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Abstract

There is considerable interest in simulating ischaemia in the ventricle and its effect on the electrocardiogram, because a
better understanding of the connection between the two may lead to improvements in diagnosis of myocardial ischaemia.
In this work we studied subendocardial ischaemia, in a simplified half-ellipsoidal bidomain model of a ventricle, and
its effect on ST segment epicardial potential distributions (EPDs). We found that the EPD changed as the ischaemic
depth increased, from a single minimum (min1) over the ischaemic region to a maximum (max) there, with min1 over
the border of the region. Lastly, a second minimum (min2) developed on the opposite side of the ischaemic region, in
addition to min1 and max. We replicated these results in a realistic ventricular model and showed that the min1 only
case could be found for ischaemic depths of up to around 35% of the ventricular wall. In addition, we systematically
examined the sensitivity of EPD parameters, such as the potentials and positions of min1, max and min2, to various
inputs to the half-ellipsoidal model, such as fibre rotation angle, ischaemic depth and conductivities. We found that the
EPD parameters were not sensitive to the blood or transverse bidomain conductivities and were most sensitive to either
ischaemic depth and/or fibre rotation angle. This allowed us to conclude that the asynchronous development of the two
minima might provide a way of distinguishing between low and high thickness subendocardial ischaemia, and that this
method may well be valid despite variability in the population.
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1. Introduction

Myocardial ischaemia results from a critical reduction
of blood supply to the heart and/or an increase in the
metabolic demand, which cannot be met by the heart [1].
When the ischaemia is transmural, clinicians are able to
determine the location of the ischaemia using the elevation
of the ST segment in superficial electrocardiogram (ECG)
leads [2]. However this is not the case for nontransmural
ischaemia.

Many attempts have been made to connect ST depres-
sion of the ECG to subendocardial ischaemia, via both
experimental and modelling studies, but, to date, the re-
sults are inconclusive [3]. This is perhaps not surprising
since the connection between ischaemia and ST depression
in epicardial electrograms is not yet clear [2], let alone the
way in which epicardial depression may translate to the
body surface and hence to the ECG.

Part of the difficulty is that studies produce contra-
dictory findings about the location of areas of epicardial
ST depression and ST elevation. For example, using an
experimental model, Guyton et al. [4] have shown that
nontransmural ischaemia is a necessary condition for ST
depression in leads overlying the ischaemic region. How-
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ever, it is not a sufficient condition as shown by the ex-
perimental study of Li et al. [5] that found ST depression,
which strengthened as the ischaemia became transmural,
was positioned over the lateral boundary between healthy
and ischaemic tissue. The study found that this occurred
regardless of whether there was ST elevation, and that ST
elevation over the ischaemic region developed as the degree
of ischaemia increased.

Modelling studies of ischaemia generally use the bido-
main model [6] to represent the cardiac ventricular tissue,
which is made up of sheets of cardiac fibres that rotate
relative to one another through the wall of the ventricle.
The bidomain model considers the tissue as consisting of
two interpenetrating domains, intracellular (i) and extra-
cellular (e), within which the electrical properties are ho-
mogenised. The electrical current is able to flow more eas-
ily along than across the fibres within a sheet, or between
the sheets. These directions are designated longitudinal
(l), transverse (t) and normal (n), respectively, resulting
in six bidomain conductivities (gpq, q = l, t, n).

A modelling study in a canine heart [7] has identified
two ST segment epicardial patterns: the first corresponds
to a very low (< 20%) ischaemic depth and consists of a
single depression over the ischaemic region; the second is
for deeper ischaemia than this and has an elevation over
the ischaemic region flanked by two depressions. Later
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studies in human hearts [8, 3] found the single depression
case could occur for very large, thin ischaemic regions and
suggested that intracavitary blood may also influence the
pattern.

A number of modelling studies [9, 7, 8, 3, 10, 11] have
suggested that the anisotropy of the conductivity values is
crucial to the form of the EPD, while others [12, 13] have
shown the effect of using only four bidomain conductivity
values (i.e. equating the normal and transverse conduc-
tivities) instead of the full set of six. Another suggestion
that the conductivities in the ischaemic tissue may be suf-
ficiently different from those in healthy tissue as to have
an effect on the EPDs has also been investigated [1, 3].

More recently, an experimental study [2] has challenged
the assumption that ischaemia begins in the subendocardium
and has found that it arises throughout the ventricular
wall.

There is considerable uncertainty in the input param-
eters to modelling studies such as those discussed above.
This is particularly true for the bidomain conductivities,
since no normal conductivity values and no consistent lon-
gitudinal and transverse conductivities have been deter-
mined experimentally [14, 15]. In addition, conductivity
values vary during the time course of ischaemia [16] and
there are possibly differences between the conductivity val-
ues and fibre rotation angles between individuals.

Although some of the above modelling studies have
considered the effect of varying input parameters such as
blood conductivity, fibre rotation angle and bidomain con-
ductivities, on the form of the EPD when modelling is-
chaemia in the ventricle during the ST segment, only one
[17] has done so systematically (and included all six bido-
main conductivities). Instead of performing many thou-
sands of Monte Carlo simulations, this was achieved by
constructing fast-running Gaussian Process emulators (sur-
rogate models) [18] for the various outputs of interest (i.e.
the maxima and minima in the EPDs). From this, the
study was able to identify the model inputs that had the
most effect on the outputs.

However, that work used a simplified model of the ven-
tricle. The present study improves on that work by using
a half-ellipsoidal model, which is a much better approxi-
mation to the left ventricle, both in size and structurally.
In this study, we compare simulations, using ‘mean’ input
values [17], in the half-ellipsoidal model with simulations
in a realistic ventricular model [19], based on a canine
heart. After this validation, the half-ellipsoidal model is
used to determine the inputs to which the EPDs are most
sensitive and examine the effect that these inputs have
on the form of the EPD, in an attempt to increase our
understanding of the connection between ischaemia and
epicardial ST segment depression and elevation.

2. Methods

2.1. Bidomain model

We model the electric potential in cardiac ventricular
tissue, during the ST segment of the ECG, using the pas-
sive bidomain equation [6, 20]

∇ · (Mi + Me)∇φe = −∇ ·Mi∇φm (1)

where φe, φi and φm = φe−φi are the extracellular (e), in-
tracellular (i) and transmembrane potentials, respectively,
and Me and Mi are conductivity tensors of the form Mp =
AGpA

T (p = i, e). Here Gp(p = i, e) is a diagonal matrix
that contains the bidomain conductivities (gpq, q = l, t, n)
and A is a rotation matrix that maps the local fibre di-
rection into the global coordinate system [20]. As will be
discussed below, we will assume that φm is a known func-
tion of position.

2.2. Ischaemia model

This work will consider the acute phase of ischaemia,
and the ischaemic region will be represented by a ‘rectan-
gular’ slab of tissue that occupies part of the ventricular
wall starting at the endocardium. This was chosen bear-
ing in mind that previous work [19], comparing rectangular
and cylindrical ischaemic regions, has shown that there is
little difference in the EPDs in the two cases.

During the ST segment, we represent φm by [6]

φm(r, θ, φ) = ∆φpΨ(ra − r)Ψ(θ − θ0)Ψ(φ) (2)

where ∆φp is the difference between the plateau potentials
in normal and ischaemic tissue, which we set to -30 mV
[20, 9]. Here the ischaemic region is centred at (ra, θ0,0)
on the endocardial surface and

Ψ(t) =

{
1−exp(−at/λt) cosh(t/λt)

1−exp(−at/λt)
|t| ≤ at

exp(−|t|/λt) sinh(at/λt)
1−exp(−at/λt)

|t| > at
(3)

where at (t = r, θ, φ) is the half-width of the ischaemic
region.

We initally set λt = 0.01 ∀t to produce a narrow border
zone between the normal and ischaemic tissue [20]. We
also consider the effect of using a wider border zone and
also a ‘new’ representation chosen to more closely match
experimental results [21, 22].

The ‘new’ version of Ψ(t) is given by

Ψ2(t) =

{
1−2(1−a2) exp(−a1/b1) cosh(t/b1)

1−2(1−a2) exp(−a1/b1) |t| ≤ a1
2a2 exp(−|t|/b2) sinh(a1/b2)

1−2(1−a2) exp(−a1/b2) |t| > a1
(4)

where a1 = 0.9, b1 = 0.2, b2 = 0.01, a2 = 0.1 and φm is as
in equation (2), but with Ψ replaced by Ψ2 for t = θ and
φ.

A comparison of φm for ‘narrow’ (λt = 0.01, t = r, θ, φ)
and ‘wide’ (λr = 0.01, λt = 0.1, t = θ, φ) border zones, as
well as for the ‘new’ representation is given in Figure 1.
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Figure 1: Transmembrane potential for the ‘narrow’ and ‘wide’ bor-
der zones, as well as for the ‘new’ representation (equation (4)).
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Figure 2: Cross-sectional view (x − z plane at y = 0) of the half-
ellipsoidal model. Ischaemic region is marked I.

2.3. Geometrical models

In this work we consider two models, a half-ellipsoidal
model of the left ventricle and a realistic ventricular model.

2.3.1. Half-ellipsoidal ventricular model

In this model we represent the left ventricle of the heart
by a half-ellipsoid (Figure 2) given by the equations

x = a cos θ cosφ, y = a cos θ sinφ, z = c sin θ (5)

where 0 ≤ θ ≤ π/2 and −π ≤ φ ≤ π.
We take a = 2 cm, c = 4 cm for the endocardial sur-

face and a = 3 cm, c = 5 cm for the epicardial surface to
give a realistically sized left ventricle, with a tissue thick-
ness of 1 cm throughout. We assume that the endocardial
surface is in contact with a volume of blood (Figure 2).
The ischaemic region (I) is represented by a ‘rectangular’
patch of tissue, of ischaemic depth ISC (as a %), given by
(50◦ ≤ θ ≤ 70◦,−15◦ ≤ φ ≤ 15◦, 10% ≤ ISC < 100%).

We also assume that the sheets of cardiac fibres remain
parallel to the epicardium as they rotate linearly through
a fibre rotation angle, represented by ROT (in ◦), between
the epicardium and the endocardium [23] and we offset the
cardiac fibres by -45◦ at the epicardium [20].

Figure 3: The realistic heart and the ischaemic region. The base
to apex distance is approximately 7.6 cm and the average diameter
near the base is approximately 8 cm.

2.3.2. Realistic ventricular model

The realistic ventricular model, which will be referred
to as the ‘realistic model’ hereafter, is based on canine
geometry that is obtained from MRI data, along with fibre
orientations that come from diffusion weighted images [24].
Both ventricles are filled with blood [19] and the ischaemic
region in this case is ‘square’ in shape and extends partway
through the wall of the left ventricle, beginning at the
endocardium (Figure 3). This % depth is again denoted by
ISC, although in this case the value for ISC is approximate,
rather than exact, because the thickness of the realistic
model tissue is not quite uniform in the region where the
ischaemia is located [19].

2.4. Solution technique

Since both models have blood-filled ventricles, we model
the potential in the blood φb using Laplace’s equation
∇2φb = 0. Both the half-ellipsoidal ventricular model and
the realistic full heart model are assumed to be in contact
with the air. Each model is solved using the same bound-
ary conditions as previously [20]; that is, we assume, at the
air-tissue interfaces and the blood-air interfaces, as well as
at the boundary of the extra- and intracellular domains,
that there is no current flux. We also assume that poten-
tial and current are continuous in the extracellular space
at the blood-tissue boundary.

The half-ellipsoidal model is solved with previously val-
idated technique [10, 20] that is based on the finite vol-
ume method, using a mesh that consists of 423,975 nodes
and 414,832 hexahedral elements [20]. In the case of the
realistic model, the solution technique is the finite vol-
ume method [20, 19] and the mesh contains 717,709 nodes
joined by 4,486,917 tetrahedral elements.

The parameters used in the simulations are discussed
in the next section.

2.5. Analysis methods

As mentioned in the Introduction, no definitive val-
ues are known for the bidomain conductivities (gpq, p =
i, e, q = l, t, n). Ranges for these values, based on the liter-
ature, are discussed in [17] and are given in Table 1, along
with ranges for ROT, ISC and the blood conductivity gb.
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Table 1: Data ranges for parameters in this study. Units are degrees
for fibre rotation (ROT), % depth for ISC and mS/cm for conduc-
tivities.

Parameter Minimum Mean Maximum
ROT 60 100 140
ISC 10 50 90
gb 3.25 6.5 9.75
gil 1.2 2.4 3.6
gel 1.2 2.4 3.6
git 0.12 0.24 0.36
get 0.8 1.6 2.4
gin 0.05 0.1 0.15
gen 0.5 1.0 1.5

We create sets of design data by allowing each input in
Table 1 to vary uniformly across its range (mean ± 0.5×
mean) using a Latin Hypercube (LHC) sampling routine,
which is part of the software described in the next sec-
tion. These sets of input parameters are used to solve the
model and to produce an EPD (see, for example, Figure
4(i)). In this polar plot, the surface of the ellipsoid has
been flattened into a circle, with the apex of the ventricle
positioned at the origin. The radius of each node on the
circle is scaled according to its θ value in Equation (5) and
φe is set to zero at the apex of the ventricle. The features
of this plot (minima and maximum) are the outputs of in-
terest and they will be categorised by their potentials and
their positions.

Two different methods, Gaussian Process emulators
and Partial Least Squares regression are used to study
the effect of uncertainty in the input parameters on the
various outputs that characterise the EPD.

2.5.1. Gaussian Process emulator

We construct a Gaussian Process (GP) emulator [18], a
fast surrogate of the model, using the software GP emu UQSA
(DOI 10.5281/zenodo.215521). This package can be used
to perform both uncertainty quantification (UQ) and sen-
sitivity analysis (SA).

After generating j = 1, . . . , N sets of design data

{ROT(j),ISC(j),g
(j)
b ,g

(j)
il ,g

(j)
el ,g

(j)
it , g

(j)
et ,g

(j)
in ,g

(j)
en }, as described

in Section 2.5, the model is solved for each of these sets
and N EPDs are produced, from which N sets of outputs
are calculated. Then, for each output, an emulator is fit-
ted to a subset of the design data (approximately 10% is
kept for verification), using a Gaussian covariance function
and a linear mean for the training. The accuracy of the fit
of the emulator is checked against the verification dataset
[18] and a final emulator is built from the combined veri-
fication plus training datasets.

The GP emu UQSA software is then used to produce
main effect plots. These show the inputs x against the
mean effect for a particular output y = f(x). The mean
effect is defined to be the conditional expectation of that

output, conditional on the input variable xw, after aver-
aging over the remaining variables; that is, mean effect =
E{f(x)|xw}. For a particular emulator, this is calculated
for each input, by allowing xw to vary over [0,1], while
the other inputs are taken to be independently normally
distributed with a mean of 0.5 and a variance of 0.04 [18].

In addition to mean effects, we also calculated main
effect sensitivity indices, which quantify the contribution
of each input to each output [25]. This unsigned index is
calculated as the ratio of the variance (Var) of the mean
effect to the variance of the model output; that is,

Sensitivity =
Var[E{f(x)|xw}]

Var{f(x)}
. (6)

For more details see Chang et al. [18].

2.5.2. Partial Least Squares regression

Partial Least Squares (PLS) regression [26, 27] is some-
what similar to principal component analysis. Its aim is to
find a set of components that simultaneously decompose
both the input and output vectors, whilst ensuring that
the components maximise the covariance between the in-
puts and outputs [26]. This approach uses the same design
data as in Section 2.5.1 and again produces an emulator
from which the relative effects of various inputs are calcu-
lated using the NIPALS algorithm [28, 26], as described in
the study by Sobie [27]. In PLS the regression coefficients
are signed and they indicate the change that would occur
in an output due to a change in an input.

3. Results

3.1. Effect of inputs on mean EPDs in the half-ellipsoidal
model

In Sections 3.1.1-3.1.4, we examine the effect of vary-
ing particular inputs on ‘mean’ EPDs, that is, those EPDs
produced using the mean values from Table 1 for the re-
mainder of the inputs in the half-ellipsoidal model. We
then repeat some of this work in the realistic model. In
later sections, the combined effect of varying all the inputs
will be quantified via GP emulators and PLS regression for
the half-ellipsoidal model.

3.1.1. Variation of mean EPDs with ischaemic depth in
the half-ellipsoidal model

The polar plots in Figure 4, which are generated us-
ing the mean values from Table 1, except for ISC, change
in character as ISC increases. In the plots the ischaemic re-
gion is outlined in white and, when it is very thin (ISC=10%,
Figure 4(a)), the main feature is a minimum over the is-
chaemic region. As ISC increases, this minimum (min1)
increases slowly in magnitude (see Table 2, which lists
the potentials for this minimum (min1V) for different is-
chaemic depths). The position of min1 also changes as
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Figure 4: EPDs generated from mean values (Table 1) for a range
of ischaemic depths. Dashed lines are negative potentials, solid lines
positive potentials. Contours range from -0.2 to 0.1 in steps of 0.05
mV. The ischaemic region is outlined in white.

ISC increases - it moves from over the ischaemic region
clockwise to along its lateral border.

For ISC=20-30% (Figure 4(b),(c)), a maximum (max)
starts to form directly over the ischaemic region and its
magnitude (maxV) increases substantially with ISC (Table
2). In addition, for ISC=30-40% and above (Figures 4(c)-
4(j)), a second minimum (min2) develops on the opposite
side of the ischaemic region from min1. In this case, its
magnitude (see min2V in Table 2) increases more quickly
than min1V, overtaking it from about ISC=70% onward.
Also, min2 appears to rotate in a clockwise direction with
increasing ISC.

In summary, increasing ISC changes the mean EPDs
both quantitatively and qualitatively. Quantitatively, the
magnitude of each of the features increases and their po-
sitions move clockwise with increasing ISC. Qualitatively,
we can identify three ‘types’ of EPDs: Type 1: min1 over
the ischaemic region (e.g. Figure 4(a)); Type 2: max
over the ischaemic region, with min1 flanking it (e.g. Fig-
ure 4(b)); Type 3: max over the ischaemic region, with
min1 and min2 flanking it on opposide sides (e.g. Figure
4(c)-(i)).

3.1.2. Variation of mean EPDs with ischaemic depth in
the half-ellipsoidal model with changed parameters

Next we considered the effect of:

1. increasing the size of the ischaemic region to (−20◦ ≤
θ ≤ 20◦, 50◦ ≤ φ ≤ 80◦), which is now approximately
twice as large as the original region;

2. changing the position of the ischaemic region, to (a)
10◦ ≤ θ ≤ 30◦, (b) 20◦ ≤ θ ≤ 40◦, . . . or, (f) 70◦ ≤
θ ≤ 90◦;

Table 2: Potentials (in mV) for various features of the EPDs in
Figure 4, generated using mean values (Table 1), except for ISC, for
the half-ellipsoidal model.

ISC min1V maxV min2V
%
10 -0.49 – –
20 -0.51 0.05 –
30 -0.54 0.30 -0.02
40 -0.59 0.68 -0.08
50 -0.64 1.22 -0.20
60 -0.71 2.00 -0.42
70 -0.79 2.92 -0.77
80 -0.89 4.18 -1.31
90 -1.01 5.73 -2.27
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Figure 5: EPDs generated from mean values (Table 1), using the
‘new’ transmembrane potential given in equation (4), for a range of
ischaemic depths. See Figure 4 for contour details.

3. increasing the width of the border zone between the
ischaemic and healthy tissue to (λr = 0.01, λt =
0.1, t = θ, φ); and

4. changing the representation of the transmembrane
potential φm (see equation (4)).

Note, for each representation of φm, we keep a narrow
(λr = 0.01) border zone in the transmural direction, as to
do otherwise would lead to the ischaemic region having a
greater depth than was intended.

For each of scenarios (1), (2)(b)-(e), (3) and (4), the
set of EPDs produced, using the mean values from Ta-
ble 1 for ISC=10% to 90%, is qualitatively the same as
Figure 4; that is, min1, max and min2 are in similar po-
sitions and appear at similar values of ISC. (Cases (2)(a)
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Table 3: Potentials (in mV) for various features of the EPDs in
Figure 4, generated using mean values (Table 1), except for ISC,
and the ‘new’ transmembrane potential given in equation (4), for
the half-ellipsoidal model.

ISC min1V maxV min2V
%
10 -0.23 – –
20 -0.24 0.03 –
30 -0.26 0.17 -0.01
40 -0.28 0.38 -0.04
50 -0.31 0.70 -0.10
60 -0.34 1.16 -0.21
70 -0.38 1.84 -0.40
80 -0.42 2.89 -0.74
90 -0.48 4.57 -1.46

Table 4: Potentials (in mV) for various features of the EPDs in
Figure 6, generated using mean values for conductivities (Table 1)
and varying ROT and ISC in the half-ellipsoidal model.

ROT ISC min1V maxV min2V
60 10 -0.23 – –

20 -0.22 0.01 -0.13
50 -0.35 1.10 -0.53
70 -0.52 2.67 -1.19

100 10 -0.49 – –
20 -0.51 0.55 –
50 -0.64 1.22 -0.20
70 -0.79 2.92 -0.77

140 10 -0.68 – –
20 -0.76 0.03 –
50 -0.91 1.18 -0.03
70 -0.95 3.03 -0.43

and (2)(f) are those where the ischaemic region is close to
the apex or the base and, in these cases, there are some-
times greater differences in the potentials from the original
50◦ ≤ θ ≤ 70◦ case). In cases (2)(b)-(e) and (3), the val-
ues of the potentials are quite similar to those in Table 3
and in case (1) the values are larger. In case (4) they are
smaller (see Figure 5 and Table 3). Despite these differ-
ences, later work (Section 3.3) will show that the sensi-
tivity results are not affected by changes in the size and
location of the ischaemic region, the width of the ischaemic
border, nor the change that we made in the representation
of the transmembrane potential. For this reason, unless
otherwise stated, the ‘narrow’ border zone will be used in
the remainder of this work.

3.1.3. Variation of mean EPDs with ischaemic depth and
fibre rotation in the half-ellipsoidal model

We now examine a set of EPDs where ISC and ROT
are both allowed to vary, but the remainder of the inputs
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Figure 6: EPDs generated from mean values (Table 1), for ischaemic
depths of 10%, 20%, 50% and 70%, corresponding to the rows from
top to bottom, and for fibre rotation angles of 60◦, 100◦ and 140◦,
corresponding to the columns from left to right. See the caption of
Figure 4 for contour details.

from Table 1 are set to their means. The rows in Figure
6 correspond to ISC=10%, 20%, 50% and 70%, while the
columns correspond to ROT=60◦, 100◦ and 140◦.

Values for the potentials for the various features are
given in Table 4. As in Section 3.1.1, we see that increas-
ing ISC leads to increases in the magnitudes of min1V,
maxV and min2V and this holds across the range of ROT
values. However, the ISC value at which min2 appears
does depend on ROT and is higher for higher ROT.

In contrast, the effect of ROT for fixed ISC is different
depending on the feature under consideration. For exam-
ple, for all ISC values, increasing ROT leads to an increase
in potential magnitude for min1, and most max cases, but
has the opposite effect for min2. It would also appear that
ROT affects the position of the minima. For example, if
we consider ISC=70%, min1 moves anti-clockwise as ROT
increases (Figure 6(j)-(l)).

In summary, both ROT and ISC affect the magnitudes
of the features and ROT also appears to affect the position
of min1.
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Figure 7: EPDs generated with ISC=20% and mean values for other
inputs (Table 1), except for the conductivities gin (top row) and gen
(bottom row). The columns from left to right correspond to their
min, mean and max values (Table 1). See the caption of Figure 4 for
contour details.

3.1.4. Variation of mean EPDs with conductivity in the
half-ellipsoidal model

The final set of ‘mean’ type plots that we will exam-
ine for the half-ellipsoidal model are those for ISC=20%
(Figure 7), where we set all other inputs to their means
(Table 1), except for a particular conductivity value. We
then consider the minimum, mean and maximum for that
conductivity and these correspond to the columns (from
left to right) in Figure 7. The conductivities gin (top row)
and gen (bottom row) were chosen because varying their
values has a qualitative effect on the form of the EPD.

For example, in Fig 7 (row 1), as gin is increased, the
EPD changes from type 2 in (a) and (b) to type 1 in (c),
whereas the opposite is true for gen, which is of type 1 in
(d) but type 2 in (f).

3.2. Effect of inputs on mean EPDs for the realistic model

We now examine the effect of changes in ischaemic
depth and conductivity values on the EPDs using the re-
alistic model.

3.2.1. Variation of mean EPDs with ischaemic depth for
the realistic model

We repeated the study of Section 3.1.1, which exam-
ined the effect on mean EPDs as ISC varied from 10-90%,
this time for the realistic model. The plots are given in
Figure 8, where the contour lines run from -0.3 mV to 0
mV in steps of 0.05. The position of the ischaemic region
can be seen in Figure 3. The jagged nature of the eleva-
tion in panel (i) in Figure 8, where ISC=90%, is caused by
the uneven epicardial surface above the ischaemic region
which is at different heights above the top surface of the

(a) 10% ischaemia (b) 20% ischaemia (c) 30% ischaemia

(d) 40% ischaemia (e) 50% ischaemia (f) 60% ischaemia

(g) 70% ischaemia (h) 80% ischaemia (i) 90% ischaemia

Figure 8: EPDs generated from mean values (Table 1), for the real-
istic model, for a range of ischaemic depths. Contour intervals are
-0.3 to 0 in steps of 0.05.

smoother ischaemic region, resulting in areas of lower and
higher potential [19].

In a similar fashion to Figure 4, as ISC increases, the
character of the EPD changes, from a single minimum over
the ischaemic region (for example, Figure 8(a)) to a maxi-
mum over the ischaemic region flanked by two minima on
opposite sides of the ischaemic region (for example, Fig-
ure 8(g)). As in the half-ellipsoidal model, min2 does not
appear until ISC=30%. However, in this particular case
of using the realistic model with mean values, we do not
see the scenario of min1 plus max, but not min2 (i.e. EPD
type 2).

Potential values for the EPD features are given in Table
5. Although values for ISC=90% are given for complete-
ness, it is likely that the large values for maxV are mis-
leading due to the rough surface, discussed above, which
may mean that the ischaemia is transmural at some points.
The strength of the maximum increases as ISC increases,
with values that are of the same order as those for the half-
ellipsoidal model, except for maxV for the realistic model,
which is much larger. The magnitudes of both min1V and
min2V do not always increase with increasing ISC, un-
like the monotonic increases as in the half-ellipsoidal case.
However, for ISC≥ 60% both min1V and min2V do in-
crease monotonically. In addition, the values for min2V in
the realistic heart model are somewhat smaller than those
in the half-ellipsoidal model.

A clockwise rotation of the pattern also occurs with
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Table 5: Potentials (in mV) for various features of the EPDs in
Figure 7, generated using mean values (Table 1), except for ISC, for
the realistic model.

ISC min1V maxV min2V
%
10 -0.66 – –
20 -1.01 – –
30 -0.88 0.01 -0.07
40 -0.90 0.17 -0.10
50 -0.90 0.54 -0.10
60 -0.89 1.31 -0.10
70 -1.06 2.67 -0.14
80 -1.34 4.92 -0.30
90 -2.04 14.3 -0.65

increasing ISC, something that was also observed for the
half-ellipsoidal model.

3.2.2. Variation of EPDs with conductivity and ischaemic
depth for the realistic model

In this study, we changed some of the conductivities
and examined the effect on the EPDs as ISC increased
from 10% to 90% in the realistic model. We used two sets
of extreme values (Table 1) for the longitudinal and nor-
mal conductivities (extremes 1: gil = 1.2, gel = 3.6, gin =
0.05, gen = 1.5 mS/cm) and (extremes 2: gil = 3.6, gel =
1.2, gin = 0.15, gen = 0.5 mS/cm) and means for the other
parameters, except for ISC. These were chosen because,
for the slab model [17], the intracellular and extracellu-
lar conductivities in a particular direction have opposite
effects on the EPDs. We found that changing the conduc-
tivities does have an effect on the EPDs and the results are
given in Figure 9 for extremes 1, Figure 10 for extremes 2,
and Table 6 (for both).

We observe that, for both sets, the development of the
EPD pattern, with increasing ISC, from min1 (only) to
min1, max, min2, which includes a clockwise rotation of
the features, is similar to the case where the mean con-
ductivities were used (Section 3.2.1). However, the mag-
nitudes of the potentials are either smaller (extremes 1) or
larger (extremes 2) (Table 6). As in the mean case (Section
3.2.1), for both sets the strength of the maximum increases
monotonically with ISC, while the mid-range (ISC=30-
60%) values for both min1V and min2V stay fairly con-
stant and the magnitudes of min1V and min2V for ISC >
60% increase with increasing ISC.

In addition, in this study, when ISC=30% for extremes
1 and ISC=40% for extremes 2, we can identify a type 2
scenario, where we have min1 and max, but not min2. The
type 2 scenario was observed previously for the mean EPDs
in the half-ellipsoidal model, but not for the mean EPDs

(a) 10% ischaemia (b) 20% ischaemia (c) 30% ischaemia

(d) 40% ischaemia (e) 50% ischaemia (f) 60% ischaemia

(g) 70% ischaemia (h) 80% ischaemia (i) 90% ischaemia

Figure 9: EPDs generated from extreme longitudinal and normal
conductivities (extremes 1) (see Table 1 and text), using the realistic
model, for a range of ischaemic depths. Contour intervals are -0.3 to
0 in steps of 0.05.

(a) 10% ischaemia (b) 20% ischaemia (c) 30% ischaemia

(d) 40% ischaemia (e) 50% ischaemia (f) 60% ischaemia

(g) 70% ischaemia (h) 80% ischaemia (i) 90% ischaemia

Figure 10: EPDs generated from extreme longitudinal and normal
conductivities (extremes 2) (see Table 1 and text), using the realistic
model, for a range of ischaemic depths. Contour intervals are -0.3 to
0 in steps of 0.05.
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Table 6: Potentials (in mV) for various features of EPDs generated
using extreme (see text for details) longitudinal and normal conduc-
tivities. (Left) extremes 1 (Figure 9) and (right) extremes 2 (Figure
10).

Extremes 1 Extremes 2
ISC min1V maxV min2V min1V maxV min2V
%
10 -0.33 – – -0.97 – –
20 -0.50 – – -1.54 – –
30 -0.44 0.08 – -1.39 – –
40 -0.46 0.26 -0.05 -1.37 0.02 –
50 -0.49 0.52 -0.06 -1.32 0.11 -0.18
60 -0.49 1.00 -0.05 -1.26 0.87 -0.18
70 -0.56 1.85 -0.06 -1.45 2.22 -0.23
80 -0.69 3.53 -0.14 -1.80 4.96 -0.45
90 -0.86 8.28 -0.28 -4.37 19.56 -1.23

min2

angmin2

min1

angmin1

max
angmax

Figure 11: The angles angmin1, angmax and angmin2 are illustrated
for an example of the EPD polar plot features min1, max, min2.

for the realistic model (Section 3.2.1). In addition, we see
that min1 does not appear until ISC is 40% (extremes 1)
or 50% (extremes 2), which is later than the mean case for
both models (Tables 2 and 5).

The above comparisons between the two models show
that the half-ellipsoidal model produces EPDs that are
reasonably similar to those in the realistic model. So,
in order to study the effect of changes of fibre rotation,
which is not possible in the realistic model, combined with
changes in conductivities and ISC, we now return to the
half-ellipsoidal model and investigate these various effects
in more generality.

3.3. Sensitivities of outputs to uncertainties in nine inputs
in the half-ellipsoidal model

In this section we consider the effect of varying all nine
inputs from Table 1, that is, ROT, ISC, gb and gpq(p =
i, e, q = l, t, n), on the features min1, max and min2 of
the EPDs. For each of these features we consider outputs
that consist of their potentials, min1V, maxV and min2V,
respectively, as well as their angles, angmin1, angmax and
angmin2, respectively. The angles are defined to be those
the feature makes in the polar plot (e.g. Figure 4(i)) with
the horizontal axis as shown in Figure 11.

We consider the effect of the inputs on EPDs of types
1-3 by producing design data of two types. For EPD types
1 and 2 we allow ISC to vary between 10% and 60% and for
EPD type 3 ISC to vary between 10% and 90%. All other
inputs are allowed to vary across their full ranges (Table
1) and an LHC sampling routine is used to produce sets
of nine inputs (Section 2.5).

The rationale behind the first set of design data is to
keep ISC reasonably low, but still in as wide a range as
possible, so that sufficient EPDs of types 1 and 2 are pro-
duced (out of 1000 sets of inputs, 160 were of type 1 and
195 of type 2). Since EPDs of type 3 occur over nearly
the full range of ischaemic depths, in the second set it was
possible to vary ISC from 10% to 90% and obtain 320 type
3 EPDs from 400 sets of inputs.

In fact, during this study, we found that type 1 EPDs
can occur for ISC from 10-35%, type 2 for ISC in the range
10-46% and type 3 for ISC > 14%, which may have impli-
cations for diagnosis (see Discussion).

We examined the sensitivities of the outputs to the in-
puts using both GP emulators (Section 2.5.1) and PLS
regression (Section 2.5.2). For each method, we fitted em-
ulators for each of the relevant outputs for that EPD, bear-
ing in mind that for type 1 EPDs, for example, the only
feature that occurs is min1. An example of the design data
for maxV and angmax, for type 2 EPDs, can be found in
Figure 12 and the remainder of the design data is available
in the Supplementary material.

We then used the GP emulators to produce main ef-
fect plots, as described in Section 2.5.1. Examples of these
plots for EPD type 2 maxV and angmax are given in Fig-
ure 13. In each case 0 on the vertical scale represents
the emulator mean value for that output (0.22 mV for
maxV and 15.6◦ for angmax). These plots indicate that
the main inputs to which EPD type 2 maxV and angmax
are sensitive are ISC and gen, in both cases, although the
relationship is positive for maxV and negative for angmax.

Next we calculated sensitivity indices (Section 2.5.1)
for each GP emulator using means of 0.5 and variances
of 0.2 for each input variable. These indices quantify the
contribution of the variance in each input to the variance
in each output. The sensitivity indices for the GP emula-
tor are given in Table 7 in the rows designated GP. Also
given is the emulator expectation of the mean of each out-
put E∗E{f(x)}. Values in bold indicate those inputs to
which the output is particularly sensitive. We see that the
results for EPD type 2 maxV and angmax are consistent
with the main effect plots in Figure 13, allowing for the
unsigned nature of the GP sensitivity values, since they
are calculated using variances (Equation (6)).

We also analysed the design data using a PLS approach
(Section 2.5.2) to produce regression coefficients that indi-
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Figure 12: Design data for EPD type 2 (top half of figure) maxV (in mV) and (bottom half of figure) angmax (in ◦).
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Figure 13: Main effects plots for maxV (top panel) and angmax
(bottom panel) for type 2 EPDs

cate the direction and magnitude of change for each out-
put, due to each input. These coefficients are also in Table
7 in the rows labelled PLS. Note that the PLS coefficients
are signed, unlike the GP sensitivities. Ignoring the sign
of the values, we see that the GP sensitivities and the PLS
regression coefficients consistently identify the same inputs
as the ones to which the outputs are sensitive. Note that
the magnitude of the coefficients is relevant only within
each row and should not be compared between methods.

We repeated (Section 3.1.2) these two studies with a
wider border zone and we also investigated the effect of
using a larger ischaemic region and the effect of moving
the ischaemic region up and down the ventricle. We also
examined the effect of using a ‘new’ representation for the
transmembrane potential (equation (4)). We found that,
although the values for the potentials were sometimes dif-
ferent, this made no difference to determining the inputs to
which various outputs were sensitive, except in two bor-
derline cases (gel for type 2 min1V and ISC for type 3
min1V). We made this clear by marking in bold in Table 7
only those inputs to which an output is sensitive for all the
scenarios considered. A summary of these effects is given
in Table 8, where the black arrows indicate significant sen-
sitivity (including its direction) and blanks represent little
or no sensitivity.

The results in Tables 7 and 8 indicate that all outputs
are sensitive to ROT and/or ISC and a few are moderately
sensitive to conductivities such as gil, gel and gen and this
is consistent between the two methods. The indices show

that both min1V and angmin1 are sensitive to ROT, for
all EPD types. Increasing ROT results in increases in the
magnitude of min1V and in angmin1 (i.e. min1 moves
anticlockwise).

On the other hand, increasing ISC has a clockwise ef-
fect on min1 (this is found for types 1 and 2 and is also
found for type 3 for the wider ischaemic border - this is the
only case where there is a difference between the results
of the narrow and wide borders), but ISC has no effect on
the magnitude of min1 for EPD types 1 and 2.

However, ISC does affect the magnitude and position
of max and min2, with increasing ISC increasing the mag-
nitude of maxV and min2V and having a clockwise effect
on their position. These results are consistent with what
was shown in Section 3.1; although, in that case it was just
for EPDs calculated with mean values.

The main results can be summarised as follows:

• the outputs are not sensitive to gb, git and get.

• min1 is sensitive to ROT (increasing magnitude and
anticlockwise rotation for increasing ROT) and ISC
(clockwise rotation for increasing ISC).

• max is sensitive to ISC (increasing magnitude and
clockwise rotation for increasing ISC).

• min2 is sensitive to ISC (increasing magnitude and
clockwise rotation for increasing ISC).

3.4. Sensitivities of outputs to uncertainties in bidomain
conductivities (only) in the half-ellipsoidal model

Since the effects of ROT and ISC on the outputs seems
to be so strong (Table 7), in comparsion with the other
inputs, and the effect of gb is minimal, we decided to fix
ROT=100◦ and gb = 6.5 mS/cm (their mean values in
Table 1) to allow us to investigate the relative effect of
the bidomain conductivities (gpq, p = i, e, q = l, t, n). New
design data were produced using ISC=10% to get types 1
and 2 EPDs and ISC=60% to get type 3 EPDs. In the
first case, 500 initial sets resulted in 312 type 1, 188 type
2 sets and 0 type 3 sets and in the second case the 250
inputs produced only type 3 outputs. This is consistent
with the ISC ranges where the various EPD types occur,
as listed in Section 3.3.

As in Section 3.3, emulators were fitted for each out-
put and each type of EPD, and PLS regression coefficients
were produced. The results, given in Table 9 as well as in
Table 8 via the red arrows, indicate that the outputs are
sensitive to the longitudinal and normal bidomain conduc-
tivities, but not to the transverse ones. In particular, there
is a clockwise relationship between gil and angmin1 for all
EPD types, whereas for gin the effect is anticlockwise. In
addition, gel has a positive effect on min1V, again for all
EPD types, and in this case, gil has the opposite effect.
This suggests that it might be worthwhile to look at the
sensitivity of EPD outputs to ratios of longitudinal and
normal conductivities.
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Table 7: Emulator expected means E∗E{f(x)} (in mV for potentials and ◦ for angles) and sensitivities of the EPD feature outputs in the
half-ellipsoidal model to nine inputs (Table 1), calculated as GP emulator sensitivities (GP) or by partial least squares (PLS). PLS sensitivities
are signed, GP sensitivities are not. Values in bold indicate those inputs to which the output is particularly sensitive.

Feature EPD Method E∗E{f(x)} ROT ISC gb gil gel git get gin gen
Type

min1V 1 PLS -0.76 -0.01 -0.13 -0.16 0.28 0.04 0.19 -0.29 0.07
GP -0.47 0.54 0.00 0.01 0.02 0.07 0.00 0.03 0.08 0.01

angmin1 PLS 0.59 -0.65 0.18 -0.49 0.03 0.10 -0.06 0.32 -0.18
GP -25.6 0.18 0.36 0.02 0.11 0.00 0.01 0.00 0.05 0.02

min1V 2 PLS -0.57 -0.24 0.00 -0.47 0.43 0.04 0.29 -0.10 -0.12
GP -0.59 0.41 0.06 0.00 0.18 0.13 0.00 0.06 0.01 0.01

angmin1 PLS 0.95 -0.65 0.11 -0.20 -0.03 0.06 -0.09 0.08 0.07
GP -22.6 0.65 0.28 0.00 0.02 0.00 0.00 0.00 0.00 0.00

min1V 3 PLS -0.48 -0.51 -0.10 -0.24 0.39 0.01 0.27 -0.06 -0.28
GP -0.65 0.19 0.25 0.01 0.04 0.12 0.00 0.05 0.00 0.06

angmin1 PLS 0.76 -0.32 0.13 -0.31 -0.05 0.03 -0.22 0.14 0.33
GP -30.1 0.38 0.08 0.01 0.06 0.00 0.00 0.03 0.01 0.06

maxV 2 PLS 0.00 0.98 -0.19 0.37 -0.23 0.03 -0.19 -0.38 0.53
GP 0.22 0.00 0.53 0.01 0.06 0.02 0.00 0.01 0.06 0.11

angmax PLS -0.02 -0.73 0.11 -0.03 0.14 -0.05 0.14 0.25 -0.50
GP 15.6 0.00 0.38 0.01 0.00 0.01 0.00 0.01 0.03 0.13

maxV 3 PLS 0.04 0.86 -0.04 0.28 -0.20 0.01 -0.13 -0.17 0.23
GP 1.62 0.00 0.58 0.00 0.05 0.03 0.00 0.01 0.02 0.03

angmax PLS 0.33 -0.96 -0.01 0.06 0.04 -0.04 0.03 0.00 -0.10
GP 2.9 0.06 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.01

min2V 3 PLS 0.28 -0.92 -0.05 -0.15 0.17 0.07 -0.03 -0.01 -0.09
GP -0.41 0.04 0.52 0.00 0.01 0.01 0.00 0.00 0.00 0.00

angmin2 PLS 0.14 -0.88 -0.07 0.27 0.14 0.09 -0.03 -0.21 -0.17
GP 42.7 0.01 0.49 0.00 0.04 0.01 0.00 0.01 0.02 0.01

Table 8: Summary of the outputs (rows) and the input variables (columns) to which they are sensitive, for the half-ellipsoidal model. Blank
spaces indicate no significant relationship. An increase in the input variable that results in an increase in the output is represented by an
upward pointing arrow and an increase in the input variable that results in a decrease in the output is represented by a downward pointing
arrow. Black arrows are for results from Section 3.3 and red arrows from Section 3.4.

Feature EPD ROT ISC gb gil gel git get gin gen
Type

min1V 1 ↓ ↑ ↓
angmin1 ↑ ↓ ↓ ↑
min1V 2 ↓ ↓ ↓ ↑
angmin1 ↑ ↓ ↓ ↑
min1V 3 ↓ ↓ ↑ ↑ ↑ ↓
angmin1 ↑ ↓ ↓ ↑
maxV 2 ↑ ↑ ↓ ↑ ↑
angmax ↓ ↓ ↑ ↑ ↓ ↓
maxV 3 ↑ ↑ ↓ ↑
angmax ↓ ↑ ↓
min2V 3 ↓ ↑ ↓
angmin2 ↓ ↑ ↓ ↑
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Table 9: PLS sensitivities of EPD outputs in the half-ellipsoidal model to the six bidomain conductivities, produced using mean values (Table
1) for ROT and gb. Values in bold indicate those inputs to which the output is particularly sensitive.

Feature EPD gil gel git get gin gen
Type

min1V 1 -0.32 0.59 0.04 0.39 -0.53 0.10
angmin1 -0.92 0.00 0.17 -0.06 0.57 -0.28
min1V 2 -0.48 0.49 0.04 0.40 -0.35 -0.04
angmin1 -0.83 -0.19 0.23 -0.22 0.59 -0.02
min1V 3 -0.42 0.64 0.06 0.43 -0.09 -0.44
angmin1 -0.49 -0.12 0.02 -0.46 0.23 0.62
maxV 2 0.80 -0.36 -0.07 -0.29 -0.94 0.75
angmax -0.66 0.09 -0.07 0.49 0.97 -0.87
maxV 3 0.53 -0.44 0.03 -0.26 -0.28 0.56
angmax 0.46 0.28 -0.22 -0.07 0.11 -0.46
min2V 3 -0.29 0.76 0.25 0.07 -0.27 -0.43
angmin2 0.55 0.40 0.17 -0.13 -0.44 0.55

3.5. Sensitivities of outputs to ratios of bidomain conduc-
tivities (only) in the half-ellipsoid model

We used the same design data as in Section 3.4, but
this time we looked at the sensitivity of the outputs, using
PLS regression, to ratios of the conductivities giq/geq(q =
l, t, n), and gil/git, gil/gin, gel/get and gel/gen. We found
(not presented) that a few outputs were sensitive to either
gin/gen or gil/gin, but that the most significant ratio was
gel/gen. The gel/gen ratio was positively correlated with
min1V, for all EPD types, negatively with maxV, and pos-
itively with min2V. It was also positively correlated with
angmax and angmin2, and negatively with angmin1 for
EPD type 3.

4. Discussion

One of the most significant findings of this study is the
change in the form of the EPD with ischaemic depth. The
ST segment EPDs have been characterised here as con-
sisting of three types that develop as ISC increases: type
1 (min1 only, located over the ischaemic region), type 2
(max over the ischaemic region, plus min1 over a bound-
ary) and type 3 (max over the ischaemic region, plus min1
and min2 over opposite boundaries).

A similar progression was identified in previous work
[17] in a slab model, with ST depression (type 1) and ST
elevation being very similar to types 1 and 3, respectively
(apart from the asymmetry here in min1 and min2). The
second case for the slab model consisted of a tripole of
three minima, where the central minimum was the largest
(i.e. closest to zero), whereas type 2 for both the half-
ellipsoidal model and the realistic model was just max plus
min1. Other studies [9, 7, 3], using realistic geometries,
have also identified the type 1 and type 3 scenarios found
in this study, but not the type 2 case. This is not sur-
prising as the ISC values of around 20%-30% where this

seems to occur were not presented, although ISC=25%
was described [7] as a ‘hybrid’ of low (<10%) and medium
(30%-50%) ischaemia.

The exact position of min1 in relation to the ischaemic
region, in the type 1 case, is not entirely clear. It appears
to be either partially or fully over the ischaemic region
(see for example, Figures 8-10(a)-(c) and Figure 4(a)). Its
position depends on the value of ISC, as that affects the
development of max and the movement of min1 to the
boundary of the ischaemic region. This is confirmed by
the correlation of ISC with angmin1 for EPD types 1 and
2 as well as with angmax for EPD type 2 (Table 7). This
would appear to make locating the ischaemic region diffi-
cult when ISC is low.

Another aspect of this change in EPD with ISC is the
asynchronous development of min1 and min2, found for
both the half-ellipsoidal and realistic models. Min2 ap-
pears later than min1 but may then increase more rapidly
so that for high values of ISC it can be stronger in magni-
tude than min1 for the half-ellipsoidal model (e.g. Figure
4(g)-(i), Table 2). To the best of our knowledge this has
not been mentioned explicitly in previous work; however,
two unequal minimums are shown in [3] (Figure 1B) and
[9] (Figure 2) and it is hinted at in the latter work when
it was stated that ‘ST depression along at least one side of
the ischemic patch increased with the degree of transmural
ischaemia’. The fact that min1 and min2 did not develop
independently in the slab model [17] is to be expected due
to the symmetry of the model.

The present study found, for the half-ellipsoidal model,
that the min1 only case (type 1 EPD), can occur for ISC up
to 35% (Section 3.3). Also an example of a type 1 EPD
was found for ISC=40% for the realistic model (Figure
10(d)). This is consistent with work for the slab model
[17] and modelling work by Potse et al. [3], which found
that min1 only EPDs can occur over a much wider range
than previously thought (up to ISC=30%-40%).
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Similarly the min1 plus max case (type 2 EPDs) was
found here to occur for ISC up to 46% for the half-ellipsoidal
model (Section 3.3) and in this case min1 has moved to the
boundary between the healthy and ischaemic tissue. This
is consistent with the conclusion of Hopenfeld et al. [7]
that for ISC ≥ 40% there is at least one area of ST de-
pression located at that boundary (i.e. min1 for type 2
EPD or min1 and min2 for type 3 EPD).

The sensitivity study to the nine inputs (Tables 7 and
8) found that the magnitudes of maxV and min2V increase
with increasing ISC, whereas this is not the case for min1V,
except for EPD type 3. This is consistent with the results
for the realistic model (Table 6) and with previous work
[9] that found increasing magnitudes for the maximum and
at least one of the minima with increasing ISC. Our sensi-
tivity study also indicated that none of the EPD features
is sensitive to the blood conductivity or transverse con-
ductivity values, which agrees with the findings a similar
study using a slab model [17].

The connection between increasing ISC and a clockwise
rotation of the EPD features was shown for the realistic
model’s three sets of plots (Figures 8-10) and more system-
atically for the half-ellipsoidal model (Table 8) and all of
the EPD features. This is consistent with similar system-
atic work using the slab model [17] and earlier work [9, 30]
considering a few scenarios in a canine heart. Previous
work [9, 19] has also identified the anticlockwise effect of
increasing fibre rotation on the form of the EPD, again for
a limited number of scenarios, and the systematic work
done here is in agreement with that, but only for min1
(Table 8).

Putting all this together might suggest applying the fol-
lowing diagnostic criteria to ST segment EPDs: a single
minimum (regardless of whether a maximum is observed)
indicates a low level of subendocardial ischaemia; on the
other hand, two minima (both of which are not near zero)
indicates a high level of subendocardial ischaemia. In the
latter case, the ischaemic region may be able to be located
in a similar fashion to transmural ischaemia, by consider-
ing the position of the maximum, which should be above
the ischaemic region, combined with the position of the
two minima, which should be along the borders of the is-
chaemic region. This is consistent with the experimental
study of Li et al. [5], which found depression over the
lateral borders of the partial thickness ischaemic region.

Based on the sensitivity studies carried out in this
work, we conclude that the effect of conductivity values on
the maximum and minima is minor, in comparison with
the effect of ischaemic depth and fibre rotation (Section
3.3 and Table 7). We also note that fibre rotation does
not affect max or min2, and while it affects the value and
position of min1, it does not affect its existence (Table 8),
so the above conclusions are expected to apply in spite
of the intrinsic variability that is found across the human
population.

However, experimental studies have shown [2] that the
situation is not so clear-cut as the above discussion might

imply. Cases that may cause difficulty are where the mag-
nitude of min2 is small compared with min1 despite ISC
being quite high. Here this occurs for the ‘mean’ realistic
model (Table 5) but not the ‘mean’ half-ellipsoidal model
(Table 2). The difference in the two models may be related
to differences in fibre rotation, since the value at which
min2 appears is higher for higher ROT, while, for fixed
ISC, increasing ROT increases the magnitude of min1 but
decreases the magnitude of min2 (Section 3.1.3). In addi-
tion, the above study [2] has demonstrated that ischaemia
that is not transmural, especially when the ST segment is
used for identification, is often not detected even on the
epicardial surface. The authors suggest that this may be
due to signal attenuation, masking from other ischaemic
sources or electrical anisotropy. This is in addition to the
fact that these results on the epicardium may not translate
directly to the body surface and therefore to the ECG.

Although we have shown that, for the half-ellipsoidal
model, the size and position (excluding near to the apex
and base of the ventricle) of the ischaemic region, the
width of the border zone between the healthy and ischaemic
tissue, and a parabolic represenation of the transmem-
brane potential, have little effect on the outputs to which
the inputs are sensitive, there still remain a number of
potential limitations in this study.

These include the shape of the ischaemic region, since
previous work [19], which compared rectangular, cylindri-
cal and semi-ellipsoidal ischaemic regions in the same half-
ellipsoidal model used in this work, using Clerc’s [31] con-
ductivities, found that the EPDs produced by the rect-
angular and cylindrical regions were very similar, whereas
the effect of the semi-ellipsoidal region was that min2 did
not appear until ISC was larger. Further research is neces-
sary to determine whether this is likely to have any effect
on the sensitivity of the outputs to the various inputs.

In an effort to match experimental studies [21], in this
work we have considered one particular new representation
for the transmembrane potential (Section 2.2), but this is
something that could be the subject of further research
[32], along with an examination of the effect of consider-
ing partial thickness ischaemia that is not subendocardial.
This is motivated by the findings of a study by Aras et al.
[2] that acute ischaemia arises throughout the ventricular
wall, rather than being limited to the subendocardium.
Another possible avenue of research involves investigating
the effect of using different conductivity values in the is-
chaemic and healthy regions. Finally, in order to connect
this work with changes in the ECG, it will be necessary
use a coupled realistic heart model and a torso model.

5. Conclusion

Using both a half-ellipsoidal and a realistic model of the
left ventricle, this work examined the development of ST
segment depression and elevation in the EPD, as subendo-
cardial ischaemic depth was increased. In addition, inputs
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to the model were systematically varied and it was deter-
mined that the EPD features were most sensitive to fibre
rotation and ischaemic depth.

Three possible EPD patterns were identified: a single
minimum that is located near or over the ischaemic region;
a maximum over the ischaemic region plus this minimum
near the boundary; and finally, this maximum with two
minimums at opposite sides on the ischaemic border. Us-
ing a wide range of inputs, it was found that the single
minimum scenario could be found for ischaemic depths of
up to around 35%, and the maximum plus one minimum
case up to around 45%. This may partially explain the
difficulties that occur when locating the position of low to
medium ischaemia, since the position of the single mini-
mum changes from over the ischaemic region to its border.
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