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Abstract

Death, injury, and disability resulting from road traffic crashes continue to be a major
global public health problem. Recent data suggest that the number of fatalities from
traffic crashes is in excess of 1.25 million people each year with non-fatal injuries
affecting a further 20-50 million people. It is predicted that by 2030, road traffic
accidents will have progressed to be the 5th leading cause of death and that the number
of people who will die annually from traffic accidents will have doubled from current
levels. Both developed and developing countries suffer from the consequences of the
increase in human population, and consequently, vehicle numbers. Therefore, methods
to reduce accident severity are of great interest to traffic agencies and the public at
large. To analyze traffic accident factors effectively, a complete traffic accident
historical database is needed. Road accident fatality rates depend on many factors, so it
is a very challenging task to investigate the dependencies between the attributes because
of the many environmental and road accident factors. Missing data and noisy data in the
database obscure the discovery of important factors and lead to invalid conclusions. In
order to make the traffic accident datasets useful for analysis, they should be
preprocessed efficiently. Data preprocessing is responsible for almost 80% of the total
data mining effort. It is also known that good results can be achieved by using data
mining algorithms only if there is a good quality dataset. This research is concerned
with developing novel data preprocessing techniques for data quality enhancement, with
application to traffic accident data. The research can be divided into two parts. The first
part of this research concentrates on missing values imputation, and the second part
concentrates on noisy values detection and correction in the traffic accident dataset.
Missing values imputation and noisy values detection with correction are used to obtain

a complete noise-free traffic accident dataset.
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Chapter 1 Introduction

Chapter 1: Introduction

At the current time, modern organizations collect a large amount of data due to the
advances in information processing technology and storage capacity. To extract
knowledge from the large volume of a dataset using data mining techniques, there is a
strong need for data preprocessing algorithms to ensure the data is of good quality. It is
well known that good results can only be achieved in data mining if the dataset is of
good quality [1]. Real world data is highly susceptible to missing values, noisy values,
and inconsistencies. Data preprocessing is a key step that processes the raw data into a
form that facilitates subsequent analysis. This research presents two data preprocessing
techniques to enhance the quality of data: (i) DSMI algorithm to impute the missing
values and (ii) NoiseCleaner to remove the noisy values from the traffic accident

datasets.

This chapter is organized into several sections as follows. Section 1.1 presents an
overview of the research. Section 1.2 describes the data preprocessing concept. Then,
the research objectives and research questions are described in Section 1.3. Section 1.4
presents the research contributions made in this thesis. Finally, the structure of this

thesis is presented in Section 1.5.

1.1 Oveview

An accident is an unplanned and unwanted event which disrupts the work process and
causes injury to people. A traffic accident occurs when a vehicle collides with another
vehicle, pedestrian, animal, road debris, or other stationary obstruction, such as a tree or
utility pole. Death, major or minor types of injuries, vehicle, and property damage are
the result of traffic collisions.
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Accident investigations and analyses are performed to determine the causes of an
accident. Accidents of particularly common types, such as automobile crashes are often
investigated to identify how to avoid them in the future. The accident investigation is
often performed by a range of experts, including forensic scientists, forensic engineers

or health and safety advisors.

The high growth of the number of vehiclbas led to roads with higher traffic
density. The immediate effect of this situation is the dramatic increase of traffic
accidents on the road, which has become a serious problem in many countries. For
example, 2478 people died on Spanish roads in 2010, which means one death for every
18,551 inhabitants [2-4]. In the United States (according to the Department of
Transportation, United Sates) in 2012, 33,561 people died in motor vehicle traffic
crashes [5]. According to the Australian Bureau of Statistics, the majority of transport
related deaths (72% in 2009) in Australia is associated with motor vehicles driven on
public roads [6-8]. The global economic cost of road traffic accidents has been
estimated at US$518b and has been calculated to account for 0.3% to 4% of the gross

national product of many countries [9].

The issue of traffic safety has become one of the key challenges in the sustainable
development of modern traffic and transportation. The burden of road accident
causalities and damage is a major headache for both developed and developing
countries.Motor vehicle collisions lead to loss of lives and permanent disabilities, and
incur large financial costs to both the community and the individuals involved. There
are many factors that contribute to the risk of collisions such as vehicle design, vehicle
speed, road design, road environment, driver skill, and behaviour. Therefore, it is
essential for traffic engineers to be able to extract useful knowledge from existing data
to analyse the causes of traffic accidents and to determine the factors which affect the
severity of injuries in road crashes. Such information enables traffic administrators to be
more accurately informed such that better policies can be introduced to reduce the
number of road traffic accidents.

A large amount of traffic accident data is stored in various types of databases

because of the advancement of data acquisition methods and storage technology. The
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improvement in sensor technologies has also resulted in the growth of large amounts of
traffic accident data [10]. We can extract traffic activities and factors which lead to
traffic accidents from the traffic accident databases by using advanced data mining
technology. Data mining is typically conceptualized as a three part process:
preprocessing, learning and post-processing. This thesis focuses on the preprocessing

stage, as this can take up to 80% of the total data mining effort [11].

1.2 Data preprocessing

Data preprocessing is a technique which involves transforming raw data into a format
that is suitable for subsequent analysis. It is well known that good results can only be
obtained from data mining algorithms if there is a good quality dataset [1]. Real world
datasets often have missing values and noisy values due to various reasons, including
equipment malfunction, human error, and faulty data transmission. If an organization
does not take extreme care during data collection, then large amounts of missing and
noisy data could be introduced into the datasets [12-16]. Data preprocessing tasks can
include the imputation of missing values, smoothing of noisy data, identification of

erroneous data, and correction of erroneous data.

Missing value means the data value is missing for the variable in the dataset. Many
applications in the real world suffer from a common problem that some values of the
attributes are unobserved. Table 1.1 shows a toy dataset to explain missing values. In
this dataset, “?’ stands for missing value. Missing values can be numerical or categorical
in nature. Categorical (sometimes called nominal) variables have values that have no
natural ordering (e.g., airbag conditions: ruptured, cut, torn); ordinal variables do have a
natural ranking order (e.g., day of the week); and interval variables are created from

intervals on a connecting scale (e.g., age set 13-19).
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Table 1.1. Toy dataset to explain missing values

Record  Driver status Weather Passenger Accident Injury severity
condition number address

R1 Drunk Good 3 Sanders Kill

R, Drunk Good 4 ? Kill

Rs3 Drunk Good 2 Glendale No injury

Ra Normal Fair 3 Glendale No injury

Rs Normal Fair ? Glendale No injury

Rs ? Good ? Glendale Kill

Noisy data means corrupted or meaningless datayMiata badly affect the results
of any type of data analysis. The presence of ne@éyes reduces the quality of the
analysis models learned from the data and impdiesr tpredictive or descriptive
performance. Moreover, these models would becornedyeomplex if the noise in the

data were to be accommodated.

Many approaches have been proposed to deal withingisralues in a dataset.

Some of the popular approaches are:

« Discarding the record: this is generally used wiinenclass label is lost. This
technique performs well when the dataset has fesords with missing
attributes. However, discarding records throws able data away and can
hamper efforts to extract knowledge from the daspecially when the
dataset is small. It also introduces bias intodataset when the proportion

of missing values per attribute varies significamtl the dataset.

* Replacing the missing value by a universal constarg method replaces all
missing attribute values by a constant, for exaniphéssed” or “?” or zero.
The main problem is that when all missing valuesraplaced for example
by “missed”, then the data mining algorithm mistalgeconcludes that they

form an interesting concept, since they all hawalae in common, that of
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“missed”. Therefore, although this method is simple, it is hot recommended

for data cleaning.

* Impute the missing value by the mean attribute value: this introduces bias
into the dataset. Moreover, it is infeasible when imputing categorical missing

values.

1.3 Research objectives and research questions

Two important data preprocessing tasks are missing value imputation and data
cleansing. This research proposes effective algorithms to perform these tasks for traffic
accident data. The objectives of this research are:

I.  To impute the missing values for the traffic accident datasets, where a large

number of attributes values are categorical in nature.

Il.  To clean noisy values in traffic accident datasets.

Although many algorithms have been proposed for missing value imputation, most
of these algorithms are developed for missing numerical data. However, in many real
world datasets, many attributes are categorical. In fact, most attributes in the traffic
accident datasets are categorical in nature. Very little research has been undertaken to
handle missing categorical attributes. The same is true for data cleansing, where most
existing algorithms are for numerical datasets. The above objectives have therefore led

to the following research questions:

I.  How can missing value imputation algorithms handle categorical attributes?

.  How can the correlation between categorical attributes be measured and

guantified?
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ll.  How can we measure correlation between two recentls categorical

values?

IV. How can we take into account the uncertainty inlatte values seen in real

data?

V.  What criteria can be used to detect noisy categlbdiata?

1.4 Contributions

The main research contributions made in this theegigpresented below:

.  We proposed an effective missing values imputaaigorithm called DSMI
for traffic accident data, where a large numberatfibutes values are

categorical.

[I.  DSMI algorithm is able to consider the inherent entminty seen in real

data.

lll.  We proposed a novel noisy values identification aondection method,
called NoiseCleaner, which can identify noisy categal and numerical

attributes values in the traffic accident datasets.

IV.  We performed extensive experiments to evaluateptréormance of the
proposed algorithms and compare them with curreiate-®f-the-art

algorithms.

15 Thessstructure

This thesis is divided into four chapters. Chagtgoresents the introduction for this
research, data preprocessing concepts, motivatiesgarch objectives, research
questions, research contributions, and the thésistgre. Chapter 2 focuses on the first

part of the research, i.e. missing value imputatlbmeviews the literature relevant to
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missing value imputation and then presents the proposed missing value imputation
algorithm called DSMI. Experimental results and comparative studies with existing
missing value imputation algorithms are also given in this chapter. Chapter 3 presents
the second part of the research, i.e. data cleansing. It reviews the literature in this area
and presents the proposed noisy values detection and correction algorithm called
NoiseCleaner. Extensive experimental results and comparative studies on data cleansing
are also reported. Finally, Chapter 4 provides the conclusions and recommendations for

further study. The structure of the thesis is shown in Figure 1.1.

Chapter 1: Introduction

Chapter 2Missing values | mputation

Chapter 3: Noisy values detection and correction

Chapter 4: Conclusionsand Future Research

Figure 1.1: Thesis structure
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Chapter 2: Missing values | mputation

This chapter describes the first part of the research, which is on missing values
imputation. An introduction about missing value imputation is given in Section 2.1. In
Section 2.2, some existing missing values imputation approaches are reviewed and
analysed. Section 2.3 presents the proposed missing value imputation algorithm called
Decision tree and Sampling based Missing values Imputation (DSMI) in detail. Section
2.4 addresses the performance of the DSMI algorithm. A summary is given at the end of

this chapter. The content of this chapter has largely been published in [17].

2.1 Introduction

Huge quantities of data are collected every day from sources such as surveys,
interviews, Facebook, Twitter, LinkedIn, and sensors [18]. For example, the habits and
profiles of people are collected from Facebook and Twitter, professional data are
collected from LinkedIn, and weather data in an environment monitoring system are
often acquired through different sensors. Data can be missing or noisy due to numerous
causes such as equipment malfunctioning and errors incurred during data alteration and
transmission. In an environment monitoring system, data can be missing due to limited
bandwidth in a wireless network, inadequate battery power of the sensing devices, other

hardware, and software problems in the sensors.

To extract useful information from traffic accident datasets, we need a complete
dataset. Missing data are a common occurrence in real world data collection and have a
significant impact on the conclusions that can be drawn from the data. The main
problem of missing values is that the analysis is impossible or distorted because of the
missing values. To overcome this problem, researchers design appropriate protocols to

minimize the occurrence of missing values and develop effective imputation algorithms
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to impute the missing values. The imputation of missing values as accurately as possible

Is an important data preprocessing task.

In this chapter, a novel method called Decision tree and Sampling based Missing
values Imputation algorithm DSMI [17] is presented and compared with other

imputation algorithms.

2.2 Literaturereview

Imputation of missing values is an important data preprocessing task for improving the
quality of the data. Many missing value imputation algorithms have been proposed for
various applications [19-54]. Some of these methods are: Expectation Maximization
Imputation (EMI) [33], Decision tree based Missing value Imputation (DMI) [31],
combined instance selection with K-Nearest Neighbour Imputation [34], Similarity
based Missing value Imputation (SiMI) [31], k-Decision tree based Missing value
Imputation (kDMI) [30], k-Nearest Neighbour based Imputation (KNNI) [20], Local
Weighted Linear Approximation imputation (LWLA) [27], Framework for Imputing
Missing values Using co-appearance, correlation and Similarity analysis (FIMUS) [29],
and Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing value
Imputation (FEMI) [32].

To impute numerical missing values, the EMI algorithm [33] relies on estimating
the mean and covariance matrix of the dataset. The EMI algorithm begins with an initial
estimate of the mean and the covariance matrix, and iterates until the imputed values
and the estimates of the mean and covariance matrix stop changing appreciably from the
current to the next iteration [33, 55]. The EMI algorithm is only applicable to datasets in
which the missing values are missing at random. The main drawback of this method is
that for imputing the missing value, the EMI algorithm uses information from the whole
dataset and therefore is suitable only for datasets that exhibit strong correlations
between attributes. A Fuzzy c-Means (FCM) algorithm is proposed to impute the

numerical missing data in [90].



Chapter 2 Missing values Imputation

Instead of using information from the whole dataget KNNI method [20] imputes
missing values using k number of similar recordasTethod first finds user-defined k
number of records from the total dataset by ushegEuclidean distance measure. To
impute a numerical missing value, the method @t#lithe mean value of the specific
attribute within the k most similar records of #wtire dataset. If the missing attribute is
categorical, then the method utilizes the mostuesd value of the attribute within the k
most similar records. The simple kKNNI method perferwell on a dataset that has
strong local correlation structure. However, thethnd can be expensive for large
dataset since for each record with missing valué(§pds k number of similar records
by searching the whole dataset. This is the mawback of this method, especially for

large datasets.

Rahman et al. proposed the DMI [31] technique whishs the decision tree and
the EMI algorithm for missing value imputation. Jhargued that the correlations
among attributes within a horizontal partition ofdataset can be higher than the
correlations over the whole dataset. This technigaks as follows: it first divides the
full dataset ([py) into two sub-datasets, one having records witksmg values (Rss),
and the other having records without missing va(llRgmpierd. Then, it builds decision
trees on Rompiete CONSidering the attributes having missing valueDijss as class
attributes. After that, it assigns each record witissing value(s) in fass to the leaf
where it falls in for the tree, which considers #t&ibute that has a missing value for
the record as the class attribute. Finally, it ibégunumerical missing values using the
EMI algorithm and categorical missing values usmagjority class values within the
leaves. The authors showed that DMI performed wethpared with other existing
imputation methods. However, for imputing categalricalues, simple voting is used.
Another more serious problem is that the authorsatodefine how the imputation is
done if the missing values record falls in morentbae leaf; a situation that could occur

if there is more than one missing value in a record

SiMI [31] is an extension of DMI. It uses the deéarsforest algorithm to identify
horizontal segments of a dataset where the redmidsging to a segment have higher

similarity and attribute correlations. It also digs the whole dataset ) into
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Dcomplete@nd Duiss. Then, it builds a decision forest usingdRpete The decision forest
builds a number of trees with leaves and assigeh eacord of [}iss to the most
suitable leaf. After that, SiMI finds the intersecis of the records belonging to the
leaves of the forest. Then, it imputes numericasmnig values using the EMI algorithm

and categorical missing values using the most &etjualues.

The kDMI [30] algorithm imputes missing values ugimvo levels of partitioning.
Like DMI, the kDMI algorithm also employs horizohgzartitioning based on a decision
tree in the first level partitioning. For the seddevel partitioning, the authors use a
BestKNN approach to first find the best value difyksearching all the records of a leaf
and calculating the root mean square error (RMSE)e@non-missing attribute values.
Then, the EMI algorithm is used for imputing nunatidata, and the frequent value of
BestKNN is used for imputing categorical data. Hegre what is not clear is that if all
the attributes of a record are categorical, themeths difficulty in knowing how the
RMSE can be calculated using BestKNN. It is alsbabear how the imputation would

be done if the missing values record falls in ntbe: one leaf.

The FIMUS technique [29] takes the imputation decisbased on the co-
appearances of the values, the correlations betagebutes, and similarity of values
belonging to an attribute. In this method, the atglshow that it is possible to achieve a
better imputation result by considering availabt&ilautes values and their similar
values. Here, similarity (1st level and 2nd leviatikarities) is calculated using the co-
occurring of attribute values between the recortisa alataset [56]. The 1st level
similarity is calculated using the co-occurrenceatifibute values of the records, and
the 2nd level uses the “neighbours of neighbouestiae direct neighbours” method.
This algorithm uses similarity and co-appearandbéeasame time. The main problem of
this algorithm is its computational complexitythie number of records in the dataset is
increased, then it needs massive computation foitesity graphs. Another problem is
that to impute values, similarity values dependhmnco-appearance values (in FIMUS,
similarity value is multiplied by the co-appeararnwadue). If there is no co-appearance
value, then the associated similarity value hasmpact to impute missing values. They

validate the imputation accuracy using the RMSE ladéx of agreement. However, it
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is not known how validation can be done for categorical attributes values using these

evaluation criteria.

The Genetic Algorithm (GA) is also used to impute missing values. The Fuzzy C-
means (FCM) algorithm exploits GA to estimate the set of parameters [19]. This
technique imputes the missing values two times. During the first time, the missing value
is imputed using support vector regression and during the second time using FCM with
a set of user-defined parameters. Then, these two sets of imputed values are compared
to test their mutual agreement. If they are similar, then the missing value imputation is
stopped otherwise the GA algorithm is applied to re-estimate the parameters, and this

process is continued until these two parameters are not similar.

Gautam et al. proposed two imputation methods: the CounterPropagation Auto-
Associative Neural Network (CPAANN) based imputation method and a hybrid of
CPAANN along with Grey System Theory (GST) i.e. Grey + CPAANN imputation
method [24]. There are three layers in the CPAANN: the input layers, the hidden layers,
and the output layers. The input nodes are fully connected to the hidden nodes and the
hidden nodes, in turn, are fully connected to the output nodes. Additionally, all the
hidden nodes are connected to one another. In the CPAANN model, the given dataset is
divided into two parts: the complete dataset and the incomplete dataset. This model is
trained using the complete dataset. After that, it makes the mean imputation on the
incomplete dataset and sends it to the trained CPAANN for performing the test using
these mean imputed incomplete records. The Grey + CPAANN model is almost the
same as the CPAANN model. The given dataset is divided into complete and
incomplete datasets. After that, it trains the CPAANN model using the complete dataset.
The difference between Grey + CPAANN and CPAANN is that instead of mean
imputation, the Grey + CPAANN method makes the distance based nearest neighbour

imputation [57]. Then, testing is performed as per the CPAANN model.

In many real world datasets, all data are not equally informative and some data
points can be considered as noisy points. Instance selection means some data points are
removed, but the integrity of the original dataset can still be maintained. Tsai et al. [34]

proposed a missing value imputation algorithm combined instance selection with k-
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Nearest Neighbour imputation (kNNI). The authoresent four approaches by
combining instance selection and imputation. In ftivst combination process,
imputation is performed first and then instancestbn is used to reduce the dataset. In
this approach, the training dataset (D) is divid&o two parts: the complete dataset
(D_complete) and the incomplete dataset (D_incotepl@hen, using the kNNI, the
imputation is done into D_incomplete and producesw complete training dataset D'.
Next, the instance selection algorithm is exectwegtmove the unusual instances from
D' and makes a new reduced dataset called D1.Iimatlassifier is trained by D1 and
tested by a given testing dataset to examine thssifier performance. In the second
combination, instance selection is performed frsti missing value imputation is done
next. Instance selection is performed over D_coteple make a new complete reduced
dataset D_complete'. After that, the imputatiorpésformed over D_incomplete and
subsequently, a new complete dataset D2 is prodkaedlly, a classifier is trained by
D2 and tested by a given testing dataset to exaitsirdassifier performance. The third
and fourth combination processes are based on &thge instance selection process.
In the third combination, instance selection isfgraned again over D1 and a new
reduced training dataset D3 is obtained. In thetfiocombination, instance selection is
performed again over D2 and a new reduced traigiaaset D4 is obtained. The
authors determine the missing value imputation @guby the classification accuracy
of the K-NN and the linear SVM classifiers. The p8oalgorithm [58] is used to

perform the instance selection.

A Fuzzy Expectation Maximization and Fuzzy Clusigrbased Missing value
Imputation (FEMI) algorithm is proposed by Rahmaale[32] to impute the numerical
and categorical attributes values. This algoritharks as follows: at first, all numerical
attributes of the dataset are normalized to beiwdhrange between 0 and 1. Then, the
dataset is divided into two partscThaving no missing values) and (daving missing
values). In the next step, it finds the membersiggrees of all records ofdland O
with all clusters using the General Fuzzy C-Med&B(M) algorithm [29]. To impute
the numerical missing values the authors proposEdzay Expectation Maximization

(FuzzyEM) algorithm. This FuzzyEM algorithm is a diftcation of an existing EM
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algorithm [33]. The idea of this algorithm is that the missing values are imputed using
the mean of the membership degrees of all clusters. To impute the categorical missing
values of the cluster, a vote is taken for all domain values of this cluster and the value
having the maximum vote is considered to the imputed value. The vote is calculated for
a value by multiplying its confidence degree in terms of its cluster and the membership
degree. The confidence degree of an attribute value in a cluster is the sum of the
membership degrees for the records, having this attribute value. The authors determine
the missing value imputation accuracy by using two evaluation criteria: RMSE and
Mean Absolute Error (MAE). However, it is not known how validation can be done for

categorical attribute values using these two evaluation criteria.

An automated data imputation model based on a three layered artificial neural
network is used for missing value imputation [58]. Here, the numbers of neurons in both
the input and output layers are equal to the number of attributes of the full dataset. By
taking some available values as missing values, the neural network is trained. This
automated data imputation model finally imputes the missing values using the trained

network.

2.3 Proposed DSMI algorithm

The proposed DSMI algorithm [17] is based on decision trees. In DSMI algorithm,
similar to other decision tree-based imputation algorithms, two datasets are created from
the original dataset. The first dataset, denoted as the complete dataset, contains records
with no missing values. The second dataset, denoted as incomplete dataset, contains
records with one or more attributes values missing, i.e. we called them missing records.
Then, for each missing attribute, a decision tree that uses the missing attribute as class
attribute is constructed from the complete dataset. Each missing record is then assigned
to the corresponding tree’s leaf. Once a missing record is assigned to a leaf node, the
missing values in the missing record are imputed using records that are found in the leaf

node.
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The algorithm is illustrated here with a toy exaenf? stands for missing value).
Table 2.1 shows a full datasetdp The full dataset (Ry) is first divided into two sub-
datasets. One subset contains records with missilugs (Cyiss) and the other without
missing values (Bbmpletd- If the value of an attribute is numerical, weagtize it by the
square root of its domain size. Tables 2.2-2.3 skimvresulting Romplete aNd Duiss
respectively. Next, a set of decision trees witlisslattributes given by the attributes
having missing values in s are built using C4.5 [60, 61] algorithm using net
from Dcompiete FOr example, three attributes inyif, i.e. Driver status, Passenger
number, and Accident address, have missing valuekthree decision trees are created

based on these class attributes, as shown in Bigute?.3.

Table 2.1. Full datasetdy,

Record  Driver status Weather Passenger Accident Injury severity
condition number address

R1 Drunk Good 3 Sanders Kill

R, Drunk Good 4 ? Kill

R3 Drunk Good 2 Glendale No injury

R4 Normal Fair 3 Glendale No injury

Rs Normal Fair ? Glendale No injury

Rs ? Good ? Glendale Kill

Table 2.2. Complete datasetdpetewith quantized passenger number

Record  Driver status Weather Passenger Accident Injury severity
condition number address

R1 Drunk Good 3-4 Sanders Kill

Rs Drunk Good 1-2 Glendale No injury

R4 Normal Fair 3-4 Glendale No injury
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Table 2.3. Missing value Datasef;R2 with quantized passenger number

Record  Driver status Weather Passenger Accident Injury severity
condition number address

R2 Drunk Good 3-4 ? Kill

Rs Normal Fair ? Glendale No injury

Re ? Good ? Glendale Kill

Driver status

Drunk Normal

Weather condition Passenger number

Good / >2

Injury severity Glendale
Leaf 3:
Kill Glendale:(1)
R4
Sanders Glendale
Leaf 1: Leaf 2:
Sanders:(1) Glendale:(1)
R1 R3

Figure 2.1. Tree for ‘Accident address’ class
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Driver status

Drunk Normal

Weather condition| | Accident address

Good / Glendale

Injury Severity 3-4
Leaf 6:
Kill No Injury 3-4:(1)
R4
3-4 1-2
Leaf 4: Leaf 5:
3-4:(1) 1-2:(1)
R1 R3

Figure 2.2. Tree for ‘Passenger number’ class

Weather condition

Good Fair
Accident address Passenger number
Sanders Glendale \>2
Drunk Drunk Injury severity
Leaf 7: Leaf 8: No injury
Drunk:(1) Drunk:(1)
R1 R3
Normal
Leaf 9:
Normal:(1)
R4

Figure 2.3. Tree for ‘Driver status’ class
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In Figure 2.1, ‘Leaf 1 Sanders: (1)'Rlenotes one record;Ralls in Leaf 1 which
Is associated with the attribute value ‘SanderdterAthe tree construction step, we
assign each record inyids to the leaf of the tree with the same class attelkas the
missing attribute. For example; Record has ‘Accident address’ attribute value mgss
SO we assign it to the ‘Accident address’ tree.réfoge, R and R records are assigned
to Leaf 1 and Leaf 6, respectively. Records withrenihan one missing values would
fall into multiple leaves. As Rrecord has two missing values, it is assignecdteet
leaves 4, 6, and 8. Once all records jpsPare assigned to the appropriate leaves, each
leaf will consists of records fromdampieteand Duiss that are correlated. Tables 2.4-2.7
show the sets of records in leaves with missingrasc If a record falls into multiple
leaves, the records from all these leaves are guuyio one collection. Therefore, the

set of records associated with &e given by Table 2.8.

Table 2.4. Records in leaf 1

Record  Driver status Weather Passenger Accident Injury severity
condition number address

R, Drunk Good 3 Sanders Kill

R, Drunk Good 4 ? Kill

Table 2.5. Records in leaf 4

Record  Driver status Weather Passenger Accident Injury severity
condition number address

R, Drunk Good 3 Sanders Kill

Rs ? Good ? Glendale Kill
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Table 2.6. Records in leaf 6

Record  Driver status Weather Passenger Accident Injury severity
condition number address

R4 Normal Fair 3 Glendale No injury

Rs Normal Fair ? Glendale No injury

Rs ? Good ? Glendale Kill

Table 2.7. Records in leaf 8

Record  Driver status Weather Passenger Accident Injury severity
condition number  address

Rs Drunk Good 2 Glendale No injury

Rs ? Good ? Glendale Kill

Table 2.8. Aggregated table for record 6 with multiple missing values

Record Driver status Weather Passenger Accident Injury severity
condition number  address

Ry Drunk Good 3 Sanders Kill

Ra Normal Fair 3 Glendale No injury

Rs3 Drunk Good 2 Glendale No injury

Rs Normal Fair ? Glendale No injury

Rs ? Good ? Glendale Kill

To impute the missing values in the missing record, we search for records in the
table which have the maximum number of non-missing attributes in common to the

missing record. Then, the attribute values in these records corresponding to the missing
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attributes in the missing record are taken to be plssible imputed values. For
example, in Table 2.8, Record has three non-missing values but we dogabtany
record matching with these three non-missing val&ss we search instead for two
matching non-missing values and get two recordhl twib matching attributes values:
Ri(Good, Kill) and R(Good, Glendale). For the two missing attributesi(@ status,
Passenger number), the possible imputed values Roamd R records are (Drunk, 3),
and (Drunk, 2), respectively. To decide which plolesimputed values are more likely
for the missing record, we need a measure of thatgfof possible imputed values to
the missing record. Lef denote the affinity degree of the possible imputalies for
the missing record. The next step is to evaluaeathnity degree? for each of the two

possible imputed values (Drunk, 3), and (Drunk, 2).

In our approach, we use two measures to exploittieelations between records
and between attributes values within a record tpute the missing values. The first
measure, called IS measure, computes the cormgatetween attribute values of
different attributes in a record. The second megstalled weighted similarity measure
(S;), computes the similarity between two values ohtinbute in two different records.

These measures are computed as follows.

2.3.1 ISmeasure

We measure the correlation between set of attrsbwiéh non-missing valueg;, and
set of attributes with missing valuem, within a record usindS measure.The IS
measure measures the degree of associations betweeets of attributes values [62,
63]. Let,C = [A,4,,...,A,], and M = [B,,B,,..B,], Where 4,,4,,..4, are the attributes

with non-missing values arB;, B,, ... B,, are the attributes with missing values, then

IS(C.M) = Support(C, M) )
, JSupport(C) x Support(M)
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where support(C,M) = |C,M|/Q, anc|C,M| denotes the number of records that

contain bottC andM, andQ refers to the size of the dataset.

IS measure has several desirable properties [62, 164$ the product of two
important quantities: interest factor and suppaiint. Interest factot is a popular
measure for association like patterns [45, 46] iargkfined to be the ratio between the
joint probability of two variablex andy with respect to their expected probabilities

under the independence assumption.xX_ahdy denote a pair of binary variables, tHen

is defined by
_ Py y)
1) = 56 P @

The dataset that contains these variables can bamatized into a2 x 2
contingency table as shown in Table 2.9. Each wgliresents the four possible

combinations ok andy values.f;; corresponds to the support count for each celilewh
fi+ andf, ; are the marginal sums of row i and column j (fearaple f;, = fi; + fio ).

Then, it can be shown that

I y) = ]fl;fQ 3)

Table 2.9.2 x 2 contingency table for binary variables

y y
X fi1 fio fi+
x fo1 foo fo+
fr1 f+o Q
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However,l in itself could lead to association rule that isici@r-intuitive due to not
considering the support of the association, astediout in [11, 52]. Instead, tH&

measurdS(x, y) takes into accourupport(x, y) = f1/Q:

IS (x,y) = /I(x,y) X% 4)

In addition,|S measure is equivalent to the geometric mean dfidemce of rules

that can be generated from the item-pair i.e.

IS (x,y) = \/confidence(x, y) X confidence(y, x) and this measure does not
depend on data size. Heconfidence (x,y) = P (x,y)/P (x), with P (x) = |x|/n
and |x| is the number of transactions that contxirand n is the total number of

transactions.

2.3.2 Weighted similarity measure

To evaluate how similar two records in the dataset we use the weighted similarity
measureS;;. This weighted similarity measure considers bdi direct relationship
(called ' level similarity) and transitive relationship (eal 2" level similarity)
between two attribute values of an attribute. Tingt Btep in calculating;; between
two attribute values of an attribute is to creatgaph. LetG = (V, E) be a graph created
from the dataset of related records found in tla¢ ¢ a tree, i.e. the set of records in a
table, where the set of verticésare given by the set of attribute values in theglzt
and an edge [J E isdrawn between two vertices when both attributeieslappear in a
record. Thens;; is the weighted sum of thg/; (1% level similarity) ands;; (2" level

similarity) between two attribute values of anibtite
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whereC; and(C, are weights witlC; + C, = 1.

The £'level similarity,S;; is given by

o k=1 Gk X Qg
Yo A0 xd()

(6)

where a;, =l if | edges occur between verticeandk, and zero otherwisey is the
number of vertices in the graph addi) is the degree of vertek Note thatS;;
effectively measures the proportion of common neaghis of vertices; andv; against

all direct neighbours of the two vertices. If teotvertices have all their neighbours in

common, thers;; has a maximum value of 1. If the two vertices dn share any

common neighbours, thes; is zero.

On the other hand, thé®evel similarity, Sij measures the transitive relationship
for two attribute values of an attribute that am directly connected to common
neighbours but are connected to pair of attribtiiesv,, andv, who have 1 level
similarity S,, greater than a user defined threshdld The 29 level similarity Sijis
equal to the % level similarity betweery; and v; computed from the merged graph

wherev,, andv, are merged into a common vertex.

Finally, the weighted similarity measus&R,,, R;) between two recordsyRnd R is
given by averaging the weighted similarity meassigeof each attribute of the two
records [17, 36].

To illustrate howS andS;; are computed, we will use the records in Table 2.8
(presented in Table 2.10 with vertex nodes labdhesh 1 to 10) as an example. Recall
that for the two missing attributes (Driver statBassenger number) in,Rhe possible
imputed values from Rand R records are (Drunk, 3), and (Drunk, 2), respebtivEhe

IS measure for the two records are
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support(Good, kill, Drunk, 3)

ISk, [(Good, kill), (Drunk, 3)] = =
\support(Good, kill) X support(Drunk, 3)

and ISg,[(Good, Glendale), (Drunk, 2)] = 1.

Table 2.10. Aggregated table for record 6 withteenode number assigned

Record Driver status Weather Passenger  Accident Injury severity
condition number address

R1 Drunk (1) Good (3) 3(5) Sanders (7) Kill (9)

Ra Normal (2) Fair (4) 3 (5) Glendale (8) No injurd)

Rs3 Drunk (1) Good (3) 2 (6) Glendale (8) No injuryjl

Rs Normal (2) Fair (4) ? Glendale (8) No injury (10)

Re ? Good (3) ? Glendale (8) Kill (9)

24



Chapter 2 Missing values Imputation

Figure 2.4: Graph constructed from Table 2.10

Next, to compute the weighted similarity measure between two records, we need to
first calculateS;; for Rs from Table 2.10 and the corresponding graph in Figure 2.4.
From the graph in Figure 2.4, we can see that nodes 7 and 8 have nodes 1, 5, 9, 3 as

common neighbours, hence the lgvel similarity between nodes 7 and 836 =

JAXD+/(@AxD)+/(1x1)+/(1x2)
V4x13

similarities for all node pairs within the graph &;, = 0.512(neighbour nodes 5, 8,
10), S3, = 0.528 (neighbour nodes 5, 8, 10¥5, = 0.707 (neighbour nodes 1, 3, 8,
10), and Sg,, = 0.633 (neighbours nodes 1, 3, 5, 8). L&&0.50, ;=0.6, C;=0.4. In

= 0.613. Similarly, we can calculate the'1level

Figure 2.4, we connect nodes havirigdvel similarities greater than the threshlty
dotted lines. For easier visualization of the vertices within the same record and their

associated edges, different colours are used.
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To calculate the™ level similarity S;; between nodesandj, we find all pairs of

nodes k,I) common to nodesandj and withS,;, > T. For nodes 7 and 8, we have the
following neighbour pairs (1,2), (3,4), (5,6), (9,10, and we have

S7g = ‘/(1X3)+‘/(1X43/%/(1X2)+‘/(1X4)=0.9909. Similarly, for nodes 9 and 10, the

neighbour pairs are (1,2), (3,4), (5,6), (7,8), asf, =0.9902. The overall

similarities, S between all attribute values of,(Rs) and (R, Rs) are now given by

([3=3]+ [7—-8]+ [9-9))

S(Ry,Rg) =
(R1, Re) number of attributes
1+ [C;%0.613 + C, x0.9909] + 1
_arla 2 2 1t D _ 9214 (7)
S(R3,Rg) = 0.9253 (8)

The affinity degree for the possible imputed values is given by the averagd 8f the
andS;; measures computed for each possible imputed values. For (Drunk, 3) from R
the affinity degree is given by(Drunk, 3) = (0.9214+1)/2 = 0.9607. For (Drunk, 2)
from Rs, J(Drunk, 2) = (0.9253+1)/2 = 0.9626. Finally, the actual imputed value is
obtained by random sampling from the list of possible imputed values based on their
affinity degrees. For example, since (Drunk, 3) and (Drunk, 2) have affinity degrees of
0.9607 and 0.9626, respectively, their sampling probabilities are 0.4995 and 0.5005,
respectively, and both have these probabilities of been chosen as the actual imputed
values for the missing values ins.RRandom sampling according to affinity degree
ensures that uncertainty and randomness in attribute values are accounted for and helps

to reduce systematic bias in the imputed dataset.
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2.3.3 DSMI algorithm

The DSMI algorithm is presented below.

DSMI Algorithm
Step |: Decompose full dataset into complete and missing values sub-dataggts: D
Dcompletet Dwiss
Step 11: Generate a set of decision trees using C4.5 frepndidiewhere each missing
attribute in Qyiss produces a tree
Step 111: Assign the records in s into leaves of the decision trees and create tables
of related records
Step 1V: Impute missing values
FOR each table DO
FOR each missing record R irDD
Find records in That match with the maximum number of non-missing
attribute(s) in the missing record &d let Noe the number of such records
FOR k=1 to Ndetermine
Ok = possible imputed value(s) from tk¢h matched record
IS« = IS measure computed fox O
S = weighted similarity measure between #th matched record and
missing record R
% = affinity degree foOx
END FOR
Imputed value(s) is obtained by random sampling from the set of possible
imputed values {@...O\} based on the sampling probabilities specified by
the set of affinity degreesf ... 9\ }
END FOR
END FOR
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2.4 Experimental results

2.4.1 Datasets

We do experiment on 43 text files data (Large Truck Crash Causation Study File 1 and
2), two datasets on New York's open data portal (“Motor Vehicle Crash-case
information: 2011” and “Motor Vehicle Crash- individual information: 2011"), and a
dataset of Denver County. The Denver County’s dataset includes accidents in the City
and County of Denver for the previous five calendar years plus the current year to date
(30 June 2014) and has 89194 traffic accident records, in which 1902 records contain
missing values. The Large Truck Crash Causation Study Files have different number of
attributes and 92871 records, in which 3192 records contain missing values. We
removed records having missing values from the datasets so that the datasets only
contain complete records. The four datasets are listed in Table 2.11. As can be seen,

these datasets contain mostly categorical attributes.

Table 2.11. Datasets details

Dataset Number Categorical Numerical As on date
of attributes attributes
complete
records
A total of 43 text 12 February, 2014
files with different
Large Truck Crash Causation Study number of
Files (File 1 and 2) dataset (Truck$9679 attributes in each
[78] file, most of the
attributes (90%) are
categorical
Denver County dataset (Denverp] 87292 13 4 30 June, 2014
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Motor vehicle crash- Case
information: 2011 dataset (Case) 13889 17 1 24 September, 2014
[76]

Motor vehicle crash- Individual
information: 2011 dataset 17858 11 3 24 September, 2014
(Individual) [76]

2.4.2 Evaluation criteria

Our proposed imputation accuracy is evaluated using imputation acquraayg root
mean square error (RMSE) [67]. The RMSE is a frequently used measure of the
difference between values predicted by a model and the values actually observed.
However, RMSE is not appropriate for categorical data as arbitrary value can be
assigned to correct/incorrect imputation. As most of the attributes in our traffic accident
datasets are categorical, we ps&o evaluate categorical imputation accuracy, arg o
use RMSE for the numerical attributes (if any).

Let n be the total number of missing values anlge the total number of correctly

imputed missing value. The accuracy is given by

- ©)

p:

The pranges from 0 to 1, where 1 indicates perfect iaupan.
Let A; be the true value for theth missing valueP; be the imputed value for thie

th missing value, ane, = (P,—A;). The RMSE is given by

RMSE = % n g2 (10)

i=1"%i

The lower the RMSE value, the better the imputation.
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2.4.3 Parameter selection

Our proposed algorithm has three parameters tleat ttebe set. These parameters are:
similarity thresholdT, 1% level similarity weightC;, and 29 level similarity weightc,.
Using imputation accuracy, we analyse the four datasets to select the hesthold
parametefT. The results are shown in Figure 2.5. Likewise, amalyse the different
values ofC;, C, on the four datasets to determine their optimutnezan Table 2.12,
we show the effects of the two parameter valuesliiarent datasets. Based on this
result, we us&€; = 0.60 andC, = 0.40. Note that these results (Figure 2.5 and Table

2.12) are generated on the four datasets wheremmuahattributes are excluded.

Table 2.12. Similarity measure parameters selectgngp

Parameters Datasets

C1 C2 Case Individual Truck Denver
1.00 0.00 0.6233 0.5906  0.6845 0.4925
0.95 0.05 0.6240 0.5904  0.6825 0.5221
0.90 0.10 0.7550 0.6864  0.6912 0.5889
0.85 0.15 0.7560 0.6794  0.7180 0.6851
0.80 0.20 0.7665 0.7776  0.7762 0.6834
0.75 0.25 0.8275 0.7855 0.7941 0.7814
0.70 0.30 0.8899 0.8514  0.8701 0.8210
065 035 0.9612 0.9599 0.9541 0.9598
060 040 0.9782 0.9644 0.9810 0.9566
055 045 0.9538 0.9644 0.9564 0.9245
0.50 0.50 0.8657 0.9648 0.8678 0.8698
0.45 0.55 0.8688 0.9104 0.8698 0.7714
0.40 0.60 0.8004 0.9024  0.8010 0.7802
0.35 0.65 0.7915 0.8846  0.8120 0.6203
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Figure 2.5: Threshold paramef@eion four datasets

244 Missing valuesimulation

We use four types of missing patterns: simple, omagicomplex, and blended [3, 17].
In simple pattern, a record can have at most orssing value. In medium pattern, a
record can have missing values for up to 50 % eftttal number of attributes. In a
complex pattern, a record can have missing valoresd to 80 % of the total number of
attributes. A blended pattern contains 25% rectiasng missing values with simple
pattern, 50% with medium pattern and 25% with carpbattern. For each missing
pattern, we use four missing ratios: 2%, 4%, 8% Hofb. We use two types of missing
models, namely overall and uniformly distributed>(UIn the UD missing model, each
attribute has equal number of missing values. Hawnew the overall model, missing
values are not equally distributed among the aiteiv and in the worst case all missing

values can belong to a single attribute [3, 83].
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In our experiments, we artificially create misswvejues in the dataset by using 4
missing patterns, namely simple, medium, complex lalended, 4 missing ratios i.e.
2%, 4%, 8% and 10%, and 2 missing models, namadyadi and uniformly distributed
(UD). We have altogether 32 missing combinatiofhsmissing ratios x 4 missing
patterns x 2 missing models). For each combinati@ngenerate 20 datasets i.e. in total
we create 640 datasets (32 combinations x 20 datpse combination) with missing
values for each real dataset, as shown in Tab& 2.1

Table 2.13. Missing value simulation

Missing Number of attributes having missing Missing Missing Number of

patterns  values ratios model datasets
for each
pattern

Simple 1 Overall and

Medium Up to 50% 2%, 4%, Uniformly 20

Complex Up to 80% 8% and distributed

Blended  Simple-25%, Medium-50% and 10%

Complex-25%

245 Resultsof categorical missing valuesimputation

For categorical missing value imputation, we corepaur proposed algorithm DSMI
with five imputation methods FEMI [32], FIMUS [29]Grey + CPAANN) [24], DMI
[31], and KNNI [20]. We present the imputation awty of DSMI, FEMI, (Grey +
CPAANN), FIMUS, DMI, and KNNI on the “Motor vehiclerash case information:
2011 dataset”, “Truck crash causation dataset” mi2e County dataset”, and “Motor
vehicle crash individual information: 2011 dataset’Table 2.14, Table 2.15, Table
2.16, and Table 2.17 respectively. Only categomtimibutes are considered here. From
each dataset, we generate 32 combinations of fasimg ratios, two missing models,
and four missing patterns. Each value in theseesald the average of 20 imputation
runs carried out on 20 datasets. In these two saddeld values mark the best
imputation result compare with other imputation heels. From these tables, it can be
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seen that our DSMI imputation method performs significantly better than FEMI,
FIMUS, Grey + CPAANN, DMI and KNNI methods.

Table 2.14. Performance on Motor Vehicle Crash case information: 2011 dataset

Accuracy p)

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI  KNNI
2% Overall Simple 0.9782 0.8301 0.8130 0.8090 0.7110 0.6310
Medium 0.9671 0.8300 0.8160 0.8088 0.7110 0.6210

Complex 0.9634 0.8267 0.8020 0.8082 0.7190 0.6270

Blended 0.9626 0.8260 0.8020 0.8032 0.7190 0.6260

UD Simple 0.9682 0.8300 0.8220 0.8031 0.7110 0.6390
Medium 0.9662 0.8289 0.8030 0.8011 0.7090 0.6280

Complex 0.9622 0.8245 0.8010 0.8001 0.7070 0.6220

Blended 0.9632 0.8240 0.8010 0.8000 0.7060 0.6220

4% Overall Simple 0.9582 0.8262 0.8100 0.8008 0.7095 0.6290
Medium 0.9580 0.8261 0.8160 0.8002 0.7085 0.6270

Complex 0.9530 0.8134 0.8060 0.8001 0.7090 0.6010

Blended 0.9520 0.8104 0.8250 0.8000 0.7070 0.6220

UD Simple 0.9566 0.8200 0.8040 0.7909 0.7010 0.6290
Medium 0.9560 0.8165 0.8080 0.7908 0.7030 0.6260

Complex 0.9540 0.8123 0.8090 0.7902 0.7080 0.6020

Blended 0.9540 0.8103 0.8070 0.7901 0.7060 0.6210

8% Overall Simple 0.9562 0.8101 0.8080 0.7903 0.6980 0.6140
Medium 0.9560 0.8100 0.8080 0.7902 0.6960 0.6150

Complex 0.9480 0.8023 0.8040 0.7900 0.6930 0.6144

Blended 0.9500 0.7989 0.8020 0.7825 0.6910 0.6160
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UD Simple 0.9542 0.8078 0.8060 0.7820 0.6902 0.6140
Medium 0.9510 0.8070 0.8070 0.7808 0.6900 0.6040
Complex 0.9470 0.8060 0.8040 0.7730 0.6823 0.6050
Blended 0.9480 0.8045 0.7920 0.7705 0.6820 0.6140

10% Overall Simple 0.9500 0.7967 0.7810 0.7800 0.6805 0.6003
Medium 0.9480 0.7960 0.7910 0.7701 0.6801 0.6000
Complex 0.9450 0.7923 0.7840 0.7645 0.6789 0.5956
Blended 0.9470 0.7840 0.7835 0.7640 0.6723 0.5923

UD Simple 0.9510 0.7831 0.7810 0.7605 0.6720 0.5980
Medium 0.9460 0.7810 0.7800 0.7600 0.6703 0.5960
Complex 0.9490 0.7800 0.7840 0.7565 0.6612 0.5879
Blended 0.9470 0.7800 0.7845 0.7510 0.6610 0.5870

Table 2.15. Performance on Large Truck Crash Causation dataset

Accuracy p)

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI
2% Overall Simple 0.9810 0.9233 0.9100 0.9089 0.7980 0.7190
Medium 0.9792 0.9230 0.9110 0.9088 0.7860 0.7100

Complex 0.9762 0.9210 0.9150 0.9070 0.7950 0.7070

Blended 0.9742 0.9201 0.9160 0.9050 0.7940 0.7050

UD Simple 0.9778 0.9189 0.9090 0.9007 0.7970 0.7010
Medium 0.9748 0.9180 0.9080 0.9001 0.7980 0.7000

Complex 0.9726 0.9067 0.8960 0.8823 0.7900 0.6987

Blended 0.9720 0.9023 0.8960 0.8803 0.7890 0.6980
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4% Overall Simple 0.9752 0.9001 0.8860 0.8780 0.7920 0.6930
Medium 0.9736 0.8980 0.8860 0.8778 0.7730 0.6910

Complex 09714 0.8930 0.8110 0.8770 0.7630 0.6815

Blended 09726 0.8904 0.8190 0.8777 0.7620 0.6844

UD Simple 0.9730 0.8803 0.8130 0.8585 0.7530 0.6830

Medium 0.9730 0.8745 0.8140 0.8580 0.7510 0.6770

Complex 0.9702 0.8503 0.7690 0.85005 0.74900.6730

Blended 0.9704 0.8500 0.7680 0.8401 0.7480 0.6720

8% Overall Simple 0.9670 0.8456 0.8140 0.8301 0.7490 0.6710
Medium 0.9660 0.8405 0.8160 0.8300 0.7460 0.6760

Complex 0.9640 0.8400 0.8080 0.8204 0.7330 0.6610

Blended 0.9610 0.8378 0.8150 0.8190 0.7320 0.6690

UD Simple 0.9620 0.8320 0.8020 0.8109 0.7280 0.6600

Medium 0.9620 0.8301 0.8140 0.8100 0.7250 0.6580

Complex 0.9568 0.8300 0.8030 0.8056 0.7210 0.6510

Blended 0.9584 0.8209 0.8040 0.8050 0.7200 0.6420

10% Overall Simple 0.9554 0.7989 0.8040 0.8006 0.7140 0.6370
Medium 0.9524 0.7980 0.8030 0.8001 0.7130 0.6360

Complex 0.9510 0.7823 0.7900 0.7978 0.7100 0.6300

Blended 0.9522 0.7820 0.7960 0.8000 0.7100 0.6280

UD Simple 0.9532 0.7800 0.7910 0.7989 0.7020 0.6270

Medium 0.9514 0.7749 0.7800 0.7856 0.7010 0.6150

Complex 0.949 0.7740 0.7940 0.7700 0.6980 0.6140

Blended 0.9460 0.7706 0.7820 0.7673 0.6940 0.6010
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Table 2.16. Performance on Denver County dataset

Accuracy p)

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI
2% Overall Simple 0.9671 0.8267 0.8009 0.8045 0.7145 0.7267
Medium 0.9649 0.8261 0.8004 0.8041 0.71350.7261

Complex 0.9625 0.8250 0.8001 0.8038 0.7130 0.7260

Blended 0.9617 0.8187 0.8000 0.8031 0.7009 0.7255

UD Simple 0.9621 0.8170 0.7923 0.8003 0.7007 0.7251
Medium 0.9620 0.8104 0.7920 0.8002 0.7003 0.7250

Complex 0.9519 0.8101 0.7919 0.7980 0.7002 0.7105

Blended 0.9511 0.8100 0.7910 0.7935 0.7000 0.7100

4% Overall Simple 0.9598 0.8262 0.8104 0.8008 0.6104 0.7114
Medium 0.9580 0.8261 0.7934 0.8002 0.6104 0.7114

Complex 0.9575 0.8134 0.7932 0.8001 0.6004 0.6124

Blended 0.9570 0.8104 0.7904 0.8000 0.6005 0.6114

UD Simple 0.9562 0.8200 0.7804 0.7909 0.6105 0.6324
Medium 0.9550 0.8165 0.7703 0.7908 0.6405 0.6225

Complex 0.9548 0.8123 0.7604 0.7902 0.6105 0.6125

Blended 0.9545 0.8103 0.7103 0.7901 0.6105 0.5126

8% Overall Simple 0.9531 0.8009 0.7831 0.7819 0.6987 0.6645
Medium 0.9522 0.8011 0.7820 0.7816 0.6976 0.6621

Complex 0.9519 0.8002 0.7810 0.7811 0.6902 0.6610

Blended 0.9447 0.8000 0.7801 0.7810 0.6900 0.6645

UD Simple 0.9511 0.7989 0.7800 0.7801 0.6873 0.6531
Medium 0.9501 0.7981 0.7767 0.7800 0.6833 0.6511

Complex 0.9424 0.7979 0.7734 0.7787 0.6821 0.6501

Blended 0.9420 0.7971 0.7732 0.7776 0.6819 0.6500
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10% Overall Simple 0.9494 0.7838 0.7809 0.7754 0.6845 0.6332
Medium 0.9465 0.7831 0.7802 0.7743 0.6765 0.6311

Complex 0.9461 0.7830 0.7667 0.7523 0.6671 0.6307

Blended 0.9454 0.7823 0.7613 0.7521 0.6617 0.6302

UD Simple 0.9405 0.7821 0.7606 0.7465 0.6610 0.6300

Medium 0.9403 0.7811 0.7604 0.7609 0.6607 0.6209

Complex 0.9401 0.7808 0.7601 0.7402 0.6603 0.6205

Blended 0.9400 0.7765 0.7600 0.7389 0.6601 0.6200

Table 2.17. Performance on Motor Vehicle Crastividual information: 2011 dataset

Accuracyf

Missing combination DSMI  FEMI FIMUS Grey+CPAANN DMI KNNI
2% Overall Simple 0.9720 0.8610 0.8435 0.8417 0.7609 0.7308
Medium 0.9710 0.8603 0.8430 0.8410 0.7600 0.7301

Complex 0.9654 0.8545 0.8403 0.8405 0.7521 0.7274

Blended 0.9650 0.8522 0.8400 0.8501 0.7511 0.7217

UD Simple 0.9701 0.8511 0.8387 0.8433 0.7506 0.7301
Medium 0.9680 0.8510 0.8376 0.8423 0.7502 0.7234

Complex 0.9665 0.8504 0.8325 0.8413 0.7456 0.7205

Blended 0.9650 0.8503 0.8321 0.8410 0.7450 0.7201

4% Overall Simple 0.9651 0.8500 0.8302 0.8405 0.7522 0.7054
Medium 0.9612 0.8467 0.8301 0.8403 0.75100.7034

Complex 0.9605 0.8432 0.8300 0.8400 0.7423 0.7004

Blended 0.9601 0.8413 0.8300 0.8398 0.74100.7001

UD Simple 0.9603 0.8410 0.8298 0.8378 0.7445 0.6704
Medium 0.9600 0.8407 0.8290 0.8370 0.7424 0.6700
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Complex 0.9587 0.8403 0.8265 0.8319 0.7414 0.6623

Blended 0.9672 0.8402 0.8245 0.8310 0.7410 0.6603

8% Overall Simple 0.9634 0.8380 0.8226 0.8311 0.7401 0.6601
Medium 0.9632 0.8365 0.8217 0.8310 0.7400 0.6600

Complex 0.9622 0.8356 0.8206 0.8307 0.7372 0.6453

Blended 09611 0.8316 0.8202 0.8274 0.7327 0.6413

UD Simple 0.9605 0.8311 0.8201 0.8223 0.7317 0.6512

Medium 0.9604 0.8310 0.8201 0.8221 0.7302 0.6500

Complex 0.9602 0.8304 0.8167 0.8204 0.7256 0.6434

Blended 0.9601 0.8302 0.8157 0.8201 0.7203 0.6423

10% Overall Simple 0.9548 0.8156 0.8108 0.8176 0.7204 0.6406
Medium 0.9540 0.8154 0.8106 0.8174 0.7203 0.6402

Complex 0.9535 0.8107 0.8101 0.8056 0.7187 0.6345

Blended 0.9505 0.8100 0.8073 0.8055 0.7145 0.6314

UD Simple 0.9502 0.8098 0.8009 0.8001 0.7200 0.6321

Medium 0.9501 0.8030 0.8010 0.7987 0.7134 0.6309

Complex 0.9445 0.8000 0.7945 0.7927 0.7032 0.6230

Blended 0.9441 0.7976 0.7910 0.7821 0.7003 0.6210

We present the result for the four traffic acciddatasets on all 8 combinations of
missing ratios and missing models with the simpiesing pattern in Figure 2.6 and
medium missing pattern in Figure 2.7. Here, pertoroe is evaluated with 95%
confidence levels. Figure 2.8 presents the resulthfe four traffic accident datasets on
4% missing ratio and 8 missing combinations of mgpatterns and missing models

with 95% confidence levels.
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Figure 2.6. Aggregated Performangg ¢n four datasets in terms of “simple” missingtgat with
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confidence level 95 percent

Figure 2.7 shows the result for the four trafficcident datasets on all 8
combinations of missing ratios and missing modadth wthe medium missing pattern.

Here, performance is evaluated with 95% confiddecels.

Figure 2.8 presents the result for the four traffacident datasets on 4% missing
ratio and 8 missing combinations of missing padeand missing models with 95%

confidence levels.
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Figure 2.8. Aggregated Performangg ¢n four datasets in terms of “4%” missing ratio with

confidence level 95 percent

Figure 2.9 presents the average performance indicators (for 32 missing combinations)
for each dataset. It is clearly shown that DSMI performs better than the five existing

algorithms. From this graph, it can be seen that our DSMI imputation method performs
significantly better than FEMI, FIMUS, Grey + CPAANN, DMI and KNNI methods.

a7



Chapter 2 Missing values Imputation

1.000 -+

0.800
H DSMI
® FIMUS
0.600 uDMmI

B KNNI

Performance (p)

m FEMI

0.400 m Grey+CPAANN

0.200

Case Individual Truck Denver

Figure 2.9. Performance) comparison on four datasets

24.6 Resultsof numerical missing valuesimputation

For numerical missing value imputation, we presaetRMSE value of DSMI, FEMI
[32], FIMUS [29], (Grey + CPAANN) [24], DMI [31], ®I [33] and KNNI [20] on the
dataset of “Motor vehicle crash individual inforneat 2011” in Table 2.18,
considering the imputation accuracy for the threenerical attributes of this dataset.
We aggregate the results based on four missingsrativo missing models, and four
missing patterns. In the table, bold values maekitst imputation result compare with
other imputation methods. From the table, it cansben that our DSMI imputation
method performs significantly better than FEMI, RI®, (Grey + CPAANN), DMI,
EMI and KNNI methods.
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Table 2.18. Performance (RMSE) on Motor Vehicle Crash individual information
dataset

RMSE

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI  EMI KNNI
2% Overall Simple 0.0930 0.1090 0.1120 0.1102 0.1190 0.1580 0.1320
Medium 0.0930 0.1091 0.1130 0.1102 0.1200 0.1590 0.1340

Complex 0.0970 0.1095 0.1135 0.1105 0.1210 0.1600 0.1390

Blended 0.0960 0.1099 0.1140 0.1109 0.1220 0.1610 0.1380

UD Simple 0.1041 0.1105 0.1120 0.1110 0.1220 0.1590 0.1360
Medium 0.1042 0.1106 0.1140 0.1121 0.1230 0.1600 0.1340

Complex 0.1060 0.1110 0.1150 0.1126 0.12300.1610 0.1390

Blended 0.1050 0.1112 0.1150 0.1128 0.1240 0.1610 0.1400

4% Overall Simple 0.0938 0.1140 0.1130 0.1131 0.1210 0.1640 0.1380
Medium 0.0940 0.1142 0.1130 0.1132 0.1240 0.1660 0.1400

Complex 0.1050 0.1144 0.1145 0.1141 0.1260 0.1670 0.1460

Blended 0.1054 0.1148 0.1150 0.1151 0.1280 0.1660 0.1480

UD Simple 0.1040 0.1150 0.1140 0.1161 0.1230 0.1680 0.1400
Medium 0.1041 0.1152 0.1160 0.1165 0.1230 0.1680 0.1410

Complex 0.1051 0.1180 0.1170 0.1171 0.1290 0.1710 0.1450

Blended 0.1051 0.1182 0.1175 0.1175 0.1280 0.1720 0.1490

8% Overall Simple 0.1041 0.1201 0.1145 0.1181 0.13100.1730 0.1390
Medium 0.1042 0.1202 0.1160 0.1186 0.13100.1740 0.1420

Complex 0.1058 0.1210 0.1190 0.1185 0.13300.1810 0.1490

Blended 0.1059 0.1212 0.1198 0.1196 0.1350 0.1820 0.1500

UD Simple 0.1041 0.1230 0.1185 0.1201 0.1330 0.1800 0.1400
Medium 0.1043 0.1235 0.1195 0.1205 0.1320 0.1840 0.1440

Complex 0.1060 0.1241 0.1200 0.1210 0.1380 0.1860 0.1520
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Blended

Overall Simple
Medium
Complex
Blended

UD Simple
Medium
Complex
Blended

0.1061

0.1043
0.1042
0.1059
0.1060
0.1045
0.1047
0.1062
0.1064

0.1255

0.1261
0.1265
0.1251
0.1271
0.1280
0.1286
0.1288
0.1290

0.1210

0.1170
0.1180
0.1230
0.1240
0.1190
0.1200
0.1250
0.1260

0.1246

0.1243
0.1265
0.1266
0.1271
0.1281
0.1286
0.1288
0.1291

Missing values Imputation

0.1360 0.1880

0.1330 0.1870
0.1360 0.1880
0.1400 0.1910
0.1410 0.1900
0.1390 0.1890
0.1400 0.1900
0.1470 0.1930
0.1480 0.1960

0.1560

0.1470
0.1480
0.1610
0.1640
0.1490
0.1520
0.1690
0.1720

We compare the RMSE value for the numerical missing values in Figure 2.10. We

present the overall average (for 32 missing combinations) of RMSE for DSMI, FEMI,
(Grey + CPAANN), FIMUS, DMI, KNNI and EMI on all four datasets. This result is
generated on four datasets where categorical attributes are excluded.
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Figure 2.10. Performance comparison for numerical imputation on four datasets using
RMSE

2.4.7 Execution time comparison

In Table 2.19, we present the average computation time in seconds for 640 datasets (32
combinations x 20 datasets per combination) for each natural dataset described in Table
2.11. The configuration of our machine is Intel® Core™ i5-3340M CPU @ 2.70GHz,
with 8GB RAM. Of the seven algorithms, DSMI, FIMUS, FEMI, (Grey + CPAANN),

and DMI are comparable in computation time, although DSMI takes slightly less time
than FIMUS, FEMI, (Grey + CPAANN) but more time than DMI. On the other hand,
EMI and KNNI are significantly faster, especially for the big datasets. Although our
algorithm needs higher computation time compared to EMI and KNNI, better
imputation accuracy generally has a higher priority in missing value imput@@pn [

We now analyse complexity for DSMI algorithm. We consider that theremare
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attributes with missing values over the whole data set mwitcordsn; records with

one or more missing values, andrecords ifc = n - n) with no missing values. DSMI
uses the C4.5 algorithm to build decision trees in the complete regor@ike C4.5
algorithm has a complexity @(n.n?). Let, L is the maximum number of records in a
leaf. The weighted similarity measure calculates in each leaf and the complexity is
O(nJL). Therefore, the overall complexity is Q(n.nv)).

Table 2.19. Average execution time of different techniques (in seconds)

Dataset DSMI FIMUS  DMI EMI KNNI  FIMUS  FEMI Grey+

CPAANN

1162.232 1181.41 1000.0190.189 92.193 1181.41 1191.101378.61

Denver County | 1001.3011113.230 901.240 88.182 89.456 1113.2301003.13 1110.10

10.294 14.403 8.023 5.878 5.001 14.403 18.5 16.10

Individual 10.900 15.001 8,001 5.671 4908 15.001 11.02 13.01

2.5 Conclusion

In this chapter, a brief overview of existing algorithms proposed by researchers for
missing values imputation is presented. The literature review reveals that most research
in this area is targeted at missing value imputation of numerical data and there is still a
lack of research being done for missing values imputation of categorical data. We
describe several recent missing value imputation algorithms that could handle
categorical data and pointed out their deficiencies before introducing our proposed
missing imputation method, called DSMI, to handle categorical missing values in traffic
accident data. There are four stages in the DSMI algorithm. The algorithm first utilizes
decision trees to find the set of correlated records. The missing values are then imputed

from these records by exploiting the correlation between missing and non-missing
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attributes within a record using the IS measure, as well as the direct and transitive
correlations of attribute values across two records using a weighted similarity measure.
Moreover, to handle the inherent uncertainty seen in real data, our algorithm imputes
the missing values based on sampling from a list of potential imputed values based on

their degree of affinity.

We presented extensive experimental results on four large publicly available
traffic accident datasets, in which a large number of attributes are categorical.
Comparisons with a number of state-of-the-art missing value imputation algorithms
performed and our experiments indicated that the proposed algorithm significantly

outperformed all existing algorithms.
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Chapter 3: Noisy values Detection and Correction

This chapter describes the second part of the research, which is on noisy values
detection and correction. The introduction about noisy values is discussed in Section
3.1. In Section 3.2, the existing well-known noisy values detection and correction
algorithms are reviewed and analysed. Section 3.3 presents the proposed noisy values
detection and correction algorithm NoiseCleaner in detail. Section 3.4 addresses the
performances of NoiseCleaner and Section 3.5 draws the conclusions. The content of

this chapter has largely been submitted for publication

3.1 Introduction

Real world data are often corrupted by noise and are generally noisy and inconsistent
[48]. This noise occurs due to errors in data collection, storage, and processing. If an
organization does not take extreme care during data collection, then approximately 5%
or more noisy data could be introduced to a dataset [69]. The detection and correction of
noisy values are especially important in view of today’s massive datasets, where the
emphasis is often placed on the volume rather than the quality of the data. Noisy data
badly affect the results of any data analysis. The presence of noisy values reduces the
quality of the analysis models learned from the data and weakens their predictive or
descriptive performance. Moreover, these analysis models would become overly

complex in order to accommodate such noise.

! Rupam Deb, Alan Wee-Chung Liew, “Noisy Values Detection and Correction of Traffic
Accident Data”, submitted to Information Sciences.
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In order to improve the quality of the traffic adent data, raw data is often
preprocessed and cleansed before being analysedtifythg and correcting noisy
values is an important goal of data cleansing aegdrpcessing.

In this chapter, we proposed a novel data cleansigitnod called NoiseCleaner for
detecting noisy attributes values and predictirgjrthorrect values on traffic accident

datasets.

3.2 Literaturereview

Identification of noisy data is an important dategrocessing task for improving data
quality. Many noise detection algorithms have bpesposed for various applications
[3, 16, 58, 70-74, 86-89]. Among them, HCleaner] [NOISERANK [72], Polishing
method [73] and Error Detection and Impact-sensitivstance Ranking (EDIR) [16]

are some well-known noisy value detection algorghm

In HCleaner [74], data objects that are irrelevantonly weakly relevant are
considered as noise. HCleaner is based on the gbo€dyperclique patterns which
consist of objects that are strongly similar toteather. In HCleaner, every pair of
objects within a hypercliqgue pattern is guaranteetiave a cosine similarity above a
certain threshold. The key idea behind this meilsdtie use of hyperclique patterns as
a filter to eliminate data objects that are nohbtigconnected to other data objects in the

dataset.

The polishing method [73] is tolerant of some amafmoise in the data. Whereas
filtering eliminates the noisy elements from theput polishing corrects the noisy
elements rather than removing them. This methodnass that there is some pattern of
relationship among the different components of taskt. Therefore, except for totally
irrelevant attributes, each attribute would at idmesrelated to some extent to the target
class. This method takes advantage of the interdipey between the components of a
dataset to identify the noisy elements and suggegstopriate replacements. There are
two stages in the polishing method: the predictitage and the adjustment stage. In the
prediction stage, elements in the data that arpestsd of being noisy are identified
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together with their nominated replacement values. In the adjustment stage, this method

selectively incorporates the nominated changes into the dataset.

Sluban et al. [72] proposed an ensemble-based class noise detection method,
NOISERANK, and a method for visual performance evaluation of class noise detection
algorithms in the precision-recall space, named VIPER. NOISERANK is an expert-
guided noise detection method. The user inspects the detected noisy instances and
decides whether they are interesting outliers which could lead to new insights in domain
understanding, erroneous instances which should be removed, or instances with minor
corrected errors to be reintroduced into the dataset. Four different classification filters
are used in this method for detecting noisy instances in data. The classifiers are Naive
Bayes; Random Forest with 500 decision trees (RF500); Support Vector Machine; and
Neural Network. For the Random Forest classifier, two variants of the High Agreement
Random Forest noise detection algorithm (HARF-70 and HARF-80) perform the best.
The classification filter is performed in a cross-validation manner, i.e. using repeatedly
nine folds for the training of a classifier and one complementary fold for class
prediction where the incorrectly classified instances are considered to be noisy.
NOISERANK also uses a saturation-based approach for noise filtering, called the
saturation filter to determine the noisy instances. A saturation filter is constructed into
two stages. The first stage is the saturation test. It first computes the complexity of the
classification model for the given training set, and then it iteratively excludes one
training example and computes the complexity of a classification model induced from
the rest of the training examples. The examples which have the greatest effect on
reducing the complexity of the classification model by their exclusions are labelled as
the noisiest and are passed on to the second stage. The second stage, the noise filter,
randomly chooses one from the noisiest examples and excludes it from the training set,
while the other examples are returned to the example set. This is repeated as long as the
saturation test finds noisy examples, meaning that a saturated subset has not yet been
obtained. VIPER addresses the noise detection performance directly by measuring the

precision, recall and the F-measure of different noise detection algorithms on the data
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with known or injected noisy instances. It presehesvisual performance evaluation in

the precision-recall space.

Error Detection and Impact-sensitive instance Ramk(EDIR) [16] locates
erroneous instances and attributes and ranks sugpimstances based on their impact
on system performance. At first, EDIR trains a thenark classifiefT from the noisy
datasetD. The instances that cannot be classifiedThgre treated as suspicious and
forwarded to a subsé& Each instance contaimsattributesA;, A, ..., A and each
attribute Ai hasV, possible values. To rank instancesSnEDIR uses an impact
measure based on the information-gain ratio. Lie polishing method, EDIR also
changes the attribute value to correctly clas$igyrecord. However, EDIR differs from
the polishing method in several aspects. Unlikepibleshing method, EDIR can change
two or three attributes values at a time if a stisps record remains misclassified. The
record is stored separately if it remains suspgi@ven after changing all combinations

of the two or three values.

The co-appearance based Analysis for Incorrect fdecand Attribute-values
Detection (CAIRAD) [71] algorithm exploits the c@@earance between attributes
values to detect noisy values of a dataset. Tactiet@sy values, the method generates a
co-appearance matrix from the dataset and compuntexpected co-appearance value
for an attribute value. If the value from the cgagrance matrix and the expected co-
appearance value are the same for an attributee \takn this value is declared as a

clean value; otherwise it is flagged as noisy.

The RDCL method [70] uses the KNN technique tosifgsa record. At first, the
dataset is divided into training and testing datasafter that, RDCL classifies the
record in the testing dataset by using the majariass of its kNN records in the
training dataset. RDCL identifies suspicious respnathereas the polishing technique

and EDIR detect both noisy attributes values andras.

In many practical scenarios, it is assumed that wiothe attributes of a dataset are
clean and the volume of noise is low. Another olesgon is that noisy values have a

random and independent nature and are not comletatéhe occurrence of any other
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values of a dataset. It is also very rare that iaynealue will appear repeatedly as a

result of the introduction of random noise.

3.3 Proposed NoiseCleaner algorithm

We proposed a data cleansing algorithm called Xdesmner for the traffic accident

data. In this approach, at first attribute valuethwccurrence frequency of 1 or 2 are
flagged as potentially suspicious (It is very uncoom that typographical errors
repeated more than 2 times for a value and thdt\s walue’s frequency less than 3 is
flagged as suspicious.). We then correct for sintygegraphical errors that occur in the
flagged values using Levenshtein distance [48]cHipally, if a flagged attribute value

has a Levenshtein distance of 3 or less with ancledue (i.e. a flagged value) and it
does not have the same Levenshtein distance witke than one clean value, then its
value is changed to that of the clean value. Tmeaneing flagged values are then

considered as suspicious noisy values and are ggedas follows.

Let the record having the suspicious noisy attebwdluex for the attributeX be
denoted by. Depend on the suspicious noisy attribute valugwvo subsets of records
are created from the original dataBetThe first subset, denoted &s contains a set of
records fromD where all attributes values are the same as recaxicept for the
suspicious noisy attribute value The second subset, denotedSgscontains a set of
records from the remaining recordsrwhere a varying number of attributes values are
the same as record The noisiness af is determined using records that are found in

these two subsets.

To illustrate NoiseCleaner, Table 3.1 shows a sartrglfic accident dataset (bold
text values of Table 3.1 are marked as suspiciois/values). Subsets are built based
on the suspicious noisy values (‘Active’ and ‘Fog’hese subsets are shown in Tables
3.2-3.5.
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Table 3.1. Sample traffic accident dataset

Record Driver status Weather condition  Accident address
R1 Normal Bad Sanders
R, Active Bad Glendale
R3 Normal Stormy Glendale
Ra Abnormal Stormy Sanders
Rs Drunk Bad Glendale
Rs Normal Fog Sanders
R; Drunk Bad Glendale
Rs Drunk Bad Glendale
Ro Abnormal Stormy Sanders
Rio Drunk Bad Glendale
Ri1 Drunk Bad Glendale
Ri2 Drunk Bad Glendale
Ris Abnormal Stormy Sanders
Ri4 Abnormal Rainy Sanders
Ris Abnormal Rainy Sanders
Ris Abnormal Rainy Sanders

Table 3.2. Subset, for attribute value ‘Active’ in ‘Driver status’

Record Driver status

Weather condition

Accident address

R>
Rs
R7
Rs

Active
Drunk
Drunk
Drunk

Bad
Bad
Bad
Bad
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Rio Drunk Bad Glendale
Ri1 Drunk Bad Glendale
Ris Drunk Bad Glendale

Table 3.3. Subsey; for attribute value ‘Active’ in ‘Driver status’

Record Driver status Weather condition Accident address

R1 Normal Bad Sanders
Rs3 Normal Stormy Glendale

Table 3.4. Subse for attribute value ‘Fog’ in ‘Weather Condition’

Record Driver status Weather condition Accident address

Re Normal Fog Sanders

R1 Normal Bad Sanders

Table 3.5. Subsey; for attribute value ‘Fog’ in ‘Weather Condition’

Record Driver status Weather condition Accident address

Rs3 Normal Stormy Glendale
Ra Abnormal Stormy Sanders
Ro Abnormal Stormy Sanders

Ris Abnormal Stormy Sanders
R14 Abnormal Rainy Sanders
Ris Abnormal Rainy Sanders
Rie Abnormal Rainy Sanders
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The noisiness of ‘Active’ value is determined usiRgmeasureand weighted
similarity measure computed from it and S;. In our approach, th&-measure
computes the probability of the suspicious noisedeing actually correct, and the
weighted similarity measure computes the similagyween two values of an attribute.
In the above example, if ‘Active’ in recofg is found to be noisy, the correct value is
either ‘Drunk’ or ‘Normal’. Similarly, for the nois ‘Fog’ value, its correct value is
either ‘Bad’, ‘Stormy’ or ‘Rainy’.

3.3.1 P-measure

To calculate theP-measure the two subsets; and S; are created based on the
suspicious noisy attribute valweof recordr is considered. L&k, be the probability that
an attribute valuex remaining unchanged. L}, be the probability that an attribute
valuex is changed into a different attribute value frdme subsets;. Let P;, be the
probability that an attribute valueis changed into a different attribute value frdme t

subsetss,;. Any attribute valuer obviously satisfies the following relationship

P+ Py + Py =1 (11)

Next, we introduce two variablds andk, for the noisy values. The variablg
specifies how many times an attribute vakies more likely to stay the same than to
change to another value $3. The other parametér, specifies how many times more
likely x is to change to a value i than the one i§;. The two variables are defined as

Ny

kl = N WIthNSS >1

NSS_ x

ky = Lo ED i N > 1 and Ny, > 0

S
Zizld 61'
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whereN, is the frequency of attribute valudor the attributeX in S, Ng_is the number
of records inSs, N, is the number of records 8, K is the number of attributes in a
record, and; is the number of attributes values that are simfiktween record and
thei™ record ofS,. Hence, we can define the probabilitsP;,, P4, usingk,; andk,

as

From the above, the probabilitiesBf P;,,, andP,, become

k1Xk2

ST kyXkg + kp+1 (13)
— ka

Fop = kyxky + ky+1 (14)
1

Pap = kyxky + kpt+1 (15)

Substitutingk; andk, in equations (14) and (15) we get,

Ngg—Ny)(K—1)
P, = et (16)

S
Nsg(K-D+ 2,22 8;

Ng
ds.
iy O

Ng
Ng (K-1)+ Zizld &;

Pdp = (17)

Next, we calculate the probability of an attribmedue x changing to a valug;, in
S, or to a value, in S;, wherey,, are distinct value of attributé exceptx in S; andz,

are distinct value of attribut¥ in S;. Let Py, (y,) denotes the probability that an
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attribute valuex is changed intoy, then ., Po,(yx) = Psp. Since Ng, — N, =
Yy Ny, WhereN,, is the frequency of attribute valyg for the attributeX in S, we

have

Ny, (K—1)

P = 18
Sp (yk) Ns, (K-1)+ Z?I:Sld 5, ( )

Similarly, let P4, (z,) denotes the probability that an attribute vatue changed into
zi. We have),,, Pyy(z) = Pgp. LEtS,, denotes the subset of records containing value
ziof X'in S4, andN,, denotes the number of recordsSin. Lety; denotes the number
of attributes values that are similar between mcoand thej™ record ofS,. . Then

Py, (z) is given by

Nz
k. .
17

Pap(zy) = (19)

Ng
Ns,(K-1)+3, 24 5;

When the unchanged probabiliBy(x) of a suspicious attribute valueis higher

than all ofS; attribute values probabilitie®(,(yx), ... ... .. ) and all of thes,; attribute
values probabilitiesHy, (zx), ... ... ... ), we declare this suspicious valyeas a correct
value.

To illustrate how thé>-measurdas computed, we compute the various probabilities
for the suspicious noisy attribute value ‘Fog’ etord R using Equations (12), (18),
and (19), based on Tables 3.4 and 3.5. We Ma(Eog) = 0.182, P,,(Bad) =
0.182, Py, (Stormy) = 0.364, Py, (Rainy) = 0.273. AsP,(Fog) is not higher than all
the other probabilities, we cannot declare ‘Fog’aasorrect value for this record.
Likewise, we cannot declare ‘Active’ in record, Ras the correct value
sincePs (Active) = 0.125,P;,(Drunk) = 0.750, Py,(Normal) = 0.125 from Tables

3.2 and 3.3.
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Once P-measureis computed and the suspicious noisy attribut@ieszadannot be
declared as correct, the weighted similarity measifrthe suspicious noisy attribute
value with the other possible values of the attelin bothS, andS,; are computed. The
weighted similarity measure evaluates the simydvgtween two values of an attribute
by taking into account their direct and transitre¢ationships. For example, we would
compute the weighted similarity measure betweeg“Bad ‘Bad’, ‘Fog’ and ‘Stormy’,
‘Fog’ and ‘Rainy’. The next section explains howe tiveighted similarity measure

between two attribute values is computed.

3.3.2 Weighted similarity measure

Weighted similarity measure;; (this measure is described in details at Secti@r2p
calculates the similarity between two attributeuesl of an attribute by looking at
common neighbours (direct relationship, callétldvel similarity) of the two values
and common neighbours of their neighbours (traresitielationship, called"2 level
similarity). S;; is the weighted sum af;; (1% level similarity) ands;; (2" level

similarity) between two attribute valugsandx; of an attributexX

To illustrate how weighted similarity measure ismgmuted for noisy values
detection and correction, we will use the record$able 3.6 with vertex nodes labelled
from 1 to 8 as an example. Th& dnd 29 levels weighted similarity measure graphs are
constructed with respect to ‘weather conditiorvitite in Figure 3.1 and Figure 3.2.
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Table 3.6. Aggregated table (Tables 3.4 and 3.5) for ‘Fog’ value with assigned vertex

node number

Record Driver status Weather condition  Accident address

Re Normal (1) Fog (3) Sanders (7)
R1 Normal (1) Bad (4) Sanders (7)
Rs3 Normal (1) Stormy (5) Glendale (8)
Ra Abnormal (2) Stormy (5) Sanders (7)
Ro Abnormal (2) Stormy (5) Sanders (7)
Ris Abnormal (2) Stormy (5) Sanders (7)
Ria4 Abnormal (2) Rainy (6) Sanders (7)
Ris Abnormal (2) Rainy (6) Sanders (7)
Rie Abnormal (2) Rainy (6) Sanders (7)

Figure 3.1: ¥'level weighted similarity measure graph with respect to ‘weather

condition’ attribute constructed from Table 3.6
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From the graph in Figure 3.1, it shows that nodeen@ 4 have nodes 1, and 7 as

common neighbours. Hence, th® Iével similarity between nodes 3 and 43§, =

V@Ax1D)+/(1x1)

. . t . . . .
Norel = 1. Similarly, we can calculate thé' level similarities for all node pairs

within the graph as:S;5 = 0.68 (with neighbour nodes 1, 7)S3, = 0.50 (with
neighbour node 7). Lef=0.45, ¢,=0.65, C,=0.35 (Section 3.4.3 gives explanation for
this choice). In Figure 3.1, we connect nodes i level similarities greater than
the thresholdrl' by dotted lines [17, 56]. For easier visualizatairthe vertices within

the same record and their associated edges, diffeoéours are used.

Figure 3.2: ¥ level weighted similarity measure graph with respe ‘weather

condition’ attribute constructed from Figure 3.1

To calculate the ™ level similarityS;; between nodesandj, we find all pairs of

nodes K, 1) common to nodesandj and withS,; > T, and merge each pair of nodes
into a single vertex as shown in Figure 3.2. Heeatices 1 and 2 are merged because

S12 > T and vertices 7 and 8 are also merged. In FigizetBe number of multiple
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edges between two vertices is denoted by a nundsecited with the edge for ease of

_ VBxD+{(Bx1) _

visualization. For nodes 3 and 6, using Equationw@ haveS;'y, = N

1 (with neighbour nodes 1, 2, 7, and 8)s = 1 (with neighbour nodes 1, 2, 7, and 8),
andsS3, = 1. Likewise, we can calculate@level similarity for all node pairs. In this
example, th&s-measurdetween (Fog and Bad), (Fog and Stormy) and (Rdgainy)
are 1, 0.79 and 0.68 respectively.

Once the most similar attribute value, sgyis found using weighted similarity
measure, we check tlRemeasureof the suspicious noisy attribute vakiehanging into
y. If P, (y) or Py, () is higher than the unchanged probabiRtgx) of x, the valuex is
changed tg/, otherwise we declaveas a correct value. Specifically, Bt{y1, y», ...,
vk} be the set of alk possible attribute values of the suspicious vaduand lety =

maxy,y Si; (x,Y), then

x = {y lf(Psp(y) or Pdp(y)) > Ps(x) (21)
x otherwise

By considering both the weighted similarity measamed the P-measure the
suspicious value ‘Fog’ in recordsRs declared to be the correct value, whereas the

suspicious value ‘Active’ in Rs replaced by ‘Drunk’.

3.3.3 NoiseCleaner algorithm

The proposed algorithm is summarized below.

NoiseCleaner Algorithm

1. Count frequency of each distinct attribute valuedatasetD and flag values
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whose frequencies are smaller than 3 as suspicious.
2. Correct for simple typographical errors that occur in the marked values using
Levenshtein distance.
3. For each suspicious attribute valug»D
3.1 Create the corresponding set of recétdsnd
3.2 Calculate the following probabilities from records jrafid §:
3.2.1 Calculaté;(x) using Equation (13)
3.2.2 FOR each distinct valyg of Xfrom S;, calculate g, (yx)
using Equation (18)
3.2.3 FOR each distinct valug of X from S, calculateP,, (z)
using Equation (19)
3.3 Declarex as correct ifP;(x) is greater than all of;,(y,) and
Pyp(z,) and break;
Else
3.3.1 Calculat&y;(x, yx) and (X, z;) using Equation (20)
3.3.2 Select y = may,, S;; (x,Y) where Y={y,, z.}
3.3.3 Update x using Equation (21)

3.4 Experimental resultsand discussion

3.4.1 Datasets

We performed experiment on four datasets. Two road crash datasets are taken from the
State of Queensland, Australia [75], and other two datasets are taken from the motor
vehicle crashes of the New York State, United States [76]. In the four datasets, most of

the attributes are categorical. We listed the four datasets in Table 3.7.

68



Chapter 3 Noisy values Detection and Correction

Table 3.7. Description of datasets

Abbreviation Dataset name #Records #CategoricéNumerical As on date
attributes attributes

RCL Road Crash Locations
(RCL) [75] 251705 30 20 31 July, 2015
RC Road Casualties (RC
[75] At 6 1 31 July, 2015
MCI Motor vehicle crash-
Case Information: 201113889 17 1 24 September, 2014
(MCI) [76]
MiI Motor vehicle crash-
Individual Information: 17858 11 3 24 September, 2014

2011 (MII) [76]

3.4.2 Performance measures

Several performance measures are commonly usealioage the performance of noisy
value detection algorithms [71, 72]. A popular measis precision Precision is
defined as the ratio of the number of relevant rsaetrieved to the total number of

irrelevant and relevant records retrieved as indiqn (23)

number of true noisy instances detected (23)

Precision =
number of all instances identified as noisy

Another useful measureiiscall. Recallis defined as the ratio of the number of relevant
records retrieved to the total number of relevaabrds in the database as in Equation
(24)

number of true noisy instances detected (24)

Recall =

number of all noisy instances in the dataset

PrecisionandRecallare inversely relatedr-measurds defined as the harmonic mean

of precisionandrecall as in Equation (25).
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F=2 (precision xrecall) (25)

(precision+recall)

Equation (25) is also known as tiig measure or traditional F-measure or balanced F-
score, becausecall andprecision are weighted evenly. It is possible to give emphasis

to precision or recall by using

Fp= (14 B°) (G ccionyirecal (26)

By setting the paramet@ ( B > 0) the user can assign more importance to either
precision orrecall in the computation of thE-measure For exampleF, weighsrecall
higher thanprecision, andF, s puts more emphasis @mecision tharrecall. To detect
the noisy values and evaluate the noise detection performance, it is important to know
how many noisy values are identified out of the total detected noisy values by the

algorithm.

3.4.3 Parameter selection for weighted similarity measure

Weighted similarity measure requires the setting of three parame&tefs; and C,.
Using the precision measure, we analyse the four datasets to select the best threshold
parameteil. The result is shown in Figure 3.3 and weTs€0.45. In Table 3.8, we see

that the optimum values foy LandC, are0.65 and 0.35 respectively.
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Table 3.8.C; andC, parameters selection usipgecision

Parameters Datasets
G G RCL RC MCI MII

1.00 0.00 0.7032 0.7006  0.6995  0.7905
0.95 0.05 0.7035 0.7005 0.7001 0.7924
0.90 0.10 0.7050 0.7152 0.7010  0.7990
0.85 0.15 0.8060 0.7835 0.7234  0.8012
0.80 0.20 0.8065 0.7989 0.7346  0.8044
0.75 0.25 0.8275 0.8455 0.8412 0.8342
070 0.30 0.8500 0.8511 0.8502 0.8512
065 035 0.8712 0.9099 0.8741 0.9095
060 0.40 0.8401 0.8444 0.8788 0.8441
0.55 0.45 0.8038 0.8331 0.8742 0.8211
0.50 0.50 0.7681 0.8112 0.8578  0.8000
0.45 0.55 0.7610 0.7908 0.8022  0.7989
0.40 0.60 0.6211 0.7511 0.7010 0.7554
0.35 0.65 0.5904 0.6904 0.6520  0.6987
0.30 0.70 0.4801 0.5632 0.6011 0.6564
0.25 0.75 0.4812 0.5323 0.5902 0.6226
0.20 0.80 0.4913 0.5312 0.5822 0.5012
0.15 0.85 0.4012 0.5011 0.5012 0.4812
0.10 0.90 0.4109 0.4978 0.4824 0.4788
0.05 0.95 0.4147 0.4876  0.6204  0.4546
0.00 1.00 0.4098 0.4524 0.6202 0.4004

3.4.4 Noisy values simulation

We use four types of noisy patterns in our tesaskts: simple, medium, complex, and
blended [3, 17]. In a simple pattern, a record ltave at most one noisy value, whereas
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in a medium pattern, a record can have noisy vdloesip to 50% of the attributes.
Similarly, in a complex pattern, a record can haweey values for up to 80% of the
attributes. A blended pattern contains mixture loké patterns (simple pattern 25%,
50% with medium pattern, and 25% with complex pajteFor each of the noisy
pattern, we use four different noisy ratios (2%,, 8% and 8%) where x% noisy ratio
means X% of the attribute values of a dataset argynWe use two types of noisy
models, namely overall and uniformly distributedd(U In the UD noisy model, each
attribute has equal number of noisy attribute valu¢owever, in the overall model,
noisy attribute values are not equally distribudé@dong the attributes, and in the worst
case all noisy attribute values can belong to glsiattribute. Additionally, for each test
dataset, 1% of the attribute values of a datasetcerated with typographical errors,

where errors of 1, 2 or 3 characters are randontitgduced.

In these experiments, 32 noisy combinations (4yn@sios x 4 noisy patterns x 2
noisy models) are created. For each combinatiga,datasets i.e. in total we create 160
noisy datasets (32 combinations x 5 datasets pabioation) are generated for each

real dataset as shown in Table 3.9.

Table 3.9. Noisy value simulation

Noisy Number of attributes having Typographical Noise Noisy Number of

patterns noisy values in a record  error ratios model datasets
for each
pattern

Simple 1 1% with Overall

Medium Up to 50% randomly 1, 2, 2%, and 5

Complex Up to 80% or3 4%, 6% Uniformly

Blended Simple-25%, Medium-50%  characters and 8% distributed
and Complex-25%

3.4.5 Experimental results

The proposed algorithm NoiseCleaner compares Withet noisy values identification
methods NOISERANK [72], HCleaner [74], and CAIRAD1]. In NOISERANK
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algorithm, there are several ensemble methods. gntleem, HARF-80 and HARF-70
variants performed best compared to the other maia hese two variants are taking
into consideration to compare with the NoiseCleaagorithm. Simple typographical

errors are corrected using Levenshtein distane@epms-processing for all methods.

The noisy values detection accuradyrecisio) of NoiseCleaner, HCleaner,
HARF-70, HARF-80, and CAIRAD is presented in Figidd. For each dataset, four
combinations of four noisy ratios (2%, 4%, 6%, &), and one noisy pattern
(medium) are shown. Figure 3.5 shows the correspgrrécall result and Figure 3.6
shows the F, 5 result. From these results, it can be seen thadelldeaner performs
significantly better than HARF-80, HARF-70, HCleaneand CAIRAD on all 4

datasets.

1.000 -

m NoiseCleaner
m Hcleaner

= HARF-70
mHARF-80
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Figure 3.4. Therecisionresults of different noisy value detection algamt on 4 datasets

for various ‘noisy ratios’ and ‘medium noisy patter
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Figure 3.5. The recallesults of different noisy value detection algorithms on 4 datasets for
various ‘noisy ratios’ and ‘medium noisy pattern’.
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Figure 3.6. Thd- s results of different noisy value detection aldurs on 4 datasets
for various ‘noisy ratios’ and ‘medium noisy patter
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The noisy value detection accuracy of NoiseClear&RF-70, HARF-80, and

HCleaner on the 4 datasets in termspodcision for the 32 noisy combinations is

presented in Tables 3.10-3.13. Each value in thkedsles is the average result over 5

datasets generated for each combination of noisy, reoisy model, and noisy pattern.

In these tables, bold values mark the best resnting all methods and italic values

represent the second best result. It can be saeMNtiseCleaner performs significantly
better than HARF-80, HARF-70, and HCleaner, by ngnin all cases. HARF-80 is the

next best performing algorithm, losing to HARF-TOanly 4 cases on the MIl dataset

(Table 3.11).

Table 3.10. Performance on RC dataset using Rvacis

Precision

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD
2% Overall Simple 0.9087+0.01 0.8233t0.02 0.7732:0.02 0.6896:0.01 0.4980t0.02
Medium 0.9084+0.02 0.8246t0.01 0.7752+0.03 0.68910.02 0.4980t0.02
Complex 0.9082+0.01 0.8144t+0.04 0.7688:0.01 0.6895-0.01 0.495#0.02
Blended 0.9078+0.03 0.8135t0.05 0.7678:0.02 0.68910.04 0.49510.03
UD Simple 0.9065+0.01 0.823A0.03 0.7776t0.02 0.6898:0.01 0.4901£0.02
Medium 0.9062+0.04 0.8245+0.01 0.7728:0.04 0.6865+0.04 0.4900t0.02
Complex 0.9059+0.02 0.8189+0.05 0.77010.03 0.6894+0.05 0.4886t0.03
Blended 0.9047+0.01 0.8178t0.02 0.7709+0.05 0.6898t0.01 0.4880t0.04
4% Overall Simple 0.8901+0.01 0.8128t0.02 0.7662+0.01 0.6918t0.01 0.4845t0.02
Medium 0.8910+0.03 0.8119t0.03 0.7669:0.01 0.6904+0.03 0.4843t0.01
Complex 0.8912+0.02 0.812A#0.04 0.76610.03 0.6808:0.04 0.4842+0.03
Blended 0.8903+0.01 0.8110t0.03 0.7664+0.01 0.6802:0.02 0.4840t0.03
UD Simple 0.9001+0.02 0.8104t0.01 0.7663t0.02 0.6887#0.01 0.4745t0.03
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Medium

Complex

Blended
6% Overall Simple
Medium
Complex
Blended
UD Simple
Medium
Complex
Blended
8% Overall Simple
Medium
Complex
Blended
UD Simple
Medium
Complex

Blended

0.8900+0.04
0.8923+0.03
0.8921+0.01

0.8910+0.01
0.8909+0.02
0.880610.06
0.8801+0.02
0.8802+0.01
0.8801+0.07
0.880040.04
0.8800+0.02

0.8901+0.02
0.888610.04
0.8885+0.01
0.8880+0.05
0.8880+0.03
0.8879+0.05
0.8877+0.03
0.8872+0.06

0.8061-0.02
0.8098t0.05
0.804G+0.06

0.8032:0.02
0.8031-0.02
0.7692+0.05
0.7693t0.04
0.7793t0.03
0.7692+0.02
0.76910.01
0.758Gt0.06

0.7621-0.03
0.76050.04
0.759G+0.06
0.7538t0.07
0.791Gt0.02
0.7903t0.05
0.794Gt0.03
0.7945t0.07

0.7648t0.01
0.7646t0.05
0.7642:0.01

0.764G+0.03
0.76310.01
0.7638t0.04
0.762G+0.01
0.762G:0.04
0.7578t0.02
0.754G+0.08
0.740Gt0.10

0.740Gt0.01
0.7379:0.03
0.7358t0.05
0.7356+0.06
0.73010.07
0.728G+0.04
0.702G+0.04
0.721Gt0.05

0.67450.06
0.6732:0.02
0.67310.03

0.6702:0.02
0.6688t0.04
0.665G+0.02
0.66150.04
0.6608t0.02
0.6602:0.06
0.6604+0.05
0.6568t0.01

0.6672:0.03
0.6648t0.02
0.6535%t0.06
0.6522+0.07
0.661Gt0.07
0.6504+0.03
0.6501-0.04
0.650G+0.02

0.4739:0.02
0.473G:0.01
0.4704+0.02

0.473Gt0.02
0.4729:0.01
0.472G+0.02
0.472G+0.03
0.4718t0.04
0.471G:0.01
0.4709:0.02
0.4708t0.03

0.471Gt0.02
0.4708t0.03
0.47040.04
0.4706t0.01
0.4705+0.02
0.470G+0.03
0.470G0.04
0.488G+0.02

Table 3.11. Performance on Mll dataset using Bi@ti

Noise combination

Precision

NoiseCleaner HARF-80

HARF-70

HCleaner

CAIRAD

2% Overall Simple

Medium

0.9060+0.01 0.8108t0.02 0.812Gt0.01 0.6935+0.02 0.4896t0.02
0.9058+0.03 0.8103t0.01 0.803Gt0.03 0.703Gt0.04 0.4894t0.01
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Overall

ub

Overall

ub

Overall

ub

Complex
Blended
Simple
Medium
Complex
Blended

Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

Simple
Medium
Complex
Blended
Simple

0.905740.04
0.905510.06
0.9050+0.02
0.9048+0.01
0.9047+0.03
0.9044+0.04

0.904610.04
0.8943+0.03
0.8942+0.02
0.8940+0.04
0.8935+0.05
0.8934+0.06
0.8933+0.07
0.8931+0.08

0.8924+0.02
0.8922+0.01
0.8921+0.03
0.8920+0.05
0.8923+0.04
0.8922+0.01
0.8922+0.02
0.8920+0.01

0.8819+0.03
0.8712+0.02
0.8710+0.05
0.8708+0.02
0.8713+0.04

0.81110.03
0.811Gt0.02
0.8014+0.04
0.8024+0.05
0.792%0.06
0.793Gt0.07

0.7993t0.02
0.79810.03
0.785Gt0.05
0.7895:0.01
0.7896+0.06
0.7888t0.04
0.7864+0.01
0.7893t0.05

0.779Gt0.02
0.7758t0.03
0.774Gt0.05
0.769Gt0.04
0.768Gt0.06
0.7588t0.03
0.756Gt0.06
0.752Gt0.10

0.75740.01
0.759G+0.08
0.74410.04
0.738Gt0.05
0.7461-0.02
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0.8015t0.03
0.8004+0.02
0.8019+:0.04
0.8091-0.05
0.7845t0.06
0.72310.03

0.73010.02
0.7302:0.03
0.724Gt0.04
0.7148t0.05
0.7223t0.04
0.7215:0.03
0.7122+0.02
0.7108t0.06

0.7202+0.06
0.7238t0.11
0.7126+0.14
0.7082+0.05
0.710Gt0.07
0.7098t0.08
0.709Gt0.01
0.7084+0.03

0.719Gt0.02
0.713Gt0.05
0.7014+0.06
0.701Gt0.07
0.7004+0.06

0.7036+0.05
0.704Gt0.02
0.7114+0.05
0.7018t0.10
0.6922+0.05
0.691G+0.04

0.6901-0.03
0.68840.02
0.678G:0.04
0.6781-0.06
0.6878t0.02
0.6858t0.07
0.6796+0.09
0.6743t0.10

0.681G+0.04
0.680Gt0.03
0.6698t0.02
0.669Gt0.02
0.6786+0.08
0.6782:0.05
0.6688t0.03
0.669G+0.06

0.661Gt0.03
0.6603t0.06
0.6568t0.10
0.6545t0.11
0.660Gt0.12

0.4892+0.04
0.489G+0.03
0.4889:0.04
0.4888t0.08
0.4888t0.03
0.488'#0.01

0.489G+0.01
0.4891-0.02
0.4888t0.03
0.4883t0.02
0.4884+0.01
0.4878t0.02
0.487G:0.04
0.48710.02

0.4873t0.03
0.48710.02
0.487G:0.03
0.48690.02
0.4868t0.03
0.4864+0.04
0.4863t0.01
0.4862+0.01

0.4866+0.04
0.4864+0.02
0.4864+0.03
0.486G+0.02
0.48610.03
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Medium
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Blended
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0.8709+0.06 0.7456t0.06 0.6989+0.03 0.6555:0.02 0.48590.05
0.8703+£0.03 0.7438t0.02 0.691Gt0.02 0.6515t0.06 0.485Gt0.02
0.8732+0.02 0.739Gt0.05 0.690Gt0.03 0.6508:0.04 0.4840t0.02

Table 3.12. Performance on RCL dataset using Precision

Precision

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD
2% Overall Simple 0.8701+0.02 0.8212+0.03 0.736Gt0.03 0.724G:0.04 0.4732:0.03
Medium 0.8702+0.02 0.8210t0.04 0.732Gt0.03 0.7184+0.04 0.4730t0.03
Complex 0.8700+0.06 0.809Gt0.04 0.73210.13 0.718A40.08 0.4729:0.02
Blended 0.8700+£0.05 0.8060t0.02 0.7325:0.11 0.7185%:0.11 0.4728t0.08
UD Simple 0.8702+0.02 0.82210.03 0.73110.04 0.7138:0.06 0.472°#0.05
Medium 0.8790+0.04 0.8145+0.04 0.7216+0.04 0.7099+0.05 0.4726+0.03
Complex 0.8782+0.10 0.8126+0.01 0.72410.11 0.7085:0.02 0.4724+0.01
Blended 0.8680+0.09 0.81210.02 0.7138:0.10 0.708Gt0.01 0.4725t+0.02
4% Overall Simple 0.8700+0.03 0.80810.06 0.724Gt0.05 0.6966+0.04 0.4722+0.05
Medium 0.8689+0.02 0.8085+0.04 0.7245+0.06 0.6956t0.03 0.472H-0.02
Complex 0.8688+0.04 0.798%+0.03 0.7205+0.10 0.692Gt0.04 0.4722+0.01
Blended 0.8683+0.06 0.7988t0.02 0.7165:0.11 0.6924+0.06 0.4719:0.03
UD Simple 0.8688+0.03 0.793#40.01 0.7182+0.07 0.696Gt0.07 0.471Gt0.04
Medium 0.8676+0.04 0.7896+0.08 0.707Gt0.06 0.68840.06 0.4709:0.02
Complex 0.8673+0.02 0.7888t0.01 0.7055t0.17 0.6813t0.06 0.470A0.02
Blended 0.8670+0.01 0.7896t0.02 0.701A40.11 0.681Gt0.04 0.4706t0.01
6% Overall Simple 0.8682+0.05 0.779Gt0.01 0.7108t0.06 0.6834t+0.03 0.4712+0.02
Medium 0.8681+0.04 0.7783t0.04 0.71410.08 0.6809:0.10 0.471Gt0.01
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ub

Complex
Blended
Simple
Medium
Complex
Blended

8% Overall Simple

ub

Medium
Complex
Blended
Simple
Medium
Complex
Blended

0.8679+0.08
0.8678+0.09
0.8669+0.04
0.8667+0.02
0.866310.03
0.8661+0.06

0.8660+0.01
0.8559+0.04
0.8553+0.02
0.8551+0.07
0.8643+0.02
0.8631+0.04
0.8524+0.02
0.8521+0.03

0.7758t0.03
0.765Gt0.02
0.764Gt0.03
0.762G+0.02
0.7409:0.04
0.7401-0.08

0.755Gt0.06
0.7402:0.04
0.7401-0.06
0.740Gt0.07
0.7435%:0.07
0.7395:0.03
0.71040.01
0.710Gt0.06
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0.7036t0.16
0.70010.15
0.7104+0.06
0.71010.07
0.708Gt0.14
0.6998t0.12

0.680G+0.06
0.674G+0.07
0.6806+0.10
0.679Gt0.11
0.6708t0.12
0.67010.04

0.7066+0.06
0.7023t0.04
0.7015%t0.05
0.698#0.12
0.7046t0.13
0.7032:0.11
0.7004+0.08
0.690G+0.18

0.6723t0.04
0.66610.11
0.66340.05
0.662G+0.04
0.6623t0.04
0.661Gt0.06
0.6585+0.03
0.6502+0.10

0.4709:0.02
0.4708t0.05
0.470#0.06
0.47050.03
0.470Gt0.03
0.47010.02

0.470'#0.02
0.4706+0.02
0.4706+0.01
0.47050.03
0.4704+0.02
0.4703t0.04
0.470Gt0.05
0.470Gt0.01

Table 3.13. Performance on MCI dataset using Bieti

Precision

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD
2% Overall Simple 0.8731+0.01 0.73640.01 0.6753t0.03 0.6305+0.06 0.4953+0.04
Medium 0.8728+0.05 0.73610.04 0.663Gt0.12 0.6304+0.12 0.4952+0.04
Complex 0.8725+0.02 0.7354t0.02 0.6617#0.10 0.63010.18 0.495Gt0.01
Blended 0.8716+0.03 0.7252+0.01 0.658A40.12 0.630Gt0.03 0.4949+0.02
UD Simple 0.8720+0.02 0.7248t0.04 0.671Gt0.13 0.6302:0.16 0.4939%0.03
Medium 0.8721+0.04 0.7263t0.05 0.6508t0.09 0.62710.09 0.4938t0.02
Complex 0.8715+0.05 0.7182+0.03 0.6506t0.08 0.6108t0.06 0.4836+0.01
Blended 0.8712+0.01 0.71010.01 0.6489:0.12 0.61010.08 0.4835:0.02
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Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

0.8707+0.04
0.8706+0.02
0.8602+0.03
0.860040.04
0.8725+0.03
0.8628+0.06
0.8625+0.04
0.8614+0.03

0.8722+0.08
0.8720+0.04
0.8618+0.03
0.8616+0.04
0.8712+0.05
0.8600+0.06
0.8565+0.07
0.8580+0.08

0.8600+0.02
0.8570+0.03
0.8520+0.04
0.8510+0.05
0.8558+0.06
0.8546+0.07
0.8531+0.02
0.8526+0.03

0.7285%:0.07
0.72810.02
0.71840.03
0.7068t0.04
0.71640.02
0.716Gt0.03
0.7052:0.03
0.700Gt0.01

0.7172:0.03
0.71710.04
0.7055t0.05
0.6943t0.06
0.710Gt0.03
0.70840.03
0.70440.02
0.6998t0.04

0.71410.04
0.714Gt0.05
0.711Gt0.03
0.709Gt0.02
0.7132:0.07
0.70440.03
0.7045t0.02
0.700Gt0.06
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0.65840.10
0.6589+:0.06
0.656'40.06
0.65610.05
0.6583t0.04
0.657°40.02
0.646G+0.10
0.645G+0.01

0.6649+:0.03
0.6608t0.11
0.660G:0.04
0.6588t0.01
0.661G+0.06
0.6584+0.06
0.6556+0.04
0.649'40.02

0.6581-0.07
0.658'40.03
0.65710.04
0.64640.10
0.656G+0.06
0.6525+0.02
0.648'40.04
0.6434+0.03

0.62540.11
0.6338t0.07
0.6158t0.04
0.6178t0.05
0.628G+0.06
0.6228t0.11
0.61910.10
0.61840.02

0.6303t0.05
0.6312:0.01
0.6176+0.02
0.6074+0.03
0.6395t0.05
0.6313t0.06
0.6041-0.02
0.600Gt0.03

0.62010.11
0.6095:0.12
0.6081-0.07
0.598Gt0.03
0.6013t0.02
0.5965t0.10
0.5905t0.06
0.5901-0.06

0.4835:0.01
0.4833t0.02
0.483G+0.02
0.48310.02
0.4726t0.05
0.4724+0.03
0.4723t0.02
0.472G+0.01

0.4718t0.03
0.4719:0.02
0.47110.01
0.47110.04
0.471Gt0.02
0.4709t0.02
0.4703t0.03
0.4702:0.01

0.4706t0.04
0.47050.01
0.4703t0.02
0.4702:0.01
0.4704+0.03
0.4704+0.05
0.470Gt0.02
0.47010.06
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The noisy value detection accuracy of NoiseCleaner, HARF-80, HARF-70, and

HCleaner on the four datasets in term&#f for the 32 noisy combinations is presented
in Tables 3.14 — 3.17. The Fof each table is calculated for the one set of data.

Table 3.14. Performance on RC dataset usjig F

Fos

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD
2% Overall Simple 0.8721 0.7796 0.7340 0.6510 0.4720
Medium 0.8716 0.7804 0.7354 0.6505 0.4719

Complex 0.8711 0.7729 0.7304 0.6507 0.4701

Blended 0.8707 0.7720 0.7293 0.6501 0.4694

UD Simple 0.8696 0.7794 0.7342 0.6504 0.4661
Medium 0.8686 0.7797 0.7303 0.6478 0.4657

Complex 0.8672 0.7752 0.7282 0.6496 0.4623

Blended 0.8661 0.7740 0.7286 0.6494 0.4618

4% Overall Simple 0.8562 0.7712 0.7251 0.6499 0.4592
Medium 0.8562 0.7692 0.7250 0.6482 0.4573

Complex 0.8559 0.7695 0.7237 0.6408 0.4563

Blended 0.8550 0.7677 0.7229 0.6399 0.4560

UD Simple 0.8628 0.7665 0.7250 0.6467 0.4494
Medium 0.8550 0.7634 0.7223 0.6337 0.4487

Complex 0.8564 0.7645 0.7199 0.6320 0.4480

Blended 0.8558 0.7598 0.7186 0.6307 0.4447

6% Overall Simple 0.8555 0.7593 0.7214 0.6278 0.4348
Medium 0.8540 0.7583 0.7205 0.6266 0.4344
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Complex 0.8462 0.7323 0.7186 0.6218 0.4313
Blended 0.8454 0.7311 0.7170 0.6185 0.4312
UD Simple 0.8428 0.7383 0.7172 0.6170 0.4310
Medium 0.8427 0.7304 0.7136 0.6159 0.4300
Complex 0.8371 0.7295 0.7104 0.6149 0.4268
Blended 0.8370 0.7214 0.6997 0.6118 0.4266
8% Overall Simple 0.8528 0.7245 0.6924 0.6087 0.4269
Medium 0.8512 0.7233 0.6908 0.6051 0.4256
Complex 0.8490 0.7202 0.6881 0.5958 0.4228
Blended 0.8484 0.7160 0.6829 0.5944 0.4225
UD Simple 0.8480 0.7404 0.6788 0.5969 0.4220
Medium 0.8468 0.7365 0.6751 0.5878 0.4180
Complex 0.8454 0.7384 0.6531 0.5863 0.4141
Blended 0.8450 0.7376 0.6659 0.5859 0.4249
Table 3.15. Performance on MII dataset using F
Fos
Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD
2% Overall Simple 0.8693 0.7688 0.7584 0.6504 0.4672
Medium 0.8678 0.7684 0.7517 0.6568 0.4670
Complex 0.8670 0.7688 0.7506 0.6572 0.4668
Blended 0.8667 0.7687 0.7497 0.6563 0.4665
UD Simple 0.8664 0.7615 0.7507 0.6627 0.4665
Medium 0.8659 0.7622 0.7557 0.6559 0.4663
Complex 0.8649 0.7551 0.7383 0.6485 0.4657
Blended 0.8643 0.7551 0.6938 0.6474 0.4654
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Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

Simple
Medium
Complex
Blended
Simple
Medium
Complex
Blended

0.8655
0.8571
0.8568
0.8557
0.8552
0.8551
0.8548
0.8546

0.8544
0.8539
0.8536

0.8515
0.8518
0.8515
0.8515

0.8507

0.8453
0.8373
0.8369

0.8366
0.8362
0.8359
0.8351
0.8370

0.7588
0.7579
0.7482
0.7515
0.7516
0.7507
0.7488
0.7509

0.7413
0.7389
0.7376
0.7337
0.7330
0.7260
0.7237
0.7198

0.7161
0.7149
0.7019

0.6969
0.7020
0.7008
0.6980
0.6936
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0.6970
0.6968
0.6922
0.6821
0.6859
0.6851
0.6768
0.6748

0.6873
0.6871
0.6786
0.6729
0.6739
0.6738
0.6721
0.6716

0.6682
0.6637
0.6539

0.6535
0.6536
0.6524
0.6459
0.6445

0.6477
0.6463
0.6371
0.6362
0.6426
0.6408
0.6351
0.6307

0.6311
0.6277
0.6203
0.6168
0.6225
0.6219
0.6132

0.6133

0.5851
0.5844
0.5821

0.5797
0.5797
0.5768
0.5700
0.5697

0.4576
0.4564
0.4562
0.4540
0.4527
0.4507
0.4485
0.4483

0.4415
0.4411
0.4382

0.4370
0.4365
0.4359
0.4354

0.4346

0.4364
0.4339
0.4335

0.4326
0.4324
0.4300
0.4292
0.4271
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Table 3.16. Performance on RCL dataset using F

Fos

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD
2% Overall Simple 0.8298 0.7581 0.6897 0.6329 0.4554
Medium 0.8298 0.7565 0.6852 0.6290 0.4531

Complex 0.8294 0.7479 0.6835 0.6285 0.4511

Blended 0.8291 0.7450 0.6826 0.6261 0.4508

UD Simple 0.8289 0.7553 0.6818 0.6230 0.4480
Medium 0.8352 0.7494 0.6732 0.6192 0.4480

Complex 0.8342 0.7430 0.6747 0.6156 0.4451

Blended 0.8267 0.7386 0.6646 0.6137 0.4448

4% Overall Simple 0.8286 0.7317 0.6703 0.6147 0.4489
Medium 0.8276 0.7318 0.6700 0.6102 0.4427

Complex 0.8274 0.7253 0.6658 0.6069 0.4400

Blended 0.8269 0.7244 0.6628 0.6058 0.4386

UD Simple 0.8270 0.7207 0.6639 0.6073 0.4343
Medium 0.8260 0.7165 0.6529 0.6028 0.4339

Complex 0.8256 0.7149 0.6515 0.5979 0.4302

Blended 0.8253 0.7146 0.6489 0.5976 0.4301

6% Overall Simple 0.8253 0.7047 0.6552 0.6025 0.4298
Medium 0.8248 0.7038 0.6543 0.6004 0.4288

Complex 0.8245 0.6960 0.6471 0.5994 0.4247

Blended 0.8243 0.6870 0.6415 0.5952 0.4244

UD Simple 0.8235 0.6856 0.6482 0.5986 0.4226
Medium 0.8232 0.6801 0.6468 0.5975 0.4225

Complex 0.8223 0.6646 0.6354 0.5865 0.4252

Blended 0.8216 0.6639 0.6299 0.5860 0.4227
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8% Overall Simple 0.8211 0.6692 0.6127 0.5909 0.4226
Medium 0.8134 0.6585 0.6096 0.5838 0.4219

Complex 0.8125 0.6581 0.6053 0.5821 0.4218

Blended 0.8120 0.6537 0.5988 0.5810 0.4180

UD Simple 0.8184 0.6573 0.6067 0.5811 0.4174
Medium 0.8174 0.6512 0.5999 0.5794 0.4170

Complex 0.8085 0.6319 0.5932 0.5775 0.4098

Blended 0.8082 0.6284 0.5831 0.5721 0.4094

Table 3.17. Performance on MCI dataset usisy) F

Fos

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD
2% Overall Simple 0.8350 0.7012 0.6515 0.5905 0.4733
Medium 0.8327 0.6985 0.6409 0.5887 0.4730

Complex 0.8322 0.6962 0.6371 0.5871 0.4726

Blended 0.8321 0.6877 0.6347 0.5867 0.4725

UD Simple 0.8313 0.6881 0.6400 0.5868 0.4718
Medium 0.8309 0.6886 0.6251 0.5836 0.4714

Complex 0.8282 0.6814 0.6222 0.5703 0.4637

Blended 0.8277 0.6739 0.6210 0.5696 0.4632

4% Overall Simple 0.8197 0.6853 0.6227 0.5820 0.4619
Medium 0.8185 0.6854 0.6225 0.5860 0.4636
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Complex 0.8109 0.6818 0.6207 0.5721 0.4610
Blended 0.8081 0.6698 0.6199 0.5720 0.4611

UD Simple 0.8166 0.6790 0.6212 0.5789 0.4526
Medium 0.8097 0.6725 0.6194 0.5750 0.4522
Complex 0.8067 0.6642 0.6104 0.5722 0.4495
Blended 0.8057 0.6578 0.6083 0.5690 0.4493

6% Overall Simple 0.8109 0.6692 0.6244 0.5787 0.4501
Medium 0.8101 0.6669 0.6209 0.5743 0.4498
Complex 0.8000 0.6575 0.6196 0.5648 0.4486
Blended 0.7993 0.6475 0.6185 0.5564 0.4467

UD Simple 0.8062 0.6576 0.6179 0.5790 0.4466
Medium 0.7982 0.6541 0.6154 0.5723 0.4458
Complex 0.7940 0.6509 0.6101 0.5521 0.4448
Blended 0.7943 0.6473 0.6057 0.5498 0.4444

8% Overall Simple 0.7959 0.6581 0.6130 0.5632 0.4434
Medium 0.7916 0.6577 0.6131 0.5554 0.4431
Complex 0.7875 0.6539 0.6104 0.5521 0.4401
Blended 0.7872 0.6511 0.6031 0.5449 0.4400

UD Simple 0.7912 0.6537 0.6087 0.5464 0.4392
Medium 0.7885 0.6480 0.6062 0.5427 0.4391
Complex 0.7871 0.6478 0.6013 0.5353 0.4386
Blended 0.7864 0.6448 0.5976 0.5334 0.4384

3.4.6 Execution time comparison

The average computation time in seconds for 168se#t (32 combinations x 5 datasets

per combination) for each traffic accident datasetgiven in Table 3.18. The
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configuration of the machine is Intel® Core™ i5-884 CPU @ 2.70GHz, with 8GB
RAM. From this table, it can be seen that Noisefeauns slightly faster than HARF-
80, and HARF-70. On the other hand, CAIRAD runssigantly faster compare to all
the other approaches. We now analyse complexityhimiNoiseCleaner algorithm. Let,
X is the number of suspicious attributes valueshm dataset. We find maximum
number of records from tHg andS;. The weighted similarity measure has to calculate
for eachx and the complexity i©(nx).

Table 3.18. Average execution time of differemgogithms (in seconds)

Dataset NoiseCleaner HARF-80 HARF-70 HCleaner CAIRA
RCL 338.101 342.72 344.21 201.00 100.21
RC 165.21 184.01 183.88 178.10 50.34
MCI 95.34 99.92 96.68 64.55 35.65
Ml 198.42 201.15 204.12 188.23 55.19

3.5 Conclusion

In this chapter, a brief summary of the algoritipngposed by researchers in the area of
noisy values detections and corrections is firgegi The literature review reveals that
although there have been recent advances towarsisvalues detection techniques and
a number of algorithms are available, detecting aadecting incorrect values in
categorical datasets is still a challenging problsince any attempt to represent a
categorical value numerically can introduce unwanbgases that negatively affect
subsequent data analysis. A novel and effectivesynmalues identification and
correction method, called NoiseCleaner, is propaosdtiis chapter for traffic accident
data where the majority of attributes are categbridThere are two stages in

NoiseCleaner, where noisy attribute values aré diesected by using a novel P-measure

94



Chapter 3 Noisy values Detection and Correction

which computes the probability values indicating tlkeliness of replacing the noisy
attribute value with some alternative attributeuesl. Then, the S-measure, which
measures the direct and transitive similarity betwa noisy value and an alternative
value, is used to identify the most similar altéire value to replace the noisy value
with. Extensive experimental results demonstrated it outperforms several existing

noisy values identification methods on four reaflldraffic accident datasets.
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Chapter 4: Conclusions and Future Resear ch

This chapter concludes the thesis by summarising the novel contribution in this research
and suggests some areas for future work. The objective of this research is to develop
effective preprocessing algorithms for traffic accident data. Our research is focused on
two pivotal tasks of data preprocessing, namely missing value imputation and data
cleansing. To impute the missing values and detect the noisy data, detailed
investigations are carried out on existing approaches to missing values imputation and
noisy data detection in this research. From the investigations, it is found that although
there is much published research on missing values imputation and noisy data detection,
most of those methods are developed for data with numerical values. However, the
traffic accident data we are concerned with in this research consists mostly of
categorical values. Therefore, this research addresses the research gap of preprocessing
categorical data by developing novel algorithms for missing value imputation and noisy

value detection and correction.

In Chapter 2, we proposed a missing value imputation algorithm, called DSMI,
which is able to deal with categorical data. Our algorithm takes into account the
correlation between the attributes in a record, as well as the correlation between two
records to find the most likely imputed values. Moreover, to model the variability in real
data, our algorithm imputes the missing values by sampling from a list of potential
imputed values based on their degree of affinity. Extensive experimental results have
shown that DSMI significantly outperformed current state-of-the-art imputation

algorithms.

In Chapter 3, we proposed a noisy value detection and correction called
NoiseCleaner, which is able to deal with categorical data. NoiseCleaner detects noisy

attributes values by using a novrelmeasuravhich are probability values indicating the

96



Chapter 4 Conclusion and Future Research

likeliness of replacing the noisy attribute valughwsome alternative attribute values.
Then, theS-measuravhich measures the direct and transitive simydrétween a noisy

value and an alternative value is used to iderthiy most similar alternative value to
replace the noisy value with. The extensive expemit@l results and comparative

studies presented in Chapter 3 indicate the effentiss of the proposed algorithm.

4.1 FutureResearch

Although the proposed algorithms have demonstratgxerior performance compared
with existing algorithms, there is still scope further research. Because of the
availability of cheap sensors, massive amountsatd tiave been generated on a daily
basis. Much of this data contain a mixture of nuoarand categorical values. To
handle the massive volumes of data, we need higHigient data preprocessing
algorithms. So far, our algorithms have only besstead on moderately large datasets.
Investigating the scalability of our algorithmshtign data is an important future research
direction. In particular, it will be interesting thnow how the various correlation
measures used in our algorithms deal with dataeof high dimension and the extent
they are able to cope with the curse of dimensitnal

The ability to deal with mixed data types is alsoimportant avenue for future
research. Our proposed algorithms are specificibigned to handle categorical data.
For numerical data of continuous value, one caenoftstimate or approximate the
underlying density distribution. Exploiting thisstlibution is expected to improve the
imputation or data cleansing performance. How talifiyoour algorithms so that they
can handle both types of data will also be an é@stiang research direction to pursue in

the future.

Twitter, Facebook, and LinkedIn have generated massnount of data. However,
missing values and noisy informations are commoth@se data. Future research can
evaluate the effectiveness of the two preprocessmgyithms for these data. In medical

record data, missing values can arise because geaphot want to share sensitive
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information. It would be useful to validate our preprocessing algorithms for this kind of

dataset too.
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