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Abstract 

Death, injury, and disability resulting from road traffic crashes continue to be a major 

global public health problem. Recent data suggest that the number of fatalities from 

traffic crashes is in excess of 1.25 million people each year with non-fatal injuries 

affecting a further 20-50 million people. It is predicted that by 2030, road traffic 

accidents will have progressed to be the 5th leading cause of death and that the number 

of people who will die annually from traffic accidents will have doubled from current 

levels. Both developed and developing countries suffer from the consequences of the 

increase in human population, and consequently, vehicle numbers. Therefore, methods 

to reduce accident severity are of great interest to traffic agencies and the public at 

large. To analyze traffic accident factors effectively, a complete traffic accident 

historical database is needed.  Road accident fatality rates depend on many factors, so it 

is a very challenging task to investigate the dependencies between the attributes because 

of the many environmental and road accident factors. Missing data and noisy data in the 

database obscure the discovery of important factors and lead to invalid conclusions. In 

order to make the traffic accident datasets useful for analysis, they should be 

preprocessed efficiently. Data preprocessing is responsible for almost 80% of the total 

data mining effort. It is also known that good results can be achieved by using data 

mining algorithms only if there is a good quality dataset. This research is concerned 

with developing novel data preprocessing techniques for data quality enhancement, with 

application to traffic accident data. The research can be divided into two parts. The first 

part of this research concentrates on missing values imputation, and the second part 

concentrates on noisy values detection and correction in the traffic accident dataset. 

Missing values imputation and noisy values detection with correction are used to obtain 

a complete noise-free traffic accident dataset.  
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Chapter 1: Introduction 

At the current time, modern organizations collect a large amount of data due to the 

advances in information processing technology and storage capacity. To extract 

knowledge from the large volume of a dataset using data mining techniques, there is a 

strong need for data preprocessing algorithms to ensure the data is of good quality. It is 

well known that good results can only be achieved in data mining if the dataset is of 

good quality [1]. Real world data is highly susceptible to missing values, noisy values, 

and inconsistencies. Data preprocessing is a key step that processes the raw data into a 

form that facilitates subsequent analysis. This research presents two data preprocessing 

techniques to enhance the quality of data: (i) DSMI algorithm to impute the missing 

values and (ii) NoiseCleaner to remove the noisy values from the traffic accident 

datasets. 

This chapter is organized into several sections as follows. Section 1.1 presents an 

overview of the research. Section 1.2 describes the data preprocessing concept. Then, 

the research objectives and research questions are described in Section 1.3. Section 1.4 

presents the research contributions made in this thesis. Finally, the structure of this 

thesis is presented in Section 1.5. 

1.1 Overview 

An accident is an unplanned and unwanted event which disrupts the work process and 

causes injury to people. A traffic accident occurs when a vehicle collides with another 

vehicle, pedestrian, animal, road debris, or other stationary obstruction, such as a tree or 

utility pole. Death, major or minor types of injuries, vehicle, and property damage are 

the result of traffic collisions. 
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Accident investigations and analyses are performed to determine the causes of an 

accident. Accidents of particularly common types, such as automobile crashes are often 

investigated to identify how to avoid them in the future. The accident investigation is 

often performed by a range of experts, including forensic scientists, forensic engineers 

or health and safety advisors.  

The high growth of the number of vehicles has led to roads with higher traffic 

density. The immediate effect of this situation is the dramatic increase of traffic 

accidents on the road, which has become a serious problem in many countries. For 

example, 2478 people died on Spanish roads in 2010, which means one death for every 

18,551 inhabitants [2-4]. In the United States (according to the Department of 

Transportation, United Sates) in 2012, 33,561 people died in motor vehicle traffic 

crashes [5]. According to the Australian Bureau of Statistics, the majority of transport 

related deaths (72% in 2009) in Australia is associated with motor vehicles driven on 

public roads [6-8]. The global economic cost of road traffic accidents has been 

estimated at US$518b and has been calculated to account for 0.3% to 4% of the gross 

national product of many countries [9]. 

The issue of traffic safety has become one of the key challenges in the sustainable 

development of modern traffic and transportation. The burden of road accident 

causalities and damage is a major headache for both developed and developing 

countries. Motor vehicle collisions lead to loss of lives and permanent disabilities, and 

incur large financial costs to both the community and the individuals involved. There 

are many factors that contribute to the risk of collisions such as vehicle design, vehicle 

speed, road design, road environment, driver skill, and behaviour. Therefore, it is 

essential for traffic engineers to be able to extract useful knowledge from existing data 

to analyse the causes of traffic accidents and to determine the factors which affect the 

severity of injuries in road crashes. Such information enables traffic administrators to be 

more accurately informed such that better policies can be introduced to reduce the 

number of road traffic accidents. 

A large amount of traffic accident data is stored in various types of databases 

because of the advancement of data acquisition methods and storage technology. The 
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improvement in sensor technologies has also resulted in the growth of large amounts of 

traffic accident data [10]. We can extract traffic activities and factors which lead to 

traffic accidents from the traffic accident databases by using advanced data mining 

technology. Data mining is typically conceptualized as a three part process: 

preprocessing, learning and post-processing. This thesis focuses on the preprocessing 

stage, as this can take up to 80% of the total data mining effort [11].  

1.2 Data preprocessing 

Data preprocessing is a technique which involves transforming raw data into a format 

that is suitable for subsequent analysis. It is well known that good results can only be 

obtained from data mining algorithms if there is a good quality dataset [1]. Real world 

datasets often have missing values and noisy values due to various reasons, including 

equipment malfunction, human error, and faulty data transmission. If an organization 

does not take extreme care during data collection, then large amounts of missing and 

noisy data could be introduced into the datasets [12-16]. Data preprocessing tasks can 

include the imputation of missing values, smoothing of noisy data, identification of 

erroneous data, and correction of erroneous data.  

Missing value means the data value is missing for the variable in the dataset. Many 

applications in the real world suffer from a common problem that some values of the 

attributes are unobserved. Table 1.1 shows a toy dataset to explain missing values. In 

this dataset, ‘?’ stands for missing value. Missing values can be numerical or categorical 

in nature. Categorical (sometimes called nominal) variables have values that have no 

natural ordering (e.g., airbag conditions: ruptured, cut, torn); ordinal variables do have a 

natural ranking order (e.g., day of the week); and interval variables are created from 

intervals on a connecting scale (e.g., age set 13-19). 
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Table 1.1. Toy dataset to explain missing values 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R1 Drunk Good 3 Sanders Kill 

R2 Drunk Good 4 ? Kill 

R3 Drunk Good 2 Glendale No injury 

R4 Normal Fair 3 Glendale No injury 

R5 Normal Fair ? Glendale No injury 

R6 ? Good ? Glendale Kill 

 

Noisy data means corrupted or meaningless data. Noisy data badly affect the results 

of any type of data analysis. The presence of noisy values reduces the quality of the 

analysis models learned from the data and impairs their predictive or descriptive 

performance. Moreover, these models would become overly complex if the noise in the 

data were to be accommodated. 

Many approaches have been proposed to deal with missing values in a dataset. 

Some of the popular approaches are: 

• Discarding the record: this is generally used when the class label is lost. This 

technique performs well when the dataset has few records with missing 

attributes. However, discarding records throws valuable data away and can 

hamper efforts to extract knowledge from the data, especially when the 

dataset is small. It also introduces bias into the dataset when the proportion 

of missing values per attribute varies significantly in the dataset.  

• Replacing the missing value by a universal constant: this method replaces all 

missing attribute values by a constant, for example: “missed” or “?” or zero. 

The main problem is that when all missing values are replaced for example 

by “missed”, then the data mining algorithm mistakenly concludes that they 

form an interesting concept, since they all have a value in common, that of 
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“missed”. Therefore, although this method is simple, it is not recommended 

for data cleaning. 

• Impute the missing value by the mean attribute value: this introduces bias

into the dataset. Moreover, it is infeasible when imputing categorical missing

values.

1.3 Research objectives and research questions 

Two important data preprocessing tasks are missing value imputation and data 

cleansing. This research proposes effective algorithms to perform these tasks for traffic 

accident data. The objectives of this research are: 

I. To impute the missing values for the traffic accident datasets, where a large

number of attributes values are categorical in nature.

II. To clean noisy values in traffic accident datasets.

Although many algorithms have been proposed for missing value imputation, most 

of these algorithms are developed for missing numerical data. However, in many real 

world datasets, many attributes are categorical. In fact, most attributes in the traffic 

accident datasets are categorical in nature. Very little research has been undertaken to 

handle missing categorical attributes. The same is true for data cleansing, where most 

existing algorithms are for numerical datasets. The above objectives have therefore led 

to the following research questions: 

I. How can missing value imputation algorithms handle categorical attributes?

II. How can the correlation between categorical attributes be measured and

quantified?
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III.  How can we measure correlation between two records with categorical 

values?  

IV.  How can we take into account the uncertainty in attribute values seen in real 

data? 

V. What criteria can be used to detect noisy categorical data?  

1.4 Contributions  

The main research contributions made in this thesis are presented below: 

 

I. We proposed an effective missing values imputation algorithm called DSMI 

for traffic accident data, where a large number of attributes values are 

categorical. 

II.  DSMI algorithm is able to consider the inherent uncertainty seen in real 

data. 

III.  We proposed a novel noisy values identification and correction method, 

called NoiseCleaner, which can identify noisy categorical and numerical 

attributes values in the traffic accident datasets. 

IV.  We performed extensive experiments to evaluate the performance of the 

proposed algorithms and compare them with current state-of-the-art 

algorithms. 

1.5 Thesis structure  

This thesis is divided into four chapters. Chapter 1 presents the introduction for this 

research, data preprocessing concepts, motivation, research objectives, research 

questions, research contributions, and the thesis structure. Chapter 2 focuses on the first 

part of the research, i.e. missing value imputation. It reviews the literature relevant to 
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missing value imputation and then presents the proposed missing value imputation 

algorithm called DSMI. Experimental results and comparative studies with existing 

missing value imputation algorithms are also given in this chapter. Chapter 3 presents 

the second part of the research, i.e. data cleansing. It reviews the literature in this area 

and presents the proposed noisy values detection and correction algorithm called 

NoiseCleaner. Extensive experimental results and comparative studies on data cleansing 

are also reported. Finally, Chapter 4 provides the conclusions and recommendations for 

further study. The structure of the thesis is shown in Figure 1.1. 

Figure 1.1: Thesis structure 

Chapter 1: Introduction 

Chapter 2: Missing values Imputation 

Chapter 3: Noisy values detection and correction 

Chapter 4: Conclusions and Future Research 



Chapter 2 Missing values Imputation 

8 

Chapter 2: Missing values Imputation 

This chapter describes the first part of the research, which is on missing values 

imputation. An introduction about missing value imputation is given in Section 2.1. In 

Section 2.2, some existing missing values imputation approaches are reviewed and 

analysed. Section 2.3 presents the proposed missing value imputation algorithm called 

Decision tree and Sampling based Missing values Imputation (DSMI) in detail. Section 

2.4 addresses the performance of the DSMI algorithm. A summary is given at the end of 

this chapter. The content of this chapter has largely been published in [17]. 

2.1 Introduction 

Huge quantities of data are collected every day from sources such as surveys, 

interviews, Facebook, Twitter, LinkedIn, and sensors [18]. For example, the habits and 

profiles of people are collected from Facebook and Twitter, professional data are 

collected from LinkedIn, and weather data in an environment monitoring system are 

often acquired through different sensors. Data can be missing or noisy due to numerous 

causes such as equipment malfunctioning and errors incurred during data alteration and 

transmission. In an environment monitoring system, data can be missing due to limited 

bandwidth in a wireless network, inadequate battery power of the sensing devices, other 

hardware, and software problems in the sensors. 

To extract useful information from traffic accident datasets, we need a complete 

dataset. Missing data are a common occurrence in real world data collection and have a 

significant impact on the conclusions that can be drawn from the data. The main 

problem of missing values is that the analysis is impossible or distorted because of the 

missing values. To overcome this problem, researchers design appropriate protocols to 

minimize the occurrence of missing values and develop effective imputation algorithms 
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to impute the missing values. The imputation of missing values as accurately as possible 

is an important data preprocessing task. 

In this chapter, a novel method called Decision tree and Sampling based Missing 

values Imputation algorithm DSMI [17] is presented and compared with other 

imputation algorithms. 

2.2 Literature review 

Imputation of missing values is an important data preprocessing task for improving the 

quality of the data. Many missing value imputation algorithms have been proposed for 

various applications [19-54]. Some of these methods are: Expectation Maximization 

Imputation (EMI) [33], Decision tree based Missing value Imputation (DMI) [31], 

combined instance selection with K-Nearest Neighbour Imputation [34], Similarity 

based Missing value Imputation (SiMI) [31], k-Decision tree based Missing value 

Imputation (kDMI) [30], k-Nearest Neighbour based Imputation (kNNI) [20], Local 

Weighted Linear Approximation imputation (LWLA) [27], Framework for Imputing 

Missing values Using co-appearance, correlation and Similarity analysis (FIMUS) [29], 

and Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing value 

Imputation (FEMI) [32]. 

To impute numerical missing values, the EMI algorithm [33] relies on estimating 

the mean and covariance matrix of the dataset. The EMI algorithm begins with an initial 

estimate of the mean and the covariance matrix, and iterates until the imputed values 

and the estimates of the mean and covariance matrix stop changing appreciably from the 

current to the next iteration [33, 55]. The EMI algorithm is only applicable to datasets in 

which the missing values are missing at random. The main drawback of this method is 

that for imputing the missing value, the EMI algorithm uses information from the whole 

dataset and therefore is suitable only for datasets that exhibit strong correlations 

between attributes. A Fuzzy c-Means (FCM) algorithm is proposed to impute the 

numerical missing data in [90]. 
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Instead of using information from the whole dataset, the kNNI method [20] imputes 

missing values using k number of similar records. This method first finds user-defined k 

number of records from the total dataset by using the Euclidean distance measure. To 

impute a numerical missing value, the method utilizes the mean value of the specific 

attribute within the k most similar records of the entire dataset. If the missing attribute is 

categorical, then the method utilizes the most frequent value of the attribute within the k 

most similar records. The simple kNNI method performs well on a dataset that has 

strong local correlation structure. However, the method can be expensive for large 

dataset since for each record with missing value(s), it finds k number of similar records 

by searching the whole dataset. This is the main drawback of this method, especially for 

large datasets. 

Rahman et al. proposed the DMI [31] technique which uses the decision tree and 

the EMI algorithm for missing value imputation. They argued that the correlations 

among attributes within a horizontal partition of a dataset can be higher than the 

correlations over the whole dataset. This technique works as follows: it first divides the 

full dataset (DFull) into two sub-datasets, one having records with missing values (DMiss), 

and the other having records without missing values (DComplete). Then, it builds decision 

trees on DComplete considering the attributes having missing values in DMiss as class 

attributes. After that, it assigns each record with missing value(s) in DMiss to the leaf 

where it falls in for the tree, which considers the attribute that has a missing value for 

the record as the class attribute. Finally, it imputes numerical missing values using the 

EMI algorithm and categorical missing values using majority class values within the 

leaves. The authors showed that DMI performed well compared with other existing 

imputation methods. However, for imputing categorical values, simple voting is used. 

Another more serious problem is that the authors do not define how the imputation is 

done if the missing values record falls in more than one leaf; a situation that could occur 

if there is more than one missing value in a record.  

SiMI [31] is an extension of DMI. It uses the decision forest algorithm to identify 

horizontal segments of a dataset where the records belonging to a segment have higher 

similarity and attribute correlations. It also divides the whole dataset (DFull) into 
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DComplete and DMiss. Then, it builds a decision forest using DComplete. The decision forest 

builds a number of trees with leaves and assigns each record of DMiss to the most 

suitable leaf. After that, SiMI finds the intersections of the records belonging to the 

leaves of the forest. Then, it imputes numerical missing values using the EMI algorithm 

and categorical missing values using the most frequent values. 

The kDMI [30] algorithm imputes missing values using two levels of partitioning. 

Like DMI, the kDMI algorithm also employs horizontal partitioning based on a decision 

tree in the first level partitioning. For the second level partitioning, the authors use a 

BestKNN approach to first find the best value of k by searching all the records of a leaf 

and calculating the root mean square error (RMSE) of the non-missing attribute values. 

Then, the EMI algorithm is used for imputing numerical data, and the frequent value of 

BestKNN is used for imputing categorical data. However, what is not clear is that if all 

the attributes of a record are categorical, then there is difficulty in knowing how the 

RMSE can be calculated using BestKNN. It is also not clear how the imputation would 

be done if the missing values record falls in more than one leaf. 

The FIMUS technique [29] takes the imputation decision based on the co-

appearances of the values, the correlations between attributes, and similarity of values 

belonging to an attribute. In this method, the authors show that it is possible to achieve a 

better imputation result by considering available attributes values and their similar 

values. Here, similarity (1st level and 2nd level similarities) is calculated using the co-

occurring of attribute values between the records of a dataset [56]. The 1st level 

similarity is calculated using the co-occurrence of attribute values of the records, and 

the 2nd level uses the “neighbours of neighbours are the direct neighbours” method. 

This algorithm uses similarity and co-appearance at the same time. The main problem of 

this algorithm is its computational complexity. If the number of records in the dataset is 

increased, then it needs massive computation for similarity graphs. Another problem is 

that to impute values, similarity values depend on the co-appearance values (in FIMUS, 

similarity value is multiplied by the co-appearance value). If there is no co-appearance 

value, then the associated similarity value has no impact to impute missing values. They 

validate the imputation accuracy using the RMSE and Index of agreement. However, it 
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is not known how validation can be done for categorical attributes values using these 

evaluation criteria. 

The Genetic Algorithm (GA) is also used to impute missing values. The Fuzzy C-

means (FCM) algorithm exploits GA to estimate the set of parameters [19]. This 

technique imputes the missing values two times. During the first time, the missing value 

is imputed using support vector regression and during the second time using FCM with 

a set of user-defined parameters. Then, these two sets of imputed values are compared 

to test their mutual agreement. If they are similar, then the missing value imputation is 

stopped otherwise the GA algorithm is applied to re-estimate the parameters, and this 

process is continued until these two parameters are not similar. 

Gautam et al. proposed two imputation methods: the CounterPropagation Auto-

Associative Neural Network (CPAANN) based imputation method and a hybrid of 

CPAANN along with Grey System Theory (GST) i.e. Grey + CPAANN imputation 

method [24]. There are three layers in the CPAANN: the input layers, the hidden layers, 

and the output layers. The input nodes are fully connected to the hidden nodes and the 

hidden nodes, in turn, are fully connected to the output nodes. Additionally, all the 

hidden nodes are connected to one another. In the CPAANN model, the given dataset is 

divided into two parts: the complete dataset and the incomplete dataset. This model is 

trained using the complete dataset. After that, it makes the mean imputation on the 

incomplete dataset and sends it to the trained CPAANN for performing the test using 

these mean imputed incomplete records. The Grey + CPAANN model is almost the 

same as the CPAANN model. The given dataset is divided into complete and 

incomplete datasets. After that, it trains the CPAANN model using the complete dataset. 

The difference between Grey + CPAANN and CPAANN is that instead of mean 

imputation, the Grey + CPAANN method makes the distance based nearest neighbour 

imputation [57].  Then, testing is performed as per the CPAANN model. 

In many real world datasets, all data are not equally informative and some data 

points can be considered as noisy points. Instance selection means some data points are 

removed, but the integrity of the original dataset can still be maintained. Tsai et al. [34] 

proposed a missing value imputation algorithm combined instance selection with k-
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Nearest Neighbour imputation (kNNI). The authors present four approaches by 

combining instance selection and imputation. In the first combination process, 

imputation is performed first and then instance selection is used to reduce the dataset. In 

this approach, the training dataset (D) is divided into two parts: the complete dataset 

(D_complete) and the incomplete dataset (D_incomplete). Then, using the kNNI, the 

imputation is done into D_incomplete and produces a new complete training dataset D'. 

Next, the instance selection algorithm is executed to remove the unusual instances from 

D' and makes a new reduced dataset called D1. Finally, a classifier is trained by D1 and 

tested by a given testing dataset to examine the classifier performance. In the second 

combination, instance selection is performed first and missing value imputation is done 

next. Instance selection is performed over D_complete to make a new complete reduced 

dataset D_complete'. After that, the imputation is performed over D_incomplete and 

subsequently, a new complete dataset D2 is produced. Finally, a classifier is trained by 

D2 and tested by a given testing dataset to examine its classifier performance. The third 

and fourth combination processes are based on a two-stage instance selection process. 

In the third combination, instance selection is performed again over D1 and a new 

reduced training dataset D3 is obtained. In the fourth combination, instance selection is 

performed again over D2 and a new reduced training dataset D4 is obtained. The 

authors determine the missing value imputation accuracy by the classification accuracy 

of the K-NN and the linear SVM classifiers. The Drop3 algorithm [58] is used to 

perform the instance selection. 

A Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing value 

Imputation (FEMI) algorithm is proposed by Rahman et al. [32] to impute the numerical 

and categorical attributes values. This algorithm works as follows: at first, all numerical 

attributes of the dataset are normalized to be within a range between 0 and 1. Then, the 

dataset is divided into two parts: DC (having no missing values) and DI (having missing 

values). In the next step, it finds the membership degrees of all records of DC and DI 

with all clusters using the General Fuzzy C-Means (GFCM) algorithm [29]. To impute 

the numerical missing values the authors proposed a Fuzzy Expectation Maximization 

(FuzzyEM) algorithm. This FuzzyEM algorithm is a modification of an existing EM 
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algorithm [33]. The idea of this algorithm is that the missing values are imputed using 

the mean of the membership degrees of all clusters. To impute the categorical missing 

values of the cluster, a vote is taken for all domain values of this cluster and the value 

having the maximum vote is considered to the imputed value. The vote is calculated for 

a value by multiplying its confidence degree in terms of its cluster and the membership 

degree. The confidence degree of an attribute value in a cluster is the sum of the 

membership degrees for the records, having this attribute value. The authors determine 

the missing value imputation accuracy by using two evaluation criteria: RMSE and 

Mean Absolute Error (MAE). However, it is not known how validation can be done for 

categorical attribute values using these two evaluation criteria. 

An automated data imputation model based on a three layered artificial neural 

network is used for missing value imputation [58]. Here, the numbers of neurons in both 

the input and output layers are equal to the number of attributes of the full dataset. By 

taking some available values as missing values, the neural network is trained. This 

automated data imputation model finally imputes the missing values using the trained 

network. 

2.3 Proposed DSMI algorithm 

The proposed DSMI algorithm [17] is based on decision trees. In DSMI algorithm, 

similar to other decision tree-based imputation algorithms, two datasets are created from 

the original dataset. The first dataset, denoted as the complete dataset, contains records 

with no missing values. The second dataset, denoted as incomplete dataset, contains 

records with one or more attributes values missing, i.e. we called them missing records. 

Then, for each missing attribute, a decision tree that uses the missing attribute as class 

attribute is constructed from the complete dataset.  Each missing record is then assigned 

to the corresponding tree’s leaf. Once a missing record is assigned to a leaf node, the 

missing values in the missing record are imputed using records that are found in the leaf 

node.  
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The algorithm is illustrated here with a toy example (? stands for missing value). 

Table 2.1 shows a full dataset DFull. The full dataset (DFull) is first divided into two sub-

datasets. One subset contains records with missing values (DMiss) and the other without 

missing values (DComplete). If the value of an attribute is numerical, we quantize it by the 

square root of its domain size. Tables 2.2-2.3 show the resulting DComplete and DMiss 

respectively. Next, a set of decision trees with class attributes given by the attributes 

having missing values in DMiss are built using C4.5 [60, 61] algorithm using records 

from DComplete. For example, three attributes in DMiss, i.e. Driver status, Passenger 

number, and Accident address, have missing values, and three decision trees are created 

based on these class attributes, as shown in Figures 2.1-2.3. 

 

 

Table 2.1. Full dataset DFull 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R1 Drunk Good 3 Sanders Kill 

R2 Drunk Good 4 ? Kill 

R3 Drunk Good 2 Glendale No injury 

R4 Normal Fair 3 Glendale No injury 

R5 Normal Fair ? Glendale No injury 

R6 ? Good ? Glendale Kill 

 
 
 

Table 2.2.  Complete dataset DComplete with quantized passenger number 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R1 Drunk Good 3-4 Sanders Kill 

R3 Drunk Good 1-2 Glendale No injury 

R4 Normal Fair 3-4 Glendale No injury 
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Table 2.3.  Missing value Dataset DMiss with quantized passenger number 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R2 Drunk Good 3-4 ? Kill 

R5 Normal Fair ? Glendale No injury 

R6 ? Good ? Glendale Kill 

Figure 2.1. Tree for ‘Accident address’ class 
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Figure 2.2. Tree for ‘Passenger number’ class 

Figure 2.3. Tree for ‘Driver status’ class 
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In Figure 2.1, ‘Leaf 1 Sanders: (1) R1’ denotes one record R1 falls in Leaf 1 which 

is associated with the attribute value ‘Sanders’. After the tree construction step, we 

assign each record in DMiss to the leaf of the tree with the same class attribute as the 

missing attribute. For example, R2 record has ‘Accident address’ attribute value missing 

so we assign it to the ‘Accident address’ tree. Therefore, R2 and R5 records are assigned 

to Leaf 1 and Leaf 6, respectively. Records with more than one missing values would 

fall into multiple leaves. As R6 record has two missing values, it is assigned to three 

leaves 4, 6, and 8. Once all records in DMiss are assigned to the appropriate leaves, each 

leaf will consists of records from DComplete and DMiss that are correlated. Tables 2.4-2.7 

show the sets of records in leaves with missing records. If a record falls into multiple 

leaves, the records from all these leaves are grouped into one collection. Therefore, the 

set of records associated with R6 are given by Table 2.8. 

 

 

Table 2.4.  Records in leaf 1 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R1 Drunk Good 3 Sanders Kill 

R2 Drunk Good 4 ? Kill 

 

Table 2.5.  Records in leaf 4 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R1 Drunk Good 3 Sanders Kill 

R6 ? Good ? Glendale Kill 
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Table 2.6.  Records in leaf 6 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R4 Normal Fair 3 Glendale No injury 

R5 Normal Fair ? Glendale No injury 

R6 ? Good ? Glendale Kill 

Table 2.7.  Records in leaf 8 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R3 Drunk Good 2 Glendale No injury 

R6 ? Good ? Glendale Kill 

Table 2.8.  Aggregated table for record 6 with multiple missing values 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R1 Drunk Good 3 Sanders Kill 

R4 Normal Fair 3 Glendale No injury 

R3 Drunk Good 2 Glendale No injury 

R5 Normal Fair ? Glendale No injury 

R6 ? Good ? Glendale Kill 

To impute the missing values in the missing record, we search for records in the 

table which have the maximum number of non-missing attributes in common to the 

missing record. Then, the attribute values in these records corresponding to the missing 
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attributes in the missing record are taken to be the possible imputed values. For 

example, in Table 2.8, R6 record has three non-missing values but we do not get any 

record matching with these three non-missing values. So, we search instead for two 

matching non-missing values and get two records with two matching attributes values: 

R1(Good, Kill) and R3(Good, Glendale). For the two missing attributes (Driver status, 

Passenger number), the possible imputed values from R1 and R3 records are (Drunk, 3), 

and (Drunk, 2), respectively. To decide which possible imputed values are more likely 

for the missing record, we need a measure of the affinity of possible imputed values to 

the missing record. Let ϑ denote the affinity degree of the possible imputed values for 

the missing record. The next step is to evaluate the affinity degree ϑ  for each of the two 

possible imputed values (Drunk, 3), and (Drunk, 2).  

In our approach, we use two measures to exploit the correlations between records 

and between attributes values within a record to impute the missing values. The first 

measure, called IS measure, computes the correlations between attribute values of 

different attributes in a record. The second measure, called weighted similarity measure 

(���), computes the similarity between two values of an attribute in two different records. 

These measures are computed as follows. 

2.3.1 IS measure 

We measure the correlation between set of attributes with non-missing values, �, and 

set of attributes with missing values, �, within a record using IS measure. The IS 

measure measures the degree of associations between two sets of attributes values [62, 

63]. 	
�, � = 	 ���, ��, … , ���, and � =	 ���, ��, … ���, 	where ��, ��, … ��	 are the attributes 

with non-missing values and �� , ��, …�� are the attributes with missing values, then 

 

����,�) = 	 ���������,�)
����������) × ���������)																																										�1) 
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where  ��������,�) = 	 |�,�| "⁄ , and|�,�| denotes the number of records that 

contain both � and �, and " refers to the size of the dataset. 

IS measure has several desirable properties [62, 64]. It is the product of two 

important quantities: interest factor and support count. Interest factor I is a popular 

measure for association like patterns [45, 46] and is defined to be the ratio between the 

joint probability of two variables $ and % with respect to their expected probabilities 

under the independence assumption. Let $ and % denote a pair of binary variables, then I 

is defined by 

 

��$, %) = 	 &�$, %)&�$)	&�%)																																																				�2) 
 

The dataset that contains these variables can be summarized into a 2	 × 2 

contingency table as shown in Table 2.9. Each cell represents the four possible 

combinations of $ and % values. (�� corresponds to the support count for each cell; while 

(�) and ()� are the marginal sums of row i and column j (for example,		(�) = (�� +	(�+	). 
Then, it can be shown that 

 

�	�$, %) = 	 (��"(�)()� 																																																									�3) 
 
 
 

Table 2.9.  2	 × 2 contingency table for binary variables 

 % %-  

$ (�� (�+ (�) 

$̅ (+� (++ (+) 

 ()� ()+ " 
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However, I in itself could lead to association rule that is counter-intuitive due to not 

considering the support of the association, as pointed out in [11, 52]. Instead, the IS 

measure IS(x, y) takes into account Support (x, y) = f11/Q: 

 

��	�$, %) = 	/��$, %) × (��" 																																									�4) 

 

In addition, IS measure is equivalent to the geometric mean of confidence of rules 

that can be generated from the item-pair i.e. 

��	�$, %) = �1�2(34
21
�$	, %) × 1�2(34
21
�%	, $) and this measure does not 

depend on data size. Here,1�2(34
21
	�$, %) = &	�$	, %) &	�$)⁄ , with &	�$) = 	 |$| 2⁄  

and |$| is the number of transactions that contain $ and 2 is the total number of 

transactions. 

2.3.2 Weighted similarity measure 

To evaluate how similar two records in the dataset are, we use the weighted similarity 

measure, ���. This weighted similarity measure considers both the direct relationship 

(called 1st level similarity) and transitive relationship (called 2nd level similarity) 

between two attribute values of an attribute. The first step in calculating ��� between 

two attribute values of an attribute is to create a graph. Let G = (V, E) be a graph created 

from the dataset of related records found in the leaf of a tree, i.e. the set of records in a 

table, where the set of vertices V are given by the set of attribute values in the dataset 

and an edge e ∈ E is drawn between two vertices when both attribute values appear in a 

record. Then, ��� is the weighted sum of the ���5  (1st level similarity) and ���55 (2nd level 

similarity) between two attribute values of an attribute 

 

��� =	�� × ���5 	+ 	�� × ���55																																									�5) 
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where ��	and �� are weights with �� + �� = 1.  

The 1st level similarity, ���5  is given by 

 

���5 = ∑ �8�9 ×	89��9:��4�3) 	× 4�;) 																																																�6) 
 

where 8�9 =l if l edges occur between vertices i and k, and zero otherwise, n is the 

number of vertices in the graph and 4�3) is the degree of vertex 3. Note that ���5  

effectively measures the proportion of common neighbours of vertices =� and =� against 

all direct neighbours of the two vertices. If the two vertices have all their neighbours in 

common, then ���5  has a maximum value of 1. If the two vertices do not share any 

common neighbours, then ���5  is zero.  

On the other hand, the 2nd level similarity,  ���55 measures the transitive relationship 

for two attribute values of an attribute that are not directly connected to common 

neighbours but are connected to pair of attribute values => and =?	who have 1st level 

similarity �>?5  greater than a user defined threshold  @. The 2nd level similarity  ���55 is 

equal to the 1st level similarity between =� and =� 	computed from the merged graph 

where => and =?	 are merged into a common vertex.  

Finally, the weighted similarity measure S(A9, AB) between two records Rk and Rl is 

given by averaging the weighted similarity measure ��� of each attribute of the two 

records [17, 36]. 

        To illustrate how IS and ��� are computed, we will use the records in Table 2.8 

(presented in Table 2.10 with vertex nodes labelled from 1 to 10) as an example. Recall 

that for the two missing attributes (Driver status, Passenger number) in R6, the possible 

imputed values from R1 and R3 records are (Drunk, 3), and (Drunk, 2), respectively. The 

IS measure for the two records are 
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��CD��E��4, F3GG), �H��2F, 3)� =  �������E��4, F3GG, H��2F, 3)� �������E��4, F3GG) ×  �������H��2F, 3) = 1 

 
and  ��CI��E��4, EG
248G
), �H��2F, 2)� = 1. 

 

 

Table 2.10.  Aggregated table for record 6 with vertex node number assigned 

Record Driver status Weather 
condition 

Passenger 
number 

Accident 
address 

Injury severity 

R1 Drunk (1) Good (3) 3 (5) Sanders (7) Kill (9) 

R4 Normal (2) Fair (4) 3 (5) Glendale (8) No injury (10) 

R3 Drunk (1) Good (3) 2 (6) Glendale (8) No injury (10) 

R5 Normal (2) Fair (4) ? Glendale (8) No injury (10) 

R6 ? Good (3) ? Glendale (8) Kill (9) 
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Figure 2.4: Graph constructed from Table 2.10 

Next, to compute the weighted similarity measure between two records, we need to 

first calculate	��� for R6 from Table 2.10 and the corresponding graph in Figure 2.4. 

From the graph in Figure 2.4, we can see that nodes 7 and 8 have nodes 1, 5, 9, 3 as 

common neighbours, hence the 1st level similarity between nodes 7 and 8 is 	�J,K5 		


������)������)������)������

√M��N

 0.613. Similarly, we can calculate the 1st level 

similarities for all node pairs within the graph as: 	��,�5 
 0.512(neighbour nodes 5, 8, 

10), 	�N,M5 
 0.528	(neighbour nodes 5, 8, 10), 	�R,S5 
 0.707	(neighbour nodes 1, 3, 8, 

10), and 	�U,�+5 
 0.633 (neighbours nodes 1, 3, 5, 8). Let  T=0.50, ��=0.6, ��=0.4. In

Figure 2.4, we connect nodes having 1st level similarities greater than the threshold T by 

dotted lines. For easier visualization of the vertices within the same record and their 

associated edges, different colours are used. 
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To calculate the 2nd level similarity ���55 between nodes i and j, we find all pairs of

nodes (k,l) common to nodes i and j and with �9B5  > T.  For nodes 7 and 8, we have the

following neighbour pairs (1,2), (3,4), (5,6), (9,10), and we have 

�J,K55 	= 	���×N))���×M))���×�))���×M)√R� = 0.9909. Similarly, for nodes 9 and 10, the 

neighbour pairs are (1,2), (3,4), (5,6), (7,8), and �U,�+55 = 0.9902. The overall 

similarities, S between all attribute values of (R1, R6) and (R3, R6) are now given by 

��A�, AS) = 	 ��3 − 3� +	�7 − 8� +	�9 − 9�)2�XY
�	�(	8���3Y��
 
= 	 �1 +	 �	�� ∗ 0.613	 +	�� ∗ 0.9909� + 	1)3 	= 	0.9214	 	�7) 

��AN, AS) 	= 	0.9253	 	�8)

The affinity degree for the possible imputed values is given by the average of the IS 

and ��� measures computed for each possible imputed values. For (Drunk, 3) from R1, 

the affinity degree is given by ϑ(Drunk, 3) = (0.9214+1)/2 = 0.9607. For (Drunk, 2) 

from R6, ϑ(Drunk, 2) = (0.9253+1)/2 = 0.9626. Finally, the actual imputed value is 

obtained by random sampling from the list of possible imputed values based on their 

affinity degrees. For example, since (Drunk, 3) and (Drunk, 2) have affinity degrees of 

0.9607 and 0.9626, respectively, their sampling probabilities are 0.4995 and 0.5005, 

respectively, and both have these probabilities of been chosen as the actual imputed 

values for the missing values in R6. Random sampling according to affinity degree 

ensures that uncertainty and randomness in attribute values are accounted for and helps 

to reduce systematic bias in the imputed dataset.  
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2.3.3 DSMI algorithm 

The DSMI algorithm is presented below. 

DSMI Algorithm: 

Step I: Decompose full dataset into complete and missing values sub-datasets: DFull = 

DComplete + DMiss

Step II: Generate a set of decision trees using C4.5 from DComplete where each missing 

attribute in DMiss produces a tree 

Step III: Assign the records in DMiss into leaves of the decision trees and create tables 

of related records 

Step IV: Impute missing values

FOR each table T DO 

FOR each missing record R in T DO 

Find records in T that match with the maximum number of non-missing 

attribute(s) in the missing record R, and let N be the number of such records 

FOR k = 1 to N determine 

Ok = possible imputed value(s) from the k-th matched record 

ISk = IS measure computed for Ok  

Sk = weighted similarity measure between the k-th matched record and 

missing record R 

ϑk = affinity degree for Ok 

END FOR 

Imputed value(s) is obtained by random sampling from the set of possible 

imputed values {O1…ON} based on the sampling probabilities specified by 

the set of affinity degrees {ϑ1 …ϑN } 

END FOR 

END FOR 
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2.4 Experimental results 

2.4.1 Datasets 

We do experiment on 43 text files data (Large Truck Crash Causation Study File 1 and 

2), two datasets on New York’s open data portal (“Motor Vehicle Crash-case 

information: 2011” and “Motor Vehicle Crash- individual information: 2011”), and a 

dataset of Denver County. The Denver County’s dataset includes accidents in the City 

and County of Denver for the previous five calendar years plus the current year to date 

(30 June 2014) and has 89194 traffic accident records, in which 1902 records contain 

missing values. The Large Truck Crash Causation Study Files have different number of 

attributes and 92871 records, in which 3192 records contain missing values. We 

removed records having missing values from the datasets so that the datasets only 

contain complete records. The four datasets are listed in Table 2.11. As can be seen, 

these datasets contain mostly categorical attributes. 

Table 2.11.  Datasets details 

Dataset Number 
of 

complete 
records 

Categorical 
attributes 

Numerical 
attributes 

As on date 

Large Truck Crash Causation Study 
Files (File 1 and 2) dataset (Truck) 
[78] 

89679 

A total of 43 text 
files with different 
number of 
attributes in each 
file, most of the 
attributes (90%) are 
categorical 

12 February, 2014 

Denver County dataset (Denver) [79] 87292 13 4 30 June, 2014 



Chapter 2 Missing values Imputation 

29 

Motor vehicle crash- Case 
information: 2011 dataset (Case) 
[76] 

13889 17 1 24 September, 2014 

Motor vehicle crash- Individual 
information: 2011 dataset 
(Individual) [76] 

17858 11 3 24 September, 2014 

2.4.2 Evaluation criteria 

Our proposed imputation accuracy is evaluated using imputation accuracy � and root 

mean square error (RMSE) [67]. The RMSE is a frequently used measure of the 

difference between values predicted by a model and the values actually observed. 

However, RMSE is not appropriate for categorical data as arbitrary value can be 

assigned to correct/incorrect imputation. As most of the attributes in our traffic accident 

datasets are categorical, we use �  to evaluate categorical imputation accuracy, and only 

use RMSE for the numerical attributes (if any). 

Let 2 be the total number of missing values and 1 be the total number of correctly 

imputed missing value. The accuracy is given by  

� = [�  (9) 

The � ranges from 0 to 1, where 1 indicates perfect imputation. 

Let �� be the true value for the 3-th missing value, &� be the imputed value for the 3-
th missing value, and 
� = �&�−��). The RMSE is given by

A��\ = ]��∑ 
����:�  (10) 

The lower the RMSE value, the better the imputation. 
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2.4.3 Parameter selection 

Our proposed algorithm has three parameters that need to be set. These parameters are: 

similarity threshold T, 1st level similarity weight ��, and 2nd level similarity weight ��. 

Using imputation accuracy �, we analyse the four datasets to select the best threshold 

parameter T. The results are shown in Figure 2.5. Likewise, we analyse the different 

values of ��, �� on the four datasets to determine their optimum value. In Table 2.12, 

we show the effects of the two parameter values on different datasets. Based on this 

result, we use �� = 0.60  and �� = 0.40. Note that these results (Figure 2.5 and Table 

2.12) are generated on the four datasets where numerical attributes are excluded. 

 

 

Table 2.12.  Similarity measure parameters selection using �  

Parameters   Datasets 

C1 C2   Case   Individual   Truck   Denver 

1.00 0.00 0.6233 0.5906 0.6845 0.4925 

0.95 0.05 0.6240 0.5904 0.6825 0.5221 

0.90 0.10 0.7550 0.6864 0.6912 0.5889 

0.85 0.15 0.7560 0.6794 0.7180 0.6851 

0.80 0.20 0.7665 0.7776 0.7762 0.6834 

0.75 0.25 0.8275 0.7855 0.7941 0.7814 

0.70 0.30 0.8899 0.8514 0.8701 0.8210 

0.65 0.35 0.9612 0.9599 0.9541 0.9598 

0.60 0.40 0.9782 0.9644 0.9810 0.9566 

0.55 0.45 0.9538 0.9644 0.9564 0.9245 

0.50 0.50 0.8657 0.9648 0.8678 0.8698 

0.45 0.55 0.8688 0.9104 0.8698 0.7714 

0.40 0.60 0.8004 0.9024 0.8010 0.7802 

0.35 0.65 0.7915 0.8846 0.8120 0.6203 
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0.30 0.70 0.7819 0.8556 0.7922 0.5892 

0.25 0.75 0.6910 0.7344 0.7100 0.5099 

0.20 0.80 0.6926 0.7332 0.7200 0.4345 

0.15 0.85 0.6010 0.7113 0.7010 0.4135 

0.10 0.90 0.6199 0.7209 0.6100 0.4214 

0.05 0.95 0.6146 0.6324 0.6204 0.4365 

0.00 1.00 0.6098 0.6216 0.6202 0.4404 
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Figure 2.5: Threshold parameter @ on four datasets 

 

2.4.4 Missing value simulation 

We use four types of missing patterns: simple, medium, complex, and blended [3, 17]. 

In simple pattern, a record can have at most one missing value. In medium pattern, a 

record can have missing values for up to 50 % of the total number of attributes. In a 

complex pattern, a record can have missing values for up to 80 % of the total number of 

attributes. A blended pattern contains 25% records having missing values with simple 

pattern, 50% with medium pattern and 25% with complex pattern. For each missing 

pattern, we use four missing ratios: 2%, 4%, 8% and 10%. We use two types of missing 

models, namely overall and uniformly distributed (UD). In the UD missing model, each 

attribute has equal number of missing values. However, in the overall model, missing 

values are not equally distributed among the attributes and in the worst case all missing 

values can belong to a single attribute [3, 83]. 
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In our experiments, we artificially create missing values in the dataset by using 4 

missing patterns, namely simple, medium, complex and blended, 4 missing ratios i.e. 

2%, 4%, 8% and 10%,  and 2 missing models, namely overall and uniformly distributed 

(UD).  We have altogether 32 missing combinations (4 missing ratios × 4 missing 

patterns × 2 missing models). For each combination, we generate 20 datasets i.e. in total 

we create 640 datasets (32 combinations × 20 datasets per combination) with missing 

values for each real dataset, as shown in Table 2.13. 

 

Table 2.13.  Missing value simulation 

Missing 
patterns 

Number of attributes having missing 
values 

Missing 
ratios 

Missing 
model 

Number of 
datasets  
for each 
pattern 

Simple 1   
2%, 4%, 
8% and 

10% 
 

Overall and 
Uniformly 
distributed 

 
20 Medium Up to 50%  

Complex Up to 80%  
Blended Simple-25%, Medium-50% and 

Complex-25% 

2.4.5 Results of categorical missing values imputation 

For categorical missing value imputation, we compare our proposed algorithm DSMI 

with five imputation methods FEMI [32], FIMUS [29], (Grey + CPAANN) [24], DMI 

[31], and KNNI [20]. We present the imputation accuracy of DSMI, FEMI, (Grey + 

CPAANN), FIMUS, DMI, and KNNI on the “Motor vehicle crash case information: 

2011 dataset”, “Truck crash causation dataset”, “Denver County dataset”, and “Motor 

vehicle crash individual information: 2011 dataset” in Table 2.14, Table 2.15, Table 

2.16, and Table 2.17 respectively. Only categorical attributes are considered here. From 

each dataset, we generate 32 combinations of four missing ratios, two missing models, 

and four missing patterns. Each value in these tables is the average of 20 imputation 

runs carried out on 20 datasets. In these two tables, bold values mark the best 

imputation result compare with other imputation methods. From these tables, it can be 
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seen that our DSMI imputation method performs significantly better than FEMI, 

FIMUS, Grey + CPAANN, DMI and KNNI methods. 

Table 2.14.  Performance on Motor Vehicle Crash case information: 2011 dataset 

 Accuracy (�) 

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI 

2% Overall Simple 0.9782 0.8301 0.8130 0.8090 0.7110 0.6310 

Medium 0.9671 0.8300 0.8160 0.8088 0.7110 0.6210 

Complex 0.9634 0.8267 0.8020 0.8082 0.7190 0.6270 

Blended 0.9626 0.8260 0.8020 0.8032 0.7190 0.6260 

UD Simple 0.9682 0.8300 0.8220 0.8031 0.7110 0.6390 

Medium 0.9662 0.8289 0.8030 0.8011 0.7090 0.6280 

Complex 0.9622 0.8245 0.8010 0.8001 0.7070 0.6220 

Blended 0.9632 0.8240 0.8010 0.8000 0.7060 0.6220 

4% Overall Simple 0.9582 0.8262 0.8100 0.8008 0.7095 0.6290 

Medium 0.9580 0.8261 0.8160 0.8002 0.7085 0.6270 

Complex 0.9530 0.8134 0.8060 0.8001 0.7090 0.6010 

Blended 0.9520 0.8104 0.8250 0.8000 0.7070 0.6220 

UD Simple 0.9566 0.8200 0.8040 0.7909 0.7010 0.6290 

Medium 0.9560 0.8165 0.8080 0.7908 0.7030 0.6260 

Complex 0.9540 0.8123 0.8090 0.7902 0.7080 0.6020 

Blended 0.9540 0.8103 0.8070 0.7901 0.7060 0.6210 

8% Overall Simple 0.9562 0.8101 0.8080 0.7903 0.6980 0.6140 

Medium 0.9560 0.8100 0.8080 0.7902 0.6960 0.6150 

Complex 0.9480 0.8023 0.8040 0.7900 0.6930 0.6144 

Blended 0.9500 0.7989 0.8020 0.7825 0.6910 0.6160 
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UD Simple 0.9542 0.8078 0.8060 0.7820 0.6902 0.6140 

Medium 0.9510 0.8070 0.8070 0.7808 0.6900 0.6040 

Complex 0.9470 0.8060 0.8040 0.7730 0.6823 0.6050 

Blended 0.9480 0.8045 0.7920 0.7705 0.6820 0.6140 

10% Overall Simple 0.9500 0.7967 0.7810 0.7800 0.6805 0.6003 

Medium 0.9480 0.7960 0.7910 0.7701 0.6801 0.6000 

Complex 0.9450 0.7923 0.7840 0.7645 0.6789 0.5956 

Blended 0.9470 0.7840 0.7835 0.7640 0.6723 0.5923 

UD Simple 0.9510 0.7831 0.7810 0.7605 0.6720 0.5980 

Medium 0.9460 0.7810 0.7800 0.7600 0.6703 0.5960 

Complex 0.9490 0.7800 0.7840 0.7565 0.6612 0.5879 

Blended 0.9470 0.7800 0.7845 0.7510 0.6610 0.5870 

Table 2.15.  Performance on Large Truck Crash Causation dataset 

 Accuracy (�) 
Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI 

2% Overall Simple 0.9810 0.9233 0.9100 0.9089 0.7980 0.7190 

Medium 0.9792 0.9230 0.9110 0.9088 0.7860 0.7100 

Complex 0.9762 0.9210 0.9150 0.9070 0.7950 0.7070 

Blended 0.9742 0.9201 0.9160 0.9050 0.7940 0.7050 

UD Simple 0.9778 0.9189 0.9090 0.9007 0.7970 0.7010 

Medium 0.9748 0.9180 0.9080 0.9001 0.7980 0.7000 

Complex 0.9726 0.9067 0.8960 0.8823 0.7900 0.6987 

Blended 0.9720 0.9023 0.8960 0.8803 0.7890 0.6980 
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4% Overall Simple 0.9752 0.9001 0.8860 0.8780 0.7920 0.6930 

  Medium 0.9736 0.8980 0.8860 0.8778 0.7730 0.6910 

  Complex 0.9714 0.8930 0.8110 0.8770 0.7630 0.6815 

  Blended 0.9726 0.8904 0.8190 0.8777 0.7620 0.6844 

  UD Simple 0.9730 0.8803 0.8130 0.8585 0.7530 0.6830 

  Medium 0.9730 0.8745 0.8140 0.8580 0.7510 0.6770 

  Complex 0.9702 0.8503 0.7690 0.85005 0.7490 0.6730 

  Blended 0.9704 0.8500 0.7680 0.8401 0.7480 0.6720 

        

8% Overall Simple 0.9670 0.8456 0.8140 0.8301 0.7490 0.6710 

  Medium 0.9660 0.8405 0.8160 0.8300 0.7460 0.6760 

  Complex 0.9640 0.8400 0.8080 0.8204 0.7330 0.6610 

  Blended 0.9610 0.8378 0.8150 0.8190 0.7320 0.6690 

  UD Simple 0.9620 0.8320 0.8020 0.8109 0.7280 0.6600 

  Medium 0.9620 0.8301 0.8140 0.8100 0.7250 0.6580 

  Complex 0.9568 0.8300 0.8030 0.8056 0.7210 0.6510 

  Blended 0.9584 0.8209 0.8040 0.8050 0.7200 0.6420 

        

10% Overall Simple 0.9554 0.7989 0.8040 0.8006 0.7140 0.6370 

  Medium 0.9524 0.7980 0.8030 0.8001 0.7130 0.6360 

  Complex 0.9510 0.7823 0.7900 0.7978 0.7100 0.6300 

  Blended 0.9522 0.7820 0.7960 0.8000 0.7100 0.6280 

  UD Simple 0.9532 0.7800 0.7910 0.7989 0.7020 0.6270 

  Medium 0.9514 0.7749 0.7800 0.7856 0.7010 0.6150 

  Complex 0.9496 0.7740 0.7940 0.7700 0.6980 0.6140 

    Blended     0.9460 0.7706 0.7820 0.7673 0.6940 0.6010 
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Table 2.16.  Performance on Denver County dataset 

 Accuracy (�) 

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI 

2% Overall Simple 0.9671 0.8267 0.8009 0.8045 0.7145 0.7267 

Medium 0.9649 0.8261 0.8004 0.8041 0.7135 0.7261 

Complex 0.9625 0.8250 0.8001 0.8038 0.7130 0.7260 

Blended 0.9617 0.8187 0.8000 0.8031 0.7009 0.7255 

UD Simple 0.9621 0.8170 0.7923 0.8003 0.7007 0.7251 

Medium 0.9620 0.8104 0.7920 0.8002 0.7003 0.7250 

Complex 0.9519 0.8101 0.7919 0.7980 0.7002 0.7105 

Blended 0.9511 0.8100 0.7910 0.7935 0.7000 0.7100 

4% Overall Simple 0.9598 0.8262 0.8104 0.8008 0.6104 0.7114 

Medium 0.9580 0.8261 0.7934 0.8002 0.6104 0.7114 

Complex 0.9575 0.8134 0.7932 0.8001 0.6004 0.6124 

Blended 0.9570 0.8104 0.7904 0.8000 0.6005 0.6114 

UD Simple 0.9562 0.8200 0.7804 0.7909 0.6105 0.6324 

Medium 0.9550 0.8165 0.7703 0.7908 0.6405 0.6225 

Complex 0.9548 0.8123 0.7604 0.7902 0.6105 0.6125 

Blended 0.9545 0.8103 0.7103 0.7901 0.6105 0.5126 

8% Overall Simple 0.9531 0.8009 0.7831 0.7819 0.6987 0.6645 

Medium 0.9522 0.8011 0.7820 0.7816 0.6976 0.6621 

Complex 0.9519 0.8002 0.7810 0.7811 0.6902 0.6610 

Blended 0.9447 0.8000 0.7801 0.7810 0.6900 0.6645 

UD Simple 0.9511 0.7989 0.7800 0.7801 0.6873 0.6531 

Medium 0.9501 0.7981 0.7767 0.7800 0.6833 0.6511 

Complex 0.9424 0.7979 0.7734 0.7787 0.6821 0.6501 

Blended 0.9420 0.7971 0.7732 0.7776 0.6819 0.6500 
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10% Overall Simple 0.9494 0.7838 0.7809 0.7754 0.6845 0.6332 

  Medium 0.9465 0.7831 0.7802 0.7743 0.6765 0.6311 

  Complex 0.9461 0.7830 0.7667 0.7523 0.6671 0.6307 

  Blended 0.9454 0.7823 0.7613 0.7521 0.6617 0.6302 

  UD Simple 0.9405 0.7821 0.7606 0.7465 0.6610 0.6300 

  Medium 0.9403 0.7811 0.7604 0.7609 0.6607 0.6209 

  Complex 0.9401 0.7808 0.7601 0.7402 0.6603 0.6205 

    Blended     0.9400 0.7765 0.7600 0.7389 0.6601 0.6200 

 

 

 

 

Table 2.17.  Performance on Motor Vehicle Crash- individual information: 2011 dataset 

                                  Accuracy (�) 
Missing combination     DSMI FEMI FIMUS Grey+CPAANN DMI KNNI 

2% Overall Simple 0.9720 0.8610 0.8435 0.8417 0.7609 0.7308 

  Medium 0.9710 0.8603 0.8430 0.8410 0.7600 0.7301 

  Complex 0.9654 0.8545 0.8403 0.8405 0.7521 0.7274 

  Blended 0.9650 0.8522 0.8400 0.8501 0.7511 0.7217 

  UD Simple 0.9701 0.8511 0.8387 0.8433 0.7506 0.7301 

  Medium 0.9680 0.8510 0.8376 0.8423 0.7502 0.7234 

  Complex 0.9665 0.8504 0.8325 0.8413 0.7456 0.7205 

  Blended 0.9650 0.8503 0.8321 0.8410 0.7450 0.7201 

        

4% Overall Simple 0.9651 0.8500 0.8302 0.8405 0.7522 0.7054 

  Medium 0.9612 0.8467 0.8301 0.8403 0.7510 0.7034 

  Complex 0.9605 0.8432 0.8300 0.8400 0.7423 0.7004 

  Blended 0.9601 0.8413 0.8300 0.8398 0.7410 0.7001 

  UD Simple 0.9603 0.8410 0.8298 0.8378 0.7445 0.6704 

  Medium 0.9600 0.8407 0.8290 0.8370 0.7424 0.6700 
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  Complex 0.9587 0.8403 0.8265 0.8319 0.7414 0.6623 

  Blended 0.9672 0.8402 0.8245 0.8310 0.7410 0.6603 

        

8% Overall Simple 0.9634 0.8380 0.8226 0.8311 0.7401 0.6601 

  Medium 0.9632 0.8365 0.8217 0.8310 0.7400 0.6600 

  Complex 0.9622 0.8356 0.8206 0.8307 0.7372 0.6453 

  Blended 0.9611 0.8316 0.8202 0.8274 0.7327 0.6413 

  UD Simple 0.9605 0.8311 0.8201 0.8223 0.7317 0.6512 

  Medium 0.9604 0.8310 0.8201 0.8221 0.7302 0.6500 

  Complex 0.9602 0.8304 0.8167 0.8204 0.7256 0.6434 

  Blended 0.9601 0.8302 0.8157 0.8201 0.7203 0.6423 

        

10% Overall Simple 0.9548 0.8156 0.8108 0.8176 0.7204 0.6406 

  Medium 0.9540 0.8154 0.8106 0.8174 0.7203 0.6402 

  Complex 0.9535 0.8107 0.8101 0.8056 0.7187 0.6345 

  Blended 0.9505 0.8100 0.8073 0.8055 0.7145 0.6314 

  UD Simple 0.9502 0.8098 0.8009 0.8001 0.7200 0.6321 

  Medium 0.9501 0.8030 0.8010 0.7987 0.7134 0.6309 

  Complex 0.9445 0.8000 0.7945 0.7927 0.7032 0.6230 

    Blended     0.9441 0.7976 0.7910 0.7821 0.7003 0.6210 

 

 

We present the result for the four traffic accident datasets on all 8 combinations of 

missing ratios and missing models with the simple missing pattern in Figure 2.6 and 

medium missing pattern in Figure 2.7. Here, performance is evaluated with 95% 

confidence levels. Figure 2.8 presents the result for the four traffic accident datasets on 

4% missing ratio and 8 missing combinations of missing patterns and missing models 

with 95% confidence levels. 
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(c) Denver County dataset 

 

(d) Individual dataset 

 

Figure 2.6. Aggregated Performance (�) on four datasets in terms of “simple” missing pattern with 
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confidence level 95 percent 

 

Figure 2.7 shows the result for the four traffic accident datasets on all 8 

combinations of missing ratios and missing models with the medium missing pattern. 

Here, performance is evaluated with 95% confidence levels. 

Figure 2.8 presents the result for the four traffic accident datasets on 4% missing 

ratio and 8 missing combinations of missing patterns and missing models with 95% 

confidence levels. 
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(b) Truck dataset 

 

(c) Denver County dataset 
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(d) Individual dataset 

Figure 2.7. Aggregated Performance (�) on four datasets in terms of “medium” missing pattern with 

confidence level 95 percent 
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(b) Truck dataset 
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(d) Individual dataset

Figure 2.8. Aggregated Performance (�) on four datasets in terms of “4%” missing ratio with 

confidence level 95 percent 

Figure 2.9 presents the average performance indicators (for 32 missing combinations) 

for each dataset. It is clearly shown that DSMI performs better than the five existing 

algorithms. From this graph, it can be seen that our DSMI imputation method performs 

significantly better than FEMI, FIMUS, Grey + CPAANN, DMI and KNNI methods. 
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Figure 2.9. Performance (�) comparison on four datasets 

 

2.4.6 Results of numerical missing values imputation 

For numerical missing value imputation, we present the RMSE value of DSMI, FEMI 

[32], FIMUS [29], (Grey + CPAANN) [24], DMI [31], EMI [33] and KNNI [20] on the 

dataset of “Motor vehicle crash individual information: 2011” in Table 2.18, 

considering the imputation accuracy for the three numerical attributes of this dataset. 

We aggregate the results based on four missing ratios, two missing models, and four 

missing patterns. In the table, bold values mark the best imputation result compare with 

other imputation methods. From the table, it can be seen that our DSMI imputation 

method performs significantly better than FEMI, FIMUS, (Grey + CPAANN), DMI, 

EMI and KNNI methods. 

 

0.200

0.400

0.600

0.800

1.000

Case Individual Truck Denver

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

P
e

rf
o

rm
a

n
ce

 (
p

) 



Chapter 2 Missing values Imputation 

49 

Table 2.18.  Performance (RMSE) on Motor Vehicle Crash individual information 
dataset 

 RMSE 

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI EMI KNNI 

2% Overall Simple 0.0930 0.1090 0.1120 0.1102 0.1190 0.1580 0.1320 

Medium 0.0930 0.1091 0.1130 0.1102 0.1200 0.1590 0.1340 

Complex 0.0970 0.1095 0.1135 0.1105 0.1210 0.1600 0.1390 

Blended 0.0960 0.1099 0.1140 0.1109 0.1220 0.1610 0.1380 

UD Simple 0.1041 0.1105 0.1120 0.1110 0.1220 0.1590 0.1360 

Medium 0.1042 0.1106 0.1140 0.1121 0.1230 0.1600 0.1340 

Complex 0.1060 0.1110 0.1150 0.1126 0.1230 0.1610 0.1390 

Blended 0.1050 0.1112 0.1150 0.1128 0.1240 0.1610 0.1400 

4% Overall Simple 0.0938 0.1140 0.1130 0.1131 0.1210 0.1640 0.1380 

Medium 0.0940 0.1142 0.1130 0.1132 0.1240 0.1660 0.1400 

Complex 0.1050 0.1144 0.1145 0.1141 0.1260 0.1670 0.1460 

Blended 0.1054 0.1148 0.1150 0.1151 0.1280 0.1660 0.1480 

UD Simple 0.1040 0.1150 0.1140 0.1161 0.1230 0.1680 0.1400 

Medium 0.1041 0.1152 0.1160 0.1165 0.1230 0.1680 0.1410 

Complex 0.1051 0.1180 0.1170 0.1171 0.1290 0.1710 0.1450 

Blended 0.1051 0.1182 0.1175 0.1175 0.1280 0.1720 0.1490 

8% Overall Simple 0.1041 0.1201 0.1145 0.1181 0.1310 0.1730 0.1390 

Medium 0.1042 0.1202 0.1160 0.1186 0.1310 0.1740 0.1420 

Complex 0.1058 0.1210 0.1190 0.1185 0.1330 0.1810 0.1490 

Blended 0.1059 0.1212 0.1198 0.1196 0.1350 0.1820 0.1500 

UD Simple 0.1041 0.1230 0.1185 0.1201 0.1330 0.1800 0.1400 

Medium 0.1043 0.1235 0.1195 0.1205 0.1320 0.1840 0.1440 

Complex 0.1060 0.1241 0.1200 0.1210 0.1380 0.1860 0.1520 
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Blended 0.1061 0.1255 0.1210 0.1246 0.1360 0.1880 0.1560 

10% Overall Simple 0.1043 0.1261 0.1170 0.1243 0.1330 0.1870 0.1470 

Medium 0.1042 0.1265 0.1180 0.1265 0.1360 0.1880 0.1480 

Complex 0.1059 0.1251 0.1230 0.1266 0.1400 0.1910 0.1610 

Blended 0.1060 0.1271 0.1240 0.1271 0.1410 0.1900 0.1640 

UD Simple 0.1045 0.1280 0.1190 0.1281 0.1390 0.1890 0.1490 

Medium 0.1047 0.1286 0.1200 0.1286 0.1400 0.1900 0.1520 

Complex 0.1062 0.1288 0.1250 0.1288 0.1470 0.1930 0.1690 

Blended 0.1064 0.1290 0.1260 0.1291 0.1480 0.1960 0.1720 

We compare the RMSE value for the numerical missing values in Figure 2.10. We 

present the overall average (for 32 missing combinations) of RMSE for DSMI, FEMI, 

(Grey + CPAANN), FIMUS, DMI, KNNI and EMI on all four datasets. This result is 

generated on four datasets where categorical attributes are excluded. 
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Figure 2.10. Performance comparison for numerical imputation on four datasets using 

RMSE 

2.4.7 Execution time comparison 

In Table 2.19, we present the average computation time in seconds for 640 datasets (32 

combinations × 20 datasets per combination) for each natural dataset described in Table 

2.11. The configuration of our machine is Intel® Core™ i5-3340M CPU @ 2.70GHz, 

with 8GB RAM. Of the seven algorithms, DSMI, FIMUS, FEMI, (Grey + CPAANN), 

and DMI are comparable in computation time, although DSMI takes slightly less time 

than FIMUS, FEMI, (Grey + CPAANN) but more time than DMI. On the other hand, 

EMI and KNNI are significantly faster, especially for the big datasets. Although our 

algorithm needs higher computation time compared to EMI and KNNI, better 

imputation accuracy generally has a higher priority in missing value imputation [20]. 

We now analyse complexity for DSMI algorithm. We consider that there are m 
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attributes with missing values over the whole data set with n records, ni records with 

one or more missing values, and nc records (nc = n - ni) with no missing values. DSMI 

uses the C4.5 algorithm to build decision trees in the complete records nc. The C4.5 

algorithm has a complexity of O(ncm
2). Let, L is the maximum number of records in a 

leaf. The weighted similarity measure calculates in each leaf and the complexity is 

O(nc/L). Therefore, the overall complexity is O(nc/L(ncm
2)). 

Table 2.19.  Average execution time of different techniques (in seconds) 

Dataset DSMI FIMUS DMI EMI KNNI FIMUS FEMI Grey+ 

CPAANN 

Truck 1162.232 1181.41 1000.01 90.189 92.193 1181.41 1191.10 1378.61 

Denver County 1001.301 1113.230 901.240 88.182 89.456 1113.230 1003.13 1110.10 

Case  10.294 14.403 8.023 5.878 5.001 14.403 18.5 16.10 

Individual  10.900 15.001 8,001 5.671 4.908 15.001 11.02 13.01 

2.5 Conclusion 

In this chapter, a brief overview of existing algorithms proposed by researchers for 

missing values imputation is presented. The literature review reveals that most research 

in this area is targeted at missing value imputation of numerical data and there is still a 

lack of research being done for missing values imputation of categorical data. We 

describe several recent missing value imputation algorithms that could handle 

categorical data and pointed out their deficiencies before introducing our proposed 

missing imputation method, called DSMI, to handle categorical missing values in traffic 

accident data.  There are four stages in the DSMI algorithm. The algorithm first utilizes 

decision trees to find the set of correlated records. The missing values are then imputed 

from these records by exploiting the correlation between missing and non-missing 
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attributes within a record using the IS measure, as well as the direct and transitive 

correlations of attribute values across two records using a weighted similarity measure. 

Moreover, to handle the inherent uncertainty seen in real data, our algorithm imputes 

the missing values based on sampling from a list of potential imputed values based on 

their degree of affinity.  

We presented extensive experimental results on four large publicly available 

traffic accident datasets, in which a large number of attributes are categorical. 

Comparisons with a number of state-of-the-art missing value imputation algorithms 

performed and our experiments indicated that the proposed algorithm significantly 

outperformed all existing algorithms.  
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Chapter 3: Noisy values Detection and Correction 

This chapter describes the second part of the research, which is on noisy values 

detection and correction. The introduction about noisy values is discussed in Section 

3.1. In Section 3.2, the existing well-known noisy values detection and correction 

algorithms are reviewed and analysed. Section 3.3 presents the proposed noisy values 

detection and correction algorithm NoiseCleaner in detail. Section 3.4 addresses the 

performances of NoiseCleaner and Section 3.5 draws the conclusions. The content of 

this chapter has largely been submitted for publication1. 

3.1  Introduction 

Real world data are often corrupted by noise and are generally noisy and inconsistent 

[48]. This noise occurs due to errors in data collection, storage, and processing. If an 

organization does not take extreme care during data collection, then approximately 5% 

or more noisy data could be introduced to a dataset [69]. The detection and correction of 

noisy values are especially important in view of today’s massive datasets, where the 

emphasis is often placed on the volume rather than the quality of the data. Noisy data 

badly affect the results of any data analysis. The presence of noisy values reduces the 

quality of the analysis models learned from the data and weakens their predictive or 

descriptive performance. Moreover, these analysis models would become overly 

complex in order to accommodate such noise. 

1 Rupam Deb, Alan Wee-Chung Liew, “Noisy Values Detection and Correction of Traffic 
Accident Data”, submitted to Information Sciences. 
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In order to improve the quality of the traffic accident data, raw data is often 

preprocessed and cleansed before being analysed. Identifying and correcting noisy 

values is an important goal of data cleansing and preprocessing.  

In this chapter, we proposed a novel data cleansing method called NoiseCleaner for 

detecting noisy attributes values and predicting their correct values on traffic accident 

datasets.  

3.2 Literature review 

Identification of noisy data is an important data preprocessing task for improving data 

quality. Many noise detection algorithms have been proposed for various applications 

[3, 16, 58, 70-74, 86-89]. Among them, HCleaner [74], NOISERANK [72], Polishing 

method [73] and Error Detection and Impact-sensitive instance Ranking (EDIR) [16] 

are some well-known noisy value detection algorithms.  

In HCleaner [74], data objects that are irrelevant or only weakly relevant are 

considered as noise. HCleaner is based on the concept of hyperclique patterns which 

consist of objects that are strongly similar to each other. In HCleaner, every pair of 

objects within a hyperclique pattern is guaranteed to have a cosine similarity above a 

certain threshold. The key idea behind this method is the use of hyperclique patterns as 

a filter to eliminate data objects that are not tightly connected to other data objects in the 

dataset. 

The polishing method [73] is tolerant of some amount of noise in the data. Whereas 

filtering eliminates the noisy elements from the input, polishing corrects the noisy 

elements rather than removing them. This method assumes that there is some pattern of 

relationship among the different components of a dataset. Therefore, except for totally 

irrelevant attributes, each attribute would at least be related to some extent to the target 

class. This method takes advantage of the interdependency between the components of a 

dataset to identify the noisy elements and suggest appropriate replacements. There are 

two stages in the polishing method: the prediction stage and the adjustment stage. In the 

prediction stage, elements in the data that are suspected of being noisy are identified 
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together with their nominated replacement values. In the adjustment stage, this method 

selectively incorporates the nominated changes into the dataset. 

Sluban et al. [72] proposed an ensemble-based class noise detection method, 

NOISERANK, and a method for visual performance evaluation of class noise detection 

algorithms in the precision-recall space, named VIPER. NOISERANK is an expert-

guided noise detection method. The user inspects the detected noisy instances and 

decides whether they are interesting outliers which could lead to new insights in domain 

understanding, erroneous instances which should be removed, or instances with minor 

corrected errors to be reintroduced into the dataset. Four different classification filters 

are used in this method for detecting noisy instances in data. The classifiers are Naïve 

Bayes; Random Forest with 500 decision trees (RF500); Support Vector Machine; and 

Neural Network. For the Random Forest classifier, two variants of the High Agreement 

Random Forest noise detection algorithm (HARF-70 and HARF-80) perform the best. 

The classification filter is performed in a cross-validation manner, i.e. using repeatedly 

nine folds for the training of a classifier and one complementary fold for class 

prediction where the incorrectly classified instances are considered to be noisy. 

NOISERANK also uses a saturation-based approach for noise filtering, called the 

saturation filter to determine the noisy instances. A saturation filter is constructed into 

two stages. The first stage is the saturation test. It first computes the complexity of the 

classification model for the given training set, and then it iteratively excludes one 

training example and computes the complexity of a classification model induced from 

the rest of the training examples. The examples which have the greatest effect on 

reducing the complexity of the classification model by their exclusions are labelled as 

the noisiest and are passed on to the second stage. The second stage, the noise filter, 

randomly chooses one from the noisiest examples and excludes it from the training set, 

while the other examples are returned to the example set. This is repeated as long as the 

saturation test finds noisy examples, meaning that a saturated subset has not yet been 

obtained. VIPER addresses the noise detection performance directly by measuring the 

precision, recall and the F-measure of different noise detection algorithms on the data 
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with known or injected noisy instances. It presents the visual performance evaluation in 

the precision-recall space.  

Error Detection and Impact-sensitive instance Ranking (EDIR) [16] locates 

erroneous instances and attributes and ranks suspicious instances based on their impact 

on system performance. At first, EDIR trains a benchmark classifier T from the noisy 

dataset D. The instances that cannot be classified by T are treated as suspicious and 

forwarded to a subset S. Each instance contains n attributes A1, A2, …, An and each 

attribute Ai has Vi possible values.  To rank instances in S, EDIR uses an impact 

measure based on the information-gain ratio. Like the polishing method, EDIR also 

changes the attribute value to correctly classify the record. However, EDIR differs from 

the polishing method in several aspects. Unlike the polishing method, EDIR can change 

two or three attributes values at a time if a suspicious record remains misclassified. The 

record is stored separately if it remains suspicious, even after changing all combinations 

of the two or three values. 

The co-appearance based Analysis for Incorrect Records and Attribute-values 

Detection (CAIRAD) [71] algorithm exploits the co-appearance between attributes 

values to detect noisy values of a dataset. To detect noisy values, the method generates a 

co-appearance matrix from the dataset and computes an expected co-appearance value 

for an attribute value. If the value from the co-appearance matrix and the expected co-

appearance value are the same for an attribute value then this value is declared as a 

clean value; otherwise it is flagged as noisy.  

The RDCL method [70] uses the kNN technique to classify a record. At first, the 

dataset is divided into training and testing datasets. After that, RDCL classifies the 

record in the testing dataset by using the majority class of its kNN records in the 

training dataset. RDCL identifies suspicious records, whereas the polishing technique 

and EDIR detect both noisy attributes values and records. 

In many practical scenarios, it is assumed that most of the attributes of a dataset are 

clean and the volume of noise is low. Another observation is that noisy values have a 

random and independent nature and are not correlated to the occurrence of any other 
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values of a dataset. It is also very rare that a noisy value will appear repeatedly as a 

result of the introduction of random noise. 

3.3 Proposed NoiseCleaner algorithm 

We proposed a data cleansing algorithm called NoiseCleaner for the traffic accident 

data. In this approach, at first attribute values with occurrence frequency of 1 or 2 are 

flagged as potentially suspicious (It is very uncommon that typographical errors 

repeated more than 2 times for a value and that’s why value’s frequency less than 3 is 

flagged as suspicious.). We then correct for simple typographical errors that occur in the 

flagged values using Levenshtein distance [48]. Specifically, if a flagged attribute value 

has a Levenshtein distance of 3 or less with a clean value (i.e. a flagged value) and it 

does not have the same Levenshtein distance with more than one clean value, then its 

value is changed to that of the clean value. The remaining flagged values are then 

considered as suspicious noisy values and are processed as follows. 

Let the record having the suspicious noisy attribute value $ for the attribute X be 

denoted by r. Depend on the suspicious noisy attribute value $, two subsets of records 

are created from the original dataset D. The first subset, denoted as �^, contains a set of 

records from D where all attributes values are the same as record r except for the 

suspicious noisy attribute value $. The second subset, denoted as �_, contains a set of 

records from the remaining records in D where a varying number of attributes values are 

the same as record �. The noisiness of $ is determined using records that are found in 

these two subsets. 

To illustrate NoiseCleaner, Table 3.1 shows a sample traffic accident dataset (bold 

text values of Table 3.1 are marked as suspicious noisy values). Subsets are built based 

on the suspicious noisy values (‘Active’ and ‘Fog’). These subsets are shown in Tables 

3.2-3.5. 
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Table 3.1.  Sample traffic accident dataset 

Record Driver status Weather condition Accident address 

R1 Normal Bad Sanders 

R2 Active Bad Glendale 

R3 Normal Stormy Glendale 

R4 Abnormal Stormy Sanders 

R5 Drunk Bad Glendale 

R6 Normal Fog Sanders 

R7 Drunk Bad Glendale 

R8 Drunk Bad Glendale 

R9 Abnormal Stormy Sanders 

R10 Drunk Bad Glendale 

R11 Drunk Bad Glendale 

R12 Drunk Bad Glendale 

R13 Abnormal Stormy Sanders 

R14 Abnormal Rainy Sanders 

R15 Abnormal Rainy Sanders 

R16 Abnormal Rainy Sanders 

 

Table 3.2. Subset	�^ for attribute value ‘Active’ in ‘Driver status’ 

Record Driver status Weather condition Accident address 

R2 Active Bad Glendale 

R5 Drunk Bad Glendale 

R7 Drunk Bad Glendale 

R8 Drunk Bad Glendale 
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R10 Drunk Bad Glendale 

R11 Drunk Bad Glendale 

R12 Drunk Bad Glendale 

 

 

 

Table 3.3. Subset �_ 	for attribute value ‘Active’ in ‘Driver status’ 

Record Driver status Weather condition Accident address 

R1 Normal Bad Sanders 

R3 Normal Stormy Glendale 

 

 

Table 3.4. Subset �^ for attribute value ‘Fog’ in ‘Weather Condition’ 

Record Driver status Weather condition Accident address 

R6 Normal Fog Sanders 

R1 Normal Bad Sanders 

 

 

Table 3.5. Subset �_ for attribute value ‘Fog’ in ‘Weather Condition’ 

Record Driver status Weather condition Accident address 

R3 Normal Stormy Glendale 

R4 Abnormal Stormy Sanders 

R9 Abnormal Stormy Sanders 

R13 Abnormal Stormy Sanders 

R14 Abnormal Rainy Sanders 

R15 Abnormal Rainy Sanders 

R16 Abnormal Rainy Sanders 
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The noisiness of ‘Active’ value is determined using P-measure and weighted 

similarity measure computed from its �^ and �_. In our approach, the P-measure 

computes the probability of the suspicious noisy value being actually correct, and the 

weighted similarity measure computes the similarity between two values of an attribute. 

In the above example, if ‘Active’ in record R2 is found to be noisy, the correct value is 

either ‘Drunk’ or ‘Normal’. Similarly, for the noisy ‘Fog’ value, its correct value is 

either ‘Bad’, ‘Stormy’ or ‘Rainy’. 

3.3.1 P-measure 

To calculate the P-measure, the two subsets �^ and �_ are created based on the 

suspicious noisy attribute value $ of record r is considered. Let &̂  be the probability that 

an attribute value x remaining unchanged. Let &̂ > be the probability that an attribute 

value x is changed into a different attribute value from the subsets �^. Let &_> be the 

probability that an attribute value x is changed into a different attribute value from the 

subsets �_. Any attribute value $  obviously satisfies the following relationship 

 

&̂ + 	 &̂ > +	&_> = 1     (11) 

 

Next, we introduce two variables F� and F� for the noisy values. The variable F� 

specifies how many times an attribute value $ is more likely to stay the same than to 

change to another value in �^. The other parameter F� specifies how many times more 

likely $ is to change to a value in �^	than the one in �_. The two variables are defined as 

 

F� =	 `a`bcd	`a  , with	efc > 1 

 

F� =	 h`bcd`ai�jd�)
∑ klmbnloD

 , with efc > 1	and	efn > 0 
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where es is the frequency of attribute value x for the attribute X in �^, efc is the number 

of records in �^, efn is the number of records in �_, K is the number of attributes in a 

record,  and t� is the number of attributes values that are similar between record r and 

the i th record of �_. Hence, we can define the probabilities &̂ , &̂ >, &_> using F� and F� 

as 

 

&̂ = 	 F� ×	&̂ > =	F� × F� ×	&_>  (12) 

 

From the above, the probabilities of &̂ , &̂ >, and &_> become 

 

&̂ = 	 9D×9u9D×9u	)	9u)�    (13) 

 

&̂ > =	 9u9D×9u	)	9u)�    (14) 

 

&_> =	 �9D×9u	)	9u)�    (15) 

 

 

Substituting F� and F� in equations (14) and (15) we get, 

  

&̂ > =	 h`bcd`ai�jd�)
`bc�jd�))	∑ klmbnloD

    (16) 

 

&_> =	 ∑ klmbnloD
`bc�jd�))	∑ klmbnloD

    (17) 

 

Next, we calculate the probability of an attribute value $ changing to a value %9	in 

�^	or to a value v9	in �_, where %9 are distinct value of attribute X except x in �^ and v9 

are distinct value of attribute X in �_.  Let &̂ >�%9) denotes the probability that an 
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attribute value x is changed into %9, then ∑ &̂ >�%9)	wx =	 &̂ >. Since efc − es =
∑ ewx ,wx  where ewx is the frequency of attribute value %9 for the attribute X in �^, we 

have 

 

&̂ >�%9) 	= 	 `yx�jd�)
`bc�jd�))	∑ klmbnloD

   (18) 

 

Similarly, let &_>�v9) denotes the probability that an attribute value x is changed into 

v9. We have ∑ &_>�v9)zx =	&_>. Let �zx 	denotes the subset of records containing value 

v9of X in �_, and ezx denotes the number of records in	�zx. Let {� denotes the number 

of attributes values that are similar between record r and the j th record of �zx. Then 

&_>�v9) is given by  

 

&_>�v9) = 	 ∑ |}m~x}oD
`bc�jd�))	∑ klmbnloD

   (19) 

 

When the unchanged probability &̂ �$)  of a suspicious attribute value $ is higher 

than all of �^ attribute values probabilities (&̂ >�%9)	, ……… ) and all of the �_ attribute 

values probabilities (&_>�v9),……… ), we declare this suspicious value $ as a correct 

value. 

To illustrate how the P-measure is computed, we compute the various probabilities 

for the suspicious noisy attribute value ‘Fog’ of record R6 using Equations (12), (18), 

and (19), based on Tables 3.4 and 3.5. We have &̂ ����) = 0.182, &̂ >��84) =
0.182, &_>�����X%) = 	0.364, 	&_>�A832%) = 0.273. As &̂ ����) is not higher than all 

the other probabilities, we cannot declare ‘Fog’ as a correct value for this record. 

Likewise, we cannot declare ‘Active’ in record R2 as the correct value 

since&̂ ��1�3=
) = 0.125,&̂ >�H��2F) = 0.750, &_>�e��X8G) = 0.125 from Tables 

3.2 and 3.3. 
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Once P-measure is computed and the suspicious noisy attribute value cannot be 

declared as correct, the weighted similarity measure of the suspicious noisy attribute 

value with the other possible values of the attribute in both �^ and �_ are computed. The 

weighted similarity measure evaluates the similarity between two values of an attribute 

by taking into account their direct and transitive relationships. For example, we would 

compute the weighted similarity measure between ‘Fog’ and ‘Bad’, ‘Fog’ and ‘Stormy’, 

‘Fog’ and ‘Rainy’. The next section explains how the weighted similarity measure 

between two attribute values is computed.  

 

3.3.2 Weighted similarity measure 

Weighted similarity measure, ��� (this measure is described in details at Section 2.3.2) 

calculates the similarity between two attribute values of an attribute by looking at 

common neighbours (direct relationship, called 1st level similarity) of the two values 

and common neighbours of their neighbours (transitive relationship, called 2nd level 

similarity). ��� is the weighted sum of ���5  (1st level similarity) and ���55 (2nd level 

similarity) between two attribute values xi and xj of an attribute X 

 

 

��� =	�� × ���5 	+ 	�� × ���55   (20) 

 

To illustrate how weighted similarity measure is computed for noisy values 

detection and correction, we will use the records in Table 3.6 with vertex nodes labelled 

from 1 to 8 as an example. The 1st and 2nd levels weighted similarity measure graphs are 

constructed with respect to ‘weather condition’ attribute in Figure 3.1 and Figure 3.2. 
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Table 3.6.  Aggregated table (Tables 3.4 and 3.5) for ‘Fog’ value with assigned vertex 

node number 

Record Driver status Weather condition Accident address 

R6 Normal (1) Fog  (3) Sanders (7) 

R1 Normal (1) Bad (4) Sanders (7) 

R3 Normal (1) Stormy (5) Glendale (8) 

R4 Abnormal (2) Stormy (5) Sanders (7) 

R9 Abnormal (2) Stormy (5) Sanders (7) 

R13 Abnormal (2) Stormy (5) Sanders (7) 

R14 Abnormal (2) Rainy (6) Sanders (7) 

R15 Abnormal (2) Rainy (6) Sanders (7) 

R16 Abnormal (2) Rainy (6) Sanders (7) 

Figure 3.1: 1st level weighted similarity measure graph with respect to ‘weather 

condition’ attribute constructed from Table 3.6 
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From the graph in Figure 3.1, it shows that nodes 3 and 4 have nodes 1, and 7 as 

common neighbours. Hence, the 1st level similarity between nodes 3 and 4 is 	�N,M5 		=
	���×�))���×�)√�×� = 1. Similarly, we can calculate the 1st level similarities for all node pairs 

within the graph as: 	�N,R5 = 0.68	(with neighbour nodes 1, 7), 	�N,S5 = 0.50		(with 

neighbour node 7). Let T=0.45, ��=0.65, ��=0.35 (Section 3.4.3 gives explanation for 

this choice). In Figure 3.1, we connect nodes having 1st level similarities greater than 

the threshold T by dotted lines [17, 56]. For easier visualization of the vertices within 

the same record and their associated edges, different colours are used. 

 

Figure 3.2: 2nd level weighted similarity measure graph with respect to ‘weather 

condition’ attribute constructed from Figure 3.1  

 

To calculate the 2nd level similarity	���55 between nodes i and j, we find all pairs of 

nodes (k, l) common to nodes i and j and with �9B5  > T, and merge each pair of nodes 

into a single vertex as shown in Figure 3.2. Here, vertices 1 and 2 are merged because 

	��,�5 > @ and vertices 7 and 8 are also merged. In Figure 3.2, the number of multiple 
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edges between two vertices is denoted by a number associated with the edge for ease of 

visualization. For nodes 3 and 6, using Equation (6) we have �N,S55 	= 	��N×�))��N×�)√�×S =
1	(with neighbour nodes 1, 2, 7, and 8),  �N,R55 = 1 (with neighbour nodes 1, 2, 7, and 8), 

and	�N,M55 = 1. Likewise, we can calculate 2nd level similarity for all node pairs. In this 

example, the S-measure between (Fog and Bad), (Fog and Stormy) and (Fog and Rainy) 

are 1, 0.79 and 0.68 respectively. 

Once the most similar attribute value, say y, is found using weighted similarity 

measure, we check the P-measure of the suspicious noisy attribute value x changing into 

y. If &̂ >�%)	or &_>�%) is higher than the unchanged probability &̂ �$)	of x, the value $ is 

changed to y, otherwise we declare	$ as a correct value. Specifically, let Y ={y1, y2, …, 

yk} be the set of all k possible attribute values of the suspicious value x, and let % =
X8$w Y∈ ��� 	�$, �), then   

 

$ = 	 �	%			if	�&̂ >�%)	or	&_>�%)) > 	 &̂ �$)			$			otherwise  (21) 

 

By considering both the weighted similarity measure and the P-measure, the 

suspicious value ‘Fog’ in record R6 is declared to be the correct value, whereas the 

suspicious value ‘Active’ in R2 is replaced by ‘Drunk’. 

 

3.3.3 NoiseCleaner algorithm 

The proposed algorithm is summarized below. 

 

 

NoiseCleaner Algorithm: 

1. Count frequency of each distinct attribute value in dataset D and flag values 
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whose frequencies are smaller than 3 as suspicious. 

2. Correct for simple typographical errors that occur in the marked values using

Levenshtein distance.

3. For each suspicious attribute value x in D

3.1 Create the corresponding set of records �^ and �_ 

3.2 Calculate the following probabilities from records in �^ and �_:

3.2.1 Calculate &̂ �$) using Equation (13) 

3.2.2 FOR each distinct value %9 of X from �̂ , calculate &̂>�%9) 
using Equation (18) 

3.2.3 FOR each distinct value v9 of X from �_, calculate	&_>�v9) 
using Equation (19) 

3.3 Declare $ as correct if &̂ �$) is greater than all of &̂ >�%9) and 

	&_>�v9) and break; 

 Else 

3.3.1 Calculate Sij(x,	%9) and Sij(x,	v9) using Equation (20) 

3.3.2 Select  % = X8$w Y∈ ���	�$, �) where Y = {%9,	v9} 

3.3.3 Update x using Equation (21) 

3.4 Experimental results and discussion 

3.4.1 Datasets 

We performed experiment on four datasets. Two road crash datasets are taken from the 

State of Queensland, Australia [75], and other two datasets are taken from the motor 

vehicle crashes of the New York State, United States [76].  In the four datasets, most of 

the attributes are categorical. We listed the four datasets in Table 3.7. 
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Table 3.7.  Description of datasets  

Abbreviation Dataset name #Records #Categorical 
attributes 

#Numerical 
attributes 

As on date 

RCL Road Crash Locations 
(RCL) [75] 

 251705 30 20 31 July, 2015 

RC Road Casualties (RC) 
[75] 

15744 6 1 31 July, 2015 

MCI Motor vehicle crash-
Case Information: 2011 
(MCI) [76] 

13889 17 1 24 September, 2014 

MII Motor vehicle crash-
Individual Information: 
2011 (MII) [76] 

17858 11 3 24 September, 2014 

3.4.2 Performance measures 

Several performance measures are commonly used to evaluate the performance of noisy 

value detection algorithms [71, 72]. A popular measure is precision. Precision is 

defined as the ratio of the number of relevant records retrieved to the total number of 

irrelevant and relevant records retrieved as in Equation (23) 

��������� = 	 ������	��	����	�����	���������	��������������	��	���	���������	����������	��	�����          (23) 

Another useful measure is recall. Recall is defined as the ratio of the number of relevant 

records retrieved to the total number of relevant records in the database as in Equation 

(24) 

��� ¡¡ = 	 ¢£¤¥�¦	§¨	©¦£�	¢§ª«¬	ª¢«© ¢��«	­�©��©�­¢£¤¥�¦	§¨	 ¡¡	¢§ª«¬	ª¢«© ¢��«	ª¢	©®�	­ © «�©          (24) 

Precision and Recall are inversely related. F-measure is defined as the harmonic mean 

of precision and recall as in Equation (25).  
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¯ = 	°	 �±��������	×������)�±��������)������)  (25) 

Equation (25) is also known as the ¯² measure or traditional F-measure or balanced F-

score, because recall and precision are weighted evenly. It is possible to give emphasis 

to precision or recall by using 

¯³ =	 �² +	³°)	 �±��������	×������)
´h³°	×±��������i)������µ  (26) 

By setting the parameter ³ ( ³ > ¶) the user can assign more importance to either 

precision or recall in the computation of the F-measure. For example, ̄° weighs recall 

higher than precision, and ̄¶.· puts more emphasis on precision than recall. To detect 

the noisy values and evaluate the noise detection performance, it is important to know 

how many noisy values are identified out of the total detected noisy values by the 

algorithm. 

3.4.3 Parameter selection for weighted similarity measure 

Weighted similarity measure requires the setting of three parameters: T, ��, and ��. 

Using the precision measure, we analyse the four datasets to select the best threshold 

parameter T. The result is shown in Figure 3.3 and we set T=0.45. In Table 3.8, we see 

that the optimum values for ��, and �� are 0.65  and 0.35, respectively. 
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(a) Threshold parameter T on RCL dataset 

 

(b) Threshold parameter T on RC dataset 
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(c) Threshold parameter T on MCI dataset 

 

(d) Threshold parameter T on MII dataset 

Figure 3.3: Threshold parameter @ on four datasets 
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Table 3.8.  �� and �� parameters selection using precision 

Parameters   Datasets 

     C1     C2   A�	 A� ��� ��� 
1.00 0.00 0.7032 0.7006 0.6995 0.7905 

0.95 0.05 0.7035 0.7005 0.7001 0.7924 

0.90 0.10 0.7050 0.7152 0.7010 0.7990 

0.85 0.15 0.8060 0.7835 0.7234 0.8012 

0.80 0.20 0.8065 0.7989 0.7346 0.8044 

0.75 0.25 0.8275 0.8455 0.8412 0.8342 

0.70 0.30 0.8500 0.8511 0.8502 0.8512 

0.65 0.35 0.8712 0.9099 0.8741 0.9095 

0.60 0.40 0.8401 0.8444 0.8788 0.8441 

0.55 0.45 0.8038 0.8331 0.8742 0.8211 

0.50 0.50 0.7681 0.8112 0.8578 0.8000 

0.45 0.55 0.7610 0.7908 0.8022 0.7989 

0.40 0.60 0.6211 0.7511 0.7010 0.7554 

0.35 0.65 0.5904 0.6904 0.6520 0.6987 

0.30 0.70 0.4801 0.5632 0.6011 0.6564 

0.25 0.75 0.4812 0.5323 0.5902 0.6226 

0.20 0.80 0.4913 0.5312 0.5822 0.5012 

0.15 0.85 0.4012 0.5011 0.5012 0.4812 

0.10 0.90 0.4109 0.4978 0.4824 0.4788 

0.05 0.95 0.4147 0.4876 0.6204 0.4546 

0.00 1.00   0.4098   0.4524   0.6202   0.4004 

3.4.4 Noisy values simulation 

We use four types of noisy patterns in our test datasets: simple, medium, complex, and 

blended [3, 17]. In a simple pattern, a record can have at most one noisy value, whereas 
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in a medium pattern, a record can have noisy values for up to 50% of the attributes. 

Similarly, in a complex pattern, a record can have noisy values for up to 80% of the 

attributes. A blended pattern contains mixture of three patterns (simple pattern 25%, 

50% with medium pattern, and 25% with complex pattern). For each of the noisy 

pattern, we use four different noisy ratios (2%, 4%, 6% and 8%) where x% noisy ratio 

means x% of the attribute values of a dataset are noisy. We use two types of noisy 

models, namely overall and uniformly distributed (UD). In the UD noisy model, each 

attribute has equal number of noisy attribute values. However, in the overall model, 

noisy attribute values are not equally distributed among the attributes, and in the worst 

case all noisy attribute values can belong to a single attribute. Additionally, for each test 

dataset, 1% of the attribute values of a dataset are created with typographical errors, 

where errors of 1, 2 or 3 characters are randomly introduced. 

In these experiments, 32 noisy combinations (4 noisy ratios × 4 noisy patterns × 2 

noisy models) are created. For each combination, five datasets i.e. in total we create 160 

noisy datasets (32 combinations × 5 datasets per combination) are generated for each 

real dataset as shown in Table 3.9.  

 

Table 3.9.  Noisy value simulation 

Noisy 
patterns 

Number of attributes having 
noisy values in a record 

 

Typographical 
error 

Noise 
ratios 

Noisy 
model 

Number of 
datasets 
for each 
pattern 

 

Simple  1 1% with 
randomly 1, 2, 
or 3 
characters 

 
2%, 
4%, 6% 
and 8% 

Overall 
and 
Uniformly 
distributed 

 
5 Medium Up to 50% 

Complex Up to 80% 
Blended Simple-25%, Medium-50% 

and Complex-25% 

3.4.5 Experimental results 

The proposed algorithm NoiseCleaner compares with three noisy values identification 

methods NOISERANK [72], HCleaner [74], and CAIRAD [71]. In NOISERANK 
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algorithm, there are several ensemble methods. Among them, HARF-80 and HARF-70 

variants performed best compared to the other variants. These two variants are taking 

into consideration to compare with the NoiseCleaner algorithm. Simple typographical 

errors are corrected using Levenshtein distance as a pre-processing for all methods. 

The noisy values detection accuracy (Precision) of NoiseCleaner, HCleaner, 

HARF-70, HARF-80, and CAIRAD is presented in Figure 3.4. For each dataset, four 

combinations of four noisy ratios (2%, 4%, 6%, and 8%), and one noisy pattern 

(medium) are shown. Figure 3.5 shows the corresponding recall result and Figure 3.6 

shows the  �+.R result. From these results, it can be seen that NoiseCleaner performs 

significantly better than HARF-80, HARF-70, HCleaner, and CAIRAD on all 4 

datasets. 

 

 

 

(a) 2% injected noise 
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(b) 4% injected noise 

 

 

(c) 6% injected noise 
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(d) 8% injected noise 

Figure 3.4. The precision results of different noisy value detection algorithms on 4 datasets 

for various ‘noisy ratios’ and ‘medium noisy pattern’. 
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(a)  2% injected noise 

 

(b) 4% injected noise 
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(c) 6% injected noise

(d) 8% injected noise

Figure 3.5. The recall results of different noisy value detection algorithms on 4 datasets for 
various ‘noisy ratios’ and ‘medium noisy pattern’. 
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(a) 2% injected noise 

 
(b) 4% injected noise 
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(c) 6% injected noise 

 

(d) 8% injected noise 

Figure 3.6. The F0.5 results of different noisy value detection algorithms on 4 datasets 
for various ‘noisy ratios’ and ‘medium noisy pattern’. 
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The noisy value detection accuracy of NoiseCleaner, HARF-70, HARF-80, and 

HCleaner on the 4 datasets in terms of precision for the 32 noisy combinations is 

presented in Tables 3.10-3.13. Each value in these tables is the average result over 5 

datasets generated for each combination of noisy ratio, noisy model, and noisy pattern. 

In these tables, bold values mark the best result among all methods and italic values 

represent the second best result. It can be seen that NoiseCleaner performs significantly 

better than HARF-80, HARF-70, and HCleaner, by wining in all cases. HARF-80 is the 

next best performing algorithm, losing to HARF-70 in only 4 cases on the MII dataset 

(Table 3.11). 

 

Table 3.10.  Performance on RC dataset using Precision 

          Precision  

Noise combination     NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.9087±0.01 0.8233±0.02 0.7732±0.02 0.6896±0.01 0.4980±0.02 

  Medium 0.9084±0.02 0.8246±0.01 0.7752±0.03 0.6891±0.02 0.4980±0.02 

  Complex 0.9082±0.01 0.8144±0.04 0.7688±0.01 0.6895±0.01 0.4957±0.02 

  Blended 0.9078±0.03 0.8135±0.05 0.7678±0.02 0.6891±0.04 0.4951±0.03 

  UD Simple 0.9065±0.01 0.8237±0.03 0.7776±0.02 0.6898±0.01 0.4901±0.02 

  Medium 0.9062±0.04 0.8245±0.01 0.7728±0.04 0.6865±0.04 0.4900±0.02 

  Complex 0.9059±0.02 0.8189±0.05 0.7701±0.03 0.6894±0.05 0.4886±0.03 

  Blended 0.9047±0.01 0.8178±0.02 0.7709±0.05 0.6898±0.01 0.4880±0.04 

      

4% Overall Simple 0.8901±0.01 0.8128±0.02 0.7662±0.01 0.6918±0.01 0.4845±0.02 

  Medium 0.8910±0.03 0.8119±0.03 0.7669±0.01 0.6904±0.03 0.4843±0.01 

  Complex 0.8912±0.02 0.8127±0.04 0.7661±0.03 0.6808±0.04 0.4842±0.03 

  Blended 0.8903±0.01 0.8110±0.03 0.7664±0.01 0.6802±0.02 0.4840±0.03 

  UD Simple 0.9001±0.02 0.8104±0.01 0.7663±0.02 0.6887±0.01 0.4745±0.03 
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  Medium 0.8900±0.04 0.8061±0.02 0.7648±0.01 0.6745±0.06 0.4739±0.02 

  Complex 0.8923±0.03 0.8098±0.05 0.7646±0.05 0.6732±0.02 0.4730±0.01 

  Blended 0.8921±0.01 0.8040±0.06 0.7642±0.01 0.6731±0.03 0.4704±0.02 

      

6% Overall Simple 0.8910±0.01 0.8032±0.02 0.7640±0.03 0.6702±0.02 0.4730±0.02 

  Medium 0.8909±0.02 0.8031±0.02 0.7631±0.01 0.6688±0.04 0.4729±0.01 

  Complex 0.8806±0.06 0.7692±0.05 0.7638±0.04 0.6650±0.02 0.4720±0.02 

  Blended 0.8801±0.02 0.7693±0.04 0.7620±0.01 0.6615±0.04 0.4720±0.03 

  UD Simple 0.8802±0.01 0.7793±0.03 0.7620±0.04 0.6608±0.02 0.4718±0.04 

  Medium 0.8801±0.07 0.7692±0.02 0.7578±0.02 0.6602±0.06 0.4710±0.01 

  Complex 0.8800±0.04 0.7691±0.01 0.7540±0.08 0.6604±0.05 0.4709±0.02 

  Blended 0.8800±0.02 0.7580±0.06 0.7400±0.10 0.6568±0.01 0.4708±0.03 

      

8% Overall Simple 0.8901±0.02 0.7621±0.03 0.7400±0.01 0.6672±0.03 0.4710±0.02 

  Medium 0.8886±0.04 0.7605±0.04 0.7379±0.03 0.6648±0.02 0.4708±0.03 

  Complex 0.8885±0.01 0.7590±0.06 0.7358±0.05 0.6535±0.06 0.4707±0.04 

  Blended 0.8880±0.05 0.7538±0.07 0.7356±0.06 0.6522±0.07 0.4706±0.01 

  UD Simple 0.8880±0.03 0.7910±0.02 0.7301±0.07 0.6610±0.07 0.4705±0.02 

  Medium 0.8879±0.05 0.7903±0.05 0.7280±0.04 0.6504±0.03 0.4700±0.03 

  Complex 0.8877±0.03 0.7940±0.03 0.7020±0.04 0.6501±0.04 0.4700±0.04 

    Blended     0.8872±0.06 0.7945±0.07 0.7210±0.05 0.6500±0.02 0.4880±0.02 

 

 

Table 3.11.  Performance on MII dataset using Precision 

          Precision  

Noise combination     NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.9060±0.01 0.8108±0.02 0.8120±0.01 0.6935±0.02 0.4896±0.02 

  Medium 0.9058±0.03 0.8103±0.01 0.8030±0.03 0.7030±0.04 0.4894±0.01 
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  Complex 0.9057±0.04 0.8111±0.03 0.8015±0.03 0.7036±0.05 0.4892±0.04 

  Blended 0.9055±0.06 0.8110±0.02 0.8004±0.02 0.7040±0.02 0.4890±0.03 

  UD Simple 0.9050±0.02 0.8014±0.04 0.8019±0.04 0.7114±0.05 0.4889±0.04 

  Medium 0.9048±0.01 0.8024±0.05 0.8091±0.05 0.7018±0.10 0.4888±0.08 

  Complex 0.9047±0.03 0.7929±0.06 0.7845±0.06 0.6922±0.05 0.4888±0.03 

  Blended 0.9044±0.04 0.7930±0.07 0.7231±0.03 0.6910±0.04 0.4887±0.01 

      

4% Overall Simple 0.9046±0.04 0.7993±0.02 0.7301±0.02 0.6901±0.03 0.4890±0.01 

  Medium 0.8943±0.03 0.7981±0.03 0.7302±0.03 0.6887±0.02 0.4891±0.02 

  Complex 0.8942±0.02 0.7850±0.05 0.7240±0.04 0.6780±0.04 0.4888±0.03 

  Blended 0.8940±0.04 0.7895±0.01 0.7148±0.05 0.6781±0.06 0.4883±0.02 

  UD Simple 0.8935±0.05 0.7896±0.06 0.7223±0.04 0.6878±0.02 0.4884±0.01 

  Medium 0.8934±0.06 0.7888±0.04 0.7215±0.03 0.6858±0.07 0.4878±0.02 

  Complex 0.8933±0.07 0.7864±0.01 0.7122±0.02 0.6796±0.09 0.4870±0.04 

  Blended 0.8931±0.08 0.7893±0.05 0.7108±0.06 0.6743±0.10 0.4871±0.02 

      

6% Overall Simple 0.8924±0.02 0.7790±0.02 0.7202±0.06 0.6810±0.04 0.4873±0.03 

  Medium 0.8922±0.01 0.7758±0.03 0.7238±0.11 0.6800±0.03 0.4871±0.02 

  Complex 0.8921±0.03 0.7740±0.05 0.7126±0.14 0.6698±0.02 0.4870±0.03 

  Blended 0.8920±0.05 0.7690±0.04 0.7082±0.05 0.6690±0.02 0.4869±0.02 

  UD Simple 0.8923±0.04 0.7680±0.06 0.7100±0.07 0.6786±0.08 0.4868±0.03 

  Medium 0.8922±0.01 0.7588±0.03 0.7098±0.08 0.6782±0.05 0.4864±0.04 

  Complex 0.8922±0.02 0.7560±0.06 0.7090±0.01 0.6688±0.03 0.4863±0.01 

  Blended 0.8920±0.01 0.7520±0.10 0.7084±0.03 0.6690±0.06 0.4862±0.01 

      

8% Overall Simple 0.8819±0.03 0.7577±0.01 0.7190±0.02 0.6610±0.03 0.4866±0.04 

  Medium 0.8712±0.02 0.7590±0.08 0.7130±0.05 0.6603±0.06 0.4864±0.02 

  Complex 0.8710±0.05 0.7441±0.04 0.7014±0.06 0.6568±0.10 0.4864±0.03 

  Blended 0.8708±0.02 0.7380±0.05 0.7010±0.07 0.6545±0.11 0.4860±0.02 

  UD Simple 0.8713±0.04 0.7461±0.02 0.7004±0.06 0.6600±0.12 0.4861±0.03 
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Medium 0.8709±0.06 0.7456±0.06 0.6989±0.03 0.6555±0.02 0.4859±0.05 

Complex 0.8703±0.03 0.7438±0.02 0.6910±0.02 0.6515±0.06 0.4850±0.02 

Blended 0.8732±0.02 0.7390±0.05 0.6900±0.03 0.6508±0.04 0.4840±0.02 

Table 3.12.  Performance on RCL dataset using Precision 

Precision 

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.8701±0.02 0.8212±0.03 0.7360±0.03 0.7240±0.04 0.4732±0.03 

Medium 0.8702±0.02 0.8210±0.04 0.7320±0.03 0.7184±0.04 0.4730±0.03 

Complex 0.8700±0.06 0.8090±0.04 0.7321±0.13 0.7187±0.08 0.4729±0.02 

Blended 0.8700±0.05 0.8060±0.02 0.7325±0.11 0.7185±0.11 0.4728±0.08 

UD Simple 0.8702±0.02 0.8221±0.03 0.7311±0.04 0.7138±0.06 0.4727±0.05 

Medium 0.8790±0.04 0.8145±0.04 0.7216±0.04 0.7099±0.05 0.4726±0.03 

Complex 0.8782±0.10 0.8126±0.01 0.7241±0.11 0.7085±0.02 0.4724±0.01 

Blended 0.8680±0.09 0.8121±0.02 0.7138±0.10 0.7080±0.01 0.4725±0.02 

4% Overall Simple 0.8700±0.03 0.8081±0.06 0.7240±0.05 0.6966±0.04 0.4722±0.05 

Medium 0.8689±0.02 0.8085±0.04 0.7245±0.06 0.6950±0.03 0.4721±0.02 

Complex 0.8688±0.04 0.7989±0.03 0.7205±0.10 0.6920±0.04 0.4722±0.01 

Blended 0.8683±0.06 0.7988±0.02 0.7165±0.11 0.6924±0.06 0.4719±0.03 

UD Simple 0.8688±0.03 0.7937±0.01 0.7182±0.07 0.6960±0.07 0.4710±0.04 

Medium 0.8676±0.04 0.7896±0.08 0.7070±0.06 0.6887±0.06 0.4709±0.02 

Complex 0.8673±0.02 0.7888±0.01 0.7055±0.17 0.6813±0.06 0.4707±0.02 

Blended 0.8670±0.01 0.7890±0.02 0.7017±0.11 0.6810±0.04 0.4706±0.01 

6% Overall Simple 0.8682±0.05 0.7790±0.01 0.7108±0.06 0.6834±0.03 0.4712±0.02 

Medium 0.8681±0.04 0.7783±0.04 0.7141±0.08 0.6809±0.10 0.4710±0.01 



Chapter 3   Noisy values Detection and Correction 
 
 

 
86 

 

  Complex 0.8679±0.08 0.7758±0.03 0.7036±0.16 0.6800±0.06 0.4709±0.02 

  Blended 0.8678±0.09 0.7650±0.02 0.7001±0.15 0.6740±0.07 0.4708±0.05 

  UD Simple 0.8669±0.04 0.7640±0.03 0.7104±0.06 0.6806±0.10 0.4707±0.06 

  Medium 0.8667±0.02 0.7620±0.02 0.7101±0.07 0.6790±0.11 0.4705±0.03 

  Complex 0.8663±0.03 0.7409±0.04 0.7080±0.14 0.6708±0.12 0.4700±0.03 

  Blended 0.8661±0.06 0.7401±0.08 0.6998±0.12 0.6701±0.04 0.4701±0.02 

      

8% Overall Simple 0.8660±0.01 0.7550±0.06 0.7066±0.06 0.6723±0.04 0.4707±0.02 

  Medium 0.8559±0.04 0.7402±0.04 0.7023±0.04 0.6661±0.11 0.4706±0.02 

  Complex 0.8553±0.02 0.7401±0.06 0.7015±0.05 0.6637±0.05 0.4706±0.01 

  Blended 0.8551±0.07 0.7400±0.07 0.6987±0.12 0.6620±0.04 0.4705±0.03 

  UD Simple 0.8643±0.02 0.7435±0.07 0.7046±0.13 0.6623±0.04 0.4704±0.02 

  Medium 0.8631±0.04 0.7395±0.03 0.7032±0.11 0.6610±0.06 0.4703±0.04 

  Complex 0.8524±0.02 0.7107±0.01 0.7004±0.08 0.6585±0.03 0.4700±0.05 

    Blended     0.8521±0.03 0.7100±0.06 0.6900±0.18 0.6502±0.10 0.4700±0.01 

 

 

 

Table 3.13.  Performance on MCI dataset using Precision 

          Precision  

Noise combination     NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.8731±0.01 0.7367±0.01 0.6753±0.03 0.6305±0.06 0.4953±0.04 

  Medium 0.8728±0.05 0.7361±0.04 0.6630±0.12 0.6304±0.12 0.4952±0.04 

  Complex 0.8725±0.02 0.7354±0.02 0.6617±0.10 0.6301±0.18 0.4950±0.01 

  Blended 0.8716±0.03 0.7252±0.01 0.6587±0.12 0.6300±0.03 0.4949±0.02 

  UD Simple 0.8720±0.02 0.7248±0.04 0.6710±0.13 0.6302±0.16 0.4939±0.03 

  Medium 0.8721±0.04 0.7263±0.05 0.6508±0.09 0.6271±0.09 0.4938±0.02 

  Complex 0.8715±0.05 0.7182±0.03 0.6500±0.08 0.6108±0.06 0.4836±0.01 

  Blended 0.8712±0.01 0.7101±0.01 0.6489±0.12 0.6101±0.08 0.4835±0.02 
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4% Overall Simple 0.8707±0.04 0.7285±0.07 0.6587±0.10 0.6257±0.11 0.4835±0.01 

  Medium 0.8706±0.02 0.7281±0.02 0.6589±0.06 0.6338±0.07 0.4833±0.02 

  Complex 0.8602±0.03 0.7187±0.03 0.6567±0.06 0.6158±0.04 0.4830±0.02 

  Blended 0.8600±0.04 0.7068±0.04 0.6561±0.05 0.6178±0.05 0.4831±0.02 

  UD Simple 0.8725±0.03 0.7167±0.02 0.6583±0.04 0.6280±0.06 0.4726±0.05 

  Medium 0.8628±0.06 0.7160±0.03 0.6577±0.02 0.6228±0.11 0.4724±0.03 

  Complex 0.8625±0.04 0.7052±0.03 0.6460±0.10 0.6191±0.10 0.4723±0.02 

  Blended 0.8614±0.03 0.7000±0.01 0.6450±0.01 0.6187±0.02 0.4720±0.01 

      

6% Overall Simple 0.8722±0.08 0.7172±0.03 0.6649±0.03 0.6303±0.05 0.4718±0.03 

  Medium 0.8720±0.04 0.7171±0.04 0.6608±0.11 0.6312±0.01 0.4719±0.02 

  Complex 0.8618±0.03 0.7055±0.05 0.6600±0.04 0.6176±0.02 0.4711±0.01 

  Blended 0.8616±0.04 0.6943±0.06 0.6588±0.01 0.6074±0.03 0.4711±0.04 

  UD Simple 0.8712±0.05 0.7100±0.03 0.6610±0.06 0.6395±0.05 0.4710±0.02 

  Medium 0.8600±0.06 0.7087±0.03 0.6584±0.06 0.6313±0.06 0.4709±0.02 

  Complex 0.8565±0.07 0.7047±0.02 0.6556±0.04 0.6041±0.02 0.4703±0.03 

  Blended 0.8580±0.08 0.6998±0.04 0.6497±0.02 0.6000±0.03 0.4702±0.01 

      

8% Overall Simple 0.8600±0.02 0.7141±0.04 0.6581±0.07 0.6201±0.11 0.4706±0.04 

  Medium 0.8570±0.03 0.7140±0.05 0.6587±0.03 0.6095±0.12 0.4705±0.01 

  Complex 0.8520±0.04 0.7110±0.03 0.6571±0.04 0.6081±0.07 0.4703±0.02 

  Blended 0.8510±0.05 0.7090±0.02 0.6467±0.10 0.5980±0.03 0.4702±0.01 

  UD Simple 0.8558±0.06 0.7132±0.07 0.6560±0.06 0.6013±0.02 0.4704±0.03 

  Medium 0.8546±0.07 0.7047±0.03 0.6525±0.02 0.5965±0.10 0.4704±0.05 

  Complex 0.8531±0.02 0.7045±0.02 0.6487±0.04 0.5905±0.06 0.4700±0.02 

    Blended     0.8526±0.03 0.7000±0.06 0.6434±0.03 0.5901±0.06 0.4701±0.06 
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The noisy value detection accuracy of NoiseCleaner, HARF-80, HARF-70, and 

HCleaner on the four datasets in terms of F0.5 for the 32 noisy combinations is presented 

in Tables 3.14 – 3.17. The F0.5 of each table is calculated for the one set of data. 

Table 3.14.  Performance on RC dataset using F0.5 

F0.5 

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.8721 0.7796 0.7340 0.6510 0.4720 

Medium 0.8716 0.7804 0.7354 0.6505 0.4719 

Complex 0.8711 0.7729 0.7304 0.6507 0.4701 

Blended 0.8707 0.7720 0.7293 0.6501 0.4694 

UD Simple 0.8696 0.7794 0.7342 0.6504 0.4661 

Medium 0.8686 0.7797 0.7303 0.6478 0.4657 

Complex 0.8672 0.7752 0.7282 0.6496 0.4623 

Blended 0.8661 0.7740 0.7286 0.6494 0.4618 

4% Overall Simple 0.8562 0.7712 0.7251 0.6499 0.4592 

Medium 0.8562 0.7692 0.7250 0.6482 0.4573 

Complex 0.8559 0.7695 0.7237 0.6408 0.4563 

Blended 0.8550 0.7677 0.7229 0.6399 0.4560 

UD Simple 0.8628 0.7665 0.7250 0.6467 0.4494 

Medium 0.8550 0.7634 0.7223 0.6337 0.4487 

Complex 0.8564 0.7645 0.7199 0.6320 0.4480 

Blended 0.8558 0.7598 0.7186 0.6307 0.4447 

6% Overall Simple 0.8555 0.7593 0.7214 0.6278 0.4348 

Medium 0.8540 0.7583 0.7205 0.6266 0.4344 



Chapter 3   Noisy values Detection and Correction 
 
 

 
89 

 

  Complex 0.8462 0.7323 0.7186 0.6218 0.4313 

  Blended 0.8454 0.7311 0.7170 0.6185 0.4312 

  UD Simple 0.8428 0.7383 0.7172 0.6170 0.4310 

  Medium 0.8427 0.7304 0.7136 0.6159 0.4300 

  Complex 0.8371 0.7295 0.7104 0.6149 0.4268 

  Blended 0.8370 0.7214 0.6997 0.6118 0.4266 

      

8% Overall Simple 0.8528 0.7245 0.6924 0.6087 0.4269 

  Medium 0.8512 0.7233 0.6908 0.6051 0.4256 

  Complex 0.8490 0.7202 0.6881 0.5958 0.4228 

  Blended 0.8484 0.7160 0.6829 0.5944 0.4225 

  UD Simple 0.8480 0.7404 0.6788 0.5969 0.4220 

  Medium 0.8468 0.7365 0.6751 0.5878 0.4180 

  Complex 0.8454 0.7384 0.6531 0.5863 0.4141 

    Blended     0.8450 0.7376 0.6659 0.5859 0.4249 

 

 

Table 3.15.  Performance on MII dataset using F0.5 

          F0.5  

Noise combination     NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.8693 0.7688 0.7584 0.6504 0.4672 

  Medium 0.8678 0.7684 0.7517 0.6568 0.4670 

  Complex 0.8670 0.7688 0.7506 0.6572 0.4668 

  Blended 0.8667 0.7687 0.7497 0.6563 0.4665 

  UD Simple 0.8664 0.7615 0.7507 0.6627 0.4665 

  Medium 0.8659 0.7622 0.7557 0.6559 0.4663 

  Complex 0.8649 0.7551 0.7383 0.6485 0.4657 

  Blended 0.8643 0.7551 0.6938 0.6474 0.4654 
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4% Overall Simple 0.8655 0.7588 0.6970 0.6477 0.4576 

Medium 0.8571 0.7579 0.6968 0.6463 0.4564 

Complex 0.8568 0.7482 0.6922 0.6371 0.4562 

Blended 0.8557 0.7515 0.6821 0.6362 0.4540 

UD Simple 0.8552 0.7516 0.6859 0.6426 0.4527 

Medium 0.8551 0.7507 0.6851 0.6408 0.4507 

Complex 0.8548 0.7488 0.6768 0.6351 0.4485 

Blended 0.8546 0.7509 0.6748 0.6307 0.4483 

6% Overall Simple 0.8544 0.7413 0.6873 0.6311 0.4415 

Medium 0.8539 0.7389 0.6871 0.6277 0.4411 

Complex 0.8536 0.7376 0.6786 0.6203 0.4382 

Blended 0.8515 0.7337 0.6729 0.6168 0.4370 

UD Simple 0.8518 0.7330 0.6739 0.6225 0.4365 

Medium 0.8515 0.7260 0.6738 0.6219 0.4359 

Complex 0.8515 0.7237 0.6721 0.6132 0.4354 

Blended 0.8507 0.7198 0.6716 0.6133 0.4346 

8% Overall Simple 0.8453 0.7161 0.6682 0.5851 0.4364 

Medium 0.8373 0.7149 0.6637 0.5844 0.4339 

Complex 0.8369 0.7019 0.6539 0.5821 0.4335 

Blended 0.8366 0.6969 0.6535 0.5797 0.4326 

UD Simple 0.8362 0.7020 0.6536 0.5797 0.4324 

Medium 0.8359 0.7008 0.6524 0.5768 0.4300 

Complex 0.8351 0.6980 0.6459 0.5700 0.4292 

Blended 0.8370 0.6936 0.6445 0.5697 0.4271 
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Table 3.16.  Performance on RCL dataset using F0.5 

          F0.5  

Noise combination     NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.8298 0.7581 0.6897 0.6329 0.4554 

  Medium 0.8298 0.7565 0.6852 0.6290 0.4531 

  Complex 0.8294 0.7479 0.6835 0.6285 0.4511 

  Blended 0.8291 0.7450 0.6826 0.6261 0.4508 

  UD Simple 0.8289 0.7553 0.6818 0.6230 0.4480 

  Medium 0.8352 0.7494 0.6732 0.6192 0.4480 

  Complex 0.8342 0.7430 0.6747 0.6156 0.4451 

  Blended 0.8267 0.7386 0.6646 0.6137 0.4448 

      

4% Overall Simple 0.8286 0.7317 0.6703 0.6147 0.4489 

  Medium 0.8276 0.7318 0.6700 0.6102 0.4427 

  Complex 0.8274 0.7253 0.6658 0.6069 0.4400 

  Blended 0.8269 0.7244 0.6628 0.6058 0.4386 

  UD Simple 0.8270 0.7207 0.6639 0.6073 0.4343 

  Medium 0.8260 0.7165 0.6529 0.6028 0.4339 

  Complex 0.8256 0.7149 0.6515 0.5979 0.4302 

  Blended 0.8253 0.7146 0.6489 0.5976 0.4301 

      

6% Overall Simple 0.8253 0.7047 0.6552 0.6025 0.4298 

  Medium 0.8248 0.7038 0.6543 0.6004 0.4288 

  Complex 0.8245 0.6960 0.6471 0.5994 0.4247 

  Blended 0.8243 0.6870 0.6415 0.5952 0.4244 

  UD Simple 0.8235 0.6856 0.6482 0.5986 0.4226 

  Medium 0.8232 0.6801 0.6468 0.5975 0.4225 

  Complex 0.8223 0.6646 0.6354 0.5865 0.4252 

  Blended 0.8216 0.6639 0.6299 0.5860 0.4227 
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8% Overall Simple 0.8211 0.6692 0.6127 0.5909 0.4226 

  Medium 0.8134 0.6585 0.6096 0.5838 0.4219 

  Complex 0.8125 0.6581 0.6053 0.5821 0.4218 

  Blended 0.8120 0.6537 0.5988 0.5810 0.4180 

  UD Simple 0.8184 0.6573 0.6067 0.5811 0.4174 

  Medium 0.8174 0.6512 0.5999 0.5794 0.4170 

  Complex 0.8085 0.6319 0.5932 0.5775 0.4098 

    Blended     0.8082 0.6284 0.5831 0.5721 0.4094 

 

 

 

 

 

 

Table 3.17.  Performance on MCI dataset using F0.5 

          F0.5  

Noise combination     NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

2% Overall Simple 0.8350 0.7012 0.6515 0.5905 0.4733 

  Medium 0.8327 0.6985 0.6409 0.5887 0.4730 

  Complex 0.8322 0.6962 0.6371 0.5871 0.4726 

  Blended 0.8321 0.6877 0.6347 0.5867 0.4725 

  UD Simple 0.8313 0.6881 0.6400 0.5868 0.4718 

  Medium 0.8309 0.6886 0.6251 0.5836 0.4714 

  Complex 0.8282 0.6814 0.6222 0.5703 0.4637 

  Blended 0.8277 0.6739 0.6210 0.5696 0.4632 

      

4% Overall Simple 0.8197 0.6853 0.6227 0.5820 0.4619 

  Medium 0.8185 0.6854 0.6225 0.5860 0.4636 
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  Complex 0.8109 0.6818 0.6207 0.5721 0.4610 

  Blended 0.8081 0.6698 0.6199 0.5720 0.4611 

  UD Simple 0.8166 0.6790 0.6212 0.5789 0.4526 

  Medium 0.8097 0.6725 0.6194 0.5750 0.4522 

  Complex 0.8067 0.6642 0.6104 0.5722 0.4495 

  Blended 0.8057 0.6578 0.6083 0.5690 0.4493 

      

6% Overall Simple 0.8109 0.6692 0.6244 0.5787 0.4501 

  Medium 0.8101 0.6669 0.6209 0.5743 0.4498 

  Complex 0.8000 0.6575 0.6196 0.5648 0.4486 

  Blended 0.7993 0.6475 0.6185 0.5564 0.4467 

  UD Simple 0.8062 0.6576 0.6179 0.5790 0.4466 

  Medium 0.7982 0.6541 0.6154 0.5723 0.4458 

  Complex 0.7940 0.6509 0.6101 0.5521 0.4448 

  Blended 0.7943 0.6473 0.6057 0.5498 0.4444 

      

8% Overall Simple 0.7959 0.6581 0.6130 0.5632 0.4434 

  Medium 0.7916 0.6577 0.6131 0.5554 0.4431 

  Complex 0.7875 0.6539 0.6104 0.5521 0.4401 

  Blended 0.7872 0.6511 0.6031 0.5449 0.4400 

  UD Simple 0.7912 0.6537 0.6087 0.5464 0.4392 

  Medium 0.7885 0.6480 0.6062 0.5427 0.4391 

  Complex 0.7871 0.6478 0.6013 0.5353 0.4386 

    Blended     0.7864 0.6448 0.5976 0.5334 0.4384 

 
 

3.4.6 Execution time comparison 

The average computation time in seconds for 160 datasets (32 combinations × 5 datasets 

per combination) for each traffic accident dataset is given in Table 3.18. The 
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configuration of the machine is Intel® Core™ i5-3340M CPU @ 2.70GHz, with 8GB 

RAM. From this table, it can be seen that NoiseCleaner runs slightly faster than HARF-

80, and HARF-70. On the other hand, CAIRAD runs significantly faster compare to all 

the other approaches. We now analyse complexity for the NoiseCleaner algorithm. Let, 

x is the number of suspicious attributes values in the dataset. We find maximum n 

number of records from the Ss and Sd. The weighted similarity measure has to calculate 

for each x and the complexity is O(nx). 

 

 

Table 3.18.  Average execution time of different algorithms (in seconds) 

Dataset NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD 

RCL 338.101 342.72 344.21 201.00 100.21 

RC 165.21 184.01 183.88 178.10 50.34 

MCI 95.34 99.92 96.68 64.55 35.65 

MII 198.42 201.15 204.12 188.23 55.19 

 

3.5 Conclusion 

In this chapter, a brief summary of the algorithms proposed by researchers in the area of 

noisy values detections and corrections is first given. The literature review reveals that 

although there have been recent advances towards noisy values detection techniques and 

a number of algorithms are available, detecting and correcting incorrect values in 

categorical datasets is still a challenging problem, since any attempt to represent a 

categorical value numerically can introduce unwanted biases that negatively affect 

subsequent data analysis. A novel and effective noisy values identification and 

correction method, called NoiseCleaner, is proposed in this chapter for traffic accident 

data where the majority of attributes are categorical. There are two stages in 

NoiseCleaner, where noisy attribute values are first detected by using a novel P-measure 
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which computes the probability values indicating the likeliness of replacing the noisy 

attribute value with some alternative attribute values. Then, the S-measure, which 

measures the direct and transitive similarity between a noisy value and an alternative 

value, is used to identify the most similar alternative value to replace the noisy value 

with. Extensive experimental results demonstrated that it outperforms several existing 

noisy values identification methods on four real world traffic accident datasets. 
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Chapter 4: Conclusions and Future Research 

This chapter concludes the thesis by summarising the novel contribution in this research 

and suggests some areas for future work. The objective of this research is to develop 

effective preprocessing algorithms for traffic accident data. Our research is focused on 

two pivotal tasks of data preprocessing, namely missing value imputation and data 

cleansing. To impute the missing values and detect the noisy data, detailed 

investigations are carried out on existing approaches to missing values imputation and 

noisy data detection in this research. From the investigations, it is found that although 

there is much published research on missing values imputation and noisy data detection, 

most of those methods are developed for data with numerical values. However, the 

traffic accident data we are concerned with in this research consists mostly of 

categorical values. Therefore, this research addresses the research gap of preprocessing 

categorical data by developing novel algorithms for missing value imputation and noisy 

value detection and correction.  

In Chapter 2, we proposed a missing value imputation algorithm, called DSMI, 

which is able to deal with categorical data. Our algorithm takes into account the 

correlation between the attributes in a record, as well as the correlation between two 

records to find the most likely imputed values. Moreover, to model the variability in real 

data, our algorithm imputes the missing values by sampling from a list of potential 

imputed values based on their degree of affinity. Extensive experimental results have 

shown that DSMI significantly outperformed current state-of-the-art imputation 

algorithms. 

In Chapter 3, we proposed a noisy value detection and correction called 

NoiseCleaner, which is able to deal with categorical data. NoiseCleaner detects noisy 

attributes values by using a novel P-measure which are probability values indicating the 
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likeliness of replacing the noisy attribute value with some alternative attribute values. 

Then, the S-measure which measures the direct and transitive similarity between a noisy 

value and an alternative value is used to identify the most similar alternative value to 

replace the noisy value with. The extensive experimental results and comparative 

studies presented in Chapter 3 indicate the effectiveness of the proposed algorithm. 

4.1 Future Research 

Although the proposed algorithms have demonstrated superior performance compared 

with existing algorithms, there is still scope for further research. Because of the 

availability of cheap sensors, massive amounts of data have been generated on a daily 

basis. Much of this data contain a mixture of numerical and categorical values. To 

handle the massive volumes of data, we need highly efficient data preprocessing 

algorithms. So far, our algorithms have only been tested on moderately large datasets. 

Investigating the scalability of our algorithms to big data is an important future research 

direction. In particular, it will be interesting to know how the various correlation 

measures used in our algorithms deal with data of very high dimension and the extent 

they are able to cope with the curse of dimensionality.  

The ability to deal with mixed data types is also an important avenue for future 

research. Our proposed algorithms are specifically designed to handle categorical data. 

For numerical data of continuous value, one can often estimate or approximate the 

underlying density distribution. Exploiting this distribution is expected to improve the 

imputation or data cleansing performance. How to modify our algorithms so that they 

can handle both types of data will also be an interesting research direction to pursue in 

the future.  

Twitter, Facebook, and LinkedIn have generated massive amount of data. However, 

missing values and noisy informations are common in these data. Future research can 

evaluate the effectiveness of the two preprocessing algorithms for these data. In medical 

record data, missing values can arise because people do not want to share sensitive 
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information. It would be useful to validate our preprocessing algorithms for this kind of 

dataset too. 
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