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Abstract

This thesis presents the results of a series of experiments in which electrons are
superelastically scattered from various laser excited states of sodium. The atoms, once
in the optically prepared state, are forced to relax via the superelastic collision with an
electron. The rate of detection of superelastically scattered electrons was measured as a
function of the laser polarisation which enabled pseudo Stokes parameters to be
determined. These pseudo Stokes parameters are functions of both optical pumping
parameters and atomic collision parameters. The optical pumping parameters describe
the laser-atom interaction and the atomic collision parameters describe the electron-atom

collision process.

Three different laser excitation mechanisms were used to optically pump the atoms into

various excited states. The first of these used a single laser tuned to the 32S1 H(F'=2

hyperfine state)—>32P3/2 transition. The excited atoms underwent a superelastic

collision with an electron leaving the atom in the ground state and pseudo Stokes
parameters were measured as a function of both scattering angle and incident electron

energy. The second superelastic experiment, utilised a folded step excitation mechanism

which employed two lasers tuned from the two hyperfine states of the 328l \, ground

state respectively to the 32P3 |, excited state. Power broadening effects in the single

laser experiment cause the atoms to be optically pumped into the F'=1 hyperfine ground
state. The laser powers used were not great enough to power broaden the hyperfine
ground states and as such the F'=1 sublevel effectively acted as a sink. The folded step
excitation method enabled the excited state population to be increased so that data at
larger scattering angles could be obtained. Stokes parameters from both of these
experiments which had an incident energy range of 10eV to 30eV and an angular range
of 5°-25° were compared to three current electron-atom scattering theories and previous

experimental data. Overall, fair to good agreement was found between theory and



experiments for the individual Stokes parameters. Losses of coherence was observed at
small scattering angles (5°-20°) at 20eV and 25eV incident electron energies which

were poorly modelled by the three different theories.

The third superelastic experiment involved the use of two lasers of specified

polarisation to stepwise excite the atoms to the 32D5 |, excited state. Superelastic

collisions with incident electron energies of 20eV from the 32D 5 /2—)32P3 &1

collision were studied at three different scattering angles and pseudo Stokes parameters
for the case where the polarisations of the radiation from the lasers were parallel were

measured.

The single step and folded step laser-atom interactions for 7 excitation were modelled
using a full quantum electrodynamical treatment so that the optical pumping parameters
from the single and folded step experiments could be investigated. Equations of motion
were derived in the Heisenberg picture and it is shown that for the single laser case 59
equations of motion are required to fully model the interaction and for the folded step
case 78 equations of motion are required. The results of calculations demonstrated that
the optical pumping parameters were sensitive to laser intensity, laser detuning and the
Doppler width of the atomic beam. The theoretical quantum electrodynamical

calculation results were in good agreement with the experimental results.
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Chapter One

Introduction

1.1 Introduction

Collision processes involving electrons and atoms have been of great interest since the
evolution of quantum mechanics. One of the first experiments to investigate electron-
atom collision processes was the Franck-Hertz experiment in 1914. In this particular
experiment, electron-atom collisions were used to demonstrate the discrete energy
levels or quantised nature of mercury atoms. Since that initial experiment, atomic
collision physics has made many other important contributions to the growth of
physics, both in the development of experimental apparatus and techniques and in the
formulation of modern concepts and theories. Collision physics has also been used in
many diverse applications such as to the study of planetary atmospheres and
astrophysical phenomena where it has been revealed that atomic collision physics play
much more of a role in nature than it was first previously thought. The development
and understanding of many new devices have been dependent on the acquisition of new
information about many kinds of atomic collisions. These devices include gas lasers,

gas-filled radiation detectors to the common fluorescent lamp.

The observation of the effect of an incident particle after the collision with a particular
target enables information on the structure of the target to be determined. In principle,
two types of energetic processes may occur, elastic or inelastic collision processes.
Elastic scattering is the most common form of scattering process, whereby the collision
between a target and projectile interact in such a manner that there is no net transfer of
energy during the collision. The second form of collision that may occur is the inelastic
collision. In this collision process the particles under go a net transfer in energy. There

are two forms of inelastic collision processes, the first of which the target particle gains
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energy from a transfer of kinetic energy from the incident particle leaving the target
particle in a higher energy internal state. The second inelastic process has been termed
the "superelastic” collision process. In this process, energy from an excited internal
state of the target particle is transferred to kinetic energy of the incident particle leaving

the target particle in an internal state that is lower in energy.

The particular process studied here is the superelastic collision process. An electron
beam with a well defined energy spread interacts with a collimated sodium beam which
has been optically prepared using a laser or in some cases two lasers with a particular
polarisation. A range of incident energies and excited states are studied and no spin
analysis takes place so that averaging procedures must be used. Theoretical modelling
of various laser-atom interactions is performed using a full quantum electrodynamical

model which was developed by Farrell et al. 1988.

1.2 Electron-Atom Collision Experiments

Since the Franck-Hertz experiment more complex electron-atom collision experiments
have been performed to measure total and differential cross sections (Heddle 1989, Zipf
1984, Trajmar and Cartwright 1984). In these types of experiments, a beam of atoms
interact with a collimated beam of electrons of well defined energy. Inelastically or
elastically scattered electrons are detected after the interaction with an atom which has
one particular atomic bound state energy as a function of scattering angle, for the case
of differential cross section measurements, or the sum of all the possible scattering
angles to give the total relative cross section. This form of experiment does not give any
information on the degenerate magnetic substate population since the experiment can

not distinguish the individual excitation channels.

to



Chapter One: Introduction

A further form of cross section measurement may be performed by the measurement of
fluorescence emitted following an initial electron excitation of the target atom. An
electron beam of variable, but well deﬁnéd energy is passed through an atomic beam
which excites the atoms to higher internal bound states. Measurement of the wavelength
and the intensity of the optical radiation from the resulting spontaneous radiative
transitions in de-excitation to lower levels, enables emission functions or emission
cross sections to be determined as a function of the initial electron energy. This method
has a low sensitivity because the only a small fraction of the photons produced are
intercepted by the detector and not all of these photons arriving at the detector are
registered (McDaniel 1989). A further disadvantage of this method is that because of

their long excited lifetimes, metastable states can not be investigated using this method.

An advantage of the fluorescence method is that the polarisation of the emitted radiation
may be monitored which enables information on the degenerate sublevel population to
be available (Percival and Seaton 1958, Heddle 1983). The polarisation of the radiation
is monitored at some angle, which is usually referenced to the incident electron beam.
Since the scattered electron is not detected in this method, an averaging process over the

scattering angles must be used.

In the two detection methods discussed above, either electron or photon detection alone
limits the characterisation of the collision mechanism which is due to averaging
procedures that are required to be used. The first method used to investigate collision
processes in more detail were experiments that involved the detection of both the
scattered electron plus the emitted photon. Complete information also requires that the
polarisation of the emitted photon for each individual scattering process is known. This
allows the alignment and the orientation of the atomic charge cloud to be determined for
any given scattering angle of the incident particle. The alignment of the atomic charge
cloud refers to the shape of the excited state charge cloud and its tilt with respect to the

direction of the incident electron beam, and the orientation refers to the angular
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momentum transferred to the atom during the collision interaction. Under certain
conditions, these studies can also allow the complete determination of scattering
amplitudes plus their relative phases and as such provides much more stringent tests of

current scattering theories.

In this method, following the excitation of the atomic state, the scattered electron is
detected in coincidence with the photon emitted from the subsequent decay from the
excited atomic state. The theoretical framework of this method was discussed by Macek
and Jaceks 1971 which was followed by a more general article by Fano and Macek
1973. The first coincidence experiment for electron impact excitation was reported by
King et al. 1972 in which electron scattering from helium excitation at zero degree
scattering angle was investigated. The first set of inelastic scattering amplitudes for the
excitation of the 2!P and 3'P excited states of helium as a function of scattering angle
were measured by Eminyan et al. 1973, 1974. In these experiments an electron-photon
angular correlation technique was used in which the inelastically scattered electron was
detected in delayed coincidence with the with the photon emitted coplanar to the
scattering plane. The angular distribution of the emitted photon without polarisation
analysis was measured as a function of the scattering angle. Using a least squares fit,
the atomic collision parameters A, the relative differential cross section, and | xl, the
relative phase were obtained. The atomic collision parameters are functions of collision
density matrix elements which describe the collision process. More detail on collision

density matrix and atomic collision parameters are given in Chapter Two.

A natural extension of this analysis was to combine a polarisation analysis of the
emitted photon with the coincidence technique. This first complete analysis involved the
measurement of Stokes parameters which enabled the orientation parameter to be
determined (Standage and Kleinpoppen 1976). This technique involved the detection

of the scattered electron which excited the 3'P state of He in delayed coincidence with
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polarised fluorescence scattered perpendicular to the scattering plane. The Stokes

parameters are defined as

_ 1(0)-1(90)
P1 = 10)+1790) (1.12)
_ I(45)-I(135)
P, = 145)+1(135) (1.1b)
o _ (RHC)-I(LHC) (110

37 I(RHC)+I(LHC)

where I(o) represents the coincidence signal with the polariser at angle o to the
quantisation axis, which, for the coincidence experiment is chosen parallel to the
incident electron beam. RHC and LHC represent the case when right and left hand
circularly polarised light is detected. This analysis also enabled the total polarisation to
be determined for the first time. The total polarisation is a measure of the coherence of
the collision event. Standage and Kleinpoppen found that this particular collision
process was fully coherent. It was during this time, with the advent of tunable dye
lasers, that the study of laser assisted atomic collision processes such as the superelastic
collision process became possible (Hertel and Stoll 1974a). This experimental
technique required the atom to be initially prepared in the excited state using a polarised
laser beam. The excited atom was then induced to relax via a superelastic collision with
an electron. These experiments were carried out on the 32P3 /, state of sodium and
Hertel and coworkers (Hertel and Stoll 1974 a&b) were able to show that the
information obtained in these experiments was identical to that from the electron-photon
coincidence experiment. A more rigorous theoretical treatment was provided by Macek
and Hertel 1974 which was in terms of the of the Fano-Macek theory. A schematic of
the two methods may be seen in figure 1.1. The numerals alongside the arrows indicate

the time sequence.
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Since these pioneering experiments many atomic systems have been studied using these
two techniques. In terms of electron-photon coincidence experiments, experiments have
been performed on He, H, Hg, Na, Li, K, Ne, Ar, Kr, Xe and Ca. Anderson et al.
1988 provide a very useful review of these systems. The heavier atomic systems such
as Hg, are interesting as they can give insight into the role of relativistic effects such as
the spin-orbit interaction. Because of the high degree of experimental difficulty, only
one electron-photon correlation experiment has been performed on molecules

(McConkey et al. 1986).

Electron-photon coincidence experiments have a slow data collection time which can be
attributed to a combination of both the finite solid angle and the efficiency of the photon
detector at certain wavelengths. This method is also not suitable in the study of
metastable states because of their long lifetimes. One method used to avoid the detection
efficiency problems at certain wavelengths was to use a stepwise electron-photon
coincidence experiment. This excitation technique is illustrated in figure 1.2. The atom
is excited via an inelastic collision with an electron. The atom is then further excited to a
higher atomic state via laser excitation. The scattered electron is then detected in delayed
coincidence with the photon decay from the laser excited state into one particular
cascade channel. The first experiment of this type was reported by Murray et al. 1989
in which a complete Stokes analysis of the 61P1 state of mercury was performed. This
technique also has the advantage that metastable states can be probed. A more recent
technique to characterise metastable states was proposed by Summy et al. 1994 in
which atoms, initially electronically excited to a metastable state, are deflected by an
optical force using a laser beam of known polarisation. These deflected atoms are
detected in coincidence with the scattered electron. The amount the atoms are deflected
is proportional not only to the intensity, detuning of the light beam and the velocity
distribution of the atomic beam but also to the initial state of the atom prior to the
deflection. Summy et al. 1994 demonstrated for a model atom that it was possible to

characterise the deflection in terms of pseudo Stokes parameters which in turn could be



Chapter One: Introduction

related to the collision density matrix elements. To date no complete experiments have

been performed using this method.

The experiment of Summy ef al. 1994 is not the first type of deflection experiment that
has been proposed. Bederson and coworkers (Bhasker et al. 1977, Jaduszliwer et al.
1984) have employed a method in which a deflection of an sodium atom, induced by
the collision with an electron, is used to characterise collision processes. In this
experiment only the deflected atom was detected and, as a result, limited the
measurements to cross sectional information. Bederson's group have also measured
absolute differential cross sections of laser excited atomic states of sodium by using
double-recoil techniques (Zuo et al. 1990) in which atoms are deflected not only by the
incident electron beam but also the exciting laser. It was found that the cross sections

for the excited state atoms were four to ten times larger than that of ground state atoms.

A number of electron-atom superelastic collision studies have been performed on
atomic species other than that of the original experiment performed on sodium. The
number of these has been limited to transitions which are accessible by laser radiation
and to date only experiments on Ba (Register et al. 1978) and more recently Ca (Law
and Teubner 1993), Cr (McClelland et al. 1993) and Cs (Baum 1994). The results from
the experiments on Ba reported a mysterious asymmetry with respect to the zero degree
scattering angle. This was later found to be due to an experimental artefact now known
as the finite volume effect (Zetner er al. 1989). No experimental results have been
published for the Ca and Cs experiments. The major advantage of this method over the
coincidence technique is that it only requires the detection of an electron which makes

data collection much faster than that of any other method.

The experiments outlined so far have all involved non-spin resolved measurements
which requires averaging over spin channels. The first spin resolved coincidence

experiment was carried out by Kessler's group (Wolcke et al. 1984) at Miinster in
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which polarised electrons were incident on an atomic mercury beam exciting the atoms

to the 63PI state. The scattered electrons were detected in delayed coincidence with the

photon emitted perpendicular to the scattering plane from the 63P1 to 6180 (254nm)

decay channel. Linear polarisation analysis was carried out using a pile of plates
analyser. The incident electrons were polarised such that the spin vector was oriented in
the direction of the photon detector which preserved the reflection invariance in the
scattering plane. Stokes parameters were measured over an energy range of 7 to 15eV
at zero degree scattering angle. Bartschat and Blum 1982 showed that for this
experiment, that if an unpolarised beam of electrons were used, the Stokes parameters
P, and P, would be zero and hence this would provide a sensitive test of spin-
dependent interactions. The experimental results indicated significant non-zero values
for these parameters indicating that spin-dependent interactions played a large role in the

excitation process studied.

Spin polarised superelastic experiments have also been performed. McClelland et al.
1985 used a polarised beam of electrons to superelastically scatter from laser prepared
sodium atoms. The laser was linearly polarised and incident perpendicular to the
scattering plane and was used to pump the atoms from the ground state to the 32P3 »
excited state. The electrons were spin polarised such that the spin vector was oriented
either parallel (spin down) or anti-parallel (spin up) to the propagation vector of the
laser beam. The spin asymmetry was determined via

A=pl NJ'NT
- eN$+NT

(1.2)

where P is the magnitude of the incident electron spin polarisation and N L 11s the
number of superelastically scattered electron with initial polarisation spin up (T) or
down (l«). McClelland et al. 1985 measured this parameter with an incident electron
energy of 10eV as a function of scattering angle with the laser polarised at zero degrees

to the incident electron momentum vector. Measurements at 30° scattering angle as a
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function of the laser polarisation were also taken. Both of these analyses showed
significant spin asymmetries. The author's attributed the spin asymmetry to exchange
interactions, whereby the incident and atomic electron interchange during the collision
interactidn. The exchange interaction was induced by the "fine structure effect" (Hanne
1983). This effect is due to the simultaneous presence of two effects, the correlation
between orbital angular momentum and spin in an L-S coupled atom, and the
interaction of the orbital angular momenta of the scattered and target electrons

(McClelland et al. 1985).

This group have also performed measurements in which both the incident electron beam
and atom are spin polarised. Using the same excited state, the atoms were spin
polarised by optical pumping using circularly polarised light. Two spin asymmetries,
which were defined with respect to which orbital angular momentum state the atom was
pumped into (either +1), were measured as a function of scattering angle and incident
electron energies. Both of the types of measurements showed significant spin

asymmetries, the most sensitive of which were for atoms which were prepared in the

m, =-1 excited state. The largest asymmetries were evident at lower energies and at

larger scattering angles.

McClelland et al. 1989 have also performed orientation studies with both spin polarised
atoms and electrons. In this particular experiment, the knowledge of both the incident
particle and target particle's spins enable the singlet and triplet spin channels to be
resolved. This resolution of the spin channels is of particular use as the individual spin
channel contributions to the angular momentum transferred perpendicular to the
scattering plane may be determined which can also give an indication of the role of
exchange effects between the target electron and the incident electron. The ratio, r, of
the (triplet/singlet) contributions were also measured. Good agreement with the Close
Coupling calculation of (Moores and Norcross (1972) for the parameter r at all

scattering angles was observed. This was not the case however for the comparison
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between the individual singlet and triplet orientation parameters, where good agreement
was observed at small scattering angles but not for larger scattering angles. Good
agreement between experiment and the four state Close Coupling calculation of Mitroy

et al. 1987 was also observed.

A comprehensive review of other spin resolved experiments and theory aspects is given
by Hanne 1983. The book by Kessler 1976 also gives a comprehensive review of the

theory.

1.3 Orientation and Alignment Experiments in Non-Spin Resolved

Electron-Sodium Collision Experiments

A considerable amount of time and effort has been devoted to the investigation of
orientation and alignment in electron-sodium collisions. The experiments can be
separated into two categories: those experiments that involve spin dependent collisions
and those experiments in which the spin variable is averaged over. Some of the spin
resolved experiments were mentioned in the previous section. All of the non-spin
resolved experiments have so far concentrated their studies on the 3P state and because
of the accessibility of this state via laser excitation, only one coincidence experiment has
been reported (Riley er al. 1985, Teubner et al. 1986). In this experiment, Teubner and
coworkers utilised an electron-photon coincidence experiment, in which sodium atoms
were excited to the 32P state of sodium with 22.1eV and 12.1eV electrons. The
scattered electron was detected in coincidence with the decay photon from the 3%P
excited state emitted perpendicular to the scattering plane. The polarisation of the
emitted photons is studied yielding Stokes parameters and subsequently atomic

collision parameters. All three Stokes parameters were determined which enabled the

coherence parameter, the total polarisation, P to be calculated. For a fully coherent

10
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excitation process P~ =1 and with 22.1eV incident energy, for the angular range of

5°-15°, to within experimental error full coherence was found for this experiment.

Superelastic electron-sodium collisions dominates the body of data that exists for
orientation and alignment studies in sodium. As mentioned in the previous section
Hertel's group was the first to perform this pioneering experiment (Hertel and Stoll
1974 a&b). Subsequent to this investigation Hertel and collaborators (Hertel and Stoll
1976,1977, Hermann et al. 1977) have performed several systematic studies of
alignment parameters. In these experiments the laser was linearly polarised and incident
coplanar to the scattering plane and the superelastic signal was taken as a function of the
laser polarisation. This signal was fitted to the appropriate functions and collision
parameters A and cosy were determined as a function of energy and scattering angle.
The full density matrix can not be characterised by these two parameters alone and
hence information pertaining to the coherence of the collision process can not be
obtained. The laser in the coplanar geometry does not allow the orientation parameter to
be determined and as such a second geometry was required. The second geometry
utilised the laser incident perpendicular to the collision plane which enabled the
determination of the P ; Stokes parameter and hence the orientation parameter (Hermann
et al. 1980). Complete analysis of orientation and alignment parameters as a function of
scattering angle were carried out on incident electron energies of 3eV, 10eV, 20eV with
losses of coherence observed at 3¢V and 20eV. The data at 20eV disagreed with the

data of Riley et al. 1985 which did not display a loss of coherence.

The controversy surrounding the data of Hertel's group and Teubner's group instigated
an investigation by Farrell ef al. 1989 in which collision and coherence parameters were
measured at this angle and energy. It was found, that like the data of Hermann et al.
1977 there was a loss of coherence in the collision process. Initially the Hermann et al.

1977 data produced a more significant loss than the data of Farrell et al. 1989 but an

error in the analysis of Hermann et al. 1977 was found in which the value of A was

11
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significantly reduced. After correcting the data, the loss in coherence was in good
agreement with the Farrell et al. 1989 data which was not in good accord with the

coincidence experiment of Riley ez al. 1986.

The experimental results induced speculation about the equivalence of the two
techniques, however a recent investigation by MacGillivray and Standage 1991
confirmed the equivalence provided the principle of micro-reversibility holds for
electron-atom collisions. This paper demonstrated that a comparison of the Stokes
parameters for the two techniques were the same to within an overall coefficient. In the
case of the coincidence experiment this was a factor representing the effect on the
spectroscopic structure and in the case of the superelastic experiment the effect due to
the laser induced optical pumping. In the case of the superelastic scattering experiment,

these coefficients were labelled the optical pumping parameters.

Teubner and coworkers have also carried out a series of superelastic experiments
(Scholten et al. 1988, 1993, Teubner et al. 1989, 1990) in which mainly two incident
energies (10eV and 20eV) were investigated over a wide range of scattering angles. In
this analysis, no loss of coherence at small scattering angles at either energy was
observed. They did, however, find a significant loss of coherence at larger scattering
angles. At 10eV, this occurred between 60° and 80° scattering angle and at 20eV this

occurred in the range of 50° to 70° scattering angle.

Theoretical calculations in the intermediate energy regime using the Close Coupling
methods of McCarthy and coworkers (Mitroy et al. 1987) have in the past tended to
support the work of Teubner's group with no evidence of losses of coherence at small
scattering angles but losses of coherence at larger scattering angles. Recent calculations
of Madison et al. 1991, 1992 in which a Second Order Distorted Born calculation has
been used to model the interaction have demonstrated a loss of coherence at both small

and large scattering angles which has renewed interest in this area.
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1.4 Theoretical Modelling of the Laser-Atom Interaction in Superelastic

Scattering Experiments in Sodium

The first attempt at modelling the laser-atom interaction was performed by Hertel's
group (Hertel and Stoll 1974 a&b, Macek and Hertel 1974 and Fischer and Hertel
1982) in which both the laser induced optical pumping and electron-atom collision
processes were represented in terms of multipoles. The laser induced processes were
modelled using a simplified representation of the 32P3 1, state. In the calculation it was
assumed that the laser was tuned from the F'=2 hyperfine ground state to the F=3
hyperfine excite state. The combination of a highly collimated atomic beam with the dye
laser, which had a natural line width of 1MHz, made resolution of the individual
hyperfine states possible provided that the power of the laser was not sufficient to
induce power broadening of the upper hyperfine state. A rate equation model was
solved at steady state enabling the optical pumping parameters to be determined as a
function of the laser intensity. It was also demonstrated that optical pumping parameters
could be obtained in a separate line polarisation experiment of the laser induced
fluorescence. The rate equation method is intrinsically a weak perturbation method and

is therefore expected to fail at high laser intensities.

The rate equation method provides a simple and effective solution but Farrell 1992
pointed out a further potential problem which is associated with using steady state
solutions. For the case of linearly polarised light, the total excited state probability
reaches steady state very rapidly, but the individual substates do not reach steady state
for 250 nanoseconds which is approximately 15 times the excited state life time. The
situation is worse for circularly polarised light as it takes almost 1000 nanoseconds for
the populations to reach steady state (Farrell 1992). The long times to reach steady state
clearly point to some difficulty when using steady state results for experiments using
crossed beam apparatus for which the transient time of the atom is in the order of one

microsecond.
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McClelland and Kelly recognised the potential problems associated with the approach
of Hertel and coworkers, in particular the importance of the power broadening
mechanisms and the resulting effect of the F'=1 ground sub level acting as a sink. In
their model, a semiclassical density matrix approach is used with only a selected
number of density matrix elements solved for (McClelland and Kelly 1985). The atom
was treated as a quantum entity and the light treated classically. The interaction between
the light and the atom was treated quantum mechanically. Spontaneous emission is not

intrinsically included in the model and has to be added in an ad hoc manner.

Farrell et al. 1988 introduced a full quantum electrodynamical treatment of the problem
in which spontaneous emission appears naturally in the theory. No approximations
were made except the usual rotating wave, harmonic and dipole approximations (these
approximations are discussed in Chapter Three). A calculation using this method was
made to theorética]ly model the optical pumping parameters (Farrell et al. 1991) which
gave excellent agreement with fluorescence measurements. A detailed experimental
investigation of the QED model was under taken by Menget al. 1992 in which line
polarisation measurements under various conditions such as laser power and detuning

were taken. These experimental results displayed excellent agreement with the theory.

1.5 Structure of This Thesis

This thesis consists of two sections; a theoretical section, which examine electron-atom
collision processes as well a quantum electrodynamical model of the laser-atom
interaction and an experimental section, which reports results of new electron-atom

superelastic collision experiments.

Chapter Two is devoted to the development of the electron-atom collision density

matrix. This derivation closely follows that of Blum (1981) and the density matrix

14



Chapter One: Introducrion

describing a S-P collision is derived. Following this, the general theory describing the
superelastic P-S collision process is derived. This theory is applied to determine pseudo
Stokes parameters for an electron-sodium supefelastic collision experiment where it is
shown that these parameters are not only functions of atomic collision parameters but
also optical pumping parameters which are related to the populations and coherences
formed by laser induced optical pumping processes. A superelastic experiment
described as "folded step superelastic scattering" is introduced, in which two lasers are
used to pump out of the two hyperfine ground states in sodium. Completing the chapter

is a section on coherence in electron-atom collisions.

Chapter Three is devoted to the QED modelling of the laser-atom interaction. The
chapter initially begins with the derivation of the system Hamiltonian which is followed
by a derivation of the equation of motions for a single laser superelastic collision
experiment. This work follows that of Farrell ef al. 1988, 1991 and is extended later in

the chapter to model the folded step laser excitation mechanism.

Chapter Four describes a new superelastic collision experiment in which collisionally
induced excited state to excited state transitions are investigated. This is an initial

investigation of a stepwise superelastic scattering experiment in which atoms are laser

excited from the ground state to the 32P3 ,, State and then further excited from the
32P3 1, state to the 32D5 |, state. The atoms are then induced to relax via a superelastic

collision with an electron to the 3°P state. Stepwise pseudo Stokes parameters are

1/2,3/2

derived for the case when the lasers have parallel polarisations and also for one case
with crossed polarisations. It is shown that the stepwise pseudo Stokes parameters are
functions of both atomic collision parameters and optical pumping parameters and for
parallel laser polarisation case it is shown that these optical parameters may be related to
line polarisation measurements. The chapter is completed with a section modelling the

stepwise laser interaction using rate equations.
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Chapter Five presents the apparatus used in the experiments outlined in the previous
chapters. Chapter Six presents the results of measurements taken from line polarisation
measurements, single step superelastic data and folded step superelastic data. The data
from superelastic collisions from the 32P3 / to the ground state at five different energies
as a function of scattering angle are compared to existing experimental data and three
current electron-atom scattering theories. The effect of finite volume of the interaction
region is also explored. The final section presents the data from the new stepwise

superelastic scattering experiment discussed in Chapter Four.

16



Chapter Two
Electron-Atom Collision Theory

2.1 Introduction

This chapter provides the details for the general theory of the superelastic collision
process. Owing to the fact that these experiments deal with ensembles of atoms which
may or may not be described by a pure state requires the use of the density matrix
formalism. The first section of the chapter deals with general inelastic electron excitation
of a P state from an S state of an atom and introduces atomic collision parameters. A
theory is then derived to determine the superelastic differential cross section for a P-S
superelastic collision which is used to determine pseudo Stokes parameters. It will be
also shown that these parameters are not only related to atomic collision parameters but
also to optical pumping parameters. These optical pumping parameters are functions of
the populations and coherences formed by the laser excitation. Following this section is
one which deals with the theory of a folded step superelastic experiment. This experiment
uses two lasers to pump out of the two hyperfine ground states in sodium giving a larger
excited state population. The final section of the chapter deals with the question of

coherence in electron-atom collisions.

Following this chapter is a chapter which deals with the laser excitation aspects of the
single step and folded step superelastic scattering experiments. Also given in the next
chapter is a method of determining the optical pumping parameters via fluorescence

measurements.
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2.2 Inelastic Electron-Atom Collision Theory

In this section the general theory for an electron-atom S-P collision is derived. Figure
2.1 depicts the scattering plane which is defined as the plane containing both the incident
and scattered electron momentum vectors. By convention the quantisation axis (Zcol) is
chosen parallel to the incident electron momentum vector. Consider now a beam of
electrons of well defined momentum interacting with a ensemble of ground state atoms.

The density operator representing the ground state atoms is given by

i
o = (ngﬁ) ; ot J M ><o ] M| @2.1)
8

where Jg is the total angular momentum of the ground state, Mg is the projection quantum

number of the angular momentum on the quantisation axis and e, are all other quantum

numbers required to specify the ground state. The density operator describing the initial

electron beam is represented by

1
pfl = 53 IPm><P m| (2.2)

m
o

P is the momentum of the electrons and m  is the spin. The incident electrons and

ground state atoms have no correlations prior to the collision and as such the interaction

density operator is formed by the direct product

pin - pA Xpel
1
= m zIangMg><angMglIPomo><PDm0I
8 Mgmo
1

= 2{_2.18_4-1—] Z langMgP0m0><angMgP0mol
Mgmo
1
= 2{2]8+1} z |Mgm0><Mgmol (2.3)

M m
8 0
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where IMgm0> = langMgPomo>. The transition between atomic states is denoted by

I,= %P M,—— T, = yPM, (2.4)

where 7. represents all the necessary quantum numbers required to specify the atomic

system. The transition may also be written in terms of a scattering amplitude as
fir,r,)= <IITI> (2.5)

where T is the transition operator. The scattering amplitude f(F I, ) is normalised

according to the condition
fir,r,*=or,r,) (2.6)

oI" P I 0 ) represents the differential cross section for the transition. The density operator

for the system after the collision is
p¢ = Tp"T* (2.7)
We now take the matrix elements between final states
<M'm/| p° IM Y S—
P M e ‘(2{21 +1})
g
D, <M'm/I T\Mm,><Mm) T"IM m> (2.8)

M m f
g o

where IM m > = Iaf/ jM fme > From equation (2.5) this result can be re-expressed in

terms of scattering amplitudes as
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' ! € ] ' '
<M'm1 p° 1M m> =(W)1wzfnﬁM m, M mo)f (Mm M m)  (2.9)
g0 .

Sodium is a light atom and it is expected that spin orbit effects may be considered to be
negligible during the collision and as such any change of the electron spin variable is due
to the electron exchange process. Fine and hyperfine couplings may also be neglected
during the collision because the orbital precession time of the atomic electron is much
greater than the collision time. This is due to the spin vectors not precessing appreciably
during the collision and L and S may be therefore be considered to be decoupled during
the collision itself (Percival and Seaton 1957).When no electron spins have been

observed, the density matrix is reduced to p®(L) which describes the orbital states of the

atom only. We can reduce this matrix by applying (Blum 1981)

<¢j,l p(o1) I¢j> = Z <d>i¢j,l p(o,1) |d>l.¢j> (2.10)

l

The elements of p are diagonal in the unobserved variable m . and therefore with the

application of equation (2.10) we derive the result:

Prrs =Z <M’ij p¢ IM m>
m
f

/ :
_(m)z Mz Jot m, M mo)f* 0 m M m)
g mf gmo
=fimf(m)> (2.11)
where <......> indicates averages over the spins variables. The matrix is a (2L+1)

dimensional matrix which contains all the information on the orbital system of the excited

atomic sub ensemble. The diagonal elements of the density matrix are normalised by
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Z Z i m,M m)?

Pt ‘(2{21 +1})m M,

= o(M) (2.12)

where o(M) is the differential cross section for excitation of the magnetic substate M

averaged over all spins. The trace of p®(L) gives the total differential cross section &

pS(L) = %‘, oM)=0 =1 (2.13)

The number of independent density matrix elements may be reduced by applying

hermiticity such that
<M'| p(L) IM> = <M p*(L) IM'>" (2.14)

This number can be reduced further by invoking certain symmetry conditions. The

scattering plane is defined by P,and P ¢ with no direction defined perpendicular to the

scattering plane, that is, the excited system must be invariant under reflection in the
scattering plane . As a consequence, the atomic ensemble can not distinguish between up
and down with respect to this plane. This is expressed in the scattering amplitudes by

(Blum 1981)

JMm M my) = (1M1 fi.p -my-M -m,)
Jou mM my) = (-DM0 fm MM ome) (2.15)

where J, is the total angular momentum of the excited state. Equation (2.15) is now

applied to equation (2.11) which yields the following
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1 e — I '
<M p(L) IM> = 772+1] Mz | fim megmof(M oM m) |
g m £ gm 0

)

; MZ,n Je-M -My-M-m )f(-M -m-M-m)
f g0

])M+Jl-m0(_])M’+J]-m0

= (-1)M*M M| p8(L) |-M> (2.16)
Thus, for the partial differential cross sections,
oM) = o(-M) (2.17)
The number of independent elements of the density matrix may be reduced further if spin
conservation is explicitly taken into account. In sodium this is a good approximation as

the atom is light and it is expected that LS coupling will not break down, giving (Blum

1981)

<M'l p(L) I-M> = (-1)M<M| pP(L) IM> (2.18)

2.3 Inelastic S-P Collision

An explicit example of p°(L) will now be derived for the case when the atom is excited

from an L=0 ground state to an L=1 excited state (i.e. an S-P collision). pé(1) is given

by
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al)  <ALF(0)> <fl)f (-1)>
(1) =| <O (1)>  ot0)  <fO)(-1)> (2.19)
<A-Lf (1)> <f-1)f (0> ot-1)

We now apply equation (2.14) which reduces the number independent elements giving

the following

ol)  <ALF0)> <fALf(-1)>
P =| <ALF(0)>"  o0)  <AON(-1)> (2.20)
<ADF(-1)>" <RO)(-1)>"  or-1)

Applying equation (2.16) - (2.18) yields the following relations

<AON (-1)> = -<fO)f (1)> = <A 1)f (0)>" 2.21)
<AL (-1)> = <f-1)f (1)> (2.22)
<ALf(-1)> = -<fAL)f (1)> = -o11) (2.23)

Therefore the density matrix becomes

ol)  <ADF(0)>  -ol)
(1) =] <ADF(0)>"  o0)  -<f1)f'(0)>" (2.24)
-o(l)  -<fA)f(0)>" o) |

This density matrix is characterised by four parameters 0(0), o(1) and the real and

imaginary parts of <f{(1 )f (0)>. It is useful to parameterize this matrix using four

parameters labelled as the atomic collision parameters (Hertel and Stoll 1977).

42— P _ o0
2p;1*Pgg  ©
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Rep/y  Re<fll)f (0)>

cosy = [P1€1poe0 7172 - [o(1)o(0)]7?

o= —Pi0_ _ ImfUF(0)>

sm¢=[ e eql2 ~ Iz
P11Poo! tother01

cosé = Pri _ <ADf (-1)> =-] =2
P otl)

o = 0(0) + 2071) is the total differential cross section. Since cosd has a definite value for
sodium (which implies a zero spin flip (Blum 1981)), only the three parameters A,y and

¢ are required to fully characterise the L=1 density matrix.

The atomic collision parameters defined by equations (2.25) are defined in the collision
frame. Alternative frames have also been defined and one of the most used frames beside
the collision frame was suggested by Hermann and Hertel 1982 which uses the symmetry

of the problem. This alternative frame was denoted the "natural frame" and is

characterised by X apr Y narrZogy)- The Z ., axis takes the place of the Y collision axis and

nat

the X axis takes the place of the Z collision axis. Parameterisation of the collision

density matrix in this frame yielded the natural frame parameters. Typically, most
theoretical calculations are in terms of parameters defined in the collision frame and for
this reason all of the results presented in this thesis will be in terms of parameters defined
in the collision frame. More detail on the natural frame and natural frame parameters may

be found in the review given by Anderson et al. 1988.

2.4 Single laser Superelastic Scattering

In this section the general theory for a single laser step superelastic scattering experiment
is derived. The scattering plane for the experiment is shown in figure 2.2. As with the
case of inelastic scattering, the scattering plane is defined as the plane which contains

both the incident and scattered electron momentum vectors. However the quantisation

axis (Z_ ) is chosen antiparallel to the scattered electron which is different to the inelastic
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case where the quantisation axis is chosen parallel to the incident electron. The rationale

behind this is that the superelastic scattering is the time reverse process of inelastic

scattering.

A general superelastic scattering scheme may be seen in figure 2.3. The scheme involves
the excitation of ground state atoms via resonant laser radiation of a known polarisation.
These atoms are then induced to relax non-radiatively by a superelastic collision with an
electron. Measurements of the superelastic differential cross section as a function of the
laser polarisation may be used to obtain pseudo Stokes parameters which may be used in

turn to deduce atomic collision parameters.

The density operator representing the optically excited atomic state is given by

P = Dok UM><IMI (2.26)
MM

The matrix elements pML,M describe the ensemble distribution in the excited state. The

electron de-excitation of the atom is represented by the de-excitation monitoring operator,

LD and is defined as

P = JZTD \m ><J m| T} (2.27)
m
& 8

The sum runs over the ground states. T}, is the de-excitation scattering operator. The

superelastic differential cross section can be written as (MacGillivray and Standage 1991)
S = Tr(p°LP) (2.28)

from (2.26) and (2.27) this expression becomes
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_ L D :
S= D ph, L2, (2.29)
M'M

The matrix elements of L? are written as

D _ '
Ly = 2SIMI Tyl m ><J m | THI1IM'> (2.30)

Jm
gg

Applying the principle of micro-reversibility reveals that

<IM T Um>=<Jml|T" UM> (2.31)
g'e g8
that is, the de-excitation process may be written in terms of the excitation process.

L = 2<JM'I TWUm><Jm|T"IM> (2.32)
8 8 g 8

Jm
g g

D
MM’
Thus it follows from equation (2.8) that to within a normalisation constant

LD -

M = Prgm (2.33)

This allows the superelastic differential cross section to be written as

§= Z pML'M Prm (2.34)
M'M
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2.5 P-S Superelastic Collisions: Perpendicular Geometry

In this section the pseudo Stokes parameters will be derived for a superelastic scattering
experiment in sodium and follows a description of Farrell et al. 1991 and MacGillivray

and Standage 1991. The hyperfine structure of sodium is displayed in figure 2.4. In the

case we consider here, the laser propagates in the negative Y _, direction (perpendicular

to the scattering plane) and excites the 3281 (F'=2) ground states to the 32P§ (F=3,2,1)
2 2

excited states. The laser is either linearly or circularly polarised and it is usual to rotate to

a frame where the usual optical selection rules may be applied. Linearly polarised light

induces electric dipole transitions of Am_ = 0 (see figure 2.5a). Circularly polarised light
induces transitions for the case of right hand circularly polarised light (") of Amg = -1

and Amg = 1 for left hand circularly polarised light (6™). These two situations are

depicted in figures 2.5b and 2.5c.

Consider now the laser propagating with linearly polarised light with the electric field
vector at an angle f to the quantisation axis (see figure 2.2). The superelastic differential
cross section for the superelastically scattered electrons is given by equation (2.34). This
sum may be simplified if the quantisation axis is rotated by the angle  to make the
electric field vector and the quantisation axis parallel. The rotated collision frame is
defined as the laser frame . The sum in equation (2.34) in the laser frame is considerably
reduced due to optical selection rules and becomes block diagonal. The hyperfine
structure of sodium plays an important role in the laser-induced optical pumping process
and to take this into account the superelastic differential cross section must be defined in

F representation viz:

- L (L)
S = 2 meFF’mF meepF'mF (2.35)
FF'mF
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where p_ %)

Fme B, TEPTESEN the electron collision density matrix elements in the laser frame.
F F

For the case of a linearly polarised laser S is given by

S=P1970 P 1o 1o * Paga0 Paoso * Parar Pofor ¥ Pas'as P23
*Pasas P35y * Prss PUS s+ Prdia Py + Pis1s Pis s
*Pir P+ Pro10 P To* P P+ P12 12 P IS,
* P93 P1gTs * Pisio PiSTe + Pagis Pagis* Prsao P13
* P00 Pag 10 + Pro20 Priosh * Pri10PIE 1o+ Proa Prais
P P+ P P+ Pas 16 PosTs + Prsaa P1es
+ Pyl oSy Prsas PSS + Prs12 PieTh * Prais P15 s
*Pas17 P Ty * Prras PSS (2.36)

The density matrix elements have been labelled according to the scheme displayed in
figure 2.4. States 19>, |18> and 24> are not excited due to selection rules. State 115> also
has a zero contribution for reasons discussed later. The density matrix elements may now
be reduced from F representation to J representation via (Sobelman 1979)

p FmFeF’m o = <nlJFm| piinlIFm>

= D, NCERDEFI) (1) e e (1 )

mege-my; m; -mgp
i mpm,.

( r JF ) <nJmleeInJ'mJ,> <ImIIIm1,> (2.37)

me-my my -mg:

where (:::) represents a Wigner 3j symbol. The following assumptions may now applied
to this case:

(1) The projection of I, m, is unaffected by the collision (Percival and Seaton

1957)

(2) Elements with the same m_. are formed in the excitation process

F

(3) Single J state that is:J=J'



Table 2.1

P2424 = P P393 = %{ 2p1el+poeo}
P22 = 713{ 6P 1+8PoptP 1 } P21 = :15'{ Pir+3PootP.1 }
P2020 = 71—5{pf]+8p0‘;)+6p_;’_1} Pio1o = {p00+2p I- 1}
Pis1s = P11 P17 = }{2”11*%0}
Pisis = %{ 3p11+2Pp*P. 1 } P1ss = %{ PrtPoo*P. [ }
P1s1e = {p”+2p00+3p I- 1} P53 = [poo"'ZP I- 1}

1212 = E{ 13p”+14p00+3p_f_1} P11 = E{ 7p“+p00+7p_1e_1}
1 1
P00 = 35{3/’181"'14"0%”3/’-16:1} Py = §{ p181+p0‘;)+p-1e-1}

1

P23%17 = P72 = { p”+p00} P25 = P1s2 = 2—\/_3{ p-le-l-plel}
P2216 = Pis2z = 3«1'1_0_{ -3P11+2P0tP 1 }

1 2
P21%5 = P1s2 = 5—\/——5{'/’131*'/’-;-1} Pis11=Pii1s = ﬁ—}{ p-ﬁl'plel}
P2014 = P42 = 3\/— “P1-2Pge*3P. 1. 1}
P93 = P1s1e = §{ 'poo+p-1-1}

e — e —_— __]__ e 2 e e

P212=P1222 = 5\/3{p11' poo+p-1-1}

1
P21 = P12 = ]—O—{pf,-Zpoiﬁpf_,}

4 — e — _1_ e 2 e e

P2010=P1o20 = 5\/3{/’11' poo+p-1-1}

1
Pis12 = P1216 = Zm{ '3p13+2poe()+p-1e-1}

2
Pis1i=Pits = ﬁ{ ‘p1e1+p-le-1}

1 e
Pri10=P1014 = 2\/—{ -p11-2p0%+3p_1f1}
Pis9=Pgis = {p” “2PgotP.f 1}

The F represented density matrix elements are labelled with the numbering system
shown in figure 2.4 while the L represented matrix elements are labelled with the
magnetic projection quantum number.
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Applying these considerations to equation (2.37) yields

p Fm,.-i"m = <nlJFm\p°InlJF'm >

=Z N (2F+1)(2F'+1) (-1)21-2’-2mr( I F)

memy; mjy; -mg
m
J

1
(mp-m_, my - )me,Jm_, (238)

The density matrix elements may be reduced to L representation by (Sobelman 1985)

_ 2L-2S-2 S
p]mje.lm_,_ 2 (2J+1) (-]) ™ (m_, -my; my m,) meLLmL (239)

m,

Applying equations (2.37) and (2.38) for the electron excited density matrix elements in

equation (2.36) produce the reduced density matrix elements given in Table 2.1

(MacGillivray and Standage 1991). The number of terms involving meFLF'mF in equation

(2.36) may be reduced by applying symmetry relations formed by the 7 excitation of the

transition used. The relations are given by (Farrell e al. 1988)

L L

meFFmF = pF -mpg F-mg

Rep3m,:2m p3 m:Z -mpg

Rep3m imp = Repy. m,.-L1 -mpg

RePZmFlm P2 m,.-L] -mp (2.40)

Applying the above relations and using the results from Table 2.1 produce the following

result for the superelastic differential cross section

S= «a { pe(L) +p e(L) yp"’(gﬁ) (2.41)
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where

_2 L L 1 L L .8 1L
O=3Pr323 v 75P22220%F 5P21 21 Y 3P1717 Y 3P1s16 T 75P12 12
7L _2 L __4 L o, 4 L
+75P;1 11 - 3RePy3 17 - 3mRep22 16T V6 Rep,,”,
2 L1 N
-\/T_5Rep16 7t §Rep21 11 (2.41a)
2 L 16 3oL L2 1 2 L 14
Y=3P323%T;5 pzz 2T 5Py 21 *3P1717%3P1s16 T T5P12 12
*75 p” 11 T 30ePy5, + 3\/— p22 16~ 56 epzz 12
4 L 2
+\/T_5Rep16 2 ° ERePZI 11 (2.41b)

All measurements of differential cross sections are performed in the collision frame. The

differential cross section given by equation (2.41) is defined with respect to the laser

e(L)

frame and as such the electron collision density matrix elements p, must be rotated to

the collision frame. The rotation of these density matrix elements may be accomplished

by the use of rotation matrices via (Blum 1981):

Pyt —Z D% (@)D, () p, (2.42)

The sum extends over the range of the magnetic quantum numbers i.e. -L,-

L+1,...,0,....L-1,L. DI.L'L((D) and Dj NJIL,((o) are rotation matrices. @ are the Euler

angles defined as @ = (¢, 8,7) (Edmonds 1974) where
o = rotation about the Z axis of the initial frame
[3 = rotation about the new Y axis

Y= rotation about the new Z axis to produce the final frame

The rotation matrix is defined as (Edmonds 1977)

30
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D (w)=¢e""d 7 (B) ™™ (2.43)
dm‘,'m is a sub matrix given by

d,: (B) = [(J+m")(J-m")!(J+m)!(J-m)!)]"2

20+m'+m B, 2J-20-m'-m

z &€08(5 3 ) sin( 5)
(-1 (2.44)
o!/(J-m-o0)!(J-m'"-6)!(c+m'+m)!

The sum over ¢ continues until the factorials become undefined. The application of

equation (2.44) to the L=1 case yields:

> {]+cosﬂ} \/_ sinf > {I cosp}
dIm'm(ﬁ) = -\/_% sinB cosB \/7 sinf (2.45)

> {] cosp} - \/_ smﬁ 5 {1+cosP}

The use of linearly polarised light necessitate only one non-zero Euler angle, -8 about the

Y axis and as a consequence the following result is derived

(@ =d 7 (-B)
> {]+cos,3} \/_smﬁ {] cosP}

= ﬁ sinfB cospP -@ sinf3 (2.46)
%{]-Cosﬂ} ésinﬁ %{1+cosﬁ}

The applying equations (2.42), (2.46) and the relations (2.14)-(2.18) yield the following

rotated density matrix elements

pe(L) = cos? ot + sm 'Bpoo + \2sinfcosPRep ¢ 10
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p¥L) = 2sin’Bp 5+ coszﬁpo";) - 2\ 2sinfcosPRep

00
(L) _ ~e(L)
P =PT; (2.47)

Substitution of equation (2.47) into (2.41) yields for the superelastic differential cross

section

S(B) = a{2cos2ﬁpf] + sinzﬂpoeo + 2\/_2sinﬁcos,BRep1"0}
+ 7{2sin2ﬁp1"1 + coszﬂpoeo - 2\/§sinﬁcosﬁRepIeo} (2.48)

Using linearly polarised laser light, two pseudo Stokes parameters are defined:

_ 5(0)-5(90)
P} = 50)+.5(90) (2.492)

S(45)-S(135)
P§ = S(45)+S(135) (2.49b)

where S(f) represents the superelastic differential cross section with the laser polarised

at angle 8 with respect to the quantisation axis. Substitution of equation (2.48) into these
expressions reveals the following result:

) (-2p £ +p L
ps (1% (-2P,+Pg) (2.50a)

") 2pftpg)

pS_ -2N2(y-a) Rep,

o= p, . (2.50b)
(Y+@) (2p ;1 +py,)
We now define a new parameter, K , as
k=12 | 2.51)




Chapter Two: Electron-Atom Collision Theory

K is denoted an "optical pumping parameter” and is a depolarising factor due to both
optical pumping and the hyperfine structure of the sodium D, transition. Applying the
relationships defined by equation (2.25) allow these pseudo Stokes parameters to be

rewritten in terms of an optical pumping parameter and atomic collision parameters viz:

P} =K {22-1} (2.52a)

PS =2k {M1-A1} " cosy (2.52b)

Expressing the pseudo Stokes parameters in this form, decouples the laser-atom and
electron-atom interactions. This decoupling is due to K being only a function of the
density matrix elements formed by the atom-laser interaction and the atomic collision
parameters are related only to the electron collision density matrix. Once K is determined
the individual atomic collision parameters may be obtained. The determination of X both

theoretically and experimentally is discussed in the next chapter.

One further pseudo Stokes parameter is required to be able to fully characterise the P state

charge cloud. Consider the case in which circularly polarised light is used to excited the

ground state sodium atoms. This allows the Pg pseudo Stokes parameter to be defined

viz:

ps_S(a')-S(c")
37 5(c6* )+5(0 )

(2.53)

Where S(o*) represents the measured superelastic differential cross section using left
hand circularly polarised light and S(o’) is the superelastic differential cross section for
the use of right hand circularly polarised light. The excited substates that are populated
are shown, for the case of 0" polarised light, in figure 2.5(b) and for the case when o™
polarised light is used, figure 2.5(c). The superelastic differential cross section for the

two cases may be determined by employing equation (2.35) which yields:

)
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S(0%) = Pag's0 Pags0 * Par'as P25y + Pas'as Passs + Pasas Po3 s
Py 24 Pod5s Prs1a PraTs ¥ Prstis PISTs ¥ Prstis Pra i
P17 17 P Proio Pro 1o+ Pusis LTI+ Prsa P15,
*Pag 14 Pag 1a ¥ Prsao Pissb+ Pao'io P26T0*+ Pro20 Prg 30
P10 PIET0t Pro1a P Ts ¥ Patt) P+ Py P,
P Pot Ty * Prsy PUSS+ Py P+ P s P55
P26 Po5T5 + Psas ches(lE)z * P2 ng(lf)z + P25 P55,
*Pis1a Pra Ty Prdis P Ts Pasi7 PosTh + P 23 P15 33

(2.54a)

S(0)= P15 15 P15 18+ Pro1o Prots + Pag20 Padsy + Par'as 2yt
*Pasas P syt Puss Prsts + Prgia Prash + Prstys P 1935
*Pis16 P16 16+ Pro10 Pio 1ot Pri1s PiiT + Prstia P15,
P15 P13 Th* Prstio PSTb* Paghia Pao i ¥ Praizo P1d 50
*Pag 10 P20 0+ Proao Pigsn * Pri10PIETh+ Protia Py
Py P P P Pai1s Palis + Prsar Prs s
*Ps PLET+ Ps PSS+ P2s 16 P2516 * Prsas Pl s

e(L) e(L) L . el L . el
TPy 12Pa2t p12 22P1222F Pi612P1612 T P12 16 P12 16

(2.54b)

The calculation proceeds in a similar manner to that of the linearly polarised excitation
case by reducing the collision density matrix elements to L representation. Following the
reduction of the matrix elements the expressions for the superelastic differential cross

sections can be rewritten as:

S(0%) = a* Db+ o 2552
S(o)=a e(L)+b e(L) , (L) (2.55b)
P Poo P



Chapter Two: Electron-Atom Collision Theory

where
_1 1 2 L ,2 L L 1 1L
a’= 5pzozo 5P2121 YV 5P Y 3Pr325F Posngt GP14 14
vl I 200 L 7 oy 13
3p 1515V 2P1616 T 3P1717 Y 70P1010 Y I5P1 1 T 30p1,12
2 L 1 L 1
3\/—R pzo 14T 5\/'5 = RePyy o - \/T—5Rep14 07 —Rep21 11
4 L 2 L
\BR"sz 15 ° 3\/—5 Rep,s, - mRepzz 16T 5\[3 Repz, 12
L 2 L
mRepw 12° 3Repys;,
8 3 8 1 1
+_ 8 L 3 L 8 L 1 L 1
b =75P2020F 5P21 21 * 15 P2222 ¥ 3P2323 + 3P14 14
Lo I 1. 7 1 1 1 7
t3P1s1s T 3P1s16 T 3P1717 Y 15P1010 Y T5 P11 11 Y T5 P12 12
_t L 4 L 2 L 2 L
- 3mRep20 14" 5\/3 Repyyio - mRePM 70 sRepy Ty,
+ 3mRep22 16~ 5\/3 Repzz 12 mRepm 12t 3Repy;
LU AR A A S Y )
¢ =3P 5p21 21 15p22 22 2p14 14
1 L
+3P; 515 6p1616 0p1o 0T 5p1111 10p12 12
2 2 3 1
+ \/T—ORe,ng 12t G Rep20 10 mRePM 10 Rep21 11
+—1—Rep L iRep L+ —Rep + LRep L
V5 Paras T 3 s tPis T 3P e t 5 NP2z 12
1

. L 1 ¢ 2 L
@ =75P2020F 5P2121 Y 5P Y GP14 14

I op 1 1 o 7 ¢ 13 |
3p1515+2p1616+]0p1010+15p1111+30p1212

2 L 1 L 1 L
N Re pzo 14t V6 = RePyy 0 - JI5 Rep,, 10+ SRepy ™),
1 4

L 2 L
3 Rep,,"; 33 Rep,s; - mRepzz 16+ 5\/3 Rep,,",,
L
- mRepm 12

1

1 . 8 L 3 L 8 . 1 1
= 3P1919 T T5P2020 ¥ 5P21 21 T 75P22 22t 3P1513t 3P4 14
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I I L 7 ¢ 1 _ 1 7 1
+3p15 15 + 3p1616 + 15p1010 + 15p11 11 + ]5p12 12

2 L _4_ L 4 L 2 L 2 L
3Rep;o5 3,1_—Repzo 147 5y ReP2010 " T RePrs10 " FREPy;

2 L
3\/—R pzz 16 " 5\/_6 Rep22 12 mRepus 12
L ,2 L 2 ¢ 1 ¢ 1 ¢ 2 . 1
C=Prs18 T 3P19190F 5P2020 T 5P2121 T 75P2222 1 3P1513 T 3P4 14
1 L L 13 L 7 L N L g L
+t3P1s1st6P1s16 T 30P1010 T 15P1 1 Y T0P1212 T TREP g 13

2 L 2 L 3 L 1 L
+ \/T—ORepzo 14T %Repzo 07T \/T—5Rep14 0t sRepy )y,

e L 2 L 2 L
+ 3 Rep,,"s + 3\/3 Rep15 11 3mR"pzz 16+ V6 Rep, ;™ ,

1 L
+ \/T_SRepm 72 (2.56)

The cross sections given by equation (2.54) are now rotated to the collision frame using

the same procedure as the linear case. The quantisation axis (Z ;) of the laser frame is
given by the direction of laser propagation, in this case the negative Y ,direction. The
X, axis is a reference axis and as such is in the identical direction to the collision frame
X, axis. The Euler angles required to rotate the laser frame to the collision frame are
given by ( ;_r 72—[ -g ). These rotations are depicted in figure (2.6). Applying equations

(2.43 - 2.45) yield the following rotation matrix:

I i1
2 2 2
I i L
D m,m(a)) = 2 '\/} (2.57a)
1 i 1
24z 2
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11
2 2 2
B Ao L
D m,m((o) =| V2 2 (2.57b)
1 i 1
2 2 2

The application of this rotation matrix with equation (2.42) and the relations (2.14) -

(2.18) give the following laser frame density matrix elements in terms of collision frame

density matrix elements.

1
P7 =P+ 3 Poy + N2 Imp

e(L) _
P oo =0

1
P =P+ 3Poy~N2Impp, (2.58)

Upon substitution of equations (2.58) into equations (2.55) enable the superelastic cross

sections to be written as:

e 1 [4 5 e e 1 e i) e
S(O'+)=a+{p” + 5P+ V2 Imp10}+c+{p” +35Pgp" \N?2 Impw}

(2.59a)

S(o') = a'{p;’] + ]§p080 +2 Impfo} ¥ C-{plel * %poeo Rk Impfo}

(2.59b)

The expressions for b™ and b* become redundant as a result of the rotation of the pe(gg) to

the collision frame. The number of terms in equations (2.55) may be reduced by applying

symmetry relations of the o excitation:

L F) — L
'DFmFFmF(O-) - pF-mFF-mF(G+)

L Sy L +
Rep3mp2mp(o) - -Rep3-m,.-2-m,.-(o- )
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Rep.?m,.-L]mF(O-) = Rep3-mFL1-mF(o-+)

RePZmFLImF( o)= -Repz_mFL]-mF( ot) (2.60)

Applying these relationships yield a* = ¢ and a” = c¢* thus

e ] e 5 e e I e 5 e
S(0'+)=a+{p” + 5Pyt N2 Imp10}+c+{p” + 5Py - V2 Impm}

(2.61a)

S(o) = c+{p1e1 + ]Epoeo +2 Impl"’o}+a+{pf] + ‘%po"o -2 Impfo}

(2.61b)
Substituting equations (2.60) into equations (2.53) reveal for P3S:
P§= {c* - j+} 2\/7Imp;’0 .
{at+ct ) { poi)"'prJ}
We now define a new optical pumping parameter K' as
K'= af:’; (2.63)

Using this expression and employing equations (2.25) enable P3S to be written in a similar

form as P‘Ig and Pg that is, as a function of both an optical pumping parameter and atomic

collision parameters such that:

PS = 2K { 41-1} " sing (2.64)

To correctly determine the atomic collision parameters the optical pumping parameters K

and K' need to be found accurately. The three pseudo Stokes parameters defined by

38
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equations (2.52) and (2.64) do not allow the determination of all of the atomic collision
parameters and optical pumping parameters. It will, however, be shown in the following
chapter that K may be determined by fluorescence measurements. K’ is relatively
insensitive to changes such as laser intensity, laser detuning and Doppler width of the
atomic beam (Farrell er al. 1991), however it will be shown that X is much more
sensitive to such changes. Once the optical pumping parameters are determined equations
(2.52) and (2.64) enable the atomic collision parameters to be found. The next section
will deal with the determination of K via the measurements of superelastic differential

cross sections.

2.6 Superelastic Scattering in the Co-Planar Configuration

In this section one further single laser superelastic scattering experiment will be
discussed. This experiment is identical to that of the previous experiment except that the

laser is injected co-planar to the scattering plane and at an angle 6, to the quantisation axis

as shown in figure (2.7). For this geometry one further parameter, r may be defined as

S
r=gt4- (2.65)

perp

where Spar represents the superelastic differential cross section with the linearly polarised
light polarised parallel to the scattering plane and Sperp is the superelastic differential cross

section with linearly polarised light polarised perpendicular to the scattering plane. For

the case of Spar the cross section in the laser frame is again given by

= a{ pBepel) 1y ypetl) (2.66)

Spar 1] 00
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The electron collision density matrix elements must now be rotated to the collision frame.

The Euler angles for this rotation are @ = (0, - 6,, 0). This is identical to the rotation
with the perpendicular geometry linear case except that ‘-,B = g - 6, which gives the

following rotated density matrix elements

. 1 .
pel(e) - sznglel +5 cos? GLpO‘;) - \DsanLCOSGLRep Ieo

p’“}gﬁ) - 2c0s29Lp 1‘31 + sinZOLpOeO + Z\DSinGLcosBLRep ]eo
P =iy en

Using equations (2.67) in equation (2.66) yields the expression for Spar in terms of

collision frame elements

S ar = 2p1"’1(a sin29L+ ycoszeL) + pOeO(a c0s20L+ ysinzeL)

+ 2 (7- 0)sin26, Rep/, (2.68)

For the case when the laser polarisation is perpendicular to the scattering plane the
expression for Spe,p is again given by equation (2.66). The laser polarisation vector f is

anti-parallel to the Y ,axis and rotation of this vector to the quantisation axis is identical

to the Euler angle rotation for the circularly polarised light case considered in the previous

section i.e. @ = ( ;_r g ;_r ). Applying the rotation to Sperp yields
S o = a(2p ;1+p;0) (2.69)

Substituting equations (2.68) and (2.69) into equation (2.65) and applying the definitions

of 4, x and K gives (Farrell et al. 1991) (the expression in Farrell et al. 1991 has an error

in the last term as it incorrectly subtracts this term rather than adding).

40
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r= (1-2.) {sin29L+ [%{] coszeL} + 1{00529L+ [%] sinzeL}

2K7 .
+ [ﬁ] sin2 0Lcosx[ M1-1) ]1 2 (2.70)
If 6, issetto 0° this expression is reduced significantly to

r=(1-3) HLK +2 2.71)

Manipulating equations (2.52a) and (2.71) enables K and A to be found as a function of

co-planar parameter, r and the Stokes parameter PIS in the perpendicular geometry such

that (Sang et al. 1991)

K= < r-l (2.72)
; P(1+r) + (r-1)
(r+d) - PS+ (r-1)
P3(1+1) + (r-1)
/1_[ -y ] A (2.73)

Equation (2.72) allows an independent determination of the optical pumping parameter
K. This can be a very accurate measure of X in the interaction region as this measurement
is dependent on the superelastically scattered electrons and as such is not subject to
radiation trapping outside the interaction region or the imaging of fluorescence from the
interaction region as in the case when performing fluorescence measurements to

determine the K parameter which is discussed in Chapter Three.
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2.7 Folded Step Superelastic Scattering

The design and construction of a superelastic scattering experiment is very dependent on
the conditions required for stable operation. For the laser atom interaction it was found
that one of the conditions was to have an atomic beam with a large Doppler spread in
velocities (see the next chapter). The use of an atomic beam with a large Doppler widths
also reduces the optical pumping efficiency and hence a reduced population in the excited
state. For the single laser case in sodium exciting from the F'=2 ground state only % of
the population is able to be excited to the P state. The population in the excited state is
further reduced due to power broadening effects in which the laser exciting from the F'=2
ground state to the F=3 excited states also excites the F=2 and F=1 sublevels. The F=2
and F=1 sub levels can relax to either the F'=2 ground state and be re-excited, or to the
F'=1 ground state. The atoms in the F'=1 sub level can not be re-excited as the laser
intensities used are not large enough to induce power broadening of the ground states and
as such the F'=1 sub level acts as a sink to the population of the excited state. To enhance
the population in the exited state, a second laser can be used to pump from the F'=1 sub
level. This increase of population in the excited state can then be used so that atomic

collision parameters at larger scattering angles may be deduced.

Consider now an experiment similar to that of the perpendicular geometry (figure 2.4) in

which two lasers co-propagating in the -Y_, with linearly polarised light at an angle 8

1
with respect to the quantisation axis. One laser is tuned from the 3°S 1 (F'=1) sublevel to

2
the 32P3 (F=2,1,0) excited states and the second laser is tuned from the 32S 1 (F'=2)
2 : 2
sublevel to the 32P§ (F=3,2,1) excited states (see figure 2.8). Applying equation (2.35)
2
the superelastic signal is given by:
_ A L e(L) L e(L) L e(L) L e(L)
SeE=P1919P1919 T P2020P2020 ¥ P21 21 P2i21 + P22 22 P23 22
L e(L) L e(L) L e(L) L e(L)
tP2323P2323 Y P1313P1313F Pra1aPrsis T PisicPrs 16

L e(L) L e(L) L _e(L) L e(L)
*PisisPisist Pr717P1717 Y PooPoot Pro10Pio 10
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L e(L) L e(L) L e(L) L e(L)
+p1111p1111+p1212p1212+p1913p1913+p1319p13 19

L e(L) L e(L) L e(L) L e(L)
Y P2014P2014F Pra20P1a20t P20 10P2010 F Pro 20 P1o 20

L . el L . elL) L . el L . elL)
tPra10P1a10t Pro14Prota Y Par 11 Par 1 ¥ P11 P oy

L . eL) L . eL) L . el L . el
tP2216P2216 F Pr622Prs22t Paz 12 Pay 2 ¥ Praas Prs an

L . elL) L . elL) L . el L . el
tP1612P1612 T P1216P1216 t P23 17 P23 17 ¥ Prraz Pia s

L el L . elL)
tPis9Pr1sgt Pois Py s (2.74)

This is identical to the expression for the single step superelastic differential cross section

represented by equation (2.36) except for the addition of four more terms o 5’“1 s P 12"‘1) .

L qe(l) o L el) L _eL) "
PooPog P59 Pyse and py 15 Pg 1+ The addition of the second laser creates some

populations and coherences which are also formed by the first laser, in such cases their

effect can be incorporated in the definition of the meFLF,m . terms which will be driven by

two Rabi frequencies. Employing reduction methods previously used, this expression

can be reduced to
sp= of peoty ] + 308 @79

where
~_2 L .7 . 1 . 2 [, 2 . 8
X =3P2323 v T5P222% 5P 21t 3P1717 v 3P1s 16+ T5P12 12

7 oL 1 ¢ 1 [ 2 L 4 L
Y T5P1r 1 Y 3Pisist 3Pog - 3Rep, T, - 3mRep22 16

4 L 2 L, 1 L 1 L
+;\!:6Rep22 Tk \/T_SRep” 1yt §Rep21 gt 3Rep15 9 (2.76a)

L 16 o 3 L 2 ¢ 2 . .14
2323V T5P222% 5P2121 v 3P1717 Y 3Pis 16t T5P12 12
1 L 1 L I . 4 L 8 L
75P111 T 3P1s1s ¥ 3Pgg t 3 Rep, T, + 3mRep22 16

<U
]

+ Wi
°

4 L 2 L 2 L
- %Repzz 2t \/T—5Rep16 12" 5Repy Ty - FRep s (2.76b)
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The electron collision density matrix elements are now rotated from the laser frame to the
collision frame by the identical Euler angles as the single step linear case and are given by
equation (2.47). Substitution of equations (2.47) enables the superelastic cross section to

be written as

S(B) = 55{2c0s2ﬁp1e1 + sinzﬁpoeo + 2\/—2sinﬁcosﬁRep1"’0}
+?{2sin2[3p1'3l + cos’P Poo - 2\/T’ZsinBcosBRep1°0} (2.77)

Using the definition for the pseudo Stokes parameters equations (2.49) yield
P} =K {2)-1} (2.78a)
PS=-2K { A[1-A1} " cosy (2.78b)

Where K is an optical pumping parameter defined as

]

I
<l
RI

(2.79)

U
+
Rl

This optical pumping parameter differs from the single step linear case by a few terms in
7 and a. As with the single step case the proper determination of the optical pumping
parameter is required so that accurate measurement of the atomic collision parameters can
be performed. A full quantum electrodynamic calculation to determine K will be given in

detail in the following chapter.



3 - 1 3
" — 2 2 2 3
13> 14> 15> 16> 5
3p
2

11> 12> 2

Figure 2.9: Laser excitation of the Sodium D, Line Using & Laser Light
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2.8 The Superelastic P-S Collision In J Representation

At very high laser intensities the hyperfine energy levels of the sodium D, line may be

power broadened sufficiently to be considered to be degenerate. In this case the hyperfine

interaction is a smaller perturbation than the dipole interaction and as such J

representation is more appropriate. The energy level structure of the sodium D, line in

this representation is depicted in figure (2.9). The exciting radiation is linearly polarised

and, in the laser frame, optical selection rules only allow Am, = 0 transitions. After

applying equation (2.34), the following superelastic differential cross section is derived
S=p,y P53+ psts P (2.80)

where the labelling scheme of figure (2.9) is applied to the density matrix elements.
Using equation (2.39) this expression may be reduced to L representation giving the

superelastic differential cross section as

S=p, L ( 3pe(L) + 3pe(L) )+p5L5 ( 3pe(L) + 3pe(L) ) 2.81)

The symmetry of the fine structure energy levels and the use of 7 radiation invokes the

following relationship for the laser excited density matrix elements:

L _ L
me_,JmJ - pJ-ij-mj (2'82)

Thus equation (2.81) becomes

S=pk ( 3P0 + 3p"'”“) + 3p~‘-’(1“1) (2.83)

As with the other cases examined in this chapter the electron collision density matrix

elements must be rotated from the laser frame to the collision frame. This is identical to
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the rotation given in section (2.5) and as such the rotated electron collision density matrix

elements are given by equations (2.47). Transforming to the collision frame gives

4 . e . e
S(B) = 3 p5L5 { 2sin’Bp 1"’]+cos2ﬁp00-2\/§smﬂcosﬁRep 10 }

2 1. .
+3p 51‘5 {cos2 Bp;; +§sm2 ﬂpo‘z)+\/§sm BcosPRep 1"0} (2.84)

Upon substitution of this expression into the definitions of the pseudo Stokes parameters

Pf and Pg reveals
P = (%) {221} (2.852)
PS=-2 G) {A11-27}"? cosy (2.85b)

Thus this J representation result for the pseudo Stokes parameters PIS and Pg yields a high

laser intensity value for K which is (%) .

Consider this same energy level scheme except that circularly polarised laser light is used

as shown in figure (2.10a and 2.10b). Optical selection rules allow AmJ = *1 transitions

to occur. Employing equation (2.34) yields the following superelastic differential cross

sections
S(c*) = ps's pLS+ gy P (2.862)
S() = pf4 055+ oy PH (2869

where S(6*) and S(0") are the superelastic differential cross sections using left hand and
right hand circularly polarised light respectively. Using equation (2.39) the electron

collision density matrix elements may be reduced to L representation yielding
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S(a*) = p’ ( 3P%6 + 3 Py )+ PssP"(T (2.872)
S(o) = P4L4 ( 3 pe(L) t 3 pe(IL)I )+ Ps 3pe(L) (2.87b)

Applying the transformations given by equations (2.58) which rotate the electron

collision density matrix elements from the laser frame to the collision frame yield

1 1 -
S(c™) ={—3p5"5 + p6L6}(p1"1 + 5 poeo +2 Impfo) (2.88a)
- I 1 L e . L e 3 Imp €
S( )={§p4 41 P3 3}(/311 t 2P0 V21 p10) (2.88b)

The symmetry of the fine structure energy levels and the use of o light gives the

following symmetry rule

Pimyim(®) = Py, ) (2.89)
Therefore equations (2.88) become

S(o*) = “(Pfl +5p8 + V2 Imp 1°o) (2.90a)

S(c) = a(pf] +Lpg N2 Imp ;0) (2.90b)

where

={3/’5 s T Ps 6} 2.9
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Substitution of equations (2.90) into the definition of the pseudo Stokes parameter Pg

equation (2.53) yields

PS=-2 {A1-M1} " sing (2.92)

This result yields a high laser intensity value for the optical pumping parameter K' which

is found to be equal to -1.

2.9 Coherence in Electron-Atom Collisions

The purpose of a superelastic scattering experiment is to determine atomic collision
parameters which are related to various elements of the electron-atom scattering density
matrix which in turn, are functions of scattering amplitudes. The total wave function of a
fully coherent electron-atom collision process may be described by a pure state, where a
pure state is defined as a fully coherent superposition of basis states (Anderson et al.
1988). The coherence of an electron atom collision may be measured experimentally by

two parameters P and lul which may be defined in terms of pseudo Stokes parameters

and optical pumping parameters as

PSY  (PSY  (PSY
Pror= (Y + (f] + F) (2.93)

(2.94)
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For a fully coherent collision process P ,and |yl are equal to unity and for the totally

incoherent collision process both paramefers are equal to zero. In general the following
inequality holds:
I12P . 2\l (2.95)

One further way to examine coherence is by examining the complex phase relationship of
the spin scattering amplitudes of the collision process. In the case of sodium, two spin
scattering amplitudes are required. Sodium has a single outer shell electron and at the time
of impact between the incident electron and the atom, singlet or triplet spin states form
from the atomic electron and the incoming electron and as such, two spin channels are
open. The two spin scattering amplitudes are denoted / for the singlet amplitude and /7
for the triplet scattering amplitude. In general the scattering amplitudes are complex and at
angle o to each other in complex space as in figure 2.11. When the electron-atom

collision process is fully coherent o, = 0° and the two vectors are parallel, for the totally

incoherent case a = 90° (Mitroy et al. 1987).
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Chapter Three

Quantum Electrodynamic Theory

3.1 Introduction

To fully determine the atomic collision parameters in a superelastic scattering experiment it is
necessary to obtain the optical pumping parameters with a high degree of accuracy. To
complement experimental determination of these optical pumping parameters, it is
advantageous to have a theoretical perspective on the laser-atom interaction. This chapter
provides the theoretical details of the laser-atom interaction using linearly polarised laser light
which was used in the superelastic experiments discussed in the previous chapter. The case
of circularly polarised light will not be modelled as it has been shown previously (Farrell ez
al. 1991) that this parameter is relatively insensitive to changes such as laser power, detuning
and the velocity spread of the atomic beam which is not the case for linearly polarised light.
The derivation follows that of Ackerhalt ez al. (1973), Ackerhalt and Eberly (1974), Allen and
Eberly (1975) and recently extended by Farrell et al. (1988) and MacGillivray (1993).

The derivation is performed in the Heisenberg picture because it is possible to find an
equation of motion for each field mode operator unlike the Schrddinger or interaction pictures
and as such gives a more tractable solution. The first section of the chapter deals with the
construction of a system Hamiltonian which is followed by the derivation of the equations of
motion describing a general two level atom. A section on the determination of Rabi
frequencies and branching ratios is then given which is followed by a section which
investigates the folded step excitation scheme discussed in section 2.7. Following this is a
section which relates the line polarisation to the optical pumping parameters from both the
single and the folded step laser excitation schemes. Concluding the chapter are computational

results from the single and folded step excitation schemes.
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3.2 The System Hamiltonian

In this section a Hamiltonian describing the laser excitation of an atom is derived. This
derivation employs the Coulomb gauge and as a consequence the vector potential is purely
transverse (Knight 1992). The Hamiltonian of the system may be determined via the
quantisation of the Hamiltonian of a classical field interacting with a classical atom. The

quantised Hamiltonian is characterised by (Loudon 1983)

1 2 ] 1 .
ﬁ:m; (121 + e%(rj)) +§j o(r)¢(r)dr+§J.(eO§2T+ T 232) dr
(3.1

AL A . . .
where p;is the momentum operator, A( :i) is the vector potential operator, o(r) is the charge

density, ¢(r) is the scalar potential, B is the magnetic field operator and E_is the transverse

electric field operator. In the dipole approximation, which specifies that the electromagnetic
fields do not vary spatially over the atomic dimensions, the system Hamiltonian may be

partitioned into three Hamiltonians such that:

A A
H=H,+H+H, (3.2)

AL . N . VAN
where H, is the freely evolving atom term, H r1s a field term and H ; Is an atom-field

interaction term. The freely evolving atom term is given by
A 1 A 1 1
HA=§—’-n—Z p2.+§e; Hr)+5eZH0) (3.3)

where Z is the atomic number. It may be shown (Loudon 1983) that if Im> is an energy

eigenstate with eigenvalue /7 @_then
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52
A =7
H, Im> = ®_im> (3.4)
Applying the closure theorem twice yields
B, = Z Im><ml ?JAZ In><nl (3.5)
m n

where the sums run over all the eigenstates of H - Then from equation (3.4) we obtain

A
<mlH In>=/w 6
A m-_mn

(3.6)
Thus the atomic Hamiltonian may be rewritten as
A A
H, = ﬁz wo 3.7)
m
/c\)'mm where is an atomic operator defined as
A
o =Im><ml (3.8)
mm
The field Hamiltonian term is given by
A _ 1 A 2 -1 A 2
HF—ZJ(£0€T+ w,) B dr (3.9)
%T and ﬁ may be rewritten in terms of field modes as(Loudon 1983)
A
A A ~
1§T=; §k=-7 (3.10a)

A (3.10b)
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- A
where k is a particular mode which specifies both the wavevector and polarisation mode. A is

the vector potential defined as (Loudon 1983)

13 (e im0 dmno) oy

. . . . A A
€, 1s the transverse polarisation vector, V is the mode volume and a, and a} are the

annihilation and creation operators respectively which obey the following commutation

relation for bosons (Allen and Eberly 1975)

la1), ap)] = Sy (3.12)

Applying equations (3.9) - (3.12) yields the field Hamiltonian in terms of creation and

annihilation operators as

b= ; V. wk{’&; 3;0“%} (3.13)

Finally the interaction Hamiltonian term is

2
A e A A e A 2
7= ; 258 om ; Az .19

This term contains four contributions (Loudon 1983)

A A A A A
H,:HED+HEQ+HMD+HNL (3.15)

A . . . - .
H ., is the electric dipole interaction

1
>

£0)=D.E(0) (3.16)

Bo=ed
ED™ € &t T
J
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where 2?7( 0) refers to the transverse electric field evaluated at the origin of the atom and

D= Z er, (3.17)
~ 5=

is the atomic dipole moment. The electric-quadrupole interaction term is represented by
A 1 A A
Hpy=5e ; (7 V)(rpEx0) = -v.0.E0) (3.18)

where

(3.19)

is the electric quadrupole interaction. The third term in equation (3.15) is the magnetic dipole

interaction given by

A e A A A A
o= {35)2 (b 27800+ 00
4

J
(m) M.B(0) (3.20)

where ?3( 0) is the magnetic field at origin of the atom and

1?4:2 rxp. = 2 T (3.21)
~ J ~] J ~J
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where :I\J is the angular momentum of the jth electron. The final term of equation (3.15) is a

non linear term involving the square of the magnetic field such that:

2
A e A 2
b, = (%) ; {rxBo) (3.22)
The relative sizes of the electric-quadrupole, magnetic-dipole and the non linear terms are

small compared to the electric-dipole term (in the order of the fine structure constant (Loudon

1983)) and as such will be ignored for the present calculation. The interaction Hamiltonian is
then given by

H,=D.E0) (3.23)

The interaction Hamiltonian may be written in terms of annihilation and creation operators by

substituting equations (3.10 and 3.11) into equation (3.16) and for greater generality we take
the position of the nucleus to be at position r' rather than the origin of the coordinates, thus

yielding (MacGillivray 1993)

A kw2 A 0w A Y
H =i kI17e .Df a etioxt+ikr) _ greliogt -ik.r) (3.24)
1 X (Z«SOV)/ —k ~{ k lt }

Applying closure twice to the vector D yields the dipole operator

A
D= Z li><il Dz li><jl =Z <il DIj>li> li><jl
e - <3 . pd

ij
= z D.G.

= 2% (3.25)

55



lg>

/k
(@) - b, 1g><el
le>
k
lg>

le>
(b)

A
a le><gl

k
(c) \ le>
~ 3[ Ig><el
lg>
k
ale><gl

le>

Figure 3.1: Feynman Diagrams representing the four different
terms in the electric-dipole interaction
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Substitution of equation (3.25) into equation (3.24) reveals

0 3 2 LN CR T Y
1 X ij ZSOV ~kij k ij

(3.26)

The dipole operator is only non zero for transitions between ground and excited states which

enables the dipole operator to be written as
D= (o o +D G ) (3.27)
€eg

Using (3.27) the interaction Hamiltonian becomes

o iz z [;; wk}/z{a el + kL) G yplions - ig.g)}
I k

k e g 280V

A A
(Ek’ l.).egdeg + € l.).geage (3.28)

The expansion of equation (3.28) give rise to four electric-dipole interaction terms which are
represented in figure (3.1) using Feynman diagrams. The wavy lines characterise photons
and the straight lines atomic states. The initial state is represented by the term on the right and
the final state by the term on the left. le> represents an excited state which is higher in energy
than the ground state denoted Ig>. Figure (3.1a) depicts a non-energy conserving process
whereby a photon with mode k is absorbed and an electron in state le> is destroyed to
produce the ground state Ig>. A similar non-energy conserving process is depicted in figure
(3.1d). In this case a photon of mode k is created as an electron in state | g> is annihilated to
create an electron in state le>. These two non-energy conserving processes contribute to
higher order energy processes. Figure (3.1b) shows the energy conserving process in which

a photon of mode k is destroyed and an electron in ground state | &> is destroyed to produce
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an electron in the excited state le>. Figure (3.1c) is the inverse of this process. Applying the
rotating wave approximation, which allows the neglect of the non-energy conserving
processes and using normal ordering (i.e. the field creation operators are written to the left of
atomic operators and the field annihilation operators are written to the right of the atomic
operators (Allen and Eberly 1975)). Using only energy conserving processes enables the

interaction Hamiltonian, equation (3.28) to be rewritten as

2 — kLA ik.r' kx -ik.r' 2
Hl—ﬁ; 2 {84 8,8, et + g5 Gy 'S ] (3.29)
where
L I D 3.30
geg_l 28072'V Ek' ~eg (3.30)
and
at) = a,e"® and 4 1(0) = ape™ (3.31)

The use of normal ordering is equivalent to the use of any other ordering since field operators
and atomic operators act on different spaces and as such commute. During the course of this
derivation, approximations are used which destroy the commutation and normal ordering
avoids this problem. In the following section this Hamiltonian will be applied to obtain the

time evolution of operators using the Heisenberg equation of motion.
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3.3 The Derivation of the Equations of Motion for a Two Level Atom

In the Heisenberg representation, operators are time dependent and the wavefunctions are
. . . A .
time independent. The time evolution of a general operator O is governed by the Heisenberg

equation of motion:

&>
]
N
~
o>
m>
~

(3.32)

Consider a two level atom consisting of a ground state | g> and an excited state le> each of

which consists of a set of degenerate and near degenerate substates interacting with a laser

mode frequency @, propagating in the Z direction. The Heisenberg equation of motion for the

field operator ak( t) is given by

a) = é [a1), H] (3.33)

where H is given by equation (3.2). Since field operators and atomic operators commute, this

may be written as

40 =% [, Bt ] (3.34)

Applying the expressions for i rand i ; 8iven by equations (3.13 and 3.29) yield

at) = -i Sk(t); a)k,c/z\[(t)c/z\k(t)+i; W, (1) 3 1) a,(1)

A k' AA ikz o k'* A -ikz }
-i ak(t); ezg {geg O'egak,(t) e + geg a[{t) e Gge
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. kA A ikz k' A -ikz A jl’\
+:Z Z {geg O i (t) e + g ap(t) e o, faf()

k' eg
(3.35)
Using the commutation relation (3.12) this expression may be reduced to
A LA . A i
a(t) = -i w,a,(t) - zz gle(; O, ¢ ikz (3.36)
e g
This may be integrated formally (Allen and Eberly 1975) to give
t
a1) = a,(0) eix . iz gk et J Aoge(t') G, (1) dt’ (3.37)
eg 5
where Gk( t,t') is the retarded Green's function defined as
, . [0 if t<t
G () = lim { i)t if > t'} (3.38)
Taking the limit of equation (3.38) and substituting into equation (3.37) reveals
t
N A oyt * ikz A O (t-)
a(1) = a(0) e - 12 g’e‘g e J O, (1)e ) dt (3.39)

eg 5

The right hand side of equation (3.39) contains two terms. The term on the left is the freely
evolving field term or sometimes called the vacuum term which depends on the initial field
operator and the term on the right which only depends on atomic operators and describes
spontaneous decay. Removal of the atomic operator under the integral may be accomplished

by the following argument: the sum over the frequency modes causes destructive interference
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of the phase terms within the integral except for values of t = t'. The characteristic time scales
associated with spontaneous emission are long compared to the free evolution time, which is
in the order of the field mode frequency. As a consequence, the harmonic approximation can
be made which assumes that the operator element under the integral evolves freely. Then

from equation (3.32)
[c, . B, ] (3.39)

Products of atomic operators give the following rule

A

N _/\ 5
6,0.,=0,0, (3.40)

The time evolution of the operator is

A, A
O‘ge =-i (a)e-wg) oge (3.41)
Integrating gives
t
do
A= (- )(t-t) (3.42)
t' 0-ge ’

where @ and @, are the frequencies of states le> and Ig> respectively. Manipulation after the

. . . . A .
integration of equation (3.42) enables the atomic operator 0, at t' to be determined

A n_"=n i(©,-0,)(1-1')
O'ge(t) = O'ge(t) e 8 (3.43)

Substituting equation (3.43) into the expression for the field operator yields
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t

(t) = ak(O) e Lyt - lz g lkZ ge J e-i(wk-a)e+a)g)(t-t') dr' (3.44)
o

Following a similar derivation the creation operator is given by

t

b0 = 5(0) 6 4 1), gk s, J ¢l Ot O)1) gy (3.45)
eg

o

The Heisenberg equation of motion may now be applied to derive an expression for the

atomic operator

[  H] (3.46)

Substitution of equations (3.7, 3.13 and 3.29) reveals

Ae =-i(0, w)c -lz Z e'gaZ(t)e'kzO' +122 az(t)elkz Oee

!

e k g’

(3.47)

Substitution of the field operator expression equation (3.45) yields

/(\)' = -] (w CU) O- '12 Z gegaZ(O) el((Dkth)o- +12 Z aZ(O) e:(a)ktkz)o.

t

2 Z Z, gk*,gk A j ei(a)k-a),v+wg-)(t-t') dt' (3.48)

e'g’ eg
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Equation (3.48) contains four terms. The first term in the equation describes the freely
evolving atomic operator term. The second and third terms correspond to an interaction of the
atom with the field which are commonly referred to as driving terms. The final term
corresponds to spontaneous emission of the atom. The integral in this term has been the
subject of many investigations (Allen and Eberly 1975, Ackerhalt ef al. 1973, 1974, Milonni
1976, (Knight 1980, Cardimona et al. 1982, 1983)) and gives rise to damping terms for the
real parts and frequency shifts for the imaginary parts. The damping terms are proportional to
the Einstein A coefficients and the imaginary terms correspond to Lamb shifts which are
non-zero only when the non-degenerate excited states have different principal quantum
numbers. In the case examined here, excitation of the sodium D lines, all states involved
share the same principal quantum number and as such the generalised shift terms are set to

zero. Performing the integration reveals, for the real part (Allen and Eberly 1975)

t

j OO+ 0 )(t') gy o &wk'we""wg’) (3.49)
o

. . . A
Thus the time evolution of the atomic operator O, becomes

g-eg = - (w CO) o- z 2 e'gaZ(O) e:(wkt kZ)o- + ZZ 2 g aZ(O) el(wkt kz) O.

ZZ g egcegﬁﬁ(a) -0, +0,) (3.50)
g e

. . A A A
The derivation of the time evolution of the atomic operator g and o, follows that of O,

and are given by
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A . A . x A o LA
o, =-i(0-0 )5, -12 Z g~ ap(0) g
g'g 88 g Ll Berg ge

. kA A -i(wyt-kz)
+ l; 2 ge,,g,oe,,gak(O)e

ell

k* kA
+ ; ; z 8erg8erg Tyrign T H V-0, + @ )

"
e

+ Z Z 2 g’ﬁ gek,f%,, ,,,n&(wk-we,,,+wg) (3.51)

e ee
k e e" €8°¢8

A _ B Z Z kA A -i( wyt-kz)
o, = -z(we,-a)e)aee,- i k 8y O'eg,,ak(O) e

7 ‘g
+i; 2 gf .

4
* A i(Wyt-kz)
g" g,a[(O)e ¢ Gg”e'

ko k* A
- ; ; 2 8orgr8ergTpen® H W00, )

nr

e

"

A
5y > > 8egBorgOyg T H V0,4 ) (3.52)
k g" e
These equations are of a similar form to equation (3.50) and contain freely evolving atom
terms, driving terms and damping terms. The rapidly oscillating terms in equations (3.50),

(3.51) and (3.52) may be removed by transforming the operators to slowly varying operators

which rotate at the mode frequency (Whitley and Stroud 1976)

A A
O, =X, | (3.53a)
A A

o’g,g = xg,g (3.53b)
NN i(ot-kz)

O'eg S xege' kE-Kz (3.53¢)

_N i(wkz) |, N i(wyt-kz)
creg—xege k +’(a’k‘k"z) xege k (3.53d)

>e
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where the z coordinate of the atom has been written as z = z, + v_t which describes the

motion of the atom through the laser beam in the direction of the mode propagation. Applying
equations (3.53) to equation (3.50) and restricting the problem to a single laser mode enables

equation (3.50) to be rewritten as

A . A . ky * A A 2 krx N A
Xog= 14, xeg-z; geéga,jL(O) Xee"”g, 8e§,aka(0) Xyog

k* kA

where Aeg is the detuning given by

A .= ka-kLvZ-weg and weg = we-a)g (3.55)

[

Similarly applying (3.53) to equations (3.51) and (3.52) and restricting to a single laser

mode, gives

A . A . * A A . kA A
. =-i(0 -0, ,-zz g"e +2 L.x.
ng l(wg wg)xgg PO gale(O) Xge le,, 8, 8 Ze gakL(O)

ell ell! e"g
k _kxA
+ ; ; ez, ge,,gge,,,gxe,,e,,,né(wk-we,,,+wg) (3.56)

A . A . A A . * A A
X = -z(a)e,-a)e)xee, - 1} gek,g,, xeg,,akL(O) + z; gﬁé,,a,g;(O) xg,,e,

k k2

ne

4
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"t

e

k* kA
- ; ; 2 BegBergKone® X V-0, )

The expectation value of equations (3.54), (3.56) and (3.57) yield

where

A . A . A . A
<Y >=-iA <y >-12.Q,<x ,>+12.Q,<x,>
eg eg eg o e e PR L

* k A
_; ; ; g’;gge,g,nc?(wk-a)e,+wg,) Xop”>

A ( )A E 0 A z 0 A
<)Y .>=-i(0-0 )<y ,h >-1i w <Y ..>+1 w <X >
xgg g 8 xgg e" eg Xge e" eg Xeg

k* ok "
+ ; ; 2 BergBemy THW-0,. 40 ) <X ...>

nt

e
+2 Z Z gk ek rqo -0 . +0)<y, >
k e’l ell' eg e g k € g ee

A . A . 0 A . 0 A
<X,> = H0,-0)<y > - zzg" g Kegr™ + zzg” eg” <Xgre™

"t

(4

k  k* ”
- Ek: ; 2 8ogBorg W N W00, @) <Y, .>

ne

e

k* ok A
- ; ;, Z 8ogr8ermg T N W0+ @) <X, >

_ N _ L* A
Q,= g’gé <a, (0)> = g" L <ag(0)>

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
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is defined as the half Rabi frequency (MacGillivray 1993). The Rabi frequency may be

evaluated from the definition (Corney 1977)

(3.62)

€2 is called the Rabi frequency and has units of radians per second. The half Rabi frequencies
have been chosen to be real as we are free to choose the phase of the field and the phases of

the states connecting the induced dipole (Ducloy 1973).

The sum over the excited states in the damping terms of equations (3.58-3.60) leads to
generalised damping terms For a single mode excitation the generalised damping terms are
non-zero when two or more degenerate or near-degenerate excited states are excited from a

common ground state. The general definition of a decay term is given by
— k _k* k* _k
I“ege,g,— ; 8og€eg” 6(a)k-a)e,+wg,) + 8og8up ™ é(a)k-we+wg) (3.63)

The hyperfine ground state of sodium consists of two nearly degenerate sublevels which are
separated by 1.77 GHz. The laser powers used in the experiment are such that power
broadening of these levels does not occur and excitation out of only one ground sublevel can

occur. Excitation from a single ground state yields the following generalised relaxation term
* * L
I“ee,g = ; gf,ggfgn 5(a)k-a)e,+ (og) + g’(_fgge,g,n 6(wk-we+a)g) (3.64)

The decay rate from a state le> to Ilg> follows as



Chapter Three: Quantum Electrodynamic Theory

2
T, = 2; g, "7 § -0, +0) (3.65)
and the total decay rate from state le> = (1/lifetime) is
r= 22 Z 18" Pr w0 +o ) (3.66)
e 2 P eg k e g

The generalised decay rates may be written in terms of the channel decay rates as

=\l I, 1”72 (3.67)
ee eg  e'g

As a consequence of choosing the Rabi frequencies to be real, the generalised decay rates in
equations (3.58-3.60) are also real by the following argument: We are dealing with coherent

states of light, which is defined as (Knight 1992)

log> = exp(-172 lot |2)2 ),,2 In> (3.68)

These states are normalised because <oylog> = 1, but they are not necessarily orthogonal
since

*n
<ayB> = exp(-172 la,)>-1/2 I )2 ﬁ"

= exp(-122 o )2 12 1B, P+, "B,) (3.69)
k k k Tk

Coherent states are also eigenstates of the destruction and creation operators since
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a”
k 172
) 72N In>

A
alo> = exp(-1/2 Iaklz)z (
n

= aklak> (3.70)

o, labels the coherent state and is an eigenvalue of the destruction operator. &, can also be

written as
7]
o =lole! (3.71)

where 0 is the phase of the field. The expectation values of the destruction and creation

operators are thus given by

A
<ak|aklak> =0,

A
<aklazlak> =0 (3.72)

The half Rabi frequency term defined by equation (3.61) may be rewritten as (Farrell et al.

1988)

. A .
Q,, =1dH % <a, (0)> &P (3.73)

The Rabi frequency has been chosen to be real which implies,
o+B=nr ‘ (3.74)

where n is an integer. Similarly we can write

Q,, =g é7<a, (0)> P (3.75)

68



Chapter Three: Quantum Electrodynamic Theory

where
¥B=mnr (3.76)

The generalised decay terms involve products of the form

gfgg’;f; = lgfgllg’j;|e"(“'” (3.77)

Then from equations (3.73) and (3.75)

-y = (n-m)x (3.78)

Therefore if both n and m are either both even or both odd, the product will be real and

positive. If one of n and m is even and the other odd, the product will be real and negative.

Figure 2.5a depicts the energy level scheme for the sodium D, line with the allowed
transitions for 7 radiation. The laser radiation is tuned from the F'=2 ground state to the F=3
excited state and has a bandwidth of approximately 1MHz. Because the natural linewidth of
sodium is 10MHz, in principle all of the hyperfine structure should be resolvable at low laser
powers. However at higher laser powers, power broadening dominates and as a result any of
the upper hyperfine sub states may be excited with the exception of states 19> and |/5>. State
19> can not be populated due to selection rules and 175> does not get excited because the
Clebsch-Gordan coefficient for this mode of excitation is equal to zero. In a typical
superelastic scattering experiment such as the one considered here, the laser powers are high
enough so that power broadening must be taken into account. Using the knowledge of which
states are populated the equations (3.58-3.60) may be applied to obtain the equations of

motion for the system given in Appendix 1.
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3.4 Calculation of Rabi Frequencies and Branching Ratios

The equations of motion derived in the previous chapter are dependent on terms which are
proportional to Rabi frequencies of hyperfine transitions. The Rabi frequency is a direct

measure of the strength of interaction between the transition induced dipole and the light field.
A . . . .
Consider the electric field operator £ which may be written in terms of spherical unit vectors

€, as (Corney 1977)

(3.79)

ey =F5(%)) (3.80a)
e, =k (3.80b)

A
109D e _ (3.81)

Substitution of equations (3.79-3.81) into the definition of the Rabi frequency equation

(3.62) yields

Q =—-949— (3.82)

A . .
where q refers to the field mode and Dq is the element of the atomic induced dipole operator
which is an irreducible tensor of rank one. Using the definitions for © and 7 transitions, the

Rabi frequencies for each field mode may be written as (MacGillivray and Standage 1991)
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-E

Q,=—" <Fm D |Fim_> | (3.83a)
E

Q.= <Fmg+1\D |Fm > (3.83b)

Q, =—E <Fm 1D IFm, > (3.83¢)

where E, is the electric field amplitude of linearly polarised radiation and E_is the electric

field amplitude for circularly polarised light. The primed state refers to the lower state. The
Rabi frequencies for each transition may be calculated explicitly by firstly reducing the matrix
element from hyperfine representation to fine structure representation by applying

(MacGillivray and Standage 1991)

<Fm ID \F'mg> = 2 2 2 2 <lUmm |Fm> <lI'mm/|F'm_>

mmmm

<Jm Jqul] m,><ml\Im > (3.84)

where <....l..> are Clebsch-Gordan coefficients. Since D does not operate on the nuclear
spin the projection of I, m ; remains unchanged during the interaction and as such the sum

over yields a Kronecker delta 5m’m . In a similar reduction the fine structure representation
v

may be reduced to L representation via (MacGillivray and Standage 1991)

<Jm D \'m,> = Z 2 Z <SLmgn, \Jm > <SL'mgn, \J'm >

m, mp, mg

<lleDqlL'mL,> (3.85)

Equations (3.84) and (3.85) are not the only method used to reduce from F representation to

L representation and other methods can be found in Farrell and MacGillivray 1994. The
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Wigner-Eckart theorem allows the geometrical or the m dependence to be removed (Blum

1981) such that

[} - (. L-m L k L' 2
<Lm T, \Lm; > = (-1 (F ) LT IL™> (3.86)

where £ is the rank of the tensor. The reduced matrix element may be evaluated numerically

as (Sobelman 1979)

3¢ 2230 N2
<LIT JIL'> = N2L+1 [OSTLLJ (3.87)

where A is the wavelength of the transition and I” 1 1s the relaxation rate which is equal to the

inverse of the lifetime of the excited state. The electric field amplitudes in equations (3.83)

may be expressed in terms of the radiation intensity, /,

E=q [=AT (3.88)

Applying equations (3.84-3.88) allow the Rabi frequencies for the individual hyperfine

transitions as
QF,mgF'\mg,q) = C(F,m_F'\m_,qNT MHz/(mW/mm?)""2 (3.89)

Table 3.1 gives the various values for the C(F,m pF'mg,q) coefficients for each hyperfine

transition of the sodium D2 line.

The relaxation rate from an excited state to a ground state is proportional to the square of the
dipole matrix element. The Rabi frequencies as shown by equation (3.86) are proportional to
the dipole matrix element and thus the relaxation rate from an excited state le> to a ground

state |g> is proportional to the square of the Rabi frequency. Therefore it may be shown that
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2
I =—e (3.90a)
eg e
2
g: eg
= B(F,mF',m,q) T, (3.90b)

where Fe is the total relaxation rate from the excited state le> and is the inverse of the lifetime

of the state. The coefficients B(F,m,F',m #»q) are known as branching ratios and are given

by

MRmPRmP¢=(QEmPRumf (3.91)

The branching ratios for the sodium D, line may be seen in Table 3.2 expressed as fractions

of the total relaxation rate.

3.5 Solutions to the Equations of Motion

The system of equations described in section 3.3 form a set of linear first order differential

equations which may be written in the form
y=4y (3.92)

where A is a matrix consisting of real and imaginary numbers which represent Rabi
frequencies, relaxation rates, detunings and energy level splittings. y is a vector whose

elements represent the various populations and coherences. A solution to equation (3.92) may
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be found by first diagonalizing A to produce eigenvalues A, with an associated matrix of

eigenvectors X which are related to A by

A=XAXx' (3.93)

where A is a diagonal matrix of eigenvalues. Substituting (3.93) into (3.92) yields

y=xaxy (3.94)

Multiplying the equation by X~ ! yields

X'y=2x"1y (3.95)

We now define Z =X 1 y and note that X is time independent since A is a matrix of constants

then

Z=AZ (3.96)

This has the simple solution

Z=Z(0) & (3.97)

Re-expressing Z in terms of y and multiplying by X gives

y=Xe& X' y0) (3.98)

The individual matrix elements are then given by
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— Aj
Y = Z Zi Xij e » (3.99)

where Z relates to the initial conditions by
X Z(0) = y(0) (3.100)
Using the two equations (3.99) and (3.100) the system of equations may be solved.

To correctly model the atom-laser interaction the effect of the atomic evolution of the atom
traversing the laser beam must also be taken into consideration in the calculation. This may be

accomplished by time averaging the probabilities such that

T
<> = éaf <x,,>(t)dt (3.101)

where <3(ee,> is the time averaged probability. Applying this result to equation (3.99) yields

AT
y, = z Z,X, [e— ; 1] (3.102)

l

One effect that should also be taken into account is the detuning from resonance of the atomic
transition compared to the laser frequency. One such detuning is caused by the Doppler
profile of the atomic beam. In this experiment, atoms are produced at the interaction region
via an oven which also collimates the effused atom beam. The atoms leave the oven with a
principle velocity component perpendicular to the laser beam direction as well as a velocity
component parallel] or anti-parallel to the direction of the laser propagation. Those atoms with

the velocity component travelling antiparallel to the laser propagation direction will be blue
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Figure 3.2: The Doppler Effect
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shifted from the resonant frequency and those atoms with the opposite velocity component
will be red shifted from the resonant frequency as shown in figure 3.2. In this experiment the
atoms are assumed to be tuned to the class of atoms with a zero velocity component along the
beam axis and so the Doppler profile is centred on this class of atoms. The number of atoms
in a particular detuning class follows a Gaussian distribution which is centred on the zero
velocity group. To include the Doppler shift effect the solution to the equations of motion

must be thus weighted by (Farrell et al. 1988)

1

A
y, = y(tA) exp|-|— | |dA (3.103)
aond (3]

where A is the detuning of the laser from the F'=2 hyperfine ground substate to the F=3

hyperfine excited state due to atomic velocity. A, is related to the full width half maximum

frequency in the Doppler profile by

fFWHM
Y= ) (3.104)

The integration of the equation (3.103) was performed numerically by using a Simpsons
numerical integration technique (see for example Burden and Fairs 1989). Both the interval

and the stepsize was set by the user.

An alternative solution to the above method may be accomplished by directly solving equation

(3.92) that is
y = y(0) 4! (3.105)

The exponential factor is complicated as it contains the matrix A. This exponential factor may

be evaluated numerically by Taylor expanding about the origin giving
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2 3 m
e =1 +At+%2-+%!£+ . Am—t,m
oo
A
= 7 (3.106)
n=
Substitution of equation (3.106) into equation (3.105) reveals
oo
A"t
y=¥(0) Zb 7 (3.113)
n=

The sum is performed to a specified numerical convergence. In the calculations used in this
thesis, numerical convergence occurred when the infinity norm of two sequential terms was
less than 1012, The infinity norm is defined as the absolute value of largest row sum (Burden
and Fairs 1989). This method is one third faster than the eigenvalue method but has the
disadvantage that no eigenvalue check can be made. The calculations reported here have used
the Taylor's expansion method which was chosen for the speed of the method and were

checked using the results of the eigenvalue method.

3.6 Folded Step Laser Excitation

In this section the QED model is applied to the folded step excitation scheme discussed in

section 2.7 in which two lasers are used to pump from the two near degenerate 32S1 P

(F'=2,1) ground states to the 32P3 /2(F=3,2,1,O) excited state manifold. The laser exciting

from the F'=1 ground state will be denoted laser 1 and the laser exciting from the F'=2
ground state will be denoted laser 2. The lasers are copropagating and are resonantly tuned so
that they excite from the two hyperfine ground states to the F=2 excited state sublevel. - The

lasers are not phased locked and because the time scales at which observables are measured
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are much greater than the coherence time of the lasers, no two photon coherences created by
the two lasers will exist. The general equations of motion derived for the single laser case
(equations (3.58-3.60)) may be modified for two lasers. This modification can be made at the
point where the sum over the modes £ is restricted to one term as done in equations (3.54),
(3.56) and (3.57). Allowing the sum to include the second laser yields the following general

equations of motion

A . A . A . A
<y >=-iA <y >-z§,.QL,’<x ,>-IZQL,2<X>
eg eg eg pL e'g ee Py e'g ee
. A 3 A
+12 .QL1,<)(, >+zz .(2L2,<x, >
PR PR

) ; Z z el ndo-0+0,) <y, > (3.114)
g e

A . A ) A ) A
<x,>=-z(a>-co,)<x,>-zz o d) <x,.,>-zz Qb2 <y S
8’8 g 8" Mg P B L o e’ T
. L A . L A
+ i Q5 <y, >+1 Q2 <y, >
ell eg eg e" eg eg

DI :
+ e £ 8org8omg TN OO+ O ) <Yy

"nr

e

k k* A

"t

e

<7\ S = ((D <A Z QL/ N z QLZ 2
Zee’ = e'-a)e) xee'> ) lg,, eg” <x€8"> o gn e'g” <Xeg">

. A . A
+1§ QL <y ,>+zz Qb2 <y >
g" eg ge gn eg g'e

"

e

k k* A
- ; ; 2 8og8omg N W0+ @) <Y, 0>
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Figure 3.3: Folded Step Excitation of the sodium D2 line. Both lasers
are tuned to the F=2 excited substate. Highlighted are the states that
may be formed by either laser 1 or laser 2 and overlap states which
can be excited by either laser.
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E k* _ k } 2
- k ; ; geg"ge"'g"n' &wk we"’+wg") Xere™ (3.116)
where
A A
Qﬁ; = gﬁ{g <a, (0)> = gLelg* <a;(0)> (3.117a)
A A
.QZ = gfg <a, (0)> = gLeZ; <aj(0)> (3.117b)

are defined as the half Rabi frequencies for each laser. The Rabi frequency may be evaluated
from the definition given by equation (3.62). Equation (3.114) contains six terms. The first
term is a freely evolving term. The second, third, fourth and fifth terms are atom-field
interaction terms and the sixth term is related to relaxation. Equations (3.115) and (3.116)

contain one extra relaxation term.

Applying these general equations of motion to this folded step system yields 78 coupled
differential equations which are given in Appendix 2. The major difference between these
equations and the single laser equations is that there are equations which are driven by a
single laser and equations which are driven by the two different lasers which is a result of
overlap states in the excited state manifold which may be excited by both lasers. Figure 3.3
depicts the states which may be excited by laser 1 or laser 2 as well as the overlap states

which are accessible by both lasers.

The 78 coupled differential equations were solved by directly integrating and using the
Taylor's expansion method discussed in section 3.5. The computation time was significantly
larger than that of the single laser model due to the increase in the number of coupled

differential equations. The usual cpu time for one solution was in the order of four minutes.
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3.7 Relation Between the Optical Pumping Parameters K,K and the Line

Polarisation

In this section it is demonstrated that the optical pumping parameter K, for a P-S transition, is
identical to the line polarisation of fluorescence scattered perpendicular to the plane formed by
the polarisation of the laser and the propagation direction of the laser. Similarly it is shown
that the optical pumping parameter X is identical to the line polarisation of fluorescence
scattered perpendicular to the plane formed by the polarisation vectors of the two exciting
lasers and the propagation direction of the lasers. Consider now the single laser case. The

fluorescence intensity for an ensemble of excited atoms is given by (Fano 1957)

I= cz Z pLF,. (3.118)
e e

where C is a constant which depends on the solid angle of the photon detector, the efficiency

of the detector and the number of atoms. p e’; , are the populations and coherences of the

excited state created by the laser excitation process. F ., 18 the emission matrix which

represents the spontaneous emission process for an excited state le> to a ground state Ig> and

is given by

F, =2 <e'lf . Dig><glf .D¥e> (3.119)
. a2 a2

where the sum runs over the ground hyperfine substates. f , 1s a unit vector denoting the

polarisation of the polarisation analyser and D is the electric dipole operator. Applying

equation (3.118) to the excitation scheme depicted in figure (2.5a) yields

_ L L L L
I‘C{p1ozoF1010+p1111F1111+p1212F1212+p1313F1313

L L L L
+p]414F]414+p1616F1616+p1717F17]7+p1919 Fig 19
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+ pzo 108020t p10 20
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* Py3 17F

The line polarisation is defined as

P 1(0)-1(90)
L = 1(0)+1(90)

(3.121)

where I( ) represents the intensity of the fluorescence scattered perpendicular to the plane

formed by the polarisation of the laser and the propagation direction of the laser measured at
angle « to the quantisation axis. In this experiment, the quantisation axis is chosen parallel to

the laser polarisation vector f ;> and in this case the Z axis. The experimental configuration is

shown in figure 3.4. The laser propagates in the Y direction with linearly polarised light and
photons scattered in the X direction are passed through a linear polariser at angle c to the
quantisation axis. The polarisation vector of the analyser may be expressed in terms of
Cartesian unit vectors as

fa =sinoj + cosok (3.122)

The expression for the fluorescence intensity equation (3.120) contain terms like

<Fm/Jf .DIF'm_> which are in F representation. These terms may be reduced to L
a F

representation by firstly removing the m dependence then reducing to fine structure
representation. Terms which are in fine structure representation are then reduced to a common
reduced matrix element in L representation. The m dependence may be removed by applying

the following relations (Condon and Shortley 1967)
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<Fmif .DIF+Im_ > = ;<FADIF+I> 5 [(Fem+I)(Ftm +2) sina  (3.123a)

<Fm\f .DIF+Im> = <FUDIF+]> N(F+12m 2 cosa (3.123b)
<meJza.13IFmFﬂ> = +<FIDIF> % \](F;.mF)(F*:mF+1) sino (3.123c¢)
<FmFI£a.12IFmF> = <FIDIF> mg. cosa (3.123d)
<Fmyf .DIF-Imp, > = +<FADIF-I> 5 \[(Fsm N Fm 1) sinc (3.123¢)
<FmJf .DIF-Im > = <F\DIF-I>\[F>-m 2 cosa (3.123f)

Substitution of these elements into the expression for I, will give terms like <FIIDIIF'> which
may also be expressed as <JIFIIDIIJ'T'F'>. Since the electric dipole operator does not act on

the nuclear spin then

<JIFWDWJ'TF'> = <JIFWDWJ'TF '>5” (3.124)

The terms of this form may be reduced to J representation by applying (Condon and Shortley

1967)

NI'+J-F)F+1-J+1)I-J-F+1)(F+I'-J+2)

<JI'FWDWJ-1I'F+1> = -<JIDIJ-1>
2(F+IN(2F+1)(2F+3)

(3.125a)

N(F-I'+tJ)(F+I'+J+1)(I'+J-F)(F+I-J+1)
2F(F+1)

<JI'FWDWJ-1I'F> = -<JIWDilJ-1>

(3.125b)



Table 3.3

The emission matrix elements in terms of the reduced matrix element <111D\l0>
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N(F-I'+J)(F+I'+J+1)(F-1-I'+ J)(F+I'+J)
2F\](2F~])(2F+1)

<JI'FWDIWJ-1I'F-1> = <JIDIlJ-1>

(3.125¢)

Finally the <JIIDIlJ"> elements may be reduced to a common reduced matrix element in L

representation by applying (Condon and Shortley)

N(J-S+L)(J+S+L+1)(J-S+L-1)(J+S+L)
2N (2J-1)(27+1)

<SLJWDISL-1J-1> = <LIDIIL-1>

(3.126)

The application of the reduction formulas (equations (3.123-3.126)) to the elements F  give

the reduced elements in Table 3.3. Substitution of these reduced elements into equation
(3.120) and applying the symmetry relations (2.40) defined in Chapter Two for 7 excitation
yield an expression for 7 as a function of the analyser polarisation angle ¢ such that

2
l<]|1D|I0>I {2(

6
Ifo)=C 5 sin a)p12 27t (5"'5”” )p, 1120, 16

9 . 6 .
+ 2p17 17t 2p23 23t Z(E'Es’” Q)pyy5s + (3' 5 Sin a)pZI 21

+4(1 -gsinza)RepBL” + 4(£ . 3\/_— in"o)Rep, .k, .
6 3V6 VI5 3
\l_ \'[— sin Ol)Rep22 1T 4(———- \1/0—5 a)Rep16 12
9 .
-2(3-‘]—5Sln O!)R€P2] 11 } (3.127)

Substitution of & = 0 into this expression gives

16 3 2
10) = CI<1I|D1|0>I2{3p23 23 Epzszz +3Py 5 3P17 17
L 14 L 1 L 4 L
+3Pis16 T T5P1212 Y I5P1111 T 3RePy3 5

8 L 8 L 4 L
+3mR"’pzz 16" 56 Rep,, 7, + mpw 12
2
-SRep, by, } (3.128)
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Similarly substitution of & = 90 into (3.127) reveals

2 7 1 2
1(90) = CI<J||D|I0>I2{§p23L23 + ﬁpzszz + 5Py * 3P17 17

2 L 8 L 7 L 2 L
*3Pis16 Y 15P1212 Y I5P11 11 - 3RePy5 5
4 L 4 L 2 L
- 3mReP22 16t VG Repyyys - mpw 12

1 L
+3Rep2] 11} (3.129)

By inspection of equations (2.41a) and (2.41b) equations (3.128) and (3.129) may be re-

expressed as
1(0) = CI<INDIO>1P y (3.130a)
1(90) = C I<IIDI0>F o (3.130a)

where o and ywere given by equations (2.41). Substitution of these two expressions into the

definition of the line polarisation (equation (3.121)) yields

p T2 (3.131)

Comparing this to equation (2.51), the definition of the optical pumping parameter K, reveals

P =K (3.132)

This implies that the line polarisation is an independent method that may be used to obtain K.
The combination of co-planar superelastic measurements, fluorescence measurements and

QED theory developed earlier in the chapter, enable K to be determined accurately.
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As with the single laser excitation case, the optical pumping parameter K is also related to the
line polarisation of the fluorescence scattered at right angles to the plane formed by the lasers
propagation and the polarisation vectors of the lasers. Figure 3.5 displays the geometrical
arrangement. The two lasers propagate in the Y direction with linearly polarised light and

photons scattered in the X direction are passed through a linear polariser at angle « to the

quantisation axis. The quantisation axis is chosen parallel to the polarisation vectors of the
two lasers, f L and f szhich is also the Z axis. Applying equation (3.118), the expression

for the fluorescence intensity to the folded step excitation scheme yields

_ L
I_C{p99F +p1010F1010+p1111F1111+p1212F1212

F F1515+p1616F1616

F2020+p2121 Fyr o

"'pzzzzezzz+p2323F2323+p1913F1319+p1319 Fig 3

F F2014+p201oF1020+p1020F2010

F1410+p915F159+p159F915

414t p15 15
F

+p1313 Fisps+ p14 14

+p1717F1717+p1919 1919+p2020

+ pzo 14514207 p14 20

+ p14 0F0t p]O 14

+p2]]1F112]+p1]21F21 11+'D2216F1622+p1622 F22 16

F22 12 + p1612 F12 16+ p12 16 F16 12

+ p23 17 F1723 p1723 F,; 17} (3.133)

+p22 2t p1222

where the emission matrix elements F . » Were defined previously by equation (3.119). The

F ,  terms in equation (3.133) are in F representation and may be reduced to L representation

by applying the results in Table 3.3. Substitution of these elements into equation (3.133) and

applying symmetry relations for 7 excitation defined by equations (2.40) gives the result

2
o) = CI<1|1D1I0>I {

6
2( sm oz)pl2 T (5 5 sin oc)p” 11
9
+ 2p16 16+ 2P, 17 2p23 23t 2(3' 70 5" Ot)p22 22
9 6 . 3 .
+(5-gsinfa)p, ), + 41 - 5 sina)Rep, -,

31 V6 3
\/_ \/_ na)Re €556 45 - \IO—S’"Za)Repzlez
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3
4(\/5_- \lo—sn a)RepM ) 2(5 10 sin a)Resz 11

3 .
-2(1-§szn a)p15 9} (3.134)

Using the definition of the line polarisation (equation (3.121)) and putting @ = 0 and ¢ = 90

yields the following
p=T% (3.135)
Y+o

where o and 7y are given by equation (2.76). Comparing this to the expression for K shows
that the two expressions are identical and as such line polarisation measurements gives a

useful independent method of measuring K.

3.8 Single Step Calculation Results

The results of the QED calculation for the single laser excitation of the sodium D, line are

presented in this section. As mentioned in section 3.5 all results have been calculated using
the Taylor's expansion method. The program was encoded using Fortran 2.01 which was
compiled and executed on a Sun Sparc Server 100. Typical run times varied as this
computing facility was shared with many other users but the actual cpu time for the solution
of one set of conditions was in the order of 30 seconds. The initial conditions for all of the

calculations were set such that the ground states were all equally populated at 0.125 and the

laser tuned from the 325 " (F'=2) ground sublevel to the 3%P (F=3) excited sublevel.

312

Graph 3.1 depicts the optical pumping parameter K as a function of the laser intensity for

three different Doppler width atomic beams. The laser intensities have been expressed as Rabi
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frequency of the 3°S,, (F'=2 M_=0) — 3P, , (F=3 M_=0) transition. The light is
assumed to have a constant intensity and the populations and coherences used to determine
the K parameter were time averaged over transit time of the atoms through the laser beam of
2mm in diameter which was estimated to be one microsecond. The case of a zero Doppler
width atomic beam shows that K varies rapidly as the intensity of the laser is changed. The
greatest variation occurs between OMHz to 300MHz. These variations are due to the onset of
power broadening effects. At low laser intensities laser will only populate the F=3 excited
state sublevel. Raising the laser power to more moderate powers induces power broadening
effects and as such other excited state hyperfine states become populated and hence the
variation in K. At higher intensities, the value of K tends to 0.6 which is consistent with the J

representation calculation in Chapter Two.

The effect of high laser intensities exciting the D, transition in sodium has been investigated

previously by Pegg and MacGillivray 1986. At laser intensities such that the power
broadening of individual hyperfine transitions occurs, Pegg and MacGillivray 1986
demonstrated that the atom-field interaction may be simplified by transforming the excited
states to a new set of basis states. In this new basis, it can be shown, that the line polarisation
yields a constant value of 0.6 (Farrell et al. 1991) which is identical to the J representation

calculation and is in good agreement with the single step calculation results at high intensity.

Also depicted in graph 3.1 are the results of calculations with two other Doppler widths. The
100MHz Doppler width atomic beam displays some variation at low laser intensities but is
much less varied than the zero Doppler width case. A Doppler width of 300MHz shows less
features and is much less varied than the other two Doppler width calculations. Once again,

the larger Doppler width calculations are tending towards the 0.6 high intensity limit.

Graph 3.2 depicts K as a function of the laser detuning for three different laser powers for a
zero Doppler width atomic beam. At the low laser power of 10MHz most of the structure of

the excited state hyperfine manifold is clearly resolved and as such K is very sensitive to
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various detunings. With an increase of the laser power to 200MHz the hyperfine structure is
no longer resolvable due to power broadening effects and no structure due to the excited
hyperfine sublevels is seen. At the high intensity of 600MHz, K takes the constant value of
0.6.

Graph 3.3 shows K as a function of the of the laser detuning for three different Doppler
widths at a laser intensity of 200MHz which corresponded to the approximate intensity used
in the superelastic and line polarisation experiments. The zero Doppler width case shows that
there is a significant variation in the value of K. As the Doppler width is increased to
100MHz the variations become much smaller and at 300MHz which is almost identical to the
experimental conditions used in the superelastic experiments. At zero detuning, K takes

almost a constant value of 0.42.

It is clear from these calculations that K is very sensitive to experimental conditions such as
the laser intensity, laser detuning and the Doppler width of the atomic beam. In the
determination of the atomic collision parameters using the pseudo Stokes parameters it is
therefore vital to keep the experimental conditions of the laser-atom interaction as constant as
possible. The theoretical calculations displayed here, show that larger Doppler width atomic
beams and high laser intensities provide very stable operating conditions so that the optical
pumping parameter K has a low sensitivity to various experimental conditions. Having a
large Doppler width atomic beam has the disadvantage that smaller populations in the excited
state are produced. This limitation can be significant in terms of the superelastic signals at

large scattering angle where the differential cross section is small.
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3.9 Folded Step Results

Graph 3.4 shows the total excited state probability as a function of time for the single laser
excitation case and the folded step laser excitation case. In both examples the lasers are tuned,
in the case of the single laser from the F'=2 hyperfine ground state and for the folded step
case from the two hyperfine ground states to the F=2 state in the excited 32P3 1, manifold. In
the single laser case the laser has an intensity of 80mw/mm? and for the folded step case the
laser 2 has an intensity of 80mW/mm? and laser 1 a power of 10mW/mm?. The results of the
single laser calculation shows that the total excited population very quickly tends to zero
probability. The laser is tuned the F=2 hyperfine states which can relax to both hyperfine
ground states which shows that the atoms are quickly pumped into the F'=1 hyperfine
ground state. The oscillations are due to Rabi frequencies of the individual hyperfine states.
Graph 3.4b shows the results of a folded step calculation. The conditions are identical to the
single step calculation except that a second laser pumping with low power from the F'=1
ground state has been added. Oscillations are seen once again and the effect of the second
laser is immediately obvious with the system acting in a similar way to a two state system
with the total excited state probability of close to fifty percent is achieved. This result also
shows that it is not necessary to have a high laser power exciting this transition to produce a

significant increase in the excited state population.

Graph 3.5a shows the optical pumping parameter K as a function of the intensity of laser 2
for two different Doppler widths with zero detuning for both lasers. The intensity has been
expressed in Rabi frequency of the 3281 p(F=2, m.=0) - 32P3 »(F=3, m=0) transition
which is the strongest transition in the manifold for 7 excitation. Laser 1 has an intensity of
150MHz which is approximately the intensity used in experiments. The results show that this
parameter, as in the single step experiments, is sensitive to both the Doppler width of the
atomic beam and the intensity of the laser light. Both Doppler width cases have a similar

appearance with the zero Doppler width case showing the greatest variation. The greatest
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amount of variation occurs at lower powers and at higher powers the parameter is limiting, as

expected, towards the J representation calculation of 0.6.

Graph 3.5b depicts a similar picture to graph 3.5a except in this case the laser 2 is maintained
at a constant intensity of 170MHz and laser 1 is scanned. The atomic beam has a OMHz
Doppler Width. The intensity is once again expressed in terms of Rabi frequency of the
identical transition that was used in graph 3.5a. Again, the greatest variation is seen at low
laser intensity and is not as varied as the case when the power of the laser 2 is changed for the
same Doppler width. It is expected at higher laser intensities that this parameter will limit to

0.6.

Graphs 3.6a and 3.6b show X as a function of the laser detuning for laser 2 and laser 1
respectively and illustrate the importance of the laser tuning in the experiment. Both
calculations assume a zero Doppler width atomic beam. In both cases the laser which is not
scanned is tuned to the F=2 excited state. Laser 2 has an intensity of 170MHz and laser 2 an
intensity of 150MHz. The greatest variation occurs for the detuning of laser 2 and displays
similar behaviour to the single laser detuning case. The minimum value of X occurs when the
second laser is positively detuned so that it is in resonance with the F=3 excited state
hyperfine sub level. The nature of the optical pumping using 7 light, pumps the atoms to the
smaller my substates (Hertel and Stoll 1974a) which are angular momentum states that
provide more spherical charge clouds. It was shown in the previous section that K was
directly related to the line polarisation of the fluorescence scattered perpendicular to the plane
formed by the propagation direction of the lasers and the polarisation vector of the lasers. The
line polarisation of a perfectly spherical charge cloud such as an S state produces a line
polarisation of zero so the more spherical the charge cloud the smaller the value of K. The

detuning of laser 1 is interesting as a negative detuning shows the minimum value of K,

Using the results from graphs 3.5 it is possible to predict a value for K for the conditions
used in the folded step experiments. The atomic beam had a Doppler width of 300MHz and
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laser 1 an intensity of 150MHz. Laser 2 had an intensity of 170MHz. These conditions yield
a value of approximately 0.4 which is in excellent agreement with experimentally determined

value given in Chapter six.
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Chapter Four

Superelastic Electron-Atom Collisions
Involving D States

4.1 Introduction

Much of the work to date on electron-atom correlation experiments has involved the study of
the collision processes in which atoms are excited from ground S states to excited P states.
Collision processes which involve higher angular momentum states are interesting because
larger angular momentum transfers are involved in the excitation/de-excitation process and as
such would more than likely require a stronger interaction between the target atom and the
incident electron. Continuum effects also play a larger role as atoms are excited closer to their
ionisation threshold. Nienhuis (1980) began the first studies in which states with higher
angular momentum were excited, in particular the S-D collision process and the first
experiments were carried out by the same group employing the electron-photon angular
correlation technique (van Linden van den Heuvell ef al. 1981) using helium as the target
atom. In this experiment the scattered electrons resulting from the 3'D excitation were
measured in coincidence with the photons from the 2'P—1!S cascade. Three parameters,
which were functions of the excitation amplitudes and their relative phases, were determined

by using a theoretical fit to the measured data.

This chapter involves new preliminary work on the theory for electron-atom stepwise
superelastic collisions involving excited D states of sodium. Atoms are stepwise excited to the
D state using two lasers which have specific polarisations. The excited atoms are induced to
relax via a superelastic collision with an electron. Superelastic differential cross sections are
obtained which are functions of both the laser polarisations to determine pseudo Stokes

parameters.
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Density matrix formalism will be used as in Chapter Two to describe the collision system.
The first section deals with the parametrisation of a D state collision matrix. Following this
section is a derivation for a stepwise superelastic signal and the derivation of stepwise pseudo
Stokes parameters for laser polarisations which are parallel. This is followed by a derivation
of a more complicated stepwise pseudo Stokes parameter that involves two lasers with
crossed polarisations and completing the chapter is a section devoted to the modelling of the

laser excitation process using rate equations.

4.2 Parameterisation of the D State Collision Matrix

Chapter Two discussed the collision density matrix and the elements of the density matrix
were given by equation (2.11). The collisions involving the D state which is an L=2 angular
momentum state which requires a 5x5 matrix or 25 density matrix elements to specify the

system. The matrix is given by

P22 P21 Pao Py Py )
P12 P Pro Py Pila
P(2)=| Pgy Po1 Py Py poez (4.1)
P.12P 1P 0P L 1P
\P.32P5/P56P5.1P.52 )

where
Py = [2{21 +1})Mz Jor mom m)f o m,M my) 4.2)

The sum runs over the initial states that the atoms are excited from. For example a D-S

collision, the S state is the initial state and there will only be one term in the sum. For a D-P
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collision process, the P state is the initial state and therefore there are three such terms. The
L=2 system is much more complicated than the P state described in Chapter Two which only
required a 3x3 matrix to describe the collision. The number of density matrix elements can,
however be reduced by applying symmetry conditions. In Chapter Two it was shown that the
P-S collision system could be reduced from a maximum of nine independent parameters to
three independent parameters for the case when no spin flips occur. Under the identical
conditions, applying equations (2.16)-(2.18) to the L=2 density matrix elements yield the

following relationships.

P22 =Py
P =P
P2 =Pz
P10 =Plo
Po2 = Pos
Pos =Po
P2 =P
Py =Py (4.3)
Pr2 =Py
Py =-P)
Py =Pl
P2 =P
P2 =Py
P2 =Py
Py =Py
P2 =P

Applying the above relations and the hermiticity condition given by (2.14) reduces the matrix

to
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e e e e e
( P22 P21 P2 P21 P2 \
ex* e e (4 ex*
P21 Pr1 Pro Prr P2
e — e* _e* e* _e*
P(2)=] Py Pi1o Poo P10 P20 : (4.4)
e* e e e e*
“Pa1 “P117Pro Pr1 Pz

\ P22 P21 P20 P21 P32 )

The matrix given by equation (4.4) shows that for a D-S collision there are six independent

elements .5, P51 Paps P15 Py Pop: I terms of cross sections and scattering amplitudes
these elements are given by o(2), a(1), 6(0), <f(1)f (0)>, <f(2)f (0)>, <f(2)f (1)>.
Following the notation of Blum 1981 and Nienhuis 1980 the density matrix may be

parameterised as

o=100) +2 (1) + 21 &2)] (4.5a)
2= _Poo (4.5b)
(o) (o)
2 (4
_20) _<Py; (4.5¢)
(o) (o)

_ Re<fil)f'(0)> _ _Repj,

cosy = (4.5d

[a)at0)]  [pfpg]"? )
Imp ¢

sing = Im<f(1)f*(01)/2> = e pe] 01/2 (4.5e)
(DO [pfipg]
cosy= Besf2A (D> __ Repy,

4.5
[a2)o DI [psp ] @20

. Im<f2)f (1)> Imp;,
sink = - 4.5g)
"= ol " It “oe
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R e
cos(y+Vy) = Re<fi2)f (01)/2> = eepezo 7 (4.5h)
[o2)0)I"? ~ [pips)]
. Im<f(2)f (0)> Imp, .
(¢+6) = = (4.51)
O = (o100 Togpg
coss = ST CL> _ Pry (4.5))
oll) P
cosn = <f(2)fk(-2)> = P22 =1 (4.5k)
or2) P22

o is the total differential cross section and is normalised to unity. cosd and cosn are denoted
spin flip parameters and in sodium have a definite values of -1 and 1 respectively and
therefore only six parameters, A, i, ¥, ¢, ¥ and & are required to characterise the L=2 density
matrix. A and y are ratios of partial differential cross sections and ¥, ¢, ¥ and & are the real
and imaginary parts of relative phases. The experiment that will be studied in this chapter is
the superelastic D-P collision process. The D-P collision process may use the same
parameterisation except that the underlying sum over the P states must be considered. This
sum greatly complicates the problem in that more excitation amplitudes and relative phases are
involved in the collision process and hence more parameters are required to fully specify the
system. In this preliminary analysis only the parameters defined above will be considered and
hence only the sums of combined excitation amplitudes and their relative phases will be
determined. Therefore this analysis of the superelastic D-P collision experiment can not be

described as a fully "complete” experiment (Bederson 1969).
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4.3 Stepwise Superelastic Scattering

In this section the general theory for the derivation of the stepwise superelastic differential
cross section is given. The scattering plane for the experiment may be seen in figure 4.1. This
is identical to the single step superelastic scattering experiment except that a second laser,
tuned to the appropriate P to D transition, is incident on the interaction region in a counter-

propagating direction to the first laser.

A general stepwise superelastic scattering scheme may be seen in figure 4.2. Resonant laser
radiation of a known polarisation excites a ground state atom |g> to an excited state le>, a
second laser also of a known polarisation then excites the atom from the excited state le> to a
state higher in energy |f>. The atom is then induced to relax via a superelastic collision with
an electron back to the excited state le>. In this case the ground state Ig> is an S state (L=0),

le> is a P (L=1) state and If> is a D (L=2) state.

Drawing the analogy with an optically prepared P state (equation (2.26)) the optically

prepared D state is represented by

L
poP = 2 P, Dgn lJmy><Jn| (4.6)
Mpp
where meﬁ describe the ensemble distribution in the excited D state. The electron de-
D'*D

excitation of the atom to the P state is represented by LP, the de-excitation monitoring

operator which is given by

L° = Z T, gmp><Jym| T} (4.7)
Jpmp
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T, where is a scattering operator. The superelastic differential cross section is given by the
usual expression (MacGillivray and Standage 1988)

S = Tr(p°~LP) (4.8)

Substituting the expression from (4.6) and (4.7) yields

L D
5= 2 Py Ly, 4.9)
Mpp
Where L Dl,)n ] is given by
D _
LanD— JZ <JDnDI TD UPmP><JPmP| TDr [JDmD> (4.10)

Pmp

The density matrix elements of the D state formed by a collision with an electron of the P state

using equation (2.8) this is represented by
fo(—1
Poin= | 2727 41 z <Jpmpl T gm,><J | T'IJDnD> (4.11)
(2p*1) Tpmp

Applying the principle of micro-reversibility reveals that

<Jpnpl Tp U pm,> = <Jm,)| TL; pn,> (4.12a)
<Jpmy| TD' pymp>=<Jm | T, I gm > (4.12b)

Then to within a normalisation constant

Ly =Pl (4.13)
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Thus the superelastic signal is given by

mphp

L
S = Z megDp f (4.14)
Mplp

4.4 Derivation of the Pseudo Stokes Parameters for Parallel Polarisation

In this section the pseudo Stokes parameters for the case when both polarisations of the lasers
are kept parallel are considered. This is the most simple case because if the two exciting lasers
have two different polarisations, then two different excitation frames are required to describe
the two laser excitation steps. This has the implication that instead of the calculation only
needing one rotation as in the single step laser excitation case and the case presented here, a
second rotation would be required. This type of calculation will be demonstrated later in the

chapter.

The calculation is applied to the sodium atom and the superelastic differential cross section

will be kept in J representation. The sodium atoms are initially excited from the 3281 P
ground state to the 32p3 1, €xcited state. The atoms are then further excited from this state to
the 32D5 1 State. The energy level structure in fine structure representation may be seen in

figure 4.3. Applying linearly polarised light by both lasers excites the shaded states. The

5 3 . ) 1 )
J=§,M1=i§ states are excited due to relaxation of the M1=i§ states. These relaxation

channels are also depicted in figure 4.3. In the frame defined by the electric field vectors of

the lasers, the expression for the superelastic differential cross section (equation (4.14)) is

diagonal in the m, quantum number yielding

— L, fL L, fi L, i L, L
S =032 372532 P12 10P 1 3 12 * Pridi P s + PsysasP 3/ (4.15)



Table 4.1

The J Representation Density Matrix Elements Reduced to L Representation
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were p 'ﬁfn are the populations formed by laser 2 and p'j:fn are the collision density matrix
elements in the laser frame. The p}ifn elements are in J representation and may be reduced to
L representation by employing the state reduction methods given in Chapter Two by equation
(2.39). Applying this reduction formula to the collision matrix elements give the results

expressed in Table 4.1. Substitution of the results from Table 4.1 into equation (4.15) reveals

_ . L 4 5 1 L 3 2§
§= p_3/2_23/2( Pt 5p-];L-2 )+p_1/2_21/2( P00 + 5P )

L, (3 2 L (4o 1
+Piis ( fngo + 3”?1 )”" P332 ( SP?J + 5P£L2 ) (4.16)

This expression may be reduced by using symmetry relations formed by T excitation such

that

pl =pl (4.17)

Applying equation (4.17) to the expression for the superelastic differential cross section

yields

_ L (L s 4.5 4 1 L, (2.5 .3 2
S = p3/23/2( Pt 3Pt 59?1 + 5955)“*91/25/2( Pt 5p5L0 + 5P{L1 )

(4.18)

The p,ﬁfn elements have been expressed in the laser frame and because measurements are

made in the collision frame these collision density matrix elements must be transformed to
this frame. This transformation has been performed previously for the L=1 density matrix in
Chapter Two by applying equation (2.42). By inspection of figure 4.1 the Euler angles
required to rotate from the laser frame to the collision frame are (0, -B, 0) which are the

identical Euler angles used for the linearly excited single step superelastic scattering

experiment. The rotation matrix DMLJML( ) may be generated by applying equation (2.43).

100
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For a rotation of f about the Y, axis using equation (2.44) allows the sub matrix for the

L=2 case to be determined as

2 —
d m’m(ﬁ)—
1 2 , 3.2 : ! 2
—(1+ cos ) sin B(1 + cos B) —sin” B sin B(1 - cos B) —(1-cosf)
2 2 2
—sinf8(1+cosf) (1+cosB)(2cosf—1) \/gsinﬁcosﬂ (1-cosB)2cosf +1) sinf(1 - cosf)
1 3 3
7 J:sinzﬁ —V6ssin B cos B 3cos2ﬂ—1 \/gsinﬁcosﬂ —sinzﬂ
2 2
—sinfB(1-cosfB) (1-cosB)(2cosf +1) —-\[gsinﬂcosﬁ (1+cosB)(2cosB —1) sinfB(1+ cospB)
1 3 1
—(l—cosﬁ)2 —sin B(1 - cos B) —sin2/3 —sin (1 + cos B) —( +cos.ﬁ)2
2 2 2
(4.19)

Hence for the case of - the rotation matrix is given by

2 -
D m'm(-ﬁ)—
1 2 . 3.2 . 1 2 )
—(1+cosf) —sin (1 + cos ) —sin” B —sin (1 - cos B) —(1-cospf)
2 2 2
sin B(1+cosB) (1+ cosf)(2cosfB -1) —\/gsinﬁcosﬁ (1 -cosfB)(2cosf +1) —sinfB(l - cosf)
1 3 3
7 —sin2B \/—6—sinﬁcosﬂ 30052[3—1 —V6sin B cos B —sin2B
2 2
sinB(1-cosB) (1-cosB)(2cosB +1) \/gsinﬂcosﬁ (1+cosB)(2cosf —1) —sinfB(1+ cosf)
1 3 1
;(1 —cosﬁ)2 sin B(1 - cos ) —sinzﬂ sin B(1 + cos ) —-(1+cosﬁ)2
2 2
(4.20)

Applying equation (2.42) and the rotation matrix defined above yield the following rotated

density matrix elements

L= 411 (1+c0szﬁ)2p2f2 + sin’B cos*p plf] + % sin4ﬁp0f0 + sinf cosP (1+cos*B) Repzf]

+ % % sin®B (1+cos’p) RepiO + ‘\’ % sin’ B cosP Replfo (4.21a)
=pl, (4.21b)

L= sin’B cos’B pi2 + (1-2cos’ B)? p1f1 + % sin’B cos* pgo - V6 sin’B cos*p Rep2f0

- 2sinf cosP cos?B-1) Repzfl - \6 sinf cosP (1-2cos*B) ReprO (4.21c)
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=;3>_§L_ ; ] (4.21d)
p(% =5 sin®B pzfz + 6 sin’B cos*p prI +7 (3cos®B-1) pg; - 6 sin>B cos Repzfl

+ ‘\’ % sinp (3cos*B-1) Repzfo - \6 sinf cosB (3cos*B-1) Replfo (4.21e)

Substituting the rotated elements into equation (4.18) enables the superelastic differential

Cross section to be written as

2 3 .
S(B) = p3/23/2{ (]+c0s2[3) pf + sin’f cos*B plf] +3 szn4ﬁp({0
+ sinf3 cosP (1+cos*p) Rep2fI+ >N 3 sinzﬁ (I1+cos’P) Repzf;) + '\’ %sin3,3 cosf Replj;) )
+(§9 ( sin’B cos*B p{z + (1-2cos*B)? prI + g sin’p cos*p p(}fo - \6 sin®B cos’f Repzfo
- 2sinf3 cos,B Qcos?*B-1) Repf -6 sinf cosP (1-2cos*B) Rep]fo ) }
1 .
+ p1/21/2 { (2 sin®B pf + 6 sin®f cos*p prI +7 (3cos?B-1)* p({; - 6 sin’B cosf Rep2f1
+ '\/ 3 sinzﬁ (3cos2ﬂ-1) Repf -6 sinf cosB (3cos2[3-1) Rep};) + %l ( sin2[3 coszﬁ p2f2
2 2 2 2 2
+ (1-2cos?B)? p szn B cos ﬁpofo V6 sin“B cos ﬁRepZO

- 2sinf3 cosf3 (200s2ﬁ-1) Rep -6 sinf cosp (1-2cos*B) Rep ) } (4.22)

This expression for the superelastic differential cross section enables the determination of the

pseudo Stokes parameter Pf given by equation (2.49a). The terms S(0) and S(90) are given

_ L, (2 8 L, (6 4
S(0) = p3/2_23/2( 3 pzfz t3 'lel )+ p1/27/2( 3 pofo t3 p1f1 ) (4.23a)

1
) (4.23b)

Substitution of these differential cross sections into the definition of the pseudo Stokes

parameter P]S equation (2.49a) and using equation (4.5a) reveals
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PS

1

L L 3 f f f
{P3/2/32 = 6P112112 }[; o - 3ppy =3Py - Vo re P20

L L o J71 1L L f L L Py L L f
{5P3/2/32 + 1391/2/12}; - {?’3/2/32 +3p112112 }Poo + {54P3/2/32 - 4P|/2/12}T + {1’3/2/32 - 61’1/2/12}"/g Repyp

(4.24)
Manipulation of equations (4.5) give the following relationships
Rept = L cos(x+y) p—‘% (1-u-2)"2 (4.25a)
20 \/'2 _\/; :
f
Repl = L cos(x) Poo (1-2)172 (4.25b)
V2 \A
f
Rep], = cos(y) Pl (u-2-1)1 (4.25¢c)
Vi
Impf = L sin(y+v) pif" (1-p-2)'72 (4.25d)
20 \/'2 ‘\/‘/{ *
Impf = \/i_ sin(¢) Pio (1-2)17 (4.25¢)
2 A
f
p
Imp], = cos(&) =L (u-A-1)1"? (4.25f)

Vu

Applying these relationships and the relationships given by equations (4.5) enable Pf to be
written terms of atomic collision parameters as
s {KD—G}[3—3p—6,1—2A]
P = m (4.26)
{SKD + 18}+{54KD - 1}5— {7KD + 6}1 +{KD —6}2A

where A is given by

A =3 cos(x+y) [A(1-p-2) ]7° (4.27a)

and K ; is an optical parameter given by

103
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Figure 4.4a: States which have been excited using LHC polarised light
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Figure 4.4b States which have been excited using RHC polarised light
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L,
KD p3/23/2 (427b)
p1/21/2

In a similar derivation st is given as

oy e 1]

2 25 101 29
—K_+13p+4—K +4l1pA-{—K -49%u—-113K_+2}A
2 D 2D 2D D

To obtain the third pseudo Stokes parameter P;, circularly polarised light must be used. The

states excited using either left or right hand circularly polarised light is depicted in figure 4.4.

The superelastic differential cross section may be found by applying equation (4.14) viz:

v L f L f

S(07)= P33P 32572 P /212P s /5572 (4.29a)
) L Ji L fi

S(O)= P 33%30P 35 3 Psfds10P 575 51 (4.29b)

The electron collision density matrix elements are in J representation and may be reduced to L

representation by applying the results in Table 4.1. Substitution of these results yields

4 1
S(c*)= p3/23/2 ( 5P j; *t3 ch )"'p5/25/2pf 7 (4.30a)

pI )’Lp 5Pl (4.30b)

The symmetry of o excitation gives the following relationships

P.spsn(0) = P3in(0*) (4.31a)

P -5/2L-250(°'-) = p5/252/2(0'+) (4.31b)

Therefore the differential cross sections may be re-expressed as



Laser 2 Excitation Frame C;

YI

X'I

Collision frame

Nla

- Z

YC

Figured.5: Rotation of the laser frame defined by laser 2 (circularly
polarised laser case) to the collision frame
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oL (4.0 L, s L,
S(6*)= P33, ( Pt 3P 2L2) +p5/25/2p§L2 (4.322)
e Lo (£ 81 1 5 Ly f
S(6°)= P33 ( 5Pl t35P -zL-z) +Ps/33/2P 2 (4.32b)

The electron collision density matrix elements must now be rotated to the collision frame.

This is accomplished by employing equation (2.42). The second laser beam propagation

direction defines the quantisation axis for the excitation frame and in this case is in t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>