Griffith Research Online

https://research-repository.griffith.edu.au

On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models

Author
Winger, Moritz, Trzesniak, Daniel, Baron, Riccardo, F. van Gunsteren, Wilfred

Published
2009

Journal Title
Physical Chemistry Chemical Physics

DOI
https://doi.org/10.1039/B818713D

Copyright Statement
Copyright 2009 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.

Downloaded from
http://hdl.handle.net/10072/37892
On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models

Moritz Winger, Daniel Trzesniak, Riccardo Baron and Wilfred F. van Gunsteren*

Received 22nd October 2008, Accepted 28th January 2009
First published as an Advance Article on the web 18th February 2009
DOI: 10.1039/b818713d

The use of a coarse-grained (CG) model that is widely used in molecular dynamics simulations of biomolecular systems is investigated with respect to the dependence of a variety of quantities upon the size of the used integration time step and cutoff radius. The results suggest that when using a non-bonded interaction-cutoff radius of 1.4 nm a time step of maximally 10 fs should be used, in order not to produce energy sinks or wells. Using a too-large time step, e.g. 50 fs with a cutoff of 1.2 nm, as is done in the coarse-grained model of Marrink et al. (J. Phys. Chem. B, 2004, 108, 250 and 2007, 111, 7812), induces errors due to the linear approximation of the integrators that are commonly used to integrate the equations of motion. As a spin-off of the investigation of the mentioned CG models, we found that the parameters of the CG water model place it at physiological temperatures well into the solid phase of the phase diagram.

Introduction

Coarse-grained (CG) models for molecular simulation, in which groups of atoms are modelled as one particle or coarse-grained atom, are very popular these days.1,2 Their greatest advantage is the reduction of computational power required, since fewer interaction sites have to be taken into account. This makes simulations of larger systems at longer timescales feasible. Different CG models have been proposed, see for example ref. 3–18. A much used one for lipids and water is the one developed by Marrink et al.10,14 which has been extended to proteins.15 In some applications19,20 and CG model parametrisations10,14,15 rather large time steps \(\Delta t \) of 30–50 fs are used in the numerical propagation of the solutions of the Newtonian equations of motion. These values are a factor 20 larger than the values of 0.5–2 fs used for all-atom models.21,22 The use of large time steps in CG models is justified by invoking the smoother energy function or surface that are omitted from the Taylor series expansions of the positions \(r(t) \) and truncated \(r(t_n) \) of the atoms at the succeeding time points \(t_n \), the maximum size of the time step \(\Delta t \) is restricted by the size of the (higher-order) time derivatives of \(r \) and \(v \) that are omitted from the Taylor expansions in the particular integration algorithm used. The

\[
D_t^2 r(t) = \frac{d}{dt} \frac{d}{dt} r(t) = (\frac{dv(t)}{dt})^2 = v(t)^2,
\]

with distance \(D \) and time derivatives of \(r(t) \) and \(v(t) \) involve derivatives of the forces \(f(t) \) with respect to time, because the acceleration \(a(t) \) of an atom equals the force on it divided by its mass. The change of the force with time, therefore, depends on the ruggedness of the atomic or molecular interaction function \(V(r) \): the smoother it is, the smaller the change in \(f \) with distance \(\Delta r \) covered will be.

Thirty years ago, the time step, \(\Delta t \), that is compatible with a reasonably accurate integration of the equations of motion for typical all-atom biomolecular interaction functions was analyzed and found to be 0.5–2 fs.21–23 Since the CG model of ref. 10 and 14 involves the same functional form for the interaction function, a \(r^{-12}, r^{-6} \), and \(r^{-1} \) distance-dependence of the non-bonded interaction, it is unlikely that it can be used with a ten or more times longer time step \(\Delta t \). Here, we investigate this issue and show that, using a typical CG model, time steps larger than 10 fs lead to very poor integration of the equations of motion, resulting in average values of properties, e.g. temperatures, that are different from the correct ones. Taking a widely used CG model10,14 as example, we analyze for systems consisting of alkanes and of water their properties as a function of the size of \(\Delta t \), of the size of the cut-off radius \(R_c \) for non-bonded interactions and of the strength of the coupling of the system to a heat bath to stabilize the temperature. The properties are thermodynamic: (density, heat of vaporisation, excess free energy, conformational entropy (alkanes) and solvation free energy); dynamic: diffusion; and structural: (radial distribution functions and for alkanes, bond-angle, torsional-angle and end-to-end of chain distance distributions).

During our investigation of the time step issue, in which we used the CG water model of ref. 10 and 14, we found that this model constitutes a poor approximation of liquid water, because its parameters are such that at physiological temperatures the model is well into the solid part of its phase diagram.
Computational methods

The coarse-grained (CG) model of Marrink et al.10,14,15 has been formulated in terms of a Lennard-Jones function which is modified by using a particular shift function as implemented in the GROMACS34 molecular simulation program. Since this shift function was erroneously described in the GROMACS manual and also erroneously implemented in the GROMACS program, as has been extensively investigated and reported in ref. 25, we did not want to use exactly the same (inconsistent) shift function, but the shift function as implemented in the GROMOS05 biomolecular simulation software.26 To this end we use GROMOS05 shifting with GROMACS and Marrink’s parameters, see Fig. 6 of ref. 25. The original CG model of Marrink40,14,15 has been parametrized using \(R_s = 0.9 \) nm, \(R_c = 1.2 \) nm and the (inconsistent) GROMACS shift function. Using \(R_c = 0 \) nm and \(R_s = 1.4 \) nm and the GROMOS05 shifting function the non-bonded interaction energy function is virtually identical to the one using GROMACS and Marrink’s parameters, see Fig. 6 of ref. 25. Thus we use GROMOS05 shifting with \(R_s = 0 \) nm and \(R_c = 1.4 \) nm when evaluating the CG model of ref. 10, 14 and 15.

The non-bonded interaction parameters for water (W) and carbon (C) coarse-grained atoms are \(C_{12}(W,W) = 2.324 \times 10^{-3} \) kJ mol\(^{-1}\) nm\(^{-1}\), \(C_{6}(W,W) = 0.2156 \) kJ mol\(^{-1}\) nm\(^6\), \(C_{12}(C,W) = 0.8366 \times 10^{-3} \) kJ mol\(^{-1}\) nm\(^{12}\), \(C_{6}(C,W) = 0.07761 \) kJ mol\(^{-1}\) nm\(^6\), and \(C_{12}(C,C) = 1.580 \times 10^{-3} \) kJ mol\(^{-1}\) nm\(^{12}\), \(C_{6}(C,C) = 0.1466 \) kJ mol\(^{-1}\) nm\(^6\). The bonded energy terms were as in ref. 10 and 14. The bond-and bond-angle motions were modelled using harmonic functions: \(K_b = 1250 \) kJ mol\(^{-1}\) nm\(^{-2}\), and \(K_\theta = 25 \) kJ mol\(^{-1}\), and \(b_0 = 0.47 \) nm and \(b_\theta = 180.0 \)16. No torsional potential energy term was used.10 The atomic masses were 72 amu for CG carbon and 72 amu for CG water.

The equations of motion were integrated using the standard leap-frog algorithm, which generally only uses the first two terms on the right hand side of the equations27

\[
v(t_n + \Delta t/2) = v(t_n - \Delta t/2) + m^{-1}\dot{f}(t_n)\Delta t + \frac{1}{24}m^{-1}\dddot{f}(t_n)(\Delta t)^3 + O((\Delta t)^5) \tag{1}\]

\[
r(t_n + \Delta t) = r(t_n) + v(t_n + \Delta t/2)\Delta t + \frac{1}{24}m^{-1}\dddot{f}(t_n + \Delta t/2)(\Delta t)^3 + O((\Delta t)^5) \tag{2}\]

where the time derivative of a quantity \(f \) is denoted as \(\dot{f} \). The non-bonded interaction pairlist was updated every 5 steps. Periodic boundary conditions in a cubic box were applied. If the temperature was to be held constant, this was done by weak coupling to a temperature bath (\(T_{\text{ref}} = 298 \) K) with relaxation times \(\tau_T = 0.1 \) ps, 1 ps or 10 ps.28 For water the box volume was 343 nm\(^3\) and for hexadecane 216 nm\(^3\). In the simulations with constant pressure the systems were in addition weakly coupled to a pressure bath28 of 1 atm with a relaxation time of \(\tau_p = 5\tau_T \) and an isothermal compressibility of \(0.4575 \times 10^{-3} \) (kJ mol\(^{-1}\) nm\(^{-3}\))\(^{-1}\).

<table>
<thead>
<tr>
<th>Number of molecules</th>
<th>System</th>
<th>Property held constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Hexadecane</td>
<td>NVE, NVT, NPT</td>
</tr>
<tr>
<td>3200</td>
<td>0</td>
<td>NVE, NVT, NPT</td>
</tr>
<tr>
<td>1192</td>
<td>1</td>
<td>NPT</td>
</tr>
</tbody>
</table>

Table 1 Overview of the performed MD simulations on coarse-grained water and coarse-grained alkanes

Analysis

The simulations with constant energy (NVE) were performed to evaluate how well the total energy (\(E_{\text{tot}} \)) was conserved. To this end, the fluctuations, defined as \(\Delta E = \langle (E - \langle E \rangle)^2 \rangle^{1/2} \), of the total energy (\(E_{\text{tot}} \)) were compared to those of the potential (\(E_{\text{pot}} \)) and kinetic energy (\(E_{\text{kin}} \)). Simulating at constant total energy (NVE), \(\Delta E_{\text{tot}} \) should be significantly smaller than \(\Delta E_{\text{kin}} \)21,23. If the total energy fluctuations are not equal to zero (or very small), energy sinks or sources are present in the simulation. These can have a number of different origins: finite machine precision of the computer used, time integration errors due to truncation of higher-order (in \(\Delta t \)) terms in the (leap-frog) algorithm, use of spatial (bond-length) constraints formulated in terms of Lagrange multipliers,21,29 use of a non-bonded interaction cut-off radius, temperature-bath coupling, pressure-bath coupling, and use of non-conservative forces, such as in Langevin dynamics or when changing force-field parameters as a function of time as in local-elevation MD30 or when applying time-averaged restraining in structure refinement of biomolecules.31 One may estimate the heat flow \(\Delta Q \) into the system induced by the mentioned sinks or sources using the following expressions.

To estimate the integration error in the standard leap-frog scheme, one may evaluate the next-order corrections to the positions and velocities:27

\[
\Delta r_{n+1} = \frac{1}{24}m^{-1}f_{n+1/2}(\Delta t)^3 = \frac{1}{24m}(f_{n+1} - f_n)(\Delta t)^2 \tag{3}\]

and

\[
\Delta v_{n+1/2} = \frac{1}{24}m^{-1}\ddot{f}(\Delta t)^3 = \frac{1}{24m}(f_{n+1} - 2f_n + f_{n-1})(\Delta t) \tag{4}\]

where we have used the short-hand notation \(f_n \) for \(f(t_n) \).
Use of constraints (SHAKE)\(^29\) will also change the energy of the system because of numerical resetting of the coordinates from the unconstrained positions \(r_{n+1}\) to the (constrained) positions \(r_{n+1}^c\). The constraint force \(f_n^c\) is

\[
f_n^c = m(r_{n+1} - r_{n+1}^c)/(\Delta t)^2
\]

and the work done becomes

\[
\Delta Q = f_n^c(r_{n+1} - r_n).
\]

The energy change due to the use of a cut-off radius is

\[
\Delta Q = -E_{\text{pot}}(\text{atoms leaving the cut-off sphere}) + E_{\text{pot}}(\text{atoms entering the cut-off sphere}).
\]

In constant temperature simulations, the thermostat will supply and take energy from the system. Using weak coupling to a temperature bath of temperature \(T_{\text{ref}}\), as described in ref. 28, we find

\[
\Delta Q = E_{\text{kin}}(\text{after velocity scaling}) - E_{\text{kin}}(\text{before velocity scaling}) \quad \text{(8)}
\]

with

\[
\lambda_{sc} = \left[1 + \frac{2c_{sc}^d \Delta t}{k_B T} \left(\frac{T_{\text{ref}}}{T(t - \Delta t/2)} - 1 \right) \right]^{1/2}, \quad \text{(9)}
\]

where \(c_{sc}^d\) is the heat capacity per degree of freedom and \(k_B\) Boltzmann’s constant. In practice the factor \(2c_{sc}^d/k_B\) is set to 1.\(^29\)

When simulating at constant pressure \(P_{\text{ref}}\), energy flow is also induced by the barostat. In that case we have using weak coupling\(^28\)

\[
\Delta Q = P_{\text{ref}} \cdot V [\mu_{sc}^c - 1] \quad \text{(10)}
\]

with

\[
\mu_{sc} = \left[1 - \frac{\beta_s \Delta t}{\tau_p} [P_{\text{ref}} - P(t)] \right]^{1/3}, \quad \text{(11)}
\]

where \(\beta_s\) is the isothermal compressibility of the system and \(V\) its volume. If the scaling factors \(\lambda_{sc}\) or \(\mu_{sc}\) are not equal to one, energy sources or sinks are present.

For the systems consisting of pure liquids, coarse-grained hexadecane and water, energy fluctuations, the higher-order terms of the leap-frog integrator algorithm, average temperature, average volume, average potential energy and the average of the squared temperature scaling factor \(\lambda_{sc}\) and the average of the cubed pressure scaling factor \(\mu_{sc}\) have been calculated. Additionally properties such as excess free energy, for both water and hexadecane, and angle distributions, dihedral angle distributions, and end-to-end of chain distances for hexadecane have been calculated.\(^{25}\) The free enthalpy of solvation of hexane in water was computed too.

Results

Fig. 1 and 2 show the results for the simulations of water and hexadecane at constant volume and energy. If we use, as a criterion for a not too-inaccurate integration of the equations of motion, that the fluctuations of the total energy should be less than one fifth of the fluctuations of the kinetic or potential energies,\(^{21,23}\) we see that it is not fulfilled using time steps larger than 5 fs for a cutoff radius \(R_c = 0.8\) nm, and using time steps larger than 10 fs for a cutoff radius \(R_c = 1.4\) nm. As expected, using a larger cutoff radius the higher-order terms (3) and (4) in the leap-frog scheme become relatively more significant when integrating the equations of motion. We also observe that using the same time step and cut-off radius the total energy conservation is better for hexadecane than for water, which is due to the stronger non-bonded interaction of water. In order to be able to use the standard leap-frog scheme, a time step of 10 fs or smaller has to be used at a cutoff radius of 1.4 nm. We note that for the CG water and CG alkane models of ref. 10 and 14 a time step of 10 fs is equivalent to time steps of 0.0056 (water) and 0.0047 (alkanes) in reduced units. This also shows that a 50 fs time step is unacceptable long.

When coupling the system to a heat bath and a pressure bath (NPT), the thermostat and barostat will supply or withdraw energy from the system in order to keep it at the reference temperature \(T_{\text{ref}}\) and reference pressure \(P_{\text{ref}}\). Fig. 3 and 4 show this effect for liquid water and liquid hexadecane, respectively. The first row panels of Fig. 3 and 4 show that beyond a time step of 20 fs, the reference temperature (298 K) is not conserved any more, because the thermostat cannot keep up with the energy loss of the system due to integration errors leading to cooling of the system by up to 20 K. The scaling factors \(\lambda_{sc}^c\) (9) and \(\mu_{sc}^c\) (11) show deviations from the ideal value 1 at large time steps (rows 2 and 3). The results suggest that using a cut-off radius of 1.2 nm or 1.4 nm, the time step should be smaller than 20 fs.

Physical-chemical properties such as average temperature, density, potential energy, excess free energy and diffusion constant are shown in Table 2 for selected settings of cutoff radius and time step. Most properties are significantly affected by the use of time steps beyond 10 fs. Results indicate that for \(R_c = 1.2\) nm or 1.4 nm the time step should not be longer than 10 fs.

In Fig. 5 the radial distribution functions \(g(r)\) are shown for the 1890 ps long simulations of the pure liquids (NPT) for five different combinations of the cutoff radius \(R_c\) and time step \(\Delta t\). The structure of the liquids is little-affected by the use of too-large time steps. We note that the \(g(r)\) for CG water indicates that the liquid is frozen. At 298 K, the system of \(N = 3200\) CG water particles with \(\varepsilon = 5.0\ \text{kJ mol}^{-1}\), \(\sigma = 0.47\) nm and a volume \(V = 343\ \text{nm}^3\) has a reduced density \(\rho^* = 0.97\) and a reduced temperature \(T^* = 0.50\), for which it is well into the solid state region of the known phase diagram of a Lennard-Jones system.\(^{31}\) This freezing of the CG model of water has been observed before\(^{14}\) and is thus unavoidable. It makes this CG model less-suitable for biomolecular systems.

Fig. 6 shows the bond-angle \(\theta\) and torsional-angle \(\phi\) distributions for the simulations of pure hexadecane (NPT) at constant temperature and pressure. Different combinations of cutoff radius and time step do not influence the distributions significantly. The corresponding end-to-end distance distributions are shown in Fig. 7. Again the different combinations of
R_c and Δt do not influence the behaviour of the system significantly.

In Table 3, the free enthalpy of solvation (ΔG_{solv}) of one CG hexadecane molecule in a solution of 1192 CG water molecules is shown. The values do not vary significantly with R_c and Δt.

Table 3 also illustrates the distortive effect that may arise when a system that consists of two components that do not readily exchange kinetic energy and that are each subject to a different sink or source of energy, is coupled to only one temperature bath instead of to two separate baths, i.e. one for each component. The temperature of the system is related to the temperature of the components, e.g. solute and solvent, by the relation

$$T_{\text{system}} = f_{\text{solute}}T_{\text{solute}} + f_{\text{solvent}}T_{\text{solvent}}$$ \hspace{1cm} (12)

where f_{solute} is the fraction of solute degrees of freedom and f_{solvent} the fraction of solvent degrees of freedom in the system. If the system is coupled to one temperature bath of temperature T_{ref} and the solute picks up more energy than the solvent, e.g. due to integration errors or cut-off noise, we will find that

$$T_{\text{solute}} < T_{\text{system}} \approx T_{\text{ref}} < T_{\text{solute}}$$ \hspace{1cm} (13)
with

$$\frac{T_{\text{solute}} - T_{\text{system}}}{T_{\text{solvent}} - T_{\text{system}}} = \frac{f_{\text{solvent}}}{f_{\text{solute}}}$$

(14)

If the solvent picks up more energy than the solute, the roles of solute and solvent in eqn (13) and (14) are exchanged. In all-atom simulations of proteins in water, the latter is the case, because the H₂O molecules are generally more prone to cut-off noise than the relatively less mobile protein and the protein bond lengths are generally constrained. For the CG hexane in CG water simulation reported in Table 3, the opposite is the case: the single-particle Lennard-Jones water is less prone to finite integration time step noise than the CG hexadecane molecule with its bond-length and bond-angle vibrations, leading to an artificial cooling of the solvent and heating of the solute. This effect disappears when each component is separately coupled to a temperature bath.

Discussion

Coarse-grained (CG) models have become more-and-more popular in recent years and thus it has become more important that these are correctly parametrised. The results reported here suggest a reparametrisation of one very basic feature of the CG model of Marrink *et al.*

10,14,15 the time step that is used to integrate the Newtonian equations of motion. A time step of...
Table 2 Physical-chemical properties of pure CG water and pure CG hexadecane using NPT ($\tau_f = 0.1$ ps, $\tau_p = 0.5$ ps) and excess free energies using NVT ($\tau_f = 0.1$ ps) thermodynamic boundary conditions. The NPT data are averaged over the final 630 ps of the 1890 ps long simulations

<table>
<thead>
<tr>
<th></th>
<th>R_c/nm</th>
<th>Δt [fs]</th>
<th>T/K</th>
<th>ρ/kg m$^{-3}$</th>
<th>E_{pot}/kJ mol$^{-1}$</th>
<th>D/cm2 s$^{-1}$</th>
<th>S_{conf}/kJ mol$^{-1}$ K$^{-1}$</th>
<th>ΔF_{exc}/kJ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water:</td>
<td>1.4</td>
<td>5</td>
<td>298</td>
<td>1102</td>
<td>-98228</td>
<td>2.6×10^{-8}</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>10</td>
<td>297</td>
<td>1102</td>
<td>-98245</td>
<td>1.9×10^{-8}</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>50</td>
<td>281</td>
<td>1093</td>
<td>-97213</td>
<td>2.6×10^{-8}</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>10</td>
<td>298</td>
<td>1066</td>
<td>-84747</td>
<td>6.5×10^{-6}</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>20</td>
<td>295</td>
<td>1067</td>
<td>-84712</td>
<td>7.4×10^{-7}</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>50</td>
<td>282</td>
<td>1069</td>
<td>-84927</td>
<td>6.7×10^{-7}</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>Hexadecane:</td>
<td>1.4</td>
<td>5</td>
<td>298</td>
<td>1156</td>
<td>-20971</td>
<td>1.3×10^{-5}</td>
<td>71</td>
<td>29.8</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>10</td>
<td>298</td>
<td>1156</td>
<td>-20952</td>
<td>1.1×10^{-5}</td>
<td>72</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>50</td>
<td>288</td>
<td>1157</td>
<td>-20983</td>
<td>3.5×10^{-5}</td>
<td>174</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>10</td>
<td>298</td>
<td>1064</td>
<td>-16530</td>
<td>5.8×10^{-5}</td>
<td>173</td>
<td>30.3</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>20</td>
<td>297</td>
<td>1063</td>
<td>-16543</td>
<td>1.8×10^{-5}</td>
<td>171</td>
<td>31.2</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>50</td>
<td>289</td>
<td>1063</td>
<td>-16559</td>
<td>1.6×10^{-5}</td>
<td>173</td>
<td>30.9</td>
</tr>
</tbody>
</table>

Fig. 5 Radial distribution functions $g(r)$ calculated from the final 630 ps of the 1890 ps simulations of liquid water and liquid hexadecane at NPT for different combinations of the cutoff radius R_c and time step Δt.

Fig. 6 Bond-angle θ distributions and torsional-angle ϕ distributions calculated from the final 630 ps of the 1890 ps simulations of hexadecane at NPT for different combinations of the cut-off radius R_c and time step Δt.

$\Delta t = 50$ fs, that has been suggested and used by Marrink et al.10,14 is considered too large, since at NVE conditions the total energy fluctuations are significantly larger than the fluctuations in the kinetic and potential energies. We note that the use of a shifting function masks the errors introduced by the use of a cutoff distance for non-bonded interactions. The ratio of total energy fluctuations over kinetic energy fluctuations becomes smaller, but the physical model does not become a better approximation of the real molecular system. Physical-chemical properties are affected by the use of a long time step, most strikingly the average temperature of the system, that is lowered by 20 K in the case of using time steps of 50 fs.

Our results show that for a cutoff radius of $R_c = 1.4$ nm a maximum of time step $\Delta t = 10$ fs should be used in coarse-grained model simulations based on Lennard-Jones interaction functions in order to avoid energy flow in or out of the system.

Analysis of the CG water model of ref. 10, 14 and 15 shows that the Lennard-Jones parameters are such that at physiological temperatures the model is well into the solid region of the phase diagram, making it less suitable for use in biomolecular simulations.

Acknowledgements

Financial support was obtained from the Swiss National Science Foundation (M.G.G.), and through the National
Center of Competence in Research (NCCR) Structural Biology of the Swiss National Science Foundation, which is gratefully acknowledged.

Table 3

Temperatures are averages over the final 630 ps of the 1890 ps long simulations.

<table>
<thead>
<tr>
<th>Bath</th>
<th>T_{system}/K</th>
<th>T_{solute}/K</th>
<th>T_{solute}/K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bath</td>
<td>284</td>
<td>293</td>
<td>284</td>
</tr>
<tr>
<td>2 baths</td>
<td>285</td>
<td>293</td>
<td>284</td>
</tr>
</tbody>
</table>

References

