added to the wells. Dilution fractions ranged from $1: 20$ to $1: 65,376$. Sera collected prior to the vaccination served as a negative control. The plates were incubated at room temperature for two hours, followed by three washes. For the mouse studies peroxidase-conjugated goat anti-mouse IgM (μ chain;
$0.2 \mu \mathrm{~g} / \mathrm{mL}$), IgG (γ chain; $0.125 \mu \mathrm{~g} / \mathrm{mL}$), or IgA (α chain; $0.25 \mu \mathrm{~g} / \mathrm{mL}$) were used as detecting antibodies (Sigma-Aldrich) during a 2 hour incubation at $37^{\circ} \mathrm{C}$. Bound conjugate was detected using the TMB Peroxidase EIA Substrate Kit (BioRad). The $\operatorname{IgM}, \operatorname{IgG}$, and IgA endpoint titres for individual mice were determined (reciprocal of the highest dilution showing a net optical density at 405 nm of 0.10).

2.12.6 Preparation of C. jejuni inoculums and mice inoculation.

C. jejuni cells were harvested off Columbia agar plates in 1 mL of Brucella broth and the concentration was adjusted to $3.3 \times 10^{9} \mathrm{CFU} / \mathrm{mL}$ using spectrophotometry and viable count. 129X1/SvJ mice were orally inoculated with $30 \mu \mathrm{~L}$ Brucella broth containing 1×10^{8} cfu bacterial cells and were monitored for signs of sickness for 7 days. Bacterial faecal load was monitored on a daily basis as explained above. Putative campylobacter colonies were confirmed by morphology. Mice were sacrificed 7 days post inoculation by cervical dislocation and bacterial load was determined in systemic organs and small and large intestines as outlined below.

2.12.7 Homogenisation of organs

After each organ was aseptically removed from each animal, it was weighed and placed in a 5 mL tube containing 2 mL of sterile Brucella broth. Each sample was homogenised until a homogenous sample was achieved. A sample of the homogenate was serially diluted and plated in triplicate on campylobacter-selective agar. The bacterial load per gram of organ was enumerated by viable count.

2.13 Statistical analysis

The mean of the groups for bacteria load in each organ ($\mathrm{n} \geq 5$) were individually compared to that of control groups at the same time point. Significance was determined by un-paired t -tests with an alpha of 0.05 .

CHAPTER 3

Expression, purification and characterisation of the putative O-sialoglycoprotease from Campylobacter jejuni

3.1 Introduction

The proteolytic enzyme glycoprotease (gcp) was first discovered in the culture supernatant of Mannheimia (Pasteurella) haemolytica A1 associated with bovine pneumonic pasteurellosis (Otulakowski et al., 1983). The glycoprotease of M. haemolytica is an enzyme highly specific for O-linked sialoterminal oligosaccharides of glycoproteins such as the sialylated membrane glycoprotein, glycophorin A of human red blood cells (Abdullah et al., 1992, Mellors \& Jiang, 1998). The enzyme has a marked specificity for human CD34 (an antigen expressed on panhematopoietic stem cells in the bone marrow), human CD43 (a sialomucin that has been implicated in immune and human cell function and cell-signalling phenomena) and human CD44 (Sutherland et al., 1992). In addition, Hu et al. have demonstrated that the enzyme degrades epitectin and other mucin-type sialoglycoproteins (Hu et al., 1994).

A number of M. haemolytica glycoprotease-susceptible substrates become resistant to cleavage by the glycoprotease after treatment with sialidase from Clostridium perfirogens or Vibrio cholerae (Sutherland et al., 1992). Thus, the proteolysis seems to be dependent on the presence of terminal sialic acid residues. Abolition or reduction of glycoprotease activity by desialylation has been shown for glycophorin A (Abdullah et al., 1992), CD34 and CD44 (Sutherland et al., 1992). The enzyme was also inhibited by zinc ions (Cladman et al., 1996) even though the predicted amino acid sequence does not contain metal binding sites similar to any of the 12 known classes of metalloproteases (Hooper, 1994).

The Blastp search of C. jejuni genome strain NCTC11168 has revealed a gene with similarity to the M. haemolytica O-sialoglycoprotease gene (Altschul et al., 1997). This chapter describes the isolation of the putative glycoprotease of C. jejuni

NCTC11168-O (Cj1344c). Amino acid and carbohydrate arrays were utilised to investigate the ligand-binding specificities of Cj1344c. Characterisation of the Cj1344c isogenic mutant is described in Chapter 4.

3.2 Results

3.2.1 In silico analysis of $\mathbf{C j} 1344 \mathrm{c}$

Comparative bioinformatics analyses of the of C. jejuni NCTC11168-GS glycoprotease predicted amino acid sequence (Cj 1344 c) were performed using the Blastp program and conserved domain search service as described by Marchler and Bryant (Marchler-Bauer \& Bryant, 2004). Comparative amino acid analysis of the Cj1344c indicated that it was similar (36\% identity / 55\% similarity) to Gcp of M. haemolytica A1, an enzyme highly specific for O-linked sialoterminal oligosaccharides of glycoproteins (Otulakowski et al., 1983). A Cj1344c homologue was present in all to date sequenced strains of C. jejuni with higher than 97% amino acid identity and an orthologue was present in other Campylobacter species with greater than 70\% amino acid similarity (Table 3.1).

Table 3.1 Comparison of C. jejuni NCTC11168 Cj1344c to the putative Gcp proteins from Campylobacter strains.

Bacterial species	Strain	Gene annotation	Amino acid \% Identity / \% Similarity
C. jejuni subspecies jejuni	$\begin{array}{\|l\|} \hline \text { RM1221 } \\ \text { CF93-6 } \\ \text { CG8421 } \\ 84-25 \end{array}$	CJE1533 CJJCF936_1435 Cj8421_1389 CJJ8425_1424	$\begin{array}{\|l\|} \hline 100 / 100 \\ 100 / 100 \\ 99 / 100 \\ 97 / 99 \end{array}$
C. jejuni subspecies doylei	269.97	JJD26997_0366	97/99
C. coli	RM2228	CCO1450	84/92
C. lari	RM2100	CLA0148	72/85
C. upsaliensis	RM3195	CUP0251	71/83
C. concisus	13826	CCC13826_0417	60/77
C. rectus	RM3267	CAMRE0001_0426	73/58
C. curvus	525.92	CCV52592_0591	59/72
C. hominis	ATCC	CHAB381_0120	59/77
C. fetus subspecies fetus	82-40	CFF8240_0215	58/76

Source: CampyDB

The glycoprotease was also present in the genomes of Campylobacter related species, such as Helicobacter and Wollinella. In Helicobacter spp, putative gcp homologues showed approximately 70% amino acid similarity to the putative Gcp protein in C. jejuni. Wollinella spp homologues have approximately 65% similarity to C. jejuni Gcp. Comparative analysis also identified presence of orthologues in different bacterial species such as Bacillus anthracis, Staphylococcus aureus and Haemophilus influenzae, with more than 49% amino acid similarity to the predicted Cj1344c amino acid sequence. Figure 3.1 shows grouping of different bacterial species according to the similarities observed in the predicted amino acid sequence of gcp homologues. The Cj1344c amino acid sequence analysis did not identify specific conserved domains within the amino acid sequence.

Figure 3.1 Bacterial species grouping according to the gcp amino acid sequence similarity

3.2.2 Amplification of the Cj1344c gene

In order to express and purify the putative C. jejuni glycoprotease, the gene encoding the protein was amplified by PCR for incorporation into a cloning plasmid intermediate, and subsequently into an expression vector. For PCR amplification of the Cj1344c coding region, the forward and reverse primers were designed based on the sequence of C. jejuni NCTC11168-GS (Parkhill et al., 2000a) to include the translation initiation codon and the stop codon of the gene (Materials and Methods; Table 2.1). In addition, restriction endonuclease sites at the 5^{\prime} (NdeI) and 3' (XhoI) termini were included to aid in subsequent DNA manipulation. The generated PCR product was visualised by gel electrophoresis as a DNA fragment of 1027 bp (Figure 3.2). The amplified DNA product was excised from the gel and DNA purified for subsequent cloning.

[^0]
3.2.3 Cloning of Cj1344c into pGEM-T Easy

In order to generate a cloning intermediate for subsequent manipulation, a PCR generated DNA fragment encoding Cj1344c was ligated into the cloning vector pGEM-T Easy within the lacZ gene, and transformed into E. coli DH5a using standard cloning protocols (Materials and Methods; Section 2.6). Colonies containing recombinant plasmids were selected by growing on LB agar supplemented with ampicillin and IPTG/X-gal utilising disruption of the lacZ gene and allowing blue/white colony selection. The integrity of recombinant plasmid was verified by PCR amplification using Cj1344c specific primers (Materials and Methods; Table 2.4), which confirmed the presence of the expected 1027 bp fragment in the recombinant plasmids isolated from the 5 out of 8 colonies screened (Figure 3.3).

Figure 3.3 PCR amplifications of Cj1344c gene from putative recombinant plasmids

Legend: Lane 1 - 1 Kbp ladder; Lane $\mathbf{2 \rightarrow 9}$ - amplification of Cjl344c from plasmid templates isolated from eight colonies screened for the presence of the recombinant plasmid

To further confirm the integrity of the recombinant plasmids from three of these colonies (Lane 5, 6 and 7; Figure 3.3), plasmid DNA was isolated from bacterial cells as described in Materials and Methods; Section 2.5.2, and restricted with the enzymes $N d e \mathrm{I}$ and XhoI , which released the insert from the pGEM-T Easy backbone (Figure 3.4). Sequencing and sequence analysis of the recombinant plasmid DNA using the set of primers positioned in the multiple cloning site of pGEM-T Easy vector (T7 and SP6 (Table 2.4)) confirmed that the Cj1344c insert had the correct nucleotide sequence without nucleotide substitution or deletion. This recombinant plasmid was named pGU0501 (nucleotide sequence and map are shown in Appendix C).

Figure 3.4 Gel electrophoresis of recombinant plasmid pGU0501 NdeI/XhoI restriction enzyme cleavage

Legend: Lane 1 - pGU0513 restriction enzyme cleavage, showing 3.0Kb pGEM-T Easy backbone and 1.0 Kb gcp insert; Lane 2 - 1 Kbp ladder

3.2.4 Cloning of Cj1344c into the expression vector pET-19b

The pET-19b expression vector was used to enable expression of a fusion protein consisting of a recombinant Cj 1344 c and an N -terminal histidine tag in an E. coli bacterial system.

In order to generate such a recombinant plasmid, the pGU0501 cloning intermediate and pET-19b expression vector were cleaved with NdeI and XhoI restriction enzymes, which released the Cj1344c from pGU0501 and linearised pET-19b vector. The excised Cj1344c DNA fragment and linearised pET-19b were ligated and recombinant plasmid was transformed into E. coli host cells.

The resultant E. coli colonies were initially screened by PCR, using Cj1344c specific primers (Materials and Methods; Table 2.4) and four colonies carrying recombinant plasmids were identified (Data not shown). Plasmids were isolated from the four colonies containing the 1027 bp insert and were cleaved by $S w a \mathrm{I}$ restriction enzyme (restriction site present within Cj1344c gene). The product of the restriction enzyme digest was the linearised recombinant plasmid DNA of 6.7 Kb as shown in Figure 3.5. Subsequent sequencing of selected plasmids was performed to verify the integrity of the new construct; and DNA sequence analysis indicated that the His-tag sequence was cloned in frame with the open reading frame sequence of $C j 1344 c$. The plasmid was named pGU0513 and was used to express the His-Cj1344c fusion polypeptide (nucleotide sequence map in Appendix D).

Figure 3.5 Gel electrophoresis of recombinant plasmid pGU0513 restriction enzyme cleavage with SwaI

Legend: Lane 1 - 1 Kbp ladder; Lane 2 - undigested recombinant plasmid; Lane 3 - pGU0513 restriction enzyme cleavage, linearised plasmid DNA at 6.7 Kb

3.2.5 Small scale protein expression and confirmation

To enable expression of the fusion His-Cj1344c protein, the recombinant plasmid pGU0513 was transformed into the E. coli strain BL21(DE3) as described in the Materials and Methods; Section 2.6. Culture medium containing E. coli BL21(DE3)pGU0513 was supplemented with 1 mM IPTG, which enabled overexpression of Cj 1344 c as a fusion protein with an N -terminal polyhistidine tag (His-Cj1344c) which was detected as a 40 KDa protein on a Coomassie stained SDS-PAGE gel (Figure 3.6).

Figure 3.6 Small scale protein expression of His-Cj1344c fusion protein.

Legend: Lane 1 - protein marker; Lane 2 - BL21(DE3) pGU0513 induced showing over expressed protein at 38 KDa ; Lane 3 - BL21(DE3) pGU0513 uninduced; Lane 4 - BL21(DE3) pET-19b induced; Lane 5 - BL21(DE3) pET-19b uninduced; Lane 6 - BL21(DE3) induced; Lane 7 BL21(DE3) uninduced

Western blot analysis using an anti-His antibody was used to confirm expression of the His-Cj1344c. This test confirmed that the 40 KDa protein in Coomassie stained SDS-PAGE contained a polyhistidine tag (Data not shown). To verify the localisation of the His-Cj1344c protein in the cell, different cell fractions were prepared as described in Materials and Methods; section 2.7. Western blot analysis using anti-His tag antibodies showed that most of the His-Cj1344c protein was present in the soluble cytoplasmic fraction. In addition, the His-Cj1344c protein was also present in the insoluble cytoplasmic fraction and the culture media (Figure 3.7).

Figure 3.7 Western blot analysis using an anti-His antibody of the different cell fractions

Legend: Lane 1 - soluble cytoplasmic fraction; Lane 2 - pelleted insoluble cytoplasmic fraction; Lane 3 - culture supernatant; Lane 4 - TCA precipitated sample of supernatant; Lane 5 - Precision Plus Protein Marker

3.2.6 Optimisation of the recombinant protein purification protocols

AKTA FPLC in conjunction with His-trap column, His-select Nickel affinity resin and Talon Cobalt affinity resin were the three methods trialled for His-Cj1344c purification (Materials and Methods; section 2.7). The His-select Nickel affinity resin produced the best results, as the yield and purity of the recombinant protein was the highest of the three methods tested (data not shown). Modification of the existing manufacturer's protocols with the addition of $20 \mathrm{mM} \beta$-mercaptoethanol, 0.5% Tween 20 and 50 mM imidazole in buffers, reduced non-specific interactions, yielding eluted recombinant proteins with $80-90 \%$ purity (Figure 3.8). The concentration of the protein was estimated using the automated spectrophotometry
software Victor ${ }^{3}$, and comparing the protein sample against known protein standards, determined the purified His-Cj1344c protein had a concentration of $0.5 \mathrm{mg} / \mathrm{mL}$.

3.2.7 Protein precipitation and solubility.

Over-expression and purification of the His-Cj1344c protein using the pET-19b system and His-select Nickel affinity resin produced a high concentration of the target protein $(0.5 \mathrm{mg} / \mathrm{mL})$. However, the protein precipitated shortly after purification. In order to maintain the protein in a soluble form that was required for further analysis and testing, different parameters were tested to maintain protein in solution. Induction time ($3 \mathrm{~h}-8 \mathrm{~h}$), induction temperature ($37{ }^{\circ} \mathrm{C}$ versus $25^{\circ} \mathrm{C}$), IPTG concentrations (gradient concentrations from 0.2 mM to 5 mM) did not change the
solubility of the expressing protein and all resulted in protein precipitation shortly after elution off the resin. Changing the pH of the elution buffer (from pH 8.0 to pH 7.0) resulted in a soluble protein that stayed in solution for more than 2 weeks at $4^{\circ} \mathrm{C}$.

3.2.8 Identification of the substrate specificity by amino acid, glycan and glycoprotein array.

The substrate specificity of His-Cj1344c was investigated by testing substrateprotein interactions using amino acid, glycan and selected glycoprotein arrays (Materials and Methods; section 2.9). In addition, a sample of the whole cell C. jejuni lysate was also added on an array slide to test possible interaction of Cj1344c with C. jejuni cell proteins. The purified His-Cj1344c fusion protein in PBS was precomplexed with primary, secondary and tertiary antibodies as described by Blixt et al., 2004. The labelled protein complex was hybridised against a printed amino acid, glycan and glycoprotein array (Appendix A and B list of amino acids, glycans and glycoproteins used in array).

Amino acid array hybridisation with His-Cj1344c identified an interaction between methionine, arginine, lysine and the His-tagged Cj 1344 c protein with binding of greater than 2000 fluorescent units observed (Figure 3.9). The HisCj1344c antibody complex showed no significant binding to any of the other amino acids present on the array.

Figure 3.9 Comparative Fluorescence Results of Amino Acid Array Hybridisation.

No significant binding of His-Cj1344c to any of the tested glycan structures was detected. However, the glycoprotein array identified a significant interaction between His-Cj1344c and bovine lactoferrin (Figure 3.10). Binding of His-Cj1344c to recombinant lactoferrin was also recorded, but it was lower than binding to native bovine lactoferrin. In addition, significant binding was identified to C. jejuni whole cell lysate and MUC2 (Figure 3.10).

Figure 3.10 Comparative Fluorescence Results of Glycoprotein Array hybridisation

3.2.9 Attempt to confirm the ligand-binding specificity by Saturation transfer difference NMR.

STD-NMR spectroscopy was used to further verify the protein-ligand interactions observed on amino acid arrays. ${ }^{1} \mathrm{H}$ NMR spectra for each of the amino acids under investigation were acquired and used as reference spectra; a ${ }^{1} \mathrm{H}$ NMR spectrum of the His-Cj1344c fusion protein was also acquired. One-dimensional STD spectra were acquired with ligand-only. These spectra served as controls to ensure that any signals observed in the ligand:His-Cj1344c STD spectrum resulted solely due to ligand binding to His-Cj1344c. STD spectra of L-methionine, L-lysine, and L-arginine in the presence of His-Cj1344c gave spectra with no signals attributable to the amino acids being examined, which suggest that these amino acids either did not bind His-Cj1344c or that the binding to these substrates is too high affinity and therefore not detectable by this method (Data not shown).

STD-NMR spectroscopy was not performed for bovine lactoferrin, MUC2 and whole cell C. jejuni lysates because the size of these proteins was a limiting factor in the procedure. Enzymatic protein cleavage studies of bovine lactoferrin and human MUC2 were used instead to determine the activity of the enzyme.

3.2.10 Assessment of the enzymatic activity of His-Cj1344c fusion protein

Glycoprotein array studies identified bovine lactoferrin and MUC2 as potential substrates for His-Cj1344c. To determine the activity of the enzyme, these substrates were used in enzymatic digests by His-Cj1344c. Enzyme digests were performed as detailed in the Materials and Methods section 2.11. After enzymatic digest, MUC2 and lactoferrin were analysed by Coomassie Blue staining of agarose SDS gel and SDS-PAGE gels respectively. The results of these experiments showed no significant enzymatic activity, however a change in the MUC2 protein banding pattern before and after digest could be noted on the agarose gel (Figure 3.11). There was no notable effect of His-Cj1344c on bovine lactoferrin as assayed by SDS-PAGE analysis (data not shown).

Figure 3.11 His-Cj1344c digests of human MUC2

Legend: Lane 1 - MUC2; Lane 2 - Lane 4 enzymatic digest of MUC2 with an increase of MUC2:His-Cj1344c ratio. Solid arrows point to the changes in the banding pattern

3.3 Discussion

The predicted amino acid sequence of the putative C. jejuni glycoprotease (Cj1344c) shows 55% similarity to M. haemolytica gcp which shows marked specificity for O-glycosylated sialoglycoproteins (Abdullah et al., 1992, Mellors \& Jiang, 1998). In a study by Abdullah et al. digestion of glycophorin A identified the amino acid recognition sequence of M. haemolytica gcp. The major cleavage site of glycophorin A occurs at the Arg-31-Asp-32 peptide bond. Other cleavage site include Glu-60-Arg-61, Arg-31-Asp-32, Ala-65-His-66 and Tyr-34-Ala-35 (Abdullah et al., 1992). To determine the specificity of the recombinant fusion protein, His-Cj1344c was used in amino acid array studies to identify amino acids recognised by this enzyme. The results of these experiments identified an interaction of recombinant Cj 1344 c with methionine, lysine and arginine. Recognition of these amino acids by His-Cj1344c may indicate amino acids within a polypeptide sequence recognised by C. jejuni glycoprotease and potential cleavage sites of this enzyme, and its difference to M. haemolytica gcp.

STD-NMR method was employed in an attempt to confirm the interactions between the amino acids and His-Cj1344c observed as binding partners in the amino acid array. The ligand binding studies performed with methionine, lysine and arginine failed to confirm the interactions observed with the amino acid array technology. The absence of signal in these studies could be attributed to the lack of interaction between these ligands and His-Cj1344c. However, the strong signal observed in amino acid arrays (greater than 2,000 fluorescent units and significantly higher than binding to PBS which served as a negative control) suggests that the reason for the absence of the STD-NMR signal was probably a strong binding
interaction between these ligands and His-Cj1344c, which cannot be detected by the STD-NMR and is one of the limiting factors of this method (Haselhorst et al., 2009).

The glycoprotein array analysis identified bovine lactoferrin as the potential ligand for Cj 1344 c . Binding of Cj 1344 c to lactoferrin, an iron binding glycoprotein, may suggest a potential role in inactivation of this molecule; and thus provides a protective mechanism for bacteria against this component of the host innate system. Interaction of His-Cj1344c was also observed with recombinant lactoferrin, but the levels of interaction were significantly lower than interaction of His-Cj1344c to the native bovine lactoferrin. The difference in the binding ability of His-Cj1344c to bovine lactoferrin compared to recombinant lactoferrin may be due to the lack of posttranslational modification of the recombinant lactoferrin or absence of sialic acid residues (Lönnerdal \& Iyer, 1995). The increased binding to native bovine lactoferrin compared to recombinant lactoferrin, expressed in E. coli, indicates a possible requirement of the Cj 1344 c for O-linked glycosylation and presence of sialic acid, both of which are absent in the recombinant lactoferrin structure. Studies conducted with M. haemolytica gcp show that the removal of sialic acid from glycophorin A significantly reduces the cleavage of the glycoprotein by this enzyme (Abdullah et al., 1992).

In addition to bovine lactoferrin, glycoprotein array experiments also identified an interaction between His-Cj1344c and human MUC2. MUC2 is the main gel-forming mucin of the small and large intestines (Toribara et al., 1991) and is heavily glycosylated with O-linked oligosaccharides. In addition, mucin oligosaccharides are extensively decorated by sialic acid residues (Holmen Larsson et al., 2009). The binding of His-Cj1344c to purified MUC2 may indicate a role for this enzyme in the degradation of intestinal tract MUC2. C. jejuni gene expression
studies conducted by Tu and associates suggest an involvement of Cj 1344 c in MUC2 degradation as the levels of expression of the $C j 1344 c$ gene were upregulated when the bacteria were grown in the presence of MUC2 (Tu et al., 2008), further strengthening the hypothesis that Cj 1344 c may be important in bacterial pathogenesis.

Confirmation of the His-Cj1344c interaction with lactoferrin and MUC2 was attempted by digesting these substrates with His-Cj1344c. Enzymatic digestion of these substrates could not confirm the biological activity of the enzyme as the SDS-PAGE of the substrates after digestion did not show distinct digestion patterns, suggesting that Cj 1344 c expressed in E. coli may be biologically inactive. It may be speculated that the enzyme required metal ions for activation, as sequence analysis identified a putative Zn^{2+} binding motif within the predicted amino acid sequence, similar to a predicted Zn^{2+} binding motif identified within M. haemolytica gcp amino acid sequence (Abdullah et al., 1991). The M. haemolytica A1 Osialoglycoprotein endopeptidase was also shown to be inactive when expressed in E. coli (Watt et al., 1997b). Refolding of the recombinant rGcp by mammalian protein disulfide isomerise or by E. coli chaperones can restore the biological activity of the enzyme (Watt et al., 1997a). It has been postulated by Watt et al. that the presence of glycoprotease inhibitors in the E. coli cytoplasm may contribute to lack the of biological activity of the gcp enzyme, as these inhibitors may inactivate the enzyme during the purification process (Watt et al., 1997a).

Binding of His-Cj1344c to C. jejuni whole cell lysate samples suggests multiple roles of this enzyme. Extracellularly, the enzyme is speculated to be involved in pathogenesis processes such as adherence and mucin degradation, as well as bacterial protection against the host immune system through its binding to
lactoferrin. Intracellularly, the enzyme may be involved in housekeeping cell processes. Conserved amino acid sequences of $98-100 \%$ identity encoding the putative glycoprotease were identified in all fully and partially sequenced C. jejuni strains, showing that the glycoprotease is likely to be conserved throughout C. jejuni. Disruption of the glycoprotease gene results in the inability to recover isogenic mutants in M. haemolytica (Mellors, personal communication) and C. jejuni (Chapter 4, this study). Downregulation of the gene in S. aureus causes growth defects (Zheng et al., 2005) and eliminates autolysis, (Zheng et al., 2007) while in E. coli the enzyme is involved in modulation of the macromolecular operon (Nesin et al., 1987).

3.3.1 Conclusion

This chapter describes the expression, purification and enzymatic assessment of C. jejuni putative glycoprotease (Cj1344c). Utilising a pET-19b system enabled the overexpression of the protein in E. coli host and its subsequent purification as a fusion protein with an N -terminal polyhistidine tag. Purified protein was used for initial screening of protein binding to amino acids and selected glycans and glycoproteins, utilising modified amino acid and glycan array analysis (Day et al., 2009). Analysis of the purified His-Cj1344c binding capability determined that C. jejuni Cj 1344 c could bind to methionine, lysine and arginine, suggesting that these amino acids are present in the sequences within glycoproteins that are recognised by Cj1344c. In addition, the specificity of Cj1344c to MUC2 and lactoferrin may suggest a putative role for Cj 1344 c in the pathogenesis of C. jejuni during the initial stages of adherence and invasion of epithelial cells, as well as protection of the bacterial cells against the host innate immune system.

CHAPTER 4

Construction and characterisation of the Cj1344c isogenic mutant of Campylobacter jejuni

4.1 Introduction

Genes encoding glycoprotease enzymes have been identified in many Gram-positive and Gram-negative pathogens, including Bacillus anthracis, Streptococcus pyogens, Manheimia haemolytica A1 (Otulakowski et al., 1983) and Escherichia coli (Nesin et al., 1987). Glycoproteases have a variety of functions. The first characterised glycoprotease was that of M. haemolytica A1, an enzyme highly specific for O-glycosylated glycoproteins (Abdullah et al., 1992). The glycoprotease homologue in E. coli may be involved in the modulation of the rpsU-dnaG-rpoD macromolecular-synthesis operon (Nesin et al., 1987). In the Cyanobacterium Synechocystis sp., mutation of the glycoprotease gene reduces salt tolerance, alters pigmentation and changes cyanophycin accumulation (Zuther et al., 1998, Karandashova et al., 2002). In Staphylococcus aureus, it is essential for bacterial survival, however, the function and the reasons it is required for growth are still unclear (Zheng et al., 2005). In addition, the enzyme was confirmed to be essential for the survival of Salmonella typhimurium (Nichols et al., 2006) and M. haemolytica (Mellors, personal communication) since any mutation of the gene was lethal to the cells.

In order to characterise the C. jejuni putative glycoprotease it is necessary to generate an isogenic mutant strain for comparative analysis. Creation of isogenic mutants is an extensively used method to determine potential gene function through analysis of the effect of gene mutation on bacteria. Many C. jejuni virulence factors such as iron acquisition (Palyada et al., 2004), lipooligosaccharides (Fry et al., 1998) and motility and chemotaxis (Nachamkin et al., 1993a) as well as chicken intestinal colonisation (Hendrixson \& DiRita, 2004) have been investigated using isogenic
mutants, deleting the genes of interest. Kanamycin (aph(3^{\prime})-III) and Chloramphenicol (cat) resistance genes are often used for the creation of isogenic constructs in C. jejuni.

Many C. jejuni genes are organised into long tandem clusters, but genes within the cluster are usually not functionally related and often have individual control sequences (Parkhill et al., 2000a). The lack of well defined promoter sequence in C. jejuni genome is an acknowledged problem in the genetic analysis of Campylobacter spp (Wosten et al., 1998). The insertion of an antibiotic resistance gene within the open reading frame (ORF) of the $C j 1344 c$ gene may cause a polar mutation effect by inactivating genes downstream from the insertion point. To negate this effect, different antibiotic resistance cassette constructs needed to be generated. Kanamycin resistance cassettes expressed in both E. coli and Campylobacter spp (Wosten, M., personal communication) and chloramphenicol resistance cassettes (Taylor \& Wang, 1990), have previously been used in site specific mutations in campylobacter genes and in the creation of suicide constructs in E. coli (Yao et al., 1993). This chapter focuses on generation of an isogenic mutant of Cj1344c aimed at the initial characterisation of this gene and its function.

4.2 Results

4.2.1 In silico analysis of the Cj1344c gene locus

Analysis of Cj1344c within the published sequence C. jejuni NCTC11168 (Parkhill et al., 2000a) revealed that the gene is flanked by genes of an unknown function (Figure 4.1).

Figure 4.1 Schematic diagram of the C. jejuni NCTC11168 Cj1344c gene cluster

Further analysis of the genetic organisation of the Cj1344c gene conducted using consensus sequences for control elements according to Wosten and colleagues (Wosten et al., 1998) identified a putative - 35 box (117bp upstream from the start codon of Cj1344c), a C. jejuni consensus -16 box (ATTTGGAT), -10 box (TAAATAC) and ribosomal binding site (GTGGA); beginning 73bp, 64bp and 11bp upstream from the start codon of Cj1344c, and within the ORF of Cj1345c. In addition, the putative promoter sequence elements of $C j 1343 c$ were identified within the ORF of Cj1344c (a putative -35 box (60bp upstream from the start codon of Cj1343c), a C. jejuni consensus -16 box (TTTAAGCC), -10 box (TAAAAAT) and ribosomal binding site (AAGGA); beginning 37bp, 28bp and 10bp upstream from
the start codon of Cj1343c (The map of the Cj1344c/Cj1343c promoter sequence elements is provided in Appendix E). Immediately following the transcriptional termination signal of the $C j 1344 c$ gene, there is the start codon of the $C j 1343 c$ gene. However, the overlapping start and stop codons of the Cj1344c and Cj1343c genes and a weak ribosomal binding sequence in front of the Cj1344c are strong indications that genes are located in an operon. This could present problems in the mutagenesis of Cjl344c, as any insertional inactivation of Cj1344c gene could potentially affect the expression of downstream genes.

4.2.2 Strategy for positioning mutation sites to circumvent potential polar effects resulting from insertion of an antibiotic resistance cassette within ORF of Cj1344c

Plasmid constructs intended for Cj1344c mutagenesis were made by insertion of an antibiotic resistance gene within the open reading frame of Cj1344c leaving 500bp of Cj1344c DNA on each side of antibiotic resistance gene insertion site to maximise the chances for a successful cross-over event and incorporation of foreign DNA into the C. jejuni genome (Wassenaar et al., 1993). Special consideration was given to the fact that the gene is positioned in an operon-like organisation with other genes of unknown function. The insertion of the $C j 1344 c$ gene may potentially create polar mutations by inactivating downstream genes. To circumvent the possibility of polar mutation, four different antibiotic resistance gene cassettes, two of which had to be constructed, were used to generate of suicide plasmids for $C j 1344 c$ mutagenesis (Figure 4.2). The transcriptional termination signal was removed from all cassettes to prevent disassociation of ribosomes during the transcription process.

Figure 4.2 Schematic presentation of the different antibiotic resistance gene constructs used for creation of the suicide plasmids for Cj1344c mutagenesis

Legend:
(1) promoter-less cat gene (Karin et al., 2003)
(2) promoter-less $\operatorname{aph}\left(3^{\prime}\right)$-III gene (This study)
(3) $\operatorname{aph}\left(3^{\prime}\right)-$ III gene including $\operatorname{aph}\left(3^{\prime}\right)$-III gene promoter
(Alfredson \& Korolik, 2003)
(4) $\operatorname{aph}\left(3^{\prime}\right)$-III gene including $\operatorname{aph}\left(3^{\prime}\right)$-III promoter and oxa-61
promoter downstream (This study)

4.2.3 Construction of the suicide plasmid backbone for insertion of an antibiotic resistance cassette

In order to create a suicide plasmid for mutagenesis; containing the interrupted Cj1344c gene by one of the antibiotic resistance cassettes, a previously created cloning intermediate pGU0501 (Chapter 3; Section 3.3.3) was used as a template to create plasmid backbone for insertion of the antibiotic cassette. A unique BglII restriction enzyme site within the Cj1344c gene was created by the inverse PCR method by incorporating restriction endonuclease sites at the 5^{\prime} and 3^{\prime} termini of the primer sequences. The primers used in this study (Materials and Methods; Table 2.4) were designed based on the genome sequence of C. jejuni NCTC 11168 and were positioned within the open reading frame of the $C j 1344 c$ gene creating a small deletion (40bp) within the gene (Figure 4.3). BglII restriction endonuclease sites sequence and 40 bp deletion were carefully positioned so that the subsequent insertion of an antibiotic resistance cassette at the newly created BglII site within Cj1344c would be in frame with the start and stop codons of Cj1344c.

Figure 4.3 Schematic diagram of inverse PCR primers position within pGU0501 plasmid

The inverse PCR product was amplified using standard PCR conditions stated in Chapter 2 (Figure 4.4). Self ligation of the PCR product that had been cleaved
with $\mathrm{Bg} / \mathrm{III}$ resulted in the formation of plasmid pGU0501BglII. pGU0501 Bg III was transformed into E. coli $\mathrm{DH} 5 \alpha$ using standard cloning protocols. E. coli colonies were screened to confirm the presence of the insert by PCR using the Cj1344c gene specific primers followed by restriction enzyme digest to ensure the presence of a newly created $\mathrm{Bg} / \mathrm{II}$ site.

Figure 4.4 Amplification of the inverse PCR product using pGU0501 as a template

4.2.4 Construction of suicide plasmids for mutagenesis of Cj1344c

4.2.4.1 Using the promoter-less cat gene cassette

The advantage of insertion of the coding region of the chloramphenicol resistance gene without its promoter and in frame with the start codon of Cj 1344 c is expected co-expression of the cat gene and Cj1344c without interruption of the expression of downstream genes.

The disadvantage of this approach is the possibility that the newly formed fusion protein of Cj1344c and chloramphenicol acetyltransferase (encoded by cat) may fold incorrectly resulting in the absence of chloramphenicol resistant phenotype. In addition, it needs to be considered that the strength of Cj1344c promoter is unknown, which raises a possibility of low levels of expression of cat gene product.

Construction of the cassette. The C. jejuni chloramphenicol resistance gene was amplified from the pAV110 plasmid (Ketley, J., personal communication) by PCR. The primer set (Table 2.4; Materials and Methods) was designed based on the sequence of pAV110 plasmid to amplify the chloramphenicol gene excluding the transcriptional termination signal. In addition, BglII restriction endonuclease sites at the 5 'and 3 ' termini of the primers were included to aid in cloning of the PCR product into pGU0501BglII plasmid. The generated PCR product was cloned into the pGEM-T Easy and the recombinant plasmid was transformed into E. coli DH5 α using standard cloning protocols (Materials and Methods; Section 2.6). Colonies containing recombinant plasmids were selected by growing on LB agar supplemented with ampicillin and IPTG/X-gal which allowed for white/blue colony selection. E. coli colonies were screened for the presence of the insert by PCR using
the cat specific primers; and subsequently by BglII restriction enzyme digest which released the cloned fragment from the pGEM-T Easy backbone. The new recombinant plasmid was named pGU0804.

Construction of the suicide plasmid. The cat cassette released from the pGU0804 plasmid by BglII digest was ligated into the linearised pGU0501BglII plasmid, and then transformed into E. coli $\mathrm{DH} 5 \alpha$ using standard cloning protocols (Materials and Methods; Section 2.6). E. coli colonies transformed with recombinant plasmid carrying promoterless cat cassette could not be recovered when grown on media containing chloramphenicol. Consequently E. coli clones were grown on media supplemented with ampicillin relying on the ampicillin resistance gene of the cloning plasmid for selection. The poor expression of the campylobacter specific antibiotic resistance genes in E. coli was previously reported (Alfredson \& Korolik, 2005). However, the levels of expression of these genes recovered to wild type level once the plasmid construct was transformed into C. jejuni (Alfredson \& Korolik, 2005). Recombinant plasmid DNA was isolated from E. coli cells (Materials and Method; Section 2.5). NotI restriction enzyme digest of newly created suicide plasmid was used to confirm the insertion of cat cassette within Cj1344c gene (Figure 4.5). The plasmid construct was named pGU0805 (nucleotide sequence and map are shown in Appendix F).

Figure 4.5 NotI restriction enzyme digest showing excision of a mutated copy of Cj1344c gene by insertion of cat cassette

Mutagenesis of \boldsymbol{C}. jejuni strain NCTC11168. In order to mutate the Cj1344c gene pGU0805 plasmid was transformed into C. jejuni strain NCTC11168 using natural transformation and electro-transformation (Materials and Methods). Five attempts to create isogenic mutants of Cj1344c using natural and electrotransformation failed to produce viable colonies. The transformation efficiency was tested in each case by transforming C. jejuni cells with the pBF6 vector (BleuminkPluym et al., 1999). pBF6 is a suicide vector constructed by inserting the flaA and flaB genes of C. jejuni 81116 separated by a kanamycin resistance gene cassette in pBluescript vector. In every instance, pBF6 transformations produced kanamycin resistant C. jejuni colonies.

4.2.4.2 Using the promoter-less aph(3')-III gene cassette

A Campylobacter-derived kanamycin resistance gene coding region (aph(3')III) is commonly used for mutagenesis of C. jejuni genes (Bleumink-Pluym et al., 1999, Myers \& Kelly, 2005, Hartley et al., 2009).

The advantage of the insertion of the coding region of the kanamycin resistance gene without its promoter and in frame with the start codon of $C j 1344 c$ is the expected co-expression of the $\operatorname{aph}\left(3^{\prime}\right)$-III gene and Cj1344c without interruption of the expression of downstream genes.

The disadvantage of this approach, as in case with cat gene, is the possibility of low expression due to the strength of Cj1344c promoter or incorrect folding of the fusion protein resulting in a non-kanamycin resistant phenotype.

Construction of the cassette. The C. jejuni promoter-less kanamycin resistance gene cassette was amplified from the pBF6 plasmid (Bleumink-Pluym et al., 1999) by the PCR method. Primer sets were designed to amplify the coding region of the $\operatorname{aph}\left(3^{\prime}\right)$-III (Figure 4.2). The transcriptional termination signal of the resistance gene was not amplified. BglII restriction endonuclease sites were incorporated into the primer sequence at the 5^{\prime} and 3^{\prime} termini to aid in cloning of the product into the pGU0501BglII plasmid. The generated PCR product was visualised by gel electrophoresis (Figure 4.6). The product was excised from the gel and purified for subsequent cloning into pGEM-T Easy vector, followed by transformation into E. coli DH5 α using standard cloning protocols (Materials and Methods; Section 2.6).

Figure 4.6 Amplification of promoter-less $\operatorname{aph}\left(3^{\prime}\right)$-III gene cassette

Legend: Lane 1 - 1 Kbp DNA marker; Lane 2 - PCR amplification of coding part of aph(3')-III gene excluding the promoter sequence

The E. coli colonies were grown on LB agar supplemented with ampicillin and IPTG/X-gal utilising disruption of $\operatorname{lac} \mathrm{Z}$ gene by an insert and allowing blue/white colony selection. Screening of the colonies was done by PCR using aph(3')-III gene specific primers; and subsequently by BglII restriction enzyme digest which released the cloned fragment from the pGEM-T Easy backbone. The new recombinant plasmid was called pGU0706.

Construction of the suicide plasmids. The kanamycin cassette released from the pGU0706 plasmid by BglII digest was ligated into the linearised pGU0501 $\mathrm{Bg} / \mathrm{II}$ plasmid, and transformed into E. coli $\mathrm{DH} 5 \alpha$ using standard cloning protocols (Materials and Methods; Section 2.6). As was the case with the promoter-less cat cassette, E. coli colonies transformed with recombinant plasmid carrying promoterless kanamycin cassette could not be grown on media supplemented with kanamycin; and were therefore grown on ampicillin supplemented media, utilising ampicillin resistance gene of the cloning vector for selection. Recombinant plasmid DNA was isolated from E. coli cells using plasmid mini prep kit (Materials and Method; Section 2.5) and screened by NotI restriction enzyme digest (not shown), which
confirmed the insertion of the promoter-less kanamycin cassette within Cj1344c. The plasmids construct was named pGU0707 (nucleotide sequence and map are shown in Appendix G).

Mutagenesis of \boldsymbol{C}. jejuni strain NCTC11168. Mutagenesis of Cj1344c gene was carried out by transformation of pGU0707 plasmid into C. jejuni NCTC 11168 using natural transformation and electro-transformation methods (Materials and Methods). Five attempts to create isogenic mutants of Cj1344c using these procedures failed to produce viable C. jejuni colonies. Transformation efficiency was tested in each case by transforming C. jejuni cells with pBF6 vector (BleuminkPluym et al., 1999). In every instance, pBF6 transformations produced kanamycin resistant C. jejuni colonies.

4.2.4.3 Using the promoted $\operatorname{aph}\left(3^{\prime}\right)$-III gene cassette

The advantage of using a promoted cassette would be an independent expression of $\operatorname{aph}\left(3^{\prime}\right)-I I I$ gene ensured by the presence of the gene promoter sequence, and thus ensuring the kanamycin resistant genotype in case of successful cross-over event.

The disadvantage of this approach is the potential creation of a polar mutation as the expression of genes downstream from the cassette insertion may be reduced or eliminated due to an increased distance between their start codon and putative common promoter upstream from $\operatorname{aph}\left(3^{\prime}\right)$-III insertion point. On the other hand, the expression of these genes may be upregulated due to a presence of a strong aph(3')III promoter.

Construction of the cassettes. C. jejuni kanamycin resistance cassette gene cassette was amplified from pBF6 plasmid (Bleumink-Pluym et al., 1999) by PCR method. Primer sets were designed to amplify the coding region and the promoter sequence of the $a p h\left(3^{\prime}\right)-I I I$ gene (Figure 4.2). As in the case with all other cassettes, the transcriptional termination signal of the resistance gene was excluded. BglII restriction endonuclease sites were incorporated into the primer sequence at the 5 , and 3 ' termini to aid in cloning of the product into pGU0501BglII plasmid. The generated PCR product was visualised by gel electrophoresis (Figure 4.7). The PCR product was excised from the gel, purified and cloned into the pGEM-T Easy vector, followed by transformation into E. coli $\mathrm{DH} 5 \alpha$ using standard cloning protocols (Materials and Methods; Section 2.6).

Figure 4.7 Amplification of promoted $\operatorname{aph}\left(3^{\prime}\right)$-III gene cassette

Legend: Lane 1 - 1 Kbp DNA marker; Lane 2 - PCR amplification of fully functional aph(3')-III gene including its promoter

The E. coli colonies were grown on LB agar supplemented with ampicillin and IPTG/X-gal utilising disruption of lacZ gene by an insert and allowing blue/white colony selection, as well as kanamycin antibiotic. Screening of the colonies was done by PCR using $\operatorname{aph}\left(3^{\prime}\right)-I I I$ gene specific primers; and subsequently by $B g l I I$ restriction enzyme digest which released the cloned fragment from the pGEM-T Easy backbone. The new recombinant plasmid was called pGU0509.

Construction of the suicide plasmids. The kanamycin cassette released from the pGU0509 plasmid by BglII digest were ligated into the linearised pGU0501 BglII plasmid, and transformed into E. coli $\mathrm{DH} 5 \alpha$ using standard cloning protocols (Materials and Methods; Section 2.6). Recombinant plasmid DNA was isolated from E. coli cells (Materials and Method; Section 2.5) and screened by NotI restriction enzyme digest (not shown), which confirmed the insertion of the promoted kanamycin cassette within Cj1344c. The plasmids construct was named pGU0613 (nucleotide sequence and map are shown in Appendix H).

Mutagenesis of \boldsymbol{C}. jejuni strain NCTC11168. Mutagenesis of Cj1344c gene was performed by transformation of pGU0613 plasmid into C. jejuni NCTC 11168
using natural transformation and electro-transformation methods (Materials and Methods). Five attempts to create isogenic mutants of Cjl344c using these procedures failed to produce viable C. jejuni colonies. Transformation efficiency was tested in each case by transforming C. jejuni cells with the pBF6 vector (BleuminkPluym et al., 1999). In every instance, the pBF6 transformations produced kanamycin resistant C. jejuni colonies.

4.2.4.4 The promoted $\operatorname{aph}\left(3^{\prime}\right)$-III gene cassette including additional oxa-61 promoter downstream

The advantage of using this cassette construct was two-fold; the presence of a fully functional promoter sequence of $\operatorname{aph}\left(3^{\prime}\right)-I I I$ gene ensures expression of the gene while addition of another campylobacter promoter sequence immediately downstream from the $\operatorname{aph}\left(3^{\prime}\right)$-III gene maximises the chances of expression of downstream genes, which may otherwise be effected by the insertion of $\operatorname{aph}\left(3^{\prime}\right)$-III gene.

The disadvantages of this method are the potential polar mutation effects due to dis-regulation of genes downstream from the insertion point as additional oxa-61 promoter can lead to an upregulated gene expression of the downstream genes that usually may be expressed at low levels.

Construction of the cassettes. In order to construct the kanamycin resistance cassette containing the additional promoter sequence, the ampicilin (oxa-61) gene promoter region ($P_{\text {oxa-61 }}$) was amplified by PCR using a set of primers (Table 2.4) designed based on the sequence of pGU0401 plasmid (Alfredson \& Korolik, 2005). The XbaI restriction endonuclease sites at the 5' and 3' termini were included in the primer design to allow cloning of the DNA fragment downstream of the kanamycin resistance gene in the pGU0509 plasmid. The 174 bp PCR product was cleaved with $X b a \mathrm{I}$ and cloned into $X b a \mathrm{I}$ linearised pGU0509 to allow insertion of $P_{o x a-61}$ DNA fragment downstream from the kanamycin resistance gene (Materials and Methods). The resulting recombinant plasmid DNA was transformed into E. coli competent cells using standard cloning procedures (Materials and Methods). Recombinant plasmid DNA was isolated from E. coli cells and screened by PCR using a
combination of kanamycin specific primers and $P_{o x a-61}$ specific primers to confirm the correct orientation of the $P_{\text {oxa- } 61}$ insert in relation to the kanamycin gene (Figure 4.8). The new plasmid construct was named pGU0522.

Figure 4.8 Screening for the correct orientation of $\mathrm{P}_{\text {oxa-61 }}$ in relation to $\operatorname{aph}\left(3^{\prime}\right)$-III gene

Construction of the suicide plasmid. The kanamycin cassette containing the oxa-61 promoter sequence was released from the pGU0522 plasmid by BglII digest; and the DNA fragment was ligated into the linearised pGU0501BglII plasmid, and transformed into E. coli DH5 α using standard cloning protocols (Materials and Methods; Section 2.6). Recombinant plasmid DNA was isolated from E. coli (Materials and Method; Section 2.5) and screened by NotI restriction enzyme digest (not shown). The newly created suicide plasmids showed insertion of the kanamycin
cassette containing the oxa-61 promoter within Cj1344c. The plasmid construct was named pGU0523 (nucleotide sequence and map are shown in Appendix I).

Mutagenesis of \boldsymbol{C}. jejuni strain NCTC11168. Mutagenesis of Cj1344c gene was carried out by transformation of pGU0523 plasmid into C. jejuni NCTC11168 using natural transformation and electro transformation methods (Materials and Methods). Five attempts to create isogenic mutants of Cj1344c using these two methods failed to produce viable colonies. The transformation efficiency was tested in each case by transforming C. jejuni cells with pBF6 vector (Bleumink-Pluym et al., 1999). In every instance, pBF6 transformations produced kanamycin resistant C. jejuni colonies.

In summary, the mutagenesis of Cj1344c gene was attempted using four different suicide plasmids: pGU0523, pGU0613, pGU0707 and pGU0804; all of which contain a mutated copy of the Cj1344c gene by different antibiotic resistance cassette (Table 4.1). The plasmids were transformed into C. jejuni NCTC 11168 using natural transformation and electro-transformation. Five attempts of isogenic mutant creation by each method failed to produce viable C. jejuni colonies. Every transformation attempt was accompanied by transformation of C. jejuni cells with a control plasmid pBF6 which produced kanamycin resistant C. jejuni colonies. It was speculated that the reasons for the unsuccessful recovery of the Cj1344c isogenic mutant could be a cross-over inefficiency during transformation which was further examined.

Table 4.1 Suicide vectors used for mutagenesis of $C j 1344 c$

Recombinant suicide plasmid name	Cj1344c mutated by	Promoter region included	Mutagenesis of C. jejuni
pGU0523	$a p h\left(3^{\prime}\right)-I I I$	$\mathrm{P}_{\text {aph }\left(3^{\prime}\right)-I I I} / \mathrm{P}_{\text {oxa-6I }}$	unsuccessful
pGU0613	$a p h\left(3^{\prime}\right)-I I I$	$\mathrm{P}_{\text {aphh(}\left(^{\prime}\right)-I I I}$	unsuccessful
pGU0707	$a p h\left(3^{\prime}\right)-I I I$	none	unsuccessful
pGU0805	$c a t$	none	unsuccessful

4.2.5 Strategy for analysis of non-recoverable cross-over events during C.

jejuni transformations

Isogenic mutant creation by inactivating a gene may result in an inability to recover isogenic mutants when the gene is essential for bacterial survival. To confirm that the potential lack of recovery of the isogenic mutant was a result of a lethal mutation, and not an error during the transformation procedure, the possibility of a cross-over event needed to be analysed. C. jejuni requires 202bp of homologous DNA for a successful cross-over event and incorporation of foreign DNA into the genome (Wassenaar et al., 1993). By analysing a transformation mix by PCR using a set of primers positioned in the genome, outside the integration event (to avoid amplification of a PCR product from a suicide vector used in transformation) and antibiotic resistance gene cassette it would be possible to confirm a successful crossover event in the transformation mixture (Figure 4.9).

Figure 4.9 Schematic representation of positions of a primer pair used for confirmation of double cross-over event in cases of the aph(3^{\prime})-III gene cassette (top) and the cat cassette (bottom)

4.2.6 Assessment of the cross-over event during C. jejuni transformation.

To confirm the cross-over event and incorporation of a mutated version of the gene into the C. jejuni genome, the transformation mix was analysed by PCR as described in the strategy section 4.2 .5 . PCR primers used in the experiment were designed based on the sequence of genome strain of C. jejuni NCTC 11168.

DNA from the transformation mix was isolated as stated in Materials and Methods. PCR analysis was performed using this DNA and the set of primers positioned in the Cj1344c downstream gene and antibiotic resistance cassette. The results of this experiment confirmed that the cross-over event did occur and the mutated gene was incorporated into C. jejuni genome (Figure 4.10). The inability to produce isogenic mutants suggests that Cj1344c gene product is essential for bacterial survival. Supplementation of the media with this gene product could potentially enable recovery of the isogenic mutants.

Figure 4.10 DNA amplification from transformation mixture, confirming double cross-over event during C. jejuni transformation

Legend: Lane 1 - 1Kbp DNA marker; Lane 2 - transformation mixture pGU0523; Lane 3 transformation mixture pGU0613; Lane 4 - transformation mixture pGU0707; Lane 5 transformation mixture pGU0805; Lane 6 - control pGU0523; Lane 7 - control pGU0613; Lane 8 control pGU0707; Lane 9 - control pGU0805

4.2.7 Attempts to culture isogenic mutants of Cj1344c in conditioned media

Preliminary studies have identified that the glycoprotease is secreted into the culture media (Chapter 3). It was therefore, postulated that growing putative isogenic mutants in media where wild type C. jejuni was cultured and then removed (conditioned media) may enhance the chances of recovery of isogenic mutants. Conditioned media was prepared as described in the Materials and Methods; Section 1.4.2 and was supplemented with kanamycin or chloramphenicol for selection of isogenic mutants. C. jejuni cells were transformed with pGU0523, pGU0613, pGU0707, pGU0804 and pBF6 as a control and the transformation mixes were incubated in conditioned media under standard incubation conditions (Materials and Methods; Section 2.6). OD_{600} readings were taken immediately after transformation and 48 h post transformation to monitor C. jejuni growth. After 48 h incubation no growth was detected in any of the cultures transformed with suicide plasmids. C. jejuni cells transformed with control plasmid pBF6 (Bleumink-Pluym et al., 1999) had significant growth at 48 hr time point compared to zero point time (Figure 4.11). This experiment further confirmed that the mutation of $C j 1344 c$ is lethal and that presence of the Cj 1344 c in culture media cannot aid recovery of $C j 1344$ c isogenic mutants, suggesting the intra-cellular function of the enzyme or inability of Cj1344c uptake into C. jejuni from culture media.

Figure 4.11 Putative C. jejuni isogenic mutants growth in conditioned media

4.3 Discussion

An insertional inactivation mutagenesis approach was taken in order to perform the functional analysis of C. jejuni Cj1344c, which shows 36% identity and 55% similarity to O-sialoglycoprotease of Mannheimia (Pasteurella) haemolytica A1. Five attempts to mutate the gene by insertional inactivation failed to produce a Cj1344c isogenic mutant suggesting that the gene may be essential for C. jejuni growth. These results are similar to those found by Zheng and colleagues who found glycoprotease to be essential for growth of S. aureus using regulated gene expression (Zheng et al., 2005). Down-regulation of S. aureus gcp resulted in increased sensitivity of the bacteria to Zn^{2+}. Similarly, a $g c p$ knockout mutant in M. haemolytica was found to be not viable (Mellors, personal communication), while downregulation of $g c p$ expression in S. aureus inhibited bacterial growth (Zheng et al., 2005) suggesting that the $g c p$ gene may be one of the housekeeping genes necessary for bacterial survival.

Attempts to inactivate Cj1344c by four different antibiotic resistance cassettes with different characteristics did not result in the creation of the Cj1344c isogenic mutant, indicating that inactivation of $C j 1344 c$ is lethal for C. jejuni survival in vitro. It needs to be considered that the absence of fully characterised promoter sequences and genes organised in an operon-like structures pose a significant issue when constructing gene knock-out mutants in C. jejuni (Parkhill et al., 2000a). By employing the four antibiotic resistance gene cassettes this study attempted addressing different polarity issues that may arise during the creation of the Cj1344c isogenic mutant, such as inactivation of the genes downstream from the insertion of an antibiotic resistance cassette.

The mutagenesis of the gene was performed using natural transformation and electro-transformation of C. jejuni cells with the suicide plasmids to account for the reported variability in transformation efficiency observed among C. jejuni strains (Wassenaar et al., 1993). In addition, transformation efficiency of C. jejuni was tested by transforming the cells with a control plasmid pBF6, carrying aph(3')-III gene positioned between C. jejuni flaA and flaB genes which produced kanamycin resistant C. jejuni colonies in every experiment. This finding confirmed that C. jejuni cells used in the transformation were naturally transformable or electrotransformable as reported in literature (Miller et al., 1988) and that non-recovery of isogenic mutant was not due to transformation inefficiency, but due to an essential gene inactivation.

The five unsuccessful attempts to mutate the gene posed the question of cross-over efficiency during transformation., Analysis of the transformation mix by PCR was performed to answer this question. The minimum of homologous base pairs required for successful cross over event and incorporation of antibiotic resistanceencoding genes into genome was reported to be 202bp (Wassenaar et al., 1993), and this study followed that recommendation by allowing 500bp of homologous DNA. Utilisation of kanamycin resistance gene specific primers and genome specific primers showed that the double cross-over event took place and that the mutated copy of Cj1344c gene was incorporated into the C. jejuni genome by a homologous recombination event. This experiment confirmed that the non-recovery of isogenic mutants was not due to the cross-over inefficiency but an essential role of this gene in C. jejuni.

Growing newly transformed C. jejuni cells in media where wild type C. jejuni was previously grown was hypothesised to aid in the isogenic mutant recovery as the
presence of Cj 1344 c in the culture media may complement the lack of the enzyme in isogenic mutants, as reported in case of phosphonate degradation genes (Hartley et al., 2009). Growing transformed C. jejuni cells in conditioned media, however, did not result in the recovery of isogenic mutants suggesting that the Cj1344c transfer mechanism across the cell wall may be in one direction only. In addition, the medium was supplemented with the E. coli expressed and purified His-Cj1344c protein without success in mutant recovery. This experiment also suggests that Cj1344c may have different functions, both intra and extra-cellularly.

4.3.1 Conclusion

This chapter describes construction and utilisation of different antibiotic resistance gene cassettes to mutate C. jejuni putative glycoprotease gene. The position of the gene within the genome in close proximity with other genes of unknown function posed a problem in creating an isogenic mutant of the gene, due to possibility of polar mutation. Inactivation of the gene by four different antibiotic resistance cassettes confirmed the essential function of the gene, as isogenic mutants could not be recovered, confirming data published by other research groups in different bacterial species.

CHAPTER 5

Raising antibodies against the recombinant $\mathbf{C j 1 3 4 4 c}$ protein in a rabbit; native protein purification and enzymatic analysis

5.1 Introduction

Expression of the recombinant C. jejuni gcp gene (Cj1344c) in an E. coli host did not yield a protein with a detectable level of activity, probably due to lack of posttranslational modification, incorrect protein folding or lack of a co-factor (This study, Chapter 3). This is similar to the M. haemolytica recombinant protein expressed in an E. coli system, which was reported to show a marked decrease in activity as assayed by glycophorin A digest (Watt et al., 1997a).

To purify and determine the enzymatic function of native C. jejuni Cj 1344 c , polyclonal antibodies raised against recombinant Cj 1344 c protein in a rabbit could be utilised to isolate the native C. jejuni protein. Polyclonal antibodies raised against recombinant protein expressed in E. coli have been previously shown to recognise the native form of similar proteins (Ermolova et al., 2003) by recognising similar epitomes on both the recombinant and native forms of the protein.

Polyclonal antibodies may also assist in the identification of Cj 1344 c localisation within the C. jejuni cell as the C. jejuni gcp homologue cell localisation is not known. M. haemolytica gcp was shown to be present in the culture supernatant (Otulakowski et al., 1983) despite the absence of the conventional peptide secretion signal sequence. In addition, the antibodies may be used to identify C. jejuni Cj1344c homologues in related bacterial species.

5.2 Results

5.2.1 Purification and preparation of His-tagged Cj1344c recombinant protein

In order to produce polyclonal antibodies against C. jejuni Cj 1344 c , the protein was expressed in E. coli BL21 host using the pET19-b expression system and purified using Nickel affinity resin, as described in Chapter 3. The apparent molecular weight of the purified recombinant protein produced by BL21 cells was approximately 40 KDa , as determined by SDS-PAGE (Chapter 3; Figure 3.8). This is consistent with the predicted molecular weight of $39,850 \mathrm{Da}$ for a fusion protein which includes molecular weight 37,066Da of Cj 1344 c and 2,784 from the His tag.

The purification procedure using the Nickel affinity resin method yielded 90% pure His tagged protein. In order to minimise the rabbit antibody response to E. coli proteins co-eluted with His-Cj1344c, further purification of His-Cj1344c was performed by size separation of proteins on an SDS-PAGE as detailed in Chapter 2; Section 2.7. The protein band of 40 KDa was confirmed to contain His-Cj1344c protein by Western blot analysis using anti-His antibody. This band was excised from the gel and sent to the IMVS facility to raise antibodies against His-Cj1344c (data not shown).

5.2.2 Production and specificity of the anti-His-Cj1344c antibodies

Polyclonal antibodies against His-Cj1344c were raised in a rabbit as described in the Materials and Methods Section 2.11. Serum samples were collected on the day of the primary immunization, in week 7 after the $3^{\text {rd }}$ immunisation, and in week 10 after the $4^{\text {th }}$ and final immunisation.

In order to determine the specificity of the rabbit serum to His-Cj1344c purified protein and native Cj 1344 c in C. jejuni whole cell lysate, Western blot analysis was performed using the rabbit serum as a primary antibody as described in the Materials and Methods section. The Western blot analysis identified a 38 KDa protein in the C. jejuni lysate which was hypothesised to be the native Cj 1344 c based on the expected protein molecular weight) in addition to the His-Cj1344c protein (Figure 5.1). The cross reactivity between the His-Cj1344c protein and native Cj 1344 c protein was subsequently used as a basis for native protein purification of C. jejuni Cj 1344 c from a whole cell lysate using the rabbit serum.

Figure 5.1 Specificity of rabbit sera to Cj 1344 c protein present in the C. jejuni whole bacterial lysate

Legend: Lane 1 - sample of purified His-Cj1344c E. coli expressed protein, Lane 2 - sample of C. jejuni lysate showing Cj1344c protein band

Once the specificity of the antibodies in the rabbit serum to Cj 1344 c was confirmed, serum IgG titres were determined by direct ELISA. His-Cj1344c protein was used to coat ELISA plate wells to evaluate the protein-specific immune response of the primary antibody in the rabbit serum. The His-Cj1344c specific serum IgG titres increased with the number of vaccinations, reaching $1: 65,000$ after the $4^{\text {th }}$ vaccination (Figure 5.2).

Figure 5.2 Rabbit sera IgG response to His-Cj1344c protein vaccination at different time intervals

5.2.3 Cell localisation of $\mathbf{C j 1 3 4 4 c}$ in C. jejuni and homologue detection in other bacterial species

In order to investigate the possibility that the C. jejuni Cj 1344 c is secreted into the culture supernatant, the predicted amino acid sequence was analysed for the presence of a signal sequence that would direct the polypeptide to the secretion pathway. The SignalP 3.0 program (Emanuelsson et al., 2007) did not show the presence of the conventional secretion signal sequence nor the cleavage sites within the polypeptide, suggesting that the protein is not secreted via Sec pathway, but this did not preclude secretion of the protein by some alternative mechanism.

To investigate the localisation of Cj 1344 c protein within the C. jejuni cell; and its possible secretion into the culture supernatant, different cell fractions were prepared and analysed for the presence of the protein as described in Chapter 2. Samples of the cytoplasmic fraction, the insoluble cell wall fraction, the periplasmic fraction and the culture media were resolved by SDS-PAGE. Western blot analysis using rabbit anti-His-Cj1344c was used to determine the presence of the protein in the different fractions prepared. The results of these experiments showed the presence of Cj 1344 c protein in the soluble cytoplasmic fraction and the culture media (Figure 5.3).

| 38 kD Cj 1344 c |
| :--- | Figure 5.3 Western blot analysis of the different cell fractions for the presence of

5.2.4 $\mathbf{C j} 1344 \mathrm{c}$ homologue identification in selected bacterial species

In silico comparative analysis of the Cj 1344 c predicted amino acid sequence identified homologues of Cj 1344 c in all the other bacterial species that were analysed (Chapter 3). To determine the cross reactivity of the rabbit antibodies between different Campylobacter spp. species, selected bacterial whole cell lysates were analysed using Western Blot method utilising the rabbit anti-His-Cj1344c antibody as described in the Materials and Methods section. The results of the analysis identified a protein of the expected size $(37 \mathrm{kDa})$ present in all C. jejuni strains assessed (C. jejuni 11168 shown here). In addition, the homologue of Cj1344c was also present in all C. coli and C. fetus strains as well as in H. pylori (Figure 5.6).

Figure 5.4 Western blot analysis of different bacterial lysates using an anti-HisCj1344c rabbit antibody

Legend: Lane 1 - purified His-Cj1344c; Lane 2 - C. jejuni NCTC11168; Lane 3 - C. coli; Lane 4 - H. pylori; Lane 5 - S. aureus; Lane 6 - C. jejuni 81116; Lane 7 - E. coli

5.2.5 Native protein purification

In order to assess the enzymatic activity of the native C. jejuni Cj 1344 c protein, rabbit antibodies raised against recombinant His-Cj1344c protein were used to isolate the native protein from the bacterial lysate. Before the attempt to purify the native protein using anti-His-Cj1344c antibodies, different cell lysates (non-denatured) were tested on a dot blot to determine the specificity of the rabbit antibodies against the native C. jejuni Cj 1344 c (Figure 5.5). The results of the blot show that the antibody raised agains the His-Cj1344c in rabbit, recognises the native Cj1344c protein, or its homologue, in C. jejuni, C. coli and H. pylori, while at the same time does not exhibit specificity to E. coli and S. aureus lysates.

Figure 5.5 Dot blot analysis of different bacterial lysates using an anti-His-Cj1344c rabbit antibody

Legend: Spot 1 - purified His-Cj1344c; Spot 2 - C. jejuni NCTC11168; Spot 3 - C. coli; Spot 4 - H. pylori; Spot 5 - S. aureus; Spot 6 - E. coli

The specificity of the raised antibodies enabled their use in native protein isolation using the Dynabead M-280 purification system, as described in the Materials and Methods. The anti-His-Cj1344c antibodies, bound covalently to sheep anti-rabbit IgG antibodies on Dynabeads were used to isolate native Cj 1344 c from the C. jejuni cell lysate. The native protein recognised by the anti-His-Cj1344c was subsequently eluted off the beads by disrupting the covalent antigen-antibody bonds.

This elution step did not result in the elution of the native protein from the beads. Despite multiple attempts to purify the native protein using this system, native Cj1344c protein could not be isolated from the whole cell C. jejuni lysate. Alternative methods will have to be employed to accomplish this experiment in the future.

5.3 Discussion

To determine the activity and a potential role of the C. jejuni Cj 1344 c protein in bacterial pathogenesis, an attempt to isolate the native protein was undertaken by utilising antibodies raised against the recombinant protein.

Over-expression of the C. jejuni protein in E. coli resulted in a lack of enzymatic activity (Chapter 3), possibly due to the lack of posttranslational modification of the protein in E. coli, incorrect folding of the polypeptide during biosynthesis or lack of an unidentified enzyme co-factor. Similarly, over-expression studies of M. haemolytica gcp in E. coli found that the enzyme lacked or showed significantly reduced activity when compared with the native protein (Watt et al., 1997b). Attempts to refold the protein did not result in a significant increase in enzyme activity (Watt et al., 1997a).

To isolate the native protein, His-Cj1344c produced in E. coli was used to immunise a rabbit and produce antibodies against this polypeptide. Rabbit sera collected after the third injection of recombinant protein showed high titres of anti-His-Cj1344c antibodies $(1: 65,000)$, which was significantly higher than the results obtained from vaccination studies by other C. jejuni proteins (Lee et al., 1999, Monteiro et al., 2009). It was hypothesised that the polyclonal antibodies raised against the recombinant protein would recognise different epitomes on the protein surface of both the recombinant protein and the native C. jejuni protein, as similar studies in different bacteria have demonstrated cross-reactivity (Ermolova et al., 2003). This cross-reactivity was to be used in isolating native C. jejuni Cj 1344 c protein from the whole cell lysate.

The Western blot analysis of different cellular fractions showed that Cj1344c was present in the cytoplasmic fraction of the cell and the culture media. The
predicted amino acid analysis of Cj 1344 c did not reveal a conventional signal secretion sequence. This is also the case for M. haemolytica, gcp where secretion occurs by an alternative secretion mechanism not involving an amino terminus signal (Otulakowski et al., 1983). Detection of the enzyme in the culture media could be attributed to the release of the cytoplasmic enzyme due to cell death and this finding needs to be further investigated. The detection of the enzyme in cytoplasmic fraction of the C. jejuni cell as well as in the culture medium, may suggest a dual role of the enzyme in C. jejuni. The detection of the enzyme in cytoplasmic fraction, in addition to the inability to create the Cj 1344 c mutant (Chapter 4) and the interaction of HisCj1344c with the whole cell fraction of C. jejuni (Chapter 3) may suggest an intracellular role of the enzyme in cell homeostasis. On the other hand the presence of the enzyme in the culture supernatant may suggest an extracellular role of the enzyme in bacterial pathogenesis.

Multiple attempts to isolate the native protein using Dynabead M-280 sheep anti-rabbit IgG failed to produce sufficient quantities of the protein to perform enzymatic studies. The standard Western Blot analyses showed that rabbit IgG antibodies cross-reacted with native Cj 1344 c protein, suggesting that the possible reason for the inefficient isolation of the native protein could have been unsuccessful elution of the protein from IgG antibody coated Dynabeads.

Western blot analysis of whole cell protein from different C. jejuni strains using anti-His-Cj1344c rabbit antibody identified cross-reactivity with all C. jejuni strains examined, a result that confirms similarity matches identified (100-90\% predicted amino acid similarity) in the bioinformatics studies (Chapter 3). In addition, the cross-reactivity was also identified in other Campylobacter species tested as well as H. pylori. The presence of the Cj 1344 c homologue in all tested
bacterial species may suggest an important role that the enzyme plays in bacterial homeostasis. In addition, its role may extend further in bacterial pathogenesis considering that the enzyme is secreted into the culture supernatant; and is hypothesised to have a role in glycoprotein degradation (Abdullah et al., 1992, Tu et al., 2008).

5.3.1 Conclusions

Recombinant Cj 1344 c showed a high IgG response in rabbit with titres higher than $1: 60,000$ which allowed the use of the enzyme in the mice vaccination and protection trials. The specificity of the raised antibody to native C. jejuni enzyme was used to detect the homologues of the enzyme in other Campylobacter spp as well as in the related microorganism H. pylori. Analysis of different cell fractions identified the enzyme in the cytoplasm and culture supernatant of C. jejuni, suggesting a possible dual function of the enzyme. The absence of the conventional secretion signal sequence, however, suggests a non-conventional secretion mechanism, probably via chaperone molecules. The enzymatic activity of Cj1344c could not be determined as the purification of the native protein using the Dynabead M-280 system did not produce sufficient quantities of the enzyme. Further investigation of the activity of the enzyme needs to be carried out to determine its specificity and elucidate its role in C. jejuni.

CHAPTER 6

Evaluation of a His-tag purified glycoprotease homologue vaccine against Campylobacter jejuni infection in a mouse model

6.1 Introduction.

Campylobacter jejuni and Campylobacter coli are among the most frequently isolated causes of bacterial diarrhoea worldwide (Tauxe, 2002). Several reports show that prior infection with C. jejuni can result in acquisition of immunity (Black et al., 1988, Martin et al., 1989) suggesting protective immunogenic epitopes on the surface of the cell. Vaccine development against C. jejuni has been hindered due to a number of factors that include a lack of understanding of the basic virulence mechanisms, the antigenic complexity of C. jejuni; and the lack of small-animal models suitable for vaccine evaluation.

Different antigens have been evaluated as possible vaccines using different animal models for protection against C. jejuni (reviewed by (Jagusztyn-Krynicka et al., 2009). The vaccine candidates evaluated include killed whole cells (Baqar et al., 1995b), maltose-binding protein (MBP) of Escherichia coli fused to flagellin protein (Lee et al., 1999), periplasmic binding protein (Prokhorova et al., 2006), flagellumsecreted proteins, FlaC, FspA1 and FspA2 (Baqar et al., 2008), conjugated capsular polysaccharides (Monteiro et al., 2009), an adherence protein expressed on and delivered by an attenuated Salmonella enterica serovar Typhimurium strain (Sizemore et al., 2006), the amino acid binding protein CjaA , the aspartate/glutamate-binding ABC transporter Peb1A also delivered by an attenuated S. enterica serovar Typhimurium strain (Buckley et al., 2010).

Moreover, a limited number of virulence factors that might be useful for subunit vaccine candidates have been identified in C. jejuni. The putative glycoprotease has been identified in all strains of C. jejuni and shows a high degree of homology within the species of Campylobacter. Inactivation of the gene results in
a non-viable phenotype suggesting an essential role for the enzyme in bacterial survival. Vaccination of calves with recombinant M. haemolytica glycoprotease showed some protection against the bacterium and reduced severity of the disease (Shewen et al., 2003). The demonstrated relationship between serum antibodies (Ab) to Gcp and resistance to pneumonia (Lee et al., 1994) suggested that the Gcp may be involved in the disease process and as such was a good vaccine candidate.

High antibody titres obtained in rabbit immunisation with His-Cj1344c provided encouraging preliminary results for the investigation of possible protective role of the Cj1344c against C. jejuni infection. Vaccination with Cj1344c, the homologues of which are present in many bacterial species, some of which are significant human pathogens, may hypothetically provide some protection against these pathogenic agents and therefore increase benefit of this vaccine.

An experimental vaccination trial was therefore conducted in mice using HisCj1344c as a vaccine antigen, in combination with different routes of administration (subcutaneous, intraperitoneal and intra-nasal) and different adjuvants used in the trial; followed by C. jejuni challenge to ascertain capacity of His-Cj1344c to protect mice from C. jejuni infect.

6.2 Results:

6.2.1 Protein expression and purification

To test the immunogenicity of the C. jejuni putative glycoprotease in a murine model, the enzyme had to be expressed and purified. The $C j 1344 c$ gene from C. jejuni 11168 was expressed and purified as described in chapter 3 .

6.2.2 anti-His-Cj1344c antibodies in mice prior to immunisation regimen

The immunogenicity of His-Cj1344c was tested in mice via delivery of the protein by three different routes of administration. The His-Cj1344c was delivered to three groups of animals by subcutaneous, intraperitoneal and intranasal vaccination to determine the best route of antigen delivery. Freunds adjuvant was used with HisCj1344c in cases of subcutaneous and intraperitoneal injection (complete Freunds adjuvant for the first injection, incomplete Freunds adjuvant for subsequent booster injections). Cholera toxin subunit B was used as an adjuvant in cases of intranasal delivery. PBS was substituted for His-Cj1344c in the control groups and administered by same delivery as the antigen. The fourth group served as a negative control and did not receive any treatment.

Prior to antigen administration, mice sera were collected and assayed for the presence of His-Cj1344c specific IgG by ELISA. 5/40 mice showed the presence of Cj1344c specific antibodies with titres less than 1:32 (Figure 6.1). The experiment was continued and animals that showed antibody response to Cj 1344 c were noted.

Figure 6.1 Mouse sera IgG response to His-Cj1344c protein prior to vaccination

Legend:	A1-A7- subcutaneous His-Cj1344c immunisation
	B1-B8 - intraperitoneal His-Cj1344c immunisation
	C1-C8 - intranasal His-Cj1344c immunisation
	D1-D4 - subcutaneous PBS control immunisation
	E1-E4 - intraperitoneal PBS control immunisation
	F1-F4 - intranasal PBS control immunisation
	G1-G4- non-immunised controls

6.2.3 Immunisation with His-Cj1344c using subcutaneous delivery method

Immunisation: A dose of $5 \mu \mathrm{~g}$ of purified His-Cj1344c mixed with an appropriate adjuvant was delivered subcutaneously at 2 weeks intervals and resulted in high IgG titres (compared to PBS controls and negative controls) 2 weeks after the fourth dose, as determined by direct ELISA using His-Cj1344c for coating the wells of plates. For all immunisation regimens, the His-Cj1344c specific serum IgG titres increased with number of vaccinations, however, the final titres varied between different animals (Table 6.1). The highest end point dilution titre of anti-His-Cj1344c IgG serum was $1: 65,000$ (3 out of 8 animals). The IgM and IgA titres, on the other hand, showed no significant difference when compared to controls (Table 6.1).

Table 6.1 His-Cj1344c specific immunoglobulin response in mice after $4^{\text {th }}$ booster injection delivered subcutaneously

	Animal	IgA	IgG	IgM
His-Cj1344c immunised	A1	0	1:1,024	1:128
	A2	1:64	1:8,172	1:512
	A3	0	1:16,344	1:64
	A4	1:128	1:65,376	1:32
	A5	1:32	1:16,344	1:128
	A6	0	1:65,376	0
	A7	1:64	1:2,048	1:128
	A8	1:1,024	1:65,376	1:1,024
PBS immunised	D1	0	1:128	1:64
	D2	0	1:32	0
	D3	0	1:4,086	0
	D4	0	1:512	1:512

Protection studies: To determine if the anti-His-Cj1344c antibodies in mice were protective against C. jejuni colonisation, immunised mice were challenged with 10^{8} C. jejuni cells fourteen days following the last immunisation dose. All animals were challenged orally with wild type C. jejuni NCTC 11168 as described in Materials and Methods chapter. Animals were monitored for signs and symptoms of disease such as, ruffling of fur, the presence of diarrhoea and general well being on a daily basis by two animal attendants and their well being was scored based on the severity of the illness as per Monteiro et al, 2009 for the duration of the experiment. Animals did not show any signs of illness for the entire duration of the experiment.

Faecal samples were collected daily and C. jejuni load was determined which was indication of the intestinal colonisation with the bacteria. Oral inoculation with C. jejuni resulted in colonization of the gastrointestinal tract of all mice as assessed by positive faecal cultures in all animals. Bacterial faecal load observed during the course of experiment showed a difference between His-Cj1344c vaccinated and control mice. Though there are variations between individual animals, generally HisCj1344c vaccinated mice show lower bacterial counts when compared with PBS vaccinated or non-vaccinated mice, though the differences were not significant as determined by un-paired t-test (Figure 6.2).

Figure 6.2 C. jejuni faecal load in subcutaneously vaccinated mice and their respective controls over the period of 6 days

Legend:

A1-A7 - subcutaneous His-Cj1344c immunisation
D1-D4 - subcutaneous PBS control immunization
G1-G4 - non-immunised controls

At day 7 post infection mice were sacrificed, at which point different systemic organs and samples of small and large intestines were analysed for the presence of C. jejuni. C. jejuni was not cultured from systemic organs (liver, lungs, or spleen) from the animals in any group. However, samples of small and large intestines in the test and control animals showed a difference in bacterial load. Bacterial counts isolated from small and large intestines of His-Cj1344c vaccinated mice were lower than those observed in control animals thought the significance was not statistically different as determined by un-paired t -tests (Figure 6.3).

Figure 6.3 C. jejuni bacterial load in different organs in subcutaneously vaccinated mice

Legend:
A1-A7 - subcutaneous His-Cj1344c immunisation
D1-D4 - subcutaneous PBS control immunization
G1-G4 - non-immunised controls

6.2.4 Immunisation with His-Cj1344c using intraperitoneal delivery method

Immunisation: Intraperitoneal delivery of $5 \mu \mathrm{~g}$ of purified His-Cj1344c mixed with Freund's adjuvant at 2 weeks intervals resulted in high IgG titres (compared to PBS controls and negative controls) 2 weeks after the fourth dose (Table 6.2). In addition, mean IgA titres for 8 mice showed higher levels compared to controlled mice. The IgM titres, however, showed no significant difference when compared to controls (Table 6.2). The His-Cj1344c specific serum immunoglobulin titres showed a steady increase during the course of the vaccination regimen. The highest end point dilution titre of anti-His-Cj1344c IgG serum was 1:65,000 (1 out of 8 animals), while the lowest point dilution was $1: 256$ (2 out of 8 animals) showing the substantial antibody response variation between individual animals.

Table 6.2 His-Cj1344c specific immunoglobulin response in mice after $4^{\text {th }}$ booster injection delivered intraperitoneally

	Animal	IgA	IgG	IgM
His-Cj1344c immunised	B1	0	$1: 256$	$1: 64$
	B2	$1: 4,086$	$1: 65,376$	$1: 64$
	B3	$1: 64$	$1: 1,024$	$1: 128$
	B4	$1: 32$	$1: 256$	$1: 64$
	B5	$1: 64$	$1 ; 2,048$	$1: 256$
	B6	$1: 64$	$1: 2,048$	$1: 256$
	B7	$1: 64$	$1 ; 1,024$	$1: 128$
PBS immunised	B8	$1: 64$	$1: 1,024$	$1: 64$
	E1	0	$1: 2,048$	$1: 256$
	E3	$1: 64$	$1: 4,086$	$1: 2,048$
	E4	$1: 64$	$1: 2,048$	$1: 256$
	E3	0	$1: 512$	$1: 128$

Protection studies: All animals were challenged orally with wild type C. jejuni NCTC 11168 same as the subcutaneously vaccinated mice. Daily observations of animals did not record any signs of illness for the entire duration of the experiment.

Bacterial load was assessed in faeces of mice receiving His-Cj1344c intraperitoneally. The bacterial load remained stable during the course of the experiment and did not show a marked difference between control animals and HisCj1344c vaccinated animals (Figure 6.4)

Figure 6.4 C. jejuni faecal load in intraperitoneally vaccinated mice over the period of 6 days and their respective controls

Legend:
B1-B8 - intraperitoneal His-Cj1344c immunisation
E1-E4 - intraperitoneal PBS control immunisation
G1-G4 - non-immunised controls

Similarly to the group of animals that were immunised with His-Cj1344c subcutaneously, 7 days post infection all animals in this group showed no presence of C. jejuni in systemic organs. However, bacterial numbers in the small and large intestines in this group of animals was notably higher than those in the subcutaneous group. In addition, there was no statistical difference in bacterial counts between His-Cj1344c vaccinated animals and the control animals (Figure 6.5).

Figure 6.5 C. jejuni bacterial load in different organs in intraperitoneally vaccinated mice
Legend:
B1-B8 - intraperitoneal His-Cj1344c immunisation
E1-E4 - intraperitoneal PBS control immunisation
G1-G4 - non-immunised controls

6.2.5 Immunisation with His-Cj1344c using intranasal delivery method

Immunisation: Administration of His-Cj1344c intranasally mixed with Cholera Toxin Subunit B at 2 weeks intervals resulted in low IgG titres (compared to subcutaneous and intraperitoneal vaccination regimen). The IgG titres were not significantly higher than those observed in control groups (Table 6.3). In addition, mean IgA and IgM titres showed no significant difference when compared to controls. The His-Cj1344c specific serum IgG titres showed steady increase during the course of vaccination regimen reaching highest end point dilution titre of anti-His-Cj1344c IgG serum of 1:4,000 (1 out of 8 animals). The lowest point dilution was 1:64 (3 out of 8 animals) suggesting that this method of antigen delivery was the least successful in raising His-Cj1344c specific antibodies in mice.

Table 6.3 His-Cj1344c specific immunoglobulin response in mice after $4^{\text {th }}$ booster injection delivered intranasally

	Animal	IgA	IgG	IgM
His-Cj1344c immunised	C 1	0	$1: 64$	$1: 128$
	C 2	16	$1: 2,048$	$1: 256$
	C 3	0	$1: 128$	$1: 64$
	C 4	0	$1: 64$	$1: 64$
	C 5	128	$1: 4,086$	$1: 4,086$
	C 6	0	$1: 64$	0
	C 7	C 8	16	$1: 1,024$
PBS immunised	F 1	$1: 32$	$1: 64$	
	F 2	$1: 128$	$1: 1,024$	$1: 512$
	F 3	0	$1: 256$	$1: 32$
	F 4	$1: 32$	$1: 256$	$1: 64$

Protection studies: All animals were challenged orally with wild type C. jejuni NCTC 11168 same as the subcutaneously vaccinated mice. Daily observations of animals did not record any signs of illness for the duration of the experiment.

Administration of His-Cj1344c intranasally seems to confer some protection against C. jejuni infection as vaccinated mice in this group show lower faecal bacterial load during the course of the infection when compared to control animals, though great variation between animals was observed (Figure 6.6).

Figure 6.6 C. jejuni faecal load in intranasally vaccinated mice over the period of 6 days and their respective controls
Legend:
C1-C8 - intranasal His-Cj1344c immunisation
F1-F4 - intranasal PBS control immunisation
G1-G4 - non-immunised controls

Examination of the systemic organs of animals in this group for the presence of C. jejuni identified one PBS vaccinated animal that had C. jejuni present in its liver. The systemic organs of the rest of the animals in this group were free of C. jejuni. The bacterial loads in the small and large intestines showed no significant difference between His-Cj1344c vaccinated and the control groups (Figure 6.7)

Figure 6.7 C. jejuni bacterial load in different organs in intranasally vaccinated mice

[^1]
6.2.6 Mice exposure to transient infection

The presence of relatively high titres of anti-His-Cj1344c antibodies in the sera of control animals suggested a transient infection of animals with Campylobacter spp prior or during the course of vaccination. In addition, it provided hypothetical explanation for the non-significant difference in bacterial counts between the vaccinated and control groups observed in the C. jejuni challenge experiments.

To determine if pre-bleed sera taken before the initial vaccination and after the last dose of vaccination in PBS vaccinated control animal mice contained C. jejuni specific antibodies, Western blot analysis was performed using different bacterial cell lysates. This experiment confirmed transient infection of mice with Campylobacter spp. or a campylobacter related species (Figure 6.8) as results indicate cross reactivity of mice sera with different bacterial species and different bacterial proteins within the lysates. In addition, recognition of purified His-Cj1344c by sera of sham vaccinated mice suggests that antibody titres observed in sera of control mice in this experiment were raised against native Cj 1344 c protein or its homologue in other bacterial species during transient infection with C. jejuni or related organism.

Figure 6.8 Western blot analyses of different bacterial lysates and His-Cj1344c protein using mice sera pre and post vaccination

CHAPTER 6

6.3 Discussion

Despite its importance as a human diarrheal pathogen and its strong association with GBS (Jacobs et al., 2008) a commercial vaccine against C. jejuni is not available. Studies aimed at developing a human anti-Campylobacter vaccine based on killed cells (Campylobacter whole-cell [CWC] vaccine) have been undertaken in mice, ferrets and non-human primates (Baqar et al., 1995a, Baqar et al., 1995b, Burr et al., 2005). Introduction of anti-CWC vaccines, however, seems rather unlikely for several reasons. One of the main limitations of this vaccine approach is the high level of genetic diversity of the Campylobacter strains resulting in strain-specific vaccines. Secondly, introduction of a human anti-Campylobacter vaccine containing whole attenuated bacterial cells to the pharmaceutical market before the elucidation of the detailed mechanisms of the autoimmune disease caused by the mimicry between bacterial LOS and human gangliosides, is considered too risky (Ang et al., 2003). In addition, the association of C. jejuni infection and the development of reactive arthritis further complicates the use of the whole cell killed vaccine. The pathophysiology of the Campylobacter disease and the C. jejuni surface structures involved in the process are largely unknown (Pope et al., 2007). On the other hand, subunit vaccine approaches generally utilize antigens that play a role in virulence, however, the C. jejuni pathogenesis remains poorly understood (Jagusztyn-Krynicka et al., 2009) making the choice of antigen candidates problematic.

In this study the issues described above were considered and an enzyme with an intra- and extra-cellular function was chosen as a potential candidate for the C. jejuni vaccine. High antibody titres obtained in rabbit immunisation with HisCj 1344 c provided encouraging preliminary results for the investigation of the possible protective role of the putative glycoprotease (Cj 1344 c) against C. jejuni
infection. The use of E. coli His-tag expressed protein was benefitial in terms of vaccination safety as the protein shows the absence of enzymatic activity expected from C. jejuni native enzyme (Chapter 3), but at the same time antibodies raised against the His-Cj1344c show cross-reactivity with native C. jejuni Cj1344c protein (Chapter 5). Mouse immunisation trials with His-Cj1344c were undertaken to determine the best route for antigen delivery and to provide animal safety data of the vaccination regimen using three different routes of delivery: subcutaneous, intraperitoneal and intranasal. The data presented in this chapter demonstrate the subcutaneous delivery of the His-Cj1344c, when administered with Freund's adjuvant, is the most effective in eliciting the immune response, when compared with other two routes of delivery. Vaccination of mice with His-Cj1344c resulted in varied antibody titre levels in the animals, confirming that antibody levels depend on the delivery method as well as the host immune response.

The IgG His-Cj1344c specific antibody titres reaching up to $1: 65,000$ in animals in the subcutaneous delivery group are encouraging for future vaccine development, as these levels of antibody titres are higher or similar to those reported in the literature for other C. jejuni antigens. The magnitude of the serum immune responses detected in this study can be compared to those reported for flagellumsecreted proteins in mice by Baqar et al. The IgG levels obtained in His-Cj1344c study $(1: 65,000)$ are several magnitudes higher than those obtained in vaccination with flagellum-secreted protein FlaC (1:164), which reached the titre levels of this study only after vaccinating mice with $25 \mu \mathrm{~g}$ of the FlaC antigen. On the other hand, the His-Cj1344c specific IgG titre levels reported here are significantly lower than the ones reported in case of flagellum-secreted proteins, FspA1 and FspA2 tested in mice, which reached levels of 1:2,400,000 and 1:300,000 respectively (Baqar et al.,

CHAPTER 6

2008). However, the protection provided in the case of these two flagellum-secreted proteins is likely to be strain specific as these proteins show considerable diversity among C. jejuni strains (Poly et al., 2007). Cj1344c protein, on the other hand, shows significant conservation among strains (90-100\% amino acid similarity) and as such is likely to be a better vaccine candidate. The high His-Cj1344c specific IgG antibody titres observed here were also similar to the high antibody titres observed in a His-Cj1344c rabbit immunisation trial (Chapter 5) showing that the high antibody response is not species specific. The animals in subcutaneous delivery group also had a reasonably high serum IgA and IgM titre values compared to the other two delivery method groups, averaging 1:1,000. These levels of IgA and IgM are within the levels reported in the literature which range from 1:30 in case of MBP-FlaA (Lee et al., 1999) to $1: 32,000$ in case of FspA1 protein immunisation (Baqar et al., 2008).

The data resulting from a subsequent protection trial shows that His-Cj1344c is capable of eliciting a limited protective immune response against C. jejuni as measured in an oral challenge mouse model. The subcutaneous administration of 5 $\mu \mathrm{g}$ of His-Cj1344c resulted in the immunised animals showing a lowered faecal bacterial count during intestinal colonization compared to control animals (Figure 6.2), though the results were not statistically significant. In addition, the bacterial numbers in the faeces have a general trend of reduction at day 6 of the experiment in the His-Cj1344c immunised group of animals. The results of bacterial counts in the small and large intestines after bacterial challenge (Figure 6.3), showed reduced numbers of C. jejuni in the His-Cj1344c immunised mice, compared to control mice.

The animals in the intraperitoneally administered His-Cj1344c group had generally lower titre counts, suggesting that this antigen delivery method was less
successful. The faecal bacterial counts data collected during the challenge study showed that this immunisation regimen provided no protection against C.jejuni colonisation in mice.

Similar to the animals in the intraperitoneally administered His-Cj1344c group, animals immunised intranasally had low titre counts compared to the subcutaneously immunised mice. The IgG titres in this group of animals averaged 1:1,000, while IgA titres averaged $1: 20$. The low IgA titres were somewhat surprising as the mucosal antigen delivery was thought to stimulate production of IgA antibody subclass. Though, the direct mucosal antibody response was not determined, the serum IgA was significantly lower than reported for other C. jejuni antigens administered by this method. In the study of flagellum-secreted protein, FspA1, IgG titre levels of 1:32,000 have been reported (Baqar et al., 2008). The use of LTR adjuvant in the FspA1 study as opposed to CT adjuvant in this study may have attributed to the reduced immune response in this group. In addition, the methodology of administering the adjuvant to the external nares of the mice, where some of the vaccine can be swallowed rather than inhaled by an animal, could contribute to the differences in titres observed in this study. The IgM titres in this group did not show significant difference when compared to titres from the control animals, further confirming that the administration of the antigen by this route was not optimal for inducing an immune response.

The bacterial challenge in this group of animals shows some, not statistically significant, reduction of the bacteria numbers in the faeces of immunised animals, while the bacterial counts in the small and large intestines showed no significant difference between the immunised and control animals. This confirms that the

CHAPTER 6

immune response raised in this group was not sufficient to reduce the gastrointestinal bacterial colonisation in mice.

This pilot study of His-Cj1344c immunisation of mice to determine the protection efficacy against C. jejuni intestinal colonisation has identified a number of problems that need to be addressed in future studies. Primarily, the low antibody response to the antigen in some animals could be explained by the minimal amount of antigen used in the immunisation trials ($5 \mu \mathrm{~g}$); compared to the amounts used in other studies (up to $50 \mu \mathrm{~g}$ of antigen). In the immunisation study of MBP-FlaA fusion protein, the use of $50 \mu \mathrm{~g}$ of the antigen produced significantly increased serum IgG response of 1:2,000,000 compared to 1:450,000 obtained after immuniation with $6 \mu \mathrm{~g}$ of the antigen (Lee et al., 1999). The increased use of the antigen in HisCj1344c immunisation study could significantly increase antibody response in animals and potentially provide protection against C. jejuni intestinal colonisation.

A minimal dose of the antigen was used in order to avoid possible toxicity of as its function is not fully elucidated. The native protein was speculated to degrade O-sialoglycoproteins which are the main constituent of the mammalian mucosal layer, and as such was not recommended for use in this study. The His-Cj1344c, on the other hand, was used as it was shown in this study that it was not fully functional due to misfolding or a lack of enzyme co-factor (Chapter 2). However, the noted minimal activity of the recombinant His-Cj1344c protein during glycan array studies and MUC2 digest studies had to be taken into consideration, resulting in the minimal amount of the protein used in the pilot study. The $5 \mu \mathrm{~g}$ dose of His-Cj1344c during immunisation did not produce any adverse effects in the mice, so future studies could potentially use a higher dose of antigen and thereby potentially increase antibody titre levels.

This immunisation study has also identified that the non-vaccinated mice had His-Cj1344c specific antibodies, similar to findings of Shewen et al. in the M. haemolytica gcp vaccination trials (Shewen et al., 2003). This finding suggests that the His-Cj1344c specific antibodies have been produced in the non-vaccinated group of animals through a transient infection or an infection previous to immunisation with C. jejuni or a related species against the native protein. Analysis of the control mice sera by Western blot analysis after the immunisation regimen using different bacterial whole cell lysates showed specificity of the sera to the whole cell proteins which was not observed in the sera of the mice before vaccination. Though the faecal samples were collected and analysed by plating on a Campylobacter selective media on a weekly basis for the duration of the study, transient infection was not detected. The presence of the H. hepaticus, however, a bacterium related to C. jejuni, could have attributed to the rise of His-Cj1344c specific antibodies as this bacterium also possesses a Cj1344c homologue. Due to its localisation in mouse liver, this bacterium would not be detected by the faecal sampling performed in the study. Considering that the control group of animals has His-Cj1344c specific antibodies in their sera the comparison between the immunised and control groups is difficult and conclusions drawn from it need to be carefully considered.

6.3.1 Conclusion

Rabbit immunisation with His-Cj1344c provided a good immune response to the antigen with IgG titres reaching 1:65,000. In addition, the finding by Shewen et al. with M. haemolytica gcp calf vaccination which resulted in decreased pneumonic tissue necropsy. These findings initiated immunisation trial with His-Cj1344c in mice to determine the protective ability of the antigen against the C. jejuni infection. This preliminary immunisation study has identified a high IgG immune response to His-Cj1344c in mice, as well as a relatively high IgA response in the subcutaneous delivery group. The trial of the three different antigen administration routes has determined the best immune response to the His- Cj 1344 c to be with subcutaneous immunisation. The protection studies against C. jejuni infection have determined that the mice immunised with His-Cj1344c showed a lower number of C. jejuni cells in their faeces and small and large intestines, which was indicative of lower colonisation. Though the results of this study were not statistically different, the trend observed in the results is encouraging to warrant further examination of this antigen as a vaccine candidate against C. jejuni infection.

CHAPTER 7

General discussion

Campylobacter jejuni infection is one of the most commonly identified bacterial causes of acute gastroenteritis worldwide. Data obtained from the United States, Europe, and Australia reveals that $50-70 \%$ of all Campylobacter infections have been attributed to the consumption and handling of contaminated poultry (Hall et al., 2005). The increasing number of human infections with C. jejuni and C. coli, strains resistant to the antibiotics commonly used in human therapy (i.e., macrolides, quinolones and tetracycline) constitutes a serious medical problem (Moore et al., 2006). Emerging strains of Campylobacter resistant to the commonly used antibiotics, significantly impair the process of combating campylobacteriosis by prolonging therapy and adding cost to an already burdened medical system. The development of an effective vaccine against C. jejuni infections is desirable. Vaccine safety remains a major consideration in the development of the C. jejuni vaccine. The molecular mimicry between bacterial LOS structures and human gangliosides presents a serious problem as it is associated with the development of a reactive arthritis/arthropathy and neuroparalytic syndromes such as Guillain-Barré Syndrome (Dingle et al., 2001). This makes the use of the whole cell killed C. jejuni vaccine risky in the view of paucity of knowledge concerning C. jejuni physiology and pathogenesis.

The aim of this study was to determine the potential of the C. jejuni putative glycoprotease encoded by the Cj1344c gene as a vaccine candidate, and to characterise the role of the protein in bacterial pathogenesis. A C. jejuni glycoprotease enzyme orthologue was identified based on amino acid similarity to M. haemolytica O-sialoglycoprotease (Gcp) (Abdullah et al., 1991). Though the enzymatic specificity for O-sialoglycoproteins has been determined for the M. haemoltica Gcp, its role in bacterial pathogenesis is currently unknown (Abdullah et
al., 1992). To determine the role of the Cj 1344 c in C. jejuni pathogenesis, creation of the isogenic mutant was attempted in order to assess the effect of the mutation on the bacterial cell and in vivo colonisation models. The activity and the specificity of Cj1344c were examined by expression and purification of the protein using E. coli and performing enzymatic studies with recombinant protein. To determine its potential use as a vaccine candidate against C. jejuni, studies to investigate the immunogenicity of the His-Cj1344c protein and the possibility of its use in animal immunisation trials were performed.

7.1 Mutagenesis

The methodology for the Cj1344c gene mutagenesis needed to be carefully considered as the Cj1344c gene is positioned within the C. jejuni chromosome in an operon-like locus with other genes of unknown function. To determine the effect of the Cj1344c mutagenesis on C. jejuni and potentially determine the role of the gene product in bacterial pathogenesis, insertional inactivation of the gene was attempted. The insertional inactivation of the Cj1344c gene posed a potential problem as it had a capacity to cause a polar mutation by inactivating genes downstream from the insertion point of the antibiotic resistance gene cassette. This is not unusual for the dense genome of C. jejuni, where 90% of the genome encodes proteins (Parkhill et al., 2000a). Many of the C. jejuni genes have an unknown function, which further complicates the mutagenesis studies where there is a possibility of a polar mutation. In this instance, the Cj1343c gene, downstream from the putative glycoprotease Cj1344c gene, encodes for a putative periplasmic protein and is identified as a gene potentially involved in type II secretion system (Wiesner et al., 2003). In addition, the Cj1344c is positioned in close proximity to the flaA and flaB genes prompting
speculation that the Cj 1344 c protein uses the flagellar secretion system. The polar mutation caused by insertional activation of $C j 1344 c$ could, therefore, significantly change the bacterial phenotype of the resulting isogenic mutant in which case the true effect of Cj1344c mutation would not be determined. To circumvent this, different plasmid suicide constructs (pGU0523, pGU0613, pGU0707 and pGU0804) were prepared and utilised in an attempt to generate the Cj1344c isogenic mutant. The suicide plasmid constructs contained the $C j 1344 c$ gene interrupted by one of the following different antibiotic resistance cassettes (promoter-less kanamycin resistance gene cassette, promoted kanamycin resistance gene cassette, promoted kanamycin resistance gene cassette with oxa-61 gene promoter downstream and promoter-less chloramphenicol gene resistance cassette) (Table 4.1).

Multiple attempts to mutate the Cj1344c gene did not produce a viable C. jejuni isogenic mutant, although the construct DNA was proven to be integrated into the C. jejuni genome during transformation, suggesting that the inactivation of this gene is lethal for the bacterium. This finding is similar to the results of mutagenesis studies of the $g c p$ homologues in S. aureus (Zheng et al., 2005), M. haemolytica (Mellors, 2008) and H. influenzae (Apicella, 2010) which identified that the enzyme is essential for bacterial growth, but were unable to determine the function of the enzyme. The only studies that provide insight into the function of the gcp gene homologue product are conditional mutagenesis studies during which the expression of the gene is reduced. These studies utilised a controllable promoter element to down-regulate the expression of the gene, and subsequently examine the effect of the gene down-regulation on the bacterial phenotype.

The gene down-regulation studies in different bacteria have identified the importance of the glycoprotease gene homologue for bacterial survival, but have not
always identified a function of the protein and its role in the bacterial pathogenesis. However, a few studies have determined or suggested a role for the enzyme in different bacteria. The down-regulation of $g c p$ expression in S. aureus had a lethal effect on bacterial growth and Gcp was demonstrated to be a critical mediator involved in the modification of cell wall biosynthesis through modification of cell wall peptidoglycans (Zheng et al., 2007). A recent publication by Katz et al., using this approach, identified the role of the glycoprotease encoded by the E. coli ygj Y gene in the metabolism of toxic products of glycation (Amadori-modified proteins (AMPs) and advanced glycated end products (AGEs)). Though the enzymatic activity of the E. coli enzyme in this case has not been examined, these findings suggest that the enzyme in E. coli does not have a specificity for the O-sialoglycoproteins observed in M. haemolytica gcp (Abdullah et al., 1992). The role of the gcp enzyme homologue in removal of the toxic components of glycation provides an explanation why it was not possible to create isogenic mutants of Cj1344c in C. jejuni, but does not explain the specificity of the enzyme for O-sialoglycoproteins observed in M. haemolytica gcp studies and this study.

Unfortunately, a controllable promoter element has not been identified in C. jejuni, preventing the examination of the role of Cj 1344 c by the method of gene down-regulation. Due to time constraints, other methods, such as the chromosomal Cj1344c gene deletion and complementation by the presence of a low-copy-number plasmid carrying the Cj1344c coding sequence were not be explored. This approach, as well as antisense-mRNA approach to down-regulate expression of the gene on RNA level, could be explored in future studies to determine the role of Cj 1344 c in C. jejuni.

From the mutagenesis studies of C. jejuni Cj1344c reported here and mutagenesis studies in other bacterial species it can be concluded that the Cj1344c gene inactivation is lethal for the bacteria. The functions of the gcp within a bacterial cell seem to be complex and vary between bacterial species. The role of gcp in metabolism of toxic products of glycation in E. coli suggests an intracellular function for the enzyme (Katz et al., 2010) and gives a plausible explanation for the essential role of the enzyme. On the other hand, the role of the enzyme homologue in S. aureus, in the cell wall peptidoglycan synthesis through the regulation of murein hydrolases, involved in this process, suggests an extracellular function of the enzyme. The finding of the gcp in the culture supernatant of M. haemolytica reported by Otulakowski et al. and this study, in C. jejuni, may suggest the role of the enzyme in the degradation/modification of the host cell glycoproteins.

7.2 Enzymatic specificity and function

Based on the study of M. haemolytica gcp specificity to O-linked sialoglycoproteins and its involvement in the pathology of calf pulmonary infections (Abdullah et al., 1992, Shewen et al., 2003), it was proposed in this study that the C. jejuni putative glycoprotease homologue, Cj 1344 c , was involved in bacteria-host interactions by exerting an effect on host glycopropteins, specifically the mucin glycoproteins in the host gastrointestinal tract. The role of C. jejuni gcp homologue was hypothesised to be involved in degradation of the mucous layer in the gastrointestinal tract allowing bacterial penetration and potentially enhancing adherence to the epithelial cells. The possibility of the modification of this layer by the enzyme was also hypothesised. New glycoprotein structures created by the action of enzyme cleavage may provide more intimate adherence of the bacterial cells to the
mucous layer. The interaction between mucins and bacterial cells was demonstrated for C. upsaliensis, a closely related species, and was speculated to influence access of the bacteria to cell membrane receptors and thereby influence host resistance to infection (Sylvester et al., 1996). The modification of glycoproteins was hypothesised to enhance this initial interaction and aid in subsequent invasion of bacteria.

The initial characterisation of the enzyme specificity was performed by the ligand-binding interactions between E. coli expressed His-Cj1344c and a library of amino acids and glycoproteins. The results of this study identified methionine, lysine and arginine to be amino acids recognised by the enzyme. In addition, His-Cj1344c also demonstrated specificity to human MUC2 and bovine lactoferrin, an iron-binding O-sialoglycoprotein present in mammalian milk.

To confirm the interactions identified between the His-Cj1344c and the amino acids, STD-NMR method was employed. The ligand binding studies performed, failed to confirm the interactions initially observed with the amino acid array technology, which was hypothesised to be due to a strong binding interaction between these amino acids and His-Cj1344c, as this is one of the limiting factors of the method (Haselhorst et al., 2009). These three amino acids were, therefore, hypothesised to indicate amino acid residues within a polypeptide recognised by the enzyme as a cleavage site. The M. haemolytica gcp enzyme was shown to have a specific amino acid sequence cleavage site and C. jejuni Cj 1344 c was thought to be no exception to this. The experiments involving degradation of the glycophorin A by M. haemolytica Gcp have identified the amino acid recognition sequence of the enzyme to be Arg-31-Asp-32 (Abdullah et al., 1992). The C.jejuni Cj1344c amino acid recognition specificity, identified here to be methionine, lysine and
arginine, however, may be different to M. haemolytica gcp considering that the predicted amino acid sequence of Cj 1344 c shows only 37% similarity to M. haemolytica Gcp (Chapter 3). The substrate specificity difference between C. jejuni Cj1344c and M. haemolytica Gcp may be due to the different environmental niches of these two organisms, considering that M. haemolytica is a typical bovine lung pathogen, while C. jejuni is a typical gastrointestinal bacterium. The substrate specificity difference may also reflect the different roles these enzymes play in the pathogenesis of these two organisms.

A MUC2 digest with the recombinant C. jejuni glycoprotease, expressed in E. coli was attempted to confirm the interactions of His-Cj1344c and mucin observed with the glycoprotein array method. The findings reported here, however, did not conclusively prove the interaction of the enzyme with MUC2, as the results of the enzymatic digest did not show a distinct cleavage pattern of MUC2 as assayed by SDS-PAGE analysis. The problem was hypothesised to be due to the incomplete modification of the His-Cj1344c enzyme in E. coli, lack of enzyme co-factors or to instability of the enzyme in E. coli. These problems have also been observed in enzymatic studies with M. haemolytica gcp expressed in E. coli (Abdullah et al., 1991). Abdullah et al. have hypothesised that gcp may need posttranslational modification or additional chaperones, absent in E. coli, to be activated. They have compared it to leukotoxin, another secreted protein of M. haemolytica Al where the leukotoxin determinant is composed of four contiguous genes, lktCABD. The expression of $l k t C$ functions in the activation of leukotoxin (LktA), while proteins encoded by $l k t B$ and $l k t D$ are involved in the secretion of leukotoxin (Abdullah et al., 1991). It is not known whether the glycoprotease requires a similar activation mechanism, which might explain the lower activity of the enzyme expressed in
E. coli. Examination of the C. jejuni DNA sequence immediately downstream from the Cj1344c gene showed an open reading frame encoding a putative periplasmic chaperone-like protein of about 18.6 kDa which might be involved in the secretion of the glycoprotease. This data suggest that the glycoprotease may require chaperon molecules for secretion, or posttranslational modification for its activation. Due to time constrains, studies involving the interactions between Cj 1344 c and potential chaperones were not further examined.

The strong interactions between His-Cj1344c and MUC2 observed using the glycan array technology, in addition to the limited activity of the recombinant enzyme during the enzymatic studies involving MUC2 digest, suggest that Cj1344c is most likely interacting with mucins and potentially assists during the initial stages of C.jejuni pathogenesis. In addition to the findings of this study, the possible interactions between Cj1344c and MUC2 have also been observed in other published studies. Tu et al. showed that the MUC2 presence in the media growing C. jejuni causes upregulation of the Cj1344c gene suggesting that the gene product may be involved in the degradation of this molecule (Tu et al., 2008). On the other hand, the high concentration of the MUC2 in culture media is inhibiting C. jejuni growth, so it can also be speculated that the expression of the Cj 1344 c is one of the protective mechanisms of the bacterium against MUC2.

7.3 Immunisation trial

Development of an effective vaccine against C. jejuni is both, necessary and desirable but is complicated due to a number of factors that include the tremendous antigenic diversity of the organism, a lack of understanding of the nature of acquired immunity, a lack of small animal models suitable for vaccine evaluation, as well as
the fact that the protective epitopes are not clearly defined (Scot, 1997). The subunit vaccine approaches generally utilize antigens that play a role in virulence, but C. jejuni pathogenesis remains poorly understood, in spite of an intensive study (Jagusztyn-Krynicka et al., 2009), which makes identification of potential vaccine antigens extremely difficult.

The His-Cj1344c immunisation trial was performed after the rabbit immunisation with His-Cj1344c provided a reasonably high antibody titre when compared to published immunisation studies with various C. jejuni antigens, such as polysaccharides (Monteiro et al., 2009), whole C. jejuni cells (Burr et al., 2005) or flagellum-secreted proteins (Baqar et al., 2008). In addition, the potential role of the enzyme in the pathogenesis of C. jejuni and its essential role in bacterial survival identified through mutagenesis studies, as well as the high degree of homology observed between the Campylobacter species made it a potentially good candidate for the immunisation trial. In M. haemolytica, the immunisation trial with a recombinant fusion protein expressed by E. coli (Gcp-F) enhanced the protection of calves against infection. Animals vaccinated with Gcp-F had a significantly lower percent pneumonic tissue than unvaccinated controls and a lower percent pneumonic tissue necropsy (Shewen et al., 2003).

The preliminary data presented in this study indicate the subcutaneous delivery of the His-Cj1344c, when administered with Freund's adjuvant, was most effective in eliciting an immune response, when compared with the intraperitoneal and intranasal routes of delivery. Though similar antibody titres have been reported against different C. jejuni antigens such flagellum-secreted FspA1 and FspA2 (Baqar et al., 2008), these proteins show great diversity among C. jejuni strains, which would limit their use in the vaccination trial, despite the protective role they may
exert against C. jejuni infection. This is not the case with $C j 1344 \mathrm{c}$, which shows the high degree of homology between strains and is therefore a good vaccine candidate.

In addition, this study has identified that mice vaccinated with His-Cj1344c showed lower bacterial numbers in faeces observed for the duration of the experiment, as well as lower bacterial counts in the small and large intestines compared to non-vaccinated mice. Though the data were not statistically different, this study shows a more objective, quantitative measurement of the immunisation efficiency by enumerating bacteria present in different organs and tissues, compared to other immunisation studies which determine the efficacy of the vaccine by observation of animal well being. In the study by Baqar et al. using flagellum-secreted C. jejuni proteins, immunisation provided no, or limited strain-specific protection against disease caused by intranasal bacterial challenge, but not against intestinal colonisation (Baqar et al., 2008). The intranasal challenge model used in this study produced some signs of illness in mice, but this model is still debatable (as reviewed (Jagusztyn-Krynicka et al., 2009) as signs and symptoms of the C. jejuni infection in mice are usually mild and difficult to observe.

This immunisation study has also identified that the non-vaccinated mice had His-Cj1344c specific antibodies, similar to findings of Shewen et al. in M. haemolytica gcp vaccination trials (Shewen et al., 2003). This finding suggests that the His-Cj1344c specific antibodies have been produced in the non-vaccinated group of animals through a transient infection with C. jejuni or related species against the native protein. More importantly, these studies confirm that the enzyme is expressed by C. jejuni in vivo and is likely involved in the bacterial pathogensis. These findings were also recorded by Lee at al. who documented the presence of anti-Gcp Ab in bovine serum, which arose spontaneously, as a result of natural exposure to M.
haemolytica. They also showed that animals with an anti-Gcp response had less pneumonia at necropsy, suggesting that the presence of anti-Gcp activity may induce protective immunity, enhance resistance to pneumonia and neutralise the effect of gcp on the lung tissue during the infection, thus reducing the severity of the disease (Lee et al., 1994).

7.4 Conclusion and further studies

From the mutagenesis studies of C. jejuni Cj1344c reported here it can be concluded that the $C j 1344 c$ gene inactivation is lethal for C. jejuni survival. These findings suggest an intracellular function of the protein, potentially in degradation of the toxic by products of the cell metabolism. On the other hand, the presence of the protein in culture supernatant of C. jejuni, as well as the interaction of the His-Cj1344c with MUC2 observed during glycan array studies suggest a possible function of the enzyme in MUC2 degradation during bacterial colonisation/infection. It can be also speculated that the enzyme is involved in protection of the bacterial cells by means of degrading mucin which has been reported as being inhibitory for the C. jejuni growth. However, these hypotheses suggesting the functions of the gcp within a bacterial cell could not be confirmed due to time constraints and technical difficulties encountered during the project. The His-Cj1344c specific antibodies could be used in the future to block the activity of the native protein in C. jejuni during adherence/invasion studies which would provide an insight into the function of the protein in vitro and provide an alternative for creating the isogenic mutant.

Characterisation of C. jejuni Cj1344c, glycoprotease homologue has revealed the binding capacity of the protein to methionine, lysine and arginine, suggesting that these amino acids are present in the sequences within glycoproteins that are recognised by Cj1344c. The specificity of His-Cj1344c to MUC2 observed during glycan array studies could not be conclusively confirmed by the enzymatic digest of the MUC2 with His-Cj1344c. This was hypothesised to be caused by the inactivity of the recombinant protein due to misfolding, instability in E. coli or lack of enzyme cofactors. Utilisation of the native protein which was detected in the C. jejuni culture
supernatant may circumvent the problems associated with the recombinant protein expressed in E. coli. The His-Cj1344c specific antibodies can potentially be utilised to block the activity of the enzyme in the negative controls. This approach would address the problem of the presence of other proteases exerting an effect on the MUC2 and masking the true effect of Cj 1344 c which was experienced in other studies using culture supernatant.

The preliminary mouse immunisation study has identified that subcutaneous immunisation provided the best immune response to His-Cj1344c. The protection studies against C.jejuni infection have determined that mice immunised with His-Cj1344c show a lower number of C. jejuni cells in their faeces and small and large intestines, which was indicative of lower colonisation. Though the results of this study were not statistically different, the trend observed in the results is suggesting it is worthwhile continuing to examine this antigen as the vaccine candidate against C. jejuni infection. The minimal dose of $5 \mu \mathrm{~g}$ His-Cj1344c used during immunisation did not produce any adverse effects in mice, so the future studies could potentially use a higher dose of the antigen and potentially increase the antibody titre levels. Examination of the pathological changes in the gastrointestinal tract of immunised vs. non-immunised animals could provide an insight into the changes in the gastrointestinal pathology caused by immunisation with His-Cj1344c and subsequent C. jejuni challenge. These findings could potentially provide an insight into the role and action of the glycoprotease on the mucous layer in vivo.

Appendix A

Amino Acid Array

Amino Acid	1-letter	Description
Alanine	A	Nonpolar, hydrophobic
Arginine	R	Polar, basic, hydrophilic
Asparagine	N	Polar, hydrophilic
Aspartic acid potassium salt	D	Polar, acidic, hydrophilic
Cysteine	C	Polar, hydrophilic, acidic
Glutamic acid sodium salt	E	Polar, acidic, hydrophilic
Glutamine	Q	Polar, hydrophilic
Glycine	G	Nonpolar, hydrophobic
Histidine	H	Polar, basic, hydrophilic
Isoleucine	L	Nonpolar, hydrophobic
Leucine	K	Nonpolar, hydrophobic
Lysine	M	Polar, basic, hydrophilic
Methionine	F	Nonpolar, hydrophobic
Phenylalanine	P	Nonpolar, hydrophobic
Proline	S	Polar, hydrophilic
Serine	T	Polar, hydrophilic
Threonine	W	Nonpolar, hydrophobic
Tryptophane	Y	Polar, hydrophilic
Tyrosine	V	Nonpolar, hydrophobic
Valine		

Appendix B

Table of Glycans

Code	Name	Structure
	Terminal Galactose	
1 A .	Lacto- N -Biose I	Gal 1 1-3GlcNAc
1 B .	N -Acetyllactosamine	Galß1-4GlcNAc
1C.	$\beta 1-4 \mathrm{galactosyl}$-galactose	Gal 1 1-4Gal
1D.	$\beta 1-6 \mathrm{galactosyl}-\mathrm{N}$-acetylglucosamine	Gal 1 1-6GlcNAc
1E.	$\beta 1-3$ galactosyl- N-acetylgalactosamine	Gal 1 1-3GalNAc
1F.	Galb1-3GalNAc $\beta 1-4 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$	
1G	Lacto- N -tetrose	Gal $\beta 1-3 \mathrm{Glc} N \mathrm{Ac} \beta 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
1H	Lacto- N-neotetrose	Gal $\beta 1-4 \mathrm{Glc} N \mathrm{Ac} \beta 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
1I.	Lacto- N-neohexose	Gal $\beta 1-4 \mathrm{Glc} N A c \beta 1-6(\mathrm{Gal} \beta 1-$ 4GlcNAc $\beta 1-3$)Gal $\beta 1-4 \mathrm{Glc}$
1J.	Lacto- N -hexose	Gal $\beta 1-4 \mathrm{Glc} N A c \beta 1-6(\mathrm{Gal} \beta 1-$ $3 \mathrm{Glc} N A c \beta 1-3) \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
1K.	Globotriose	Gal $\square 1-4 \mathrm{Gal} 1$ 1-4Glc
1L.	Tn Antigen	GalNAc $\square 1-O$-Ser
1M.	Galactosyl-Tn Antigen	Gal $\square 1-3 \mathrm{Gal} N \mathrm{Ac}$ 人1-O-Ser
1N.	人1-3 Galactobiose	Gal $\square 1-3 \mathrm{Gal}$
10.	Linear B-2 Trisaccharide	Gal $\square 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc} N \mathrm{Ac}$
1P.	Linear B-6 Trisaccharide	Gal $\square 1$-3Gal $\beta 1-4 \mathrm{Glc}$
2A.	$\alpha 1-3, \beta 1-4, \alpha 1-3$ Galactotetrose	Gal $\square 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Gal} \alpha 1-3 \mathrm{Gal}$
2B.	$\beta 1-6 \mathrm{Galactobiose}$	Gal 1 1-6Gal
2C.	Terminal disaccharide of globotriose	GalNAc $\beta 1-3 \mathrm{Gal}$
2D.	Receptor for pili of P. aeruginosa	GalNAc $\beta 1-4 \mathrm{Gal}$
2E.	P1 Antigen	Gal $1-4 \mathrm{Gal} \beta 1-4 \mathrm{GlcNAc}$
2F.	α-D- N-acetylgalactosaminyl-1-3Gal- $\beta 1-4 \mathrm{Glc}$	GalNAc $\alpha 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
2G.	iso-Lacto- N-octose	Gal $\beta 1-3 \mathrm{Glc} N A c \beta 1-3 \mathrm{Gal} \beta 1-$ 4GlcNAc $\beta 1-6$ (Gal $\beta 1-3 \mathrm{Glc} N A c \beta 1-$ 3) $\mathrm{Gal} \beta 1-4 \mathrm{Glc}$
2H.	para-Lacto- N -hexose	Gal $\beta 1-3$ GlcNAc $\beta 1-3 \mathrm{Gal} \beta 1-$ 4GlcNAc $\beta 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$

Appendix B（continued）

Code	Name	Structure
	Terminal ${ }^{\text {｀｀Acetyl glucosamine }}$	
4A．	N, N－Diacetyl chitobiose	GlcNAc $\beta 1-4 \mathrm{GlcNAc}$
4B．	$N, N^{\prime}, N^{\prime \prime}$－Triacetyl chitotriose	GlcNAc $\beta 1-4 \mathrm{Glc} N \mathrm{Ac} \beta 1-4 \mathrm{GlcNAc}$
4C．	$N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$－Tetraacetyl chitotetrose	GlcNAc $\beta 1-4 \mathrm{Glc} N A c \beta 1-4 \mathrm{Glc} N A c \beta 1-$ 4GlcNAc
4D．	$N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}, N^{\prime \prime \prime}, N^{\prime \prime \prime \prime \prime}$－Hexaacetyl chitohexose	GlcNAc $\beta 1-4 \mathrm{Glc} N A c \beta 1-4 \mathrm{Glc} N A c \beta 1-$ 4GlcNAc $\beta 1-4 \mathrm{Glc} N A c \beta 1-4 \mathrm{Glc} N A c$
4E．	Bacterial cell wall muramyl discaccharide	GlcNAc $\beta 1-4 \mathrm{MurNAc}$
	Mannose containing structures	
5A．	$\beta 1-2-\mathrm{N}$－Acetylglucosamine－mannose	GlcNAc $\beta 1-2 \mathrm{Man}$
5B．	Bianntennary N －linked core pentasaccharide	GlcNAc $\beta 1-2$ Man α 1－6（GlcNAc $\beta 1-$ 2Mana1－3）Man
5C．	人1－2－Mannobiose	Mana1－2Man
5D．	人1－3－Mannobiose	Mana1－3Man
5E．	人1－4－Mannobiose	Mano1－4Man
5F．	人1－6－Mannobiose	Mano1－6Man
5G．	人1－3，$\alpha 1-6-\mathrm{Mannobiose}$	Man＜1－6（Mano1－3）Man
5H．		Man 1 1－6（Man 1 1－3）Man α 1－ 6（Mana1－3）Man

Appendix B (continued)

Code	Name	Structure
	Fucosylated structures	
7A.	Lacto- N-fucopentose I	$\begin{aligned} & \text { Fuc } \alpha 1-2 \mathrm{Gal} \beta 1-3 \mathrm{Glc} N \mathrm{Ac} \beta 1-3 \mathrm{Gal} \beta 1- \\ & 4 \mathrm{Glc} \end{aligned}$
7B.	Lacto- N -fucopentose II	Gal $\beta 1$-3(Fuc $\alpha 1-4$)GlcNAc $\beta 1-3$ Gal $\beta 1-$ 4Glc
7 C.	Lacto- N-fucopentose III	Gal $\beta 1-4$ (Fuc $\alpha 1-3$)GlcNAc $\beta 1-3 \mathrm{Gal} \beta 1-$ 4Glc
7D.	Lacto- N -difucohexose I	Fuc $\alpha 1-2 \mathrm{Gal} \beta 1-3($ Fuc $\alpha 1-4)$ Glc $N A c \beta 1-$ 3Gal 1 1-4Glc
7E.	Lacto- N -difucohexose II	Gal $\beta 1-3$ (Fuc $\alpha 1-4$)GlcNAc $\beta 1-3 \mathrm{Gal} \beta 1-$ 4(Fucal-3)Glc
7F.	H-disaccharide	Fuca1-2Gal
7G.	2'-Fucosyllactose	Fuc $\alpha 1-2 \mathrm{Gal} 1$ 1-4Glc
7H.	3'-Fucosyllactose	Gal131-4(Fuc 1 1-3)Glc
7 I .	Lewis ${ }^{\text {x }}$	Galß1-4(Fuc 1 1-3)GlcNAc
7 J .	Lewis ${ }^{\text {a }}$	Gal 1 1-3(Fuc 1 1-4)GlcNAc
7 K.	Blood Group A-trisaccharide	GalNAca1-3(Fuc $\alpha 1-2) \mathrm{Gal}$
7 L .	Lactodifucotetrose	Fuc $\alpha 1-2 \mathrm{Gal} \beta 1-4$ (Fuc $\alpha 1-3$)Glc
7M.	Blood Group B-Trisaccharide	Gal131-3(Fuca1-2)Gal
7 N.	Lewis ${ }^{\text {y }}$	Fuc $\alpha 1-2 \mathrm{Gal} \beta 1-4$ (Fuc $\alpha 1-3$)GlcNAc
7 O.	Blood Group H Type II Trisaccharide	Fuc $\alpha 1-2 \mathrm{Gal} 31-3 \mathrm{GlcNAc}$
7 P.	Lewisb tetrasaccharide	Fuc $\alpha 1-2 \mathrm{Gal} \beta 1-3$ (Fuc $\alpha 1-4$)GlcNAc
8A.	Sulpho Lewis ${ }^{\text {a }}$	$\mathrm{SO}_{3}-3 \mathrm{Gal} \beta 1-3$ (Fuc $\alpha 1-4$)GlcNAc
8B.	Sulpho Lewis ${ }^{\text {x }}$	$\mathrm{SO}_{3}-3 \mathrm{Gal} \beta 1-4$ (Fuc $\alpha 1-3$) GlcNAc
8C.	Monofucosyl-para-Lacto- N -hexose IV	Gal $\beta 1-3$ GlcNAc $\beta 1-3$ Gal $\beta 1-4$ (Fuc $\alpha 1-$ 3) Glc $N A c \beta 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
8 D.	Monofucosyllacto- N -hexose III	Gal $\beta 1$-4(Fuc $\alpha 1-3$)Glc $N A c \beta 1-6(G a 1 \beta 1-$ $3 \mathrm{Glc} N A c \beta 1-3) \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
8E.	Difucosyllacto- N -hexose	Gal $\beta 1-4$ (Fuc $\alpha 1-3$)GlcNAc $\beta 1-6$ (Fuc $\alpha 1$ 2Gal $\beta 1-3 \mathrm{Glc} N A c \beta 1-3$) Gal $\beta 1-4 \mathrm{Glc}$
8 F .	Trifucosyllacto- N -hexose	Gal $\beta 1-4$ (Fuc $\alpha 1-3$)GlcNAc $\beta 1-6$ (Fuc $\alpha 1-$ 2Gal $\beta 1$-3(Fuc $\alpha 1-4$)Glc $N A c \beta 1-$ 3) Gal $\beta 1-4 \mathrm{Glc}$

Appendix B (continued)

Code	Name	Structure
	Neu5Ac containing structures	
10A.	Sialyl Lewis ${ }^{\text {a }}$	Neu5Ac $\alpha 2-3 \mathrm{Gal} \beta 1-3$ (Fuc $\alpha 1-4$)GlcNAc
10B.	Sialyl Lewis ${ }^{\text {x }}$	Neu5Ac $\alpha 2-3 \mathrm{Gal} 31-4$ (Fuc $\alpha 1-3$)GlcNAc
10C.	Sialyllacto- N-tetrose a	Neu5Ac $\alpha 2-3$ Gal $\beta 1-3$ GlcNAc $\beta 1-3$ Gal $\beta 1-$ 4Glc
10D.	Monosialyl, monofucosyllacto- N -neohexose	Gal $\beta 1-4$ (Fuc $\alpha 1-3$)GlcNAc $\beta 1-$ 6(Neu5Ac $\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{Glc} N A c \beta 1-$ 3) Gal $\beta 1-4 \mathrm{Glc}$
10K.	2,3'-Sialyllactosamine	Neu5Ac $\alpha 2-3 \mathrm{Gal} 1$ 1-4GlcNAc
10L.	2,6'-Sialyllactosamine	Neu5Aca2-6Gal131-4GlcNAc
10M.	LS-Tetrasaccharide a	
10N.	LS-Tetrasaccharide b	Gal $\beta 1-3($ Neu5Ac $\alpha 2-6)$ Glc $N A c \beta 1-$ 3Gal 1 1-4Glc
100.	LS-Tetrasaccharide c	Neu5Ac $\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{Glc} N A c \beta 1-3 \mathrm{Gal} \beta 1-$ 4Glc
10P.	Disialyllacto- N -tetrose	Neu5Ac $\alpha 2$-3Galß1-3(Neu5Ac $\alpha 2-$ 6) $\mathrm{Glc} N A c \beta 1-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
11A.	2,3'-Sialyllactose	Neu5Ac $\alpha 2-3 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
11B.	2,6'-Sialyllactose	Neu5Ac $\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{Glc}$
11C.	Colominic acid	(Neu5Aca2-8Neu5Ac)n ($\mathrm{n}<50$)
11D.	Biantennary 2,6-sialylated- N -glycan-Asn	Neu5Ac $\alpha 2-6 \mathrm{Gal} \beta 1-4 \mathrm{Glc} N A c \beta 1-$ 2Man 1 1-6(Neu5Ac $\alpha 2-6 \mathrm{Gal} \beta 1-$ 4GlcNAc $\beta 1-2 \mathrm{Man} \alpha 1-6) \mathrm{Man} \beta 1-$ 4GlcNAc $\beta 1-4 \mathrm{Glc} N \mathrm{Ac}-\mathrm{Asn}$

Appendix B (continued)

Code	Name	Structure
	Carageenan and Glycoaminoglycans (GAGs)	
12A.	Neocarratetrose-41, 3-di- O -sulphate (Na^{+})	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{25} \mathrm{~S}_{2} \mathrm{Na}_{2}$ (Mixed anomers. Tetrasaccharide of regular $\kappa \quad-$ carrageenan)
12B.	Neocarratetrose-41-O-sulphate (Na^{+})	$\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{O}_{22} \mathrm{SNa}$ (Mixed anomers. Derived from C1003 by removal of the non-reducing terminal 4 -sulphate)
12C.	Neocarrahexose-24,41, 3, 5-tetra- O-sulphate $\left(\mathrm{Na}^{+}\right)$	$\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{40} \mathrm{~S}_{4} \mathrm{Na}_{4}$ (Mixed anomers. A hybrid sequence comprising carrageenan disaccharides in the order $\kappa-\imath-\kappa$, derived from the carrageenan from Chondrus crispus)
12D.	Neocarrahexose-41, 3, 5-tri-O-sulphate (Na^{+})	$\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{O}_{37} \mathrm{~S}_{3} \mathrm{Na}_{3}$ (Mixed anomers. Hexasaccharide of regular \quad K- carrageenan)
12E.	Neocarraoctose-41, 3, 5, 7-tetra-O-sulphate (Na^{+})	$\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{O}_{49} \mathrm{~S}_{4} \mathrm{Na}_{4}$ (Mixed anomers. Octasaccharide of regular $\quad \kappa$ - carrageenan)
12F.	Neocarradecose-41, 3, 5, 7, 9-penta- O-sulphate $\left(\mathrm{Na}^{+}\right)$	$\mathrm{C}_{60} \mathrm{H}_{87} \mathrm{O}_{61} \mathrm{~S}_{5} \mathrm{Na}_{5}$ (Mixed anomers. Decasaccharide of regular $\quad \kappa$ - carrageenan)
12G.	$\Delta \mathrm{UA}-2 \mathrm{~S} \rightarrow$ GlcNS-6S Na ${ }_{4}$ (I-S)	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{19} \mathrm{~S}_{3} \mathrm{Na}_{4} \quad$ (Predominant disaccharide produced from heparin by heparinase I and II)
12H.	$\Delta \mathrm{UA} \rightarrow$ GlucNS-6S Na ${ }_{3}$ (II-S)	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{16} \mathrm{~S}_{2} \mathrm{Na}_{3}$ (Produced from heparinase II digestion of heparin and heparin sulphate)
12I.	$\Delta \mathrm{UA} \rightarrow 2 \mathrm{~S}-\mathrm{GlcNS} \mathrm{Na} 3$ (III-S)	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{16} \mathrm{~S}_{2} \mathrm{Na}_{3}$ (Produced from heparin by digestion with heparinase I and II)
12J.	$\Delta \mathrm{UA} \rightarrow 2 \mathrm{~S}-\mathrm{GlcNAc}-6 \mathrm{~S} \mathrm{Na} 3$ (I-A)	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{17} \mathrm{~S}_{2} \mathrm{Na}_{3}$ (Minor component produced from heparin by heparinase II)

Appendix B (continued)

Code	Name	Structure
	Carageenan and Glycoaminoglycans (GAGs)	
12K.	$\Delta \mathrm{UA} \rightarrow$ GlcNAc-6S Na ${ }_{2}$ (II-A)	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{14} \mathrm{SNa}_{2}$ (Product of the action of heparinases II and III on heparin and heparan sulphate)
12L.	$\Delta \mathrm{UA} \rightarrow 2 \mathrm{~S}-\mathrm{GlcNAc} \mathrm{Na}_{2}($ III-A)	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{14} \mathrm{SNa}_{2}$ (Minor product of the action of heparinase II on heparin)
12M.	$\Delta \mathrm{UA} \rightarrow \mathrm{GlcNAc} \mathrm{Na}(\mathrm{IV}-\mathrm{A})$	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{11} \mathrm{Na}$ (Produced from heparin sulphate by digestion With heparinase III)
12N.	$\Delta \mathrm{UA} \rightarrow \mathrm{GalNAc}-4 \mathrm{~S} \mathrm{Na} 2{ }_{2}(\Delta \mathrm{Di}-4 \mathrm{~S})$	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{14} \mathrm{SNa}_{2}$ (Produced from various chondroitin sulphates $B y$ the action of chondroitinases ABC, B and AC-1)
120.	$\Delta \mathrm{UA} \rightarrow \mathrm{GalNAc}-6 \mathrm{~S} \mathrm{Na} 2(\Delta \mathrm{Di}-6 \mathrm{~S})$	$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{14} \mathrm{SNa}_{2}$ (Produced from various chondroitin sulphates By the action of chondroitinases ABC, AC-1 and C)
12P.	$\Delta \mathrm{UA} \rightarrow \mathrm{Gal} N \mathrm{Ac}-4 \mathrm{~S}, 6 \mathrm{~S} \mathrm{Na} 3$ ($\triangle \mathrm{Di}$-disE)	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{17} \mathrm{~S}_{2} \mathrm{Na}_{3}$ (Produced from various chondroitin sulphates $B y$ the action of chondroitinases ABC, B and AC-1)
13A.	$\Delta \mathrm{UA} \rightarrow 2 \mathrm{~S}-\mathrm{Gal} N \mathrm{Ac}-4 \mathrm{~S} \mathrm{Na} 2(\Delta \mathrm{Di}-\mathrm{disB})$	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{17} \mathrm{~S}_{2} \mathrm{Na}_{3}$ (Produced from various chondroitin sulphates by action of chondroitinase ABC and/or B. Most typically from chondroitin sulphate B (dermatan sulphate))
13B.	$\Delta \mathrm{UA} \rightarrow 2 \mathrm{~S}-\mathrm{Gal} N \mathrm{Ac}-6 \mathrm{~S} \mathrm{Na} 33$ (\triangle Di-disD $)$	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{17} \mathrm{~S}_{2} \mathrm{Na}_{3}$ (Produced from various chondroitin sulphates by the action of chondroitinase ABC)
13C.	$\Delta \mathrm{UA} \rightarrow 2 \mathrm{~S}-\mathrm{Gal} N \mathrm{Ac}-4 \mathrm{~S}-6 \mathrm{~S} \mathrm{Na} \mathrm{Na}_{4}(\Delta \mathrm{Di}$-tisS $)$	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{20} \mathrm{~S}_{3} \mathrm{Na}_{4}$ (Produced as a minor component by the action of chondroitinase ABC on various chondroitin sulphates, particularly B)

Appendix B (continued)

$\left.\left.\begin{array}{|l|l|l|}\hline \text { Code } & \text { Name } & \text { Structure } \\ \hline \text { (GAGs) } & \begin{array}{l}\text { Carageenan and Glycoaminoglycans } \\ \text { 13E. }\end{array} & \Delta \text { UA } \rightarrow \text { GlcNAc Na (} \Delta \text { Di-HA) }\end{array}\right] \begin{array}{l}\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{11} \mathrm{Na} \text { (The only unsaturated } \\ \text { disaccharide produced from hyaluronic } \\ \text { acid by the action of chondroitinase } \\ \text { ABC or AC-1) }\end{array}\right]$

Appendix C

pGU0501 (pGEM T-Easy::Cj1344c)


```
1 GGGCGAATTG GGCCCGACGT CGCATGCTCC CGGCCGCCAT GGCGGCCGCG CCCGCTTAAC CCGGGCTGCA GCGTACGAGG GCCGGCGGTA CCGCCGGCGC
NdeI
51 GGAATTCGAT TCATATGAAA AATCTTATCC TAGCTATAGA AAGTTCTTGT CCTTAAGCTA AGTATACTTT TTAGAATAGG ATCGATATCT TTCAAGAACA \(\begin{array}{llllllllllll}\mathrm{M} & \mathrm{K} & \mathrm{N} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{A} & \mathrm{I} & \mathrm{E} & \mathrm{S} & \mathrm{S} & \mathrm{C}\end{array}\)
101 GATGATAGTT CTATAGCTAT CATTGATAAA AACACCTTAG AATGTAAATT CTACTATCAA GATATCGATA GTAACTATTT TTGTGGAATC TTACATTTAA
```



```
151 TCATAAAAAA ATTTCCCAAG AATTAGATCA TAGTATCTAT GGGGGAGTGG AGTATTTTTT TAAAGGGTTC TTAATCTAGT ATCATAGATA CCCCCTCACC H \(\quad \mathrm{K} \quad \mathrm{K} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{Q} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{D} \quad \mathrm{H} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{Y} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{V} \quad \mathrm{V}\) Cj1344C
201 TACCTGAACT TGCTGCAAGA CTTCATAGCG AGGCTTTACC AAAGATGCTT ATGGACTTGA ACGACGTTCT GAAGTATCGC TCCGAAATGG TTTCTACGAA
```



```
251 AAGCAATGCA AAGAGCATTT TAAAAATCTT TGTGCCATAG CTGTGACAAA TTCGTTACGT TTCTCGTAAA ATTTTTAGAA ACACGGTATC GACACTGTTT
```



```
301 TGAACCTGGA CTTAGTGTTT CTTTGCTCAG TGGAATTTCT ATGGCAAAAA ACTTGGACCT GAATCACAAA GAAACGAGTC ACCTTAAAGA TACCGTTTTT
```



```
351 CCTTAGCAAG TGCGCTAAAT TTACCCTTAA TCCCTATAAA TCATCTTAAA GGAATCGTTC ACGCGATTTA AATGGGAATT AGGGATATTT AGTAGAATTT
```


401 GGTCATATTT ATAGTCTTTT TTTGGAAGAA AAAATTTCTT TAGATATGGG
CCAGTATAAA TATCAGAAAA AAACCTTCTT TTTTAAAGAA ATCTATACCC
G \quad H \quad I \quad Y \quad S \quad L \quad F \quad L
451 AATTTTGCTT GTTAGTGGTG GGCATACCAT GGTGCTTTAT CTTAAAGATG
TTAAAACGAA CAATCACCAC CCGTATGGTA CCACGAAATA GAATTTCTAC

501 ATGCAAGCTT AGAGCTTTTA GCAAGTACAA ATGATGATAG CTTTGGAGAA
TACGTTCGAA TCTCGAAAAT CGTTCATGTT TACTACTATC GAAACCTCTT

551 AGTTTTGATA AAGTGGCTAA AATGATGAAT TTAGGTTACC CTGGTGGGGT
TCAAAACTAT TTCACCGATT TTACTACTTA AATCCAATGG GACCACCCCA
$\begin{array}{lllllllllllllllll}\text { S } & \mathrm{F} & \mathrm{D} & \mathrm{K} & \mathrm{V} & \mathrm{A} & \mathrm{K} & \mathrm{M} & \mathrm{M} & \mathrm{N} & \mathrm{L} & \mathrm{G} & \mathrm{Y} & \mathrm{P} & \mathrm{G} & \mathrm{G} & \mathrm{V}\end{array}$
601 CATCATAGAA AATTTAGCAA AAAATGCCAA ACTTAAAAAT ATCTCTTTTA
GTAGTATCTT TTAAATCGTT TTTTACGGTT TGAATTTTTA TAGAGAAAAT
$\begin{array}{lllllllllllllllll}\text { I } & \text { I } & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{A} & \mathrm{K} & \mathrm{N} & \mathrm{A} & \mathrm{K} & \mathrm{L} & \mathrm{K} & \mathrm{N} & \mathrm{I} & \mathrm{S} & \mathrm{F} & \mathrm{N}\end{array}$
651 ACACACCTTT AAAGCATTCT AAAGAACTCG CTTTCAGTTT TTCAGGGCTT
TGTGTGGAAA TTTCGTAAGA TTTCTTGAGC GAAAGTCAAA AAGTCCCGAA
$\begin{array}{lllllllllllllllll}\mathrm{T} & \mathrm{P} & \mathrm{L} & \mathrm{K} & \mathrm{H} & \mathrm{S} & \mathrm{K} & \mathrm{E} & \mathrm{L} & \mathrm{A} & \mathrm{F} & \mathrm{S} & \mathrm{F} & \mathrm{S} & \mathrm{G} & \mathrm{L} & \mathrm{Cj} 134 \mathbf{4 c}\end{array}$
701 AAAAATGCAG TGCGTTTGGA AATTTTAAAA CATGAAAATT TAAATGAAGA
TTTTTACGTC ACGCAAACCT TTAAAATTTT GTACTTTTAA ATTTACTTCT
$\begin{array}{lllllllllllllllll}\mathrm{K} & \mathrm{N} & \mathrm{A} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{K} & \mathrm{H} & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{N} & \mathrm{E} & \mathrm{D}\end{array}$
751 CACAAAAGCA GAAATAGCCT ATGCCTTTGA AAATACAGCT TGTGATCATA
GTGTTTTCGT CTTTATCGGA TACGGAAACT TTTATGTCGA ACACTAGTAT
T K A E I A Y A F E N T A
801 TCATGGATAA ATTAGAAAAA ATTTTTAATC TTTATAAATT TAAAAATTTT
AGTACCTATT TAATCTTTTT TAAAAATTAG AAATATTTAA ATTTTTAAAA

851 GGCGTTGTAG GTGGAGCTAG TGCAAATCTT AACTTGCGTT CGCGTTTGCA
CCGCAACATC CACCTCGATC ACGTTTAGAA TTGAACGCAA GCGCAAACGT

901 AAATTTATGT CAAAAATATA ATGCAAATTT AAAACTAGCT CCTTTAAAAT
TTTAAATACA GTTTTTATAT TACGTTTAAA TTTTGATCGA GGAAATTTTA

951 TCTGCTCTGA TAATGCTTTG ATGATAGCAA GAGCCGCAGT TGATGCTTAT
AGACGAGACT ATTACGAAAC TACTATCGTT CTCGGCGTCA ACTACGAATA

1001 GAAAAAAAGG AATTTGTAAG TGTAGAAGAA GATATTTTAA GCCCTAAAAA
CTTTTTTTCC TTAAACATTC ACATCTTCTT CTATAAAATT CGGGATTTTT

XhoI
1051 TAAAAATTTT TCAAGGATAT AGATGAAAAA AGCTCGAGAA TCACTAGTGA
ATTTTTAAAA AGTTCCTATA TCTACTTTTT TCGAGCTCTT AGTGATCACT
K N F S R I * Cj1344c

NdeI
1101 ATTCGCGGCC GCCTGCAGGT CGACCATATG GGAGAGCTCC CAACGCGTTG TAAGCGCCGG CGGACGTCCA GCTGGTATAC CCTCTCGAGG GTTGCGCAAC

1151 GATGCATAGC TTGAGTATTC TATAGTGTCA CCTAAATAGC TTGGCGTAAT CTACGTATCG AACTCATAAG ATATCACAGT GGATTTATCG AACCGCATTA

1201 CATGGTCATA GCTGTTTCCT GTGTGAAATT GTTATCCGCT CACAATTCCA GTACCAGTAT CGACAAAGGA CACACTTTAA CAATAGGCGA GTGTTAAGGT

1251 CACAACATAC GAGCCGGAAG CATAAAGTGT AAAGCCTGGG GTGCCTAATG GTGTTGTATG CTCGGCCTTC GTATTTCACA TTTCGGACCC CACGGATTAC

1301 AGTGAGCTAA CTCACATTAA TTGCGTTGCG CTCACTGCCC GCTTTCCAGT TCACTCGATT GAGTGTAATT AACGCAACGC GAGTGACGGG CGAAAGGTCA

1351 CGGGAAACCT GTCGTGCCAG CTGCATTAAT GAATCGGCCA ACGCGCGGGG GCCCTTTGGA CAGCACGGTC GACGTAATTA CTTAGCCGGT TGCGCGCCCC

1401 AGAGGCGGTT TGCGTATTGG GCGCTCTTCC GCTTCCTCGC TCACTGACTC TCTCCGCCAA ACGCATAACC CGCGAGAAGG CGAAGGAGCG AGTGACTGAG

1451 GCTGCGCTCG GTCGTTCGGC TGCGGCGAGC GGTATCAGCT CACTCAAAGG CGACGCGAGC CAGCAAGCCG ACGCCGCTCG CCATAGTCGA GTGAGTTTCC

1501 CGGTAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG GCCATTATGC CAATAGGTGT CTTAGTCCCC TATTGCGTCC TTTCTTGTAC

1551 TGAGCAAAAG GCCAGCAAAA GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT ACTCGTTTTC CGGTCGTTTT CCGGTCCTTG GCATTTTTCC GGCGCAACGA

1601 GGCGTTTTTC CATAGGCTCC GCCCCCCTGA CGAGCATCAC AAAAATCGAC CCGCAAAAAG GTATCCGAGG CGGGGGGACT GCTCGTAGTG TTTTTAGCTG

1651 GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG CGAGTTCAGT CTCCACCGCT TTGGGCTGTC CTGATATTTC TATGGTCCGC

1701 TTTCCCCCTG GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT AAAGgGgGac CTTCGAGGGA GCACGCGAGA GGACAAGGCT GGGACGGCGA

1751 TACCGGATAC CTGTCCGCCT TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC ATGGCCTATG GACAGGCGGA AAGAGGGAAG CCCTTCGCAC CGCGAAAGAG

1801 ATAGCTCACG CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG TATCGAGTGC GACATCCATA GAGTCAAGCC ACATCCAGCA AGCGAGGTTC

1851 CTGGGCTGTG TGCACGAACC CCCCGTTCAG CCCGACCGCT GCGCCTTATC GACCCGACAC ACGTGCTTGG GGGGCAAGTC GGGCTGGCGA CGCGGAATAG

1901 CGGTAACTAT CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATCGCCAC GCCATTGATA GCAGAACTCA GGTTGGGCCA TTCTGTGCTG AATAGCGGTG

1951 TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT ACCGTCGTCG GTGACCATTG TCCTAATCGT CTCGCTCCAT ACATCCGCCA

2001 GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGAAC CGATGTCTCA AGAACTTCAC CACCGGATTG ATGCCGATGT GATCTTCTTG

2051 AgTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TCATAAACCA TAGACGCGAG ACGACTTCGG TCAATGGAAG CCTTTTTCTC

APPENDICES

2101 TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT AACCATCGAG AACTAGGCCG TTTGTTTGGT GGCGACCATC GCCACCAAAA
2151 TTTGTTTGCA AGCAGCAGAT TACGCGCAGA AAAAAAGGAT CTCAAGAAGA AAACAAACGT TCGTCGTCTA ATGCGCGTCT TTTTTTCCTA GAGTTCTTCT
2201 TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC GAAAACTCAC AgGAAACTAG AAAAGATGCC CCAGACTGCG AGTCACCTTG CTTTTGAGTG
2251 GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CAATTCCCTA AAACCAGTAC TCTAATAGTT TTTCCTAGAA GTGGATCTAG
2301 CTTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA GAAAATTTAA TTTTTACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT
2351 AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG TTGAACCAGA CTGTCAATGG TTACGAATTA GTCACTCCGT GGATAGAGTC

$$
\begin{array}{lllllllllll}
* & W & H & K & I & \text { L } & \text { S } & \text { A } & \text { G } & \text { I } & \text { E }
\end{array}
$$

2401 CGATCTGTCT ATTTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG GCTAGACAGA TAAAGCAAGT AGGTATCAAC GGACTGAGGG GCAGCACATC $\begin{array}{llllllllllllllllll}A & I & R & \mathrm{R} & \mathrm{R} & \mathrm{E} & \mathrm{D} & \mathrm{M} & \mathrm{T} & \mathrm{A} & \mathrm{Q} & \mathrm{S} & \mathrm{G} & \mathrm{T} & \mathrm{T} & \mathrm{Y} & \mathrm{amp}^{R}\end{array}$
2451 ATAACTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT TATTGATGCT ATGCCCTCCC GAATGGTAGA CCGGGGTCAC GACGTTACTA

2501 ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA ATAAACCAGC TGGCGCTCTG GGTGCGAGTG GCCGAGGTCT AAATAGTCGT TATTTGGTCG $\begin{array}{llllllllllllllll}G & R & S & G & R & E & G & A & G & S & K & D & A & I & F & W\end{array}$
2551 CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC GTCGGCCTTC CCGGCTCGCG TCTTCACCAG GACGTTGAAA TAGGCGGAGG

2601 ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAGGTCAGAT AATTAACAAC GGCCCTTCGA TCTCATTCAT CAAGCGGTCA $\begin{array}{lllllllllllllllll}M & W & D & I & L & Q & Q & R & S & A & L & T & L & L & E & G & T\end{array} a^{R}$
2651 TAATAGTTTG CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTCAC ATTATCAAAC GCGTTGCAAC AACGGTAACG ATGTCCGTAG CACCACAGTG

2701 GCTCGTCGTT TGGTATGGCT TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGCAGCAA ACCATACCGA AGTAAGTCGA GGCCAAGGGT TGCTAGTTCC

2751 CGAGTTACAT GATCCCCCAT GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG GCTCAATGTA CTAGGGGGTA CAACACGTTT TTTCGCCAAT CGAGGAAGCC $\begin{array}{llllllllllllllllll}R & T & V & H & D & G & M & N & H & L & F & A & T & L & E & K & P & \text { amp }^{R}\end{array}$
2801 TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA TCACTCATGG AGGAGGCTAG CAACAGTCTT CATTCAACCG GCGTCACAAT AGTGAGTACC $\begin{array}{lllllllllllllllll}G & G & I & T & T & L & L & L & N & A & A & T & N & D & S & M & a^{R}\end{array}$
2851 TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC AATACCGTCG TGACGTATTA AGAGAATGAC AGTACGGTAG GCATTCTACG

2901 TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT AAAAGACACT GACCACTCAT GAGTTGGTTC AGTAAGACTC TTATCACATA $\begin{array}{llllllllllllllllll}\mathrm{K} & \mathrm{E} & \mathrm{T} & \mathrm{V} & \mathrm{P} & \mathrm{S} & \mathrm{Y} & \mathrm{E} & \mathrm{V} & \mathrm{L} & \mathrm{D} & \mathrm{N} & \mathrm{Q} & \mathrm{S} & \mathrm{Y} & \mathrm{H} & \mathrm{I} & \mathrm{amp}^{R}\end{array}$

2951 GCGGCGACCG AGTTGCTCTT GCCCGGCGTC AATACGGGAT AATACCGCGC CGCCGCTGGC TCAACGAGAA CGGGCCGCAG TTATGCCCTA TTATGGCGCG

$$
\begin{array}{lllllllllllllllll}
R & R & G & L & Q & E & Q & G & A & D & I & R & S & L & V & A & a m p^{R}
\end{array}
$$

3001 CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG TTCTTCGGGG GTGTATCGTC TTGAAATTTT CACGAGTAGT AACCTTTTGC AAGAAGCCCC $\begin{array}{llllllllllllllllll}G & C & L & L & V & K & F & T & S & M & M & P & F & R & E & E & P & a^{R}\end{array}$

3051 CGAAAACTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC GCTTTTGAGA GTTCCTAGAA TGGCGACAAC TCTAGGTCAA GCTACATTGG $\begin{array}{lllllllllllllllll}R & F & S & E & L & I & K & G & S & N & L & D & L & E & I & Y & G\end{array}$

3101 CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC ACCAGCGTTT GTGAGCACGT GGGTTGACTA GAAGTCGTAG AAAATGAAAG TGGTCGCAAA $\begin{array}{llllllllllllllll}\mathrm{V} & \mathrm{R} & \mathrm{A} & \mathrm{G} & \mathrm{L} & \mathrm{Q} & \mathrm{D} & \mathrm{E} & \mathrm{A} & \mathrm{D} & \mathrm{K} & \mathrm{V} & \mathrm{K} & \mathrm{V} & \mathrm{L} & \mathrm{T} \\ \mathrm{amp}^{R}\end{array}$

3151 CTGGGTGAGC AAAAACAGGA AGGCAAAATG CCGCAAAAAA GGGAATAAGG GACCCACTCG TTTTTGTCCT TCCGTTTTAC GGCGTTTTTT CCCTTATTCC $\begin{array}{llllllllllllllllll}\mathrm{E} & \mathrm{P} & \mathrm{H} & \mathrm{A} & \mathrm{F} & \mathrm{V} & \mathrm{P} & \mathrm{L} & \mathrm{C} & \mathrm{F} & \mathrm{A} & \mathrm{A} & \mathrm{F} & \mathrm{F} & \mathrm{P} & \mathrm{I} & \mathrm{L} & \mathrm{amp}^{\mathrm{R}}\end{array}$

3201 GCGACACGGA AATGTTGAAT ACTCATACTC TTCCTTTTTC AATATTATTG CGCTGTGCCT TTACAACTTA TGAGTATGAG AAGGAAAAAG TTATAATAAC A $\quad \mathrm{V} \quad \mathrm{R} \quad \mathrm{F} \quad \mathrm{H} \quad \mathrm{Q} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{M} \quad \mathrm{amp}^{\mathrm{R}}$

3251 AAGCATTTAT CAGGGTTATT GTCTCATGAG CGGATACATA TTTGAATGTA TTCGTAAATA GTCCCAATAA CAGAGTACTC GCCTATGTAT AAACTTACAT

3301 TTTAGAAAAA TAAACAAATA GGGGTTCCGC GCACATTTCC CCGAAAAGTG AAATCTTTTT ATTTGTTTAT CCCCAAGGCG CGTGTAAAGG GGCTTTTCAC

3351 CCACCTGATG CGGTGTGAAA TACCGCACAG ATGCGTAAGG AGAAAATACC GGTGGACTAC GCCACACTTT ATGGCGTGTC TACGCATTCC TCTTTTATGG

3401 GCATCAGGAA ATTGTAAGCG TTAATATTTT GTTAAAATTC GCGTTAAATT CGTAGTCCTT TAACATTCGC AATTATAAAA CAATTTTAAG CGCAATTTAA

3451 TTTGTTAAAT CAGCTCATTT TTTAACCAAT AGGCCGAAAT CGGCAAAATC AAACAATTTA GTCGAGTAAA AAATTGGTTA TCCGGCTTTA GCCGTTTTAG

3501 CCTTATAAAT CAAAAGAATA GACCGAGATA GGGTTGAGTG TTGTTCCAGT GGAATATTTA GTTTTCTTAT CTGGCTCTAT CCCAACTCAC AACAAGGTCA

3551 TTGGAACAAG AGTCCACTAT TAAAGAACGT GGACTCCAAC GTCAAAGGGC AACCTTGTTC TCAGGTGATA ATTTCTTGCA CCTGAGGTTG CAGTTTCCCG

3601 GAAAAACCGT CTATCAGGGC GATGGCCCAC TACGTGAACC ATCACCCTAA CTTTTTGGCA GATAGTCCCG CTACCGGGTG ATGCACTTGG TAGTGGGATT

3651 TCAAGTTTTT TGGGGTCGAG GTGCCGTAAA GCACTAAATC GGAACCCTAA AGTTCAAAAA ACCCCAGCTC CACGGCATTT CGTGATTTAG CCTTGGGATT

3701 AGgGAgCCCC CGATTTAGAG CTTGACGGGG AAAGCCGGCG AACGTGGCGA TCCCTCGGGG GCTAAATCTC GAACTGCCCC TTTCGGCCGC TTGCACCGCT

3751 GAAAGGAAGG GAAGAAAGCG AAAGGAGCGG GCGCTAGGGC GCTGGCAAGT CTTTCCTTCC CTTCTTTCGC TTTCCTCGCC CGCGATCCCG CGACCGTTCA

| 3801 | GTAGCGGTCA | CGCTGCGCGT | AACCACCACA | CCCGCCGCGC | TTAATGCGCC |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| | CATCGCCAGT | GCGACGCGCA | TTGGTGGTGT | GGGCGGCGCG | AATTACGCGG |
| 3851 | GCTACAGGGC | GCGTCCATTC | GCCATTCAGG | CTGCGCAACT | GTTGGGAAGG |
| | CGATGTCCCG | CGCAGGTAAG | CGGTAAGTCC | GACGCGTTGA CAACCCTTCC | |
| 3901 | GCGATCGGTG | CGGGCCTCTT | CGCTATTACG | CCAGCTGGCG AAAGGGGGAT | |
| | CGCTAGCCAC | GCCCGGAGAA | GCGATAATGC | GGTCGACCGC | TTTCCCCCTA |
| 3951 | GTGCTGCAAG | GCGATTAAGT | TGGGTAACGC | CAGGGTTTTC CCAGTCACGA | |
| | CACGACGTTC | CGCTAATTCA | ACCCATTGCG | GTCCCAAAAG | GGTCAGTGCT |
| 4001 | CGTTGTAAAA | CGACGGCCAG | TGAATTGTAA | TACGACTCAC | TATA |

Appendix D

pGU0513 (pET-19b::Cj1344c)

1 TTCTCATGTT TGACAGCTTA TCATCGATAA GCTTTAATGC GGTAGTTTAT AAGAGTACAA ACTGTCGAAT AGTAGCTATT CGAAATTACG CCATCAAATA

51 CACAGTTAAA TTGCTAACGC AGTCAGGCAC CGTGTATGAA ATCTAACAAT GTGTCAATTT AACGATTGCG TCAGTCCGTG GCACATACTT TAGATTGTTA

101 GCGCTCATCG TCATCCTCGG CACCGTCACC CTGGATGCTG TAGGCATAGG CGCGAGTAGC AGTAGGAGCC GTGGCAGTGG GACCTACGAC ATCCGTATCC

151 CTTGGTTATG CCGGTACTGC CGGGCCTCTT GCGGGATATC CGGATATAGT GAACCAATAC GGCCATGACG GCCCGGAGAA CGCCCTATAG GCCTATATCA

201 TCCTCCTTTC AGCAAAAAAC CCCTCAAGAC CCGTTTAGAG GCCCCAAGGG AGGAGGAAAG TCGTTTTTTG GGGAGTTCTG GGCAAATCTC CGGGGTTCCC

251 GTTATGCTAG TTATTGCTCA GCGGTGGCAG CAGCCAACTC AGCTTCCTTT CAATACGATC AATAACGAGT CGCCACCGTC GTCGGTTGAG TCGAAGGAAA

XhoI
301 CGGGCTTTGT TAGCAGCCGG ATCTCGAGCT TTTTTCATCT ATATCCTTGA GCCCGAAACA ATCGTCGGCC TAGAGCTCGA AAAAAGTAGA TATAGGAACT

351 AAAATTTTTA TTTTTAGGGC TTAAAATATC TTCTTCTACA CTTACAAATT TTTTAAAAAT AAAAATCCCG AATTTTATAG AAGAAGATGT GAATGTTTAA

401 CCTTTTTTTC ATAAGCATCA ACTGCGGCTC TTGCTATCAT CAAAGCATTA GGAAAAAAAG TATTCGTAGT TGACGCCGAG AACGATAGTA GTTTCGTAAT

451 TCAGAGCAGA ATTTTAAAGG AGCTAGTTTT AAATTTGCAT TATATTTTTG AGTCTCGTCT TAAAATTTCC TCGATCAAAA TTTAAACGTA ATATAAAAAC

APPENDICES

501 ACATAAATTT TGCAAACGCG AACGCAAGTT AAGATTTGCA CTAGCTCCAC
TGTATTTAAA ACGTTTGCGC TTGCGTTCAA TTCTAAACGT GATCGAGGTG

551 CTACAACGCC AAAATTTTTA AATTTATAAA GATTAAAAAT TTTTTCTAAT
GATGTTGCGG TTTTAAAAAT TTAAATATTT CTAATTTTTA AAAAAGATTA

601 TTATCCATGA TATGATCACA AGCTGTATTT TCAAAGGCAT AGGCTATTTC
AATAGGTACT ATACTAGTGT TCGACATAAA AGTTTCCGTA TCCGATAAAG

651 TGCTTTTGTG TCTTCATTTA AATTTTCATG TTTTAAAATT TCCAAACGCA
ACGAAAACAC AGAAGTAAAT TTAAAAGTAC AAAATTTTAA AGGTTTGCGT

701 CTGCATTTTT AAGCCCTGAA AAACTGAAAG CGAGTTCTTT AGAATGCTTT
GACGTAAAAA TTCGGGACTT TTTGACTTTC GCTCAAGAAA TCTTACGAAA

751 AAAGGTGTGT TAAAAGAGAT ATTTTTAAGT TTGGCATTTT TTGCTAAATT
TTTCCACACA ATTTTCTCTA TAAAAATTCA AACCGTAAAA AACGATTTAA

801 TTCTATGATG ACCCCACCAG GGTAACCTAA ATTCATCATT TTAGCCACTT
AAGATACTAC TGGGGTGGTC CCATTGGATT TAAGTAGTAA AATCGGTGAA
$\begin{array}{llllllllllllllll}\mathrm{E} & \mathrm{I} & \mathrm{I} & \mathrm{V} & \mathrm{G} & \mathrm{G} & \mathrm{P} & \mathrm{Y} & \mathrm{G} & \mathrm{L} & \mathrm{N} & \mathrm{M} & \mathrm{M} & \mathrm{K} & \mathrm{A} & \mathrm{V}\end{array}$
851 TATCAAAACT TTCTCCAAAG CTATCATCAT TTGTACTTGC TAAAAGCTCT
ATAGTTTTGA AAGAGGTTTC GATAGTAGTA AACATGAACG ATTTTCGAGA

901 AAGCTTGCAT CATCTTTAAG ATAAAGCACC ATGGTATGCC CACCACTAAC
TTCGAACGTA GTAGAAATTC TATTTCGTGG TACCATACGG GTGGTGATTG
$\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{S} & \mathrm{A} & \mathrm{D} & \mathrm{D} & \mathrm{K} & \mathrm{L} & \mathrm{Y} & \mathrm{L} & \mathrm{V} & \mathrm{M} & \mathrm{T} & \mathrm{H} & \mathrm{G} & \mathrm{G} & \mathrm{S} & \mathrm{V}\end{array}$
951 AAGCAAAATT CCCATATCTA AAGAAATTTT TTCTTCCAAA AAAAGACTAT
TTCGTTTTAA GGGTATAGAT TTCTTTAAAA AAGAAGGTTT TTTTCTGATA

1001 AAATATGACC TTTAAGATGA TTTATAGGGA TTAAGGGTAA ATTTAGCGCA
TTTATACTGG AAATTCTACT AAATATCCCT AATTCCCATT TAAATCGCGT

1051 CTTGCTAAGG TTTTTGCCAT AGAAATTCCA CTGAGCAAAG AAACACTAAG
GAACGATTCC AAAAACGGTA TCTTTAAGGT GACTCGTTTC TTTGTGATTC

1101 TCCAGGTTCA TTTGTCACAG CTATGGCACA AAGATTTTTA AAATGCTCTT
AGGTCCAAGT AAACAGTGTC GATACCGTGT TTCTAAAAAT TTTACGAGAA

1151 TGCATTGCTT AAGCATCTTT GGTAAAGCCT CGCTATGAAG TCTTGCAGCA
ACGTAACGAA TTCGTAGAAA CCATTTCGGA GCGATACTTC AGAACGTCGT

1201 AGTTCAGGTA CCACTCCCCC ATAGATACTA TGATCTAATT CTTGGGAAAT
TCAAGTCCAT GGTGAGGGGG TATCTATGAT ACTAGATTAA GAACCCTTTA
L $\quad \mathrm{E} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{V} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{Y} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{H} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{S} \quad \mathrm{I}$
Cj1344c
1251 TTTTTTATGA AATTTACATT CTAAGGTGTT TTTATCAATG ATAGCTATAG
AAAAAATACT TTAAATGTAA GATTCCACAA AAATAGTTAC TATCGATATC

NdeI
1301 AACTATCATC ACAAGAACTT TCTATAGCTA GGATAAGATT TTTCATATGC
TTGATAGTAG TGTTCTTGAA AGATATCGAT CCTATTCTAA AAAGTATACG

1351 TTGTCGTCGT CGTCGATATG GCCGCTGCTG TGATGATGAT GATGATGATG
AACAGCAGCA GCAGCTATAC CGGCGACGAC ACTACTACTA CTACTACTAC
$\begin{array}{lllllllllllllllll}\mathbf{K} & \mathrm{D} & \mathrm{D} & \mathrm{D} & \mathrm{D} & \mathbf{I} & \mathrm{H} & \mathbf{G} & \mathbf{S} & \mathbf{S} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$
1401 ATGATGATGG CCCATGGTAT ATCTCCTTCT TAAAGTTAAA CAAAATTATT
TACTACTACC GGGTACCATA TAGAGGAAGA ATTTCAATTT GTTTTAATAA
H H H \quad G M
His-tag
1451 TCTAGAGGGG AATTGTTATC CGCTCACAAT TCCCCTATAG TGAGTCGTAT
AGATCTCCCC TTAACAATAG GCGAGTGTTA AGGGGATATC ACTCAGCATA
1501 TAATTTCGCG GGATCGAGAT CTCGATCCTC TACGCCGGAC GCATCGTGGC
ATTAAAGCGC CCTAGCTCTA GAGCTAGGAG ATGCGGCCTG CGTAGCACCG
\leftarrow T7 promoter
1551 CGGCATCACC GGCGCCACAG GTGCGGTTGC TGGCGCCTAT ATCGCCGACA
GCCGTAGTGG CCGCGGTGTC CACGCCAACG ACCGCGGATA TAGCGGCTGT
1601 TCACCGATGG GGAAGATCGG GCTCGCCACT TCGGGCTCAT GAGCGCTTGT
AgTGGCTACC CCTTCTAGCC CGAGCGGTGA AGCCCGAGTA CTCGCGAACA
M S A C lacI
1651 TTCGGCGTGG GTATGGTGGC AGGCCCCGTG GCCGGGGGAC TGTTGGGCGC
AAGCCGCACC CATACCACCG TCCGGGGCAC CGGCCCCCTG ACAACCCGCG
F G V G M V A G P V A G G L
1701 CATCTCCTTG CATGCACCAT TCCTTGCGGC GGCGGTGCTC AACGGCCTCA
GTAGAGGAAC GTACGTGGTA AGGAACGCCG CCGCCACGAG TTGCCGGAGT
$\begin{array}{llllllllllllllllll}\text { I } & \mathrm{S} & \mathrm{L} & \mathrm{H} & \mathrm{A} & \mathrm{P} & \mathrm{F} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{A} & \mathrm{V} & \mathrm{L} & \mathrm{N} & \mathrm{G} & \mathrm{L} & \mathrm{N} & \text { lacI }\end{array}$
1751 ACCTACTACT GGGCTGCTTC CTAATGCAGG AGTCGCATAA GGGAGAGCGT
TGGATGATGA CCCGACGAAG GATTACGTCC TCAGCGTATT CCCTCTCGCA

1801 CGAGATCCCG GACACCATCG AATGGCGCAA AACCTTTCGC GGTATGGCAT
GCTCTAGGGC CTGTGGTAGC TTACCGCGTT TTGGAAAGCG CCATACCGTA
$\begin{array}{llllllllllllllllll}R & D & P & G & H & H & R & M & A & Q & N & L & S & R & Y & G & M & \text { lact }\end{array}$
1851 GATAGCGCCC GGAAGAGAGT CAATTCAGGG TGGTGAATGT GAAACCAGTA
CTATCGCGGG CCTTCTCTCA GTTAAGTCCC ACCACTTACA CTTTGGTCAT

1901 ACGTTATACG ATGTCGCAGA GTATGCCGGT GTCTCTTATC AGACCGTTTC
TGCAATATGC TACAGCGTCT CATACGGCCA CAGAGAATAG TCTGGCAAAG
$\begin{array}{llllllllllllllllll}\mathrm{V} & \mathrm{I} & \mathrm{R} & \mathrm{C} & \mathrm{R} & \mathrm{R} & \mathrm{V} & \mathrm{C} & \mathrm{R} & \mathrm{C} & \mathrm{L} & \mathrm{L} & \mathrm{S} & \mathrm{D} & \mathrm{R} & \mathrm{F} & \text { lact }\end{array}$
1951 CCGCGTGGTG AACCAGGCCA GCCACGTTTC TGCGAAAACG CGGGAAAAAG
GGCGCACCAC TTGGTCCGGT CGGTGCAAAG ACGCTTTTGC GCCCTTTTTC
$\begin{array}{lllllllllllllllllll} & R & G & E & P & G & Q & P & R & F & C & E & N & A & G & K & S & \text { lacI }\end{array}$

APPENDICES

```
2001 TGGAAGCGGC GATGGCGGAG CTGAATTACA TTCCCAACCG CGTGGCACAA
    ACCTTCGCCG CTACCGCCTC GACTTAATGT AAGGGTTGGC GCACCGTGTT
        G S G D G G A E L H S Q P R R G T T lacI
2 0 5 1 ~ C A A C T G G C G G ~ G C A A A C A G T C ~ G T T G C T G A T T ~ G G C G T T G C C A ~ C C T C C A G T C T ~
    GTTGACCGCC CGTTTGTCAG CAACGACTAA CCGCAACGGT GGAGGTCAGA
        T G G G Q T V V V V A Dllllllllll
2 1 0 1 ~ G G C C C T G C A C ~ G C G C C G T C G C ~ A A A T T G T C G C ~ G G C G A T T A A A ~ T C T C G C G C C G ~
    CCGGGACGTG CGCGGCAGCG TTTAACAGCG CCGCTAATTT AGAGCGCGGC
    G P
2 1 5 1 ~ A T C A A C T G G G ~ T G C C A G C G T G ~ G T G G T G T C G A ~ T G G T A G A A C G ~ A A G C G G C G T C ~
    TAGTTGACCC ACGGTCGCAC CACCACAGCT ACCATCTTGC TTCGCCGCAG
2 2 0 1 ~ G A A G C C T G T A ~ A A G C G G C G G T ~ G C A C A A T C T T ~ C T C G C G C A A C ~ G C G T C A G T G G ~
    CTTCGGACAT TTCGCCGCCA CGTGTTAGAA GAGCGCGTTG CGCAGTCACC
2 2 5 1 ~ G C T G A T C A T T ~ A A C T A T C C G C ~ T G G A T G A C C A ~ G G A T G C C A T T ~ G C T G T G G A A G ~
    CGACTAGTAA TTGATAGGCG ACCTACTGGT CCTACGGTAA CGACACCTTC
2 3 0 1 ~ C T G C C T G C A C ~ T A A T G T T C C G ~ G C G T T A T T T C ~ T T G A T G T C T C ~ T G A C C A G A C A ~
    GACGGACGTG ATTACAAGGC CGCAATAAAG AACTACAGAG ACTGGTCTGT
2 3 5 1 ~ C C C A T C A A C A ~ G T A T T A T T T T ~ C T C C C A T G A A ~ G A C G G T A C G C ~ G A C T G G G C G T ~
    GGGTAGTTGT CATAATAAAA GAGGGTACTT CTGCCATGCG CTGACCCGCA
2 4 0 1 ~ G G A G C A T C T G ~ G T C G C A T T G G ~ G T C A C C A G C A ~ A A T C G C G C T G ~ T T A G C G G G C C ~
    CCTCGTAGAC CAGCGTAACC CAGTGGTCGT TTAGCGCGAC AATCGCCCGG
2 4 5 1 ~ C A T T A A G T T C ~ T G T C T C G G C G ~ C G T C T G C G T C ~ T G G C T G G C T G ~ G C A T A A A T A T ~
    GTAATTCAAG ACAGAGCCGC GCAGACGCAG ACCGACCGAC CGTATTTATA
2 5 0 1 ~ C T C A C T C G C A ~ A T C A A A T T C A ~ G C C G A T A G C G ~ G A A C G G G A A G ~ G C G A C T G G A G ~
    GAGTGAGCGT TAGTTTAAGT CGGCTATCGC CTTGCCCTTC CGCTGACCTC
2551 TGCCATGTCC GGTTTTCAAC AAACCATGCA AATGCTGAAT GAGGGCATCG
    ACGGTACAGG CCAAAAGTTG TTTGGTACGT TTACGACTTA CTCCCGTAGC
2 6 0 1 ~ T T C C C A C T G C ~ G A T G C T G G T T ~ G C C A A C G A T C ~ A G A T G G C G C T ~ G G G C G C A A T G
    AAGGGTGACG CTACGACCAA CGGTTGCTAG TCTACCGCGA CCCGCGTTAC
2 6 5 1 ~ C G C G C C A T T A ~ C C G A G T C C G G ~ G C T G C G C G T T ~ G G T G C G G A T A ~ T C T C G G T A G T
    GCGCGGTAAT GGCTCAGGCC CGACGCGCAA CCACGCCTAT AGAGCCATCA
2 7 0 1 ~ G G G A T A C G A C ~ G A T A C C G A A G ~ A C A G C T C A T G ~ T T A T A T C C C G ~ C C G T T A A C C A ~
    CCCTATGCTG CTATGGCTTC TGTCGAGTAC AATATAGGGC GGCAATTGGT
2 7 5 1 ~ C C A T C A A A C A ~ G G A T T T T C G C ~ C T G C T G G G G C ~ A A A C C A G C G T ~ G G A C C G C T T G ~
    GGTAGTTTGT CCTAAAAGCG GACGACCCCG TTTGGTCGCA CCTGGCGAAC
2 8 0 1 ~ C T G C A A C T C T ~ C T C A G G G C C A ~ G G C G G T G A A G ~ G G C A A T C A G C ~ T G T T G C C C G T
    GACGTTGAGA GAGTCCCGGT CCGCCACTTC CCGTTAGTCG ACAACGGGCA
2851 CTCACTGGTG AAAAGAAAAA CCACCCTGGC GCCCAATACG CAAACCGCCT
    GAGTGACCAC TTTTCTTTTT GGTGGGACCG CGGGTTATGC GTTTGGCGGA
2 9 0 1 ~ C T C C C C G C G C ~ G T T G G C C G A T ~ T C A T T A A T G C ~ A G C T G G C A C G ~ A C A G G T T T C C ~
    GAGGGGCGCG CAACCGGCTA AGTAATTACG TCGACCGTGC TGTCCAAAGG
```

2951	CGACTGGAAA	GCGGGCAGTG	AGCGCAACGC	AATGTA	A
	GCTGACCTTT	CGCCCGTCAC	TCGCGTTGCG	TTAATTACAT	TCAATCGAGT
3001	CTCATTAGGC	ACCGGGATCT	CGACCGATGC	CCTTGAGAGC	CTTCAACCCA
	GAGTAATCCG	TGGCCCTAGA	GCTGGCTACG	GGAACTCTCG	GAAGTTGGGT
3051	GTCAGCTCCT	TCCGGTGGGC	GCGGGGCATG	ACTATCGTCG	CCGCACTTAT
	CAGTCGAGGA	AGGCCACCCG	CGCCCCGTAC	TGATAGCAGC	GGCGTGAATA
3101	GACTGTCTTC	TTTATCATGC	AACTCGTAGG	ACAGGTGCCG	GCAGCGCTCT
	CTGACAGAAG	AAATAGTACG	TTGAGCATCC	TGTCCACGGC	CGTCGCGAGA
3151	GGGTCATTTT	CGGCGAGGAC	CGCTTTCGCT	GGAGCGCGAC	GATGATCGGC
	CCCAGTAAAA	GCCGCTCCTG	GCGAAAGCGA	CCTCGCGCTG	CTACTAGCCG
3201	CTGTCGCTTG	CGGTATTCGG	AATCTTGCAC	GCCCTCGCTC	AAGCCTTCGT
	GACAGCGAAC	GCCATAAGCC	TTAGAACGTG	CGGGAGCGAG	TTCGGAAGCA
3251	CACTGGTCCC	GCCACCAAAC	GTTTCGGCGA	GAAGCAGGCC	ATtATCGCCG
	GTGACCAGGG	CGGTGGTTTG	CAAAGCCGCT	CTTCGTCCGG	TAATAGCGGC
3301	GCATGGCGGC	CGACGCGCTG	GGCTACGTCT	TGCTGGCGTT	CGCGACGCGA
	CGTACCGCCG	GCTGCGCGAC	CCGATGCAGA	ACGACCGCAA	GCGCTGCGCT
3351	GGCTGGATGG	CCTTCCCCAT	TATGATTCTT	CTCGCTTCCG	GCGGCATCGG
	CCGACCTACC	GGAAGGGGTA	ATACTAAGAA	GAGCGAAGGC	CGCCGTAGCC
3401	GATGCCCGCG	TTGCAGGCCA	TGCTGTCCAG	GCAGGTAGAT	GACGACCATC
	CTACGGGCGC	AACGTCCGGT	ACGACAGGTC	CGTCCATCTA	CTGCTGGTAG
3451	AGGGACAGCT	TCAAGGATCG	CTCGCGGCTC	TTACCAGCCT	AACTTCGATC
	TCCCTGTCGA	AGTTCCTAGC	GAGCGCCGAG	AATGGTCGGA	TTGAAGCTAG
3501	ACTGGACCGC	TGATCGTCAC	GGCGATTTAT	GCCGCCTCGG	CGAGCACATG
	TGACCTGGCG	ACTAGCAGTG	CCGCTAAATA	CGGCGGAGCC	GCTCGTGTAC
3551	GAACGGGTTG	GCATGGATTG	TAGGCGCCGC	CCTATACCTT	GTCTGCCTCC
	CTTGCCCAAC	CGTACCTAAC	ATCCGCGGCG	GGATATGGAA	CAGACGGAGG
3601	CCGCGTTGCG	TCGCGGTGCA	TGGAGCCGGG	CCACCTCGAC	CTGAATGGAA
	GGCGCAACGC	AGCGCCACGT	ACCTCGGCCC	GGTGGAGCTG	GACTTACCTT
3651	GCCGGCGGCA	CCTCGCTAAC	GGATTCACCA	CTCCAAGAAT	TGGAGCCAAT
	CGGCCGCCGT	GGAGCGATTG	CCTAAGTGGT	GAGGTTCTTA	ACCTCGGTtA
3701	CAATTCTTGC	GGAGAACTGT	GAATGCGCAA	ACCAACCCTT	GGCAGAACAT
	GTTAAGAACG	CCTCTTGACA	CTTACGCGTT	TGGTTGGGAA	CCGTCTTGTA
3751	ATCCATCGCG	TCCGCCATCT	CCAGCAGCCG	CACGCGGCGC	ATCTCGGGCA
	TAGGTAGCGC	AGGCGGTAGA	GGTCGTCGGC	GTGCGCCGCG	TAGAGCCCGT
3801	GCGTTGGGTC	CTGGCCACGG	GTGCGCATGA	TCGTGCTCCT	GTCGTTGAGG
	CGCAACCCAG	GACCGGTGCC	CACGCGTACT	AGCACGAGGA	CAGCAACTCC
3851	ACCCGGCTAG	GCTGGCGGGG	TTGCCTTACT	GGTTAGCAGA	ATGAATCACC
	TGGGCCGATC	CGACCGCCCC	AACGGAATGA	CCAATCGTCT	TACTTAGTGG
3901	GATACGCGAG	CGAACGTGAA	GCGACTGCTG	CTGCAAAACG	TCTGCGACCT
	CTATGCGCTC	GCTTGCACTT	CGCTGACGA	GACGTTTTG	AGACGCTGGA

APPENDICES

```
3 9 5 1 ~ G A G C A A C A A C ~ A T G A A T G G T C ~ T T C G G T T T C C ~ G T G T T T C G T A ~ A A G T C T G G A A ~
    CTCGTTGTTG TACTTACCAG AAGCCAAAGG CACAAAGCAT TTCAGACCTT
4001 ACGCGGAAGT CAGCGCCCTG CACCATTATG TTCCGGATCT GCATCGCAGG
    TGCGCCTTCA GTCGCGGGAC GTGGTAATAC AAGGCCTAGA CGTAGCGTCC
4 0 5 1 ~ A T G C T G C T G G ~ C T A C C C T G T G ~ G A A C A C C T A C ~ A T C T G T A T T A ~ A C G A A G C G C T
        TACGACGACC GATGGGACAC CTTGTGGATG TAGACATAAT TGCTTCGCGA
4 1 0 1 ~ G G C A T T G A C C ~ C T G A G T G A T T ~ T T T C T C T G G T ~ C C C G C C G C A T ~ C C A T A C C G C C ~
        CCGTAACTGG GACTCACTAA AAAGAGACCA GGGCGGCGTA GGTATGGCGG
4 1 5 1 ~ A G T T G T T T A C ~ C C T C A C A A C G ~ T T C C A G T A A C ~ C G G G C A T G T T ~ C A T C A T C A G T ~
    TCAACAAATG GGAGTGTTGC AAGGTCATTG GCCCGTACAA GTAGTAGTCA
4 2 0 1 ~ A A C C C G T A T C ~ G T G A G C A T C C ~ T C T C T C G T T T ~ C A T C G G T A T C ~ A T T A C C C C C A ~
    TTGGGCATAG CACTCGTAGG AGAGAGCAAA GTAGCCATAG TAATGGGGGT
4 2 5 1 ~ T G A A C A G A A A ~ T C C C C C T T A C ~ A C G G A G G C A T ~ C A G T G A C C A A ~ A C A G G A A A A A ~
    ACTTGTCTTT AGGGGGAATG TGCCTCCGTA GTCACTGGTT TGTCCTTTTT
4 3 0 1 ~ A C C G C C C T T A ~ A C A T G G C C C G ~ C T T T A T C A G A ~ A G C C A G A C A T ~ T A A C G C T T C T ~
    TGGCGGGAAT TGTACCGGGC GAAATAGTCT TCGGTCTGTA ATTGCGAAGA
4 3 5 1 ~ G G A G A A A C T C ~ A A C G A G C T G G ~ A C G C G G A T G A ~ A C A G G C A G A C ~ A T C T G T G A A T
        CCTCTTTGAG TTGCTCGACC TGCGCCTACT TGTCCGTCTG TAGACACTTA
4 4 0 1 ~ C G C T T C A C G A ~ C C A C G C T G A T ~ G A G C T T T A C C ~ G C A G C T G C C T ~ C G C G C G T T T C ~
        GCGAAGTGCT GGTGCGACTA CTCGAAATGG CGTCGACGGA GCGCGCAAAG
4 4 5 1 ~ G G T G A T G A C G ~ G T G A A A A C C T ~ C T G A C A C A T G ~ C A G C T C C C G G ~ A G A C G G T C A C ~
        CCACTACTGC CACTTTTGGA GACTGTGTAC GTCGAGGGCC TCTGCCAGTG
4 5 0 1 ~ A G C T T G T C T G ~ T A A G C G G A T G ~ C C G G G A G C A G ~ A C A A G C C C G T ~ C A G G G C G C G T ~
        TCGAACAGAC ATTCGCCTAC GGCCCTCGTC TGTTCGGGCA GTCCCGCGCA
4 5 5 1 ~ C A G C G G G T G T ~ T G G C G G G T G T ~ C G G G G C G C A G ~ C C A T G A C C C A ~ G T C A C G T A G C ~
    GTCGCCCACA ACCGCCCACA GCCCCGCGTC GGTACTGGGT CAGTGCATCG
4 6 0 1 ~ G A T A G C G G A G ~ T G T A T A C T G G ~ C T T A A C T A T G ~ C G G C A T C A G A ~ G C A G A T T G T A ~
    CTATCGCCTC ACATATGACC GAATTGATAC GCCGTAGTCT CGTCTAACAT
4 6 5 1 ~ C T G A G A G T G C ~ A C C A T A T A T G ~ C G G T G T G A A A ~ T A C C G C A C A G ~ A T G C G T A A G G
    GACTCTCACG TGGTATATAC GCCACACTTT ATGGCGTGTC TACGCATTCC
4 7 0 1 ~ A G A A A A T A C C ~ G C A T C A G G C G ~ C T C T T C C G C T ~ T C C T C G C T C A ~ C T G A C T C G C T ~
    TCTTTTATGG CGTAGTCCGC GAGAAGGCGA AGGAGCGAGT GACTGAGCGA
4 7 5 1 ~ G C G C T C G G T C ~ G T T C G G C T G C ~ G G C G A G C G G T ~ A T C A G C T C A C ~ T C A A A G G C G G ~
    CGCGAGCCAG CAAGCCGACG CCGCTCGCCA TAGTCGAGTG AGTTTCCGCC
4 8 0 1 ~ T A A T A C G G T T ~ A T C C A C A G A A ~ T C A G G G G A T A ~ A C G C A G G A A A ~ G A A C A T G T G A ~
    ATTATGCCAA TAGGTGTCTT AGTCCCCTAT TGCGTCCTTT CTTGTACACT
4 8 5 1 ~ G C A A A A G G C C ~ A G C A A A A G G C ~ C A G G A A C C G T ~ A A A A A G G C C G ~ C G T T G C T G G C ~
    CGTTTTCCGG TCGTTTTCCG GTCCTTGGCA TTTTTCCGGC GCAACGACCG
4 9 0 1 ~ G T T T T T C C A T ~ A G G C T C C G C C ~ C C C C T G A C G A ~ G C A T C A C A A A ~ A A T C G A C G C T ~
    CAAAAAGGTA TCCGAGGCGG GGGGACTGCT CGTAGTGTTT TTAGCTGCGA
```

4951 CAAGTCAGAG GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT GTTCAGTCTC CACCGCTTTG GGCTGTCCTG ATATTTCTAT GGTCCGCAAA
5001 CCCCCTGGAA GCTCCCTCGT GCGCTCTCCT GTTCCGACCC TGCCGCTTAC GGGGGACCTT CGAGGGAGCA CGCGAGAGGA CAAGGCTGGG ACGGCGAATG
5051 CGGATACCTG TCCGCCTTTC TCCCTTCGGG AAGCGTGGCG CTTTCTCATA GCCTATGGAC AGGCGGAAAG AGGGAAGCCC TTCGCACCGC GAAAGAGTAT
5101 GCTCACGCTG TAGGTATCTC AGTTCGGTGT AGGTCGTTCG CTCCAAGCTG CGAGTGCGAC ATCCATAGAG TCAAGCCACA TCCAGCAAGC GAGGTTCGAC
5151 GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG CCTTATCCGG CCGACACACG TGCTTGGGGG GCAAGTCGGG CTGGCGACGC GGAATAGGCC
5201 TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG ATTGATAGCA GAACTCAGGT TGGGCCATTC TGTGCTGAAT AGCGGTGACC
5251 CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT GTCGTCGGTG ACCATTGTCC TAATCGTCTC GCTCCATACA TCCGCCACGA
5301 ACAGAGTTCT TGAAGTGGTG GCCTAACTAC GGCTACACTA GAAGGACAGT TGTCTCAAGA ACTTCACCAC CGGATTGATG CCGATGTGAT CTTCCTGTCA
5351 ATTTGGTATC TGCGCTCTGC TGAAGCCAGT TACCTTCGGA AAAAGAGTTG TAAACCATAG ACGCGAGACG ACTTCGGTCA ATGGAAGCCT TTTTCTCAAC
5401 GTAGCTCTTG ATCCGGCAAA CAAACCACCG CTGGTAGCGG TGGTTTTTTT CATCGAGAAC TAGGCCGTTT GTTTGGTGGC GACCATCGCC ACCAAAAAAA
5451 GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC AAGAAGATCC CAAACGTTCG TCGTCTAATG CGCGTCTTTT TTTCCTAGAG TTCTTCTAGG
5501 TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT AAACTAGAAA AGATGCCCCA GACTGCGAGT CACCTTGCTT TTGAGTGCAA
5551 AAGGGATTTT GGTCATGAGA TTATCAAAAA GGATCTTCAC CTAGATCCTT TTCCCTAAAA CCAGTACTCT AATAGTTTTT CCTAGAAGTG GATCTAGGAA
5601 TTAAATTAAA AATGAAGTTT TAAATCAATC TAAAGTATAT ATGAGTAAAC AATTTAATTT TTACTTCAAA ATTTAGTTAG ATTTCATATA TACTCATTTG
5651 TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT ATCTCAGCGA AACCAGACTG TCAATGGTTA CGAATTAGTC ACTCCGTGGA TAGAGTCGCT

$$
\text { * } \begin{array}{llllllllllll}
\mathrm{W} & \mathrm{H} & \mathrm{~K} & \mathrm{I} & \mathrm{~L} & \mathrm{~S} & \mathrm{~A} & \mathrm{G} & \mathrm{I} & \mathrm{E} & \mathrm{~A} & \text { amp }^{R}
\end{array}
$$

5701 TCTGTCTATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA AGACAGATAA AGCAAGTAGG TATCAACGGA CTGAGGGGCA GCACATCTAT $\begin{array}{llllllllllllllllll}I & Q & R & N & R & E & D & M & T & A & Q & S & G & T & T & Y & I & a_{m}{ }^{R}\end{array}$
5751 ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTGCTG CAATGATACC TGATGCTATG CCCTCCCGAA TGGTAGACCG GGGTCACGAC GTTACTATGG $\begin{array}{llllllllllllllllll}\mathrm{V} & \mathrm{V} & \mathrm{I} & \mathrm{R} & \mathrm{S} & \mathrm{P} & \mathrm{K} & \mathrm{G} & \mathrm{D} & \mathrm{P} & \mathrm{G} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{I} & \mathrm{I} & \mathrm{G} & \text { amp }^{R}\end{array}$
5801 GCGAGACCCA CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCAGCCAG CGCTCTGGGT GCGAGTGGCC GAGGTCTAAA TAGTCGTTAT TTGGTCGGTC $\begin{array}{llllllllllllllll}R & S & G & R & E & G & A & G & S & K & D & A & I & F & W & G\end{array}$
5851 CCGGAAGGGC CGAGCGCAGA AGTGGTCCTG CAACTTTATC CGCCTCCATC GGCCTTCCCG GCTCGCGTCT TCACCAGGAC GTTGAAATAG GCGGAGGTAG

APPENDICES

5901 CAGTCTATTA ATTGTTGCCG GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA GTCAGATAAT TAACAACGGC CCTTCGATCT CATTCATCAA GCGGTCAATT

5951 TAGTTTGCGC AACGTTGTTG CCATTGCTGC AGGCATCGTG GTGTCACGCT ATCAAACGCG TTGCAACAAC GGTAACGACG TCCGTAGCAC CACAGTGCGA
$\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{K} & \mathrm{R} & \mathrm{L} & \mathrm{T} & \mathrm{T} & \mathrm{A} & \mathrm{M} & \mathrm{A} & \mathrm{A} & \mathrm{P} & \mathrm{M} & \mathrm{T} & \mathrm{T} & \mathrm{D} & \mathrm{R}\end{array}$
$a m p^{R}$

6001 CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GCAGCAAACC ATACCGAAGT AAGTCGAGGC CAAGGGTTGC TAGTTCCGCT $\begin{array}{lllllllllllllllll}\mathrm{E} & \mathrm{D} & \mathrm{N} & \mathrm{P} & \mathrm{I} & \mathrm{A} & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{E} & \mathrm{P} & \mathrm{E} & \mathrm{W} & \mathrm{R} & \mathrm{D} & \mathrm{L} & \mathrm{R}\end{array}$

6051 GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC CAATGTACTA GGGGGTACAA CACGTTTTTT CGCCAATCGA GGAAGCCAGG $\begin{array}{lllllllllllllllll}T & V & H & D & G & M & N & H & L & F & A & T & L & E & K & P & G\end{array}$

6101 TCCGATCGTT GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA AGGCTAGCAA CAGTCTTCAT TCAACCGGCG TCACAATAGT GAGTACCAAT $\begin{array}{lllllllllllllllll}\mathrm{G} & \mathrm{I} & \mathrm{T} & \mathrm{T} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{N} & \mathrm{A} & \mathrm{A} & \mathrm{T} & \mathrm{N} & \mathrm{D} & \mathrm{S} & \mathrm{M} & \mathrm{T} & \mathbf{a m p}^{\mathrm{R}}\end{array}$

6151 TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT AAGATGCTTT ACCGTCGTGA CGTATTAAGA GAATGACAGT ACGGTAGGCA TTCTACGAAA $\begin{array}{lllllllllllllllll}\text { I } & A & A & S & C & L & E & R & V & T & M & G & D & T & L & H & K\end{array}$

6201 TCTGTGACTG GTGAGTACTC AACCAAGTCA TTCTGAGAAT AGTGTATGCG AGACACTGAC CACTCATGAG TTGGTTCAGT AAGACTCTTA TCACATACGC

6251 GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT ACCGCGCCAC CGCTGGCTCA ACGAGAACGG GCCGCAGTTG TGCCCTATTA TGGCGCGGTG $\begin{array}{lllllllllllllllll}R & G & L & Q & E & Q & G & A & D & V & R & S & L & V & A & G\end{array}$

6301 ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA TATCGTCTTG AAATTTTCAC GAGTAGTAAC CTTTTGCAAG AAGCCCCGCT $\begin{array}{llllllllllllllllll}C & L & L & V & K & F & T & S & M & M & P & F & R & E & E & P & R\end{array}$

6351 AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TTTGAGAGTT CCTAGAATGG CGACAACTCT AGGTCAAGCT ACATTGGGTG $\begin{array}{lllllllllllllllll}\text { F } & \mathrm{S} & \mathrm{E} & \mathrm{L} & \mathrm{I} & \mathrm{K} & \mathrm{G} & \mathrm{S} & \mathrm{N} & \mathrm{L} & \mathrm{D} & \mathrm{L} & \mathrm{E} & \mathrm{I} & \mathrm{Y} & \mathrm{G} & \mathrm{V}\end{array}$

6401 TCGTGCACCC AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG AgCACGTGGg TTGACTAGAA GTCGTAGAAA ATGAAAGTGG TCGCAAAGAC $\begin{array}{lllllllllllllllll}R & A & G & L & Q & D & E & A & D & K & V & K & V & L & T & E\end{array}$

6451 GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG AATAAGGGCG CCACTCGTTT TTGTCCTTCC GTTTTACGGC GTTTTTTCCC TTATTCCCGC $\begin{array}{lllllllllllllllll}\text { P } & \mathrm{H} & \mathrm{A} & \mathrm{F} & \mathrm{V} & \mathrm{P} & \mathrm{L} & \mathrm{C} & \mathrm{F} & \mathrm{A} & \mathrm{A} & \mathrm{F} & \mathrm{F} & \mathrm{P} & \mathrm{I} & \mathrm{L} & \mathrm{A}\end{array}$

6501 ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTTCAAT ATTATTGAAG TGTGCCTTTA CAACTTATGA GTATGAGAAG GAAAAAGTTA TAATAACTTC $\begin{array}{lllllllll}\mathrm{V} & \mathrm{R} & \mathrm{F} & \mathrm{H} & \mathrm{Q} & \mathrm{I} & \mathrm{S} & \mathrm{M} & \mathbf{a m p}^{\mathrm{R}}\end{array}$

6551 CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT GAATGTATTT GTAAATAGTC CCAATAACAG AGTACTCGCC TATGTATAAA CTTACATAAA

6601 AgAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA TCTTTTTATT TGTTTATCCC CAAGGCGCGT GTAAAGGGGC TTTTCACGGT

6651 CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAAATAG GgACTGCAGA TTCTTTGGTA ATAATAGTAC TGTAATTGGA TATTTTTATC

6701 GCGTATCACG AGGCCCTTTC GTCTTCAAGA A CGCATAGTGC TCCGGGAAAG CAGAAGTTCT T

Appendix E

Cj1344c/Cj1343c genomic region and promoter elements

Cj1344c/Cj1343 genomic region

 $1408 b p$1 CAAACACAAT ACTCTTTAGA CATGGCAGGT AAAATTTATA GAGCGGAATT GTTTGTGTTA TGAGAAATCT GTACCGTCCA TTTTAAATAT CTCGCCTTAA
-35
51 TTATGAGTTA AGAGGTGCAA ATTTGCAACA ACTTTTAGAG GCAAATATCA AATACTCAAT TCTCCACGTT TAAACGTTGT TGAAAATCTC CGTTTATAGT $-16 \quad-10$
101 ATAGCAAGTT GATCAAAAAC GCTAAAAATT TGGATTAAA TACTCTTAAA TATCGTTCAA CTAGTTTTTG CGATTTTIAA ACCTAAATTT ATGAGAATTT

251 AGCTATCATT GATAAAAACA CCTTAGAATG TAAATTTCAT AAAAAAATTT TCGATAGTAA CTATTTTTGT GGAATCTTAC ATTTAAAGTA TTTTTTTAAA $\begin{array}{lllllllllllllllll}\text { A } & I & I & D & K & N & T & L & E & C & K & F & H & K & K & I & S\end{array}$

301 CCCAAGAATT AGATCATAGT ATCTATGGGG GAGTGGTACC TGAACTTGCT GGGTTCTTAA TCTAGTATCA TAGATACCCC CTCACCATGG ACTTGAACGA Q E L $\quad \mathrm{D} \quad \mathrm{H} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{Y}$ G $\quad \mathrm{G} \quad \mathrm{V} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{A}$

351 GCAAGACTTC ATAGCGAGGC TTTACCAAAG ATGCTTAAGC AATGCAAAGA CGTTCTGAAG TATCGCTCCG AAATGGTTTC TACGAATTCG TTACGTTTCT $\begin{array}{lllllllllllllllll}\text { A } & \mathrm{R} & \mathrm{L} & \mathrm{H} & \mathrm{S} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{K} & \mathrm{M} & \mathrm{L} & \mathrm{K} & \mathrm{Q} & \mathrm{C} & \mathrm{K} & \mathrm{E}\end{array}$

401 GCATTTTAAA AATCTTTGTG CCATAGCTGT GACAAATGAA CCTGGACTTA CGTAAAATTT TTAGAAACAC GGTATCGACA CTGTTTACTT GGACCTGAAT $\begin{array}{lllllllllllllllll}\text { H } & \mathrm{F} & \mathrm{K} & \mathrm{N} & \mathrm{L} & \mathrm{C} & \text { A } & \mathrm{I} & \text { A } & \mathrm{V} & \mathrm{T} & \mathrm{N} & \mathrm{E} & \mathrm{P} & \mathrm{G} & \mathrm{L} & \mathrm{S}\end{array}$

451 GTGTTTCTTT GCTCAGTGGA ATTTCTATGG CAAAAACCTT AGCAAGTGCG CACAAAGAAA CGAGTCACCT TAAAGATACC GTTTTTGGAA TCGTTCACGC

501 CTAAATTTAC CCTTAATCCC TATAAATCAT CTTAAAGGTC ATATTTATAG GATTTAAATG GGAATTAGGG ATATTTAGTA GAATTTCCAG TATAAATATC $\begin{array}{lllllllllllllllll}\text { L } & \mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{L} & \mathrm{I} & \mathrm{P} & \mathrm{I} & \mathrm{N} & \mathrm{H} & \mathrm{L} & \mathrm{K} & \mathrm{G} & \mathrm{H} & \mathrm{I} & \mathrm{Y} & \mathrm{S}\end{array}$

551 TCTTTTTTTG GAAGAAAAAA TTTCTTTAGA TATGGGAATT TTGCTTGTTA AGAAAAAAAC CTTCTTTTTT AAAGAAATCT ATACCCTTAA AACGAACAAT $\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{E} & \mathrm{E} & \mathrm{K} & \mathrm{I} & \mathrm{S} & \mathrm{L} & \mathrm{D} & \mathrm{M} & \mathrm{G} & \mathrm{I} & \mathrm{L} & \mathrm{L} & \mathrm{V} & \mathrm{S}\end{array}$

601 GTGGTGGGCA TACCATGGTG CTTTATCTTA AAGATGATGC AAGCTTAGAG CACCACCCGT ATGGTACCAC GAAATAGAAT TTCTACTACG TTCGAATCTC $\begin{array}{lllllllllllllllll}\text { G } & G & H & T & M & V & L & Y & L & K & D & D & A & S & L & E & C j 1344 C\end{array}$

651 CTTTTAGCAA GTACAAATGA TGATAGCTTT GGAGAAAGTT TTGATAAAGT GAAAATCGTT CATGTTTACT ACTATCGAAA CCTCTTTCAA AACTATTTCA

APPENDICES

```
7 0 1 ~ G G C T A A A A T G ~ A T G A A T T T A G ~ G T T A C C C T G G ~ T G G G G T C A T C ~ A T A G A A A A T T ~
    CCGATTTTAC TACTTAAATC CAATGGGACC ACCCCAGTAG TATCTTTTAA
```



```
7 5 1 ~ T A G C A A A A A A ~ T G C C A A A C T T ~ A A A A A T A T C T ~ C T T T T A A C A C ~ A C C T T T A A A G ~
    ATCGTTTTTT ACGGTTTGAA TTTTTATAGA GAAAATTGTG TGGAAATTTC
        A Kllllllllllllllllllllll
801 CATTCTAAAG AACTCGCTTT CAGTTTTTCA GGGCTTAAAA ATGCAGTGCG
    GTAAGATTTC TTGAGCGAAA GTCAAAAAGT CCCGAATTTT TACGTCACGC
    H
85 TTTGGAAATT TTAAAACATG AAAATTTAAA TGAAGACACA AAAGCAGAAA
    AAACCTTTAA AATTTTGTAC TTTTAAATTT ACTTCTGTGT TTTCGTCTTT
        L
901 TAGCCTATGC CTTTGAAAAT ACAGCTTGTG ATCATATCAT GGATAAATTA
    ATCGGATACG GAAACTTTTA TGTCGAACAC TAGTATAGTA CCTATTTAAT
        A Y A F F E N T T A Clllllllllll
9 5 1 ~ G A A A A A A T T T ~ T T A A T C T T T A ~ T A A A T T T A A A ~ A A T T T T G G C G ~ T T G T A G G T G G ~
    CTTTTTTAAA AATTAGAAAT ATTTAAATTT TTAAAACCGC AACATCCACC
    E Kllllllllllllllllllllll
1001 AGCTAGTGCA AATCTTAACT TGCGTTCGCG TTTGCAAAAT TTATGTCAAA
    TCGATCACGT TTAGAATTGA ACGCAAGCGC AAACGTTTTA AATACAGTTT
        A Slllllllllllllllll
1 0 5 1 ~ A A T A T A A T G C ~ A A A T T T A A A A ~ C T A G C T C C T T ~ T A A A A T T C T G ~ C T C T G A T A A T ~
    TTATATTACG TTTAAATTTT GATCGAGGAA ATTTTAAGAC GAGACTATTA
```



```
1 1 0 1 ~ G C T T T G A T G A ~ T A G C A A G A G C ~ C G C A G T T G A T ~ G C T T A T G A A A ~ A A A A G G A A T T ~
    CGAAACTACT ATCGTTCTCG GCGTCAACTA CGAATACTTT TTTTCCTTAA
    A L
    -35 -16 -10 RBS
1151 TGTAAGTGTA GAAGAAGATA TTTTAAGCCC TAAAAATAAA AATTTTTCAA
    \ACATTCA
        IAAAAATAAA AATTTTTGAA
    j1344c STOP
1201 GGATATAGAT GAAAAAAGCT TTTACTATAT TAGAACTTGT TTTTGTGATC
        CCTATATCTA CTTTTTTCGA AAATGATATA ATCTTGAACA AAAACACTAG
        I * START Cj1343c
1251 GTTATTTTGG CTTAAAATCG GCGATAACGA AACGGTTTTT ACTCAAGTTC
    CAATAAAACC GAATTTTAGC CGCTATTGCT TTGCCAAAAA TGAGTTCAAG
1 3 0 1 ~ A T T C C T A C T T ~ C G A C T T C A A T ~ G C A A G T C T T T ~ A A A C A A C C T T ~ A A A A C T T T G A ~
    TAAGGATGAA GCTGAAGTTA CGTTCAGAAA TTTGTTGGAA TTTTGAAACT
1351 TCAATGATAT AAGCATTTAT ACTTTAAAAA TACTAGTAAA TTCGAGATAT
    AGTTACTATA TTCGTAAATA TGAAATTTTT ATGATCATTT AAGCTCTATA
1401 TTTTGCTA
    AAAACGAT
```


Appendix F

pGU0805 (pGU0501 $\Delta C j 1344 c:$:cat)

1 GGGCGAATTG GGCCCGACGT CGCATGCTCC CGGCCGCCAT GGCGGCCGCG CCCGCTTAAC CCGGGCTGCA GCGTACGAGG GCCGGCGGTA CCGCCGGCGC

START Cj1344c

51 GGAATTCGAT TCATATGAAA AATCTTATCC TAGCTATAGA AAGTTCTTGT CCTTAAGCTA AGTATACTTT TTAGAATAGG ATCGATATCT TTCAAGAACA

M	K	N	L	I	L	A	I	E	S	S	C

101 GATGATAGTT CTATAGCTAT CATTGATAAA AACACCTTAG AATGTAAATT CTACTATCAA GATATCGATA GTAACTATTT TTGTGGAATC TTACATTTAA

151 TCATAAAAAA ATTTCCCAAG AATTAGATCA TAGTATCTAT GGGGGAGTGG AGTATTTTTT TAAAGGGTTC TTAATCTAGT ATCATAGATA CCCCCTCACC

201 TACCTGAACT TGCTGCAAGA CTTCATAGCG AGGCTTTACC AAAGATGCTT ATGGACTTGA ACGACGTTCT GAAGTATCGC TCCGAAATGG TTTCTACGAA $\begin{array}{llllllllllllllll}\mathrm{P} & \mathrm{E} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{R} & \mathrm{L} & \mathrm{H} & \mathrm{S} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{K} & \mathrm{M} & \mathrm{L}\end{array}$

251 AAGCAATGCA AAGAGCATTT TAAAAATCTT TGTGCCATAG CTGTGACAAA TTCGTTACGT TTCTCGTAAA ATTTTTAGAA ACACGGTATC GACACTGTTT

301 TGAACCTGGA CTTAGTGTTT CTTTGCTCAG TGGAATTTCT ATGGCAAAAA ACTTGGACCT GAATCACAAA GAAACGAGTC ACCTTAAAGA TACCGTTTTT

351 CCTTAGCAAG TGCGCTAAAT TTACCCTTAA TCCCTATAAA TCATCTTAAA GGAATCGTTC ACGCGATTTA AATGGGAATT AGGGATATTT AGTAGAATTT $\begin{array}{llllllllllllllll}\mathrm{L} & \mathrm{A} & \mathrm{S} & \mathrm{A} & \mathrm{L} & \mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{L} & \mathrm{I} & \mathrm{P} & \mathrm{I} & \mathrm{N} & \mathrm{H} & \mathrm{L} & \mathrm{K}\end{array}$

401 GGTCATATTT ATAGTCTTTT TTTGGAAGAA AAAATTTCTT TAGATATGGG CCAGTATAAA TATCAGAAAA AAACCTTCTT TTTTAAAGAA ATCTATACCC $\begin{array}{lllllllllllllllll}\text { G } & \mathrm{H} & \mathrm{I} & \mathrm{Y} & \mathrm{S} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{E} & \mathrm{E} & \mathrm{K} & \mathrm{I} & \mathrm{S} & \mathrm{L} & \mathrm{D} & \mathrm{M} & \mathrm{G}\end{array}$ START cat (in frame)
451 AATTTTGCTT GTTAGTGGTG GAGATCTCAT GATGCAATTC ACAAAGATTG TTAAAACGAA CAATCACCAC CTCTAGAGTA CTACGTTAAG TGTTTCTAAC $\begin{array}{lllllllllllllllll}\text { I } & L & L & V & S & G & G & D & L & M & M & Q & F & T & K & I & D\end{array}$

501 ATATAAATAA TTGGACACGA AAAGAGTATT TCGACCACTA TTTTGGCAAT TATATTTATT AACCTGTGCT TTTCTCATAA AGCTGGTGAT AAAACCGTTA $\begin{array}{llllllllllllllll}\text { I } & \mathrm{N} & \mathrm{N} & \mathrm{W} & \mathrm{T} & \mathrm{R} & \mathrm{K} & \mathrm{E} & \mathrm{Y} & \mathrm{F} & \mathrm{D} & \mathrm{H} & \mathrm{Y} & \mathrm{F} & \mathrm{G} & \mathrm{N}\end{array}$

551 ACGCCCTGCA CATATAGTAT GACGGTAAAA CTCGATATTT CTAAGTTGAA TGCGGGACGT GTATATCATA CTGCCATTTT GAGCTATAAA GATTCAACTT $\begin{array}{llllllllllllllllll}T & \mathrm{P} & \mathrm{C} & \mathrm{T} & \mathrm{Y} & \mathrm{S} & \mathrm{M} & \mathrm{T} & \mathrm{V} & \mathrm{K} & \mathrm{L} & \mathrm{D} & \mathrm{I} & \mathrm{S} & \mathrm{K} & \mathrm{L} & \mathrm{K}\end{array}$

601 AAAGGATGGA AAAAAGTTAT ACCCAACTCT TTTATATGGA GTTACAACGA TTTCCTACCT TTTTTCAATA TGGGTTGAGA AAATATACCT CAATGTTGCT $\begin{array}{lllllllllllllllll}\mathrm{K} & \mathrm{D} & \mathrm{G} & \mathrm{K} & \mathrm{K} & \mathrm{L} & \mathrm{Y} & \mathrm{P} & \mathrm{T} & \mathrm{L} & \mathrm{L} & \mathrm{Y} & \mathrm{G} & \mathrm{V} & \mathrm{T} & \mathrm{T} & \mathrm{I}\end{array}$

651 TCATCAATCG ACATGAAGAG TTCAGGACCG CATTAGATGA AAACGGACAG AGTAGTTAGC TGTACTTCTC AAGTCCTGGC GTAATCTACT TTTGCCTGTC $\begin{array}{llllllllllllllll}\text { I } & \mathrm{N} & \mathrm{R} & \mathrm{H} & \mathrm{E} & \mathrm{E} & \mathrm{F} & \mathrm{R} & \mathrm{T} & \mathrm{A} & \mathrm{L} & \mathrm{D} & \mathrm{E} & \mathrm{N} & \mathrm{G} & \mathrm{Q}\end{array}$

701 GTAGGCGTTT TTTCAGAAAT GCTGCCTTGC TACACAGTTT TTCATAAGGA CATCCGCAAA AAAGTCTTTA CGACGGAACG ATGTGTCAAA AAGTATTCCT $\begin{array}{llllllllllllllllll}V & G & V & F & S & E & M & L & P & C & Y & T & V & F & H & K & E\end{array}$

751 AACTGAAACC TTTTCGAGTA TTTGGACTGA GTTTACAGCA GACTATACTG TTGACTTTGG AAAAGCTCAT AAACCTGACT CAAATGTCGT CTGATATGAC $\begin{array}{lllllllllllllllll}T & \mathrm{E} & \mathrm{T} & \mathrm{F} & \mathrm{S} & \mathrm{S} & \mathrm{I} & \mathrm{W} & \mathrm{T} & \mathrm{E} & \mathrm{F} & \mathrm{T} & \mathrm{A} & \mathrm{D} & \mathrm{Y} & \mathrm{T} & \mathrm{E}\end{array}$

801 AGTTTCTTCA GAACTATCAA AAGGATATAG ACGCTTTTGG TGAACGAATG TCAAAGAAGT CTTGATAGTT TTCCTATATC TGCGAAAACC ACTTGCTTAC $\begin{array}{llllllllllllllll}F & L & Q & N & Y & Q & K & D & I & D & A & F & G & E & R & M\end{array}$

851 GGAATGTCCG CAAAGCCTAA TCCTCCGGAA AACACTTTCC CTGTTTCTAT CCTTACAGGC GTTTCGGATT AGGAGGCCTT TTGTGAAAGG GACAAAGATA $\begin{array}{lllllllllllllllll}\text { G } & \mathrm{M} & \mathrm{S} & \mathrm{A} & \mathrm{K} & \mathrm{P} & \mathrm{N} & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{F} & \mathrm{P} & \mathrm{V} & \mathrm{S} & \mathrm{M}\end{array}$

901 GATACCGTGG ACAAGCTTTG AAGGCTTTAA CTTAAATCTA AAAAAAGGAT CTATGGCACC TGTTCGAAAC TTCCGAAATT GAATTTAGAT TTTTTTCCTA $\begin{array}{lllllllllllllllll}\text { I } & \mathrm{P} & \mathrm{W} & \mathrm{T} & \mathrm{S} & \mathrm{F} & \mathrm{E} & \mathrm{G} & \mathrm{F} & \mathrm{N} & \mathrm{L} & \mathrm{N} & \mathrm{L} & \mathrm{K} & \mathrm{K} & \mathrm{G} & \mathrm{Y}\end{array}$

951 ATGACTATCT ACTGCCGATA TTTACGTTTG GGAAGTATTA TGAGGAGGGC TACTGATAGA TGACGGCTAT AAATGCAAAC CCTTCATAAT ACTCCTCCCG $\begin{array}{llllllllllllllll}\text { D } & \mathrm{Y} & \mathrm{L} & \mathrm{L} & \mathrm{P} & \mathrm{I} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{G} & \mathrm{K} & \mathrm{Y} & \mathrm{Y} & \mathrm{E} & \mathrm{E} & \mathrm{G}\end{array}$

1001 GGAAAATACT ATATTCCCTT ATCGATTCAA GTGCATCATG CCGTTTGTGA CCTTTTATGA TATAAGGGAA TAGCTAAGTT CACGTAGTAC GGCAAACACT $\begin{array}{lllllllllllllllll}G & K & Y & Y & I & P & L & S & I & Q & V & H & H & A & V & C & D\end{array}$

1051 CGGCTTTCAT GTTTGCCGTT TTTTGGATGA ATTACAAGAC TTGCTGAATA GCCGAAAGTA CAAACGGCAA AAAACCTACT TAATGTTCTG AACGACTTAT $\begin{array}{lllllllllllllllll}G & F & H & V & C & R & F & L & D & E & L & Q & D & L & L & N & K\end{array}$ STOP cat
1101 AATAAAGATC TGAGCTTTTA GCAAGTACAA ATGATGATAG CTTTGGAGAA TTATTTCTAG ACTCGAAAAT CGTTCATGTT TACTACTATC GAAACCTCTT *

1151 AGTTTTGATA AAGTGGCTAA AATGATGAAT TTAGGTTACC CTGGTGGGGT TCAAAACTAT TTCACCGATT TTACTACTTA AATCCAATGG GACCACCCCA $\begin{array}{llllllllll}M & M & N & L & G & Y & P & G & G & V\end{array}$

1201 CATCATAGAA AATTTAGCAA AAAATGCCAA ACTTAAAAAT ATCTCTTTTA GTAGTATCTT TTAAATCGTT TTTTACGGTT TGAATTTTTA TAGAGAAAAT

1251 ACACACCTTT AAAGCATTCT AAAGAACTCG CTTTCAGTTT TTCAGGGCTT TGTGTGGAAA TTTCGTAAGA TTTCTTGAGC GAAAGTCAAA AAGTCCCGAA $\begin{array}{llllllllllllllll}T & P & L & K & H & S & K & E & L & A & F & S & F & S & G & L\end{array}$

1301 AAAAATGCAG TGCGTTTGGA AATTTTAAAA CATGAAAATT TAAATGAAGA TTTTTACGTC ACGCAAACCT TTAAAATTTT GTACTTTTAA ATTTACTTCT

1351 CACAAAAGCA GAAATAGCCT ATGCCTTTGA AAATACAGCT TGTGATCATA GTGTTTTCGT CTTTATCGGA TACGGAAACT TTTATGTCGA ACACTAGTAT $\mathrm{T} \quad \mathrm{K} \quad \mathrm{A} \quad \mathrm{E} \quad \mathrm{I} \quad \mathrm{A} \quad \mathrm{Y}$ A $\mathrm{F} \quad \mathrm{E} \quad \mathrm{N} \quad \mathrm{T} \quad \mathrm{A} \quad \mathrm{C} \quad \mathrm{D} \quad \mathrm{H} \quad \mathrm{I}$

1401 TCATGGATAA ATTAGAAAAA ATTTTTAATC TTTATAAATT TAAAAATTTT AGTACCTATT TAATCTTTTT TAAAAATTAG AAATATTTAA ATTTTTAAAA

1451 GGCGTTGTAG GTGGAGCTAG TGCAAATCTT AACTTGCGTT CGCGTTTGCA CCGCAACATC CACCTCGATC ACGTTTAGAA TTGAACGCAA GCGCAAACGT

1501 AAATTTATGT CAAAAATATA ATGCAAATTT AAAACTAGCT CCTTTAAAAT TTTAAATACA GTTTTTATAT TACGTTTAAA TTTTGATCGA GGAAATTTTA $\begin{array}{llllllllllllllllll}\mathrm{N} & \mathrm{L} & \mathrm{C} & \mathrm{Q} & \mathrm{K} & \mathrm{Y} & \mathrm{N} & \mathrm{A} & \mathrm{N} & \mathrm{L} & \mathrm{K} & \mathrm{L} & \mathrm{A} & \mathrm{P} & \mathrm{L} & \mathrm{K} & \mathrm{F}\end{array}$

1551 TCTGCTCTGA TAATGCTTTG ATGATAGCAA GAGCCGCAGT TGATGCTTAT AGACGAGACT ATTACGAAAC TACTATCGTT CTCGGCGTCA ACTACGAATA $\begin{array}{llllllllllllllll}\mathrm{C} & \mathrm{S} & \mathrm{D} & \mathrm{N} & \mathrm{A} & \mathrm{L} & \mathrm{M} & \mathrm{I} & \mathrm{A} & \mathrm{R} & \mathrm{A} & \mathrm{A} & \mathrm{V} & \mathrm{D} & \text { A } & \mathrm{Y}\end{array}$

1601 GAAAAAAAGG AATTTGTAAG TGTAGAAGAA GATATTTTAA GCCCTAAAAA CTTTTTTTCC TTAAACATTC ACATCTTCTT CTATAAAATT CGGGATTTTT

STOP Cj1344c

1651 TAAAAATTTT TCAAGGATAT AGATGAAAAA AGCTCGAGAA TCACTAGTGA ATTTTTAAAA AGTTCCTATA TCTACTTTTT TCGAGCTCTT AGTGATCACT $\begin{array}{lllllll}\mathrm{K} & \mathrm{N} & \mathrm{F} & \mathrm{S} & \mathrm{R} & \mathrm{I} & *\end{array}$

1701 ATTCGCGGCC GCCTGCAGGT CGACCATATG GGAGAGCTCC CAACGCGTTG TAAGCGCCGG CGGACGTCCA GCTGGTATAC CCTCTCGAGG GTTGCGCAAC

1751 GATGCATAGC TTGAGTATTC TATAGTGTCA CCTAAATAGC TTGGCGTAAT CTACGTATCG AACTCATAAG ATATCACAGT GGATTTATCG AACCGCATTA

1801 CATGGTCATA GCTGTTTCCT GTGTGAAATT GTTATCCGCT CACAATTCCA GTACCAGTAT CGACAAAGGA CACACTTTAA CAATAGGCGA GTGTTAAGGT

1851 CACAACATAC GAGCCGGAAG CATAAAGTGT AAAGCCTGGG GTGCCTAATG GTGTTGTATG CTCGGCCTTC GTATTTCACA TTTCGGACCC CACGGATTAC

1901 AGTGAGCTAA CTCACATTAA TTGCGTTGCG CTCACTGCCC GCTTTCCAGT TCACTCGATT GAGTGTAATT AACGCAACGC GAGTGACGGG CGAAAGGTCA

APPENDICES

```
1 9 5 1 ~ C G G G A A A C C T ~ G T C G T G C C A G ~ C T G C A T T A A T ~ G A A T C G G C C A ~ A C G C G C G G G G ~
    GCCCTTTGGA CAGCACGGTC GACGTAATTA CTTAGCCGGT TGCGCGCCCC
2 0 0 1 ~ A G A G G C G G T T ~ T G C G T A T T G G ~ G C G C T C T T C C ~ G C T T C C T C G C ~ T C A C T G A C T C ~
    TCTCCGCCAA ACGCATAACC CGCGAGAAGG CGAAGGAGCG AGTGACTGAG
2 0 5 1 ~ G C T G C G C T C G ~ G T C G T T C G G C ~ T G C G G C G A G C ~ G G T A T C A G C T ~ C A C T C A A A G G ~
    CGACGCGAGC CAGCAAGCCG ACGCCGCTCG CCATAGTCGA GTGAGTTTCC
2101 CGGTAATACG GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG
    GCCATTATGC CAATAGGTGT CTTAGTCCCC TATTGCGTCC TTTCTTGTAC
2 1 5 1 ~ T G A G C A A A A G ~ G C C A G C A A A A ~ G G C C A G G A A C ~ C G T A A A A A G G ~ C C G C G T T G C T ~
    ACTCGTTTTC CGGTCGTTTT CCGGTCCTTG GCATTTTTCC GGCGCAACGA
2 2 0 1 ~ G G C G T T T T T C ~ C A T A G G C T C C ~ G C C C C C C T G A ~ C G A G C A T C A C ~ A A A A A T C G A C ~
    CCGCAAAAAG GTATCCGAGG CGGGGGGACT GCTCGTAGTG TTTTTAGCTG
2 2 5 1 ~ G C T C A A G T C A ~ G A G G T G G C G A ~ A A C C C G A C A G ~ G A C T A T A A A G ~ A T A C C A G G C G ~
    CGAGTTCAGT CTCCACCGCT TTGGGCTGTC CTGATATTTC TATGGTCCGC
2 3 0 1 ~ T T T C C C C C T G ~ G A A G C T C C C T ~ C G T G C G C T C T ~ C C T G T T C C G A ~ C C C T G C C G C T ~
    AAAGGGGGAC CTTCGAGGGA GCACGCGAGA GGACAAGGCT GGGACGGCGA
2 3 5 1 ~ T A C C G G A T A C ~ C T G T C C G C C T ~ T T C T C C C T T C ~ G G G A A G C G T G ~ G C G C T T T C T C ~
    ATGGCCTATG GACAGGCGGA AAGAGGGAAG CCCTTCGCAC CGCGAAAGAG
2 4 0 1 ~ A T A G C T C A C G ~ C T G T A G G T A T ~ C T C A G T T C G G ~ T G T A G G T C G T ~ T C G C T C C A A G ~
    TATCGAGTGC GACATCCATA GAGTCAAGCC ACATCCAGCA AGCGAGGTTC
2 4 5 1 ~ C T G G G C T G T G ~ T G C A C G A A C C ~ C C C C G T T C A G ~ C C C G A C C G C T ~ G C G C C T T A T C ~
    GACCCGACAC ACGTGCTTGG GGGGCAAGTC GGGCTGGCGA CGCGGAATAG
2 5 0 1 ~ C G G T A A C T A T ~ C G T C T T G A G T ~ C C A A C C C G G T ~ A A G A C A C G A C ~ T T A T C G C C A C ~
    GCCATTGATA GCAGAACTCA GGTTGGGCCA TTCTGTGCTG AATAGCGGTG
2 5 5 1 ~ T G G C A G C A G C ~ C A C T G G T A A C ~ A G G A T T A G C A ~ G A G C G A G G T A ~ T G T A G G C G G T
    ACCGTCGTCG GTGACCATTG TCCTAATCGT CTCGCTCCAT ACATCCGCCA
2 6 0 1 ~ G C T A C A G A G T ~ T C T T G A A G T G ~ G T G G C C T A A C ~ T A C G G C T A C A ~ C T A G A A G A A C ~
    CGATGTCTCA AGAACTTCAC CACCGGATTG ATGCCGATGT GATCTTCTTG
2 6 5 1 ~ A G T A T T T G G T ~ A T C T G C G C T C ~ T G C T G A A G C C ~ A G T T A C C T T C ~ G G A A A A A G A G ~
    TCATAAACCA TAGACGCGAG ACGACTTCGG TCAATGGAAG CCTTTTTCTC
2 7 0 1 ~ T T G G T A G C T C ~ T T G A T C C G G C ~ A A A C A A A C C A ~ C C G C T G G T A G ~ C G G T G G T T T T
    AACCATCGAG AACTAGGCCG TTTGTTTGGT GGCGACCATC GCCACCAAAA
2 7 5 1 ~ T T T G T T T G C A ~ A G C A G C A G A T ~ T A C G C G C A G A ~ A A A A A A G G A T ~ C T C A A G A A G A ~
    AAACAAACGT TCGTCGTCTA ATGCGCGTCT TTTTTTCCTA GAGTTCTTCT
2 8 0 1 ~ T C C T T T G A T C ~ T T T T C T A C G G ~ G G T C T G A C G C ~ T C A G T G G A A C ~ G A A A A C T C A C ~
    AGGAAACTAG AAAAGATGCC CCAGACTGCG AGTCACCTTG CTTTTGAGTG
2 8 5 1 ~ G T T A A G G G A T ~ T T T G G T C A T G ~ A G A T T A T C A A ~ A A A G G A T C T T ~ C A C C T A G A T C ~
    CAATTCCCTA AAACCAGTAC TCTAATAGTT TTTCCTAGAA GTGGATCTAG
2 9 0 1 ~ C T T T T A A A T T ~ A A A A A T G A A G ~ T T T T A A A T C A ~ A T C T A A A G T A ~ T A T A T G A G T A ~
    GAAAATTTAA TTTTTACTTC AAAATTTAGT TAGATTTCAT ATATACTCAT
```

2951 AACTTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG TTGAACCAGA CTGTCAATGG TTACGAATTA GTCACTCCGT GGATAGAGTC

$$
\begin{array}{llllllllllll}
* & W & H & K & I & L & S & A & G & I & E & a m p^{R}
\end{array}
$$

3001 CGATCTGTCT ATTTCGTTCA TCCATAGTTG CCTGACTCCC CGTCGTGTAG GCTAGACAGA TAAAGCAAGT AGGTATCAAC GGACTGAGGG GCAGCACATC

3051 ATAACTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG CTGCAATGAT TATTGATGCT ATGCCCTCCC GAATGGTAGA CCGGGGTCAC GACGTTACTA $\begin{array}{lllllllllllllllll}\text { I } & \mathrm{V} & \mathrm{V} & \mathrm{I} & \mathrm{R} & \mathrm{S} & \mathrm{P} & \mathrm{K} & \mathrm{G} & \mathrm{D} & \mathrm{P} & \mathrm{G} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{I} & \mathrm{I} \\ \mathrm{amp}^{R}\end{array}$

3101 ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA ATAAACCAGC TGGCGCTCTG GGTGCGAGTG GCCGAGGTCT AAATAGTCGT TATTTGGTCG $\begin{array}{lllllllllllllllll}G & R & S & G & R & E & G & A & G & S & K & D & A & I & F & W & a m p\end{array}$

3151 CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC GTCGGCCTTC CCGGCTCGCG TCTTCACCAG GACGTTGAAA TAGGCGGAGG $\begin{array}{llllllllllllllllll}\text { G } & \mathrm{A} & \mathrm{P} & \mathrm{L} & \mathrm{A} & \mathrm{S} & \mathrm{R} & \mathrm{L} & \mathrm{L} & \mathrm{P} & \mathrm{G} & \mathrm{A} & \mathrm{V} & \mathrm{K} & \mathrm{D} & \text { A } & \mathrm{E} & \mathrm{amp}^{\mathrm{R}}\end{array}$

3201 ATCCAGTCTA TTAATTGTTG CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAGGTCAGAT AATTAACAAC GGCCCTTCGA TCTCATTCAT CAAGCGGTCA $\begin{array}{llllllllllllllll}M & W & D & I & L & Q & Q & R & S & A & L & T & L & L & E & G \\ T\end{array}$

3251 TAATAGTTTG CGCAACGTTG TTGCCATTGC TACAGGCATC GTGGTGTCAC ATTATCAAAC GCGTTGCAAC AACGGTAACG ATGTCCGTAG CACCACAGTG $\begin{array}{lllllllllllllllll}\mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{R} & \mathrm{L} & \mathrm{T} & \mathrm{T} & \mathrm{A} & \mathrm{M} & \mathrm{A} & \mathrm{V} & \mathrm{P} & \mathrm{M} & \mathrm{T} & \mathrm{T} & \mathrm{D} & \mathrm{amp}^{\mathrm{R}}\end{array}$

3301 GCTCGTCGTT TGGTATGGCT TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGCAGCAA ACCATACCGA AGTAAGTCGA GGCCAAGGGT TGCTAGTTCC

3351 CGAGTTACAT GATCCCCCAT GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG GCTCAATGTA CTAGGGGGTA CAACACGTTT TTTCGCCAAT CGAGGAAGCC $\begin{array}{llllllllllllllllll}R & T & V & H & D & G & M & N & H & L & F & A & T & L & E & K & P & a_{p}{ }^{R}\end{array}$

3401 TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA TCACTCATGG AGGAGGCTAG CAACAGTCTT CATTCAACCG GCGTCACAAT AGTGAGTACC $\begin{array}{llllllllllllllll}\text { G } & \mathrm{G} & \mathrm{I} & \mathrm{T} & \mathrm{T} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{N} & \mathrm{A} & \mathrm{A} & \mathrm{T} & \mathrm{N} & \mathrm{D} & \mathrm{S} & \mathrm{M} \\ \mathrm{amp}\end{array}$

3451 TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC AATACCGTCG TGACGTATTA AGAGAATGAC AGTACGGTAG GCATTCTACG $\begin{array}{lllllllllllllllll}\mathrm{T} & \mathrm{I} & \mathrm{A} & \mathrm{A} & \mathrm{S} & \mathrm{C} & \mathrm{L} & \mathrm{E} & \mathrm{R} & \mathrm{V} & \mathrm{T} & \mathrm{M} & \mathrm{G} & \mathrm{D} & \mathrm{T} & \mathrm{L} & \mathrm{H} \\ \mathrm{amp}\end{array}$

3501 TTTTCTGTGA CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT AAAAGACACT GACCACTCAT GAGTTGGTTC AGTAAGACTC TTATCACATA

3551 GCGGCGACCG AGTTGCTCTT GCCCGGCGTC AATACGGGAT AATACCGCGC CGCCGCTGGC TCAACGAGAA CGGGCCGCAG TTATGCCCTA TTATGGCGCG $\begin{array}{llllllllllllllll}R & R & G & L & Q & E & Q & G & A & D & I & S & L & V & A & a^{R}\end{array}$

3601 CACATAGCAG AACTTTAAAA GTGCTCATCA TTGGAAAACG TTCTTCGGGG GTGTATCGTC TTGAAATTTT CACGAGTAGT AACCTTTTGC AAGAAGCCCC $\begin{array}{llllllllllllllllll}G & C & L & L & V & K & F & T & S & M & M & P & F & R & E & E & P & a^{R}\end{array}$

3651 CGAAAACTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT CGATGTAACC GCTTTTGAGA GTTCCTAGAA TGGCGACAAC TCTAGGTCAA GCTACATTGG $\begin{array}{lllllllllllllllll}R & F & S & E & L & I & K & G & S & N & L & D & L & E & I & Y & G a p r\end{array}$

3701 CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC ACCAGCGTTT

	$\begin{gathered} \text { GTGAGCACGT } \\ V \quad R \quad A \end{gathered}$	$\begin{aligned} & \text { GGGTTGACTA } \\ & G \quad \mathrm{~L} \quad \mathrm{Q} \end{aligned}$	$\begin{aligned} & \text { GAAGTCGTAG } \\ & \text { D } \quad \text { E } \\ & \text { A } \end{aligned}$	AAAATGAAAG K V K	$\begin{gathered} \text { TGGTCGCAAA } \\ \mathrm{V} \quad \mathrm{~L} \quad \mathrm{~T} \end{gathered}$	$a m p{ }^{\text {R }}$
3751	CTGGGTGAGC	AAAAACAGGA	AGGCAAAATG	CCGCAAAAAA	GGGAATAAGG	
	GACCCACTCG	TTTTTGTCCT	TCCGTTTTAC	GGCGTTTTTT	CCCTTATTCC	
	E P H A	F V P	L C F	A A F F	$\mathrm{P} \quad \mathrm{I}$	$a m p{ }^{R}$
3801	GCGACACGGA	AATGTTGAAT	ACTCATACTC	TTCCTTTTTC	AATATTATTG	
	$\begin{gathered} \text { CGCTGTGCCT } \\ \mathrm{A} V \mathrm{~V} \end{gathered}$	TTACAACTTA	TGAGTATGAG S M amp	AAGGAAAAAG	TTATAATAAC	
3851	AAGCATTTAT	CAGGGTTATT	GTCTCATGAG	CGGATACATA	TTTGAATGTA	
	TTCGTAAATA	GTCCCAATAA	CAGAGTACTC	GCCTATGTAT	AAACTTACAT	
3901	TTTAGAAAAA	TAAACAAATA	GGGGTTCCGC	GCACATTTCC	CCGAAAAGTG	
	AAATCTTTTT	ATTTGTTTAT	CCCCAAGGCG	CGTGTAAAGG	GGCTTTTCAC	
3951	CCACCTGATG	CGGTGTGAAA	TACCGCACAG	ATGCGTAAGG	AGAAAATACC	
	GGTGGACTAC	GCCACACTTT	ATGGCGTGTC	TACGCATTCC	TCTTTTATGG	
4001	GCATCAGGAA	ATTGTAAGCG	TTAATATTTT	GTTAAAATTC	GCGTTAAATT	
	CGTAGTCCTT	TAACATTCGC	AATTATAAAA	CAATTTTAAG	CGCAATTTAA	
4051	TTTGTTAAAT	CAGCTCATTT	TTTAACCAAT	AGGCCGAAAT	CGGCAAAATC	
	AAACAATTTA	GTCGAGTAAA	AAATTGGTTA	TCCGGCTTTA	GCCGTTTTAG	
4101	CCTTATAAAT	CAAAAGAATA	GACCGAGATA	GGGTTGAGTG	TTGTTCCAGT	
	GGAATATTTA	GTTTTCTTAT	CTGGCTCTAT	CCCAACTCAC	AACAAGGTCA	
4151	TTGGAACAAG	AGTCCACTAT	TAAAGAACGT	GGACTCCAAC	GTCAAAGGGC	
	AACCTTGTTC	TCAGGTGATA	ATTTCTTGCA	CCTGAGGTTG	CAGTTTCCCG	
4201	GAAAAACCGT	CTATCAGGGC	GATGGCCCAC	TACGTGAACC	ATCACCCTAA	
	CTTTTTGGCA	GATAGTCCCG	CTACCGGGTG	ATGCACTTGG	TAGTGGGATT	
4251	TCAAGTTTTT	TGGGGTCGAG	GTGCCGTAAA	GCACTAAATC	GGAACCCTAA	
	AGTTCAAAAA	ACCCCAGCTC	CACGGCATTT	CGTGATTTAG	CCTTGGGATT	
4301	AGGGAGCCCC	CGATTTAGAG	CTTGACGGGG	AAAGCCGGCG	AACGTGGCGA	
	TCCCTCGGGG	GCTAAATCTC	GAACTGCCCC	TTTCGGCCGC	TTGCACCGCT	
4351	GAAAGGAAGG	GAAGAAAGCG	AAAGGAGCGG	GCGCTAGGGC	GCTGGCAAGT	
	CTTTCCTTCC	CTTCTTTCGC	TTTCCTCGCC	CGCGATCCCG	CGACCGTTCA	
4401	GTAGCGGTCA	CGCTGCGCGT	AACCACCACA	CCCGCCGCGC	TTAATGCGCC	
	CATCGCCAGT	GCGACGCGCA	TTGGTGGTGT	GGGCGGCGCG	AATTACGCGG	
4451	GCTACAGGGC	GCGTCCATTC	GCCATTCAGG	CTGCGCAACT	GTTGGGAAGG	
	CGATGTCCCG	CGCAGGTAAG	CGGTAAGTCC	GACGCGTTGA	CAACCCTTCC	
4501	GCGATCGGTG	CGGGCCTCTT	CGCTATTACG	CCAGCTGGCG	AAAGGGGGAT	
	CGCTAGCCAC	GCCCGGAGAA	GCGATAATGC	GGTCGACCGC	TTTCCCCCTA	
4551	GTGCTGCAAG	GCGATTAAGT	TGGGTAACGC	CAGGGTTTTC	CCAGTCACGA	
	CACGACGTTC	CGCTAATTCA	ACCCATTGCG	GTCCCAAAAG	GGTCAGTGCT	
4601	CGTTGTAAAA	CGACGGCCAG	TGAATTGTAA	TACGACTCAC	TATA	
	GCAACATTTT	GCTGCCGGTC	ACTTAACATT	ATGCTGAGTG	ATAT	

Appendix G

pGU0707 (pGU0501 $\Delta C j 1344 c:$:kan)

1 GGGCGAATTG GGCCCGACGT CGCATGCTCC CGGCCGCCAT GGCGGCCGCG CCCGCTTAAC CCGGGCTGCA GCGTACGAGG GCCGGCGGTA CCGCCGGCGC

START Cj1344c
51 GGAATTCGAT TCATATGAAA AATCTTATCC TAGCTATAGA AAGTTCTTGT CCTTAAGCTA AGTATACTTT TTAGAATAGG ATCGATATCT TTCAAGAACA

101 GATGATAGTT CTATAGCTAT CATTGATAAA AACACCTTAG AATGTAAATT CTACTATCAA GATATCGATA GTAACTATTT TTGTGGAATC TTACATTTAA

151 TCATAAAAAA ATTTCCCAAG AATTAGATCA TAGTATCTAT GGGGGAGTGG AGTATTTTTT TAAAGGGTTC TTAATCTAGT ATCATAGATA CCCCCTCACC

201 TACCTGAACT TGCTGCAAGA CTTCATAGCG AGGCTTTACC AAAGATGCTT ATGGACTTGA ACGACGTTCT GAAGTATCGC TCCGAAATGG TTTCTACGAA

251 AAGCAATGCA AAGAGCATTT TAAAAATCTT TGTGCCATAG CTGTGACAAA TTCGTTACGT TTCTCGTAAA ATTTTTAGAA ACACGGTATC GACACTGTTT

301 TGAACCTGGA CTTAGTGTTT CTTTGCTCAG TGGAATTTCT ATGGCAAAAA ACTTGGACCT GAATCACAAA GAAACGAGTC ACCTTAAAGA TACCGTTTTT

351 CCTTAGCAAG TGCGCTAAAT TTACCCTTAA TCCCTATAAA TCATCTTAAA GGAATCGTTC ACGCGATTTA AATGGGAATT AGGGATATTT AGTAGAATTT

401 GGTCATATTT ATAGTCTTTT TTTGGAAGAA AAAATTTCTT TAGATATGGG CCAGTATAAA TATCAGAAAA AAACCTTCTT TTTTAAAGAA ATCTATACCC G $\begin{array}{llllllllllllllll} & \text { H } & \text { I } & \text { Y } & \text { S } & \text { L } & \text { F } & \text { L } & \text { E } & \text { E } & \text { K } & \text { I } & \text { S } & \text { L } & \text { D } & \text { M }\end{array}$

START kan (in frame)
451 AATTTTGCTT GTTAGTGGTG GAGATCTCAT GGCTAAAATG AGAATATCAC TTAAAACGAA CAATCACCAC CTCTAGAGTA CCGATTTTAC TCTTATAGTG $\begin{array}{llllllllllllllllll}\text { I } & L & L & V & S & G & G & D & L & M & A & K & M & R & I & S & P & k a n\end{array}$

501 CGGAATTGAA AAAACTGATC GAAAAATACC GCTGCGTAAA AGATACGGAA GCCTTAACTT TTTTGACTAG CTTTTTATGG CGACGCATTT TCTATGCCTT $\begin{array}{llllllllllllllll}\mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{K} & \mathrm{L} & \mathrm{I} & \mathrm{E} & \mathrm{K} & \mathrm{Y} & \mathrm{R} & \mathrm{C} & \mathrm{V} & \mathrm{K} & \mathrm{D} & \mathrm{T} & \mathrm{E}\end{array}$

551 GGAATGTCTC CTGCTAAGGT ATATAAGCTG GTGGGAGAAA ATGAAAACCT CCTTACAGAG GACGATTCCA TATATTCGAC CACCCTCTTT TACTTTTGGA $\begin{array}{lllllllllllllllll}G & M & S & P & A & K & V & Y & K & L & V & G & E & N & E & N & L\end{array}$

601 ATATTTAAAA ATGACGGACA GCCGGTATAA AGGGACCACC TATGATGTGG TATAAATTTT TACTGCCTGT CGGCCATATT TCCCTGGTGG ATACTACACC $\begin{array}{llllllllllllllllll}Y & L & K & M & T & D & S & R & Y & K & G & T & T & Y & D & V & E\end{array}$

651 AACGGGAAAA GGACATGATG CTATGGCTGG AAGGAAAGCT GCCTGTTCCA TTGCCCTTTT CCTGTACTAC GATACCGACC TTCCTTTCGA CGGACAAGGT $\begin{array}{llllllllllllllll}\mathrm{R} & \mathrm{E} & \mathrm{K} & \mathrm{D} & \mathrm{M} & \mathrm{M} & \mathrm{L} & \mathrm{W} & \mathrm{L} & \mathrm{E} & \mathrm{G} & \mathrm{K} & \mathrm{L} & \mathrm{P} & \mathrm{V} & \mathrm{P}\end{array}$

701 AAGGTCCTGC ACTTTGAACG GCATGATGGC TGGAGCAATC TGCTCATGAG TTCCAGGACG TGAAACTTGC CGTACTACCG ACCTCGTTAG ACGAGTACTC $\begin{array}{lllllllllllllllll}\text { K } & \mathrm{V} & \mathrm{L} & \mathrm{H} & \mathrm{F} & \mathrm{E} & \mathrm{R} & \mathrm{H} & \mathrm{D} & \mathrm{G} & \mathrm{W} & \mathrm{S} & \mathrm{N} & \mathrm{L} & \mathrm{L} & \mathrm{M} & \mathrm{S}\end{array}$

751 TGAGGCCGAT GGCGTCCTTT GCTCGGAAGA GTATGAAGAT GAACAAAGCC ACTCCGGCTA CCGCAGGAAA CGAGCCTTCT CATACTTCTA CTTGTTTCGG $\begin{array}{llllllllllllllllll}\text { E } & \text { A } & \mathrm{D} & \mathrm{G} & \mathrm{V} & \mathrm{L} & \mathrm{C} & \mathrm{S} & \mathrm{E} & \mathrm{E} & \mathrm{Y} & \mathrm{E} & \mathrm{D} & \mathrm{E} & \mathrm{Q} & \mathrm{S} & \mathrm{P}\end{array}$

801 CTGAAAAGAT TATCGAGCTG TATGCGGAGT GCATCAGGCT CTTTCACTCC GACTTTTCTA ATAGCTCGAC ATACGCCTCA CGTAGTCCGA GAAAGTGAGG $\begin{array}{llllllllllllllll}\mathrm{E} & \mathrm{K} & \mathrm{I} & \mathrm{I} & \mathrm{E} & \mathrm{L} & \mathrm{Y} & \mathrm{A} & \mathrm{E} & \mathrm{C} & \mathrm{I} & \mathrm{R} & \mathrm{L} & \mathrm{F} & \mathrm{H} & \mathrm{S}\end{array}$

851 ATCGACATAT CGGATTGTCC CTATACGAAT AGCTTAGACA GCCGCTTAGC TAGCTGTATA GCCTAACAGG GATATGCTTA TCGAATCTGT CGGCGAATCG $\begin{array}{lllllllllllllllll}\text { I } & \mathrm{D} & \mathrm{I} & \mathrm{S} & \mathrm{D} & \mathrm{C} & \mathrm{P} & \mathrm{Y} & \mathrm{T} & \mathrm{N} & \mathrm{S} & \mathrm{L} & \mathrm{D} & \mathrm{S} & \mathrm{R} & \mathrm{L} & \mathrm{A}\end{array}$

901 CGAATTGGAT TACTTACTGA ATAACGATCT GGCCGATGTG GATTGCGAAA GCTTAACCTA ATGAATGACT TATTGCTAGA CCGGCTACAC CTAACGCTTT

951 ACTGGGAAGA AGACACTCCA TTTAAAGATC CGCGCGAGCT GTATGATTTT TGACCCTTCT TCTGTGAGGT AAATTTCTAG GCGCGCTCGA CATACTAAAA

1001 TTAAAGACGG AAAAGCCCGA AGAGGAACTT GTCTTTTCCC ACGGCGACCT AATTTCTGCC TTTTCGGGCT TCTCCTTGAA CAGAAAAGGG TGCCGCTGGA

1051 GGGAGACAGC AACATCTTTG TGAAAGATGG CAAAGTAAGT GGCTTTATTG CCCTCTGTCG TTGTAGAAAC ACTTTCTACC GTTTCATTCA CCGAAATAAC $\begin{array}{lllllllllllllllll}G & D & S & N & I & F & V & K & D & G & K & V & S & G & F & I & D\end{array}$ kan

1101 ATCTTGGGAG AAGCGGCAGG GCGGACAAGT GGTATGACAT TGCCTTCTGC TAGAACCCTC TTCGCCGTCC CGCCTGTTCA CCATACTGTA ACGGAAGACG

1151 GTCCGGTCGA TCAGGGAGGA TATCGGGGAA GAACAGTATG TCGAGCTATT
CAGGCCAGCT AGTCCCTCCT ATAGCCCCTT CTTGTCATAC AGCTCGATAA

1201 TTTTGACTTA CTGGGGATCA AGCCTGATTG GGAGAAAATA AAATATTATA
AAAACTGAAT GACCCCTAGT TCGGACTAAC CCTCTTTTAT TTTATAATAT
$\begin{array}{lllllllllllllllllllllll}\text { F } & \mathrm{D} & \mathrm{L} & \mathrm{L} & \mathrm{G} & \mathrm{I} & \mathrm{K} & \mathrm{P} & \mathrm{D} & \mathrm{W} & \mathrm{E} & \mathrm{K} & \mathrm{I} & \mathrm{K} & \mathrm{Y} & \mathrm{Y} & \mathrm{I} & \text { kan }\end{array}$
1251 TTTTACTGGA TGAATTGTTT TAGTACCTAG ATTTAGATGT CTAAAAAGCT
AAAATGACCT ACTTAACAAA ATCATGGATC TAAATCTACA GATTTTTCGA
L L D E L F * kan
1301 TGATATCGAA TTCCTGCAGC CCGGGGGATC CACTAGTTCT AGAGCGGCCG
ACTATAGCTT AAGGACGTCG GGCCCCCTAG GTGATCAAGA TCTCGCCGGC
1351 CCACCGCGGT GGAGCTCCAG CTTTTGTTCC CTTTAGTGAG GGTTAATTCC
GgTGgCGCCA CCTCGAGGTC GAAAACAAGG GAAATCACTC CCAATTAAGG
1401 GAGCAGATCT GAGCTTTTAG CAAGTACAAA TGATGATAGC TTTGGAGAAA
CTCGTCTAGA CTCGAAAATC GTTCATGTTT ACTACTATCG AAACCTCTTT
Cj1344 (split)
1451 GTTTTGATAA AGTGGCTAAA ATGATGAATT TAGGTTACCC TGGTGGGGTC
CAAAACTATT TCACCGATTT TACTACTTAA ATCCAATGGG ACCACCCCAG
$\begin{array}{lllllllllll}M & M & N & L & G & Y & P & G & G & V & C j 1344 C\end{array}$
1501 ATCATAGAAA ATTTAGCAAA AAATGCCAAA CTTAAAAATA TCTCTTTTAA
TAGTATCTTT TAAATCGTTT TTTACGGTTT GAATTTTTAT AGAGAAAATT
$\begin{array}{llllllllllllllllll}\text { I } & \text { I } & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{A} & \mathrm{K} & \mathrm{N} & \mathrm{A} & \mathrm{K} & \mathrm{L} & \mathrm{K} & \mathrm{N} & \mathrm{I} & \mathrm{S} & \mathrm{F} & \mathrm{N}\end{array}$
1551 CACACCTTTA AAGCATTCTA AAGAACTCGC TTTCAGTTTT TCAGGGCTTA
GTGTGGAAAT TTCGTAAGAT TTCTTGAGCG AAAGTCAAAA AGTCCCGAAT

1601 AAAATGCAGT GCGTTTGGAA ATTTTAAAAC ATGAAAATTT AAATGAAGAC
TTTTACGTCA CGCAAACCTT TAAAATTTTG TACTTTTAAA TTTACTTCTG
$\begin{array}{lllllllllllllllll}\mathrm{N} & \mathrm{A} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{K} & \mathrm{H} & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{N} & \mathrm{E} & \mathrm{D} & \mathrm{Cj} 1344 \mathrm{C}\end{array}$
1651 ACAAAAGCAG AAATAGCCTA TGCCTTTGAA AATACAGCTT GTGATCATAT
TGTTTTCGTC TTTATCGGAT ACGGAAACTT TTATGTCGAA CACTAGTATA

1701 CATGGATAAA TTAGAAAAAA TTTTTAATCT TTATAAATTT AAAAATTTTG
GTACCTATTT AATCTTTTTT AAAAATTAGA AATATTTAAA TTTTTAAAAC

1751 GCGTTGTAGG TGGAGCTAGT GCAAATCTTA ACTTGCGTTC GCGTTTGCAA
CGCAACATCC ACCTCGATCA CGTTTAGAAT TGAACGCAAG CGCAAACGTT
$\begin{array}{lllllllllllllllll} \\ V & V & G & G & A & S & A & N & L & N & L & R & S & R & L & Q & C j 1344 c\end{array}$
1801 AATTTATGTC AAAAATATAA TGCAAATTTA AAACTAGCTC CTTTAAAATT
TTAAATACAG TTTTTATATT ACGTTTAAAT TTTGATCGAG GAAATTTTAA

1851 CTGCTCTGAT AATGCTTTGA TGATAGCAAG AGCCGCAGTT GATGCTTATG
GACGAGACTA TTACGAAACT ACTATCGTTC TCGGCGTCAA CTACGAATAC

1901 AAAAAAAGGA ATTTGTAAGT GTAGAAGAAG ATATTTTAAG CCCTAAAAAT
TTTTTTTCCT TAAACATTCA CATCTTCTTC TATAAAATTC GGGATTTTTA

1951	AAAAATTTTT TTTTTAAAAA K N F S	CAAGGATATA GTTCCTATAT R I *	GATGAAAAAA CTACTTTTTT Cj1344c	GCTCGAGAAT CGAGCTCTTA	CACTAGTGAA GTGATCACTI
2001	TTCGCGGCCG	CCTGCAGGTC	GACCATATGG	GAGAGCTCCC	AACGCGTTGG
	AAGCGCCGGC	GGACGTCCAG	CTGGTATACC	CTCTCGAGGG	TTGCGCAACC
2051	ATGCATAGCT	TGAGTATTCT	ATAGTGTCAC	CTAAATAGCT	TGGCGTAATC
	TACGTATCGA	ACTCATAAGA	TATCACAGTG	GATTTATCGA	ACCGCATTAG
2101	ATGGTCATAG	CTGTTTCCTG	TGTGAAATTG	TTATCCGCTC	ACAATTCCAC
	TACCAGTATC	GACAAAGGAC	ACACTTTAAC	AATAGGCGAG	TGTTAAGGTG
2151	ACAACATACG	AGCCGGAAGC	ATAAAGTGTA	AAGCCTGGGG	TGCCTAATGA
	TGTTGTATGC	TCGGCCTTCG	TATTTCACAT	TTCGGACCCC	ACGGATTACT
2201	GTGAGCTAAC	TCACATTAAT	TGCGTTGCGC	TCACTGCCCG	CTTTCCAGTC
	CACTCGATTG	AGTGTAATTA	ACGCAACGCG	AGTGACGGGC	GAAAGGTCAG
2251	GGGAAACCTG	TCGTGCCAGC	TGCATTAATG	AATCGGCCAA	CGCGCGGGGA
	CCCTTTGGAC	AGCACGGTCG	ACGTAATTAC	TTAGCCGGTT	GCGCGCCCCT
2301	GAGGCGGTTT	GCGTATTGGG	CGCTCTTCCG	CTTCCTCGCT	CACTGACTCG
	CTCCGCCAAA	CGCATAACCC	GCGAGAAGGC	GAAGGAGCGA	GTGACTGAGC
2351	CTGCGCTCGG	TCGTTCGGCT	GCGGCGAGCG	GTATCAGCTC	ACTCAAAGGC
	GACGCGAGCC	AGCAAGCCGA	CGCCGCTCGC	CATAGTCGAG	TGAGTTTCCG
2401	GGTAATACGG	TTATCCACAG	AATCAGGGGA	TAACGCAGGA	AAGAACATGT
	CCATTATGCC	AATAGGTGTC	TTAGTCCCCT	ATTGCGTCCT	TTCTTGTACA
2451	GAGCAAAAGG	CCAGCAAAAG	GCCAGGAACC	GTAAAAAGGC	CGCGTTGCTG
	CTCGTTTTCC	GGTCGTTTTC	CGGTCCTTGG	CATTTTTCCG	GCGCAACGAC
2501	GCGTTTTTCC	ATAGGCTCCG	CCCCCCTGAC	GAGCATCACA	AAAATCGACG
	CGCAAAAAGG	TATCCGAGGC	GGGGGGACTG	CTCGTAGTGT	TTTTAGCTGC
2551	CTCAAGTCAG	AGGTGGCGAA	ACCCGACAGG	ACTATAAAGA	TACCAGGCGT
	GAGTTCAGTC	TCCACCGCTT	TGGGCTGTCC	TGATATTTCT	ATGGTCCGCA
2601	TTCCCCCTGG	AAGCTCCCTC	GTGCGCTCTC	CTGTTCCGAC	CCTGCCGCTT
	AAGGGGGACC	TTCGAGGGAG	CACGCGAGAG	GACAAGGCTG	GGACGGCGAA
2651	ACCGGATACC	TGTCCGCCTT	TCTCCCTTCG	GGAAGCGTGG	CGCTTTCTCA
	TGGCCTATGG	ACAGGCGGAA	AGAGGGAAGC	CCTTCGCACC	GCGAAAGAGT
2701	TAGCTCACGC	TGTAGGTATC	TCAGTTCGGT	GTAGGTCGTT	CGCTCCAAGC
	ATCGAGTGCG	ACATCCATAG	AGTCAAGCCA	CATCCAGCAA	GCGAGGTTCG
2751	TGGGCTGTGT	GCACGAACCC	CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC
	ACCCGACACA	CGTGCTTGGG	GGGCAAGTCG	GGCTGGCGAC	GCGGAATAGG
2801	GGTAACTATC	GTCTTGAGTC	CAACCCGGTA	AGACACGACT	TATCGCCACT
	CCATTGATAG	CAGAACTCAG	GTTGGGCCAT	TCTGTGCTGA	ATAGCGGTGA
2851	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT	GTAGGCGGTG
	CCGTCGTCGG	TGACCATTGT	CCTAATCGTC	TCGCTCCATA	CATCCGCCAC
2901	CTACAGAGTT	CTTGAAGTGG	TGGCCTAACT	ACGGCTACAC	TAGAAGAACA
	GATGTCTCAA	GAACTTCAC	Accgattiga	TGCCGATGTG	ATCTTCTTGT

2951	GTATTTGGTA CATAAACCAT	$\begin{aligned} & \text { TCTGCGCTCT } \\ & \text { AGACGCGAGA } \end{aligned}$	GCTGAAGCCA CGACTTCGGT	GTTACCTTCG CAATGGAAGC	GAAAAAGAGT CTTTTTCTCA
3001	TGGTAGCTCT	TGATCCGGCA	AACAAACCAC	CGCTGGTAGC	GGTGGTTTTT
	ACCATCGAGA	ACTAGGCCGT	TTGTTTGGTG	GCGACCATCG	CCACCAAAAA
3051	TTGTTTGCAA	GCAGCAGATT	ACGCGCAGAA	AAAAAGGATC	TCAAGAAGAT
	AACAAACGTT	CGTCGTCTAA	TGCGCGTCTT	TTTTTCCTAG	AGTTCTTCTA
3101	CCTTTGATCT	TTTCTACGGG	GTCTGACGCT	CAGTGGAACG	AAAACTCACG
	GGAAACTAGA	AAAGATGCCC	CAGACTGCGA	GTCACCTTGC	TTTTGAGTGC
3151	TTAAGGGATT	TTGGTCATGA	GATTATCAAA	AAGGATCTTC	ACCTAGATCC
	AATTCCCTAA	AACCAGTACT	CTAATAGTTT	TTCCTAGAAG	TGGATCTAGG
3201	TTTTAAATTA	AAAATGAAGT	TTTAAATCAA	TCTAAAGTAT	ATATGAGTAA
	AAAATTTAAT	TTTTACTTCA	AAATTTAGTT	AGATTTCATA	TATACTCATT
3251	AcTTGGTCTG	ACAGTTACCA	ATGCTTAATC	AGTGAGGCAC	CTATCTCAGC
	TGAACCAGAC	TGTCAATGGT	TACGAATTAG	TCACTCCGTG	GATAGAGTCG
3301	GATCTGTCTA	TTTCGTTCAT	CCATAGTTGC	CTGACTCCCC	GTCGTGTAGA
	CTAGACAGAT	AAAGCAAGTA	GGTATCAACG	GACTGAGGGG	CAGCACATCT
3351	TAACTACGAT	ACGGGAGGGC	TTACCATCTG	GCCCCAGTGC	A
	ATTGATGCTA	TGCCCTCCCG	AATGGTAGAC	CGGGGTCACG	ACGTTACTAT
3401	CCGCGAGACC	CACGCTCACC	GGCTCCAGAT	TTATCAGCAA	TAAACCAGCC
	GGCGCTCTGG	GTGCGAGTGG	CCGAGGTCTA	AATAGTCGTT	ATTTGGTCGG
3451	AGCCGGAAGG	GCCGAGCGCA	GAAGTGGTCC	TGCAACTTTA	TCCGCCTCCA
	TCGGCCTTCC	CGGCTCGCGT	CTTCACCAGG	ACGTTGAAAT	AGGCGGAGGT
3501	TCCAGTCTAT	TAATTGTTGC	CGGGAAGCTA	GAGTAAGTAG	TTCGCCAGTT
	AGGTCAGATA	ATTAACAACG	GCCCTTCGAT	CTCATTCATC	AAGCGGTCAA
3551	AATAGTTTGC	GCAACGTTGT	TGCCATTGCT	ACAGGCATCG	TGGTGTCACG
	TTATCAAACG	CGTTGCAACA	ACGGTAACGA	TGTCCGTAGC	ACCACAGTGC
3601	CTCGTCGTTT	GGTATGGCTT	CATTCAGCTC	CGGTTCCCAA	CGATCAAGGC
	GAGCAGCAAA	CCATACCGAA	GTAAGTCGAG	GCCAAGGGTT	GCTAGTTCCG
3651	GAGTTACATG	ATCCCCCATG	TTGTGCAAAA	AAGCGGTTAG	CTCCTTCGGT
	CTCAATGTAC	TAGGGGGTAC	AACACGTTTT	TTCGCCAATC	GAGGAAGCCA
3701	CCTCCGATCG	TTGTCAGAAG	TAAGTTGGCC	GCAGTGTTAT	CACTCATGGT
	GGAGGCTAGC	AACAGTCTTC	ATTCAACCGG	CGTCACAATA	GTGAGTACCA
3751	TATGGCAGCA	CTGCATAATT	CTCTTACTGT	CATGCCATCC	GTAAGATGCT
	ATACCGTCGT	GACGTATTAA	GAGAATGACA	GTACGGTAGG	CATTCTACGA
3801	TTTCTGTGAC	TGGTGAGTAC	TCAACCAAGT	CATTCTGAGA	ATAGTGTATG
	AAAGACACTG	ACCACTCATG	AGTTGGTTCA	GTAAGACTCT	TATCACATAC
3851	CGGCGACCGA	GTTGCTCTTG	CCCGGCGTCA	ATACGGGATA	ATACCGCGCC
	GCCGCTGGCT	CAACGAGAAC	GGGCCGCAGT	TATGCCCTAT	TATGGCGCGG
3901	ACATAGCAGA	ACTTTAAAAG	TGCTCATCAT	TGGAAAACGT	TCTTCGGGGC
	TGTATCGTCT	TGAAATTTTC	ACGAGTAGTA	ACCTTTTGCA	AGAAGCCCCG

APPENDICES

```
3 9 5 1 ~ G A A A A C T C T C ~ A A G G A T C T T A ~ C C G C T G T T G A ~ G A T C C A G T T C ~ G A T G T A A C C C ~
    CTTTTGAGAG TTCCTAGAAT GGCGACAACT CTAGGTCAAG CTACATTGGG
4 0 0 1 ~ A C T C G T G C A C ~ C C A A C T G A T C ~ T T C A G C A T C T ~ T T T A C T T T C A ~ C C A G C G T T T C ~
    TGAGCACGTG GGTTGACTAG AAGTCGTAGA AAATGAAAGT GGTCGCAAAG
4051 TGGGTGAGCA AAAACAGGAA GGCAAAATGC CGCAAAAAAG GGAATAAGGG
    ACCCACTCGT TTTTGTCCTT CCGTTTTACG GCGTTTTTTC CCTTATTCCC
4 1 0 1 ~ C G A C A C G G A A ~ A T G T T G A A T A ~ C T C A T A C T C T ~ T C C T T T T T C A ~ A T A T T A T T G A ~
    GCTGTGCCTT TACAACTTAT GAGTATGAGA AGGAAAAAGT TATAATAACT
4151 AGCATTTATC AGGGTTATTG TCTCATGAGC GGATACATAT TTGAATGTAT
    TCGTAAATAG TCCCAATAAC AGAGTACTCG CCTATGTATA AACTTACATA
4 2 0 1 ~ T T A G A A A A A T ~ A A A C A A A T A G ~ G G G T T C C G C G ~ C A C A T T T C C C ~ C G A A A A G T G C ~
    AATCTTTTTA TTTGTTTATC CCCAAGGCGC GTGTAAAGGG GCTTTTCACG
4 2 5 1 ~ C A C C T G A T G C ~ G G T G T G A A A T ~ A C C G C A C A G A ~ T G C G T A A G G A ~ G A A A A T A C C G ~
    GTGGACTACG CCACACTTTA TGGCGTGTCT ACGCATTCCT CTTTTATGGC
4 3 0 1 ~ C A T C A G G A A A ~ T T G T A A G C G T ~ T A A T A T T T T G ~ T T A A A A T T C G ~ C G T T A A A T T T
    GTAGTCCTTT AACATTCGCA ATTATAAAAC AATTTTAAGC GCAATTTAAA
4 3 5 1 ~ T T G T T A A A T C ~ A G C T C A T T T T ~ T T A A C C A A T A ~ G G C C G A A A T C ~ G G C A A A A T C C ~
    AACAATTTAG TCGAGTAAAA AATTGGTTAT CCGGCTTTAG CCGTTTTAGG
4 4 0 1 ~ C T T A T A A A T C ~ A A A A G A A T A G ~ A C C G A G A T A G ~ G G T T G A G T G T ~ T G T T C C A G T T
    GAATATTTAG TTTTCTTATC TGGCTCTATC CCAACTCACA ACAAGGTCAA
4 4 5 1 ~ T G G A A C A A G A ~ G T C C A C T A T T ~ A A A G A A C G T G ~ G A C T C C A A C G ~ T C A A A G G G C G ~
    ACCTTGTTCT CAGGTGATAA TTTCTTGCAC CTGAGGTTGC AGTTTCCCGC
4 5 0 1 ~ A A A A A C C G T C ~ T A T C A G G G C G ~ A T G G C C C A C T ~ A C G T G A A C C A ~ T C A C C C T A A T ~
    TTTTTGGCAG ATAGTCCCGC TACCGGGTGA TGCACTTGGT AGTGGGATTA
4 5 5 1 ~ C A A G T T T T T T ~ G G G G T C G A G G ~ T G C C G T A A A G ~ C A C T A A A T C G ~ G A A C C C T A A A ~
    GTTCAAAAAA CCCCAGCTCC ACGGCATTTC GTGATTTAGC CTTGGGATTT
4 6 0 1 ~ G G G A G C C C C C ~ G A T T T A G A G C ~ T T G A C G G G G A ~ A A G C C G G C G A ~ A C G T G G C G A G ~
    CCCTCGGGGG CTAAATCTCG AACTGCCCCT TTCGGCCGCT TGCACCGCTC
4 6 5 1 ~ A A A G G A A G G G ~ A A G A A A G C G A ~ A A G G A G C G G G ~ C G C T A G G G C G ~ C T G G C A A G T G ~
    TTTCCTTCCC TTCTTTCGCT TTCCTCGCCC GCGATCCCGC GACCGTTCAC
4 7 0 1 ~ T A G C G G T C A C ~ G C T G C G C G T A ~ A C C A C C A C A C ~ C C G C C G C G C T ~ T A A T G C G C C G ~
    ATCGCCAGTG CGACGCGCAT TGGTGGTGTG GGCGGCGCGA ATTACGCGGC
4 7 5 1 ~ C T A C A G G G C G ~ C G T C C A T T C G ~ C C A T T C A G G C ~ T G C G C A A C T G ~ T T G G G A A G G G ~
    GATGTCCCGC GCAGGTAAGC GGTAAGTCCG ACGCGTTGAC AACCCTTCCC
4 8 0 1 ~ C G A T C G G T G C ~ G G G C C T C T T C ~ G C T A T T A C G C ~ C A G C T G G C G A ~ A A G G G G G A T G ~
    GCTAGCCACG CCCGGAGAAG CGATAATGCG GTCGACCGCT TTCCCCCTAC
4 8 5 1 ~ T G C T G C A A G G ~ C G A T T A A G T T ~ G G G T A A C G C C ~ A G G G T T T T C C ~ C A G T C A C G A C ~
    ACGACGTTCC GCTAATTCAA CCCATTGCGG TCCCAAAAGG GTCAGTGCTG
4 9 0 1 ~ G T T G T A A A A C ~ G A C G G C C A G T ~ G A A T T G T A A T ~ A C G A C T C A C T ~ A T A ~
    CAACATTTTG CTGCCGGTCA CTTAACATTA TGCTGAGTGA TAT
```


Appendix H

pGU0613 (pGU0501 $\Delta C j 1344 c:: k a n)$

1 GGGCGAATTG GGCCCGACGT CGCATGCTCC CGGCCGCCAT GGCGGCCGCG CCCGCTTAAC CCGGGCTGCA GCGTACGAGG GCCGGCGGTA CCGCCGGCGC

START Cj1344c

51 GGAATTCGAT TCATATGAAA AATCTTATCC TAGCTATAGA AAGTTCTTGT CCTTAAGCTA AGTATACTTT TTAGAATAGG ATCGATATCT TTCAAGAACA $\begin{array}{lllllllllllll}M & K & N & L & I & \text { L } & \text { I } & \text { E } & \text { S } & \text { S }\end{array}$

101 GATGATAGTT CTATAGCTAT CATTGATAAA AACACCTTAG AAT CTACTATCAA GATATCGATA GTAACTATTT TTGTGGAATC TTACATTTAA

151 TCATAAAAAA ATTTCCCAAG AATTAGATCA TAGTATCTAT GGGGGAGTGG AGTATTTTTT TAAAGGGTTC TTAATCTAGT ATCATAGATA CCCCCTCACC

201 TACCTGAACT TGCTGCAAGA CTTCATAGCG AGGCTTTACC AAAGATGCTT ATGGACTTGA ACGACGTTCT GAAGTATCGC TCCGAAATGG TTTCTACGAA $\begin{array}{llllllllllllllll}\text { P } & \mathrm{E} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{R} & \mathrm{L} & \mathrm{H} & \mathrm{S} & \mathrm{E} & \text { A } & \mathrm{L} & \mathrm{P} & \mathrm{K} & \mathrm{M} & \mathrm{L}\end{array}$

Cj1344c
251 AAGCAATGCA AAGAGCATTT TAAAAATCTT TGTGCCATAG CTGTGACAAA TTCGTTACGT TTCTCGTAAA ATTTTTAGAA ACACGGTATC GACACTGTTT $\begin{array}{llllllllllllllllll}K & Q & C & K & E & H & F & \mathrm{~K} & \mathrm{~N} & \mathrm{~L} & \mathrm{C} & \mathrm{A} & \mathrm{I} & \mathrm{A} & \mathrm{V} & \mathrm{T} & \mathrm{N} & \mathrm{Cj} 1344 \mathrm{c}\end{array}$

301 TGAACCTGGA CTTAGTGTTT CTTTGCTCAG TGGAATTTCT ATGGCAAAAA ACTTGGACCT GAATCACAAA GAAACGAGTC ACCTTAAAGA TACCGTTTTT

351 CCTTAGCAAG TGCGCTAAAT TTACCCTTAA TCCCTATAAA TCATCTTAAA GGAATCGTTC ACGCGATTTA AATGGGAATT AGGGATATTT AGTAGAATTT

401 GGTCATATTT ATAGTCTTTT TTTGGAAGAA AAAATTTCTT TAGATATGGG CCAGTATAAA TATCAGAAAA AAACCTTCTT TTTTAAAGAA ATCTATACCC

451 AATTTTGCTT GTTAGTGGTG GGCATACCAT GGTGCTTTAT CTTAAAGATG TTAAAACGAA CAATCACCAC CCGTATGGTA CCACGAAATA GAATTTCTAC

501 ATGCAAGCTT AGAGCTTTTA GCAAGTACAA ATGATGATAG CTTTGGAGAA TACGTTCGAA TCTCGAAAAT CGTTCATGTT TACTACTATC GAAACCTCTT

551 AGTTTTGATA AAGTGGCTAA AATGATGAAT TTAGGTTACC CTGGTGGGGT TCAAAACTAT TTCACCGATT TTACTACTTA AATCCAATGG GACCACCCCA

601 CATCATAGAA AATTTAGCAA AAAATGCCAA ACTTAAAAAT ATCTCTTTTA GTAGTATCTT TTAAATCGTT TTTTACGGTT TGAATTTTTA TAGAGAAAAT

651 ACACACCTTT AAAGCATTCT AAAGAACTCG CTTTCAGTTT TTCAGGGCTT TGTGTGGAAA TTTCGTAAGA TTTCTTGAGC GAAAGTCAAA AAGTCCCGAA $\begin{array}{llllllllllllllll}\mathrm{T} & \mathrm{P} & \mathrm{L} & \mathrm{K} & \mathrm{H} & \mathrm{S} & \mathrm{K} & \mathrm{E} & \mathrm{L} & \mathrm{A} & \mathrm{F} & \mathrm{S} & \mathrm{F} & \mathrm{S} & \mathrm{G} & \mathrm{L}\end{array}$
701 AAAAATGCAG TGCGTTTGGA AATTTTAAAA CATGAAAATT TGAAGATCTC TTTTTACGTC ACGCAAACCT TTAAAATTTT GTACTTTTAA ACTTCTAGAG $\begin{array}{llllllllllllllllll}\mathrm{K} & \mathrm{N} & \mathrm{A} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{K} & \mathrm{H} & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{K} & \mathrm{I} & \mathrm{S}\end{array}$
751 TGTTTTCTGG TATTTAAGGT TTTAGAATGC AAGGAACAGT GAATTGGAGT ACAAAAGACC ATAAATTCCA AAATCTTACG TTCCTTGTCA CTTAACCTCA $V \quad F \quad W \quad Y \quad L \quad R \quad F \quad * \quad C j 1344 C$
801 TCGTCTTGTT ATAATTAGCT TCTTGGGGTA TCTTTAAATA CTGTAGAAAA AGCAGAACAA TATTAATCGA AGAACCCCAT AGAAATTTAT GACATCTTTT

START kan

851 GAGGAAGGAA ATAATAAATG GCTAAAATGA GAATATCACC GGAATTGAAA CTCCTTCCTT TATTATTTAC CGATTTTACT CTTATAGTGG CCTTAACTTT $\begin{array}{llllllllllll}M & A & K & M & R & I & S & P & E & L & K & k a n\end{array}$
901 AAACTGATCG AAAAATACCG CTGCGTAAAA GATACGGAAG GAATGTCTCC TTTGACTAGC TTTTTATGGC GACGCATTTT CTATGCCTTC CTTACAGAGG $\begin{array}{lllllllllllllllll}\mathrm{K} & \mathrm{L} & \mathrm{I} & \mathrm{E} & \mathrm{K} & \mathrm{Y} & \mathrm{R} & \mathrm{C} & \mathrm{V} & \mathrm{K} & \mathrm{D} & \mathrm{T} & \mathrm{E} & \mathrm{G} & \mathrm{M} & \mathrm{S} & \mathrm{P}\end{array}$
951 TGCTAAGGTA TATAAGCTGG TGGGAGAAAA TGAAAACCTA TATTTAAAAA ACGATTCCAT ATATTCGACC ACCCTCTTTT ACTTTTGGAT ATAAATTTTT $\begin{array}{llllllllllllllllllll}A & K & V & Y & K & L & V & G & E & N & E & N & L & Y & L & K & M & k a n\end{array}$
1001 TGACGGACAG CCGGTATAAA GGGACCACCT ATGATGTGGA ACGGGAAAAG ACTGCCTGTC GGCCATATTT CCCTGGTGGA TACTACACCT TGCCCTTTTC

1051 GACATGATGC TATGGCTGGA AGGAAAGCTG CCTGTTCCAA AGGTCCTGCA CTGTACTACG ATACCGACCT TCCTTTCGAC GGACAAGGTT TCCAGGACGT D $\quad \mathrm{M} \quad \mathrm{M} \quad \mathrm{L} \quad \mathrm{W} \quad \mathrm{L} \quad \mathrm{E} \quad \mathrm{G} \quad \mathrm{K} \quad \mathrm{L} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{P} \quad \mathrm{K} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{H}$ kan
1101 CTTTGAACGG CATGATGGCT GGAGCAATCT GCTCATGAGT GAGGCCGATG GAAACTTGCC GTACTACCGA CCTCGTTAGA CGAGTACTCA CTCCGGCTAC
 kan
1151 GCGTCCTTTG CTCGGAAGAG TATGAAGATG AACAAAGCCC TGAAAAGATT CGCAGGAAAC GAGCCTTCTC ATACTTCTAC TTGTTTCGGG ACTTTTCTAA

1201 ATCGAGCTGT ATGCGGAGTG CATCAGGCTC TTTCACTCCA TCGACATATC
TAGCTCGACA TACGCCTCAC GTAGTCCGAG AAAGTGAGGT AGCTGTATAG
I E L Y A E C I R L \quad I \quad I
1251 GGATTGTCCC TATACGAATA GCTTAGACAG CCGCTTAGCC GAATTGGATT
CCTAACAGGG ATATGCTTAT CGAATCTGTC GGCGAATCGG CTTAACCTAA
$\begin{array}{llllllllllllllllll}\text { D } & \mathrm{C} & \mathrm{P} & \mathrm{Y} & \mathrm{T} & \mathrm{N} & \mathrm{S} & \mathrm{L} & \mathrm{D} & \mathrm{S} & \mathrm{R} & \mathrm{L} & \mathrm{A} & \mathrm{E} & \mathrm{L} & \mathrm{D} & \mathrm{Y} & \text { kan }\end{array}$
1301 ACTTACTGAA TAACGATCTG GCCGATGTGG ATTGCGAAAA CTGGGAAGAA
TGAATGACTT ATTGCTAGAC CGGCTACACC TAACGCTTTT GACCCTTCTT
$\begin{array}{lllllllllllllllll}\text { L } & \mathrm{L} & \mathrm{N} & \mathrm{N} & \mathrm{D} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{V} & \mathrm{D} & \mathrm{C} & \mathrm{E} & \mathrm{N} & \mathrm{W} & \mathrm{E} & \mathrm{E}\end{array}$
1351 GACACTCCAT TTAAAGATCC GCGCGAGCTG TATGATTTTT TAAAGACGGA
CTGTGAGGTA AATTTCTAGG CGCGCTCGAC ATACTAAAAA ATTTCTGCCT

1401 AAAGCCCGAA GAGGAACTTG TCTTTTCCCA CGGCGACCTG GGAGACAGCA
TTTCGGGCTT CTCCTTGAAC AGAAAAGGGT GCCGCTGGAC CCTCTGTCGT
$\begin{array}{llllllllllllllllll}K & \mathrm{P} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{V} & \mathrm{F} & \mathrm{S} & \mathrm{H} & \mathrm{G} & \mathrm{D} & \mathrm{L} & \mathrm{G} & \mathrm{D} & \mathrm{S} & \mathrm{N} & \text { kan }\end{array}$
1451 ACATCTTTGT GAAAGATGGC AAAGTAAGTG GCTTTATTGA TCTTGGGAGA
TGTAGAAACA CTTTCTACCG TTTCATTCAC CGAAATAACT AGAACCCTCT
$\begin{array}{lllllllllllllllll}I & F & V & K & D & G & K & V & S & G & F & I & D & L & G & R\end{array}$
1501 AGCGGCAGGG CGGACAAGTG GTATGACATT GCCTTCTGCG TCCGGTCGAT
TCGCCGTCCC GCCTGTTCAC CATACTGTAA CGGAAGACGC AGGCCAGCTA

1551 CAGGGAGGAT ATCGGGGAAG AACAGTATGT CGAGCTATTT TTTGACTTAC
GTCCCTCCTA TAGCCCCTTC TTGTCATACA GCTCGATAAA AAACTGAATG

1601 TGGGGATCAA GCCTGATTGG GAGAAAATAA AATATTATAT TTTACTGGAT
ACCCCTAGTT CGGACTAACC CTCTTTTATT TTATAATATA AAATGACCTA
$\begin{array}{llllllllllllllll}\mathrm{G} & \mathrm{I} & \mathrm{K} & \mathrm{P} & \mathrm{D} & \mathrm{W} & \mathrm{E} & \mathrm{K} & \mathrm{I} & \mathrm{K} & \mathrm{Y} & \mathrm{Y} & \mathrm{I} & \mathrm{L} & \mathrm{L} & \mathrm{D}\end{array}$
1651 GAATTGTTTT AGTACCTAGA TTTAGATGTC TAAAAAGCTT GATATCGAAT
CTTAACAAAA TCATGGATCT AAATCTACAG ATTTTTCGAA CTATAGCTTA
E L F * kan
1701 TCCTGCAGCC CGGGGGATCC ACTAGTTCTA GAGCGGCCGC CACCGCGGTG
AgGACgTCGG GCCCCCTAGG TGATCAAGAT CTCGCCGGCG GTGGCGCCAC
1751 GAGCTCCAGC TTTTGTTCCC TTTAGTGAGG GTTAATTCCG AGCAGATCTT
CTCGAGGTCG AAAACAAGGG AAATCACTCC CAATTAAGGC TCGTCTAGAA
1801 CAAATGAAGA CACAAAAGCA GAAATAGCCT ATGCCTTTGA AAATACAGCT
GTTTACTTCT GTGTTTTCGT CTTTATCGGA TACGGAAACT TTTATGTCGA
1851 TGTGATCATA TCATGGATAA ATTAGAAAAA ATTTTTAATC TTTATAAATT
ACACTAGTAT AGTACCTATT TAATCTTTTT TAAAAATTAG AAATATTTAA

1901 TAAAAATTTT GGCGTTGTAG GTGGAGCTAG TGCAAATCTT AACTTGCGTT
ATTTTTAAAA CCGCAACATC CACCTCGATC ACGTTTAGAA TTGAACGCAA

1951 CGCGTTTGCA AAATTTATGT CAAAAATATA ATGCAAATTT AAAACTAGCT
GCGCAAACGT TTTAAATACA GTTTTTATAT TACGTTTAAA TTTTGATCGA
$\begin{array}{llllllllllllllll}R & L & Q & N & L & C & Q & K & Y & N & A & N & L & K & L & A\end{array}$
Cj1344c

APPENDICES

```
2001 CCTTTAAAAT TCTGCTCTGA TAATGCTTTG ATGATAGCAA GAGCCGCAGT
    GGAAATTTTA AGACGAGACT ATTACGAAAC TACTATCGTT CTCGGCGTCA
    P
2051 TGATGCTTAT GAAAAAAAGG AATTTGTAAG TGTAGAAGAA GATATTTTAA
    ACTACGAATA CTTTTTTTCC TTAAACATTC ACATCTTCTT CTATAAAATT
```



```
2 1 0 1 ~ G C C C T A A A A A ~ T A A A A A T T T T ~ T C A A G G A T A T ~ A G A T G A A A A A ~ A G C T C G A G A A ~
    CGGGATTTTT ATTTTTAAAA AGTTCCTATA TCTACTTTTT TCGAGCTCTT
    P
2 1 5 1 ~ T C A C T A G T G A ~ A T T C G C G G C C ~ G C C T G C A G G T ~ C G A C C A T A T G ~ G G A G A G C T C C ~
    AGTGATCACT TAAGCGCCGG CGGACGTCCA GCTGGTATAC CCTCTCGAGG
2 2 0 1 ~ C A A C G C G T T G ~ G A T G C A T A G C ~ T T G A G T A T T C ~ T A T A G T G T C A ~ C C T A A A T A G C ~
    GTTGCGCAAC CTACGTATCG AACTCATAAG ATATCACAGT GGATTTATCG
2 2 5 1 ~ T T G G C G T A A T ~ C A T G G T C A T A ~ G C T G T T T C C T ~ G T G T G A A A T T ~ G T T A T C C G C T ~
    AACCGCATTA GTACCAGTAT CGACAAAGGA CACACTTTAA CAATAGGCGA
2 3 0 1 ~ C A C A A T T C C A ~ C A C A A C A T A C ~ G A G C C G G A A G ~ C A T A A A G T G T ~ A A A G C C T G G G ~
    GTGTTAAGGT GTGTTGTATG CTCGGCCTTC GTATTTCACA TTTCGGACCC
2 3 5 1 ~ G T G C C T A A T G ~ A G T G A G C T A A ~ C T C A C A T T A A ~ T T G C G T T G C G ~ C T C A C T G C C C ~
    CACGGATTAC TCACTCGATT GAGTGTAATT AACGCAACGC GAGTGACGGG
2 4 0 1 ~ G C T T T C C A G T ~ C G G G A A A C C T ~ G T C G T G C C A G ~ C T G C A T T A A T ~ G A A T C G G C C A ~
    CGAAAGGTCA GCCCTTTGGA CAGCACGGTC GACGTAATTA CTTAGCCGGT
2 4 5 1 ~ A C G C G C G G G G ~ A G A G G C G G T T ~ T G C G T A T T G G ~ G C G C T C T T C C ~ G C T T C C T C G C ~
    TGCGCGCCCC TCTCCGCCAA ACGCATAACC CGCGAGAAGG CGAAGGAGCG
2 5 0 1 ~ T C A C T G A C T C ~ G C T G C G C T C G ~ G T C G T T C G G C ~ T G C G G C G A G C ~ G G T A T C A G C T ~
    AGTGACTGAG CGACGCGAGC CAGCAAGCCG ACGCCGCTCG CCATAGTCGA
2 5 5 1 ~ C A C T C A A A G G ~ C G G T A A T A C G ~ G T T A T C C A C A ~ G A A T C A G G G G ~ A T A A C G C A G G
    GTGAGTTTCC GCCATTATGC CAATAGGTGT CTTAGTCCCC TATTGCGTCC
2 6 0 1 ~ A A A G A A C A T G ~ T G A G C A A A A G ~ G C C A G C A A A A ~ G G C C A G G A A C ~ C G T A A A A A G G ~
    TTTCTTGTAC ACTCGTTTTC CGGTCGTTTT CCGGTCCTTG GCATTTTTCC
2 6 5 1 ~ C C G C G T T G C T ~ G G C G T T T T T C ~ C A T A G G C T C C ~ G C C C C C C T G A ~ C G A G C A T C A C ~
    GGCGCAACGA CCGCAAAAAG GTATCCGAGG CGGGGGGACT GCTCGTAGTG
2 7 0 1 ~ A A A A A T C G A C ~ G C T C A A G T C A ~ G A G G T G G C G A ~ A A C C C G A C A G ~ G A C T A T A A A G ~
    TTTTTAGCTG CGAGTTCAGT CTCCACCGCT TTGGGCTGTC CTGATATTTC
2 7 5 1 ~ A T A C C A G G C G ~ T T T C C C C C T G ~ G A A G C T C C C T ~ C G T G C G C T C T ~ C C T G T T C C G A ~
    TATGGTCCGC AAAGGGGGAC CTTCGAGGGA GCACGCGAGA GGACAAGGCT
2 8 0 1 ~ C C C T G C C G C T ~ T A C C G G A T A C ~ C T G T C C G C C T ~ T T C T C C C T T C ~ G G G A A G C G T G ~
    GGGACGGCGA ATGGCCTATG GACAGGCGGA AAGAGGGAAG CCCTTCGCAC
2851 GCGCTTTCTC ATAGCTCACG CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT
    CGCGAAAGAG TATCGAGTGC GACATCCATA GAGTCAAGCC ACATCCAGCA
2 9 0 1 ~ T C G C T C C A A G ~ C T G G G C T G T G ~ T G C A C G A A C C ~ C C C C G T T C A G ~ C C C G A C C G C T ~
    AGCGAGGTTC GACCCGACAC ACGTGCTTGG GGGGCAAGTC GGGCTGGCGA
```

3951	GCGCCTTATC CGGTAACTAT CGTCTTGAGT CCAACCCGGT AAGACACGAC
	CGCGGAATAG GCCATTGATA GCAGAACTCA GGTTGGGCCA TTCTGTGCTG
3001	TTATCGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA
	AATAGCGGTG ACCGTCGTCG GTGACCATTG TCCTAATCGT CTCGCTCCAT
3051	TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA
	ACATCCGCCA CGATGTCTCA AGAACTTCAC CACCGGATTG ATGCCGATGT
3101	CTAGAAGAAC AGTATTTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC
	GATCTTCTTG TCATAAACCA TAGACGCGAG ACGACTTCGG TCAATGGAAG
3151	GGAAAAAGAG TTGGTAGCTC TTGATCCGGC AAACAAACCA CCGCTGGTAG
	CCTTTTTCTC AACCATCGAG AACTAGGCCG TTTGTTTGGT GGCGACCATC
3201	CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA AAAAAAGGAT
	GCCACCAAAA AAACAAACGT TCGTCGTCTA ATGCGCGTCT TTTTTTCCTA
3251	CTCAAGAAGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC
	GAGTTCTTCT AGGAAACTAG AAAAGATGCC CCAGACTGCG AGTCACCTTG
3301	GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT
	CTTTTGAGTG CAATTCCCTA AAACCAGTAC TCTAATAGTT TTTCCTAGAA

APPENDICES

```
3 9 5 1 ~ C G T A A G A T G C ~ T T T T C T G T G A ~ C T G G T G A G T A ~ C T C A A C C A A G ~ T C A T T C T G A G ~
    GCATTCTACG AAAAGACACT GACCACTCAT GAGTTGGTTC AGTAAGACTC
4 0 0 1 ~ A A T A G T G T A T ~ G C G G C G A C C G ~ A G T T G C T C T T ~ G C C C G G C G T C ~ A A T A C G G G A T
    TTATCACATA CGCCGCTGGC TCAACGAGAA CGGGCCGCAG TTATGCCCTA
4 0 5 1 ~ A A T A C C G C G C ~ C A C A T A G C A G ~ A A C T T T A A A A ~ G T G C T C A T C A ~ T T G G A A A A C G ~
    TTATGGCGCG GTGTATCGTC TTGAAATTTT CACGAGTAGT AACCTTTTGC
4 1 0 1 ~ T T C T T C G G G G ~ C G A A A A C T C T ~ C A A G G A T C T T ~ A C C G C T G T T G ~ A G A T C C A G T T ~
    AAGAAGCCCC GCTTTTGAGA GTTCCTAGAA TGGCGACAAC TCTAGGTCAA
4 1 5 1 ~ C G A T G T A A C C ~ C A C T C G T G C A ~ C C C A A C T G A T ~ C T T C A G C A T C ~ T T T T A C T T T C ~
    GCTACATTGG GTGAGCACGT GGGTTGACTA GAAGTCGTAG AAAATGAAAG
4 2 0 1 ~ A C C A G C G T T T ~ C T G G G T G A G C ~ A A A A A C A G G A ~ A G G C A A A A T G ~ C C G C A A A A A A ~
    TGGTCGCAAA GACCCACTCG TTTTTGTCCT TCCGTTTTAC GGCGTTTTTT
4 2 5 1 ~ G G G A A T A A G G ~ G C G A C A C G G A ~ A A T G T T G A A T ~ A C T C A T A C T C ~ T T C C T T T T T C ~
    CCCTTATTCC CGCTGTGCCT TTACAACTTA TGAGTATGAG AAGGAAAAAG
4 3 0 1 ~ A A T A T T A T T G ~ A A G C A T T T A T ~ C A G G G T T A T T ~ G T C T C A T G A G ~ C G G A T A C A T A ~
    TTATAATAAC TTCGTAAATA GTCCCAATAA CAGAGTACTC GCCTATGTAT
4 3 5 1 ~ T T T G A A T G T A ~ T T T A G A A A A A ~ T A A A C A A A T A ~ G G G G T T C C G C ~ G C A C A T T T C C ~
    AAACTTACAT AAATCTTTTT ATTTGTTTAT CCCCAAGGCG CGTGTAAAGG
4 4 0 1 ~ C C G A A A A G T G ~ C C A C C T G A T G ~ C G G T G T G A A A ~ T A C C G C A C A G ~ A T G C G T A A G G
    GGCTTTTCAC GGTGGACTAC GCCACACTTT ATGGCGTGTC TACGCATTCC
4 4 5 1 ~ A G A A A A T A C C ~ G C A T C A G G A A ~ A T T G T A A G C G ~ T T A A T A T T T T ~ G T T A A A A T T C ~
    TCTTTTATGG CGTAGTCCTT TAACATTCGC AATTATAAAA CAATTTTAAG
4 5 0 1 ~ G C G T T A A A T T ~ T T T G T T A A A T ~ C A G C T C A T T T ~ T T T A A C C A A T ~ A G G C C G A A A T ~
    CGCAATTTAA AAACAATTTA GTCGAGTAAA AAATTGGTTA TCCGGCTTTA
4 5 5 1 ~ C G G C A A A A T C ~ C C T T A T A A A T ~ C A A A A G A A T A ~ G A C C G A G A T A ~ G G G T T G A G T G ~
    GCCGTTTTAG GGAATATTTA GTTTTCTTAT CTGGCTCTAT CCCAACTCAC
4 6 0 1 ~ T T G T T C C A G T ~ T T G G A A C A A G ~ A G T C C A C T A T ~ T A A A G A A C G T ~ G G A C T C C A A C ~
    AACAAGGTCA AACCTTGTTC TCAGGTGATA ATTTCTTGCA CCTGAGGTTG
4 6 5 1 ~ G T C A A A G G G C ~ G A A A A A C C G T ~ C T A T C A G G G C ~ G A T G G C C C A C ~ T A C G T G A A C C ~
    CAGTTTCCCG CTTTTTGGCA GATAGTCCCG CTACCGGGTG ATGCACTTGG
4 7 0 1 ~ A T C A C C C T A A ~ T C A A G T T T T T ~ T G G G G T C G A G ~ G T G C C G T A A A ~ G C A C T A A A T C ~
    TAGTGGGATT AGTTCAAAAA ACCCCAGCTC CACGGCATTT CGTGATTTAG
4 7 5 1 ~ G G A A C C C T A A ~ A G G G A G C C C C ~ C G A T T T A G A G ~ C T T G A C G G G G ~ A A A G C C G G C G ~
    CCTTGGGATT TCCCTCGGGG GCTAAATCTC GAACTGCCCC TTTCGGCCGC
4 8 0 1 ~ A A C G T G G C G A ~ G A A A G G A A G G ~ G A A G A A A G C G ~ A A A G G A G C G G ~ G C G C T A G G G C ~
    TTGCACCGCT CTTTCCTTCC CTTCTTTCGC TTTCCTCGCC CGCGATCCCG
4 8 5 1 ~ G C T G G C A A G T ~ G T A G C G G T C A ~ C G C T G C G C G T ~ A A C C A C C A C A ~ C C C G C C G C G C ~
    CGACCGTTCA CATCGCCAGT GCGACGCGCA TTGGTGGTGT GGGCGGCGCG
4 9 0 1 ~ T T A A T G C G C C ~ G C T A C A G G G C ~ G C G T C C A T T C ~ G C C A T T C A G G ~ C T G C G C A A C T ~
    AATTACGCGG CGATGTCCCG CGCAGGTAAG CGGTAAGTCC GACGCGTTGA
```

[^2]
Appendix I

pGU0523 (pGU0501 $\Delta \mathbf{C j} 1344 \mathrm{c}:$: Pc $_{\text {kan_kan_Pc }}^{\text {oxa-61 }}$)

[^3]401 GGTCATATTT ATAGTCTTTT TTTGGAAGAA AAAATTTCTT TAGATATGGG
CCAGTATAAA TATCAGAAAA AAACCTTCTT TTTTAAAGAA ATCTATACCC
G $\quad \mathrm{H} \quad \mathrm{I}$
451 AATTTTGCTT GTTAGTGGTG GGCATACCAT GGTGCTTTAT CTTAAAGATG
TTAAAACGAA CAATCACCAC CCGTATGGTA CCACGAAATA GAATTTCTAC

501 ATGCAAGCTT AGAGCTTTTA GCAAGTACAA ATGATGATAG CTTTGGAGAA
TACGTTCGAA TCTCGAAAAT CGTTCATGTT TACTACTATC GAAACCTCTT

 \(\begin{array}{llllllllllllllll}\text { A } & \text { S } & \mathrm{L} & \mathrm{E} & \mathrm{L} & \mathrm{L} & \mathrm{A} & \mathrm{S} & \mathrm{T} & \mathrm{N} & \mathrm{D} & \mathrm{D} & \mathrm{S} & \mathrm{F} & \mathrm{G} & \mathrm{E}\end{array}\)
 Cj1344c
 551 AGTTTTGATA AAGTGGCTAA AATGATGAAT TTAGGTTACC CTGGTGGGGT
TCAAAACTAT TTCACCGATT TTACTACTTA AATCCAATGG GACCACCCCA

601 CATCATAGAA AATTTAGCAA AAAATGCCAA ACTTAAAAAT ATCTCTTTTA
GTAGTATCTT TTAAATCGTT TTTTACGGTT TGAATTTTTA TAGAGAAAAT

651 ACACACCTTT AAAGCATTCT AAAGAACTCG CTTTCAGTTT TTCAGGGCTT
TGTGTGGAAA TTTCGTAAGA TTTCTTGAGC GAAAGTCAAA AAGTCCCGAA

$\mathrm{PC}_{\mathrm{kan}} \rightarrow$
701 AAAAATGCAG TGCGTTTGGA AATTTTAAAA CATGAAAATT TTCTGTTTTC
TTTTTACGTC ACGCAAACCT TTAAAATTTT GTACTTTTAA AAGACAAAAG
$\begin{array}{llllllllllllll}\mathrm{K} & \mathrm{N} & \mathrm{A} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{K} & \mathrm{H} & \mathrm{E} & \mathrm{N} & \mathrm{F}\end{array}$
751 TGGTATTTAA GGTTTTAGAA TGCAAGGAAC AGTGAATTGG AGTTCGTCTT
ACCATAAATT CCAAAATCTT ACGTTCCTTG TCACTTAACC TCAAGCAGAA
801 GTTATAATTA GCTTCTTGGG GTATCTTTAA ATACTGTAGA AAAGAGGAAG
CAATATTAAT CGAAGAACCC CATAGAAATT TATGACATCT TTTCTCCTTC
START kan
851 GAAATAATAA ATGGCTAAAA TGAGAATATC ACCGGAATTG AAAAAACTGA
CTTTATTATT TACCGATTTT ACTCTTATAG TGGCCTTAAC TTTTTTGACT
$\begin{array}{lllllllllllllll}M & A & K & M & R & I & S & P & E & L & K & K & L & I & k a n\end{array}$
901 TCGAAAAATA CCGCTGCGTA AAAGATACGG AAGGAATGTC TCCTGCTAAG
AGCTTTTTAT GGCGACGCAT TTTCTATGCC TTCCTTACAG AGGACGATTC
$\begin{array}{lllllllllllllllll}\mathrm{E} & \mathrm{K} & \mathrm{Y} & \mathrm{R} & \mathrm{C} & \mathrm{V} & \mathrm{K} & \mathrm{D} & \mathrm{T} & \mathrm{E} & \mathrm{G} & \mathrm{M} & \mathrm{S} & \mathrm{P} & \mathrm{A} & \mathrm{K} & \text { kan }\end{array}$
951 GTATATAAGC TGGTGGGAGA AAATGAAAAC CTATATTTAA AAATGACGGA
CATATATTCG ACCACCCTCT TTTACTTTTG GATATAAATT TTTACTGCCT
$\begin{array}{llllllllllllllllll}V & Y & K & L & V & G & E & N & E & N & L & Y & L & K & M & T & D\end{array}$
1001 CAGCCGGTAT AAAGGGACCA CCTATGATGT GGAACGGGAA AAGGACATGA
GTCGGCCATA TTTCCCTGGT GGATACTACA CCTTGCCCTT TTCCTGTACT
$\begin{array}{llllllllllllllllll}S & R & Y & K & G & T & T & Y & D & V & E & R & E & K & D & M & M & k a n\end{array}$
1051 TGCTATGGCT GGAAGGAAAG CTGCCTGTTC CAAAGGTCCT GCACTTTGAA
ACGATACCGA CCTTCCTTTC GACGGACAAG GTTTCCAGGA CGTGAAACTT
$\begin{array}{lllllllllllllllll}\text { L } & \mathrm{W} & \mathrm{L} & \mathrm{E} & \mathrm{G} & \mathrm{K} & \mathrm{L} & \mathrm{P} & \mathrm{V} & \mathrm{P} & \mathrm{K} & \mathrm{V} & \mathrm{L} & \mathrm{H} & \mathrm{F} & \mathrm{E} & \text { kan }\end{array}$
1101 CGGCATGATG GCTGGAGCAA TCTGCTCATG AGTGAGGCCG ATGGCGTCCT
GCCGTACTAC CGACCTCGTT AGACGAGTAC TCACTCCGGC TACCGCAGGA
$\begin{array}{llllllllllllllllll}\text { R } & H & D & G & W & S & N & L & L & M & S & E & A & D & G & V & L & k a n\end{array}$

APPENDICES

1151 TTGCTCGGAA GAGTATGAAG ATGAACAAAG CCCTGAAAAG ATTATCGAGC
AACGAGCCTT CTCATACTTC TACTTGTTTC GGGACTTTTC TAATAGCTCG
C $\quad \mathrm{S} \quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{Y}$ E $\quad \mathrm{D} \quad \mathrm{E} \quad \mathrm{Q} \quad \mathrm{S} \quad \mathrm{P} \quad \mathrm{E} \quad \mathrm{K} \quad \mathrm{I} \quad \mathrm{I} \quad \mathrm{E} \quad \mathrm{L}$ kan
1201 TGTATGCGGA GTGCATCAGG CTCTTTCACT CCATCGACAT ATCGGATTGT
ACATACGCCT CACGTAGTCC GAGAAAGTGA GGTAGCTGTA TAGCCTAACA
Y A $\quad \mathrm{E} \quad \mathrm{C} \quad \mathrm{I} \quad \mathrm{R} \quad \mathrm{L} \quad \mathrm{F} \quad \mathrm{H} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{D} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{D} \quad \mathrm{C}$ kan
1251 CCCTATACGA ATAGCTTAGA CAGCCGCTTA GCCGAATTGG ATTACTTACT
GGGATATGCT TATCGAATCT GTCGGCGAAT CGGCTTAACC TAATGAATGA
$\begin{array}{lllllllllllllllll}\mathrm{P} & \mathrm{Y} & \mathrm{T} & \mathrm{N} & \mathrm{S} & \mathrm{L} & \mathrm{D} & \mathrm{S} & \mathrm{R} & \mathrm{L} & \mathrm{A} & \mathrm{E} & \mathrm{L} & \mathrm{D} & \mathrm{Y} & \mathrm{L} & \mathrm{L}\end{array}$
1301 GAATAACGAT CTGGCCGATG TGGATTGCGA AAACTGGGAA GAAGACACTC
CTTATTGCTA GACCGGCTAC ACCTAACGCT TTTGACCCTT CTTCTGTGAG
$\begin{array}{lllllllllllllllll}\mathrm{N} & \mathrm{N} & \mathrm{D} & \mathrm{L} & \mathrm{A} & \mathrm{D} & \mathrm{V} & \mathrm{D} & \mathrm{C} & \mathrm{E} & \mathrm{N} & \mathrm{W} & \mathrm{E} & \mathrm{E} & \mathrm{D} & \mathrm{T} & \mathrm{P}\end{array}$
1351 CATTTAAAGA TCCGCGCGAG CTGTATGATT TTTTAAAGAC GGAAAAGCCC
GTAAATTTCT AGGCGCGCTC GACATACTAA AAAATTTCTG CCTTTTCGGG
$\begin{array}{lllllllllllllllll}\mathrm{F} & \mathrm{K} & \mathrm{D} & \mathrm{P} & \mathrm{R} & \mathrm{E} & \mathrm{L} & \mathrm{Y} & \mathrm{D} & \mathrm{F} & \mathrm{L} & \mathrm{K} & \mathrm{T} & \mathrm{E} & \mathrm{K} & \mathrm{P} & \mathbf{k a n}\end{array}$
1401 GAAGAGGAAC TTGTCTTTTC CCACGGCGAC CTGGGAGACA GCAACATCTT
CTTCTCCTTG AACAGAAAAG GGTGCCGCTG GACCCTCTGT CGTTGTAGAA
E $\quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{L} \quad \mathrm{V} \quad \mathrm{F} \quad \mathrm{S} \quad \mathrm{H} \quad \mathrm{G} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{D} \quad \mathrm{S} \quad \mathrm{N} \quad \mathrm{I} \quad \mathrm{F}$ kan
1451 TGTGAAAGAT GGCAAAGTAA GTGGCTTTAT TGATCTTGGG AGAAGCGGCA
ACACTTTCTA CCGTTTCATT CACCGAAATA ACTAGAACCC TCTTCGCCGT

1501 GGGCGGACAA GTGGTATGAC ATTGCCTTCT GCGTCCGGTC GATCAGGGAG
CCCGCCTGTT CACCATACTG TAACGGAAGA CGCAGGCCAG CTAGTCCCTC
A $\quad \mathrm{D} \quad \mathrm{K} \quad \mathrm{W} \quad \mathrm{Y} \quad \mathrm{D} \quad \mathrm{I} \quad \mathrm{A} \quad \mathrm{F} \quad \mathrm{C} \quad \mathrm{V} \quad \mathrm{R} \quad \mathrm{S} \quad \mathrm{I} \quad \mathrm{R} \quad \mathrm{E}$ kan
1551 GATATCGGGG AAGAACAGTA TGTCGAGCTA TTTTTTGACT TACTGGGGAT
CTATAGCCCC TTCTTGTCAT ACAGCTCGAT AAAAAACTGA ATGACCCCTA
D I G E E Q Y V E E $\mathrm{L} \quad \mathrm{F} \quad \mathrm{F} \quad \mathrm{D} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{G} \quad \mathrm{I}$
1601 CAAGCCTGAT TGGGAGAAAA TAAAATATTA TATTTTACTG GATGAATTGT
GTTCGGACTA ACCCTCTTTT ATTTTATAAT ATAAAATGAC CTACTTAACA

1651 TTTAGTACCT AGATTTAGAT GTCTAAAAAG CTTGATATCG AATTCCTGCA
AAATCATGGA TCTAAATCTA CAGATTTTTC GAACTATAGC TTAAGGACGT
* kan
START PC ${ }_{\text {oxa } 61}$
1701 GCCCGGGGGA TCCACTAGTT CTAGCTAGAC TTGATATCGA ATTCCTGCAG
CGGGCCCCCT AGGTGATCAA GATCGATCTG AACTATAGCT TAAGGACGTC
1751 CCCGGGGGAT CCATCGATGG ATTGCTTTAA TGGTTACAAT TTTAGAAAAT
GGGCCCCCTA GGTAGCTACC TAACGAAATT ACCAATGTTA AAATCTTTTA
1801 TTCAGTTCAT GTTAAAGGAT ATTTAAATAA AATAAAGCTT TAAAAAGTAT
AAGTCAAGTA CAATTTCCTA TAAATTTATT TTATTTCGAA ATTTTTCATA
1851 TTTGTTTAAA ATTATTTAAA TAGAAAGATA TTTTGTGTCT AGAGCGGCCG
AAACAAATTT TAATAAATTT ATCTTTCTAT AAAACACAGA TCTCGCCGGC
1901 CCACCGCGGT GGAGCTCCAG CTTTTGTTCC CTTTAGTGAG GGTTAATTCC
GGTGGCGCCA CCTCGAGGTC GAAAACAAGG GAAATCACTC CCAATTAAGG

1951	split	Cj1344C			
	GAGCAAAATG	AAGACACAAA	AGCAGAAATA	GCCTATGCCT	TTGAAAATAC
	CTCGTTTTAC	TTCTGTGTTT	TCGTCTTTAT	CGGATACGGA	AACTTTTATG
2001	AGCTTGTGAT	CATATCATGG	ATAAATTAGA	AAAAATTTTT	AATCTTTATA
	TCGAACACTA	GTATAGTACC	TATTTAATCT	TTTTTAAAAA	TTAGAAATAT
2051	AATTTAAAAA	TTTTGGCGTT	GTAGGTGGAG	CTAGTGCAAA	TCTTAACTTG
	TTAAATTTTT	AAAACCGCAA	CATCCACCTC	GATCACGTTT	AGAATTGAAC
2101	CGTTCGCGTT	TGCAAAATTT	ATGTCAAAAA	TATAATGCAA	ATTTAAAACT
	GCAAGCGCAA	ACGTTTTAAA	TACAGTTTTT	ATATTACGTT	TAAATTTTGA
2151	AGCTCCTTTA	AAATTCTGCT	CTGATAATGC	TTTGATGATA	GCAAGAGCCG
	TCGAGGAAAT	TTTAAGACGA	GACTATTACG	AAACTACTAT	CGTTCTCGGC
2201	CAGTTGATGC	TTATGAAAAA	AAGGAATTTG	TAAGTGTAGA	AGAAGATATT
	GTCAACTACG	AATACTTTTT	TTCCTTAAAC	ATTCACATCT	TCTTCTATAA
2251	TTAAGCCCTA	AAAATAAAAA	TTTTTCAAGG	AtATAGATGA	AAAAAGCTCG
	AATTCGGGAT	TTTTATTTTT	AAAAAGTTCC	TATATCTACT	TTTTTCGAGC
2301	AGAATCACTA	GTGAATTCGC	GGCCGCCTGC	AGGTCGACCA	TATGGGAGAG
	TCTTAGTGAT	CACTTAAGCG	CCGGCGGACG	TCCAGCTGGT	ATACCCTCTC
2351	CTCCCAACGC	GTTGGATGCA	TAGCTTGAGT	Attctatag	GTCACCTAAA
	GAGGGTTGCG	CAACCTACGT	ATCGAACTCA	TAAGATATCA	CAGTGGATTT
2401	TAGCTTGGCG	TAATCATGGT	CATAGCTGTT	TCCTGTGTGA	AATTGTTATC
	ATCGAACCGC	ATTAGTACCA	GTATCGACAA	AGGACACAC	TTAACAATAG
2451	CGCTCACAAT	TCCACACAAC	ATACGAGCCG	GAAGCATAAA	GTGTAAAGCC
	GCGAGTGTTA	AGGTGTGTTG	TATGCTCGGC	CTTCGTATTT	CACATTTCGG
2501	TGGGGTGCCT	AATGAGTGAG	СTAACTCACA	TTAATTGCGT	TGCGCTCACT
	ACCCCACGGA	TTACTCACTC	GATTGAGTGT	AATTAACGCA	ACGCGAGTGA
2551	GCCCGCTTTC	CAGTCGGGAA	ACCTGTCGTG	CCAGCTGCAT	TAATGAATCG
	CGGGCGAAAG	GTCAGCCCTT	TGGACAGCAC	GGTCGACGTA	ATTACTTAGC
2601	GCCAACGCGC	GGGGAGAGGC	GGTTTGCGTA	TTGGGCGCTC	TTCCGCTTCC
	CGGTTGCGCG	CCCCTCTCCG	CCAAACGCAT	AACCCGCGAG	AAGGCGAAGG
2651	TCGCTCACTG	ACTCGCTGCG	CTCGGTCGTT	CGGCTGCGGC	GAGCGGTATC
	AGCGAGTGAC	TGAGCGACGC	GAGCCAGCAA	GCCGACGCCG	CTCGCCATAG
2701	AGCTCACTCA	AAGGCGGTAA	TACGGTTATC	CACAGAATCA	GGGGATAACG
	TCGAGTGAGT	TTCCGCCATT	ATGCCAATAG	GTGTCTTAGT	CCCCTATTGC
2751	CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	GAACCGTAAA
	GTCCTTTCTT	GTACACTCGT	TTTCCGGTCG	TTTTCCGGTC	CTTGGCATTT
2801	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC	CTGACGAGCA
	TTCCGGCGCA	ACGACCGCAA	AAAGGTATCC	GAGGCGGGGG	GACTGCTCGT
2851	TCACAAAAAT	CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT
	AGTGTTTTTA	GCTGCGAGTT	CAGTCTCCAC	CGCTTTGGGC	TGTCCTGATA
2901	AAAGATACCA	GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG	CTCTCCTGTT
	TTTCTATGGT	CCGCAAAGGG	GGACCTTCGA	GGGAGCACGC	GAGAGGACAA

APPENDICES

```
2 9 5 1 ~ C C G A C C C T G C ~ C G C T T A C C G G ~ A T A C C T G T C C ~ G C C T T T C T C C ~ C T T C G G G A A G ~ GgCTGGGACG GCGAATGGCC TATGGACAGG CGGAAAGAGG GAAGCCCTTC
3 0 0 1 ~ C G T G G C G C T T ~ T C T C A T A G C T ~ C A C G C T G T A G ~ G T A T C T C A G T ~ T C G G T G T A G G ~
    GCACCGCGAA AGAGTATCGA GTGCGACATC CATAGAGTCA AGCCACATCC
3051 TCGTTCGCTC CAAGCTGGGC TGTGTGCACG AACCCCCCGT TCAGCCCGAC
    AGCAAGCGAG GTTCGACCCG ACACACGTGC TTGGGGGGCA AGTCGGGCTG
3 1 0 1 ~ C G C T G C G C C T ~ T A T C C G G T A A ~ C T A T C G T C T T ~ G A G T C C A A C C ~ C G G T A A G A C A ~
    GCGACGCGGA ATAGGCCATT GATAGCAGAA CTCAGGTTGG GCCATTCTGT
3 1 5 1 ~ C G A C T T A T C G ~ C C A C T G G C A G ~ C A G C C A C T G G ~ T A A C A G G A T T ~ A G C A G A G C G A ~
    GCTGAATAGC GGTGACCGTC GTCGGTGACC ATTGTCCTAA TCGTCTCGCT
3 2 0 1 ~ G G T A T G T A G G ~ C G G T G C T A C A ~ G A G T T C T T G A ~ A G T G G T G G C C ~ T A A C T A C G G C ~
    CCATACATCC GCCACGATGT CTCAAGAACT TCACCACCGG ATTGATGCCG
3 2 5 1 ~ T A C A C T A G A A ~ G A A C A G T A T T ~ T G G T A T C T G C ~ G C T C T G C T G A ~ A G C C A G T T A C ~
    ATGTGATCTT CTTGTCATAA ACCATAGACG CGAGACGACT TCGGTCAATG
3 3 0 1 ~ C T T C G G A A A A ~ A G A G T T G G T A ~ G C T C T T G A T C ~ C G G C A A A C A A ~ A C C A C C G C T G ~
    GAAGCCTTTT TCTCAACCAT CGAGAACTAG GCCGTTTGTT TGGTGGCGAC
3 3 5 1 ~ G T A G C G G T G G ~ T T T T T T T G T T ~ T G C A A G C A G C ~ A G A T T A C G C G ~ C A G A A A A A A A
    CATCGCCACC AAAAAAACAA ACGTTCGTCG TCTAATGCGC GTCTTTTTTT
3 4 0 1 ~ G G A T C T C A A G ~ A A G A T C C T T T ~ G A T C T T T T C T ~ A C G G G G T C T G ~ A C G C T C A G T G ~
    CCTAGAGTTC TTCTAGGAAA CTAGAAAAGA TGCCCCAGAC TGCGAGTCAC
3 4 5 1 ~ G A A C G A A A A C ~ T C A C G T T A A G ~ G G A T T T T G G T ~ C A T G A G A T T A ~ T C A A A A A G G A ~
    CTTGCTTTTG AGTGCAATTC CCTAAAACCA GTACTCTAAT AGTTTTTCCT
3 5 0 1 ~ T C T T C A C C T A ~ G A T C C T T T T A ~ A A T T A A A A A T ~ G A A G T T T T A A ~ A T C A A T C T A A ~
    AGAAGTGGAT CTAGGAAAAT TTAATTTTTA CTTCAAAATT TAGTTAGATT
3 5 5 1 ~ A G T A T A T A T G ~ A G T A A A C T T G ~ G T C T G A C A G T ~ T A C C A A T G C T ~ T A A T C A G T G A ~
    TCATATATAC TCATTTGAAC CAGACTGTCA ATGGTTACGA ATTAGTCACT
3 6 0 1 ~ G G C A C C T A T C ~ T C A G C G A T C T ~ G T C T A T T T C G ~ T T C A T C C A T A ~ G T T G C C T G A C ~
    CCGTGGATAG AGTCGCTAGA CAGATAAAGC AAGTAGGTAT CAACGGACTG
3 6 5 1 ~ T C C C C G T C G T ~ G T A G A T A A C T ~ A C G A T A C G G G ~ A G G G C T T A C C ~ A T C T G G C C C C ~
    AGGGGCAGCA CATCTATTGA TGCTATGCCC TCCCGAATGG TAGACCGGGG
3 7 0 1 ~ A G T G C T G C A A ~ T G A T A C C G C G ~ A G A C C C A C G C ~ T C A C C G G C T C ~ C A G A T T T A T C ~
    TCACGACGTT ACTATGGCGC TCTGGGTGCG AGTGGCCGAG GTCTAAATAG
3 7 5 1 \text { AGCAATAAAC CAGCCAGCCG GAAGGGCCGA GCGCAGAAGT GGTCCTGCAA}
    TCGTTATTTG GTCGGTCGGC CTTCCCGGCT CGCGTCTTCA CCAGGACGTT
3 8 0 1 ~ C T T T A T C C G C ~ C T C C A T C C A G ~ T C T A T T A A T T ~ G T T G C C G G G A ~ A G C T A G A G T A ~
    GAAATAGGCG GAGGTAGGTC AGATAATTAA CAACGGCCCT TCGATCTCAT
3 8 5 1 ~ A G T A G T T C G C ~ C A G T T A A T A G ~ T T T G C G C A A C ~ G T T G T T G C C A ~ T T G C T A C A G G
    TCATCAAGCG GTCAATTATC AAACGCGTTG CAACAACGGT AACGATGTCC
3 9 0 1 ~ C A T C G T G G T G ~ T C A C G C T C G T ~ C G T T T G G T A T ~ G G C T T C A T T C ~ A G C T C C G G T T ~
    GTAGCACCAC AGTGCGAGCA GCAAACCATA CCGAAGTAAG TCGAGGCCAA
```

3951	CCCAACGATC	AAGGCGAGTT	ACATGATCCC	CCATGTTGTG	G
	GGGTTGCTAG	TTCCGCTCAA	TGTACTAGGG	GGTACAACAC	GTTTTTTCGC
4001	GTTAGCTCCT	TCGGTCCTCC	GATCGTTGTC	AGAAGTAAGT	TGGCCGCAGT
	CAATCGAGGA	AGCCAGGAGG	CTAGCAACAG	TCTTCATTCA	ACCGGCGTCA
4051	GTTATCACTC	AtgGtiatgg	CAGCACTGCA	TAATTCTCTT	ACTGTCATGC
	CAATAGTGAG	TACCAATACC	GTCGTGACGT	ATTAAGAGAA	TGACAGTACG
4101	CATCCGTAAG	ATGCTtTtct	GTGACTGGTG	AGTACTCAAC	CAAGTCATTC
	GTAGGCATTC	TACGAAAAGA	CACTGACCAC	TCATGAGTTG	GTTCAGTAAG
4151	TGAGAATAGT	GTATGCGGCG	ACCGAGTTGC	TCTTGCCCGG	CGTCAATACG
	ACTCTTATCA	CATACGCCGC	TGGCTCAACG	AGAACGGGCC	GCAGTTATGC
4201	GGATAATACC	GCGCCACATA	GCAGAACTTT	AAAAGTGCTC	ATCATTGGAA
	CCTATTATGG	CGCGGTGTAT	CGTCTTGAAA	TTTTCACGAG	TAGTAACCTT
4251	AACGTTCTTC	GgGGCGAAAA	CTCTCAAGGA	TCTTACCGCT	GTTGAGATCC
	TTGCAAGAAG	CCCCGCTTTT	GAGAGTTCCT	AGAATGGCGA	CAACTCTAGG
4301	AGTTCGATGT	AACCCACTCG	TGCACCCAAC	TGATCTTCAG	CATCTTTTAC
	TCAAGCTACA	TTGGGTGAGC	ACGTGGGTTG	ACTAGAAGTC	GTAGAAAATG
4351	TTTCACCAGC	GTTTCTGGGT	GAGCAAAAAC	AGGAAGGCAA	AATGCCGCAA
	AAAGTGGTCG	CAAAGACCCA	CTCGTTTTTG	TCCTTCCGTT	TTACGGCGTT
4401	AAAAGGGAAT	AAGGGCGACA	CGGAAATGTT	GAATACTCAT	ACTCTTCCTT
	TTTTCCCTTA	TTCCCGCTGT	GCCTTTACAA	CTTATGAGTA	TGAGAAGGAA
4451	TTTCAATATT	ATTGAAGCAT	TTATCAGGGT	TATtGTCTCA	TGAGCGGATA
	AAAGTTATAA	TAACTTCGTA	AATAGTCCCA	ATAACAGAGT	ACTCGCCTAT
4501	CATATTTGAA	TGTATTTAGA	AAAATAAACA	AATAGGGGTT	CCGCGCACAT
	GTATAAACTT	ACATAAATCT	TTTTATTTGT	TTATCCCCAA	GGCGCGTGTA
4551	TTCCCCGAAA	AGTGCCACCT	GATGCGGTGT	GAAATACCGC	ACAGATGCGT
	AAGGGGCTTT	TCACGGTGGA	CTACGCCACA	CTTTATGGCG	TGTCTACGCA
4601	AAGGAGAAAA	TACCGCATCA	GGAAATTGTA	AGCGTTAATA	TTTTGTTAAA
	TTCCTCTTTT	ATGGCGTAGT	CCTTTAACAT	TCGCAATTAT	AAAACAATTT
4651	ATTCGCGTTA	AATTTTTGTT	AAATCAGCTC	ATTTTTTAAC	CAATAGGCCG
	TAAGCGCAAT	TTAAAAACAA	TTTAGTCGAG	TAAAAAATTG	GTTATCCGGC
4701	AAATCGGCAA	AATCCCTTAT	AAATCAAAAG	AATAGACCGA	GATAGGGTTG
	TTTAGCCGTT	TTAGGGAATA	TTTAGTTTTC	TTATCTGGCT	CTATCCCAAC
4751	AGTGTTGTTC	CAGTTTGGAA	CAAGAGTCCA	CTATTAAAGA	ACGTGGACTC
	TCACAACAAG	GTCAAACCTT	GTTCTCAGGT	GATAATTTCT	TGCACCTGAG
4801	CAACGTCAAA	GGGCGAAAAA	CCGTCTATCA	GGGCGATGGC	CCACTACGTG
	GTTGCAGTTT	CCCGCTTTTT	GGCAGATAGT	CCCGCTACCG	GGTGATGCAC
4851	AACCATCACC	CTAATCAAGT	TTTTTGGGGT	CGAGGTGCCG	TAAAGCACTA
	TTGGTAGTGG	GATTAGTTCA	AAAAACCCCA	GCTCCACGGC	ATTTCGTGAT
4901	AATCGGAACC	CTAAAGGGAG	CCCCCGATTT	AGAGCTTGAC	GGGGAAAGCC
	TTAGCCTTGG	GATTTCCCTC	GGGGGCTAAA	TCTCGAACT	CCCCTTTCGG

| | GGCGAACGTG | GCGAGAAAGG AAGGGAAGAA AGCGAAAGGA | GCGGGCGCTA |
| ---: | :--- | :--- | :--- | :--- | :--- |
| | CCGCTTGCAC | CGCTCTTTCC TTCCCTTCTT TCGCTTTCCT | CGCCCGCGAT |

References

Abdullah, K. M., R. Y. C. Lo \& A. Mellors, (1991) Cloning, Nucleotide Sequence, and Expression of the Pasteurella haemolytica A1 Glycoprotease Gene. Journal of Bacteriology 173: 5597-5603.
Abdullah, K. M., E. A. Udoh, P. E. Shewen \& A. Mellors, (1992) A neutral glycoprotease of Pasteurella haemolytica A1 specifically cleaves Osialoglycoproteins. Infection and Immunity 60: 56-62.
Adachi, JavierÂ A., L. Ostroskyấ • Zeichner, HerbertÂ L. DuPont \& CharlesÂ D. Ericsson, (2000) Empirical Antimicrobial Therapy for Traveler's Diarrhea. Clinical Infectious Diseases 31: 1079-1083.
Albert, M. J., A. S. G. Faruque, S. M. Faruque, R. B. Sack \& D. Mahalanabis, (1999) Case-Control Study of Enteropathogens Associated with Childhood Diarrhea in Dhaka, Bangladesh. Journal of Clinical Microbiology 37: 3458-3464.
Alfredson, D. A. \& V. Korolik, (2003) Sequence analysis of a cryptic plasmid pCJ419 from Campylobacter jejuni and construction of an Escherichia coliCampylobacter shuttle vector. Plasmid 50: 152-160.
Alfredson, D. A. \& V. Korolik, (2005) Isolation and Expression of a Novel Molecular Class D β-Lactamase, OXA-61, from Campylobacter jejuni. Antimicrob. Agents Chemother. 49: 2515-2518.
Allerberger, F., N. Al-Jazrawi, P. Kreidl, M. P. Dierich, G. Feierl, I. Hein \& M. Wagner, (2003) Barbecued Chicken Causing a Multi-State Outbreak of Campylobacter jejuni Enteritis. Infection 31: 19-23.
Altekruse, S. F., N. J. Stern, P. I. Fields \& D. L. Swerdlow, (1999) Campylobacter jejuni - An Emerging Foodborne Pathogen. Emerging Infectious Diseases 5: 28-35.
Altschul, S. F., T. F. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller \& D. J. Lipman, (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.
Ang, W. C., B. C. Jacobs \& J. D. Laman, (2003) The Guillain-Barre syndrome: a true case of molecular mimicry.
Apicella, M. A., (2010) Personal communication.
Ashbolt, N. J., (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198: 229-238.
Baqar, S., L. A. Applebee \& A. L. Bourgeois, (1995a) Immunogenicity and protective efficacy of a prototype Campylobacter killed whole-cell vaccine in mice. Infect. Immun. 63: 3731-3735.
Baqar, S., L. A. Applebee, T. C. Gilliland, Jr., L. H. Lee, C. K. Porter \& P. Guerry, (2008) Immunogenicity and Protective Efficacy of Recombinant Campylobacter jejuni Flagellum-Secreted Proteins in Mice. Infect. Immun. 76: 3170-3175.
Baqar, S., A. L. Bourgeois, P. J. Schultheiss, R. I. Walker, D. M. Rollins, R. L. Haberberger \& O. R. Pavlovskis, (1995b) Safety and immunogenicity of a prototype oral whole-cell killed Campylobacter vaccine administered with a mucosal adjuvant in non-human primates. Vaccine 13: 22-28.
Biswas, D., K. Itoh \& C. Sasakawa, (2003) Role of Microfilaments and Microtubules in the Invasion of INT 407 Cells by Campylobacter jejuni. Microbiology and Immunology 47: 469-473.

Black, R., (1990) Epidemiology of travelers' diarrhea and relative importance of various pathogens. Rev. Infect. Dis. 12: 73-79.
Black, R. E., M. M. Levine, M. L. Clements, T. P. Hughes \& M. J. Blaser, (1988) Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157: 472-479.
Blaser, M. J., R. E. Black, D. J. Duncan \& A. J, (1985) Campylobacter jejunispecific serum antibodies are elevated in healthy Bangladeshi children. J Clin Microbiol 21: 164-167.
Blaser, M. J. \& J. Engberg, (2008) Clinical Aspects of Campylobacter jejuni and Campylobacter coli Infections. In: Campylobacter, 3rd ed. I. Nachamkin, C. Szymanski \& M. J. Blaser (eds). Washington, DC: ASM Press, pp. 99-121.
Bleumink-Pluym, N., F. Verschoor, W. Gaastra, B. van der Zeijst \& B. Fry, (1999) A novel approach for the construction of a Campylobacter mutant library. Microbiology 145: 2145-2151.
Blixt, O., S. Head, T. Mondala, C. Scanlan, M. E. Huflejt, R. Alvarez, M. C. Bryan, F. Fazio, D. Calarese, J. Stevens, N. Razi, D. J. Stevens, J. J. Skehel, I. van Die, D. R. Burton, I. A. Wilson, R. Cummings, N. Bovin, C.-H. Wong \& J. C. Paulson, (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proceedings of the National Academy of Sciences of the United States of America 101: 17033-17038.
Bolton, F. J., D. Coates, D. N. Hutchinson \& A. F. Godfree, (1987) A study of thermophilic campylobacters in a river system. Journal of Applied Microbiology 62: 167-176.
Bovill, R. A. \& B. M. Mackey, (1997) Resuscitation of 'non-culturable' cells from aged cultures of Campylobacter jejuni. Microbiology 143: 1575-1581.
Brieseman, M., (1990) A further study of the epidemiology of Campylobacter jejuni infections. N Z Med J. 103: 207-209.
Buckley, A. M., J. Wang, D. L. Hudson, A. J. Grant, M. A. Jones, D. J. Maskell \& M. P. Stevens, (2010) Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry. Vaccine 28: 1094-1105.
Burr, D. H., D. Rollins, L. H. Lee, D. L. Pattarini, S. S. Walz, J.-H. Tian, J. L. Pace, A. L. Bourgeois \& R. I. Walker, (2005) Prevention of disease in ferrets fed an inactivated whole cell Campylobacter jejuni vaccine. Vaccine 23: 4315-4321.
Butzler, J.-P., Y. Glupczynski \& H. Goossens, (1992) Campylobacter and Helicobacter infections. Current Opinion in Infectious Diseases 5: 80-87.
Butzler, J. \& J. Oosterom, (1991) Campylobacter: pathogenicity and significance in foods. International Journal of Food Microbiology 12: 1-8.
Butzler, J. P., (2004) Campylobacter, from obscurity to celebrity. Clinical Microbiology and Infection 10: 868-876.
Castelli, F. \& G. Carosi, (1995) Epidemiology of traveler's diarrhea. Chemotherapy 41: 20-32.
Cladman, W. M., M.-A. V. Watt, J.-P. Dini \& A. Mellors, (1996) The Pasteurella haemolytica O-Sialoglycoprotein Endopeptidase is Inhibited by Zinc Ions and Does Not Cleave Fetuin. Biochemical and Biophysical Research Communications 220: 141-146.
Coburn, B., I. Sekirov \& B. B. Finlay, (2007) Type III Secretion Systems and Disease. Clin. Microbiol. Rev. 20: 535-549.

Coker, A. O., R. D. Isokpehi, B. N. Thomas, K. O. Amisu \& L. C. Obi, (2002) Human Campylobacteriosis in Developing Countries. Emerging Infectious Diseases 8: 237-243.
Crushell, E., S. Harty, F. Sharif \& B. Bourke, (2004) Enteric Campylobacter: Purging Its Secrets? Pediatr Res 55: 3-12.
Day, C., G. Tiralongo, R. Hartnell, C. Logue, J. Wilson, M. von Itzstein \& V. Korolik, (2009) Differential carbohydrate recognition by Campylobacter jejuni strain 11168: Influences of temperature and growth conditions. PLos One.
De Melo, M. A. \& J.-C. Pechère, (1988) Effect of mucin on Campylobacter jejuni association and invasion on HEp-2 cells. Microbial Pathogenesis 5: 71-76.
Dekeyser, P., M. Gossuin-Detrain, J. Butzler \& J. Sternon, (1972) Acute enteritis due to related vibrio: first positive stool cultures. J Infect Dis 125: 390-392.
Dekker, J., J. W. A. Rossen, H. A. Büller \& A. W. C. Einerhand, (2002) The MUC family: an obituary. TRENDS in Biochemical Sciences 27: 126-131.
Dingle, K. E., N. van den Braak, F. M. Colles, L. J. Price, D. L. Woodward, F. M. Rodgers, H. P. Endtz, A. van Belkum \& M. C. J. Maiden, (2001) Sequence Typing Confirms that Campylobacter jejuni Strains Associated with GuillainBarre and Miller-Fisher Syndromes Are of Diverse Genetic Lineage, Serotype and Flagella Type. Journal of Clinical Microbiology 39: 3346-3349.
Emanuelsson, O., S. Brunak, G. von Heijne \& H. Nielsen, (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protocols 2: 953971.

Ermolova, N. V., M. Ann Cushman, T. Taybi, S. A. Condon, J. C. Cushman \& R. Chollet, (2003) Expression, purification, and initial characterization of a recombinant form of plant PEP-carboxylase kinase from CAM-induced Mesembryanthemum crystallinum with enhanced solubility in Escherichia coli. Protein Expression and Purification 29: 123-131.
Everest, P. H., H. Goossens, J. P. Butzler, D. Lloyd, S. Knutton, J. M. Ketley \& H. Williams P, (1992) Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni and C. coli. Journal of Medical Microbiology 37: 319-325.
Fouts, D. E., E. F. Mongodin, R. E. Mandrell, W. G. Miller, D. A. Rasko, J. Ravel, L. M. Brinkac, R. T. DeBoy, C. T. Parker, S. C. Daugherty, R. J. Dodson, A. S. Durkin, R. Madupu, S. A. Sullivan, J. U. Shetty, M. A. Ayodeji, A. Shvartsbeyn, M. C. Schatz, J. H. Badger, C. M. Fraser \& K. E. Nelson, (2005) Major Structural Differences and Novel Potential Virulence Mechanisms from the Genomes of Multiple Campylobacter Species. PLOS Biology 3: e15.
Friedman, C. R., J. Neimann, H. C. Wegner \& R. V. Tauxe, (2000) Epidemiology of Campylobacter jejuni Infections in the United States and Other Industrialized Nations. In: Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington: ASM Press, pp. 121-138.
Fry, B., V. Korolik, J. ten Brinke, M. Pennings, R. Zalm, B. Teunis, P. Coloe \& B. van der Zeijst, (1998) The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology 144: 2049-2061.
Fry, B. N., S. Feng, Y.-Y. Chen, D. G. Newell, P. J. Coloe \& V. Korolik, (2000) The galE Gene of Campylobacter jejuni Is Involved in Lipopolysaccharide Synthesis and Virulence. Infect. Immun. 68: 2594-2601.

Gaudreau, C. \& H. Gilbert, (2003) Antimicrobial Resistance of Campylobacter jejuni subsp. jejuni Strains Isolated from Humans in 1998 to 2001 in Montreal, Canada. Antimicrob. Agents Chemother. 47: 2027-2029.
Godschalk, P. C. R., A. P. Heikema, M. Gilbert, T. Komagamine, C. W. Ang, J. Glerum, D. Brochu, J. Li, N. Yuki, B. C. Jacobs, A. v. Belkum \& H. P. Endtz, (2004) The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre syndrome. The Journal of Clinical Investigation 114: 1659-1665.
Grant, C. C. R., M. E. Konkel, W. Cieplak \& L. S. Tompkins, (1993) Role of Flagella in Adherence, Internalization, and Translocation of Campylobacter jejuni in Nonpolarized and Polarized Epithelial Cell Cultures. Infection and Immunity 61: 1764-1771.
Grys, T. E., M. B. Siegel, W. W. Lathem \& R. A. Welch, (2005) The StcE Protease Contributes to Intimate Adherence of Enterohemorrhagic Escherichia coli O157:H7 to Host Cells. Infect. Immun. 73: 1295-1303.
Hall, G., M. D. Kirk, N. Becker, J. E. Gregory, L. Unicomb, G. Millard, R. Stafford, K. Lalor \& t. O. W. Group, (2005) Estimating Foodborne Gastroenteritis, Australia. Emerging Infectious Diseases 11: 1257-1264.
Hartley, L., N. Kaakoush, J. Ford, V. Korolik \& G. Mendz, (2009) Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation. Gut Pathogens 1: 13.
Haselhorst, T., A.-C. Lamerz \& M. v. Itzstein, (2009) Saturation Transfer Difference NMR Spectroscopy as a Technique to Investigate Protein-Carbohydrate Interactions in Solution. In: Glycomics. Humana Press, pp. 1-12.
Hendrixson, D. R. \& V. J. DiRita, (2004) Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Molecular Microbiology 52: 471-484.
Holmen Larsson, J. M., H. Karlsson, H. Sjovall \& G. C. Hansson, (2009) A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MS ${ }^{\mathrm{n}}$. Glycobiology 19: 756-766.
Hooper, N. M., (1994) Families of zinc metalloproteases. FEBS Letters 354: 1-6.
Horrocks, S. M., R. C. Anderson, D. J. Nisbet \& S. C. Ricke, Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15: 18-25.
Horvat, Š. \& A. Jakas, (2004) Peptide and amino acid glycation: new insights into the Maillard reaction. Journal of Peptide Science 10: 119-137.
Hu, L. \& D. J. Kopecko, (1999) Campylobacter jejuni 81-176 associates with microtubules and dynein during invasion of human intestinal cells. Infect Iттип. 67: 4171-4182.
Hu, L. \& D. J. Kopecko, (2000) Interactions of Campylobacter with eukaryotic cells: gut luminal colonization and mucosal invasion mechanisms. In:
Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington, D.C.: ASM Press, pp. 191-215.
Hu, R.-H., A. Mellors \& V. P. Bhavanaandan, (1994) Cleavage of Epitectin, a Mucin-Type Sialoglycoprotein, from the surface of Human Laryngeal Carcinoma Cells by a Glycoprotease from Pasteurella haemolytica. Archives of Biochemistry and Biophysics 310: 300-309.
Hugdahl, M. B., J. T. Beery \& M. P. Doyle, (1988) Chemotactic behavior of Campylobacter jejuni. Infect. Immun. 56: 1560-1566.
Hughes, R., R. Hadden, N. Gregson \& K. Smith, (1999) Pathogenesis of GuillainBarre syndrome. Journal of Neuroimmunology 100: 74-97.

Humphrey, T., S. O'Brien \& M. Madsen, (2007) Campylobacters as zoonotic pathogens: A food production perspective. International Journal of Food Microbiology 117: 237-257.
Inoue, H., H. Nojima \& H. Okayama, (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28.
Jacobs, B. C., A. Van Belkum \& H. P. Endtz, (2008) Guillain-Barré Syndrome and Campylobacter Infection. In: Campylobacter, 3rd ed. I. Nachamkin, C. Szymanski \& M. J. Blaser (eds). Washington, DC: ASM Press, pp. 245-261.
Jagusztyn-Krynicka, E. K., P. Łaniewski \& A. Wyszyńska, (2009) Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert Review of Vaccines 8: 625-645.
Jain, D., K. N. Prasad, S. Sinha \& N. Husain, (2008) Differences in virulence attributes between cytolethal distending toxin positive and negative Campylobacter jejuni strains. J Med Microbiol 57: 267-272.
Kaino, K., H. Hayashidani, K. Kaneko \& M. Ogawa, (1988) Intestinal colonization of Campylobacter jejuni in chickens. Japanese Journal of Veterinary Science 50: 489-494.
Karandashova, I., I. Elanskaya, K. Marin, J. Vinnemeier \& M. Hagemann, (2002) Identification of Genes Essential for Growth at High Salt Concentrations Using Salt-Sensitive Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803. Current Microbiology 44: 184-188.
Karin, A., H. M. V. Arnoud, G. K. Johannes, F. Monique, D. Jacob \& E. Arie, (2003) Induced Helicobacter pylori vacuolating cytotoxin VacA expression after initial colonisation of human gastric epithelial cells. FEMS Immunology and Medical Microbiology 39: 251-256.
Katz, C., I. Cohen-Or, U. Gophna \& E. Z. Ron, (2010) The ubiquitous conserved glycopeptidase gcp prevents accumulation of toxic glycated proteins. MBio 1: e00195-00110.
Ketley, J. M., (1997) Pathogenesis of enteric infection by Campylobacter. Microbiology 143: 5-21.
Konkel, M., S. Garvis, S. Tipton, D. J. Anderson \& W. J. Cieplak, (1997) Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Molecular Microbiology 24: 953963.

Konkel, M. E., L. A. Joens \& P. F. Mixter, (2000) Molecular characterization of Campylobacter jejuni virulence determinants. In: Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington, D.C.: ASM Press, pp. 217240.

Konkel, M. E., J. D. Klena, V. Rivera-Amill, M. R. Monteville, D. Biswas, B. Raphael \& J. Mickelson, (2004) Secretion of Virulence Proteins from Campylobacter jejuni Is Dependent on a Functional Flagellar Export Apparatus. Journal of Bacteriology 186: 3296-3303.
Kopecko, D. J., L. Hu \& K. J. M. Zaal, (2001) Campylobacter jejuni - microtubuledependent invasion. TRENDS in Microbiology 9: 389-396.
Korolik, V. \& J. Ketley, (2008) Chemosensory Signal Transduction Pathway of Campylobacter jejuni. In: Campylobacter, 3rd ed. I. Nachamkin, C. Szymanski \& M. J. Blaser (eds). Washington DC: ASM Press, pp. 351-366.
Lee, C., PE Shewen, WM Cladman, JA Conlon, A Mellors \& R. Lo, (1994) Sialoglycoprotease of Pasteurella haemolytica A1: detection of antisialoglycoprotease antibodies in sera of calves. Can J Vet Res 58: 93-98.

Lee, L. H., E. Burg, III, S. Baqar, A. L. Bourgeois, D. H. Burr, C. P. Ewing, T. J. Trust \& P. Guerry, (1999) Evaluation of a Truncated Recombinant Flagellin Subunit Vaccine against Campylobacter jejuni. Infect. Immun. 67: 57995805.

Liu, C., S. Stirzaker, D. Knuckey, K. Robinson, K. Knope, G. Fitzsimmons, J. Wall, K. Roper, N. Martin, A. Reynolds, R. Owen, A. Hii, C. Barry, P. Wright, L. Sanders, J. Fielding \& N. A. R. W. Group, (2009) Australia's notifiable disease status, 2007: annual report of the National Notifiable Diseases Surveillance System. Commun Dis Intell. 33: 89-154.
Lo, R., M. Watt, S. Gyroffy \& A. Mellors, (1994) Preparation of recombinant glycoprotease of Pasteurella haemolytica A1 utilizing the Escherichia coli alpha-hemolysin secretion system. FEMS Microbiol Lett 116: 2.
Lönnerdal, B. \& S. Iyer, (1995) Lactoferrin: Molecular Structure and Biological Function. Annual Review of Nutrition 15: 93-110.
Luechtefeld, N. A., M. J. Blaser, L. B. Reller \& W. L. Wang, (1980) Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl. J. Clin. Microbiol. 12: 406-408.
Marchler-Bauer, A. \& S. H. Bryant, (2004) CD-Search: protein domain annotations on the fly. Nucl. Acids Res. 32: W327-331.
Martin, P. M., J. Mathiot, J. Ipero, M. Kirimat, A. J. Georges \& M. C. GeorgesCourbot, (1989) Immune response to Campylobacter jejuni and Campylobacter coli in a cohort of children from birth to 2 years of age. Infect. Immun. 57: 2542-2546.
McAuley, J., S. Linden, C. Png, R. King, H. Pennington, S. Gendler, T. Florin, G. Hill, V. Korolik \& M. McGuckin, (2007) MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. Journal of Clinical Investigation 117: 2313-2324.
Mellors, A., (2008) Personal communication. In., pp.
Mellors, A. \& P. Jiang, (1998) Membrane Protein Proteolysis Assayed by Fluorescence Quenching: Assay of 0 -Sialoglycoprotein Endopeptidase. Analytical Biochemistry 259: 8-15.
Miller, J. F., W. J. Dower \& L. S. Tompkins, (1988) High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proceedings of the National Academy of Sciences of the United States of America 85: 856-860.
MMWR, (2005) Preliminary FoodNet Data on the Incidence of Infection with Pathogens Transmitted Commonly Through Food - 10 Sites, United States, 2004. Morbidity and Mortality Weekly Report 54: 352-356.

Molina, J., Casin I, Hausfater P, Giretti E, Welker Y, Decazes J, Garrait V, Lagrange P \& M. J., (1995) Campylobacter infections in HIV-infected patients: clinical and bacteriological features. AIDS 9: 881-885.
Monteiro, M. A., S. Baqar, E. R. Hall, Y.-H. Chen, C. K. Porter, D. E. Bentzel, L. Applebee \& P. Guerry, (2009) Capsule Polysaccharide Conjugate Vaccine against Diarrheal Disease Caused by Campylobacter jejuni. Infect. Immun. 77: 1128-1136.
Monteville, M. R. \& M. E. Konkel, (2002) Fibronectin-Facilitated Invasion of T84 Eukaryotic Cells by Campylobacter jejuni Occurs Preferentially at the Basolateral Cell Surface. Infection and Immunity 70: 6666-6671.
Moore, J. E., M. D. Barton, I. S. Blair, D. Corcoran, J. S. G. Dooley, S. Fanning, I. Kempf, A. J. Lastovica, C. J. Lowery, M. Matsuda, D. A. McDowell, A.

McMahon, B. C. Millar, J. R. Rao, P. J. Rooney, B. S. Seal, W. J. Snelling \& O. Tolba, (2006) The epidemiology of antibiotic resistance in Campylobacter. Microbes and Infection 8: 1955-1966.
Murphy, G. J., P. Echeverria, L. Jackson, M. Arness, C. LeBron \& C. Pitarangsi, (1996) Ciprofloxacin- and azithromycin-resistant Campylobacter causing traveler's diarrhea in U.S. troops deployed to Thailand in 1994. Clin Infect Dis 22: 868-869.
Myers, J. D. \& D. J. Kelly, (2005) A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151: 233-242.
Nachamkin, I., B. M. Allos \& T. Ho, (1998) Campylobacter Species and GuillainBarre Syndrome. Clinical Microbiology Reviews 11: 555-567.
Nachamkin, I., B. M. Allos \& T. W. Ho, (2000a) Clinical aspects of Campylobacter infection. In: Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington, D.C.: ASM Press, pp. 155-175.
Nachamkin, I., J. Engberg \& F. Aarestrup, (2000b) Diagnosis and antimicrobial susceptibility of Campylobacter species. In: Campylobacter, 2nd Edition. I. Nachamkin \& M. J. Blaser (eds). Washington, DC: American Society for Microbiology, pp. 45-66.
Nachamkin, I., X. H. Yang \& N. J. Stern, (1993a) Role of Campylobacter-Jejuni Flagella as Colonization Factors for 3-Day-Old Chicks - Analysis with Flagellar Mutants. Applied and Environmental Microbiology 59: 1269-1273.
Nachamkin, I., X. H. Yang \& N. J. Stern, (1993b) Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol. 59: 1269-1273.
Nesin, M., Lupski JR, Svec P \& Godson GN, (1987) Possible new genes as revealed by molecular analysis of a $5-\mathrm{kb}$ Escherichia coli chromosomal region 5' to the rpsU-dnaG-rpoD macromolecular-synthesis operon. Gene 51: 149-161.
Newell, D. G., (2001) Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Journal of Applied Microbiology 90: 57S-67S.
Nichols, C. E., Johnson C, Lockyer M, Charles I. G., Lamb H. K, Hawkins A. R \& Stammers D. K, (2006) Structural characterization of Salmonella typhimurium YeaZ, an M22 O-sialoglycoprotein endopeptidase homolog. Proteins: Structure, Function, and Bioinformatics 64: 111-123.
NNDSS, (2003) National Notifiable Disease Surveillance System. In. Australia, pp.
Novagen, (2010) pET System Manual 11th Edition. EMD Chemicals.
Nuijten, P., L. Marquez-Magana \& B. v. d. Zeijst, (1995) Analysis of flagellin gene expression in flagellar phase variants of Campylobacter jejuni 81116. Antonie Van Leeuwenhoek. 67: 377-383.
Oberhelman, R., R. Gilman, P. Sheen, D. Taylor, R. Black, L. Cabrera, A. Lescano, R. Meza \& G. Madico, (1999) A placebo-controlled trial of Lactobacillus GG to prevent diarrhea in undernourished Peruvian children. Journal of Pediatrics 134: 15-20.
Oberhelman, R. A. \& D. N. Taylor, (2000a) Campylobacter infections in developing countries. In: Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington, D.C.: ASM Press, pp.
Oberhelman, R. A. \& D. N. Taylor, (2000b) Campylobacter infections in developing countries. In: Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington, D.C.: ASM Press, pp. 139-153.

Ogden, I. D., J. F. Dallas, M. MacRae, O. Rotariu, K. W. Reay, M. Leitch, A. P. Thomson, S. K. Sheppard, M. Maiden, K. J. Forbes \& N. J. C. Strachan, (2009) Campylobacter Excreted into the Environment by Animal Sources: Prevalence, Concentration Shed, and Host Association. Foodborne Pathogens and Disease 6: 1161-1170.
Otulakowski, G. L., P. E. Shewen, A. E. Udoh, A. Mellors \& B. N. Wilkie, (1983) Proteolysis of sialoglycoprotein by Pasteurella haemolytica cytotoxic culture supernatant. Infection and Immunity 42: 64-70.
Palyada, K., D. Threadgill \& A. Stintzi, (2004) Iron acquisition and regulation in Campylobacter jejuni. Journal of Bacteriology 186: 4714-4729.
Park, S. F., (2002) The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. International Journal of Food Microbiology 74: 177-178.
Parkhill, J., B. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M.-A. Rajandream, K. M. Rutherford, A. H. M. van Vilet, S. Whitehead \& B. G. Barrell, (2000a) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668.
Parkhill, J., B. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M.-A. Rajandream, K. M. Rutherford, A. H. M. v. Vliet, S. Whitehead \& B. G. Barrell, (2000b) The genome sequence ofthe food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668.
Pei, Z. \& M. Blaser, (1993) PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. J. Biol. Chem. 268: 18717-18725.
Pei, Z., C. Burucoa, B. Grignon, S. Baqar, X.-Z. Huang, D. J. Kopecko, A. L. Bourgeois, J.-L. Fauchere \& M. J. Blaser, (1998) Mutation in the peblA Locus of Campylobacter jejuni Reduces Interactions with Epithelial Cells and Intestinal Colonization of Mice. Infect. Immun. 66: 938-943.
Penn, C. W., (2001) Surface components of Campylobacter and Helicobacter. Journal of Applied Microbiology 90: 25S-35S.
Pickett, C., E. Pesci, D. Cottle, G. Russell, A. Erdem \& H. Zeytin, (1996) Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infect. Immun. 64: 2070-2078.
Piddock, L. J. V., V. Ricci, K. Stanley \& K. Jones, (2000) Activity of antibiotics used in human medicine for Campylobacter jejuni isolated from farm animals and their environment in Lancashire, UK. J. Antimicrob. Chemother. 46: 303306.

Poly, F., C. Ewing, S. Goon, T. E. Hickey, D. Rockabrand, G. Majam, L. Lee, J. Phan, N. J. Savarino \& P. Guerry, (2007) Heterogeneity of a Campylobacter jejuni Protein That Is Secreted through the Flagellar Filament. Infect. Immun. 75: 3859-3867.
Pope, J. E., A. Krizova, A. X. Garg, H. Thiessen-Philbrook \& J. M. Ouimet, (2007) Campylobacter Reactive Arthritis: A Systematic Review. Seminars in Arthritis and Rheumatism 37: 48-55.

Pratt, A. \& V. Korolik, (2005) Tetracycline resistance of Australian Campylobacter jejuni and Campylobacter coli isolates. Journal of Antimicrobial Chemotherapy 55: 452-460.
Prokhorova, T. A., P. N. Nielsen, J. Petersen, T. Kofoed, J. S. Crawford, C. Morsczeck, A. Boysen \& P. Schrotz-King, (2006) Novel surface polypeptides of Campylobacter jejuni as traveller's diarrhoea vaccine candidates discovered by proteomics. Vaccine 24: 6446-6455.
Robbe, C., C. Capon, B. Coddeville \& J.-C. Michalski, (2004) Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Journal of Biochemistry 384: 307-316.
Sambrook, J. \& D. W. Russel, (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press,, Cold Spring Harbor, N.Y.
Scot, D. A., (1997) Vaccines against Campylobacter jejuni. The Journal of Infectious Diseases 176: S183-188.
Shewen, P. E., C. W. Lee, A. Perets, D. C. Hodgins, K. Baldwin \& R. Y. C. Lo, (2003) Efficacy of recombinant sialoglycoprotease in protection of cattle against pneumonic with Mannheimia (Pasteurella) haemolytica A1. Vaccine 21: 1901-1906.
Simon, M., P. Bénit, A. Vassal, C. Dubois \& F. G., (1994) Sequence of the PHO2POL3 (CDC2) region of chromosome IV of Saccharomyces cerevisiae. Yeast 10: 1653-1656.
Singh, R., A. Barden, T. Mori \& L. Beilin, (2001) Advanced glycation end-products: a review. Diabetologia 44: 129-146.
Sizemore, D. R., B. Warner, J. Lawrence, A. Jones \& K. P. Killeen, (2006) Live, attenuated Salmonella typhimurium vectoring Campylobacter antigens. Vaccine 24: 3793-3803.
Skirow, M. B. \& M. J. Blaser, (2000) Clinical aspects of Campylobacter infection. In: Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington, D.C.: ASM Press, pp.
Skirrow, M., (1977) Campylobacter enteritis: a "new" disease. British Medical Journal 2: 9-11.
Skirrow, M., (1991) Epidemiology of Campylobacter enteritis. International Journal of Food Microbiology 12: 9-16.
Skirrow, M. B. \& M. J. Blaser, (2000) Clinical Aspects of Campylobacter Infection. In: Campylobacter, 2nd ed. I. Nachamkin \& M. J. Blaser (eds). Washington, DC: ASM Press, pp. 69-88.
Sorvillo, F., L. Lieb \& S. Waterman, (1991) Incidence of campylobacteriosis among patients with AIDS in Los Angeles County. Journal of Acquired Immune Defficiency Syndrome 4: 598-602.
Sutherland, D., K. Abdullah, P. Cyopick \& A. Mellors, (1992) Cleavage of the cellsurface O-sialoglycoproteins CD34, CD43, CD44, and CD45 by a novel glycoprotease from Pasteurella haemolytica. J Immunol 148: 1458-1464.
Sylvester, F. A., D. Philpott, B. Gold, A. Lastovica \& J. F. Forstner, (1996) Adherence to lipids and intestinal mucin by a recently recognized human pathogen, Campylobacter upsaliensis. Infect. Immun. 64: 4060-4066.
Takata, T., S. Fujimoto \& K. Amako, (1992) Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect. Immun. 60: 3596-3600.
Tauxe, R., (2002) Emerging foodborne pathogens. International Journal of Food Microbiology 78: 31-41.

Taylor, D. N., M. J. Blaser, P. Echeverria, C. Pitarangsi, L. Bodhidatta \& W. L. Wang, (1987) Erythromycin-resistant Campylobacter infections in Thailand. Antimicrob. Agents Chemother. 31: 438-442.
Taylor, D. N. \& Y. Wang, (1990) Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene 94: 23-28.
Tee, W. \& A. Mijch, (1998) Campylobacter jejuni Bacteremia in Human Immunodeficiency Virus (HIV)-Infected and Non-HIV-Infected Patients: Comparison of Clinical Features and Review. Clinical Infectious Diseases 26: 91-96.
Thompson, J. S., D. S. Hodge, D. E. Smith \& Y. A. Yong, (1990) Use of tri-gas incubator for routine culture of Campylobacter species from fecal specimens. J. Clin. Microbiol. 28: 2802-2803.

Toribara, N., Gum JR Jr, Culhane PJ, Lagace RE, Hicks JW, Petersen GM \& Y. Kim, (1991) MUC-2 human small intestinal mucin gene structure. Repeated arrays and polymorphism. J clin Invest. 88: 1005-1013.
Trotter, C. L., J. McVernon, M. E. Ramsay, C. G. Whitney, E. K. Mulholland, D. Goldblatt, J. Hombach \& M.-P. Kieny, (2008) Optimising the use of conjugate vaccines to prevent disease caused by Haemophilus influenzae type b, Neisseria meningitidis and Streptococcus pneumoniae. Vaccine 26: 44344445.

Tsang, R. S., (2002) The relationship of Campylobacter jejuni infection and the development of Guillain-Barre syndrome. Current Opinion in Infectious Diseases 15: 221-228.
Tu, Q. V., M. A. McGuckin \& G. L. Mendz, (2008) Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol 57: 795-802.
Vandamme, P., (2000) Taxonomy of the Family Campylobacteraceae. In: Campylobacter. I. Nachamkin \& M. J. Blaser (eds). Washington: ASM Press, pp. 3-26.
Vliet, A. H. M. v. \& J. M. Ketley, (2001) Pathogenesis of enteric Campylobacter infection. Journal of Applied Microbiology 90: 45S-56S.
Wallis, M. R., (1994) The pathogenesis of Campylobacter jejuni. British Journal of Biomedical Science 51: 57-64.
Walsh, F. S., M. Cronin, S. Koblar, P. Doherty, J. Winer, A. Leon \& R. A. C. Hughes, (1991) Association between glycoconjugate antibodies and Campylobacter infection in patients with Guillain-Barré syndrome. Journal of Neuroimmunology 34: 43-51.
Wassenaar, T., N. Bleumink-Pluym \& B. v. d. Zeijst, (1991) Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO 10: 20552061.

Wassenaar, T., B. Fry \& B. v. d. Zeijst, (1993) Genetic manipulation of Campylobacter: evaluation of natural transformation and electrotransformation. Gene 132: 131-135.
Wassenaar, T. M., (1997) Toxin production by Campylobacter spp. Clinical Microbiology Reviews 10: 466-476.
Watt, M.-A. V., R. Y. C. Lo \& A. Mellors, (1997a) Refolding of recombinant Pasteurella haemolytica A1 glycoprotease expressed in an Escherichia coli thioredoxin gene fusion system. Cell Stress Chaperones. 2: 180-190.

Watt, M.-A. V., A. Mellors \& R. Y. C. Lo, (1997b) Comparison of the recombinant and authentic forms of the Pasteurella haemolytica A1 glycoprotease. FEMS Microbiology Letters 147: 37-43.
Whiteley, L., S. Maheswaran, D. Weiss, T. Ames \& M. Kannan, (1992) Pasteurella haemolytica A1 and bovine respiratory disease: pathogenesis. J Vet Intern Med. 6: 11-22.
Wiesner, R. S., D. R. Hendrixson \& V. J. DiRita, (2003) Natural Transformation of Campylobacter jejuni Requires Components of a Type II Secretion System. J. Bacteriol. 185: 5408-5418.
Wosten, M. M. S. M., M. Boeve, M. G. A. Koot, A. C. van Nuenen \& B. A. M. van der Zeijst, (1998) Identification of Campylobacter jejuni Promoter Sequences. J. Bacteriol. 180: 594-599.
Yao, R., R. A. Alm, T. J. Trust \& P. Guerry, (1993) Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130: 127-130.
Yao, R., D. Burr, P. Doig, T. Trust, H. Niu \& P. Guerry, (1994) Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Molecular Microbiology 14: 883-893.
Yuki, N., T. Taki, F. Inagaki, T. Kasama, M. Takahashi, K. Saito, S. Handa \& T. Miyatake, (1993) A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J. Exp. Med. 178: 17711775.

Zheng, L., J. Yang, C. Landwehr, F. Fan \& Y. Ji, (2005) Identification of an essential glycoprotease in Staphylococcus aureus. FEMS Microbiology Letters 245: 279-285.
Zheng, L., C. Yu, K. Bayles, I. Lasa \& Y. Ji, (2007) Conditional Mutation of an Essential Putative Glycoprotease Eliminates Autolysis in Staphylococcus aureus. J. Bacteriol. 189: 2734-2742.
Zuther, E., H. Schubert \& M. Hagemann, (1998) Mutation of a Gene Encoding a Putative Glycoprotease Leads to Reduced Salt Tolerance, Altered Pigmentation, and Cyanophycin Accumulation in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Journal of Bacteriology 180: 1715-1722.

[^0]: Legend: Lane 1 - 1 Kb DNA ladder, Lane 2 - PCR product of $C j 1344 c$ at 1027 bp , Lane $\mathbf{3}$ - negative control

[^1]: Legend:
 C1-C8 - intranasal His-Cj1344c immunisation
 F1-F4 - intranasal PBS control immunisation
 G1-G4 - non-immunised controls

[^2]: 4951 GTTGGGAAGG GCGATCGGTG CGGGCCTCTT CGCTATTACG CCAGCTGGCG
 CAACCCTTCC CGCTAGCCAC GCCCGGAGAA GCGATAATGC GGTCGACCGC

 5001 AAAGGGGGAT GTGCTGCAAG GCGATTAAGT TGGGTAACGC CAGGGTTTTC TTTCCCCCTA CACGACGTTC CGCTAATTCA ACCCATTGCG GTCCCAAAAG

 5051 CCAGTCACGA CGTTGTAAAA CGACGGCCAG TGAATTGTAA TACGACTCAC GGTCAGTGCT GCAACATTTT GCTGCCGGTC ACTTAACATT ATGCTGAGTG

 5101 TATA
 ATAT

[^3]: 1 GGGCGAATTG GGCCCGACGT CGCATGCTCC CGGCCGCCAT GGCGGCCGCG CCCGCTTAAC CCGGGCTGCA GCGTACGAGG GCCGGCGGTA CCGCCGGCGC

 START Cj1344c
 51 GGAATTCGAT TCATATGAAA AATCTTATCC TAGCTATAGA AAGTTCTTGT CCTTAAGCTA AGTATACTTT TTAGAATAGG ATCGATATCT TTCAAGAACA

 101 GATGATAGTT CTATAGCTAT CATTGATAAA AACACCTTAG AATGTAAATT CTACTATCAA GATATCGATA GTAACTATTT TTGTGGAATC TTACATTTAA

 151 TCATAAAAAA ATTTCCCAAG AATTAGATCA TAGTATCTAT GGGGGAGTGG AGTATTTTTT TAAAGGGTTC TTAATCTAGT ATCATAGATA CCCCCTCACC

 201 TACCTGAACT TGCTGCAAGA CTTCATAGCG AGGCTTTACC AAAGATGCTT ATGGACTTGA ACGACGTTCT GAAGTATCGC TCCGAAATGG TTTCTACGAA $\begin{array}{lllllllllllllllll}\text { P } & \mathrm{E} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{R} & \mathrm{L} & \mathrm{H} & \mathrm{S} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{P} & \mathrm{K} & \mathrm{M} & \mathrm{L} & \mathrm{Cj} 1344 \mathrm{C}\end{array}$

 251 AAGCAATGCA AAGAGCATTT TAAAAATCTT TGTGCCATAG CTGTGACAAA TTCGTTACGT TTCTCGTAAA ATTTTTAGAA ACACGGTATC GACACTGTTT $\begin{array}{llllllllllllllllll}K & Q & C & K & E & H & F & K & \mathrm{~L} & \mathrm{~L} & \mathrm{C} & \mathrm{A} & \mathrm{I} & \mathrm{A} & \mathrm{V} & \mathrm{T} & \mathrm{N} & \mathrm{Cj} 1344 \mathrm{c}\end{array}$

 301 TGAACCTGGA CTTAGTGTTT CTTTGCTCAG TGGAATTTCT ATGGCAAAAA ACTTGGACCT GAATCACAAA GAAACGAGTC ACCTTAAAGA TACCGTTTTT

 351 CCTTAGCAAG TGCGCTAAAT TTACCCTTAA TCCCTATAAA TCATCTTAAA GGAATCGTTC ACGCGATTTA AATGGGAATT AGGGATATTT AGTAGAATTT

