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Summary  

A bridge is principally designed to have a long service life. However, due to number factors, it 
could fail prematurely, and could cause loss of human life. In order to ensure the optimum bridge 
serviceability, systematic asset management is essential for effective decision-making of 
maintenance, repair and rehabilitation (MR&R). Systematic asset management can be achieved by a 
computer-based bridge management system (BMS). Successful BMS development requires a 
reliable bridge deterioration model, which is the most crucial component in a BMS. Historical 
condition ratings obtained from biennial bridge inspections are a major resource for predicting 
future bridge deterioration via BMSs. However, available historical condition ratings from most 
bridge agencies are very limited, thus posing a major barrier for predicting reliable future bridge 
performance. 

This paper presents the progressive research on the development of a reliable bridge deterioration 
model using advanced Artificial Intelligence (AI) techniques. The development is organised in three 
major steps: (1) generating unavailable past bridge element condition ratings using the Backward 
Prediction Model (BPM) - this helps to provide sufficient historical deterioration patterns for each 
element; (2) predicting long-term condition ratings based on the outcome of Step 1 using Time 
Delay Neural Networks (TDNNs); and (3) improving long-term prediction accuracy of Step 2 by 
employing Case-based Reasoning (CBR). This paper mainly focuses on the first two steps of the 
research. Promising results are reported for the reliable long-term prediction of bridge element 
performance. 

Keywords: Maintenance, Repair and Rehabilitation (MR&R); Bridge Management System (BMS); 
Artificial Intelligence (AI); Backward Prediction Model (BPM), Time Delay Neural Networks 
(TDNNs). 

1. Introduction 

The long-term bridge needs can be determined by future bridge condition ratings using the 
deterioration model. The results from the deterioration model can be also used as major input 
resources in other BMS analysis models, such as cost analysis and maintenance prioritisation, in 
BMSs for establishing a long-term MR&R strategy. Consequently, without a reliable deterioration 
model, the outcome of other BMS analysis modules can also become unreliable. 

To obtain reliable outcomes from a deterioration model, sufficient amount of condition rating 
records are required for long-term predictions. As such, keeping up-to-date such data is crucial. 
Although most bridge agencies in the past have conducted inspections and maintenances, past 
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bridge inspection records, being non-quantitative, are incompatible with what is required by typical 
BMSs. Such incompatibility is the major cause of deficiency of historical structural information for 
BMSs. Because of this sheer lack of usable inspection records, current deterioration modelling 
techniques have been designed to use only a few sets of recent structural condition ratings, thus 
resulting in unreliable predictions of future structural condition ratings in any computational 
prediction methods. The amount of required datasets is usually much larger than the target 
prediction datasets in order to obtain reliable prediction results. 

In relation to condition rating availability and deterioration modelling techniques, there are a 
number of shortcomings related to the use of BMSs from the perspective of bridge agencies. Inter 
alia these are [1-6]: (1) Commercial BMS software has been used for less than two decades and 
even those bridge agencies which implemented BMSs from an early stage, would have usually 
approximately 4 to 8 biennial inspection records at their disposal; (2) Bridge condition ratings 
normally do not change much over short time periods; (3) Approximately 60% of BMS analytical 
processes rely heavily on periodic bridge inspection results; (4) Interactive deterioration mechanism 
effects between or among structure elements are ignored; (5) One of the assumptions made in most 
deterioration models is that future conditions are dependent only on the current structural 
conditions; (6) The predicted bridge condition ratings do not acceptably match the real situation; (7) 
Bridge condition rating variances in the small number of historical datasets inevitably lead to 
unreliable structural performance predictions by current deterioration models in BMSs. 

A recent study has been focused mainly on the problem of insufficient historical condition rating 
records to overcome the unrealistic outcome of current deterioration modelling. This study has been 
presented the method for generating unavailable historical bridge condition ratings [4]. This method 
referred to as the Artificial Intelligence (AI) based Backward Prediction Model (BPM), which 
provides unknown historical bridge deterioration patterns to assist in predicting reliable long-term 
bridge deteriorations. A feasibility study is conducted for the bridge deterioration modelling using 
BPM-generated historical condition ratings for individual bridge elements. This is achieved by 
employing neural network techniques, i.e. Backpropagation algorithm and Time-Delay Neural 
Networks (TDNNs). The outcome of the present study would be useful to provide alternative ways 
for developing long-term deterioration model using very limited bridge condition ratings.  

2. Outline of the study 

The concept of the present study, shown in Fig. 1, illustrates that the abovementioned limitations of 
the current deterioration modelling can be minimised. This study has two major components: (1) 
generating unavailable historical condition ratings (years from t0 to t1) by using the BPM 
methodology. It is to establish a comprehensive bridge condition ratings (years from t0 to t2) which 
contains more historical deterioration patterns than the shear amount of available condition ratings 
(from t1 to t2); (2) the outcomes from (1) are to predict long-term performance of individual bridge 
elements using time-series neural network technique.  

 

Fig. 1: The proposed deterioration model 
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3. Feasibility study 

A feasibility study for the present study is hereby conducted by using the BPM methodology in 
conjunction with the Time-Delay Neural Networks (TDNNs) technique. The proposed deterioration 
model has two-stage procedure: Stage 1 – generating historical condition rating by using BPM 
methodology; Stage 2- Predicting long-term performance of bridge elements by using TDNN 
technique.  

Fig. 2 describes the timeframe of the proposed deterioration model. Only five sets of actual 
condition ratings (years from 1996 to 2004 with a 2-year increment) are available for both BPM and 
TDNN for long-term predictions. The timeframe shows, for different years: (a) available condition 
ratings; (b) BPM inputs; (c) BPM results viz the generated historical condition ratings; (d) input for 
validation; (e) results for BPM validation; (f) TDNN input; (g) TDNN prediction results; and (f) 
cross-validation of TDNN results. 

 

(a) Available 

condition ratings

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

(b) BPM inputs

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

(c) BPM results

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

(f) TDNN input

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

(h) Cross-validation of 

the TDNN results
66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

(g) TDNN results

Time [Years]

(d) Input for validation 

(Input from test results)

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

(e) Results for BPM 

validation

66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16 18 20 22 24

 
Fig. 2: Timeframe of the proposed deterioration model (Element #234 in Bridge #0301xxxx1) 

 

In this feasibility study uses 
sample dataset (see Table 1) - 
provided by the Maryland 
Department of Transport (DoT), 
USA. It is one superstructure 
element - Reinforced Concrete 
Pier Cap. The Condition Index 
(CI) of BMS condition ratings 
is scaled between CS1 
(excellent) and 5 (fail) for the 
bridge element 

 

 

3.1 Generating historical condition ratings 

The BPM methodology [4] is used to generate historical condition ratings. The actual element-level 
bridge inspection records (years from 1996 to 2004) are correlated with relevant non-bridge factors, 

Table 1:  Raw data of actual condition ratings (Element #234 on 
Bridge #0301xxxx1) 

Year of 

inspection 

Total  

Quantity 

(%) 

CS1  

(%) 

CS2  

(%) 

CS3  

(%) 

CS4  

(%) 

CS5  

(%) 

1996 100 80 14 6 0 0 

1998 100 80 14 6 0 0 

2000 100 80 14 6 0 0 

2002 100 80 19 1 0 0 

2004 100 80 19 1 0 0 

Average (%) 100 80.0 16.2 3.8 0 0 
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such as traffic volume and climatic condition, in the neural network training session to generate 
missing historical condition ratings (years from 1968 to 1994) in the testing session. The generated 
condition ratings for each year contain 66 cases which are the combined number of learning rates 
(lr: 0.0-0.5) and momentum coefficients (mc: 0.0-1.0) in the neural network configurations. The 
number 66 also represents the total quantity of a given bridge element. The forward comparison 
method is used in the BPM methodology to validate the generated condition ratings (years from 
1996 to 2004). It is comparison between the generated condition ratings and the actual BMS 
condition ratings. 

The average quantity of each CS on Element #234 between 1996 and 2004 is about 80%, 16.2% 
and 3.8% of the total element quantities in CS1, CS2 and CS3 respectively. The BPM generates 
historical condition ratings from 1968 to 1994 in three different proportions of the element quantity 
as shown in Fig. 3. 

 

 
(a) 80% of total element quantity 

 
(b) 16.2% of total element quantity 

 
(c) 3.8% of total element quantity 

Fig. 3 BPM results (Element #234, Bridge #0301xxxx1) 

 

To validate the results of the BPM, generated historical condition ratings (1968-1994) are used as 
input datasets in this test to generate the condition ratings for the present years (1996-2004). The 
BPM-generated condition ratings are then directly compared with the existing condition rating 
datasets.  Table 2 shows the final results from the BPM and their prediction errors. For all five CSs, 
the yearly average prediction differences are less than ±10% which is acceptable. This suggests that, 
the generated historical condition ratings (1966-1994) by the BPM can be used with confidence as 
input data for predicting long-term performance of bridge elements in Stage II. 
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3.2 Predicting long-term 
performance of bridge 
elements 

TDNNs have been 
acknowledged as the Neural 
Network Finite Impulse 
Response (NNFIR) and has 
been extensively used in 
numerous practical applications 
to solve non-linearity problems 
[7]. For the proposed TDNN 
model, a sigmoid transfer 
function is also selected as used 
in the BPM methodology due to 
nonlinear characteristic of 
bridge deterioration behaviour.  

In Stage 2, the BPM results 
(years from 1968 to 1994) 
obtained from Stage 1 are used 
as TDNN inputs to estimate 
long-term bridge element 
performances. It is noted that 
the present study in this 
feasibility study is only 
considered “Do-nothing” – no 
maintenance effects in long-
term prediction.  

The generated historical condition ratings (years from 1968 to 1994) from the BPM methodology 
are used as TDNN inputs. These input data is converted to time sequences for time series prediction 
in the TDNN. The proposed TDNN provides only one-step ahead prediction at a time. The result of 
the first one-step-ahead prediction (i.e. year 1996) is added on to the original TDNN input (years 
from 1968 to 1994). Iterations of the above-described process are required for a given bridge 
element until the entire bridge elements’ condition rating reaches zero. The number of yearly 
prediction by TDNN is also 66, which is in an identical form as the BPM outcomes obtained in 
Stage 1. Fig. 4 shows the results of long-term prediction of condition ratings (years from 1996 to 
2070). 

 
(a) 80% of total element quantity 

 
(b) 16.2% of total element quantity 

Table 2:   Prediction errors of the BPM using forward 
comparisons (Bridge #0301xxxx1) 

Year 
CS1 

(%) 

CS2 

(%) 

CS3 

(%) 

CS4 

(%) 

CS5 

(%) 

Total 

(%) 

A 

B 

C 

87.75 

80.00 

7.75 

10.98 

14.29 

3.31 

1.15 

5.71 

4.56 

0.11 

0.00 

0.11 

0.02 

0.00 

0.02 

100 

100 

- 
1996 

D 3.15 - 

A 

B 

C 

87.75 

80.00 

7.75 

10.96 

14.29 

3.33 

1.29 

5.71 

4.42 

0.00 

0.00 

0.00 

0.01 

0.00 

0.01 

100 

100 

- 
1998 

D 3.10 - 

A 

B 

C 

90.57 

80.00 

10.57 

8.53 

14.29 

5.76 

0.87 

5.71 

4.84 

0.03 

0.00 

0.03 

0.01 

0.00 

0.01 

100 

100 

- 
2000 

D 4.24 - 

A 

B 

C 

90.91 

80.00 

10.91 

7.80 

19.14 

11.34 

1.09 

0.86 

0.23 

0.20 

0.00 

0.20 

0.01 

0.00 

0.01 

100 

100 

- 
2002 

D 4.54 - 

A 

B 

C 

87.75 

80.00 

7.75 

11.20 

19.14 

7.94 

1.03 

0.86 

0.17 

0.02 

0.00 

0.02 

0.01 

0.00 

0.01 

100 

100 

- 
2004 

D 3.18 - 

A: Results, B: Existing data, C: Difference, D: Average Difference 
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(c) 3.8% of total element quantity 

Fig 4: Long-term prediction of condition rating – “Do Nothing” maintenance effect (Element #234, 
Bridge #0301xxxx1) 

 

In order to validate the outcome 
of long-term predictions from 
TDNN, prediction results and 
the known BMS condition 
rating records for the same 
years (1996-2004) are 
compared. For this 5-year 
period and 5 CSs, a total of 25 
cross-validation comparisons 
are resulted and presented in 
Table 3. It is evident that the 
yearly average prediction 
differences are less than ±10%, 
(i.e. year 1996: 2.49%, year 
1998: 2.48%, year 2000: 2.48%, 
year 2002: 5.16% and year 
2004: 4.73%), which are 
considered acceptable. 
However, one of the 
comparison results, i.e. CS2 at 
year 2004, is slightly over 10%. 
This could be the results of a 
maintenance effect, which is 
not considered in this proposed 
deterioration model. Hence, the 
model is not able to predict this 
change. Without taking into 
consideration of this 
maintenance effect, the 
proposed feasibility study is 
considered to produce 
satisfactory results. 

4. Discussion and Summary 

The main difficulty faced by current deterioration modelling techniques is the lack of usable data 
related to the bridge element’s historical behaviour. Based heavily on a few sets of recent structural 
condition ratings, current modelling techniques cannot be expected to produce practically useful 

Table 3:    Cross-validation results (Bridge #0301xxxx1) 

Year  CS1 CS2 CS3 CS4 CS5 Total  

A (%) 75.78 12.29 5.75 4.66 1.53 100 

B (%) 80.00 14.29 5.71 0.00 0.00 100 

C (%) 4.22 2.00 0.04 4.66 1.53 - 
1996 

D (%) 2.49 - 

A (%) 74.46 16.78 5.07 1.67 2.04 100 

B (%) 80.00 14.29 5.71 0.00 0.00 100 

C (%) 5.54 2.49 0.64 1.67 2.04 - 
1998 

D (%) 2.48 - 

A (%) 74.46 16.78 5.07 1.67 2.04 100 

B (%) 80.00 14.29 5.71 0.00 0.00 100 

C (%) 5.54 2.49 0.64 1.67 2.04 - 
2000 

D (%) 2.48 - 

A (%) 73.12 13.13 5.82 4.67 3.28 100 

B (%) 80.00 19.14 0.86 0.00 0.00 100 

C (%) 6.88 6.01 4.96 4.67 3.28 - 
2002 

D (%) 5.16 - 

A (%) 81.10 7.32 2.99 2.95 5.65 100 

B (%) 80.00 19.14 0.86 0.00 0.00 100 

C (%) 1.10 11.80 2.13 2.95 5.65 - 
2004 

D (%) 4.73 - 

A: Results, B: Existing data, C: Difference, D: Average Difference 
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outcomes. This in turn leads to an unreliable prediction of future bridge condition ratings. In order 
to minimise this drawback, the BPM methodology has been developed to help improve the 
reliability of deterioration model for long-term prediction of bridge element performance. In order 
to confirm this, a feasibility study is presented in this paper for the BPM based long-term bridge 
element performance model using Time Delay Neural Networks (TDNNs). 

The proposed TDNN provides only one-step ahead prediction at a time (one cycle). The result of 
the first one-step-ahead prediction (year 1996) is added on to the original TDNN input (years from 
1968 to 1994). Iteration of the above-mentioned process is carried out until the end of the life cycle. 
The results of TDNN predictions (year from 1996 to 2024) are compared with the known BMS 
condition ratings (year from 1996 to 2004). The annual average prediction error is 3.47 % which is 
less than ±10%, which is considered acceptable. Therefore, the forecasted condition ratings (1996-
2024) by the TDNN can be considered as reliable prediction outcomes, particularly for element-
level condition ratings. It should be noted, however, that this technique can only be used for ‘no 
maintenance’ effects.  

The present study conducted in this paper provides only the aim to establish the methodology of 
reliable long-term condition rating of bridge element using limited sample data. Further work 
should be carried out the case studies to confirm the methodology. However, the outcome of the 
present study would be useful for further development of a reliable bridge deterioration model for 
BMSs, which is highly dependent on the limited condition rating records. 
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