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Abstract 

In recent years, there has been a widespread deployment of submersible fluorescence sensors by water 

utilities. They are used to measure diagnostic pigments and estimate algae and cyanobacteria abundance 

in near real-time. Despite being useful and promising tools, operators and decision-makers often rely 

on the data provided by these probes without a full understanding of their limitations. As a result, this 

may lead to wrong and misleading estimations which, in turn, means that researchers and technicians 

distrust these sensors. In this review paper, we list and discuss the main limitations of such probes, as 

well as identifying the effect of environmental factors on pigment production, and in turn, the 

conversion to cyanobacteria abundance estimation. We argue that a comprehensive calibration approach 

to obtain reliable readings goes well beyond manufacturers’ recommendations, and should involve 

several context-specific experiments. We also believe that if such a comprehensive set of experiments 

is conducted, the data collected from fluorescence sensors could be used in artificial intelligence 

modelling approaches  to reliably predict, in near real-time, the presence and abundance of different 

cyanobacteria species. This would have significant benefits for both drinking and recreational water 

management, given that cyanobacterial toxicity, and taste and odour compounds production, are 

species-dependent.  
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1 Introduction 

Cyanobacteria are considered to be among the most interesting organisms for ecological and 

phycological studies (Beutler et al. 2003), in addition to being some of the oldest organisms on Earth. 

They are primary producers and some of them produce toxins and/or taste and odour compounds 

(Carmichael 2001, Schopf 1996, Waterbury et al. 1979). There is evidence to suggest that climate 

change may  increase the frequency and magnitude of cyanobacterial blooms (O’Neil et al. 2012). 

Submersible fluorescence sensors can rapidly provide an estimate of the biomass of algae, including 

cyanobacteria. Studies have shown that sensors correlate well with algal and cyanobacterial biomass 

measures in laboratory experiments, and thus they have been recommended as sensitive tools for real-

time in-situ water management (Bastien et al. 2011, Brient et al. 2008, Gregor and Maršálek 2004). 

However, there have been challenges with the calibration of these sensors, particularly in highly turbid 

environments, or when species composition changes rapidly, either spatially or temporally. The use of 

remote fluorescence instrumentation, combined with curve-fitting techniques, provides a possible 

means to determine the presence of different groups of algae in a sample (Hodges et al. 2017). The 

premise for this application, however, is that the fluorescence excitation spectra must be constant for 

each algal species (Beutler et al. 2002). This appears to be the case for algal groups, typically referred 

to by researchers studying algal fluorescence as green (chlorophytes), brown (predominantly diatoms, 

dinoflagellates and golden brown flagellates), or mixed algal assemblages (Beutler et al. 2002). 

However in the case of cyanobacteria (referred to as the blue group), the spectrum changes with 

environmental conditions (Beutler et al. 2003). This not only hinders the ability to differentiate different 

cyanobacterial species, but also undermines the reliability of such probes in estimating the total biomass 

of cyanobacteria. Therefore environmental and technological interferences need to be accounted for. 

This review examines environmental factors and technological limitations that can affect both the 

cyanobacterial spectra, and accurate measurement of biomass with commonly available in-situ 

fluorescence probes. If these factors can be accounted for, such tools would provide a more reliable 

means of monitoring blooms. In addition, the use of algorithms and models derived from fluorescence 

sensors’ data could be used to provide estimates about which cyanobacterial species are likely to be 

present, with links to the prediction of the risk of presence of toxins, or taste and odour compounds. 

This review firstly examines how environmental factors affect the pigment content of algal species. 

These factors complicate the conversion of probe readings to cyanobacterial biomass. Next, the 

technical constraints hindering an accurate reading, and inherent interferences made in the fluorescence 

measurements, are examined. The second part of the review assesses the feasibility of rapidly estimating 

the relative contribution of different species to the total biomass, as well as predicting toxin or taste and 

odour risks. Table 1 provides a list of the relevant literature analysed and cited based on the topic 

discussed. 

Table 1 - List of relevant references based on topic 

Topic Relevant literature cited 

Environmental 

interferences: 

Chlorophyll-a 

and 

Bryant (1982) 

Alpine and Cloern (1985) 

Everitt et al. (1990) 

Lee et al. (1995) 

Mackey et al. (1996) 



phycocyanin 

yields 

Henrion et al. (1997) 

MacColl (1998), Rapala (1998) 

Beutler et al. (2002) 

Beutler et al. (2003) 

Izydorczyk et al. (2005) 

Bryant (2006) 

Pemberton et al. (2007), Seppälä et al. (2007), Gregor et al. (2007) 

Brient et al. (2008), Randolph et al. (2008) 

Millie et al. (2010), Ziegmann et al. (2010), Richardson et al. (2010) 

Allan et al. (2011),  McQuaid et al. (2011), Erickson et al. (2011) Bastien et 

al. (2011) 

NSW Office of Water (2012), Chang et al. (2012), Zamyadi et al. (2012) 

Bowling et al. (2013), Horváth et al. (2013) 

Sobiechowska-Sasim et al. (2014) 

Kudela et al. (2015), Korak et al. (2015), Zieger (2015) 

Hodges (2016b), Zamyadi et al. (2016a) 

Hodges et al. (2017), Steiner et al. (2017), Kong et al. (2017) 

McBride and Rose (in press) 

Instrument 

limitations and 

opportunities 

Beutler et al. (1998) 

Beutler et al. (2002) 

Beutler et al. (2003) 

Gregor and Maršálek (2004) 

Seppälä et al. (2007), Pemberton et al. (2007), Gregor et al. (2007) 

Brient et al. (2008) 

Millie et al. (2010), Ziegmann et al. (2010), Richardson et al. (2010) 

Pobel et al. (2011), Bastien et al. (2011), Dennis et al. (2011), Pomati et al. 

(2011), Hashemi et al. (2011) 

NSW Office of Water (2012) 

Bowling et al. (2013), Horváth et al. (2013), Pomati et al. (2013) 

Sobiechowska-Sasim et al. (2014) 

Hamilton et al. (2015), Zieger (2015) 

Zamyadi et al. (2016a), Bowling et al. (2016), Hodges (2016b), Zhou et al. 

(2016) 

McBride and Rose (in press) 

Fluorescence 

measurement 

limitations 

Schreiber et al. (1995) 

Asai et al. (2001) 

Gregor and Maršálek (2004) 

Kostoglidis et al. (2005) 

Gregor et al. (2007), Seppälä et al. (2007) 

Brient et al. (2008), Sackmann et al. (2008) 

Millie et al. (2010) 

McQuaid et al. (2011), Bastien et al. (2011), Hashemi et al. (2011) 

Chang et al. (2012), Zamyadi et al. (2012) 

Bowling et al. (2013) 

Korak et al. (2015), Wang et al. (2015) 

Zamyadi et al. (2016a), Hodges (2016b), Bowling et al. (2016) Watson et al. 

(2016) 



McBride and Rose (in press) 

Estimating 

proportion of 

different algal 

groups, classes, 

species 

Gieskes et al. (1988) 

Everitt et al. (1990) 

Mackey et al. (1996) 

Henrion et al. (1997) 

Pinckney et al. (2001) 

Izydorczyk et al. (2005) 

Millie et al. (2010) 

Bastien et al. (2011) 

Zieger (2015) 

Kpodonu et al. (2016), Zamyadi et al. (2016a) 

van der Linden et al. (2017) 

Predicting taste 

and odour and 

toxicity risk 

Hawkins et al. (2001) 

Vézie et al. (2002) 

Rohrlack et al. (2008), Henderson et al. (2008) 

Everson et al. (2009) 

Chapman (2010), Ziegmann et al. (2010) 

American Water Works Association (2011), Bastien et al. (2011) Everson et 

al. (2011) 

Li et al. (2012) 

Leloup et al. (2013) 

Kong et al. (2014), Wert et al. (2014) 

Su et al. (2015), Wang et al. (2015), Korak et al. (2015) 

Bertone and O’Halloran (2016), Willis et al. (2016) 

Zamyadi et al. (2016a), (Zamyadi et al. 2016b), Watson et al. (2016) 

Pivokonsky et al. (2016) 

Relevant 

artificial 

intelligence 

modelling 

applications 

Jaynes (1957) 

Maier and Dandy (2000), Wallace and Hamilton (2000), Singh (2000) 

Tanyimboh and Sheahan (2002) 

Embleton et al. (2003) 

Castelletti and Soncini-Sessa (2007), Uusitalo (2007), Hamilton et al. (2007) 

Fenton and Neil (2008), Lee and Wentz (2008) 

Johnson et al. (2010) 

Mosleh et al. (2012), Chen and Pollino (2012) 

Bertone et al. (2015), Rigosi et al. (2015) 

Bertone et al. (2016a), Bertone et al. (2016b) 

 

2 Environmental interferences: Chlorophyll-a and phycocyanin yields 

The functioning principle for estimating algal and, more specifically, cyanobacterial biomass using 

fluorometry relies on the determination of diagnostic pigments, with a focus on chlorophyll a (chl-a), b 

and c and carotenoids, as well as phycobilins (such as phycocyanin and phycoerythrin). 

Chlorophyll a, measured by in situ fluorometry, is a proxy for total algal biomass, as it is easy to 

calculate, and it is universally present in both prokaryotic and eukaryotic algae (Millie et al. 2010). 

Values have also been derived from water reflectance data monitored by satellites (Allan et al. 2011) 

and, along with other spectral data, were used to differentiate between two key cyanobacterial species 



(Kudela et al. 2015). However, typically chlorophyll fluorescence does not provide information on the 

algal community composition (Ziegmann et al. 2010). The closest that can be achieved in terms of 

community differentiation is at the algal class level using a range of excitation and emission 

fluorescence spectra, e.g., for green algae. In addition, many studies (e.g., Bowling et al. (2013), Brient 

et al. (2008), Pemberton et al. (2007)), have not been able to establish a strong correlation between 

cyanobacterial biovolume and chl-a measured by in-situ fluorometry.  

Cyanobacteria contain phycobilisomes which absorb light in a different range to chl-a, i.e., between 

550 and 650 nm, expanding the range of wavelengths which may be available for photosynthesis 

(Bryant 2006, Korak et al. 2015). In particular, phycocyanin (PC) and phycoerythrin (PE) are two 

fluorescent phycobilisomes that can be used to quantify cyanobacterial biomass, with PC most 

commonly measured using on-line fluorescence probes. The advantage of using phycobilisomes is that: 

(1) they only occur in cyanobacteria, allowing differentiation from other algae; and (2) they fluoresce 

at higher wavelengths than dissolved organic matter (DOM), thus reducing interference from these 

compounds, provided quenching effects (discussed later) are accounted for. PC is generally preferred 

to PE because PC is produced by all cyanobacteria while PE is produced only by some species (Bryant 

1982, 2006). However, PE is more prevalent in benthic cyanobacteria because they have light 

absorption wavelengths aligned with the spectrum for bottom waters, due to differential absorption of 

light through the water column, resulting in blue-green light exposure (Korak et al. 2015, MacColl 

1998). Therefore PE could be useful for fluorescence probes specifically targeting benthic 

cyanobacterial detection.  

All cyanobacterial species have a specific range of chl-a and PC contents (i.e., quota) per cell (Brient 

et al. 2008, Richardson et al. 2010, Seppälä et al. 2007, Sobiechowska-Sasim et al. 2014), usually 

proportional to the cell volume (Brient et al. 2008), and have different ratios of pigments (Ziegmann et 

al. 2010). Average cell volumes can be estimated based on species by using tables, databases and 

calculators readily available online (e.g. (DELWP)). Such averages can be subject to variations, with 

previous studies finding cell volumes considerably lower than values that have been reported in such 

commonly used standard cell size tables, especially in summer and autumn (NSW Office of Water 

2012). Each cyanobacterial pigment has an excitation and emission spectrum, hence, based on spectral 

signature of a sample, it is possible to identify the different phycobilins and separate them from chl-a 

and other background signals (Seppälä et al. 2007). A summary table of pigment ratios, based on 

literature data, is provided in Mackey et al. (1996). Hodges (2016a) and Hodges et al. (2017), as well 

as Zamyadi et al. (2016a) also summarise several studies of pigment ratios for different species. 

Differences in pigment content and ratios arise because each species has a different cell size and 

geometry (Alpine and Cloern 1985, Lee et al. 1995). For instance, filamentous species, unlike 

unicellular species, might form dense clumps (especially in the field), producing nonlinear responses 

due to the surface cells absorbing a large portion of the light (Hodges 2016a). This is not always the 

case, however, since other studies involving blooms of filamentous species have shown a linear 

correlation between cyanobacterial biomass and PC fluorescence (Seppälä et al. 2007). Adding further 

complexity, pigment ratios within species are affected by light regimes, nutrients, physiological status 

(e.g. growth stage) and strain dominance, as well as other environmental conditions (Beutler et al. 2002, 

Mackey et al. 1996, Seppälä et al. 2007, Zamyadi et al. 2016a, Ziegmann et al. 2010). Therefore, 

although correlations between PC fluorescence and total cyanobacterial biovolume can be determined, 

they are usually applicable only to periods when there is a high proportion of cyanobacteria amongst 

the algal assemblage (e.g. Randolph et al. (2008); Brient et al. (2008), Hodges (2016a), McQuaid et al. 

(2011); Izydorczyk et al. (2005)). More sophisticated models are needed to account for the many 

potentially confounding factors that disrupt this relationship.  



Studies in the laboratory using traditional spectrophotometric analysis of cultures of Microcystis 

aeruginosa and Dolichospermum circinale have found the highest PC cell content during the 

exponential growth phase (0.004 and 0.018 RFU/cell respectively), with the content reduced by 50% 

during stationary phase (0.002 and 0.009 RFU/cell respectively) (Chang et al. 2012). Other studies have 

shown that PC only dominates in the latter stages of growth (Ziegmann et al. 2010). This is consistent 

with Gregor et al. (2007), who determined that older cells have higher PC fluorescence. Other studies 

have found that the PC content is lowest when cyanobacteria growth rates are highest (Lee et al. 1995). 

Hence there is no agreement between studies on when PC content is likely to be higher, suggesting 

species and methodological differences in PC quotas. In addition, it is important to take into account 

the relationships between PC extraction efficiency and cyanobacteria concentrations, with previous 

studies showing how the PC/chl-a ratio often decreases in more diluted samples (Horváth et al. 2013). 

Light history is also an important factor affecting pigment content of algae, including cyanobacteria 

(Erickson et al. 2011). PC content is often higher following exposure to low light (Gregor et al. 2007). 

This is because in low light environments, cells accumulate photosynthetic antenna pigments to allow 

them to capture more light, whilst when light is not limiting, the photosynthetic pigments are reduced 

to prevent excessive excitation energy and cell damage (Seppälä et al. 2007). Under high light 

intensities, non- photochemical quenching also occurs, leading to lower pigment fluorescence (McBride 

and Rose in press). These findings are also in line with Beutler et al. (2003), who showed that PC/chl-

a ratios were higher at lower light intensities. Hence, in periods of high light intensity, surface 

cyanobacteria may produce less PC, and thus a fluorometric probe reading could underestimate the 

cyanobacteria biomass. To avoid the issue, only night readings can be considered, while disregarding 

daytime measurements (McBride and Rose in press).  

Despite these findings, there does not seem to be agreement on the effect of light intensity on PC 

production (Zamyadi et al. 2016a), with several other studies not finding any significant effect related 

to previous light exposure (Beutler et al. 2002, Brient et al. 2008, Zamyadi et al. 2012). Other studies 

have measured an increase in the fluorescence signal following exposure to ambient light compared to 

dimmed ambient light (Zieger 2015). Ambient light was also shown to result in higher PC yields for 

Aphanizomenon sp. (Hodges 2016a), recently renamed to Chrysosporum sp. Differences in PC content 

can also be found between natural and artificial light, suggesting that culture studies in the laboratory 

may lead to inaccurate results depending on the light intensities and spectra of the light source (Brient 

et al. 2008). The effect of irradiance seems to also be species-specific (Hodges 2016a), with the 

characteristic chl-a/marker pigment ratios affected by the history of light exposure (Everitt et al. 1990).  

Nutrients can affect the pigment content of cells. For instance, a lack of nitrogen can lead to PC 

degradation in cyanobacterial cultures (Rapala 1998). Beutler et al. (2003) found that increasing 

phosphate and nitrate concentrations increased the PC/chl-a ratio in cyanobacteria. PC can also be 

released into the water during blooms, then rapidly degraded (Izydorczyk et al. 2005, Steiner et al. 

2017). Differences between in-situ and laboratory experiments have also been noted, although some 

studies have found high similarity (Bastien et al. 2011, Brient et al. 2008, Hodges 2016a, Kong et al. 

2017).  

There are opportunities to estimate cyanobacteria composition from fluorescence emission spectrum 

patterns. Henrion et al. (1997) asserted that although the intensity of the fluorescence spectrum can 

change due to some of the factors outlined above, the pattern of the fluorescence spectrum does not 

change; thus principal component analysis of excitation-emission matrices (EEM) of surface water can 

be used to identify the cyanobacterial composition of the sample. Nevertheless, measuring EEM is time 

consuming (Ziegmann et al. 2010), compared to in-situ fluorescence probes. 



3 Instrument limitations and opportunities 

As outlined in Millie et al. (2010), the use of in-situ spectrometers and fluorometers has become 

common practice for water monitoring programs. In vivo fluorometers typically work by using a LED 

light source associated with a given volume of water in front of the optical window, and measuring the 

emitted fluorescence from excitation of phytoplankton cells using a detection filter located 

perpendicularly to the excitation source. Spectrofluorometric probes, through real-time monitoring, are 

a useful tool to detect rapid spatiotemporal changes in cyanobacterial biomass, compared to 

conventional low-frequency sampling (Hamilton et al. 2015, Pobel et al. 2011). In terms of accuracy, 

in-vivo fluorescence is typically less precise than extracted in vitro fluorescence (McBride and Rose in 

press), and fluorometric and spectrofluorometric methods are more sensitive than spectrophotometric 

measures (Millie et al. 2010, Sobiechowska-Sasim et al. 2014). Zamyadi et al. (2016a) have reviewed 

the available information on in-situ fluorescence instrumentation for cyanobacterial detection. 

Fluorometric probes can have a number of advantages compared to other methods, e.g. online real-time 

lake profiling, and can provide a good estimate of the total cyanobacterial biovolume (Bowling et al. 

2016). Despite this, the readings are affected by several interferences, and so far they cannot identify 

specific species (Zamyadi et al. 2016a). In addition, previous studies found that probe accuracy 

decreases when determining cell densities, rather than biovolume, due to the presence of heterogeneous 

mixtures of species with different cell sizes (Bastien et al. 2011, Bowling et al. 2016). Furthermore, the 

probes require reliable cleaning systems to guarantee consistent levels of accuracy and reliability over 

time (Brient et al. 2008, NSW Office of Water 2012). Some probes have also been found to be unable 

to detect fluorescence below certain lower thresholds (e.g. 2.6 µg/L (Hodges 2016a)). Some sensors 

also consistently underestimate cyanobacterial biomass (Bastien et al. 2011). 

Issues can also arise due to the limitations of the manufacturer’s machine calibration, which is typically 

performed using cell counts of a specific cyanobacterial species, e.g. Microcystis aeruginosa. Such 

species-specific calibration can be of limited use in any waterbody where a mix of species is present 

(Bowling et al. 2013, Hodges 2016a). One problem that needs to be overcome is the lack of proper 

laboratory-based PC determination methods, due to low PC extraction efficiency (Seppälä et al. 2007). 

More recently improved extraction methods have been demonstrated (Horváth et al. 2013). Calibration 

with different algal species with a range of biovolumes is recommended, as performed in Brient et al. 

(2008). Alternatively, a mixed assemblage, representative of the monitored site, can be used to relate 

fluorescence to a site-specific biovolume (McBride and Rose in press). 

Several fluorescence devices have been developed in an attempt to characterize the species composition 

of algal/cyanobacterial samples (see Ziegmann et al. (2010)). Five different wavelengths were used by 

Beutler et al. (1998) in order to mathematically estimate the composition based on the antenna pigments 

of the five main groups of algae, with further studies building from those findings (Beutler et al. 2003, 

Beutler et al. 2002, Gregor and Maršálek 2004). Some studies have found that this approach 

underestimates cyanobacterial concentrations under certain conditions (Pemberton et al. 2007). Other 

in-situ multi-wavelength fluorometric devices have been proposed (Beutler et al. 2002, Richardson et 

al. 2010). Using several wavelengths covering the excitation spectra for the main pigments present in 

major groups of phytoplankton can be suitable to monitor natural phytoplankton communities which 

have variable composition spatially and temporally (Gregor and Maršálek 2004); however, if focusing 

on cyanobacteria only, production of PC and other pigments is affected by several factors, such as 

nutrients and light, so these spectra could be expected to differ with spatial-temporal variations (Beutler 

et al. 2002). This implies that more work is necessary to compensate the readings for these factors and 

make such probes more reliable. Additionally, in-situ instrumentation to simultaneously measure the 



parameters causing the variability (e.g. water temperature, turbidity, etc.) would be required to correct 

the readings. 

Fluorescence synchronous scans (SyncScans) were used by Ziegmann et al. (2010) as an alternative, 

faster, on-line method, to determine whether the age of cyanobacteria affects the fluorescence spectrum. 

The downside of using specific wavelengths is that certain cyanobacterial pigments have maxima at 

slightly varying wavelengths, often varying with the age of the cells (Ziegmann et al. 2010). There is, 

in fact, evidence that some signal overlaps can occur at wavelengths > 660 nm (Seppälä et al. 2007). 

Furthermore the peak wavelength of the PC emission spectrum seems to vary slightly based on species 

(Beutler et al. 2003, Beutler et al. 2002, Gregor et al. 2007, Seppälä et al. 2007). This is because the 

spectroscopic properties change based on the cellular content and abundance of phycobiliproteins, and 

the number and type of phycobilin chromophores (Seppälä et al. 2007).  

Some probes are more effective at dealing with the issue of pigment wavelength variability than others, 

due to a broad wavelength bypass (e.g. 640-680 nm). The downside of this is that it can lead to greater 

incidence of interferences and false positives, as described below (Section 4). The selection of the 

optimal optical window is therefore challenging. Spectral studies with pure cultures or representative 

cyanobacterial species should be performed before defining the optimal optical window for a certain 

location and/or purchasing a particular commercial probe (Seppälä et al. 2007). This approach was used 

by Zhou et al. (2016) to determine the optimal wavelength for a particular cyanobacterial research 

application. 

Flow cytometers can provide estimates of cell counts as well as morphology of different algal species, 

and some of these can be used in-situ (Dennis et al. 2011, Pomati et al. 2011, Pomati et al. 2013). Flow 

cytometers, combined with fluorescence excitation spectra, have been considered as a potential means 

for rapidly distinguishing between different algal groups (Hilton et al. 1989). Additionally, recently 

microflow cytometers have been developed (Hashemi et al. 2011), as well as prototype devices 

combining a microflow cytometer and a multi-channel fluorometer, to allow for distinction between 

cyanobacteria and other algal phyla by exciting them at different wavelengths (Zieger 2015). Another 

opportunity consists of modifying current spectrofluorometers for flow-through applications, but they 

are rarely available or used, as they are currently not sufficiently sensitive, nor robust or cheap (Seppälä 

et al. 2007). 

4 Fluorescence measurement limitations 

Given that chl-a and PC emission wavelengths are similar (685 and 650 nm respectively) for probes 

with a broad wavelength bypass (e.g. ± 20 nm), this might cause false detections of cyanobacterial cells 

(see Zamyadi et al. (2016a)). This has been deemed to be the main source of interference by some 

studies (Zamyadi et al. 2016a), but negligible by others (Bowling et al. 2013). Narrower bandwidths 

would be required; this can be achieved by using higher quality sensor materials for the sensors’ glass 

and filters, which however are associated with higher costs (McBride and Rose in press). A 

simultaneous monitoring of eukaryotic algal fluorescence could help deal with the spectra overlap 

(Gregor et al. 2007), and the development of ad-hoc instrumentation with different excitation 

wavelengths could help to account for interference due to eukaryotic algae (Asai et al. 2001).  

Studies using a submersible fluorescence PC probe have also shown that turbidity >50 NTU can make 

fluorescence in-situ PC measurements ineffective (Bowling et al. 2013). Turbidity is typically due to a 

combination of algae and non-algal suspended particles, hence a proper calibration model accounting 

for the interaction between the two variables is needed (Bowling et al. 2013). The causal agent of the 



turbidity is also to understand as different sources have different levels of interference with fluorescence 

readings. For example, in a previous study where sieved soil of a specific different grain size was 

gradually added to a cyanobacterial culture, small particles (≤ 0.1 mm) decreased the fluorescence 

reading by 12.3% at a concentration of 0.1 g/L, while large particles (0.3 mm) reduced the reading by 

less than one-half, to 5.9%, at the same concentration (Brient et al. 2008). In general, simultaneous 

measurement of PC, chl-a and turbidity is recommended in order to account for these errors (Gregor 

and Maršálek 2004) and allow for the development of real-time compensation models. 

Cyanobacterial colonies can emit less fluorescence per cell than solitary cells because the probe 

excitation beam does not access cells in the inner regions of the colony, and because of scattering of 

light (Bowling et al. 2013, Gregor and Maršálek 2004, Hodges 2016a). Large colonies might also lead 

to noisy fluorescence signals and broader confidence levels (Seppälä et al. 2007). This was 

demonstrated with Microcystis colonies (Chang et al. 2012), although in other studies (McQuaid et al. 

2011) it was stated that in vivo PC fluorescence might overestimate cyanobacterial abundance when 

biovolumes are high. Some studies have found that a better correlation between PC fluorescence and 

biomass could be achieved at higher rather than lower cyanobacterial concentrations (Gregor et al. 

2007). In order to avoid saturation of the PC fluorescence signal during blooms, researchers have 

experimented with technological modifications to the probe; for instance Brient et al. (2008) have fitted 

a shutter to reduce the probe’s emitted signal, and thus increased the fluorescence signal by six times 

without affecting linearity. However, there has been little work to specifically examine the effect of 

colonial cyanobacterial on fluorescence measurements (Hodges 2016a).   

Species morphology may also lead to a heterogeneous distribution of cells (Hodges 2016a) causing 

inaccuracies in the results. Ultrasonic devices, coupled with fluorometers, have been proposed as a 

mechanism to disaggregate colonies, and bring about a relatively homogeneous cell distribution 

(Bastien et al. 2011). Additionally, PC can be produced from lysis of cyanobacterial cells, or from 

cyanobacterial picoplankton not identified by microscopy (Brient et al. 2008). This may explain why 

fluorescence probe readings may be better correlated with species with larger cell sizes compared with 

smaller ones (Bowling et al. 2016). Some tools, such as microflow cytometers, are able to detect and 

characterize picoplankton (Hashemi et al. 2011) and thus could potentially be used in combination with 

conventional PC fluorescence probes to correct the readings of the latter.  

A number of correction techniques have been proposed for certain fluorescence PC probes (Zamyadi et 

al. (2016a). They include a correction for biases due to chl-a resulting from other phytoplankton, and 

turbidity when estimating the abundance of a specific species (Microcystis aeruginosa) (Chang et al. 

2012, Zamyadi et al. 2012). Additionally, corrections can be made for variations in cyanobacterial 

biovolume, cellular agglomeration and particle size, assuming spherical colonies and uniformly 

distributed cells (Chang et al. 2012). By applying these models together the error was reduced by over 

90% (Zamyadi et al. 2016a). In addition, the sensor manuals for the same probe stated that (1) 1 ng L-1 

of chl-a causes an interference of 77 cells mL-1 of falsely detected cyanobacteria, and (2) for each NTU 

of turbidity (i.e. non-fluorescent particles), the related scattering effect would be equivalent to 21 cells 

(Zamyadi et al. 2016a). However, this very precise specification appears to oversimplify the 

quantification of such interferences, as these, for instance, would be likely dependent on cyanobacteria 

species and the composition relating to agents generating turbidity.  

Other sources of interference include water temperature, with warmer waters reducing fluorescence 

(Hodges 2016a), and the presence of benthic algae (Zamyadi et al. 2012) which are reportedly difficult 

to quantify (Watson et al. 2016). There are, however, certain probes suitable for detection of benthic 

algae (Brient et al. 2008). In terms of boundary effects, it is also important to account for a potential 



decrease in signal next to a boundary, i.e., bottom or sides of bottles. This effect has been identified in 

previous work (Brient et al. 2008), although in other studies, sediments did not create interferences 

(Hodges 2016a). Coloured dissolved organic matter (cDOM) with similar fluorescence properties to PC 

and chl-a can  also interfere with analyses (Millie et al. 2010), greatly increasing the light attenuation 

in the water column (Kostoglidis et al. 2005) and thus in turn affecting pigment yields. The presence of 

humic substances can also create a fluorescence output causing an over-estimation of chl-a, especially 

when chl-a concentrations are low (Gregor and Maršálek 2004). Other studies have reported that 

interferences with DOM lead to severe quenching of phycobiliprotein fluorescence (Korak et al. 2015), 

requiring modelling of nonlinear relationships between concentrations and fluorescence. Wang et al. 

(2015) demonstrated that some DOM components (specifically, protein-like compounds) can be 

quenched by other DOM components (humic-like compounds), making it difficult to quantify and 

account for this effect. Some of the existing multi-wavelength fluorescence probes have, however, 

incorporated diodes emitting light around the 370 nm value, in order to excite, and automatically adjust 

for, the presence of DOM (Gregor and Maršálek 2004). 

Irradiance affects the so called fluorescence quenching and is associated with a reduction of the 

maximum fluorescence yield. For instance, the ratio between fluorescence and chl-a could present a 

variation as high as 10-fold when in-vivo fluorescence measurements are normalised to concentrations 

of extracted chl-a (as explained in  Sackmann et al. (2008) who based the variation estimate on previous 

studies). In in-vivo experiments, fluorescence variations can occur due to different mechanisms, 

complicating a straightforward assessment (Schreiber et al. 1995). Two types of fluorescence quenching 

exist, being (1) photochemical, and (2) non-photochemical fluorescence (Sackmann et al. 2008, 

Schreiber et al. 1995). The latter represents, in general terms, the decrease in fluorescence quantum 

yield (Sackmann et al. 2008). The systematic reduction of fluorescence signal vs chl-a ratio with high 

solar radiation can be generally termed as daytime fluorescence quenching; such fluorescence signal 

reduction can be as high as 80% in surface waters in summer and can be present at depths greater than 

50 m in coastal waters (Sackmann et al. 2008). Interestingly, Sackmann et al. (2008) found correlations 

between quenching and solar radiation very similar to relationships from previous research conducted 

elsewhere.  This means that there would be potential for the development of a “universal” compensation 

model to account for this phenomenon.   

5 Estimating the proportion of different cyanobacteria species 

Techniques and algorithms need to be developed to estimate the composition and quantity of different 

groups of algae, or more specifically, between different cyanobacteria species in field samples (Millie 

et al. 2010) and as part of sediment cores (Kpodonu et al. 2016), because PC sensors per se cannot 

provide insight into cyanobacterial species differentiation or toxin content (Bastien et al. 2011, 

Izydorczyk et al. 2005). Algorithms, such as three-way principal component analysis, have previously 

been used to determine algal groups (Henrion et al. 1997), where five mono-species cultures were used, 

representative of the different main groups of phytoplankton (i.e. chrysophytes, cryptophytes, 

chlorophytes, diatoms and cyanobacteria). However, the analysis was based on excitation-emission 

matrices from data collected with laboratory instrumentation. Two decades ago, the computer program 

CHEMTAX was developed to estimate the relative abundance of certain algal groups based on 

measurement of chl-a and other carotenoid pigments using wavelengths in the visible spectrum, high 

performance liquid chromatography (HPLC) (Mackey et al. 1996) and factor analysis. This was re-

applied in later studies (Pinckney et al. 2001). This method is more accurate than field-based methods, 

but time consuming, and relies on good-quality data and consistent ratios between pigments. 

CHEMTAX was based on previous work where phytoplankton classes were estimated from specific 

ratios between chl-a and other pigments, through multiple regression analysis (Everitt et al. 1990, 



Gieskes et al. 1988). This continues to be a widely used method throughout the world but cannot be 

applied to data collected remotely from sensors, as it relies on HPLC and spectrophotometric detectors. 

More recently, different algal phyla have been characterised spectrally, and a prototype monitoring tool, 

working at different wavelengths (initially, 12 LEDs, to excite all of the most important algal pigments) 

was developed. It is able to distinguish the presence of cyanobacteria compared to different algal phyla, 

following principal component analysis (Zieger 2015). In this case, several pigments were considered 

in order to characterize each algal phyla, given the ability of the sensor to work at several wavelengths 

and excite each specific pigment. The use of this technique requires the deployment of monochromatic 

light to avoid the excitation of multiple pigments at the same time (Zamyadi et al. 2016a, Zieger 2015), 

and as a consequence this can lead to the underestimation of pigment content, especially due to the 

potential for variations in fluorescence peaks between different phyla or even species, as mentioned 

previously.  

If the focus is only on cyanobacteria, a simpler approach can be developed that relies only on the PC 

reading, through a risk assessment/scenario analysis approach. In this case the PC reading is 

transformed into hypothetical cell counts of different cyanobacterial species, based on PC cell quota 

estimates found in the literature (van der Linden et al. 2017). Despite the fact that the method does not 

directly infer the species present in the sample, it deploys a “worst-case scenario” approach, providing 

an early warning trigger of the need for more intensive monitoring. The PC cell quota estimate still 

needs to take into account the background environmental conditions since, as described above, these 

affect pigment content.  

6 Predicting taste and odour, and toxicity risk 

Although the main purpose of fluorescence probe readings is to trigger monitoring and management 

actions based on estimated cell counts, there is potential to use them also for the estimation of taste and 

odour (T&O), or toxin production risk (Zamyadi et al. 2016a). For example, if the likelihood of the 

presence of different cyanobacteria species could be estimated, models could then be developed to link 

the number of cells with the toxin (or T&O) cell quota values (Zamyadi et al. 2016a). In their review, 

Watson et al. (2016) provided a list of the estimated geosmin and 2-Methylisoborneol (MIB) production 

per cell of different cyanobacterial species, also citing several studies outlining how such production is 

itself affected by factors such as light, temperature or nutrients (see also Rohrlack et al. (2008); Li et al. 

(2012), Su et al. (2015)). Geosmin production has also been linked both positively and negatively to 

chl-a production, as outlined in Watson et al. (2016). It is known that geosmin is produced mostly by 

Nostocales and Oscillatoriales species, while MIB is produced by some Oscillatoriales (Chapman 

2010), although less than 3% of known cyanobacteria species have been confirmed to be able to produce 

MIB and/or geosmin (American Water Works Association 2011).It should also be acknowledged that 

T&O is also produced by a range of bacterial species, which can confound estimates based on 

fluorescence (e.g. Jørgensen et al. (2016)).  

Previous studies linked the fluorescence intensity recorded by an in-situ PC probe to the T&O 

compound levels (especially MIB) caused by Pseudanabaena (Zamyadi et al. 2016b). Similarly, other 

studies linked the production of geosmin and MIB to specific cyanobacteria species and noted a 

correlation between T&O peaks and spikes in PC signal as measured by  an in-situ fluorescence probe 

for total algae (Bertone and O’Halloran 2016). These correlations would change remarkably in cases 

where the dominant species changes or where there is a mixture of different species with different T&O 

production yields. Thus the development of a T&O predictive model based on fluorescence readings 

should rely on a cyanobacterial species prediction model, and on T&O concentration data for different 



species; unless site-specific models are developed that are predicated upon the assumption that the same 

dominant cyanobacterial species are present at any given point in time.  

In terms of cyanobacterial toxin content, Ziegmann et al. (2010) linked the amount of toxins produced 

and released by a laboratory culture of Microcystis aeruginosa to different stages of growth using 

different maxima of a fluorescence excitation-emission matrix. They found that a signal at wavelengths 

of 315 nm (excitation) and 396 nm (emission), i.e. presumably protein-like substances, may be a useful 

indicator of cyanobacterial toxin levels. It may be difficult, however, to correctly measure the protein-

like DOM due to quenching effects by other DOM components (Wang et al. 2015). Other studies have 

not been able to successfully correlate concentrations of cyanotoxins and cyanobacterial biovolume to 

in vivo PC fluorescence (Bastien et al. 2011). Additional complications in the development of a toxin 

prediction model for a reservoir are that: (1) toxin production is related to the species and in particular 

to the cell size (Hawkins et al. 2001); (2) strains vary in their toxin cell quotas, e.g. Cylindrospermopsis 

raciborskii (Willis et al. 2016); (3) nutrients such as nitrogen and phosphorus differentially affect the 

growth of toxic and non-toxic strains of cyanobacteria (Vézie et al. 2002); and (4) the breakdown rate 

of toxins can be influenced by depth-specific factors such as light, water temperature, salinity, nutrients 

or oxygen (Everson et al. 2009, Everson et al. 2011), and thus changes in depth may lead to decoupling 

between cyanobacteria concentrations and toxin concentrations.  

Both toxins and T&O compounds are components of algogenic organic matter (AOM). AOM is 

typically released by certain species of cyanobacteria and other algae as a by-product of photosynthesis 

(Pivokonsky et al. 2016), and its composition depends in turn on growth phase, species, age, and nutrient 

status (Henderson et al. 2008, Kong et al. 2014, Leloup et al. 2013). In general, the presence of AOM 

is difficult to quantify as it is typically much lower than the background DOM (Wert et al. 2014). Hence 

it has been suggested that variations in fluorescent DOM readings could help in understanding AOM 

release (Korak et al. 2015), provided the remaining DOM amount does not change.  

7 Discussion 

Figure 1 schematically summarises the findings of this review by representing how both the measured 

pigment readings, using either fluorescent probes or measured pigment amounts, are affected by a 

number of environmental variables that either cause interference or change the yield. Interestingly, 

cyanobacteria concentration and species greatly affect both the actual pigment concentrations, and the 

ability to correctly monitor them with fluorescent probes.  



  

Figure 1 – A summary of parameters affecting chl-a and PC concentrations and their measurements. 

Green arrows indicate that the input positively affects the output (i.e., an increase in the input value 

implies an increase in the output value), red arrows imply that the input negatively affects the output 

(i.e., an increase in the input value implies a decrease in the output value), and blue arrows represent an 

unspecified link (i.e., there is insufficient, or contrasting, evidence in the literature regarding the way 

the input affects the output). 

 

In-situ PC fluorometry has been recommended as a cyanobacterial bloom management tool in certain 

regions of the world, e.g. Australian locations (NSW Office of Water 2012). Importantly, several factors 

can affect the accuracy and reliability of in-situ fluorescence probes, and a large body of research work 

has been conducted globally to quantify the effects of a number of these parameters. However, no study 

has yet been conducted which simultaneously quantifies the effects of most, if not all, of these variables 

to enable to correct measured chlorophyll and PC fluorescence values, and in turn quantify abundance 

and species of cyanobacteria. If such a comprehensive dataset can be developed, there would be 

potential to develop a predictive model providing the probability of having different cyanobacteria 

species in a reservoir, based on corrected readings of commercially available in-situ fluorescent PC and 

chl-a probes. To increase accuracy, such a model could also rely on other regularly monitored data (e.g. 

water temperature, nutrients, time of the year) and site-specific historical data of cyanobacterial species 

prevalence under different environmental conditions. A large amount of research work has been 

undertaken around the world to predict cyanobacteria blooms (which is out of the scope of this review 

– for information see e.g. Oliver et al. (2012)), and thus this knowledge and historical site-specific data 

could be incorporated in the proposed model. 

In recent decades, artificial intelligence has been used in several applications, especially in the water 

industry, to solve complex problems. Modelling techniques, such as artificial neural networks, have 

been extensively applied and have enabled the optimization of water resource management (Maier and 

Dandy 2000), while a variety of data-driven or hybrid models have been developed to leverage remote 
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sensors and historical data by achieving water treatment operation optimisation and cost savings 

(Bertone et al. 2015, Bertone et al. 2016b).  

Pattern recognition is another technique which would also potentially suit the proposed research goal, 

as it could enable the decomposition of a “signal” (i.e. total chl-a and PC measurements of a field 

sample) into chl-a and PC contributions from different species. An early application of pattern 

recognition for classification of different phytoplankton species (including cyanobacteria) is 

represented by the work of Embleton et al. (2003), with the models able to classify the four different 

predominant species of a Northern Ireland lake, based on microscopy images of the samples. A very 

similar modelling attempt was performed later by Mosleh et al. (2012). Similarly, CHEMTAX 

represents an early attempt at algal class level classification; but it does not rely on in-situ fluorescence 

probes or fully account for interferences. Based on this review, it is argued that artificial intelligence 

approaches combined with a well-designed set of experiments and a large amount of site-specific 

historical data, would allow the development of a similar model, but that may further allow 

classification of cyanobacteria species based on in-situ data only (Figure 2). 

 

Bayesian Networks (Fenton and Neil 2008) are also commonly used for risk assessment and analysis 

and have been also widely deployed in the water resource management area (Bertone et al. 2016a, 

Castelletti and Soncini-Sessa 2007). There are  applications in the cyanobacterial bloom management 

field (Johnson et al. 2010). Bayesian Networks represent a modelling candidate for this research 

problem due to their ability to deal with missing data and uncertainty, through the use of conditional 

probabilities and the integration of experts’ opinion into the network (Chen and Pollino 2012, Uusitalo 

2007). Outputs from other models that can provide insights on the mechanisms causing and governing 

blooms (e.g. Wallace and Hamilton (2000)) can also be incorporated. Although Bayesian Networks 

have been applied to determine the probability of cyanobacterial blooms (Hamilton et al. 2007, Rigosi 

et al. 2015), they have not been developed in order to predict the likelihood of the presence of different, 

distinct algal groups or cyanobacteria species based on sensor data. 

The entropy theory, specifically maximum entropy modelling, could also be used for this purpose. In 

simple terms, the principle of maximum entropy states that, among a number of potential combinations 

of modelling outputs satisfying all a system’s constraints, the best solution is the one maximising the 

Shannon entropy (Jaynes 1957). In terms of cyanobacterial species classification, it can be seen that a 

number of solutions (e.g. probability and numbers of different species) would exist that satisfy the same 

set of constraints (e.g. sum of species-specific PC signals must equal the total PC signal as per probe 

reading). Hence, maximum entropy modelling would facilitate the identification of the true solution. 

Entropy theory has been applied to several environmental and water resource problems (Singh 2000). 

For instance, Tanyimboh and Sheahan (2002) used maximum entropy principles to identify the best 

water distribution system design in order to optimise the balance of cost and reliability. Another 

example is given by Lee and Wentz (2008), who used a Bayesian Maximum Entropy approach to 

assimilate soft data and better predict spatial water use variability. However, there is limited evidence 

of applications in the water quality field, and in particular for cyanobacteria prediction or management.  

In conclusion, all the proposed modelling approaches are valuable options in achieving the goal of data-

driven cyanobacterial species classification prediction; the optimal model can be selected based on 

features of available data, or from a direct comparison of prediction accuracy over a test set of data. 

Regardless of the model choice it is evident that modelling options exist to potentially achieve such 

research goals. 



 

  

Figure 2 – Graphical conceptual representation of a cyanobacterial species classification model 

8 Conclusions 

In this review paper we identified both impediments and opportunities for using online remote 

fluorescence probes for accurate and reliable monitoring of cyanobacteria in reservoirs. The technology 

has become cheaper and more accessible over time, but we have highlighted a number of environmental 

and technological impediments affecting the reliability of probe readings. We argue that unless these 

interferences and variability in pigment production are accounted for in a comprehensive calibration 

model, many of these probes provide unreliable information about cyanobacterial densities or 

biovolume, and little or no information about species. 

On the other hand, research has shown that it is possible, in most cases, to quantify how those variables 

and processes affect the estimation of cyanobacterial species and abundance. Starting from a specific 

location, it is possible to conduct experiments to calibrate the readings to most of the conditions at that 

location. In addition, there is potential to use such experimental outputs, combined with literature data, 

as inputs to a complex predictive model. This would potentially combine pattern recognition algorithms 

and Bayesian Networks, to provide the likelihood of occurrence and biomass estimates of different 

cyanobacterial species, based on real-time fluorescence probe readings and other remotely collected 

data. Based on the predicted species, the risk of toxins, or taste and odour compound concentrations 

could also be estimated, thus assisting water resource managers and operators to be more effective and 

proactively manage cyanobacteria-related issues related to recreational and drinking water. 
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