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Abstract. In the current study, five cases of fiber distributions are considered in a fiber-reinforced
composite: one random, three partitioned (one uniform and two biased cases), and one aligned case
for benchmarking. The finite element method and the principal component analysis were used to in-
terpret the results of orientation tensors and detect any possible clusterings of a representative volume
element (RVE). The obtained effective conductivity values were extensively controlled by the fiber
volume fraction. At the same time, the uniformity of the random distributions could be recognized.
Cross-partition resistance was also detected for the partitioned cases which contributed to a reduced
heat transfer capability. Finally, the clustering indexes did not show a direct correlation with the con-
ductivity results, and thus a case-by-case investigation is recommended to consider the anisotropic
aspects of a microstructure.

Introduction

A combination of two or more materials—distinct in properties and boundaries—is referred to as a
composite material. The material with the greatest volume is the matrix while other constituents are
generally called inclusions. The properties of the final material depend on the properties of all its con-
stituents; geometry, distribution, orientation, and concentration of the reinforcements; and the quality
of the matrix-inclusion interface [1]. Inclusions are used in the form of fibers, laminates, particles, or
a combination of them to produce various classes of composites [2] among which randomly-oriented
fibers are of interest in the current study.
Various analytical, numerical and statistical approaches are proposed in the literature to foresee the
properties of a composite. Inmost of such procedures a randomly-oriented—yet uniform—distribution
of fibers is assumed, see for instance [3, 4, 5]. However, under some practical manufacturing conditi-
ons, e.g., poor mixing in injection molding, or high volume fraction of fibers, uniformity of dispersion
is lost [6]. Namely, fiber-fiber interactions within the composite may affect the dispersion state, and
create non-uniform concentration regions of fibers. In such a domain with non-homogeneous fiber
distribution, fibers in the high concentrations regions co-orient themselves, and thus a preferred orien-
tation is formed—called fiber clustering, albeit particle clustering is also possible [7, 8, 9].
In terms of direction, an orientation cluster is formed by the fibers of a region which share the same
orientation state [10]. Kanatani [11] introduced three frame indifferent forms for capturing the statisti-
cal directional data and tested their application on inter-particular contact distribution of a 2D granular
material. Tensorial representation of fiber orientation was introduced in [12, 13] to ultimately quantify
fiber clustering.
Orientation tensors were measured and calculated for injection-molded tensile samples which indi-
cated a flow-direction alignment close to the mold wall while a more random dispersion exists in
the middle of the specimens [14]. Such measurements are crucial for characterizing the physical pro-
perties of the specimen based on its internal structure. For instance, elastic properties of short-fibers
can be extracted more accurately from homogenization of the micro-computer tomography images by
observing fiber orientations [15]. Additionally, similarities of fiber alignment phenomenon between
micro- and nano-scales promise an exchangeable knowledge basis which further emphasizes on the
importance of the topic [16, 17].



Herein, the mixing-analogy method is used to indicate the orientation clustering, first introduced
in [18], by numerically examining the incorporated tensorial representation. Four cases of moderate
fiber volume fractions for randomly-oriented composites were considered by means of a planar pro-
totype as well as an aligned model for benchmarking. A high contrast property is assumed for the
composite constituents to take into account the sensitivity of such mediums to fiber clustering [6]. A
list of used symbols is also provided in Table 1.

Table 1: List of symbols

γ mesh density
θP rotation of the principal direction transformation
ϕf volume fraction of the fiber
λi i-th eigenvalue
ψ probability distribution function
∆T prescribed temperature gradient
∆z length over which temperature gradient is formed, i.e., the distance between

the boundary edges
a element edge length
keff effective thermal conductivity of the composite
kf thermal conductivity of the fiber
km thermal conductivity of the matrix
A0 cross-sectional area perpendicular to direction of the flux
Q̇ total heat flux magnitude
ei orthonormal unit basis
epi orthonormal unit basis of the principal direction
p fiber direction vector
A orientation second-order tensor
A∗ orientation second-order tensor in the spectral form
Q transformation second-order tensor

Tensorial Representation of Planar Orientation State

The orientation of each fiber is denoted by a unit vector (p = p(θ, ϕ)) as a 3D spatial function, see
Fig. 1, which can be readily specified using the summation convention:

p = piei, i = 1, 2, 3, (1)

where ei is the i-th basis unit vector of the coordinate system, and pi is the i-th component of the unit
vector p. This presentation reduces to summation over two indexes (i = 1, 2) for a planar coordinate
system, i.e., p = p(ϕ).
The statistical distribution of fibers in the vicinity of a unit vector is specified by the probability
distribution function (ψ = ψ(p)):

ψ(θ, ϕ) = δ(θ − π

2
)ψϕ(ϕ), (2)

where δ is the Dirac delta function andψϕ is the planar probability distribution function. Consequently,
the 2nd-order planar orientation tensor (A) can be defined as [12]:

Aij =

2π∫
0

ψϕ(ϕ)pipjdϕ, (3)
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Fig. 1: Representation of the orientation of a general fiber in the 3D space using a unit vector p

where pi and pj are the i-th and j-th components of the unit vector p, respectively. A discretized
formulation of Eq. (3) directly reveals the components of the planar orientation tensor for a specific
region containing Nf number of fibers [18]:

Aij ≈
1

Nf

Nf∑
k=1

pki p
k
j , (4)

where it basically provides the average orientation tensor component of the entire sample (Aij) if the
total number of fibers in the sample is used. Note that since the orientation tensor is symmetric:

Aij = Aji, (5)

and to fulfill the normalization condition of ψϕ:

Aii = 1, (6)

thus there are only two independent components in the planar orientation tensor, e.g., A11, and A12.
Namely, A11 quantifies the proportion of alignment along the 1-axis and A12 indicates the deviation
of the coordinate axes from the principal directions of the orientation tensor.
Since the second ordered orientation tensor is symmetric, there exists an orthonormal basis (epi ) along
which the spectral form (A∗) of the orientation tensor (A) can be acquired [19]:

A∗ = λie
p
i ⊗ epi , (7)

where λi are the real eigenvalues and ep
i are the normed eigenvectors forming the basis of the ortho-

normal coordinate system. A unique rotationQ is used to transform the orientation tensor, by an angle
equal to θP, to the principal directions to obtain:

A∗ =

[
λ1 0
0 λ2

]
. (8)

An ellipse can be used to illustrate the principal components. The axes of the ellipse are the principal
directions and their length are proportional to the degree of the orientation along the their directions.
Finally, the major axis denotes the preferred direction of the fibers. Such an ellipse can be used to
graphically represent the orientation of fibers in a selected region. Note that for highly aligned fibers,
the minor axis of the ellipse is diminished and only a line along the major axis will remain. In contrast,
a circle indicates that no preferred directions exist [13, 12].



Cluster Index

A sample of total Nf short fibers is subdivided into Np partitions:

Nf =

Np∑
l=1

Nf l, (9)

where Nf l is the total number of fibers in the l-th partition. The orientation state of the l-th partition
(Al

ij) is:

Al
ij =

Nf l∑
k=1

Akl
ij . (10)

and the orientation state of the whole sample is:

Aij =

Nf∑
k=1

Ak
ij. (11)

From the mixing-analogy method, the clustering index [CI] is defined as [18]:

[CI]ij =
Np − 1

Nf − 1

[σ2
bp]ij

[σ2
t ]ij

, (12)

where [σ2
bp]ij is the variance between the partitions, and [σ2

t ]ij is the total variance. Finally, the type-1
clustering index can be expressed in terms of the orientation state as follows:

[CI]ij = 1−

Np∑
l=1

Nf l∑
k=1

(Akl
ij − Al

ij)
2

Np∑
l=1

Nf l∑
k=1

(Akl
ij − Al

ij)
2

, (13)

where the nominator indicates the sum of the variances within each partition and the denominator is
the variance of the whole RVE.

Methodology

In the current study, the numerical solutions were obtained by means of the finite element met-
hod [20, 21, 22]. TheMSC.Marc (version 2017.0) commercial package along with its Python scripting
capability was used to automatize the mesh generation, job submission, and post-processing stages of
the study. Moreover, object oriented programming is used to encapsulate the code for the RVE and
fiber class of objects [23].
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Fig. 2: Schematic illustration of the RVE prototype



The periodicity condition was established for the 20 × 20 planar RVE which embedded short fibers
with a length equal to 5. Note that dimensionless values were used throughout the investigation. An
aspect ratio of 40 was acquired for the fibers, i.e., a fiber length of 5 and a diameter of 0.125, to stay
within the range of 20 – 60 aspect ratios of the short fibers [24]. Although the analysis was carried out
in the 2D space, it was assumed that the RVE has a uniform thickness equal to the diameter of the
fibers. A high material contrast of 600 was assumed for the fiber to matrix thermal conductivity ratio;
unit thermal conductivity was assigned to the matrix.
The boundary conditions can highly affect the results of a finite element analysis [25]. More specifi-
cally, the best results for computational analysis of a periodic composite reinforced RVE undergoing
heat conduction is acquired using prescribed temperature boundary conditions [26]. Therefore, a tem-
perature difference of 100 is applied to the right-hand boundary nodes which results in a reaction heat
flux on the same edge, see Fig. 2. Fourier’s law is used to calculate the effective thermal conductivity
of the RVE [27]:

keff =
Q̇

A0

· ∆z
∆T

, (14)

where keff is the effective thermal conductivity of the RVE, Q̇ is the sum of the generated reaction
fluxes on the right-hand boundary, A0 is the assumed cross-sectional area perpendicular to direction
of the flux,∆z is the distance between the edges of the sample, and∆T is the prescribed temperature
gradient.
A planar thermal analysis was carried out for each case using a uniform mesh for the matrix consisting
of type 39 four-node, isoparametric, arbitrary quadrilateral finite elements with embedded straight 2-
node link/truss element as fibers. The mesh sensitivity analyses were carried out for a range of mesh
densities, from 1 to 35, where the uniform mesh density γ was defined for a mesh consisting a by a
square elements [28]:

γ =
1

a
. (15)

The prototype RVE was used to distribute the fibers based on five possible cases (Fig. 3):

1. uniform randomly-oriented without partitioning,
2. uniform randomly-oriented with partitions,
3. non-uniform randomly-oriented with partitions (downward bias),
4. non-uniform randomly-oriented with partitions (leftward bias), and
5. 30◦ aligned fibers with respect to the horizontal axis.

Case 1 Case 2 Case 3 Case 4 Case 5

ϕf ϕf ϕf ϕf ϕf

0.10.1
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0.1 0.1

0.1 0.15
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0.05

Fig. 3: Five cases of randomly-oriented fiber distributions and one aligned case with their correspon-
ding fiber volume fractions
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Fig. 4: Sensitivity analysis of effective thermal conductivity versus mesh density in a randomly orien-
ted fiber distribution

The partitioning was done by dividing each edge by half resulting in four partitions in total, i.e., four
5×5 partitions. The average fiber volume fraction is the same in each case and the periodicity condition
is applied to all the edges, i.e., no penetration across the inner edges in the partitioned cases is allowed.
The simulations were repeated ten times for each case while the incorporated algorithm updated the
fiber distribution in each job re-submission. The algorithm chooses two random coordinates for nodes,
corrects the length of the fiber element, and ensures that the periodicity condition is fulfilled. This is
done by cutting and transferring the excess parts of fiber elements to the appropriate edges.

Results and Discussion

The sensitivity analysis did not mark any of the five cases as critical regarding the mesh size, and thus a
mesh density of 20 was chosen to conduct simulations, see Fig. 4. The temperature gradient is applied
to each set and the reaction heat flux was used to calculate the dimensionless effective conductivity
ratio (keff

km
), see Table 2. Case 5 is the 30◦ aligned fibers with respect to the horizontal axis which has

the highest effective conductivity. Regardless of the used meshing and partitioning method, all other
cases demonstrate values in the same range denoting that the fiber volume fraction is more decisive
than the type of random fiber distribution method in this case. On the other hand, case 4 results in the
lowest conductivity value which is due to the fact that its leftmost partitions act as a barrier against
the conduction because of their low fiber volume fractions.
All the partitioned cases demonstrate a high standard deviation which might be due to the internal edge
separation of the partitions. Since the periodicity condition is also applied within each partition, no
cross-partition fibers could have exist. For the same reason, no direct bridges may form between the

Table 2: Summary of the results for the parametric study

Case keff
km

[CI]11 [CI]12 A11 A12 θP λmin λmax

1 16.55845844 0.02350 0.02353 0.49930 0.02095 31.693540 0.455751 0.544249
2 16.52188182 0.02723 0.02730 0.49875 −0.00510 −2.894007 0.446897 0.553103
3 16.67016119 0.02772 0.02762 0.50600 0.00052 1.823605 0.460312 0.539688
4 15.61689322 0.02754 0.02746 0.50932 0.02478 36.445691 0.446099 0.553901
5 19.97653051 0.01437 0.00828 0.74992 0.43305 59.993894 0.000003 0.999997



leftmost edge to the rightmost one in the partitioned cases which results in more dispersed conductivity
values, see Fig. 5.
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Fig. 5: Effective conductivity of the composite for four cases of randomly-oriented fiber distributions
and an aligned fiber distribution
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(b) Principal values of the five cases

Fig. 6: Summary of the results for parametric analyses



Comparing the cluster indexes does not show a significant difference between all cases except the alig-
ned fiber case which has the lowest clustering value. This denotes the alignment of the fibers which
also results in close-to-zero clustering values with a rather large deviation, see Fig. 6a. In addition, all
the partitioned cases show higher clustering than randomly distributed fibers without any partitions
(case 1). This is another consequence of preventing cross-partition fiber extensions.
Ellipses were used to illustrate the results of principal component analyses. An skewed ellipse deno-
tes a highly oriented state along the maximum principal direction which in the extreme case becomes
a line along the same direction; this is what happened in the case of the aligned fibers. In contrast,
the ellipse becomes a circle when there is no preferred orientation state. A couple of typical models
are shown in Fig. 7 to illustrate this concept. In the conducted analyses, since all the random cases
were uniformly distributed, values of the same order of magnitude were acquired for the eigenvalues,
see 6b. However, the random nature of the distributions can be noted by the obtained diverse principal
directions, see Table 2.
In conclusion, the finite element method along with the principal component analysis aided to re-
veal additional information about the anisotropic nature of the randomly-oriented short fibers. In the
randomly-oriented cases, the effective conductivity values were mainly under the influence of the
fiber volume fraction rather than any clustering effects. However, an extreme aligned case is distin-
guishable by considering the principal directions and their values. In addition, such eigenvalues can
be used to distinguish a uniform fiber distribution from a clustered one. Fiber distribution through
partitioning showed a resistance against conductivity in the case of non-uniform distribution of the
fibers between partitions. This resulted in more local concentration of the fibers and slightly reduced
RVE conductivity. Further investigating the effect of cross-partition penetration is recommended in
the future studies. Finally, since no direct relation is discovered between the clustering index and the
effective conductivity of the RVE, a more local investigation of each case is recommended to consider
the effects of the internal anisotropic structure.
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1(a) A typical aligned fiber distribution (b) Ellipse corresponding to the aligned
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1(c) A first case uniform random fiber distribution (d) Ellipse corresponding to the random
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Fig. 7: Denoting the principal directions and principal values by ellipses
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