
Data Quality Enhancement for Traffic
Accident Data

 Rupam Deb

M.Sc. Engineering (Research based), B.Sc. Engineering (Honours)

School of Information and Communication Technology

Griffith Sciences

Griffith University

Submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy

April, 2017

ii

Abstract

Death, injury, and disability resulting from road traffic crashes continue to be a major

global public health problem. Recent data suggest that the number of fatalities from

traffic crashes is in excess of 1.25 million people each year with non-fatal injuries

affecting a further 20-50 million people. It is predicted that by 2030, road traffic

accidents will have progressed to be the 5th leading cause of death and that the number

of people who will die annually from traffic accidents will have doubled from current

levels. Both developed and developing countries suffer from the consequences of the

increase in human population, and consequently, vehicle numbers. Therefore, methods

to reduce accident severity are of great interest to traffic agencies and the public at

large. To analyze traffic accident factors effectively, a complete traffic accident

historical database is needed. Road accident fatality rates depend on many factors, so it

is a very challenging task to investigate the dependencies between the attributes because

of the many environmental and road accident factors. Missing data and noisy data in the

database obscure the discovery of important factors and lead to invalid conclusions. In

order to make the traffic accident datasets useful for analysis, they should be

preprocessed efficiently. Data preprocessing is responsible for almost 80% of the total

data mining effort. It is also known that good results can be achieved by using data

mining algorithms only if there is a good quality dataset. This research is concerned

with developing novel data preprocessing techniques for data quality enhancement, with

application to traffic accident data. The research can be divided into two parts. The first

part of this research concentrates on missing values imputation, and the second part

concentrates on noisy values detection and correction in the traffic accident dataset.

Missing values imputation and noisy values detection with correction are used to obtain

a complete noise-free traffic accident dataset.

iii

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the

best of my knowledge and belief, the thesis contains no material previously published or written

by another person except where due acknowledgement is made in the thesis itself.

Rupam Deb

iv

Acknowledgements

I would like to express my sincere gratitude and profound indebtedness to my

supervisor Associate Professor Alan Wee-Chung Liew for constant guidance, insightful

advice, helpful criticism, valuable suggestions, commendable support, and endless

patience towards the completion of this research. I feel very proud to have worked with

him. Without his inspiring enthusiasm and encouragement, this work could not have

been completed. I appreciate all of his contributions which have made my PhD

successful.

I also would like to extend my heartfelt gratitude to my associate supervisor

Associate Professor Junhu Wang for his devoted guidance and sincere support during

my PhD.

My special thanks are to my wife Chumky Das Gupta for her continuous

encouragement and support in both the domestic and academic spheres of my life. I

would also like to thank my little angels for their prayers and deep affection for me.

The support I have received from Dhaka University of Engineering and Technology

in terms of approving study leave is gratefully acknowledged.

Last, but by no means least, I thank God for the talents and abilities I was given that

made it possible to undertake this research.

v

Contents

Abstract ii

Statement of Originality iii

Acknowledgements iv

List of Tables vii

List of Figures ix

Abbreviations x

List of Publications xi

1 Introduction 1

1.1 Overview... 1

1.2 Data preprocessing .. 3

1.3 Importance of data preprocessing ... 5

1.4 Objectives and research questions .. 5

1.5 Contributions .. 6

1.6 Thesis structure ... 6

2 Missing values Imputation 8

2.1 Introduction ... 8

2.2 Literature review ... 9

2.3 DSMI algorithm .. 14

2.3.1 IS measure ... 20

2.3.2 Weighted similarity measure ... 22

2.3.3 DSMI algorithm .. 27

2.4 Experimental results.. 28

2.4.1 Datasets ... 28

vi

2.4.2 Evaluation criteria ... 29

2.4.3 Parameter selection ... 30

2.4.4 Missing value simulation .. 33

2.4.5 Results of categorical missing value imputation ... 34

2.4.6 Results of numerical missing value imputation .. 48

2.4.7 Execution time comparison ... 51

2.5 Conclusion .. 512

3 Noisy values Detection and Correction 54

3.1 Introduction ... 54

3.2 Literature review ... 55

3.3 NoiseCleaner algorithm .. 58

3.3.1 P-measure .. 61

3.3.2 Weighted similarity measure ... 64

3.3.3 NoiseCleaner algorithm .. 67

3.4 Experimental results and discussion ... 68

3.4.1 Datasets ... 68

3.4.2 Performance measures .. 69

3.4.3 Parameters selections for similarity measure .. 70

3.4.4 Noisy values simulation .. 73

3.4.5 Experimental results .. 74

3.4.6 Execution time comparison ... 93

3.5 Conclusion .. 94

4 Conclusions and Future Research 96

4.1 Future Research .. 97

Bibliography

vii

List of Tables

Table 1.1: Toy dataset to explain missing values. ..4

Table 2.1: Full dataset DFull. ...15

Table 2.2: Complete dataset DComplete with quantized passenger number ...15

Table 2.3: Missing value dataset DMiss with quantized passenger number16

Table 2.4: Records in leaf 1 ...18

Table 2.5: Records in leaf 4 ...18

Table 2.6: Records in leaf 6 ...19

Table 2.7: Records in leaf 8 ...19

Table 2.8: Aggregated table for record 6 with multiple missing values ...19

Table 2.9: 2 × 2 contingency table for binary variables ..21

Table 2.10: Aggregated table for record 6 with vertex node number assigned24

Table 2.11: Dataests details ..28

Table 2.12: Similarity measure parameters selection using � ..30

Table 2.13: Missing value simulation ..34

Table 2.14: Performance on Motor Vehicle Crash case information: 2011 dataset35

Table 2.15: Performance on Large Truck Crash Causation dataset ...36

Table 2.16: Performance on Denver County dataset ..38

Table 2.17: Performance on Motor Vehicle Crash individual information: 2011 dataset39

Table 2.18: Performance (RMSE) on Motor Vehicle Crash individual information: 2011 dataset .49

Table 2.19: Average excution time of different techniques (in seconds) ...52

Table 3.1: Sample traffic accident dataset..59

Table 3.2: Subset Ss for attribute value ‘Active’ in ‘Driver status’ ..59

Table 3.3: Subset Sd for attribute value ‘Active’ in ‘Driver status’ ...60

Table 3.4: Subset Ss for attribute value ‘Fog’ in ‘Weather Condition’. ...60

Table 3.5: Subset Sd for attribute value ‘Fog’ in ‘Weather Condition’ ..60

viii

Table 3.6: Aggregated table (Tables 3.4 and 3.5) for ‘Fog’ value with assigned vertex node

number ..65

Table 3.7: Description of datasets ..69

Table 3.8: C1 and C2 parameters selection using precision ..73

Table 3.9: Noisy values simulation ..74

Table 3.10: Performance on RC dataset using Precision ...82

Table 3.11: Performance on MII dataset using Precision ..83

Table 3.12: Performance on RCL dataset using Precision ...85

Table 3.13: Performance on MCI dataset using Precision ...86

Table 3.14: Performance on RC dataset using F0.5 ...88

Table 3.15: Performance on MII dataset using F0.5 ..89

Table 3.16: Performance on RCL dataset using F0.5 ...91

Table 3.17: Performance on MCI dataset using F0.5 ...92

Table 3.18: Average execution time of different algorithms (in seconds)94

ix

List of Figures

Figure 1.1: Thesis structure ..7

Figure 2.1: Tree for ‘Accident address’ class ...16

Figure 2.2: Tree for ‘Passenger number’ class ...17

Figure 2.3: Tree for ‘Driver status’ class ...17

Figure 2.4: Graph constructed from Table 2.10 ...25

Figure 2.5: Threshold parameter T on four datasets ..31

Figure 2.6: Aggregated performance (p) on four datasets in terms of “simple” missing pattern

with confidence level 95 percent ..40

Figure 2.7: Aggregated performance (p) on four datasets in terms of “medium” missing pattern

with confidence level 95 percent ..43

Figure 2.8: Aggregated performance (p) on four datasets in terms of “4%” missing ratio with

confidence level 95 percent ..45

Figure 2.9: Performance (p) comparison on four datasets ...47

Figure 2.10: Performance comparison for numerical imputation on four datasets using RMSE50

Figure 3.1: 1st level weighted similarity measure graph with respect to ‘weather condition’

attribute constructed from Table 3.6 ...63

Figure 3.2: 2nd level weighted similarity measure graph with respect to ‘weather condition’

attribute constructed from Figure 3.1 ...64

Figure 3.3: Threshold parameter T on four datasets ..69

Figure 3.4: The precision results of different noisy value detection algorithms on 4 datasets for

various ‘noisy ratios’ and ‘medium noisy pattern’ ...73

Figure 3.5: The recall results of different noisy value detection algorithms on 4 datasets for

various ‘noisy ratios’ and ‘medium noisy pattern’ ...76

Figure 3.6: The F0.5 results of different noisy value detection algorithms on 4 datasets for

various ‘noisy ratios’ and ‘medium noisy pattern’ ...78

x

Abbreviations

DMI [31] Decision tree based Missing value Imputation

DSMI [17] Decision tree and Sampling based Missing value Imputation

EMI [33] Expectation Maximization Imputation

FIMUS [29] Framework for Imputing Missing values Using co-appearance, correlation

and Similarity analysis

kDMI [30] k-Decision tree based Missing value Imputation

kNNI [20] k-Nearest Neighbour based Imputation

LWLA [27] Local Weighted Linear Approximation imputation

SCMI [2] Sampling and Correlation based Missing value Imputation

SiMI [31] Similarity based Missing value Imputation

FEMI [32] Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing

Value Imputation Framework for Data Pre-processing

FCM [80] Fuzzy C-Means

CPAANN [24] CounterPropagation Auto-Associative Neural Network

GST [24] Grey System Theory

GFCM [59] General Fuzzy C-Means

FuzzyEM [33] Fuzzy Expectation Maximization

RMSE [67] Root-Mean-Square Error

EDIR [16] Error Detection and Impact-sensitive instance Ranking

VIPER [72] Visual Performance Evaluation of noise detection algorithms

HARF [72] High Agreement Random Forest noise detection algorithm

RDCL [70] Classify a record into Reachability, Dissimilarity, Coverage, Liability sets

CAIRAD [71] Co-appearance based Analysis for Incorrect Records and Attribute-values

Detection

NOISERANK [72] Noise detection by ranking instances

HCleaner [74] Hyperclique-based data Cleaner

xi

List of Publications

01. Rupam Deb, Alan Wee-Chung Liew, “Missing value imputation for the analysis of

incomplete traffic accident data”, Information Sciences, Vol. 339, pp. 274–289, 2016.

02. Rupam Deb, Alan Wee-Chung Liew, “Noisy values detection and correction of traffic

accident data”, Information Sciences, January, 2017. (Under review)

03. Rupam Deb, Alan Wee-Chung Liew, “Missing value imputation for the analysis of

incomplete traffic accident data”, Communications in Computer and Information

Science, Springer, Vol. 481, pp. 275-286, 2014.

04. Rupam Deb, Alan Wee-Chung Liew, Erwin Oh, “A correlation based imputation

method for incomplete traffic accident data”, Lecture Notes in Computer Science,

Springer, Vol. 8862, pp. 905-912, 2014.

05. Rupam Deb, Alan Wee-Chung Liew, “Incorrect attribute value detection for traffic

accident data”, In International Joint Conference on Neural Networks, pp. 1-7,

Killarney, Ireland, July 2015.

06. Rupam Deb, Alan Wee-Chung Liew, “Resource allocation in accident prone areas by

analysing the traffic accident data”, 13th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery, July 2017. (Accepted)

07. Rupam Deb, Alan Wee-Chung Liew, “Resource allocations by predicting the road

crash severity instantly”, 13th International Conference on Natural Computation, Fuzzy

Systems and Knowledge Discovery, July 2017. (Accepted)

Chapter 1 Introduction

1

Chapter 1: Introduction

At the current time, modern organizations collect a large amount of data due to the

advances in information processing technology and storage capacity. To extract

knowledge from the large volume of a dataset using data mining techniques, there is a

strong need for data preprocessing algorithms to ensure the data is of good quality. It is

well known that good results can only be achieved in data mining if the dataset is of

good quality [1]. Real world data is highly susceptible to missing values, noisy values,

and inconsistencies. Data preprocessing is a key step that processes the raw data into a

form that facilitates subsequent analysis. This research presents two data preprocessing

techniques to enhance the quality of data: (i) DSMI algorithm to impute the missing

values and (ii) NoiseCleaner to remove the noisy values from the traffic accident

datasets.

This chapter is organized into several sections as follows. Section 1.1 presents an

overview of the research. Section 1.2 describes the data preprocessing concept. Then,

the research objectives and research questions are described in Section 1.3. Section 1.4

presents the research contributions made in this thesis. Finally, the structure of this

thesis is presented in Section 1.5.

1.1 Overview

An accident is an unplanned and unwanted event which disrupts the work process and

causes injury to people. A traffic accident occurs when a vehicle collides with another

vehicle, pedestrian, animal, road debris, or other stationary obstruction, such as a tree or

utility pole. Death, major or minor types of injuries, vehicle, and property damage are

the result of traffic collisions.

Chapter 1 Introduction

2

Accident investigations and analyses are performed to determine the causes of an

accident. Accidents of particularly common types, such as automobile crashes are often

investigated to identify how to avoid them in the future. The accident investigation is

often performed by a range of experts, including forensic scientists, forensic engineers

or health and safety advisors.

The high growth of the number of vehicles has led to roads with higher traffic

density. The immediate effect of this situation is the dramatic increase of traffic

accidents on the road, which has become a serious problem in many countries. For

example, 2478 people died on Spanish roads in 2010, which means one death for every

18,551 inhabitants [2-4]. In the United States (according to the Department of

Transportation, United Sates) in 2012, 33,561 people died in motor vehicle traffic

crashes [5]. According to the Australian Bureau of Statistics, the majority of transport

related deaths (72% in 2009) in Australia is associated with motor vehicles driven on

public roads [6-8]. The global economic cost of road traffic accidents has been

estimated at US$518b and has been calculated to account for 0.3% to 4% of the gross

national product of many countries [9].

The issue of traffic safety has become one of the key challenges in the sustainable

development of modern traffic and transportation. The burden of road accident

causalities and damage is a major headache for both developed and developing

countries. Motor vehicle collisions lead to loss of lives and permanent disabilities, and

incur large financial costs to both the community and the individuals involved. There

are many factors that contribute to the risk of collisions such as vehicle design, vehicle

speed, road design, road environment, driver skill, and behaviour. Therefore, it is

essential for traffic engineers to be able to extract useful knowledge from existing data

to analyse the causes of traffic accidents and to determine the factors which affect the

severity of injuries in road crashes. Such information enables traffic administrators to be

more accurately informed such that better policies can be introduced to reduce the

number of road traffic accidents.

A large amount of traffic accident data is stored in various types of databases

because of the advancement of data acquisition methods and storage technology. The

Chapter 1 Introduction

3

improvement in sensor technologies has also resulted in the growth of large amounts of

traffic accident data [10]. We can extract traffic activities and factors which lead to

traffic accidents from the traffic accident databases by using advanced data mining

technology. Data mining is typically conceptualized as a three part process:

preprocessing, learning and post-processing. This thesis focuses on the preprocessing

stage, as this can take up to 80% of the total data mining effort [11].

1.2 Data preprocessing

Data preprocessing is a technique which involves transforming raw data into a format

that is suitable for subsequent analysis. It is well known that good results can only be

obtained from data mining algorithms if there is a good quality dataset [1]. Real world

datasets often have missing values and noisy values due to various reasons, including

equipment malfunction, human error, and faulty data transmission. If an organization

does not take extreme care during data collection, then large amounts of missing and

noisy data could be introduced into the datasets [12-16]. Data preprocessing tasks can

include the imputation of missing values, smoothing of noisy data, identification of

erroneous data, and correction of erroneous data.

Missing value means the data value is missing for the variable in the dataset. Many

applications in the real world suffer from a common problem that some values of the

attributes are unobserved. Table 1.1 shows a toy dataset to explain missing values. In

this dataset, ‘?’ stands for missing value. Missing values can be numerical or categorical

in nature. Categorical (sometimes called nominal) variables have values that have no

natural ordering (e.g., airbag conditions: ruptured, cut, torn); ordinal variables do have a

natural ranking order (e.g., day of the week); and interval variables are created from

intervals on a connecting scale (e.g., age set 13-19).

Chapter 1 Introduction

4

Table 1.1. Toy dataset to explain missing values

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R1 Drunk Good 3 Sanders Kill

R2 Drunk Good 4 ? Kill

R3 Drunk Good 2 Glendale No injury

R4 Normal Fair 3 Glendale No injury

R5 Normal Fair ? Glendale No injury

R6 ? Good ? Glendale Kill

Noisy data means corrupted or meaningless data. Noisy data badly affect the results

of any type of data analysis. The presence of noisy values reduces the quality of the

analysis models learned from the data and impairs their predictive or descriptive

performance. Moreover, these models would become overly complex if the noise in the

data were to be accommodated.

Many approaches have been proposed to deal with missing values in a dataset.

Some of the popular approaches are:

• Discarding the record: this is generally used when the class label is lost. This

technique performs well when the dataset has few records with missing

attributes. However, discarding records throws valuable data away and can

hamper efforts to extract knowledge from the data, especially when the

dataset is small. It also introduces bias into the dataset when the proportion

of missing values per attribute varies significantly in the dataset.

• Replacing the missing value by a universal constant: this method replaces all

missing attribute values by a constant, for example: “missed” or “?” or zero.

The main problem is that when all missing values are replaced for example

by “missed”, then the data mining algorithm mistakenly concludes that they

form an interesting concept, since they all have a value in common, that of

Chapter 1 Introduction

5

“missed”. Therefore, although this method is simple, it is not recommended

for data cleaning.

• Impute the missing value by the mean attribute value: this introduces bias

into the dataset. Moreover, it is infeasible when imputing categorical missing

values.

1.3 Research objectives and research questions

Two important data preprocessing tasks are missing value imputation and data

cleansing. This research proposes effective algorithms to perform these tasks for traffic

accident data. The objectives of this research are:

I. To impute the missing values for the traffic accident datasets, where a large

number of attributes values are categorical in nature.

II. To clean noisy values in traffic accident datasets.

Although many algorithms have been proposed for missing value imputation, most

of these algorithms are developed for missing numerical data. However, in many real

world datasets, many attributes are categorical. In fact, most attributes in the traffic

accident datasets are categorical in nature. Very little research has been undertaken to

handle missing categorical attributes. The same is true for data cleansing, where most

existing algorithms are for numerical datasets. The above objectives have therefore led

to the following research questions:

I. How can missing value imputation algorithms handle categorical attributes?

II. How can the correlation between categorical attributes be measured and

quantified?

Chapter 1 Introduction

6

III. How can we measure correlation between two records with categorical

values?

IV. How can we take into account the uncertainty in attribute values seen in real

data?

V. What criteria can be used to detect noisy categorical data?

1.4 Contributions

The main research contributions made in this thesis are presented below:

I. We proposed an effective missing values imputation algorithm called DSMI

for traffic accident data, where a large number of attributes values are

categorical.

II. DSMI algorithm is able to consider the inherent uncertainty seen in real

data.

III. We proposed a novel noisy values identification and correction method,

called NoiseCleaner, which can identify noisy categorical and numerical

attributes values in the traffic accident datasets.

IV. We performed extensive experiments to evaluate the performance of the

proposed algorithms and compare them with current state-of-the-art

algorithms.

1.5 Thesis structure

This thesis is divided into four chapters. Chapter 1 presents the introduction for this

research, data preprocessing concepts, motivation, research objectives, research

questions, research contributions, and the thesis structure. Chapter 2 focuses on the first

part of the research, i.e. missing value imputation. It reviews the literature relevant to

Chapter 1 Introduction

7

missing value imputation and then presents the proposed missing value imputation

algorithm called DSMI. Experimental results and comparative studies with existing

missing value imputation algorithms are also given in this chapter. Chapter 3 presents

the second part of the research, i.e. data cleansing. It reviews the literature in this area

and presents the proposed noisy values detection and correction algorithm called

NoiseCleaner. Extensive experimental results and comparative studies on data cleansing

are also reported. Finally, Chapter 4 provides the conclusions and recommendations for

further study. The structure of the thesis is shown in Figure 1.1.

Figure 1.1: Thesis structure

Chapter 1: Introduction

Chapter 2: Missing values Imputation

Chapter 3: Noisy values detection and correction

Chapter 4: Conclusions and Future Research

Chapter 2 Missing values Imputation

8

Chapter 2: Missing values Imputation

This chapter describes the first part of the research, which is on missing values

imputation. An introduction about missing value imputation is given in Section 2.1. In

Section 2.2, some existing missing values imputation approaches are reviewed and

analysed. Section 2.3 presents the proposed missing value imputation algorithm called

Decision tree and Sampling based Missing values Imputation (DSMI) in detail. Section

2.4 addresses the performance of the DSMI algorithm. A summary is given at the end of

this chapter. The content of this chapter has largely been published in [17].

2.1 Introduction

Huge quantities of data are collected every day from sources such as surveys,

interviews, Facebook, Twitter, LinkedIn, and sensors [18]. For example, the habits and

profiles of people are collected from Facebook and Twitter, professional data are

collected from LinkedIn, and weather data in an environment monitoring system are

often acquired through different sensors. Data can be missing or noisy due to numerous

causes such as equipment malfunctioning and errors incurred during data alteration and

transmission. In an environment monitoring system, data can be missing due to limited

bandwidth in a wireless network, inadequate battery power of the sensing devices, other

hardware, and software problems in the sensors.

To extract useful information from traffic accident datasets, we need a complete

dataset. Missing data are a common occurrence in real world data collection and have a

significant impact on the conclusions that can be drawn from the data. The main

problem of missing values is that the analysis is impossible or distorted because of the

missing values. To overcome this problem, researchers design appropriate protocols to

minimize the occurrence of missing values and develop effective imputation algorithms

Chapter 2 Missing values Imputation

9

to impute the missing values. The imputation of missing values as accurately as possible

is an important data preprocessing task.

In this chapter, a novel method called Decision tree and Sampling based Missing

values Imputation algorithm DSMI [17] is presented and compared with other

imputation algorithms.

2.2 Literature review

Imputation of missing values is an important data preprocessing task for improving the

quality of the data. Many missing value imputation algorithms have been proposed for

various applications [19-54]. Some of these methods are: Expectation Maximization

Imputation (EMI) [33], Decision tree based Missing value Imputation (DMI) [31],

combined instance selection with K-Nearest Neighbour Imputation [34], Similarity

based Missing value Imputation (SiMI) [31], k-Decision tree based Missing value

Imputation (kDMI) [30], k-Nearest Neighbour based Imputation (kNNI) [20], Local

Weighted Linear Approximation imputation (LWLA) [27], Framework for Imputing

Missing values Using co-appearance, correlation and Similarity analysis (FIMUS) [29],

and Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing value

Imputation (FEMI) [32].

To impute numerical missing values, the EMI algorithm [33] relies on estimating

the mean and covariance matrix of the dataset. The EMI algorithm begins with an initial

estimate of the mean and the covariance matrix, and iterates until the imputed values

and the estimates of the mean and covariance matrix stop changing appreciably from the

current to the next iteration [33, 55]. The EMI algorithm is only applicable to datasets in

which the missing values are missing at random. The main drawback of this method is

that for imputing the missing value, the EMI algorithm uses information from the whole

dataset and therefore is suitable only for datasets that exhibit strong correlations

between attributes. A Fuzzy c-Means (FCM) algorithm is proposed to impute the

numerical missing data in [90].

Chapter 2 Missing values Imputation

10

Instead of using information from the whole dataset, the kNNI method [20] imputes

missing values using k number of similar records. This method first finds user-defined k

number of records from the total dataset by using the Euclidean distance measure. To

impute a numerical missing value, the method utilizes the mean value of the specific

attribute within the k most similar records of the entire dataset. If the missing attribute is

categorical, then the method utilizes the most frequent value of the attribute within the k

most similar records. The simple kNNI method performs well on a dataset that has

strong local correlation structure. However, the method can be expensive for large

dataset since for each record with missing value(s), it finds k number of similar records

by searching the whole dataset. This is the main drawback of this method, especially for

large datasets.

Rahman et al. proposed the DMI [31] technique which uses the decision tree and

the EMI algorithm for missing value imputation. They argued that the correlations

among attributes within a horizontal partition of a dataset can be higher than the

correlations over the whole dataset. This technique works as follows: it first divides the

full dataset (DFull) into two sub-datasets, one having records with missing values (DMiss),

and the other having records without missing values (DComplete). Then, it builds decision

trees on DComplete considering the attributes having missing values in DMiss as class

attributes. After that, it assigns each record with missing value(s) in DMiss to the leaf

where it falls in for the tree, which considers the attribute that has a missing value for

the record as the class attribute. Finally, it imputes numerical missing values using the

EMI algorithm and categorical missing values using majority class values within the

leaves. The authors showed that DMI performed well compared with other existing

imputation methods. However, for imputing categorical values, simple voting is used.

Another more serious problem is that the authors do not define how the imputation is

done if the missing values record falls in more than one leaf; a situation that could occur

if there is more than one missing value in a record.

SiMI [31] is an extension of DMI. It uses the decision forest algorithm to identify

horizontal segments of a dataset where the records belonging to a segment have higher

similarity and attribute correlations. It also divides the whole dataset (DFull) into

Chapter 2 Missing values Imputation

11

DComplete and DMiss. Then, it builds a decision forest using DComplete. The decision forest

builds a number of trees with leaves and assigns each record of DMiss to the most

suitable leaf. After that, SiMI finds the intersections of the records belonging to the

leaves of the forest. Then, it imputes numerical missing values using the EMI algorithm

and categorical missing values using the most frequent values.

The kDMI [30] algorithm imputes missing values using two levels of partitioning.

Like DMI, the kDMI algorithm also employs horizontal partitioning based on a decision

tree in the first level partitioning. For the second level partitioning, the authors use a

BestKNN approach to first find the best value of k by searching all the records of a leaf

and calculating the root mean square error (RMSE) of the non-missing attribute values.

Then, the EMI algorithm is used for imputing numerical data, and the frequent value of

BestKNN is used for imputing categorical data. However, what is not clear is that if all

the attributes of a record are categorical, then there is difficulty in knowing how the

RMSE can be calculated using BestKNN. It is also not clear how the imputation would

be done if the missing values record falls in more than one leaf.

The FIMUS technique [29] takes the imputation decision based on the co-

appearances of the values, the correlations between attributes, and similarity of values

belonging to an attribute. In this method, the authors show that it is possible to achieve a

better imputation result by considering available attributes values and their similar

values. Here, similarity (1st level and 2nd level similarities) is calculated using the co-

occurring of attribute values between the records of a dataset [56]. The 1st level

similarity is calculated using the co-occurrence of attribute values of the records, and

the 2nd level uses the “neighbours of neighbours are the direct neighbours” method.

This algorithm uses similarity and co-appearance at the same time. The main problem of

this algorithm is its computational complexity. If the number of records in the dataset is

increased, then it needs massive computation for similarity graphs. Another problem is

that to impute values, similarity values depend on the co-appearance values (in FIMUS,

similarity value is multiplied by the co-appearance value). If there is no co-appearance

value, then the associated similarity value has no impact to impute missing values. They

validate the imputation accuracy using the RMSE and Index of agreement. However, it

Chapter 2 Missing values Imputation

12

is not known how validation can be done for categorical attributes values using these

evaluation criteria.

The Genetic Algorithm (GA) is also used to impute missing values. The Fuzzy C-

means (FCM) algorithm exploits GA to estimate the set of parameters [19]. This

technique imputes the missing values two times. During the first time, the missing value

is imputed using support vector regression and during the second time using FCM with

a set of user-defined parameters. Then, these two sets of imputed values are compared

to test their mutual agreement. If they are similar, then the missing value imputation is

stopped otherwise the GA algorithm is applied to re-estimate the parameters, and this

process is continued until these two parameters are not similar.

Gautam et al. proposed two imputation methods: the CounterPropagation Auto-

Associative Neural Network (CPAANN) based imputation method and a hybrid of

CPAANN along with Grey System Theory (GST) i.e. Grey + CPAANN imputation

method [24]. There are three layers in the CPAANN: the input layers, the hidden layers,

and the output layers. The input nodes are fully connected to the hidden nodes and the

hidden nodes, in turn, are fully connected to the output nodes. Additionally, all the

hidden nodes are connected to one another. In the CPAANN model, the given dataset is

divided into two parts: the complete dataset and the incomplete dataset. This model is

trained using the complete dataset. After that, it makes the mean imputation on the

incomplete dataset and sends it to the trained CPAANN for performing the test using

these mean imputed incomplete records. The Grey + CPAANN model is almost the

same as the CPAANN model. The given dataset is divided into complete and

incomplete datasets. After that, it trains the CPAANN model using the complete dataset.

The difference between Grey + CPAANN and CPAANN is that instead of mean

imputation, the Grey + CPAANN method makes the distance based nearest neighbour

imputation [57]. Then, testing is performed as per the CPAANN model.

In many real world datasets, all data are not equally informative and some data

points can be considered as noisy points. Instance selection means some data points are

removed, but the integrity of the original dataset can still be maintained. Tsai et al. [34]

proposed a missing value imputation algorithm combined instance selection with k-

Chapter 2 Missing values Imputation

13

Nearest Neighbour imputation (kNNI). The authors present four approaches by

combining instance selection and imputation. In the first combination process,

imputation is performed first and then instance selection is used to reduce the dataset. In

this approach, the training dataset (D) is divided into two parts: the complete dataset

(D_complete) and the incomplete dataset (D_incomplete). Then, using the kNNI, the

imputation is done into D_incomplete and produces a new complete training dataset D'.

Next, the instance selection algorithm is executed to remove the unusual instances from

D' and makes a new reduced dataset called D1. Finally, a classifier is trained by D1 and

tested by a given testing dataset to examine the classifier performance. In the second

combination, instance selection is performed first and missing value imputation is done

next. Instance selection is performed over D_complete to make a new complete reduced

dataset D_complete'. After that, the imputation is performed over D_incomplete and

subsequently, a new complete dataset D2 is produced. Finally, a classifier is trained by

D2 and tested by a given testing dataset to examine its classifier performance. The third

and fourth combination processes are based on a two-stage instance selection process.

In the third combination, instance selection is performed again over D1 and a new

reduced training dataset D3 is obtained. In the fourth combination, instance selection is

performed again over D2 and a new reduced training dataset D4 is obtained. The

authors determine the missing value imputation accuracy by the classification accuracy

of the K-NN and the linear SVM classifiers. The Drop3 algorithm [58] is used to

perform the instance selection.

A Fuzzy Expectation Maximization and Fuzzy Clustering-based Missing value

Imputation (FEMI) algorithm is proposed by Rahman et al. [32] to impute the numerical

and categorical attributes values. This algorithm works as follows: at first, all numerical

attributes of the dataset are normalized to be within a range between 0 and 1. Then, the

dataset is divided into two parts: DC (having no missing values) and DI (having missing

values). In the next step, it finds the membership degrees of all records of DC and DI

with all clusters using the General Fuzzy C-Means (GFCM) algorithm [29]. To impute

the numerical missing values the authors proposed a Fuzzy Expectation Maximization

(FuzzyEM) algorithm. This FuzzyEM algorithm is a modification of an existing EM

Chapter 2 Missing values Imputation

14

algorithm [33]. The idea of this algorithm is that the missing values are imputed using

the mean of the membership degrees of all clusters. To impute the categorical missing

values of the cluster, a vote is taken for all domain values of this cluster and the value

having the maximum vote is considered to the imputed value. The vote is calculated for

a value by multiplying its confidence degree in terms of its cluster and the membership

degree. The confidence degree of an attribute value in a cluster is the sum of the

membership degrees for the records, having this attribute value. The authors determine

the missing value imputation accuracy by using two evaluation criteria: RMSE and

Mean Absolute Error (MAE). However, it is not known how validation can be done for

categorical attribute values using these two evaluation criteria.

An automated data imputation model based on a three layered artificial neural

network is used for missing value imputation [58]. Here, the numbers of neurons in both

the input and output layers are equal to the number of attributes of the full dataset. By

taking some available values as missing values, the neural network is trained. This

automated data imputation model finally imputes the missing values using the trained

network.

2.3 Proposed DSMI algorithm

The proposed DSMI algorithm [17] is based on decision trees. In DSMI algorithm,

similar to other decision tree-based imputation algorithms, two datasets are created from

the original dataset. The first dataset, denoted as the complete dataset, contains records

with no missing values. The second dataset, denoted as incomplete dataset, contains

records with one or more attributes values missing, i.e. we called them missing records.

Then, for each missing attribute, a decision tree that uses the missing attribute as class

attribute is constructed from the complete dataset. Each missing record is then assigned

to the corresponding tree’s leaf. Once a missing record is assigned to a leaf node, the

missing values in the missing record are imputed using records that are found in the leaf

node.

Chapter 2 Missing values Imputation

15

The algorithm is illustrated here with a toy example (? stands for missing value).

Table 2.1 shows a full dataset DFull. The full dataset (DFull) is first divided into two sub-

datasets. One subset contains records with missing values (DMiss) and the other without

missing values (DComplete). If the value of an attribute is numerical, we quantize it by the

square root of its domain size. Tables 2.2-2.3 show the resulting DComplete and DMiss

respectively. Next, a set of decision trees with class attributes given by the attributes

having missing values in DMiss are built using C4.5 [60, 61] algorithm using records

from DComplete. For example, three attributes in DMiss, i.e. Driver status, Passenger

number, and Accident address, have missing values, and three decision trees are created

based on these class attributes, as shown in Figures 2.1-2.3.

Table 2.1. Full dataset DFull

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R1 Drunk Good 3 Sanders Kill

R2 Drunk Good 4 ? Kill

R3 Drunk Good 2 Glendale No injury

R4 Normal Fair 3 Glendale No injury

R5 Normal Fair ? Glendale No injury

R6 ? Good ? Glendale Kill

Table 2.2. Complete dataset DComplete with quantized passenger number

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R1 Drunk Good 3-4 Sanders Kill

R3 Drunk Good 1-2 Glendale No injury

R4 Normal Fair 3-4 Glendale No injury

Chapter 2 Missing values Imputation

16

Table 2.3. Missing value Dataset DMiss with quantized passenger number

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R2 Drunk Good 3-4 ? Kill

R5 Normal Fair ? Glendale No injury

R6 ? Good ? Glendale Kill

Figure 2.1. Tree for ‘Accident address’ class

Chapter 2 Missing values Imputation

17

Figure 2.2. Tree for ‘Passenger number’ class

Figure 2.3. Tree for ‘Driver status’ class

Chapter 2 Missing values Imputation

18

In Figure 2.1, ‘Leaf 1 Sanders: (1) R1’ denotes one record R1 falls in Leaf 1 which

is associated with the attribute value ‘Sanders’. After the tree construction step, we

assign each record in DMiss to the leaf of the tree with the same class attribute as the

missing attribute. For example, R2 record has ‘Accident address’ attribute value missing

so we assign it to the ‘Accident address’ tree. Therefore, R2 and R5 records are assigned

to Leaf 1 and Leaf 6, respectively. Records with more than one missing values would

fall into multiple leaves. As R6 record has two missing values, it is assigned to three

leaves 4, 6, and 8. Once all records in DMiss are assigned to the appropriate leaves, each

leaf will consists of records from DComplete and DMiss that are correlated. Tables 2.4-2.7

show the sets of records in leaves with missing records. If a record falls into multiple

leaves, the records from all these leaves are grouped into one collection. Therefore, the

set of records associated with R6 are given by Table 2.8.

Table 2.4. Records in leaf 1

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R1 Drunk Good 3 Sanders Kill

R2 Drunk Good 4 ? Kill

Table 2.5. Records in leaf 4

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R1 Drunk Good 3 Sanders Kill

R6 ? Good ? Glendale Kill

Chapter 2 Missing values Imputation

19

Table 2.6. Records in leaf 6

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R4 Normal Fair 3 Glendale No injury

R5 Normal Fair ? Glendale No injury

R6 ? Good ? Glendale Kill

Table 2.7. Records in leaf 8

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R3 Drunk Good 2 Glendale No injury

R6 ? Good ? Glendale Kill

Table 2.8. Aggregated table for record 6 with multiple missing values

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R1 Drunk Good 3 Sanders Kill

R4 Normal Fair 3 Glendale No injury

R3 Drunk Good 2 Glendale No injury

R5 Normal Fair ? Glendale No injury

R6 ? Good ? Glendale Kill

To impute the missing values in the missing record, we search for records in the

table which have the maximum number of non-missing attributes in common to the

missing record. Then, the attribute values in these records corresponding to the missing

Chapter 2 Missing values Imputation

20

attributes in the missing record are taken to be the possible imputed values. For

example, in Table 2.8, R6 record has three non-missing values but we do not get any

record matching with these three non-missing values. So, we search instead for two

matching non-missing values and get two records with two matching attributes values:

R1(Good, Kill) and R3(Good, Glendale). For the two missing attributes (Driver status,

Passenger number), the possible imputed values from R1 and R3 records are (Drunk, 3),

and (Drunk, 2), respectively. To decide which possible imputed values are more likely

for the missing record, we need a measure of the affinity of possible imputed values to

the missing record. Let ϑ denote the affinity degree of the possible imputed values for

the missing record. The next step is to evaluate the affinity degree ϑ for each of the two

possible imputed values (Drunk, 3), and (Drunk, 2).

In our approach, we use two measures to exploit the correlations between records

and between attributes values within a record to impute the missing values. The first

measure, called IS measure, computes the correlations between attribute values of

different attributes in a record. The second measure, called weighted similarity measure

(���), computes the similarity between two values of an attribute in two different records.

These measures are computed as follows.

2.3.1 IS measure

We measure the correlation between set of attributes with non-missing values, �, and

set of attributes with missing values, �, within a record using IS measure. The IS

measure measures the degree of associations between two sets of attributes values [62,

63]. 	
�, � = 	 ���, ��, … , ���, and � =	 ���, ��, … ���, 	where ��, ��, … ��	 are the attributes

with non-missing values and �� , ��, …�� are the attributes with missing values, then

����,�) = 	 ���������,�)
����������) × ���������)																																										�1)

Chapter 2 Missing values Imputation

21

where ��������,�) = 	 |�,�| "⁄ , and|�,�| denotes the number of records that

contain both � and �, and " refers to the size of the dataset.

IS measure has several desirable properties [62, 64]. It is the product of two

important quantities: interest factor and support count. Interest factor I is a popular

measure for association like patterns [45, 46] and is defined to be the ratio between the

joint probability of two variables $ and % with respect to their expected probabilities

under the independence assumption. Let $ and % denote a pair of binary variables, then I

is defined by

��$, %) = 	 &�$, %)&�$)	&�%)																																																				�2)

The dataset that contains these variables can be summarized into a 2	 × 2

contingency table as shown in Table 2.9. Each cell represents the four possible

combinations of $ and % values. (�� corresponds to the support count for each cell; while

(�) and ()� are the marginal sums of row i and column j (for example,		(�) = (�� +	(�+).
Then, it can be shown that

�	�$, %) = 	 (��"(�)()� 																																																									�3)

Table 2.9. 2	 × 2 contingency table for binary variables

 % %-

$ (�� (�+ (�)

$̅ (+� (++ (+)

 ()� ()+ "

Chapter 2 Missing values Imputation

22

However, I in itself could lead to association rule that is counter-intuitive due to not

considering the support of the association, as pointed out in [11, 52]. Instead, the IS

measure IS(x, y) takes into account Support (x, y) = f11/Q:

��	�$, %) = 	/��$, %) × (��" 																																									�4)

In addition, IS measure is equivalent to the geometric mean of confidence of rules

that can be generated from the item-pair i.e.

��	�$, %) = �1�2(34
21
�$, %) × 1�2(34
21
�%	, $) and this measure does not

depend on data size. Here,1�2(34
21
	�$, %) = &	�$, %) &	�$)⁄ , with &	�$) = 	 |$| 2⁄

and |$| is the number of transactions that contain $ and 2 is the total number of

transactions.

2.3.2 Weighted similarity measure

To evaluate how similar two records in the dataset are, we use the weighted similarity

measure, ���. This weighted similarity measure considers both the direct relationship

(called 1st level similarity) and transitive relationship (called 2nd level similarity)

between two attribute values of an attribute. The first step in calculating ��� between

two attribute values of an attribute is to create a graph. Let G = (V, E) be a graph created

from the dataset of related records found in the leaf of a tree, i.e. the set of records in a

table, where the set of vertices V are given by the set of attribute values in the dataset

and an edge e ∈ E is drawn between two vertices when both attribute values appear in a

record. Then, ��� is the weighted sum of the ���5 (1st level similarity) and ���55 (2nd level

similarity) between two attribute values of an attribute

��� =	�� × ���5 	+ 	�� × ���55																																									�5)

Chapter 2 Missing values Imputation

23

where ��	and �� are weights with �� + �� = 1.

The 1st level similarity, ���5 is given by

���5 = ∑ �8�9 ×	89��9:��4�3) 	× 4�;) 																																																�6)

where 8�9 =l if l edges occur between vertices i and k, and zero otherwise, n is the

number of vertices in the graph and 4�3) is the degree of vertex 3. Note that ���5

effectively measures the proportion of common neighbours of vertices =� and =� against

all direct neighbours of the two vertices. If the two vertices have all their neighbours in

common, then ���5 has a maximum value of 1. If the two vertices do not share any

common neighbours, then ���5 is zero.

On the other hand, the 2nd level similarity, ���55 measures the transitive relationship

for two attribute values of an attribute that are not directly connected to common

neighbours but are connected to pair of attribute values => and =?	who have 1st level

similarity �>?5 greater than a user defined threshold @. The 2nd level similarity ���55 is

equal to the 1st level similarity between =� and =� 	computed from the merged graph

where => and =?	 are merged into a common vertex.

Finally, the weighted similarity measure S(A9, AB) between two records Rk and Rl is

given by averaging the weighted similarity measure ��� of each attribute of the two

records [17, 36].

 To illustrate how IS and ��� are computed, we will use the records in Table 2.8

(presented in Table 2.10 with vertex nodes labelled from 1 to 10) as an example. Recall

that for the two missing attributes (Driver status, Passenger number) in R6, the possible

imputed values from R1 and R3 records are (Drunk, 3), and (Drunk, 2), respectively. The

IS measure for the two records are

Chapter 2 Missing values Imputation

24

��CD��E��4, F3GG), �H��2F, 3)� = �������E��4, F3GG, H��2F, 3)� �������E��4, F3GG) × �������H��2F, 3) = 1

and ��CI��E��4, EG
248G
), �H��2F, 2)� = 1.

Table 2.10. Aggregated table for record 6 with vertex node number assigned

Record Driver status Weather
condition

Passenger
number

Accident
address

Injury severity

R1 Drunk (1) Good (3) 3 (5) Sanders (7) Kill (9)

R4 Normal (2) Fair (4) 3 (5) Glendale (8) No injury (10)

R3 Drunk (1) Good (3) 2 (6) Glendale (8) No injury (10)

R5 Normal (2) Fair (4) ? Glendale (8) No injury (10)

R6 ? Good (3) ? Glendale (8) Kill (9)

Chapter 2 Missing values Imputation

25

Figure 2.4: Graph constructed from Table 2.10

Next, to compute the weighted similarity measure between two records, we need to

first calculate	��� for R6 from Table 2.10 and the corresponding graph in Figure 2.4.

From the graph in Figure 2.4, we can see that nodes 7 and 8 have nodes 1, 5, 9, 3 as

common neighbours, hence the 1st level similarity between nodes 7 and 8 is 	�J,K5 		

������)������)������)������

√M��N

 0.613. Similarly, we can calculate the 1st level

similarities for all node pairs within the graph as: 	��,�5
 0.512(neighbour nodes 5, 8,

10), 	�N,M5
 0.528	(neighbour nodes 5, 8, 10), 	�R,S5
 0.707	(neighbour nodes 1, 3, 8,

10), and 	�U,�+5
 0.633 (neighbours nodes 1, 3, 5, 8). Let T=0.50, ��=0.6, ��=0.4. In

Figure 2.4, we connect nodes having 1st level similarities greater than the threshold T by

dotted lines. For easier visualization of the vertices within the same record and their

associated edges, different colours are used.

Chapter 2 Missing values Imputation

26

To calculate the 2nd level similarity ���55 between nodes i and j, we find all pairs of

nodes (k,l) common to nodes i and j and with �9B5 > T. For nodes 7 and 8, we have the

following neighbour pairs (1,2), (3,4), (5,6), (9,10), and we have

�J,K55 	= 	���×N))���×M))���×�))���×M)√R� = 0.9909. Similarly, for nodes 9 and 10, the

neighbour pairs are (1,2), (3,4), (5,6), (7,8), and �U,�+55 = 0.9902. The overall

similarities, S between all attribute values of (R1, R6) and (R3, R6) are now given by

��A�, AS) = 	 ��3 − 3� +	�7 − 8� +	�9 − 9�)2�XY
�	�(8���3Y��

= 	 �1 +	 �	�� ∗ 0.613	 +	�� ∗ 0.9909� + 	1)3 	= 	0.9214	 	�7)

��AN, AS) 	= 	0.9253	 	�8)

The affinity degree for the possible imputed values is given by the average of the IS

and ��� measures computed for each possible imputed values. For (Drunk, 3) from R1,

the affinity degree is given by ϑ(Drunk, 3) = (0.9214+1)/2 = 0.9607. For (Drunk, 2)

from R6, ϑ(Drunk, 2) = (0.9253+1)/2 = 0.9626. Finally, the actual imputed value is

obtained by random sampling from the list of possible imputed values based on their

affinity degrees. For example, since (Drunk, 3) and (Drunk, 2) have affinity degrees of

0.9607 and 0.9626, respectively, their sampling probabilities are 0.4995 and 0.5005,

respectively, and both have these probabilities of been chosen as the actual imputed

values for the missing values in R6. Random sampling according to affinity degree

ensures that uncertainty and randomness in attribute values are accounted for and helps

to reduce systematic bias in the imputed dataset.

Chapter 2 Missing values Imputation

27

2.3.3 DSMI algorithm

The DSMI algorithm is presented below.

DSMI Algorithm:

Step I: Decompose full dataset into complete and missing values sub-datasets: DFull =

DComplete + DMiss

Step II: Generate a set of decision trees using C4.5 from DComplete where each missing

attribute in DMiss produces a tree

Step III: Assign the records in DMiss into leaves of the decision trees and create tables

of related records

Step IV: Impute missing values

FOR each table T DO

FOR each missing record R in T DO

Find records in T that match with the maximum number of non-missing

attribute(s) in the missing record R, and let N be the number of such records

FOR k = 1 to N determine

Ok = possible imputed value(s) from the k-th matched record

ISk = IS measure computed for Ok

Sk = weighted similarity measure between the k-th matched record and

missing record R

ϑk = affinity degree for Ok

END FOR

Imputed value(s) is obtained by random sampling from the set of possible

imputed values {O1…ON} based on the sampling probabilities specified by

the set of affinity degrees {ϑ1 …ϑN }

END FOR

END FOR

Chapter 2 Missing values Imputation

28

2.4 Experimental results

2.4.1 Datasets

We do experiment on 43 text files data (Large Truck Crash Causation Study File 1 and

2), two datasets on New York’s open data portal (“Motor Vehicle Crash-case

information: 2011” and “Motor Vehicle Crash- individual information: 2011”), and a

dataset of Denver County. The Denver County’s dataset includes accidents in the City

and County of Denver for the previous five calendar years plus the current year to date

(30 June 2014) and has 89194 traffic accident records, in which 1902 records contain

missing values. The Large Truck Crash Causation Study Files have different number of

attributes and 92871 records, in which 3192 records contain missing values. We

removed records having missing values from the datasets so that the datasets only

contain complete records. The four datasets are listed in Table 2.11. As can be seen,

these datasets contain mostly categorical attributes.

Table 2.11. Datasets details

Dataset Number
of

complete
records

Categorical
attributes

Numerical
attributes

As on date

Large Truck Crash Causation Study
Files (File 1 and 2) dataset (Truck)
[78]

89679

A total of 43 text
files with different
number of
attributes in each
file, most of the
attributes (90%) are
categorical

12 February, 2014

Denver County dataset (Denver) [79] 87292 13 4 30 June, 2014

Chapter 2 Missing values Imputation

29

Motor vehicle crash- Case
information: 2011 dataset (Case)
[76]

13889 17 1 24 September, 2014

Motor vehicle crash- Individual
information: 2011 dataset
(Individual) [76]

17858 11 3 24 September, 2014

2.4.2 Evaluation criteria

Our proposed imputation accuracy is evaluated using imputation accuracy � and root

mean square error (RMSE) [67]. The RMSE is a frequently used measure of the

difference between values predicted by a model and the values actually observed.

However, RMSE is not appropriate for categorical data as arbitrary value can be

assigned to correct/incorrect imputation. As most of the attributes in our traffic accident

datasets are categorical, we use � to evaluate categorical imputation accuracy, and only

use RMSE for the numerical attributes (if any).

Let 2 be the total number of missing values and 1 be the total number of correctly

imputed missing value. The accuracy is given by

� = [� (9)

The � ranges from 0 to 1, where 1 indicates perfect imputation.

Let �� be the true value for the 3-th missing value, &� be the imputed value for the 3-
th missing value, and
� = �&�−��). The RMSE is given by

A��\ =]��∑
����:� (10)

The lower the RMSE value, the better the imputation.

Chapter 2 Missing values Imputation

30

2.4.3 Parameter selection

Our proposed algorithm has three parameters that need to be set. These parameters are:

similarity threshold T, 1st level similarity weight ��, and 2nd level similarity weight ��.

Using imputation accuracy �, we analyse the four datasets to select the best threshold

parameter T. The results are shown in Figure 2.5. Likewise, we analyse the different

values of ��, �� on the four datasets to determine their optimum value. In Table 2.12,

we show the effects of the two parameter values on different datasets. Based on this

result, we use �� = 0.60 and �� = 0.40. Note that these results (Figure 2.5 and Table

2.12) are generated on the four datasets where numerical attributes are excluded.

Table 2.12. Similarity measure parameters selection using �

Parameters Datasets

C1 C2 Case Individual Truck Denver

1.00 0.00 0.6233 0.5906 0.6845 0.4925

0.95 0.05 0.6240 0.5904 0.6825 0.5221

0.90 0.10 0.7550 0.6864 0.6912 0.5889

0.85 0.15 0.7560 0.6794 0.7180 0.6851

0.80 0.20 0.7665 0.7776 0.7762 0.6834

0.75 0.25 0.8275 0.7855 0.7941 0.7814

0.70 0.30 0.8899 0.8514 0.8701 0.8210

0.65 0.35 0.9612 0.9599 0.9541 0.9598

0.60 0.40 0.9782 0.9644 0.9810 0.9566

0.55 0.45 0.9538 0.9644 0.9564 0.9245

0.50 0.50 0.8657 0.9648 0.8678 0.8698

0.45 0.55 0.8688 0.9104 0.8698 0.7714

0.40 0.60 0.8004 0.9024 0.8010 0.7802

0.35 0.65 0.7915 0.8846 0.8120 0.6203

Chapter 2 Missing values Imputation

31

0.30 0.70 0.7819 0.8556 0.7922 0.5892

0.25 0.75 0.6910 0.7344 0.7100 0.5099

0.20 0.80 0.6926 0.7332 0.7200 0.4345

0.15 0.85 0.6010 0.7113 0.7010 0.4135

0.10 0.90 0.6199 0.7209 0.6100 0.4214

0.05 0.95 0.6146 0.6324 0.6204 0.4365

0.00 1.00 0.6098 0.6216 0.6202 0.4404

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

User defined threshold, T

Im
pu

ta
tio

n
A

cc
ur

ac
y

on
 D

en
ve

r

Chapter 2 Missing values Imputation

32

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.88

0.9

0.92

0.94

0.96

0.98

1

User defined threshold, T

Im
pu

ta
tio

n
A

cc
ur

ac
y

on
 T

ru
ck

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

User defined threshold, T

Im
pu

ta
tio

n
A

cc
ur

ac
y

on
 C

as
e

Chapter 2 Missing values Imputation

33

Figure 2.5: Threshold parameter @ on four datasets

2.4.4 Missing value simulation

We use four types of missing patterns: simple, medium, complex, and blended [3, 17].

In simple pattern, a record can have at most one missing value. In medium pattern, a

record can have missing values for up to 50 % of the total number of attributes. In a

complex pattern, a record can have missing values for up to 80 % of the total number of

attributes. A blended pattern contains 25% records having missing values with simple

pattern, 50% with medium pattern and 25% with complex pattern. For each missing

pattern, we use four missing ratios: 2%, 4%, 8% and 10%. We use two types of missing

models, namely overall and uniformly distributed (UD). In the UD missing model, each

attribute has equal number of missing values. However, in the overall model, missing

values are not equally distributed among the attributes and in the worst case all missing

values can belong to a single attribute [3, 83].

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

User defined threshold, T

Im
pu

ta
tio

n
A

cc
ur

ac
y

on
 I

nd
iv

id
ua

l

Chapter 2 Missing values Imputation

34

In our experiments, we artificially create missing values in the dataset by using 4

missing patterns, namely simple, medium, complex and blended, 4 missing ratios i.e.

2%, 4%, 8% and 10%, and 2 missing models, namely overall and uniformly distributed

(UD). We have altogether 32 missing combinations (4 missing ratios × 4 missing

patterns × 2 missing models). For each combination, we generate 20 datasets i.e. in total

we create 640 datasets (32 combinations × 20 datasets per combination) with missing

values for each real dataset, as shown in Table 2.13.

Table 2.13. Missing value simulation

Missing
patterns

Number of attributes having missing
values

Missing
ratios

Missing
model

Number of
datasets
for each
pattern

Simple 1
2%, 4%,
8% and

10%

Overall and
Uniformly
distributed

20 Medium Up to 50%

Complex Up to 80%
Blended Simple-25%, Medium-50% and

Complex-25%

2.4.5 Results of categorical missing values imputation

For categorical missing value imputation, we compare our proposed algorithm DSMI

with five imputation methods FEMI [32], FIMUS [29], (Grey + CPAANN) [24], DMI

[31], and KNNI [20]. We present the imputation accuracy of DSMI, FEMI, (Grey +

CPAANN), FIMUS, DMI, and KNNI on the “Motor vehicle crash case information:

2011 dataset”, “Truck crash causation dataset”, “Denver County dataset”, and “Motor

vehicle crash individual information: 2011 dataset” in Table 2.14, Table 2.15, Table

2.16, and Table 2.17 respectively. Only categorical attributes are considered here. From

each dataset, we generate 32 combinations of four missing ratios, two missing models,

and four missing patterns. Each value in these tables is the average of 20 imputation

runs carried out on 20 datasets. In these two tables, bold values mark the best

imputation result compare with other imputation methods. From these tables, it can be

Chapter 2 Missing values Imputation

35

seen that our DSMI imputation method performs significantly better than FEMI,

FIMUS, Grey + CPAANN, DMI and KNNI methods.

Table 2.14. Performance on Motor Vehicle Crash case information: 2011 dataset

 Accuracy (�)

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI

2% Overall Simple 0.9782 0.8301 0.8130 0.8090 0.7110 0.6310

Medium 0.9671 0.8300 0.8160 0.8088 0.7110 0.6210

Complex 0.9634 0.8267 0.8020 0.8082 0.7190 0.6270

Blended 0.9626 0.8260 0.8020 0.8032 0.7190 0.6260

UD Simple 0.9682 0.8300 0.8220 0.8031 0.7110 0.6390

Medium 0.9662 0.8289 0.8030 0.8011 0.7090 0.6280

Complex 0.9622 0.8245 0.8010 0.8001 0.7070 0.6220

Blended 0.9632 0.8240 0.8010 0.8000 0.7060 0.6220

4% Overall Simple 0.9582 0.8262 0.8100 0.8008 0.7095 0.6290

Medium 0.9580 0.8261 0.8160 0.8002 0.7085 0.6270

Complex 0.9530 0.8134 0.8060 0.8001 0.7090 0.6010

Blended 0.9520 0.8104 0.8250 0.8000 0.7070 0.6220

UD Simple 0.9566 0.8200 0.8040 0.7909 0.7010 0.6290

Medium 0.9560 0.8165 0.8080 0.7908 0.7030 0.6260

Complex 0.9540 0.8123 0.8090 0.7902 0.7080 0.6020

Blended 0.9540 0.8103 0.8070 0.7901 0.7060 0.6210

8% Overall Simple 0.9562 0.8101 0.8080 0.7903 0.6980 0.6140

Medium 0.9560 0.8100 0.8080 0.7902 0.6960 0.6150

Complex 0.9480 0.8023 0.8040 0.7900 0.6930 0.6144

Blended 0.9500 0.7989 0.8020 0.7825 0.6910 0.6160

Chapter 2 Missing values Imputation

36

UD Simple 0.9542 0.8078 0.8060 0.7820 0.6902 0.6140

Medium 0.9510 0.8070 0.8070 0.7808 0.6900 0.6040

Complex 0.9470 0.8060 0.8040 0.7730 0.6823 0.6050

Blended 0.9480 0.8045 0.7920 0.7705 0.6820 0.6140

10% Overall Simple 0.9500 0.7967 0.7810 0.7800 0.6805 0.6003

Medium 0.9480 0.7960 0.7910 0.7701 0.6801 0.6000

Complex 0.9450 0.7923 0.7840 0.7645 0.6789 0.5956

Blended 0.9470 0.7840 0.7835 0.7640 0.6723 0.5923

UD Simple 0.9510 0.7831 0.7810 0.7605 0.6720 0.5980

Medium 0.9460 0.7810 0.7800 0.7600 0.6703 0.5960

Complex 0.9490 0.7800 0.7840 0.7565 0.6612 0.5879

Blended 0.9470 0.7800 0.7845 0.7510 0.6610 0.5870

Table 2.15. Performance on Large Truck Crash Causation dataset

 Accuracy (�)
Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI

2% Overall Simple 0.9810 0.9233 0.9100 0.9089 0.7980 0.7190

Medium 0.9792 0.9230 0.9110 0.9088 0.7860 0.7100

Complex 0.9762 0.9210 0.9150 0.9070 0.7950 0.7070

Blended 0.9742 0.9201 0.9160 0.9050 0.7940 0.7050

UD Simple 0.9778 0.9189 0.9090 0.9007 0.7970 0.7010

Medium 0.9748 0.9180 0.9080 0.9001 0.7980 0.7000

Complex 0.9726 0.9067 0.8960 0.8823 0.7900 0.6987

Blended 0.9720 0.9023 0.8960 0.8803 0.7890 0.6980

Chapter 2 Missing values Imputation

37

4% Overall Simple 0.9752 0.9001 0.8860 0.8780 0.7920 0.6930

 Medium 0.9736 0.8980 0.8860 0.8778 0.7730 0.6910

 Complex 0.9714 0.8930 0.8110 0.8770 0.7630 0.6815

 Blended 0.9726 0.8904 0.8190 0.8777 0.7620 0.6844

 UD Simple 0.9730 0.8803 0.8130 0.8585 0.7530 0.6830

 Medium 0.9730 0.8745 0.8140 0.8580 0.7510 0.6770

 Complex 0.9702 0.8503 0.7690 0.85005 0.7490 0.6730

 Blended 0.9704 0.8500 0.7680 0.8401 0.7480 0.6720

8% Overall Simple 0.9670 0.8456 0.8140 0.8301 0.7490 0.6710

 Medium 0.9660 0.8405 0.8160 0.8300 0.7460 0.6760

 Complex 0.9640 0.8400 0.8080 0.8204 0.7330 0.6610

 Blended 0.9610 0.8378 0.8150 0.8190 0.7320 0.6690

 UD Simple 0.9620 0.8320 0.8020 0.8109 0.7280 0.6600

 Medium 0.9620 0.8301 0.8140 0.8100 0.7250 0.6580

 Complex 0.9568 0.8300 0.8030 0.8056 0.7210 0.6510

 Blended 0.9584 0.8209 0.8040 0.8050 0.7200 0.6420

10% Overall Simple 0.9554 0.7989 0.8040 0.8006 0.7140 0.6370

 Medium 0.9524 0.7980 0.8030 0.8001 0.7130 0.6360

 Complex 0.9510 0.7823 0.7900 0.7978 0.7100 0.6300

 Blended 0.9522 0.7820 0.7960 0.8000 0.7100 0.6280

 UD Simple 0.9532 0.7800 0.7910 0.7989 0.7020 0.6270

 Medium 0.9514 0.7749 0.7800 0.7856 0.7010 0.6150

 Complex 0.9496 0.7740 0.7940 0.7700 0.6980 0.6140

 Blended 0.9460 0.7706 0.7820 0.7673 0.6940 0.6010

Chapter 2 Missing values Imputation

38

Table 2.16. Performance on Denver County dataset

 Accuracy (�)

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI

2% Overall Simple 0.9671 0.8267 0.8009 0.8045 0.7145 0.7267

Medium 0.9649 0.8261 0.8004 0.8041 0.7135 0.7261

Complex 0.9625 0.8250 0.8001 0.8038 0.7130 0.7260

Blended 0.9617 0.8187 0.8000 0.8031 0.7009 0.7255

UD Simple 0.9621 0.8170 0.7923 0.8003 0.7007 0.7251

Medium 0.9620 0.8104 0.7920 0.8002 0.7003 0.7250

Complex 0.9519 0.8101 0.7919 0.7980 0.7002 0.7105

Blended 0.9511 0.8100 0.7910 0.7935 0.7000 0.7100

4% Overall Simple 0.9598 0.8262 0.8104 0.8008 0.6104 0.7114

Medium 0.9580 0.8261 0.7934 0.8002 0.6104 0.7114

Complex 0.9575 0.8134 0.7932 0.8001 0.6004 0.6124

Blended 0.9570 0.8104 0.7904 0.8000 0.6005 0.6114

UD Simple 0.9562 0.8200 0.7804 0.7909 0.6105 0.6324

Medium 0.9550 0.8165 0.7703 0.7908 0.6405 0.6225

Complex 0.9548 0.8123 0.7604 0.7902 0.6105 0.6125

Blended 0.9545 0.8103 0.7103 0.7901 0.6105 0.5126

8% Overall Simple 0.9531 0.8009 0.7831 0.7819 0.6987 0.6645

Medium 0.9522 0.8011 0.7820 0.7816 0.6976 0.6621

Complex 0.9519 0.8002 0.7810 0.7811 0.6902 0.6610

Blended 0.9447 0.8000 0.7801 0.7810 0.6900 0.6645

UD Simple 0.9511 0.7989 0.7800 0.7801 0.6873 0.6531

Medium 0.9501 0.7981 0.7767 0.7800 0.6833 0.6511

Complex 0.9424 0.7979 0.7734 0.7787 0.6821 0.6501

Blended 0.9420 0.7971 0.7732 0.7776 0.6819 0.6500

Chapter 2 Missing values Imputation

39

10% Overall Simple 0.9494 0.7838 0.7809 0.7754 0.6845 0.6332

 Medium 0.9465 0.7831 0.7802 0.7743 0.6765 0.6311

 Complex 0.9461 0.7830 0.7667 0.7523 0.6671 0.6307

 Blended 0.9454 0.7823 0.7613 0.7521 0.6617 0.6302

 UD Simple 0.9405 0.7821 0.7606 0.7465 0.6610 0.6300

 Medium 0.9403 0.7811 0.7604 0.7609 0.6607 0.6209

 Complex 0.9401 0.7808 0.7601 0.7402 0.6603 0.6205

 Blended 0.9400 0.7765 0.7600 0.7389 0.6601 0.6200

Table 2.17. Performance on Motor Vehicle Crash- individual information: 2011 dataset

 Accuracy (�)
Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI KNNI

2% Overall Simple 0.9720 0.8610 0.8435 0.8417 0.7609 0.7308

 Medium 0.9710 0.8603 0.8430 0.8410 0.7600 0.7301

 Complex 0.9654 0.8545 0.8403 0.8405 0.7521 0.7274

 Blended 0.9650 0.8522 0.8400 0.8501 0.7511 0.7217

 UD Simple 0.9701 0.8511 0.8387 0.8433 0.7506 0.7301

 Medium 0.9680 0.8510 0.8376 0.8423 0.7502 0.7234

 Complex 0.9665 0.8504 0.8325 0.8413 0.7456 0.7205

 Blended 0.9650 0.8503 0.8321 0.8410 0.7450 0.7201

4% Overall Simple 0.9651 0.8500 0.8302 0.8405 0.7522 0.7054

 Medium 0.9612 0.8467 0.8301 0.8403 0.7510 0.7034

 Complex 0.9605 0.8432 0.8300 0.8400 0.7423 0.7004

 Blended 0.9601 0.8413 0.8300 0.8398 0.7410 0.7001

 UD Simple 0.9603 0.8410 0.8298 0.8378 0.7445 0.6704

 Medium 0.9600 0.8407 0.8290 0.8370 0.7424 0.6700

Chapter 2 Missing values Imputation

40

 Complex 0.9587 0.8403 0.8265 0.8319 0.7414 0.6623

 Blended 0.9672 0.8402 0.8245 0.8310 0.7410 0.6603

8% Overall Simple 0.9634 0.8380 0.8226 0.8311 0.7401 0.6601

 Medium 0.9632 0.8365 0.8217 0.8310 0.7400 0.6600

 Complex 0.9622 0.8356 0.8206 0.8307 0.7372 0.6453

 Blended 0.9611 0.8316 0.8202 0.8274 0.7327 0.6413

 UD Simple 0.9605 0.8311 0.8201 0.8223 0.7317 0.6512

 Medium 0.9604 0.8310 0.8201 0.8221 0.7302 0.6500

 Complex 0.9602 0.8304 0.8167 0.8204 0.7256 0.6434

 Blended 0.9601 0.8302 0.8157 0.8201 0.7203 0.6423

10% Overall Simple 0.9548 0.8156 0.8108 0.8176 0.7204 0.6406

 Medium 0.9540 0.8154 0.8106 0.8174 0.7203 0.6402

 Complex 0.9535 0.8107 0.8101 0.8056 0.7187 0.6345

 Blended 0.9505 0.8100 0.8073 0.8055 0.7145 0.6314

 UD Simple 0.9502 0.8098 0.8009 0.8001 0.7200 0.6321

 Medium 0.9501 0.8030 0.8010 0.7987 0.7134 0.6309

 Complex 0.9445 0.8000 0.7945 0.7927 0.7032 0.6230

 Blended 0.9441 0.7976 0.7910 0.7821 0.7003 0.6210

We present the result for the four traffic accident datasets on all 8 combinations of

missing ratios and missing models with the simple missing pattern in Figure 2.6 and

medium missing pattern in Figure 2.7. Here, performance is evaluated with 95%

confidence levels. Figure 2.8 presents the result for the four traffic accident datasets on

4% missing ratio and 8 missing combinations of missing patterns and missing models

with 95% confidence levels.

Chapter 2 Missing values Imputation

41

(a) Case dataset

(b) Truck dataset

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

A
cc

u
ra

cy
 (
�)

A
cc

u
ra

cy
 (
�)

Chapter 2 Missing values Imputation

42

(c) Denver County dataset

(d) Individual dataset

Figure 2.6. Aggregated Performance (�) on four datasets in terms of “simple” missing pattern with

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

A
cc

u
ra

cy
 (
�)

A
cc

u
ra

cy
 (
�)

Chapter 2 Missing values Imputation

43

confidence level 95 percent

Figure 2.7 shows the result for the four traffic accident datasets on all 8

combinations of missing ratios and missing models with the medium missing pattern.

Here, performance is evaluated with 95% confidence levels.

Figure 2.8 presents the result for the four traffic accident datasets on 4% missing

ratio and 8 missing combinations of missing patterns and missing models with 95%

confidence levels.

(a) Case dataset

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

A
cc

u
ra

cy
 (
�)

Chapter 2 Missing values Imputation

44

(b) Truck dataset

(c) Denver County dataset

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

A
cc

u
ra

cy
 (
�)

A
cc

u
ra

cy
 (
�)

Chapter 2 Missing values Imputation

45

(d) Individual dataset

Figure 2.7. Aggregated Performance (�) on four datasets in terms of “medium” missing pattern with

confidence level 95 percent

(a) Case dataset

0.6000

0.8000

1.0000

Overall UD Overall UD Overall UD Overall UD

2% 4% 8% 10%

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

0.6

0.8

1

Simple Medium Complex Blended Simple Medium Complex Blended

Overall UD

DSMI

FIMUS

DMI

kNNI

FEMI

Grey+CPAANN

A
cc

u
ra

cy
 (
�)

A
cc

u
ra

cy
 (
�)

Chapter 2 Missing values Imputation

46

(b) Truck dataset

(c) Denver County dataset

0.6

0.8

1

Simple Medium Complex Blended Simple Medium Complex Blended

Overall UD

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

0.6000

0.8000

1.0000

Simple Medium Complex Blended Simple Medium Complex Blended

Overall UD

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

A
cc

u
ra

cy
 (
�)

A
cc

u
ra

cy
 (
�)

Chapter 2 Missing values Imputation

47

(d) Individual dataset

Figure 2.8. Aggregated Performance (�) on four datasets in terms of “4%” missing ratio with

confidence level 95 percent

Figure 2.9 presents the average performance indicators (for 32 missing combinations)

for each dataset. It is clearly shown that DSMI performs better than the five existing

algorithms. From this graph, it can be seen that our DSMI imputation method performs

significantly better than FEMI, FIMUS, Grey + CPAANN, DMI and KNNI methods.

0.6

0.8

1

Simple Medium Complex Blended Simple Medium Complex Blended

Overall UD

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

A
cc

u
ra

cy
 (
�)

Chapter 2 Missing values Imputation

48

Figure 2.9. Performance (�) comparison on four datasets

2.4.6 Results of numerical missing values imputation

For numerical missing value imputation, we present the RMSE value of DSMI, FEMI

[32], FIMUS [29], (Grey + CPAANN) [24], DMI [31], EMI [33] and KNNI [20] on the

dataset of “Motor vehicle crash individual information: 2011” in Table 2.18,

considering the imputation accuracy for the three numerical attributes of this dataset.

We aggregate the results based on four missing ratios, two missing models, and four

missing patterns. In the table, bold values mark the best imputation result compare with

other imputation methods. From the table, it can be seen that our DSMI imputation

method performs significantly better than FEMI, FIMUS, (Grey + CPAANN), DMI,

EMI and KNNI methods.

0.200

0.400

0.600

0.800

1.000

Case Individual Truck Denver

DSMI

FIMUS

DMI

KNNI

FEMI

Grey+CPAANN

P
e

rf
o

rm
a

n
ce

 (
p

)

Chapter 2 Missing values Imputation

49

Table 2.18. Performance (RMSE) on Motor Vehicle Crash individual information
dataset

 RMSE

Missing combination DSMI FEMI FIMUS Grey+CPAANN DMI EMI KNNI

2% Overall Simple 0.0930 0.1090 0.1120 0.1102 0.1190 0.1580 0.1320

Medium 0.0930 0.1091 0.1130 0.1102 0.1200 0.1590 0.1340

Complex 0.0970 0.1095 0.1135 0.1105 0.1210 0.1600 0.1390

Blended 0.0960 0.1099 0.1140 0.1109 0.1220 0.1610 0.1380

UD Simple 0.1041 0.1105 0.1120 0.1110 0.1220 0.1590 0.1360

Medium 0.1042 0.1106 0.1140 0.1121 0.1230 0.1600 0.1340

Complex 0.1060 0.1110 0.1150 0.1126 0.1230 0.1610 0.1390

Blended 0.1050 0.1112 0.1150 0.1128 0.1240 0.1610 0.1400

4% Overall Simple 0.0938 0.1140 0.1130 0.1131 0.1210 0.1640 0.1380

Medium 0.0940 0.1142 0.1130 0.1132 0.1240 0.1660 0.1400

Complex 0.1050 0.1144 0.1145 0.1141 0.1260 0.1670 0.1460

Blended 0.1054 0.1148 0.1150 0.1151 0.1280 0.1660 0.1480

UD Simple 0.1040 0.1150 0.1140 0.1161 0.1230 0.1680 0.1400

Medium 0.1041 0.1152 0.1160 0.1165 0.1230 0.1680 0.1410

Complex 0.1051 0.1180 0.1170 0.1171 0.1290 0.1710 0.1450

Blended 0.1051 0.1182 0.1175 0.1175 0.1280 0.1720 0.1490

8% Overall Simple 0.1041 0.1201 0.1145 0.1181 0.1310 0.1730 0.1390

Medium 0.1042 0.1202 0.1160 0.1186 0.1310 0.1740 0.1420

Complex 0.1058 0.1210 0.1190 0.1185 0.1330 0.1810 0.1490

Blended 0.1059 0.1212 0.1198 0.1196 0.1350 0.1820 0.1500

UD Simple 0.1041 0.1230 0.1185 0.1201 0.1330 0.1800 0.1400

Medium 0.1043 0.1235 0.1195 0.1205 0.1320 0.1840 0.1440

Complex 0.1060 0.1241 0.1200 0.1210 0.1380 0.1860 0.1520

Chapter 2 Missing values Imputation

50

Blended 0.1061 0.1255 0.1210 0.1246 0.1360 0.1880 0.1560

10% Overall Simple 0.1043 0.1261 0.1170 0.1243 0.1330 0.1870 0.1470

Medium 0.1042 0.1265 0.1180 0.1265 0.1360 0.1880 0.1480

Complex 0.1059 0.1251 0.1230 0.1266 0.1400 0.1910 0.1610

Blended 0.1060 0.1271 0.1240 0.1271 0.1410 0.1900 0.1640

UD Simple 0.1045 0.1280 0.1190 0.1281 0.1390 0.1890 0.1490

Medium 0.1047 0.1286 0.1200 0.1286 0.1400 0.1900 0.1520

Complex 0.1062 0.1288 0.1250 0.1288 0.1470 0.1930 0.1690

Blended 0.1064 0.1290 0.1260 0.1291 0.1480 0.1960 0.1720

We compare the RMSE value for the numerical missing values in Figure 2.10. We

present the overall average (for 32 missing combinations) of RMSE for DSMI, FEMI,

(Grey + CPAANN), FIMUS, DMI, KNNI and EMI on all four datasets. This result is

generated on four datasets where categorical attributes are excluded.

Chapter 2 Missing values Imputation

51

Figure 2.10. Performance comparison for numerical imputation on four datasets using

RMSE

2.4.7 Execution time comparison

In Table 2.19, we present the average computation time in seconds for 640 datasets (32

combinations × 20 datasets per combination) for each natural dataset described in Table

2.11. The configuration of our machine is Intel® Core™ i5-3340M CPU @ 2.70GHz,

with 8GB RAM. Of the seven algorithms, DSMI, FIMUS, FEMI, (Grey + CPAANN),

and DMI are comparable in computation time, although DSMI takes slightly less time

than FIMUS, FEMI, (Grey + CPAANN) but more time than DMI. On the other hand,

EMI and KNNI are significantly faster, especially for the big datasets. Although our

algorithm needs higher computation time compared to EMI and KNNI, better

imputation accuracy generally has a higher priority in missing value imputation [20].

We now analyse complexity for DSMI algorithm. We consider that there are m

0.000

0.050

0.100

0.150

0.200

0.250

0.300

Case Individual Truck Denver

DSMI

FIMUS

DMI

EMI

KNNI

FEMI

Grey+CPAANN

P
er

fo
rm

a
n

ce
 (

R
M

S
E

)

Chapter 2 Missing values Imputation

52

attributes with missing values over the whole data set with n records, ni records with

one or more missing values, and nc records (nc = n - ni) with no missing values. DSMI

uses the C4.5 algorithm to build decision trees in the complete records nc. The C4.5

algorithm has a complexity of O(ncm
2). Let, L is the maximum number of records in a

leaf. The weighted similarity measure calculates in each leaf and the complexity is

O(nc/L). Therefore, the overall complexity is O(nc/L(ncm
2)).

Table 2.19. Average execution time of different techniques (in seconds)

Dataset DSMI FIMUS DMI EMI KNNI FIMUS FEMI Grey+

CPAANN

Truck 1162.232 1181.41 1000.01 90.189 92.193 1181.41 1191.10 1378.61

Denver County 1001.301 1113.230 901.240 88.182 89.456 1113.230 1003.13 1110.10

Case 10.294 14.403 8.023 5.878 5.001 14.403 18.5 16.10

Individual 10.900 15.001 8,001 5.671 4.908 15.001 11.02 13.01

2.5 Conclusion

In this chapter, a brief overview of existing algorithms proposed by researchers for

missing values imputation is presented. The literature review reveals that most research

in this area is targeted at missing value imputation of numerical data and there is still a

lack of research being done for missing values imputation of categorical data. We

describe several recent missing value imputation algorithms that could handle

categorical data and pointed out their deficiencies before introducing our proposed

missing imputation method, called DSMI, to handle categorical missing values in traffic

accident data. There are four stages in the DSMI algorithm. The algorithm first utilizes

decision trees to find the set of correlated records. The missing values are then imputed

from these records by exploiting the correlation between missing and non-missing

Chapter 2 Missing values Imputation

53

attributes within a record using the IS measure, as well as the direct and transitive

correlations of attribute values across two records using a weighted similarity measure.

Moreover, to handle the inherent uncertainty seen in real data, our algorithm imputes

the missing values based on sampling from a list of potential imputed values based on

their degree of affinity.

We presented extensive experimental results on four large publicly available

traffic accident datasets, in which a large number of attributes are categorical.

Comparisons with a number of state-of-the-art missing value imputation algorithms

performed and our experiments indicated that the proposed algorithm significantly

outperformed all existing algorithms.

Chapter 3 Noisy values Detection and Correction

54

Chapter 3: Noisy values Detection and Correction

This chapter describes the second part of the research, which is on noisy values

detection and correction. The introduction about noisy values is discussed in Section

3.1. In Section 3.2, the existing well-known noisy values detection and correction

algorithms are reviewed and analysed. Section 3.3 presents the proposed noisy values

detection and correction algorithm NoiseCleaner in detail. Section 3.4 addresses the

performances of NoiseCleaner and Section 3.5 draws the conclusions. The content of

this chapter has largely been submitted for publication1.

3.1 Introduction

Real world data are often corrupted by noise and are generally noisy and inconsistent

[48]. This noise occurs due to errors in data collection, storage, and processing. If an

organization does not take extreme care during data collection, then approximately 5%

or more noisy data could be introduced to a dataset [69]. The detection and correction of

noisy values are especially important in view of today’s massive datasets, where the

emphasis is often placed on the volume rather than the quality of the data. Noisy data

badly affect the results of any data analysis. The presence of noisy values reduces the

quality of the analysis models learned from the data and weakens their predictive or

descriptive performance. Moreover, these analysis models would become overly

complex in order to accommodate such noise.

1 Rupam Deb, Alan Wee-Chung Liew, “Noisy Values Detection and Correction of Traffic
Accident Data”, submitted to Information Sciences.

Chapter 3 Noisy values Detection and Correction

55

In order to improve the quality of the traffic accident data, raw data is often

preprocessed and cleansed before being analysed. Identifying and correcting noisy

values is an important goal of data cleansing and preprocessing.

In this chapter, we proposed a novel data cleansing method called NoiseCleaner for

detecting noisy attributes values and predicting their correct values on traffic accident

datasets.

3.2 Literature review

Identification of noisy data is an important data preprocessing task for improving data

quality. Many noise detection algorithms have been proposed for various applications

[3, 16, 58, 70-74, 86-89]. Among them, HCleaner [74], NOISERANK [72], Polishing

method [73] and Error Detection and Impact-sensitive instance Ranking (EDIR) [16]

are some well-known noisy value detection algorithms.

In HCleaner [74], data objects that are irrelevant or only weakly relevant are

considered as noise. HCleaner is based on the concept of hyperclique patterns which

consist of objects that are strongly similar to each other. In HCleaner, every pair of

objects within a hyperclique pattern is guaranteed to have a cosine similarity above a

certain threshold. The key idea behind this method is the use of hyperclique patterns as

a filter to eliminate data objects that are not tightly connected to other data objects in the

dataset.

The polishing method [73] is tolerant of some amount of noise in the data. Whereas

filtering eliminates the noisy elements from the input, polishing corrects the noisy

elements rather than removing them. This method assumes that there is some pattern of

relationship among the different components of a dataset. Therefore, except for totally

irrelevant attributes, each attribute would at least be related to some extent to the target

class. This method takes advantage of the interdependency between the components of a

dataset to identify the noisy elements and suggest appropriate replacements. There are

two stages in the polishing method: the prediction stage and the adjustment stage. In the

prediction stage, elements in the data that are suspected of being noisy are identified

Chapter 3 Noisy values Detection and Correction

56

together with their nominated replacement values. In the adjustment stage, this method

selectively incorporates the nominated changes into the dataset.

Sluban et al. [72] proposed an ensemble-based class noise detection method,

NOISERANK, and a method for visual performance evaluation of class noise detection

algorithms in the precision-recall space, named VIPER. NOISERANK is an expert-

guided noise detection method. The user inspects the detected noisy instances and

decides whether they are interesting outliers which could lead to new insights in domain

understanding, erroneous instances which should be removed, or instances with minor

corrected errors to be reintroduced into the dataset. Four different classification filters

are used in this method for detecting noisy instances in data. The classifiers are Naïve

Bayes; Random Forest with 500 decision trees (RF500); Support Vector Machine; and

Neural Network. For the Random Forest classifier, two variants of the High Agreement

Random Forest noise detection algorithm (HARF-70 and HARF-80) perform the best.

The classification filter is performed in a cross-validation manner, i.e. using repeatedly

nine folds for the training of a classifier and one complementary fold for class

prediction where the incorrectly classified instances are considered to be noisy.

NOISERANK also uses a saturation-based approach for noise filtering, called the

saturation filter to determine the noisy instances. A saturation filter is constructed into

two stages. The first stage is the saturation test. It first computes the complexity of the

classification model for the given training set, and then it iteratively excludes one

training example and computes the complexity of a classification model induced from

the rest of the training examples. The examples which have the greatest effect on

reducing the complexity of the classification model by their exclusions are labelled as

the noisiest and are passed on to the second stage. The second stage, the noise filter,

randomly chooses one from the noisiest examples and excludes it from the training set,

while the other examples are returned to the example set. This is repeated as long as the

saturation test finds noisy examples, meaning that a saturated subset has not yet been

obtained. VIPER addresses the noise detection performance directly by measuring the

precision, recall and the F-measure of different noise detection algorithms on the data

Chapter 3 Noisy values Detection and Correction

57

with known or injected noisy instances. It presents the visual performance evaluation in

the precision-recall space.

Error Detection and Impact-sensitive instance Ranking (EDIR) [16] locates

erroneous instances and attributes and ranks suspicious instances based on their impact

on system performance. At first, EDIR trains a benchmark classifier T from the noisy

dataset D. The instances that cannot be classified by T are treated as suspicious and

forwarded to a subset S. Each instance contains n attributes A1, A2, …, An and each

attribute Ai has Vi possible values. To rank instances in S, EDIR uses an impact

measure based on the information-gain ratio. Like the polishing method, EDIR also

changes the attribute value to correctly classify the record. However, EDIR differs from

the polishing method in several aspects. Unlike the polishing method, EDIR can change

two or three attributes values at a time if a suspicious record remains misclassified. The

record is stored separately if it remains suspicious, even after changing all combinations

of the two or three values.

The co-appearance based Analysis for Incorrect Records and Attribute-values

Detection (CAIRAD) [71] algorithm exploits the co-appearance between attributes

values to detect noisy values of a dataset. To detect noisy values, the method generates a

co-appearance matrix from the dataset and computes an expected co-appearance value

for an attribute value. If the value from the co-appearance matrix and the expected co-

appearance value are the same for an attribute value then this value is declared as a

clean value; otherwise it is flagged as noisy.

The RDCL method [70] uses the kNN technique to classify a record. At first, the

dataset is divided into training and testing datasets. After that, RDCL classifies the

record in the testing dataset by using the majority class of its kNN records in the

training dataset. RDCL identifies suspicious records, whereas the polishing technique

and EDIR detect both noisy attributes values and records.

In many practical scenarios, it is assumed that most of the attributes of a dataset are

clean and the volume of noise is low. Another observation is that noisy values have a

random and independent nature and are not correlated to the occurrence of any other

Chapter 3 Noisy values Detection and Correction

58

values of a dataset. It is also very rare that a noisy value will appear repeatedly as a

result of the introduction of random noise.

3.3 Proposed NoiseCleaner algorithm

We proposed a data cleansing algorithm called NoiseCleaner for the traffic accident

data. In this approach, at first attribute values with occurrence frequency of 1 or 2 are

flagged as potentially suspicious (It is very uncommon that typographical errors

repeated more than 2 times for a value and that’s why value’s frequency less than 3 is

flagged as suspicious.). We then correct for simple typographical errors that occur in the

flagged values using Levenshtein distance [48]. Specifically, if a flagged attribute value

has a Levenshtein distance of 3 or less with a clean value (i.e. a flagged value) and it

does not have the same Levenshtein distance with more than one clean value, then its

value is changed to that of the clean value. The remaining flagged values are then

considered as suspicious noisy values and are processed as follows.

Let the record having the suspicious noisy attribute value $ for the attribute X be

denoted by r. Depend on the suspicious noisy attribute value $, two subsets of records

are created from the original dataset D. The first subset, denoted as �^, contains a set of

records from D where all attributes values are the same as record r except for the

suspicious noisy attribute value $. The second subset, denoted as �_, contains a set of

records from the remaining records in D where a varying number of attributes values are

the same as record �. The noisiness of $ is determined using records that are found in

these two subsets.

To illustrate NoiseCleaner, Table 3.1 shows a sample traffic accident dataset (bold

text values of Table 3.1 are marked as suspicious noisy values). Subsets are built based

on the suspicious noisy values (‘Active’ and ‘Fog’). These subsets are shown in Tables

3.2-3.5.

Chapter 3 Noisy values Detection and Correction

59

Table 3.1. Sample traffic accident dataset

Record Driver status Weather condition Accident address

R1 Normal Bad Sanders

R2 Active Bad Glendale

R3 Normal Stormy Glendale

R4 Abnormal Stormy Sanders

R5 Drunk Bad Glendale

R6 Normal Fog Sanders

R7 Drunk Bad Glendale

R8 Drunk Bad Glendale

R9 Abnormal Stormy Sanders

R10 Drunk Bad Glendale

R11 Drunk Bad Glendale

R12 Drunk Bad Glendale

R13 Abnormal Stormy Sanders

R14 Abnormal Rainy Sanders

R15 Abnormal Rainy Sanders

R16 Abnormal Rainy Sanders

Table 3.2. Subset	�^ for attribute value ‘Active’ in ‘Driver status’

Record Driver status Weather condition Accident address

R2 Active Bad Glendale

R5 Drunk Bad Glendale

R7 Drunk Bad Glendale

R8 Drunk Bad Glendale

Chapter 3 Noisy values Detection and Correction

60

R10 Drunk Bad Glendale

R11 Drunk Bad Glendale

R12 Drunk Bad Glendale

Table 3.3. Subset �_ 	for attribute value ‘Active’ in ‘Driver status’

Record Driver status Weather condition Accident address

R1 Normal Bad Sanders

R3 Normal Stormy Glendale

Table 3.4. Subset �^ for attribute value ‘Fog’ in ‘Weather Condition’

Record Driver status Weather condition Accident address

R6 Normal Fog Sanders

R1 Normal Bad Sanders

Table 3.5. Subset �_ for attribute value ‘Fog’ in ‘Weather Condition’

Record Driver status Weather condition Accident address

R3 Normal Stormy Glendale

R4 Abnormal Stormy Sanders

R9 Abnormal Stormy Sanders

R13 Abnormal Stormy Sanders

R14 Abnormal Rainy Sanders

R15 Abnormal Rainy Sanders

R16 Abnormal Rainy Sanders

Chapter 3 Noisy values Detection and Correction

61

The noisiness of ‘Active’ value is determined using P-measure and weighted

similarity measure computed from its �^ and �_. In our approach, the P-measure

computes the probability of the suspicious noisy value being actually correct, and the

weighted similarity measure computes the similarity between two values of an attribute.

In the above example, if ‘Active’ in record R2 is found to be noisy, the correct value is

either ‘Drunk’ or ‘Normal’. Similarly, for the noisy ‘Fog’ value, its correct value is

either ‘Bad’, ‘Stormy’ or ‘Rainy’.

3.3.1 P-measure

To calculate the P-measure, the two subsets �^ and �_ are created based on the

suspicious noisy attribute value $ of record r is considered. Let &̂ be the probability that

an attribute value x remaining unchanged. Let &̂ > be the probability that an attribute

value x is changed into a different attribute value from the subsets �^. Let &_> be the

probability that an attribute value x is changed into a different attribute value from the

subsets �_. Any attribute value $ obviously satisfies the following relationship

&̂ + 	 &̂ > +	&_> = 1 (11)

Next, we introduce two variables F� and F� for the noisy values. The variable F�

specifies how many times an attribute value $ is more likely to stay the same than to

change to another value in �^. The other parameter F� specifies how many times more

likely $ is to change to a value in �^	than the one in �_. The two variables are defined as

F� =	 `a`bcd	`a , with	efc > 1

F� =	 h`bcd`ai�jd�)
∑ klmbnloD

 , with efc > 1	and	efn > 0

Chapter 3 Noisy values Detection and Correction

62

where es is the frequency of attribute value x for the attribute X in �^, efc is the number

of records in �^, efn is the number of records in �_, K is the number of attributes in a

record, and t� is the number of attributes values that are similar between record r and

the i th record of �_. Hence, we can define the probabilities &̂ , &̂ >, &_> using F� and F�

as

&̂ = 	 F� ×	&̂ > =	F� × F� ×	&_> (12)

From the above, the probabilities of &̂ , &̂ >, and &_> become

&̂ = 	 9D×9u9D×9u)	9u)� (13)

&̂ > =	 9u9D×9u)	9u)� (14)

&_> =	 �9D×9u)	9u)� (15)

Substituting F� and F� in equations (14) and (15) we get,

&̂ > =	 h`bcd`ai�jd�)
`bc�jd�))	∑ klmbnloD

 (16)

&_> =	 ∑ klmbnloD
`bc�jd�))	∑ klmbnloD

 (17)

Next, we calculate the probability of an attribute value $ changing to a value %9	in

�^	or to a value v9	in �_, where %9 are distinct value of attribute X except x in �^ and v9

are distinct value of attribute X in �_. Let &̂ >�%9) denotes the probability that an

Chapter 3 Noisy values Detection and Correction

63

attribute value x is changed into %9, then ∑ &̂ >�%9)	wx =	 &̂ >. Since efc − es =
∑ ewx ,wx where ewx is the frequency of attribute value %9 for the attribute X in �^, we

have

&̂ >�%9) 	= 	 `yx�jd�)
`bc�jd�))	∑ klmbnloD

 (18)

Similarly, let &_>�v9) denotes the probability that an attribute value x is changed into

v9. We have ∑ &_>�v9)zx =	&_>. Let �zx 	denotes the subset of records containing value

v9of X in �_, and ezx denotes the number of records in	�zx. Let {� denotes the number

of attributes values that are similar between record r and the j th record of �zx. Then

&_>�v9) is given by

&_>�v9) = 	 ∑ |}m~x}oD
`bc�jd�))	∑ klmbnloD

 (19)

When the unchanged probability &̂ �$) of a suspicious attribute value $ is higher

than all of �^ attribute values probabilities (&̂ >�%9)	, ………) and all of the �_ attribute

values probabilities (&_>�v9),………), we declare this suspicious value $ as a correct

value.

To illustrate how the P-measure is computed, we compute the various probabilities

for the suspicious noisy attribute value ‘Fog’ of record R6 using Equations (12), (18),

and (19), based on Tables 3.4 and 3.5. We have &̂ ����) = 0.182, &̂ >��84) =
0.182, &_>�����X%) = 	0.364, 	&_>�A832%) = 0.273. As &̂ ����) is not higher than all

the other probabilities, we cannot declare ‘Fog’ as a correct value for this record.

Likewise, we cannot declare ‘Active’ in record R2 as the correct value

since&̂ ��1�3=
) = 0.125,&̂ >�H��2F) = 0.750, &_>�e��X8G) = 0.125 from Tables

3.2 and 3.3.

Chapter 3 Noisy values Detection and Correction

64

Once P-measure is computed and the suspicious noisy attribute value cannot be

declared as correct, the weighted similarity measure of the suspicious noisy attribute

value with the other possible values of the attribute in both �^ and �_ are computed. The

weighted similarity measure evaluates the similarity between two values of an attribute

by taking into account their direct and transitive relationships. For example, we would

compute the weighted similarity measure between ‘Fog’ and ‘Bad’, ‘Fog’ and ‘Stormy’,

‘Fog’ and ‘Rainy’. The next section explains how the weighted similarity measure

between two attribute values is computed.

3.3.2 Weighted similarity measure

Weighted similarity measure, ��� (this measure is described in details at Section 2.3.2)

calculates the similarity between two attribute values of an attribute by looking at

common neighbours (direct relationship, called 1st level similarity) of the two values

and common neighbours of their neighbours (transitive relationship, called 2nd level

similarity). ��� is the weighted sum of ���5 (1st level similarity) and ���55 (2nd level

similarity) between two attribute values xi and xj of an attribute X

��� =	�� × ���5 	+ 	�� × ���55 (20)

To illustrate how weighted similarity measure is computed for noisy values

detection and correction, we will use the records in Table 3.6 with vertex nodes labelled

from 1 to 8 as an example. The 1st and 2nd levels weighted similarity measure graphs are

constructed with respect to ‘weather condition’ attribute in Figure 3.1 and Figure 3.2.

Chapter 3 Noisy values Detection and Correction

65

Table 3.6. Aggregated table (Tables 3.4 and 3.5) for ‘Fog’ value with assigned vertex

node number

Record Driver status Weather condition Accident address

R6 Normal (1) Fog (3) Sanders (7)

R1 Normal (1) Bad (4) Sanders (7)

R3 Normal (1) Stormy (5) Glendale (8)

R4 Abnormal (2) Stormy (5) Sanders (7)

R9 Abnormal (2) Stormy (5) Sanders (7)

R13 Abnormal (2) Stormy (5) Sanders (7)

R14 Abnormal (2) Rainy (6) Sanders (7)

R15 Abnormal (2) Rainy (6) Sanders (7)

R16 Abnormal (2) Rainy (6) Sanders (7)

Figure 3.1: 1st level weighted similarity measure graph with respect to ‘weather

condition’ attribute constructed from Table 3.6

Chapter 3 Noisy values Detection and Correction

66

From the graph in Figure 3.1, it shows that nodes 3 and 4 have nodes 1, and 7 as

common neighbours. Hence, the 1st level similarity between nodes 3 and 4 is 	�N,M5 		=
	���×�))���×�)√�×� = 1. Similarly, we can calculate the 1st level similarities for all node pairs

within the graph as: 	�N,R5 = 0.68	(with neighbour nodes 1, 7), 	�N,S5 = 0.50		(with

neighbour node 7). Let T=0.45, ��=0.65, ��=0.35 (Section 3.4.3 gives explanation for

this choice). In Figure 3.1, we connect nodes having 1st level similarities greater than

the threshold T by dotted lines [17, 56]. For easier visualization of the vertices within

the same record and their associated edges, different colours are used.

Figure 3.2: 2nd level weighted similarity measure graph with respect to ‘weather

condition’ attribute constructed from Figure 3.1

To calculate the 2nd level similarity	���55 between nodes i and j, we find all pairs of

nodes (k, l) common to nodes i and j and with �9B5 > T, and merge each pair of nodes

into a single vertex as shown in Figure 3.2. Here, vertices 1 and 2 are merged because

	��,�5 > @ and vertices 7 and 8 are also merged. In Figure 3.2, the number of multiple

Chapter 3 Noisy values Detection and Correction

67

edges between two vertices is denoted by a number associated with the edge for ease of

visualization. For nodes 3 and 6, using Equation (6) we have �N,S55 	= 	��N×�))��N×�)√�×S =
1	(with neighbour nodes 1, 2, 7, and 8), �N,R55 = 1 (with neighbour nodes 1, 2, 7, and 8),

and	�N,M55 = 1. Likewise, we can calculate 2nd level similarity for all node pairs. In this

example, the S-measure between (Fog and Bad), (Fog and Stormy) and (Fog and Rainy)

are 1, 0.79 and 0.68 respectively.

Once the most similar attribute value, say y, is found using weighted similarity

measure, we check the P-measure of the suspicious noisy attribute value x changing into

y. If &̂ >�%)	or &_>�%) is higher than the unchanged probability &̂ �$)	of x, the value $ is

changed to y, otherwise we declare	$ as a correct value. Specifically, let Y ={y1, y2, …,

yk} be the set of all k possible attribute values of the suspicious value x, and let % =
X8$w Y∈ ��� 	�$, �), then

$ = 	 �	%			if	�&̂ >�%)	or	&_>�%)) > 	 &̂ �$)			$			otherwise (21)

By considering both the weighted similarity measure and the P-measure, the

suspicious value ‘Fog’ in record R6 is declared to be the correct value, whereas the

suspicious value ‘Active’ in R2 is replaced by ‘Drunk’.

3.3.3 NoiseCleaner algorithm

The proposed algorithm is summarized below.

NoiseCleaner Algorithm:

1. Count frequency of each distinct attribute value in dataset D and flag values

Chapter 3 Noisy values Detection and Correction

68

whose frequencies are smaller than 3 as suspicious.

2. Correct for simple typographical errors that occur in the marked values using

Levenshtein distance.

3. For each suspicious attribute value x in D

3.1 Create the corresponding set of records �^ and �_

3.2 Calculate the following probabilities from records in �^ and �_:

3.2.1 Calculate &̂ �$) using Equation (13)

3.2.2 FOR each distinct value %9 of X from �̂ , calculate &̂>�%9)
using Equation (18)

3.2.3 FOR each distinct value v9 of X from �_, calculate	&_>�v9)
using Equation (19)

3.3 Declare $ as correct if &̂ �$) is greater than all of &̂ >�%9) and

	&_>�v9) and break;

 Else

3.3.1 Calculate Sij(x,	%9) and Sij(x,	v9) using Equation (20)

3.3.2 Select % = X8$w Y∈ ���	�$, �) where Y = {%9,	v9}

3.3.3 Update x using Equation (21)

3.4 Experimental results and discussion

3.4.1 Datasets

We performed experiment on four datasets. Two road crash datasets are taken from the

State of Queensland, Australia [75], and other two datasets are taken from the motor

vehicle crashes of the New York State, United States [76]. In the four datasets, most of

the attributes are categorical. We listed the four datasets in Table 3.7.

Chapter 3 Noisy values Detection and Correction

69

Table 3.7. Description of datasets

Abbreviation Dataset name #Records #Categorical
attributes

#Numerical
attributes

As on date

RCL Road Crash Locations
(RCL) [75]

 251705 30 20 31 July, 2015

RC Road Casualties (RC)
[75]

15744 6 1 31 July, 2015

MCI Motor vehicle crash-
Case Information: 2011
(MCI) [76]

13889 17 1 24 September, 2014

MII Motor vehicle crash-
Individual Information:
2011 (MII) [76]

17858 11 3 24 September, 2014

3.4.2 Performance measures

Several performance measures are commonly used to evaluate the performance of noisy

value detection algorithms [71, 72]. A popular measure is precision. Precision is

defined as the ratio of the number of relevant records retrieved to the total number of

irrelevant and relevant records retrieved as in Equation (23)

��������� = 	 ������	��	����	�����	���������	��������������	��	���	���������	����������	��	����� (23)

Another useful measure is recall. Recall is defined as the ratio of the number of relevant

records retrieved to the total number of relevant records in the database as in Equation

(24)

��� ¡¡ = 	 ¢£¤¥�¦	§¨	©¦£�	¢§ª«¬	ª¢«© ¢��«	­�©��©�­¢£¤¥�¦	§¨	 ¡¡	¢§ª«¬	ª¢«© ¢��«	ª¢	©®�	­ © «�© (24)

Precision and Recall are inversely related. F-measure is defined as the harmonic mean

of precision and recall as in Equation (25).

Chapter 3 Noisy values Detection and Correction

70

¯ = 	°	 �±��������	×������)�±��������)������) (25)

Equation (25) is also known as the ¯² measure or traditional F-measure or balanced F-

score, because recall and precision are weighted evenly. It is possible to give emphasis

to precision or recall by using

¯³ =	 �² +	³°)	 �±��������	×������)
´h³°	×±��������i)������µ (26)

By setting the parameter ³ (³ > ¶) the user can assign more importance to either

precision or recall in the computation of the F-measure. For example, ̄° weighs recall

higher than precision, and ̄¶.· puts more emphasis on precision than recall. To detect

the noisy values and evaluate the noise detection performance, it is important to know

how many noisy values are identified out of the total detected noisy values by the

algorithm.

3.4.3 Parameter selection for weighted similarity measure

Weighted similarity measure requires the setting of three parameters: T, ��, and ��.

Using the precision measure, we analyse the four datasets to select the best threshold

parameter T. The result is shown in Figure 3.3 and we set T=0.45. In Table 3.8, we see

that the optimum values for ��, and �� are 0.65 and 0.35, respectively.

Chapter 3 Noisy values Detection and Correction

71

(a) Threshold parameter T on RCL dataset

(b) Threshold parameter T on RC dataset

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Threshold (T)

P
re

ci
si

on
 o

n
R

C
L

da
ta

se
t

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Threshold (T)

P
re

ci
si

on
 o

n
R

C
 d

at
as

et

Chapter 3 Noisy values Detection and Correction

72

(c) Threshold parameter T on MCI dataset

(d) Threshold parameter T on MII dataset

Figure 3.3: Threshold parameter @ on four datasets

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

Threshold (T)

P
re

ci
si

on
 o

n
M

C
I

da
ta

se
t

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

Threshold (T)

P
re

ci
si

on
 o

n
M

II
 d

at
as

et

Chapter 3 Noisy values Detection and Correction

73

Table 3.8. �� and �� parameters selection using precision

Parameters Datasets

 C1 C2 A�	 A� ��� ���
1.00 0.00 0.7032 0.7006 0.6995 0.7905

0.95 0.05 0.7035 0.7005 0.7001 0.7924

0.90 0.10 0.7050 0.7152 0.7010 0.7990

0.85 0.15 0.8060 0.7835 0.7234 0.8012

0.80 0.20 0.8065 0.7989 0.7346 0.8044

0.75 0.25 0.8275 0.8455 0.8412 0.8342

0.70 0.30 0.8500 0.8511 0.8502 0.8512

0.65 0.35 0.8712 0.9099 0.8741 0.9095

0.60 0.40 0.8401 0.8444 0.8788 0.8441

0.55 0.45 0.8038 0.8331 0.8742 0.8211

0.50 0.50 0.7681 0.8112 0.8578 0.8000

0.45 0.55 0.7610 0.7908 0.8022 0.7989

0.40 0.60 0.6211 0.7511 0.7010 0.7554

0.35 0.65 0.5904 0.6904 0.6520 0.6987

0.30 0.70 0.4801 0.5632 0.6011 0.6564

0.25 0.75 0.4812 0.5323 0.5902 0.6226

0.20 0.80 0.4913 0.5312 0.5822 0.5012

0.15 0.85 0.4012 0.5011 0.5012 0.4812

0.10 0.90 0.4109 0.4978 0.4824 0.4788

0.05 0.95 0.4147 0.4876 0.6204 0.4546

0.00 1.00 0.4098 0.4524 0.6202 0.4004

3.4.4 Noisy values simulation

We use four types of noisy patterns in our test datasets: simple, medium, complex, and

blended [3, 17]. In a simple pattern, a record can have at most one noisy value, whereas

Chapter 3 Noisy values Detection and Correction

74

in a medium pattern, a record can have noisy values for up to 50% of the attributes.

Similarly, in a complex pattern, a record can have noisy values for up to 80% of the

attributes. A blended pattern contains mixture of three patterns (simple pattern 25%,

50% with medium pattern, and 25% with complex pattern). For each of the noisy

pattern, we use four different noisy ratios (2%, 4%, 6% and 8%) where x% noisy ratio

means x% of the attribute values of a dataset are noisy. We use two types of noisy

models, namely overall and uniformly distributed (UD). In the UD noisy model, each

attribute has equal number of noisy attribute values. However, in the overall model,

noisy attribute values are not equally distributed among the attributes, and in the worst

case all noisy attribute values can belong to a single attribute. Additionally, for each test

dataset, 1% of the attribute values of a dataset are created with typographical errors,

where errors of 1, 2 or 3 characters are randomly introduced.

In these experiments, 32 noisy combinations (4 noisy ratios × 4 noisy patterns × 2

noisy models) are created. For each combination, five datasets i.e. in total we create 160

noisy datasets (32 combinations × 5 datasets per combination) are generated for each

real dataset as shown in Table 3.9.

Table 3.9. Noisy value simulation

Noisy
patterns

Number of attributes having
noisy values in a record

Typographical
error

Noise
ratios

Noisy
model

Number of
datasets
for each
pattern

Simple 1 1% with
randomly 1, 2,
or 3
characters

2%,
4%, 6%
and 8%

Overall
and
Uniformly
distributed

5 Medium Up to 50%

Complex Up to 80%
Blended Simple-25%, Medium-50%

and Complex-25%

3.4.5 Experimental results

The proposed algorithm NoiseCleaner compares with three noisy values identification

methods NOISERANK [72], HCleaner [74], and CAIRAD [71]. In NOISERANK

Chapter 3 Noisy values Detection and Correction

75

algorithm, there are several ensemble methods. Among them, HARF-80 and HARF-70

variants performed best compared to the other variants. These two variants are taking

into consideration to compare with the NoiseCleaner algorithm. Simple typographical

errors are corrected using Levenshtein distance as a pre-processing for all methods.

The noisy values detection accuracy (Precision) of NoiseCleaner, HCleaner,

HARF-70, HARF-80, and CAIRAD is presented in Figure 3.4. For each dataset, four

combinations of four noisy ratios (2%, 4%, 6%, and 8%), and one noisy pattern

(medium) are shown. Figure 3.5 shows the corresponding recall result and Figure 3.6

shows the �+.R result. From these results, it can be seen that NoiseCleaner performs

significantly better than HARF-80, HARF-70, HCleaner, and CAIRAD on all 4

datasets.

(a) 2% injected noise

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

P
re

ci
si

o
n

Chapter 3 Noisy values Detection and Correction

76

(b) 4% injected noise

(c) 6% injected noise

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

P
re

ci
si

o
n

P
re

ci
si

o
n

Chapter 3 Noisy values Detection and Correction

77

(d) 8% injected noise

Figure 3.4. The precision results of different noisy value detection algorithms on 4 datasets

for various ‘noisy ratios’ and ‘medium noisy pattern’.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRADP
re

ci
si

o
n

Chapter 3 Noisy values Detection and Correction

78

(a) 2% injected noise

(b) 4% injected noise

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

R
ec

al
l

R
ec

al
l

Chapter 3 Noisy values Detection and Correction

79

(c) 6% injected noise

(d) 8% injected noise

Figure 3.5. The recall results of different noisy value detection algorithms on 4 datasets for
various ‘noisy ratios’ and ‘medium noisy pattern’.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

R
ec

al
l

R
ec

al
l

Chapter 3 Noisy values Detection and Correction

80

(a) 2% injected noise

(b) 4% injected noise

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

F 0
.5

F 0
.5

Chapter 3 Noisy values Detection and Correction

81

(c) 6% injected noise

(d) 8% injected noise

Figure 3.6. The F0.5 results of different noisy value detection algorithms on 4 datasets
for various ‘noisy ratios’ and ‘medium noisy pattern’.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RCL RC MCI MII

NoiseCleaner

Hcleaner

HARF-70

HARF-80

CAIRAD

F 0
.5

F 0
.5

Chapter 3 Noisy values Detection and Correction

82

The noisy value detection accuracy of NoiseCleaner, HARF-70, HARF-80, and

HCleaner on the 4 datasets in terms of precision for the 32 noisy combinations is

presented in Tables 3.10-3.13. Each value in these tables is the average result over 5

datasets generated for each combination of noisy ratio, noisy model, and noisy pattern.

In these tables, bold values mark the best result among all methods and italic values

represent the second best result. It can be seen that NoiseCleaner performs significantly

better than HARF-80, HARF-70, and HCleaner, by wining in all cases. HARF-80 is the

next best performing algorithm, losing to HARF-70 in only 4 cases on the MII dataset

(Table 3.11).

Table 3.10. Performance on RC dataset using Precision

 Precision

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.9087±0.01 0.8233±0.02 0.7732±0.02 0.6896±0.01 0.4980±0.02

 Medium 0.9084±0.02 0.8246±0.01 0.7752±0.03 0.6891±0.02 0.4980±0.02

 Complex 0.9082±0.01 0.8144±0.04 0.7688±0.01 0.6895±0.01 0.4957±0.02

 Blended 0.9078±0.03 0.8135±0.05 0.7678±0.02 0.6891±0.04 0.4951±0.03

 UD Simple 0.9065±0.01 0.8237±0.03 0.7776±0.02 0.6898±0.01 0.4901±0.02

 Medium 0.9062±0.04 0.8245±0.01 0.7728±0.04 0.6865±0.04 0.4900±0.02

 Complex 0.9059±0.02 0.8189±0.05 0.7701±0.03 0.6894±0.05 0.4886±0.03

 Blended 0.9047±0.01 0.8178±0.02 0.7709±0.05 0.6898±0.01 0.4880±0.04

4% Overall Simple 0.8901±0.01 0.8128±0.02 0.7662±0.01 0.6918±0.01 0.4845±0.02

 Medium 0.8910±0.03 0.8119±0.03 0.7669±0.01 0.6904±0.03 0.4843±0.01

 Complex 0.8912±0.02 0.8127±0.04 0.7661±0.03 0.6808±0.04 0.4842±0.03

 Blended 0.8903±0.01 0.8110±0.03 0.7664±0.01 0.6802±0.02 0.4840±0.03

 UD Simple 0.9001±0.02 0.8104±0.01 0.7663±0.02 0.6887±0.01 0.4745±0.03

Chapter 3 Noisy values Detection and Correction

83

 Medium 0.8900±0.04 0.8061±0.02 0.7648±0.01 0.6745±0.06 0.4739±0.02

 Complex 0.8923±0.03 0.8098±0.05 0.7646±0.05 0.6732±0.02 0.4730±0.01

 Blended 0.8921±0.01 0.8040±0.06 0.7642±0.01 0.6731±0.03 0.4704±0.02

6% Overall Simple 0.8910±0.01 0.8032±0.02 0.7640±0.03 0.6702±0.02 0.4730±0.02

 Medium 0.8909±0.02 0.8031±0.02 0.7631±0.01 0.6688±0.04 0.4729±0.01

 Complex 0.8806±0.06 0.7692±0.05 0.7638±0.04 0.6650±0.02 0.4720±0.02

 Blended 0.8801±0.02 0.7693±0.04 0.7620±0.01 0.6615±0.04 0.4720±0.03

 UD Simple 0.8802±0.01 0.7793±0.03 0.7620±0.04 0.6608±0.02 0.4718±0.04

 Medium 0.8801±0.07 0.7692±0.02 0.7578±0.02 0.6602±0.06 0.4710±0.01

 Complex 0.8800±0.04 0.7691±0.01 0.7540±0.08 0.6604±0.05 0.4709±0.02

 Blended 0.8800±0.02 0.7580±0.06 0.7400±0.10 0.6568±0.01 0.4708±0.03

8% Overall Simple 0.8901±0.02 0.7621±0.03 0.7400±0.01 0.6672±0.03 0.4710±0.02

 Medium 0.8886±0.04 0.7605±0.04 0.7379±0.03 0.6648±0.02 0.4708±0.03

 Complex 0.8885±0.01 0.7590±0.06 0.7358±0.05 0.6535±0.06 0.4707±0.04

 Blended 0.8880±0.05 0.7538±0.07 0.7356±0.06 0.6522±0.07 0.4706±0.01

 UD Simple 0.8880±0.03 0.7910±0.02 0.7301±0.07 0.6610±0.07 0.4705±0.02

 Medium 0.8879±0.05 0.7903±0.05 0.7280±0.04 0.6504±0.03 0.4700±0.03

 Complex 0.8877±0.03 0.7940±0.03 0.7020±0.04 0.6501±0.04 0.4700±0.04

 Blended 0.8872±0.06 0.7945±0.07 0.7210±0.05 0.6500±0.02 0.4880±0.02

Table 3.11. Performance on MII dataset using Precision

 Precision

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.9060±0.01 0.8108±0.02 0.8120±0.01 0.6935±0.02 0.4896±0.02

 Medium 0.9058±0.03 0.8103±0.01 0.8030±0.03 0.7030±0.04 0.4894±0.01

Chapter 3 Noisy values Detection and Correction

84

 Complex 0.9057±0.04 0.8111±0.03 0.8015±0.03 0.7036±0.05 0.4892±0.04

 Blended 0.9055±0.06 0.8110±0.02 0.8004±0.02 0.7040±0.02 0.4890±0.03

 UD Simple 0.9050±0.02 0.8014±0.04 0.8019±0.04 0.7114±0.05 0.4889±0.04

 Medium 0.9048±0.01 0.8024±0.05 0.8091±0.05 0.7018±0.10 0.4888±0.08

 Complex 0.9047±0.03 0.7929±0.06 0.7845±0.06 0.6922±0.05 0.4888±0.03

 Blended 0.9044±0.04 0.7930±0.07 0.7231±0.03 0.6910±0.04 0.4887±0.01

4% Overall Simple 0.9046±0.04 0.7993±0.02 0.7301±0.02 0.6901±0.03 0.4890±0.01

 Medium 0.8943±0.03 0.7981±0.03 0.7302±0.03 0.6887±0.02 0.4891±0.02

 Complex 0.8942±0.02 0.7850±0.05 0.7240±0.04 0.6780±0.04 0.4888±0.03

 Blended 0.8940±0.04 0.7895±0.01 0.7148±0.05 0.6781±0.06 0.4883±0.02

 UD Simple 0.8935±0.05 0.7896±0.06 0.7223±0.04 0.6878±0.02 0.4884±0.01

 Medium 0.8934±0.06 0.7888±0.04 0.7215±0.03 0.6858±0.07 0.4878±0.02

 Complex 0.8933±0.07 0.7864±0.01 0.7122±0.02 0.6796±0.09 0.4870±0.04

 Blended 0.8931±0.08 0.7893±0.05 0.7108±0.06 0.6743±0.10 0.4871±0.02

6% Overall Simple 0.8924±0.02 0.7790±0.02 0.7202±0.06 0.6810±0.04 0.4873±0.03

 Medium 0.8922±0.01 0.7758±0.03 0.7238±0.11 0.6800±0.03 0.4871±0.02

 Complex 0.8921±0.03 0.7740±0.05 0.7126±0.14 0.6698±0.02 0.4870±0.03

 Blended 0.8920±0.05 0.7690±0.04 0.7082±0.05 0.6690±0.02 0.4869±0.02

 UD Simple 0.8923±0.04 0.7680±0.06 0.7100±0.07 0.6786±0.08 0.4868±0.03

 Medium 0.8922±0.01 0.7588±0.03 0.7098±0.08 0.6782±0.05 0.4864±0.04

 Complex 0.8922±0.02 0.7560±0.06 0.7090±0.01 0.6688±0.03 0.4863±0.01

 Blended 0.8920±0.01 0.7520±0.10 0.7084±0.03 0.6690±0.06 0.4862±0.01

8% Overall Simple 0.8819±0.03 0.7577±0.01 0.7190±0.02 0.6610±0.03 0.4866±0.04

 Medium 0.8712±0.02 0.7590±0.08 0.7130±0.05 0.6603±0.06 0.4864±0.02

 Complex 0.8710±0.05 0.7441±0.04 0.7014±0.06 0.6568±0.10 0.4864±0.03

 Blended 0.8708±0.02 0.7380±0.05 0.7010±0.07 0.6545±0.11 0.4860±0.02

 UD Simple 0.8713±0.04 0.7461±0.02 0.7004±0.06 0.6600±0.12 0.4861±0.03

Chapter 3 Noisy values Detection and Correction

85

Medium 0.8709±0.06 0.7456±0.06 0.6989±0.03 0.6555±0.02 0.4859±0.05

Complex 0.8703±0.03 0.7438±0.02 0.6910±0.02 0.6515±0.06 0.4850±0.02

Blended 0.8732±0.02 0.7390±0.05 0.6900±0.03 0.6508±0.04 0.4840±0.02

Table 3.12. Performance on RCL dataset using Precision

Precision

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.8701±0.02 0.8212±0.03 0.7360±0.03 0.7240±0.04 0.4732±0.03

Medium 0.8702±0.02 0.8210±0.04 0.7320±0.03 0.7184±0.04 0.4730±0.03

Complex 0.8700±0.06 0.8090±0.04 0.7321±0.13 0.7187±0.08 0.4729±0.02

Blended 0.8700±0.05 0.8060±0.02 0.7325±0.11 0.7185±0.11 0.4728±0.08

UD Simple 0.8702±0.02 0.8221±0.03 0.7311±0.04 0.7138±0.06 0.4727±0.05

Medium 0.8790±0.04 0.8145±0.04 0.7216±0.04 0.7099±0.05 0.4726±0.03

Complex 0.8782±0.10 0.8126±0.01 0.7241±0.11 0.7085±0.02 0.4724±0.01

Blended 0.8680±0.09 0.8121±0.02 0.7138±0.10 0.7080±0.01 0.4725±0.02

4% Overall Simple 0.8700±0.03 0.8081±0.06 0.7240±0.05 0.6966±0.04 0.4722±0.05

Medium 0.8689±0.02 0.8085±0.04 0.7245±0.06 0.6950±0.03 0.4721±0.02

Complex 0.8688±0.04 0.7989±0.03 0.7205±0.10 0.6920±0.04 0.4722±0.01

Blended 0.8683±0.06 0.7988±0.02 0.7165±0.11 0.6924±0.06 0.4719±0.03

UD Simple 0.8688±0.03 0.7937±0.01 0.7182±0.07 0.6960±0.07 0.4710±0.04

Medium 0.8676±0.04 0.7896±0.08 0.7070±0.06 0.6887±0.06 0.4709±0.02

Complex 0.8673±0.02 0.7888±0.01 0.7055±0.17 0.6813±0.06 0.4707±0.02

Blended 0.8670±0.01 0.7890±0.02 0.7017±0.11 0.6810±0.04 0.4706±0.01

6% Overall Simple 0.8682±0.05 0.7790±0.01 0.7108±0.06 0.6834±0.03 0.4712±0.02

Medium 0.8681±0.04 0.7783±0.04 0.7141±0.08 0.6809±0.10 0.4710±0.01

Chapter 3 Noisy values Detection and Correction

86

 Complex 0.8679±0.08 0.7758±0.03 0.7036±0.16 0.6800±0.06 0.4709±0.02

 Blended 0.8678±0.09 0.7650±0.02 0.7001±0.15 0.6740±0.07 0.4708±0.05

 UD Simple 0.8669±0.04 0.7640±0.03 0.7104±0.06 0.6806±0.10 0.4707±0.06

 Medium 0.8667±0.02 0.7620±0.02 0.7101±0.07 0.6790±0.11 0.4705±0.03

 Complex 0.8663±0.03 0.7409±0.04 0.7080±0.14 0.6708±0.12 0.4700±0.03

 Blended 0.8661±0.06 0.7401±0.08 0.6998±0.12 0.6701±0.04 0.4701±0.02

8% Overall Simple 0.8660±0.01 0.7550±0.06 0.7066±0.06 0.6723±0.04 0.4707±0.02

 Medium 0.8559±0.04 0.7402±0.04 0.7023±0.04 0.6661±0.11 0.4706±0.02

 Complex 0.8553±0.02 0.7401±0.06 0.7015±0.05 0.6637±0.05 0.4706±0.01

 Blended 0.8551±0.07 0.7400±0.07 0.6987±0.12 0.6620±0.04 0.4705±0.03

 UD Simple 0.8643±0.02 0.7435±0.07 0.7046±0.13 0.6623±0.04 0.4704±0.02

 Medium 0.8631±0.04 0.7395±0.03 0.7032±0.11 0.6610±0.06 0.4703±0.04

 Complex 0.8524±0.02 0.7107±0.01 0.7004±0.08 0.6585±0.03 0.4700±0.05

 Blended 0.8521±0.03 0.7100±0.06 0.6900±0.18 0.6502±0.10 0.4700±0.01

Table 3.13. Performance on MCI dataset using Precision

 Precision

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.8731±0.01 0.7367±0.01 0.6753±0.03 0.6305±0.06 0.4953±0.04

 Medium 0.8728±0.05 0.7361±0.04 0.6630±0.12 0.6304±0.12 0.4952±0.04

 Complex 0.8725±0.02 0.7354±0.02 0.6617±0.10 0.6301±0.18 0.4950±0.01

 Blended 0.8716±0.03 0.7252±0.01 0.6587±0.12 0.6300±0.03 0.4949±0.02

 UD Simple 0.8720±0.02 0.7248±0.04 0.6710±0.13 0.6302±0.16 0.4939±0.03

 Medium 0.8721±0.04 0.7263±0.05 0.6508±0.09 0.6271±0.09 0.4938±0.02

 Complex 0.8715±0.05 0.7182±0.03 0.6500±0.08 0.6108±0.06 0.4836±0.01

 Blended 0.8712±0.01 0.7101±0.01 0.6489±0.12 0.6101±0.08 0.4835±0.02

Chapter 3 Noisy values Detection and Correction

87

4% Overall Simple 0.8707±0.04 0.7285±0.07 0.6587±0.10 0.6257±0.11 0.4835±0.01

 Medium 0.8706±0.02 0.7281±0.02 0.6589±0.06 0.6338±0.07 0.4833±0.02

 Complex 0.8602±0.03 0.7187±0.03 0.6567±0.06 0.6158±0.04 0.4830±0.02

 Blended 0.8600±0.04 0.7068±0.04 0.6561±0.05 0.6178±0.05 0.4831±0.02

 UD Simple 0.8725±0.03 0.7167±0.02 0.6583±0.04 0.6280±0.06 0.4726±0.05

 Medium 0.8628±0.06 0.7160±0.03 0.6577±0.02 0.6228±0.11 0.4724±0.03

 Complex 0.8625±0.04 0.7052±0.03 0.6460±0.10 0.6191±0.10 0.4723±0.02

 Blended 0.8614±0.03 0.7000±0.01 0.6450±0.01 0.6187±0.02 0.4720±0.01

6% Overall Simple 0.8722±0.08 0.7172±0.03 0.6649±0.03 0.6303±0.05 0.4718±0.03

 Medium 0.8720±0.04 0.7171±0.04 0.6608±0.11 0.6312±0.01 0.4719±0.02

 Complex 0.8618±0.03 0.7055±0.05 0.6600±0.04 0.6176±0.02 0.4711±0.01

 Blended 0.8616±0.04 0.6943±0.06 0.6588±0.01 0.6074±0.03 0.4711±0.04

 UD Simple 0.8712±0.05 0.7100±0.03 0.6610±0.06 0.6395±0.05 0.4710±0.02

 Medium 0.8600±0.06 0.7087±0.03 0.6584±0.06 0.6313±0.06 0.4709±0.02

 Complex 0.8565±0.07 0.7047±0.02 0.6556±0.04 0.6041±0.02 0.4703±0.03

 Blended 0.8580±0.08 0.6998±0.04 0.6497±0.02 0.6000±0.03 0.4702±0.01

8% Overall Simple 0.8600±0.02 0.7141±0.04 0.6581±0.07 0.6201±0.11 0.4706±0.04

 Medium 0.8570±0.03 0.7140±0.05 0.6587±0.03 0.6095±0.12 0.4705±0.01

 Complex 0.8520±0.04 0.7110±0.03 0.6571±0.04 0.6081±0.07 0.4703±0.02

 Blended 0.8510±0.05 0.7090±0.02 0.6467±0.10 0.5980±0.03 0.4702±0.01

 UD Simple 0.8558±0.06 0.7132±0.07 0.6560±0.06 0.6013±0.02 0.4704±0.03

 Medium 0.8546±0.07 0.7047±0.03 0.6525±0.02 0.5965±0.10 0.4704±0.05

 Complex 0.8531±0.02 0.7045±0.02 0.6487±0.04 0.5905±0.06 0.4700±0.02

 Blended 0.8526±0.03 0.7000±0.06 0.6434±0.03 0.5901±0.06 0.4701±0.06

Chapter 3 Noisy values Detection and Correction

88

The noisy value detection accuracy of NoiseCleaner, HARF-80, HARF-70, and

HCleaner on the four datasets in terms of F0.5 for the 32 noisy combinations is presented

in Tables 3.14 – 3.17. The F0.5 of each table is calculated for the one set of data.

Table 3.14. Performance on RC dataset using F0.5

F0.5

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.8721 0.7796 0.7340 0.6510 0.4720

Medium 0.8716 0.7804 0.7354 0.6505 0.4719

Complex 0.8711 0.7729 0.7304 0.6507 0.4701

Blended 0.8707 0.7720 0.7293 0.6501 0.4694

UD Simple 0.8696 0.7794 0.7342 0.6504 0.4661

Medium 0.8686 0.7797 0.7303 0.6478 0.4657

Complex 0.8672 0.7752 0.7282 0.6496 0.4623

Blended 0.8661 0.7740 0.7286 0.6494 0.4618

4% Overall Simple 0.8562 0.7712 0.7251 0.6499 0.4592

Medium 0.8562 0.7692 0.7250 0.6482 0.4573

Complex 0.8559 0.7695 0.7237 0.6408 0.4563

Blended 0.8550 0.7677 0.7229 0.6399 0.4560

UD Simple 0.8628 0.7665 0.7250 0.6467 0.4494

Medium 0.8550 0.7634 0.7223 0.6337 0.4487

Complex 0.8564 0.7645 0.7199 0.6320 0.4480

Blended 0.8558 0.7598 0.7186 0.6307 0.4447

6% Overall Simple 0.8555 0.7593 0.7214 0.6278 0.4348

Medium 0.8540 0.7583 0.7205 0.6266 0.4344

Chapter 3 Noisy values Detection and Correction

89

 Complex 0.8462 0.7323 0.7186 0.6218 0.4313

 Blended 0.8454 0.7311 0.7170 0.6185 0.4312

 UD Simple 0.8428 0.7383 0.7172 0.6170 0.4310

 Medium 0.8427 0.7304 0.7136 0.6159 0.4300

 Complex 0.8371 0.7295 0.7104 0.6149 0.4268

 Blended 0.8370 0.7214 0.6997 0.6118 0.4266

8% Overall Simple 0.8528 0.7245 0.6924 0.6087 0.4269

 Medium 0.8512 0.7233 0.6908 0.6051 0.4256

 Complex 0.8490 0.7202 0.6881 0.5958 0.4228

 Blended 0.8484 0.7160 0.6829 0.5944 0.4225

 UD Simple 0.8480 0.7404 0.6788 0.5969 0.4220

 Medium 0.8468 0.7365 0.6751 0.5878 0.4180

 Complex 0.8454 0.7384 0.6531 0.5863 0.4141

 Blended 0.8450 0.7376 0.6659 0.5859 0.4249

Table 3.15. Performance on MII dataset using F0.5

 F0.5

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.8693 0.7688 0.7584 0.6504 0.4672

 Medium 0.8678 0.7684 0.7517 0.6568 0.4670

 Complex 0.8670 0.7688 0.7506 0.6572 0.4668

 Blended 0.8667 0.7687 0.7497 0.6563 0.4665

 UD Simple 0.8664 0.7615 0.7507 0.6627 0.4665

 Medium 0.8659 0.7622 0.7557 0.6559 0.4663

 Complex 0.8649 0.7551 0.7383 0.6485 0.4657

 Blended 0.8643 0.7551 0.6938 0.6474 0.4654

Chapter 3 Noisy values Detection and Correction

90

4% Overall Simple 0.8655 0.7588 0.6970 0.6477 0.4576

Medium 0.8571 0.7579 0.6968 0.6463 0.4564

Complex 0.8568 0.7482 0.6922 0.6371 0.4562

Blended 0.8557 0.7515 0.6821 0.6362 0.4540

UD Simple 0.8552 0.7516 0.6859 0.6426 0.4527

Medium 0.8551 0.7507 0.6851 0.6408 0.4507

Complex 0.8548 0.7488 0.6768 0.6351 0.4485

Blended 0.8546 0.7509 0.6748 0.6307 0.4483

6% Overall Simple 0.8544 0.7413 0.6873 0.6311 0.4415

Medium 0.8539 0.7389 0.6871 0.6277 0.4411

Complex 0.8536 0.7376 0.6786 0.6203 0.4382

Blended 0.8515 0.7337 0.6729 0.6168 0.4370

UD Simple 0.8518 0.7330 0.6739 0.6225 0.4365

Medium 0.8515 0.7260 0.6738 0.6219 0.4359

Complex 0.8515 0.7237 0.6721 0.6132 0.4354

Blended 0.8507 0.7198 0.6716 0.6133 0.4346

8% Overall Simple 0.8453 0.7161 0.6682 0.5851 0.4364

Medium 0.8373 0.7149 0.6637 0.5844 0.4339

Complex 0.8369 0.7019 0.6539 0.5821 0.4335

Blended 0.8366 0.6969 0.6535 0.5797 0.4326

UD Simple 0.8362 0.7020 0.6536 0.5797 0.4324

Medium 0.8359 0.7008 0.6524 0.5768 0.4300

Complex 0.8351 0.6980 0.6459 0.5700 0.4292

Blended 0.8370 0.6936 0.6445 0.5697 0.4271

Chapter 3 Noisy values Detection and Correction

91

Table 3.16. Performance on RCL dataset using F0.5

 F0.5

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.8298 0.7581 0.6897 0.6329 0.4554

 Medium 0.8298 0.7565 0.6852 0.6290 0.4531

 Complex 0.8294 0.7479 0.6835 0.6285 0.4511

 Blended 0.8291 0.7450 0.6826 0.6261 0.4508

 UD Simple 0.8289 0.7553 0.6818 0.6230 0.4480

 Medium 0.8352 0.7494 0.6732 0.6192 0.4480

 Complex 0.8342 0.7430 0.6747 0.6156 0.4451

 Blended 0.8267 0.7386 0.6646 0.6137 0.4448

4% Overall Simple 0.8286 0.7317 0.6703 0.6147 0.4489

 Medium 0.8276 0.7318 0.6700 0.6102 0.4427

 Complex 0.8274 0.7253 0.6658 0.6069 0.4400

 Blended 0.8269 0.7244 0.6628 0.6058 0.4386

 UD Simple 0.8270 0.7207 0.6639 0.6073 0.4343

 Medium 0.8260 0.7165 0.6529 0.6028 0.4339

 Complex 0.8256 0.7149 0.6515 0.5979 0.4302

 Blended 0.8253 0.7146 0.6489 0.5976 0.4301

6% Overall Simple 0.8253 0.7047 0.6552 0.6025 0.4298

 Medium 0.8248 0.7038 0.6543 0.6004 0.4288

 Complex 0.8245 0.6960 0.6471 0.5994 0.4247

 Blended 0.8243 0.6870 0.6415 0.5952 0.4244

 UD Simple 0.8235 0.6856 0.6482 0.5986 0.4226

 Medium 0.8232 0.6801 0.6468 0.5975 0.4225

 Complex 0.8223 0.6646 0.6354 0.5865 0.4252

 Blended 0.8216 0.6639 0.6299 0.5860 0.4227

Chapter 3 Noisy values Detection and Correction

92

8% Overall Simple 0.8211 0.6692 0.6127 0.5909 0.4226

 Medium 0.8134 0.6585 0.6096 0.5838 0.4219

 Complex 0.8125 0.6581 0.6053 0.5821 0.4218

 Blended 0.8120 0.6537 0.5988 0.5810 0.4180

 UD Simple 0.8184 0.6573 0.6067 0.5811 0.4174

 Medium 0.8174 0.6512 0.5999 0.5794 0.4170

 Complex 0.8085 0.6319 0.5932 0.5775 0.4098

 Blended 0.8082 0.6284 0.5831 0.5721 0.4094

Table 3.17. Performance on MCI dataset using F0.5

 F0.5

Noise combination NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

2% Overall Simple 0.8350 0.7012 0.6515 0.5905 0.4733

 Medium 0.8327 0.6985 0.6409 0.5887 0.4730

 Complex 0.8322 0.6962 0.6371 0.5871 0.4726

 Blended 0.8321 0.6877 0.6347 0.5867 0.4725

 UD Simple 0.8313 0.6881 0.6400 0.5868 0.4718

 Medium 0.8309 0.6886 0.6251 0.5836 0.4714

 Complex 0.8282 0.6814 0.6222 0.5703 0.4637

 Blended 0.8277 0.6739 0.6210 0.5696 0.4632

4% Overall Simple 0.8197 0.6853 0.6227 0.5820 0.4619

 Medium 0.8185 0.6854 0.6225 0.5860 0.4636

Chapter 3 Noisy values Detection and Correction

93

 Complex 0.8109 0.6818 0.6207 0.5721 0.4610

 Blended 0.8081 0.6698 0.6199 0.5720 0.4611

 UD Simple 0.8166 0.6790 0.6212 0.5789 0.4526

 Medium 0.8097 0.6725 0.6194 0.5750 0.4522

 Complex 0.8067 0.6642 0.6104 0.5722 0.4495

 Blended 0.8057 0.6578 0.6083 0.5690 0.4493

6% Overall Simple 0.8109 0.6692 0.6244 0.5787 0.4501

 Medium 0.8101 0.6669 0.6209 0.5743 0.4498

 Complex 0.8000 0.6575 0.6196 0.5648 0.4486

 Blended 0.7993 0.6475 0.6185 0.5564 0.4467

 UD Simple 0.8062 0.6576 0.6179 0.5790 0.4466

 Medium 0.7982 0.6541 0.6154 0.5723 0.4458

 Complex 0.7940 0.6509 0.6101 0.5521 0.4448

 Blended 0.7943 0.6473 0.6057 0.5498 0.4444

8% Overall Simple 0.7959 0.6581 0.6130 0.5632 0.4434

 Medium 0.7916 0.6577 0.6131 0.5554 0.4431

 Complex 0.7875 0.6539 0.6104 0.5521 0.4401

 Blended 0.7872 0.6511 0.6031 0.5449 0.4400

 UD Simple 0.7912 0.6537 0.6087 0.5464 0.4392

 Medium 0.7885 0.6480 0.6062 0.5427 0.4391

 Complex 0.7871 0.6478 0.6013 0.5353 0.4386

 Blended 0.7864 0.6448 0.5976 0.5334 0.4384

3.4.6 Execution time comparison

The average computation time in seconds for 160 datasets (32 combinations × 5 datasets

per combination) for each traffic accident dataset is given in Table 3.18. The

Chapter 3 Noisy values Detection and Correction

94

configuration of the machine is Intel® Core™ i5-3340M CPU @ 2.70GHz, with 8GB

RAM. From this table, it can be seen that NoiseCleaner runs slightly faster than HARF-

80, and HARF-70. On the other hand, CAIRAD runs significantly faster compare to all

the other approaches. We now analyse complexity for the NoiseCleaner algorithm. Let,

x is the number of suspicious attributes values in the dataset. We find maximum n

number of records from the Ss and Sd. The weighted similarity measure has to calculate

for each x and the complexity is O(nx).

Table 3.18. Average execution time of different algorithms (in seconds)

Dataset NoiseCleaner HARF-80 HARF-70 HCleaner CAIRAD

RCL 338.101 342.72 344.21 201.00 100.21

RC 165.21 184.01 183.88 178.10 50.34

MCI 95.34 99.92 96.68 64.55 35.65

MII 198.42 201.15 204.12 188.23 55.19

3.5 Conclusion

In this chapter, a brief summary of the algorithms proposed by researchers in the area of

noisy values detections and corrections is first given. The literature review reveals that

although there have been recent advances towards noisy values detection techniques and

a number of algorithms are available, detecting and correcting incorrect values in

categorical datasets is still a challenging problem, since any attempt to represent a

categorical value numerically can introduce unwanted biases that negatively affect

subsequent data analysis. A novel and effective noisy values identification and

correction method, called NoiseCleaner, is proposed in this chapter for traffic accident

data where the majority of attributes are categorical. There are two stages in

NoiseCleaner, where noisy attribute values are first detected by using a novel P-measure

Chapter 3 Noisy values Detection and Correction

95

which computes the probability values indicating the likeliness of replacing the noisy

attribute value with some alternative attribute values. Then, the S-measure, which

measures the direct and transitive similarity between a noisy value and an alternative

value, is used to identify the most similar alternative value to replace the noisy value

with. Extensive experimental results demonstrated that it outperforms several existing

noisy values identification methods on four real world traffic accident datasets.

Chapter 4 Conclusion and Future Research

96

Chapter 4: Conclusions and Future Research

This chapter concludes the thesis by summarising the novel contribution in this research

and suggests some areas for future work. The objective of this research is to develop

effective preprocessing algorithms for traffic accident data. Our research is focused on

two pivotal tasks of data preprocessing, namely missing value imputation and data

cleansing. To impute the missing values and detect the noisy data, detailed

investigations are carried out on existing approaches to missing values imputation and

noisy data detection in this research. From the investigations, it is found that although

there is much published research on missing values imputation and noisy data detection,

most of those methods are developed for data with numerical values. However, the

traffic accident data we are concerned with in this research consists mostly of

categorical values. Therefore, this research addresses the research gap of preprocessing

categorical data by developing novel algorithms for missing value imputation and noisy

value detection and correction.

In Chapter 2, we proposed a missing value imputation algorithm, called DSMI,

which is able to deal with categorical data. Our algorithm takes into account the

correlation between the attributes in a record, as well as the correlation between two

records to find the most likely imputed values. Moreover, to model the variability in real

data, our algorithm imputes the missing values by sampling from a list of potential

imputed values based on their degree of affinity. Extensive experimental results have

shown that DSMI significantly outperformed current state-of-the-art imputation

algorithms.

In Chapter 3, we proposed a noisy value detection and correction called

NoiseCleaner, which is able to deal with categorical data. NoiseCleaner detects noisy

attributes values by using a novel P-measure which are probability values indicating the

Chapter 4 Conclusion and Future Research

97

likeliness of replacing the noisy attribute value with some alternative attribute values.

Then, the S-measure which measures the direct and transitive similarity between a noisy

value and an alternative value is used to identify the most similar alternative value to

replace the noisy value with. The extensive experimental results and comparative

studies presented in Chapter 3 indicate the effectiveness of the proposed algorithm.

4.1 Future Research

Although the proposed algorithms have demonstrated superior performance compared

with existing algorithms, there is still scope for further research. Because of the

availability of cheap sensors, massive amounts of data have been generated on a daily

basis. Much of this data contain a mixture of numerical and categorical values. To

handle the massive volumes of data, we need highly efficient data preprocessing

algorithms. So far, our algorithms have only been tested on moderately large datasets.

Investigating the scalability of our algorithms to big data is an important future research

direction. In particular, it will be interesting to know how the various correlation

measures used in our algorithms deal with data of very high dimension and the extent

they are able to cope with the curse of dimensionality.

The ability to deal with mixed data types is also an important avenue for future

research. Our proposed algorithms are specifically designed to handle categorical data.

For numerical data of continuous value, one can often estimate or approximate the

underlying density distribution. Exploiting this distribution is expected to improve the

imputation or data cleansing performance. How to modify our algorithms so that they

can handle both types of data will also be an interesting research direction to pursue in

the future.

Twitter, Facebook, and LinkedIn have generated massive amount of data. However,

missing values and noisy informations are common in these data. Future research can

evaluate the effectiveness of the two preprocessing algorithms for these data. In medical

record data, missing values can arise because people do not want to share sensitive

Chapter 4 Conclusion and Future Research

98

information. It would be useful to validate our preprocessing algorithms for this kind of

dataset too.

 Bibliography

99

Bibliography

[1] P. Miksovsky, K. Matousek, Z. Kouba, "Data pre-processing support for data mining",

Proceeding of IEEE SMC Conference, Hammmet, Tunisia , pp. 1-8, 2002.

[2] R. Deb, A. W. C. Liew, E. Oh, "A correlation based imputation method for incomplete

traffic accident data", Proceeding of PRICAI Conference, Springer LNAI, vol. 8862, pp.

905–912, Gold Coast, Australia, 2014.

[3] R. Deb, A. W. C. Liew, "Incorrect attribute value detection for traffic accident data",

Proceeding of IJCNN conference, pp. 1-7, Killarney, Ireland, July 2015.

[4] M. Fogue, P. Garrido, F. J. Martinez, J.-C. Cano, C. T. Calafte, "A novel approach for

traffic accidents sanitary resource allocation based on multi-objective genetic algorithms",

Expert Systems with Applications, vol. 40, no. 1, pp. 323-336, 2013.

[5] "Traffic Safety Facts 2012 Data: United States Department of Transportation",

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811888.

[6] "Australian Bureau of Statistics",

http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/1301.0~2012~Main%20

Features~Accidents,%20injuries%20and%20fatalities~189.

[7] "Data preprocess techniques for data mining",

 http://www.iasri.res.in/ebook/win_school_aa/notes/Data_Preprocessing.pdf.

[8] "Why data mining is important",

 http://booksite.elsevier.com/samplechapters/9781558609013/9781558609013.PDF.

[9] S. Gargett, L. B. Connelly, S. Nghiem, "Are we there yet? Australian road safety targets

and road traffic crash fatalities", BMC Public Health, vol. 11, no. 270, pp. 323-336, 2011.

[10] Z. Zamani, M. Poumand, M.H. Saraee, "Application of data mining in traffic

management: Case of city of Isfahan", Proceeding of ICECT Conference, Kuala Lumpur,

 Bibliography

100

Malaysia, pp. 102-106, 2010.

[11] S. Zhang, C. Zhang, Q. Yang, "Data preparation for data mining", Applied Artificial

Intelligence, vol. 17, no. 5-6, pp. 375-381, 2003.

[12] S. Kumar, D. Toshniwal, "A data mining framework to analyze road accident data",

Journal of Big Data, vol. 2, no. 26, pp. 1-18,2015.

[13] E. Bayam, J. Liebowitz, W. Agresti, "Older drivers and accidents: A meta analysis and

data mining application on traffic accident data", Expert Systems with Applications, vol.

29, no. 23, pp. 598-629,2005.

[14] J. L. Deng, "Control problems of grey system", Systems and Control Letters, vol. 1, no. 5,

pp. 288-294, 1982.

[15] J. I. Maletic, A. Marcus, "Data cleansing: beyond integrity analysis", Proceeding of IQ

Conference, USA, pp. 200-209, 2000.

[16] X. Zhu, X. Wu, Y. Yang, "Error detection and impact-sensitive instance ranking in noisy

data sets", Proceeding of AAAI Conference, California, pp. 378-384, 2004.

[17] R. Deb, A. W. C. Liew, "Missing Value Imputation for the Analysis of Incomplete

Traffic Accident Data", Information Sciences, vol. 339, pp. 274–289, 2016.

[18] R. Cheng, J. Chen, and X. Xie, "Cleaning uncertain data with quality guarantees",

Proceeding of VLDB Endowment, vol. 1, No. 1, pp. 722-735, 2008.

[19] I. B. Aydilek, A. Arslan, "A hybrid method for imputation of missing values using

optimized fuzzy c-means with support vector regression and a genetic algorithm",

Information Sciences, vol. 233, pp.25–35, 2013.

[20] G. E. A. P. A. Batista, M. C. Monard, "An analysis of four missing data treatment

methods for supervised learning", Journal of Applied Artificial Intelligence, vol. 17, no. 5-

6, pp. 519-533, 2003.

[21] J. W. G.-Busse, M. Hu, "A comparison of several approaches to missing attribute values

in data mining", Proceeding of RSCTC Conference, Springer LNAI, vol. 2005, pp. 378–

385, Banff, Canada, 2001.

[22] K. O. Cheng, N. F. Law, W. C. Siu, "Iterative bicluster-based least square framework for

estimation of missing values in microarray gene expression data", Pattern Recognition,

vol. 45, no. 4, pp. 1281-1289, 2012.

Bibliography

101

[23] X. Gan, A. W. C. Liew, H. Yan, "Microarray missing data imputation based on a set

theoretic framework and biological consideration", Nucleic Acids Research, vol. 34, no. 5,

pp. 1608-1619, 2006.

[24] C. Gautam, V. Ravi, "Counter propagation auto-associative neural network based

data imputation", Information Sciences, vol. 325, pp. 288-294, 2015.

[25] H. Junninen, H. Niska, k. Tuppurainen, J. Ruuskanen, M. Kolehmainen, "Methods for

imputation of missing values in air quality data sets", Journal of Atmospheric

Environment, vol. 38, no. 18, pp. 2895-2907, 2004.

[26] A. W. C. Liew, N. F. Law, H. Yan, "Missing value imputation for gene expression data:

computational techniques to recover missing data from available information", Briefings

in Bioinformatics, vol. 12, no. 5, pp. 498-513, 2011.

[27] C.-C. Liu, D.-Q. Dai, H. Yan, "The theoretic framework for local weighted

approximation for microarray missing value estimation", Pattern Recognition, vol. 43, no.

8, pp. 2993-3002, 2010.

[28] E.-L. S.-Ramírez, R. P.–Mejías, M. L.–Colllo, M.-D. C.-D.-L. Vela, "Missing value

imputation on missing completely at random data using multilayer perceptions", Neural

Networks, vol. 24, no. 1, pp. 121-129, 2011.

[29] M. G. Rahman, M. Z. Islam, "FIMUS: A framework for imputing missing values using

co-appearance, correlation and similarity analysis", Knowledge-Based Systems, vol. 56,

pp. 311-327, 2014.

[30] M. G. Rahman, M. Z. Islam, "k-DMI: A novel method for missing values imputation

using two levels of horizontal partitioning in a data set", Proceeding of ADMA

Conference, Hangzhou, China, pp. 250-263, 2013.

[31] M. G. Rahman, M. Z. Islam, "Missing value imputation using decision trees and decision

forests by splitting and merging records: Two novel techniques", Knowledge-Based

Systems, vol. 53, pp. 51-65, 2013.

[32] M. G. Rahman, M. Z. Islam, "Missing value imputation using a fuzzy clustering-based

EM approach", Knowledge and Information Systems, vol. 46, no. 2, pp. 389-422, 2016.

[33] T. Schneider, "Analysis of incomplete climate data: estimation of mean values and

covariance matrices and imputation of missing values", Journal of Climate, vol. 14, no. 5,

 Bibliography

102

pp. 853-871, 2001.

[34] C.-F. Tsai, F.-Y. Chang, "Combining instance selection for better missing value

imputation", The Journal of Systems and Software, vol. 122, pp. 63-71, 2016.

[35] V. Ravi, M. Krishna, "A new online data imputation method based on general regression

auto associative neural network", Neurocomputing, vol. 138, pp. 207–212, 2014.

[36] K. Muralidhar, R. Parsa, R. Sarathy, "A general additive data perturbation method for

database security", Management Science, vol. 45, no. 10, pp. 1399 - 1415, 1999.

[37] P. J. Rathouz, "Missing data: weighting and imputation", Encyclopaedia of Health

Economics, pp. 292–298, 2014.

[38] P. C. Austin, M. D. Escobar, "Bayesian modeling of missing data in clinical research",

Computational Statistics & Data Analysis, vol. 49, no. 3, pp. 821-836, 2005.

[39] J. Tang, G. Zhang, Y. Wang, H. Wang, F. Liu, "A hybrid approach to integrate fuzzy C-

means based imputation method with genetic algorithm for missing traffic volume data

estimation", Transportation Research Part C: Emerging Technologies, vol. 51, pp. 29–40,

2015.

[40] L. L. Doove, S. V. Buuren, E. Dusseldorp, "Recursive partitioning for missing data

imputation in the presence of interaction effects", Computational Statistics & Data

Analysis, vol. 72, pp. 92–104, 2013.

[41] M. Duma, T. Marwala, B. Twala, F. Nelwamondo, "Partial imputation of unseen records

to improve classification using a hybrid multi-layered artificial immune system and

genetic algorithm", Applied Soft Computing, vol. 13, no. 12, pp. 4461–4480, 2013.

[42] C. Gautam, V. Ravi, "Data imputation via evolutionary computation", clustering and a

neural network, Neurocomputing, vol. 56, pp.134–142, 2015.

[43] F. V. Nelwamondo, D. Golding, T. Marawala, "A dynamic programming approach to

missing data estimation using neural networks", Information Sciences, vol. 237, 49–58,

2013.

[44] K. J. Nishanth, V. Ravi, "A computational intelligence based on line data imputation

method: an application for banking", Journal of Information Processing Systems, vol. 9,

no. 4, pp. 633–650, 2013.

[45] P. M. V. Rancoita, M. Zaffalon, E. Zucca, F. Bertoni, C. P. Campos, "Bayesian network

 Bibliography

103

data imputation with application to survival tree analysis", Computational Statistics &

Data Analysis, vol. 98, pp. 89–97, 2015.

[46] B. N. Howie, P. Donnelly, J. Marchini, "A flexible and accurate genotype imputation

method for the next generation of genome-wide association studies", PLoS Genetics, vol.

5, no. 6, pp. e1000529, 2009.

[47] Q. Song, M. Shepperd, "A new imputation method for small software project datasets",

Journal of Systems and Software, vol. 80, no. 1, pp. 51–62, 2007.

[48] J. K. Dixon, "Pattern recognition with partly missing data", IEEE Transactions on

Systems, Man, and Cybernetics, vol. 9, no. 10, pp. 617-621, 1979.

[49] P. Jhosson, C. Wohlin, "An evaluation of k-nearest neighbour imputation using Likert

data", 10th International Symposium on Software Metrics, pp. 108-118, 2004.

[50] D. J. Stekhoven, P. Bühlmann, "MissForest—non-parametric missing value imputation for

mixed-type data", Bioinformatics, vol. 28, no. 1, pp. 112-118, 2012.

[51] S. Erdogan, I. Yilmaz, T. Baybura, M. Gullu, "Geographical information systems aided

traffic accident analysis system case study: city of Afyonkarahisar", Accident Analysis &

Prevention, vol. 40, no. 1, pp. 174-181, 2008.

[52] A. Hossain, M. Chattopadhyay, S. Chattopadhyay, S. Bose, C. Das, "A bicluster-based

sequential interpolation imputation method for estimation of missing values in microarray

gene expression data", Current Bioinformatics, vol. 12, no. 2, pp. 118-130, 2017.

[53] J. Y. Nancya, N. H. Khannaa, K. Arputharajb, "Imputing missing values in unevenly

spaced clinical time series data to build an effective temporal classification framework",

vol. 112, pp. 63–79, 2017.

[54] S. K. Pati, A. K. Das, "Missing value estimation for microarray data through cluster

analysis", Knowledge and Information Systems, pp. 1-42, 2017.

[55] A. P. Dempster, N. M. Laird, D. B. Rubin, "Maximum likelihood from incomplete data

via the EM algorithm", Journal of the Royal Statistical Society. Series B

(Methodological), vol. 39, no. 1, pp. 1-38, 1977.

[56] H. P. Giggins, L. Brankovic, "VICUS – a noise addition technique for categorical data",

Proceeding of AusDM Conference, Sydney, Australia, pp. 139–148, 2012.

[57] A. Farhangfar, L. Kurgan, J. Dy, "Impact of imputation of missing values on classification

Bibliography

104

error for discrete data", Pattern Recognition, vol. 41, no. 12, pp. 3692-3705, 2008.

[58] D. R. Wilson, T. R. Martinez, "Reduction Techniques for Instance-Based Learning

Algorithms", Machine Learning, vol. 38, no. 3, pp. 257-286, 2000.

[59] M. Lee, W. Pedrycz, "The fuzzy C-means algorithm with fuzzy P-mode prototypes for

clustering objects having mixed features", Fuzzy Sets and Systems, vol. 160, no. 24, pp.

3590-3600, 2009.

[60] J. R. Quinlan, "C4.5: programs for machine learning", Morgan Kaufmann Publishers, San

Mateo, California, USA, 1993.

[61] J. R. Quinlan, "Improved use of continuous attributes in C4.5", Journal of Artificial

Intelligence Research, vol. 4, pp. 77-90, 1996.

[62] P.-N. Tan, V. Kumar, "Interestingness measures for association patterns: a perspective",

Proceeding of KDD workshop on post-processing in Machine Learning and Data Mining,

pp. 254-260, Boston, USA, 2000.

[63] P.-N. Tan, V. Kumar, J. Srivastava, "Selecting the right objective measure for association

analysis", Information Systems, vol. 29, No. 4, pp. 293–313, 2004.

[64] L. Geng, H. J. Hamilton, "Interestingness measures for data mining: A Survey", ACM

Computing Surveys, vol. 38, No. 3, pp. 1-32, 2006.

[65] T. Brijs, G. Swinnen, K. Vanhoof, G. Wets, "Using association rules for product

assortment decisions: a case study", Proceeding of KDD conference, pp. 254-260, San

Diego, California, USA, 1999.

[66] C. Silverstein, S. Brin, R. Motwari, "Beyond market baskets: generalizing association

rules to dependence rules", Data Mining and Knowledge Discovery, vol. 2, No. 1, pp. 39-

68, 1998.

[67] T. Chai, R. R. Draxler, "Root mean square error (RMSE) or mean absolute error (MAE)?

– arguments against avoiding RMSE in the literature", Geoscientific Model Development,

vol. 7, pp. 1247-1250, 2014.

[68] M. A. Hern´andez, S. J. Stolfo, "Real-world data is dirty: data cleansing and the

merge/purge problem", Data Mining and Knowledge Discovery, pp. 9-37, 1998.

[69] T. C. Redman, "The Impact of Poor Data Quality on the Typical Enterprise",

Communications of the ACM, vol. 41, no. 2, pp. 79-82, 1998.

 Bibliography

105

[70] S. J. Delany, "The good, the bad and incorrectly classified: profiling cases for case-base

editing", Proceeding of ICCBR conference, vol. 5650, pp. 135-149, 2009.

[71] M. G. Rahman, M.Z. Islam, T. Bossomaier, J. Gao, "CAIRAD: A co-appearance based

analysis for incorrect records and attribute-value detection", Proceeding of IJCNN

conference, pp. 1-10, 2012.

[72] B. Sluban, D. Gamberger, N. Lavraˇc, "Ensemble-based noise detection: noise ranking

and visual performance evaluation", Data Mining and Knowledge Discovery, vol. 28, no.

2, pp. 265-303, 2013.

[73] C. M. Teng, "A comparison of noise handling techniques", Proceeding of AAAI

conference, pp. 269-273, 2001.

[74] H. Xiong, G. Pandey, M. Steinbach, "Enhancing data analysis with noise removal", IEEE

Transactions on Knowledge and Data Engineering, vol. 18, no. 3, pp. 304-319, 2006.

[75] "Queensland Government data repository",

https://data.qld.gov.au/dataset/crash-data-from-queensland-roads.

[76] "New York’s open data portal of Motor Vehicle crash – case information: 2011 and Motor

Vehicle crash - individual information: 2011",

https://data.ny.gov/browse?tags=crash&utf8=%E2%9C%93.

[77] "Accident Investigation Basics",

 http://www.crashinvestigation.net.au/bob_lomastroDefnRootCauseAnalysispage10.pdf.

[78] "Large Truck Crash Causation Study File 1 and 2", explore.data.gov.

[79] "Traffic Accidents datasets of Denver County", http://data.opencolorado.org/dataset/city-

and-county-of-denver-traffic-accidents.

[80] J. C. Bezdek, R. Ehrlich, W. Full, "FCM: The fuzzy c-means clustering algorithm",

Computer and Geosciences, vol. 10, no. 2-3, pp. 191-203, 1984.

[81] J. Han, M. Kamber, "Data mining: concepts and techniques. The Morgan Kaufmann series

in data management systems", 2000.

[82] L.-Y. Chang and H.-W. Wang, "Analysis of traffic injury severity: An application of non-

parametric classification tree techniques Accident analysis and prevention", Accident

analysis and prevention, vol. 38, no. 5, pp.1019-1027, 2006.

Bibliography

106

[83] R. Deb, A. W. C. Liew, "Missing value imputation for the analysis of incomplete traffic

accident data", Proceeding of ICMLC Conference, Springer CCIS 481, pp. 275–286,

Guangzhou, China, 2014.

[84] X. Zhu, S. Zhang, Z. Jin, Z. Zhang, Z. Xu, "Missing value estimation for mixed-

attribute data sets", IEEE Transactions on Knowledge and Data Engineering, vol. 23, no.

1, pp. 110-121, 2011.

[85] MATLAB version 7.10.0. Natick, Massachusetts: The Math Works Inc., 2010.

[86] N. Lavesson, S. Axelsson, "Similarity assessment for removal of noisy end user license

agreements", Knowledge Information System, vol. 32, no. 1, pp. 167-189, 2011.

[87] I. Tomek, "An experiment with the nearest neighbor rule", IEEE Transactions on

Information Theory, vol. 6, pp. 448–452, 1976.

[88] L. I. Rudin, S. Osher, E. Fatemi, "Nonlinear total variation based noise removal

algorithms", Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259-268, 1992.

[89] R. Garnett, T. Huegerich, C. Chui, W. He, "A universal noise removal algorithm with an

impulse detector", IEEE transactions on image processing, vol. 14, no. 11, pp. 1747-1754,

2005.

[90] R. J. Hathaway, J. C. Bezdek, "Fuzzy c-means clustering of incomplete data", IEEE

transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 31, no. 5, pp.

735-744, 2001.

