
Constraint-Guided Local Search for Single
Mixed-Operation Runway

Vahid Riahi, M A Hakim Newton, and Abdul Sattar

Institute for Integrated and Intelligent Systems (IIIS)
Griffith University, Australia

{vahid.riahi}@griffithuni.edu.au

{mahakim.newton,a.sattar}@griffith.edu.au

Abstract. Aircraft sequencing problem (ASP) is to schedule the oper-
ation times of departing and arriving aircraft such that their deviation
from the desired operation times are minimised. There are two types
of hard constraint which make this problem very challenging: time win-
dow constraint for the operation time of each aircraft, and minimum
separation time between each pair of aircraft. ASP is known to be NP-
Hard. Although some progress has been made in recent years in solving
ASP, existing techniques still rely on generic algorithms that usually lack
problem specific knowledge. This leads to either finding low quality solu-
tions or scrambling with large-sized problems. In this work, we propose
a constraint-guided local search algorithm that advances ASP search by
injecting the specific knowledge of the problem into its different phases.
In the intensification phase, we propose a greedy approach that gives
more priorities to aircraft that are more problematic and create more
delays. In the diversification phase, we employ a bounded-diversification
technique that controls the new position of each selected aircraft and
does not allow them to move very far away from their current positions.
Computational results show that the proposed algorithm outperforms
the existing state-of-the-art methods with considerable margin.

Keywords: Aircraft Scheduling · Constraints · Local Search.

1 Introduction

Air transport has significantly developed over the last few decades with the in-
crease of the demand for the air travelling and freight services. In Australia, 58.93
million passengers travelled by aircraft in 2016, which was 2.5% more compared
to that in 2015 [1]. In this situation, air transport systems may face congestion
and some have already reached their capacity limits; which causes many prob-
lems including flight delays. In Europe in March 2015, 7% more departing flights
were delayed by about 4 more minutes compared to that in March 2014 [4].

To overcome such problems and to keep pace with this demand, one possible
solution could be to increase the airport capacities by building more runways.
However, this process needs availability of the space and more importantly, the

2 Riahi, Newton, Sattar

huge investments. For example, Brisbane airport is constructing a new parallel
runway; which is expected to take 8 years and AU$1.35 billion investment [2]. It
has been showed that operational delays at a major US airport can be reduced
up to four hours a day by optimising aircraft landing and takeoff sequences [8] .
These results highlight the importance of the aircraft sequencing problem (ASP)
and therefore ASP algorithms. By producing optimal or near-optimal sequences
of aircraft, these scheduling algorithms will utilise the runways efficiently to
increase the overall capacity of an airport and reduce the air traffic.

ASP contains a set of departing and arriving aircraft. Each aircraft belongs to
a weight class (e.g. heavy, large, and small). Solving a given ASP instance with a
single runway has two steps. The first step is sequencing the aircraft allocated to
the runway. The second step is determining the operation times of each aircraft.
These two steps must be carried out by satisfying constraints and optimising the
objective. There are both hard and soft constraint in ASP. The hard constraints
are time window and minimum separation time. The former forces each
aircraft to be operated within a specified time window, while the latter forces
each aircraft to have a minimum separation time with other aircraft. On the
other hand, the soft constraint is deviation of actual operation times from
desired operation times. All hard constraints must be satisfied in order to
obtain a feasible schedule while soft constraints could be violated if necessary,
but each instance of violation is penalised. The smaller the overall penalty value,
the better the quality of the scheduling. An efficient aircraft sequencing technique
can reduce flight times and fuel burn, thereby reduce traffic delays and increase
airspace capacity. ASP has been classified as an NP-hard problem [7].

ASP recently has made some progress and a number of methods have been
proposed for this problem including scatter search [10], simulated annealing (SA)
with variable neighbourhood search (VNS) and variable neighbourhood descent
(VND) [16], iterated local search (ILS) [15], and SA and metaheuristic for ran-
domized priority search (Meta-RaPS) [6].

Nevertheless, existing scheduling algorithms take the typical way of using
generic techniques that usually lack problem specific structural knowledge, i.e.,
they use random neighbourhood generation strategies rather than carefully crafted
ones or use constraints only in the calculation of the objective function. In this
paper, we design a search algorithm injecting the constraint awareness into dif-
ferent steps of the algorithm.

Our search algorithm, called Constraint-Guided Local Search (CGLS), in-
cludes two main steps: intensification and diversification. In the intensification
phase, we use two neighbourhood operators with problem-specific aircraft selec-
tion procedure instead of the typical random one. The idea behind this proce-
dure is that an aircraft with a higher objective value would have priority over
an aircraft with a lower objective value (i.e., fix the more problematic part of
a solution). In the diversification phase, a bounded-diversification technique is
proposed that does not allow the selected aircraft to move very far away from its
current position. The idea behind this is that because of the hard constraints,

Constraint-Guided Local Search for Single Mixed-Operation Runway 3

moving an aircraft at a position that is far from its current position might not
be effective and reasonable.

In the rest of the paper, the problem is discussed in section 2, the proposed
CGLS technique is described in Section 3, computational results are provided in
Section 4, and conclusions are presented in Section 5.

2 Problem Description

Assume there are N aircraft {1, . . . , N} either arriving or departing and one
runway to perform the operations on. At any time, the runway can be used by
only one aircraft. To solve ASP, we have to determine the operation time OTj
of the aircraft j. There are two generic constraint categories: hard and soft
constraints that are to be satisfied to produce a feasible schedule. The aim is to
satisfy all the hard constraints and attempt to accommodate the soft constraints
as much as possible in order to produce a high-quality schedule.

2.1 Hard constraints

– Time window: Because of several factors such as fuel restriction, airspeed,
and possible manoeuvres, the operation time of each aircraft must lie within a
specified time window. This time window is bounded by the desired operation
time DOTj and latest operation time LOTj i.e. OTj ∈ [DOTj , LOTj].

– Safety separation time: Since each aircraft creates wake turbulence that
the following aircraft need to avoid, a certain minimum separation time is
required between any pair of aircraft. The separation times depend on the
aircraft classes (heavy, large, and small) and the aircraft operation types
(landing or takeoff). The separation times are determined by appropriate
aviation authorities such as Federal Aviation Administration (FAA) in the
United States or Civil Aviation Authority (CAA) in the United Kingdom [5].
Note that although the separation time constraints must hold between each
pair of aircraft, it has been showed that using FAA standard, the separation
times are automatically satisfied between two aircraft when there are three
other aircraft in between. [17].

2.2 Soft constraints

Deviation from desired operation times: For each aircraft j, DOTj is its
desired operation time; which means that operation at that time has no delays
and extra fuel burn. However, because of the capacity limit of runways and
the hard constraints mentioned, some flights cannot operate at their DOTj .
Therefore, the operation times of some flights are deferred from their desired
times. If an aircraft j operates after its desired time DOTj , it would be penalised
by (OTj −DOTj).
2.3 Objective function

The objective function of ASP is to minimise total delay cost of the aircraft
resulting from the deviation of their operation times from the respective desired
times. However, the delay cost of all aircraft is not the same. So, a penalty weight

4 Riahi, Newton, Sattar

wj per unit time delay from DOTj for aircraft j. This penalty weight depends
on two priorities: operation priorities and aircraft size priorities. Based on the
operation priorities, arriving aircraft have greater priorities than departing air-
craft because of the higher average fuel burn and safety measures. On the other
hand, based on the size priorities, heavier aircraft get more weights than the
lighter ones owing to again higher average fuel burn and safety measures.

One of the main challenges is how to calculate the operation time OPj of
each aircraft j. Assume π is the current sequence, [k] represents the aircraft at
the position k, and s(j, j′) shows the separation time between aircraft j and j′.
So the operation times of aircraft can be calculated as follows:

s([k], [k′]) = 0, OP[k] = 0 k < 1 ∨ k′ < 1 (1)

OP[k] = max{DOT[k], OP[k−1] + s([k − 1], [k]),

OP[k−2] + s([k − 2], [k]), OP[k−3] + s([k − 3], [k])} ∀k ∈ [2, n] (2)

The objective function is the total weighted tardiness of a schedule TWT =∑N
j=1 wj(OTj −DOTj). This objective allows reduction of delays, maximisation

of the runway capacity, and reduction of congestion at the airport [14].

3 Methodology

In order to solve this problem, we propose a Constraint-Guided Local Search
(CGLS) algorithm. CGLS has two main steps: intensification and diversification.
As the main contribution, unlike the most existing techniques in the literature,
we use the specific knowledge of the problem to design our algorithm. In the
following sections, each step is described in detail.

The proposed local search algorithm is given in Algorithm 1. It starts with
an initial solution. The initial solution is then improved by the intensification
method. The algorithm next goes through the loop in which the search restarts
with the diversification method. The new solution would be considered as the
current solution if it is better in terms of the objective value.

Algorithm 1: Proposed CGLS Algorithm
1 π ← Generate an initial solution
2 π ← Use the intensification method on π
3 while termination criteria not satisfied do
4 π′ ← Use the diversification method on π
5 π′′ ← Use the intensification method on π′

6 if TWT (π′′) < TWT (π) then π ← π′′

7 return π

3.1 Solution representation and initial solution

A single runway ASP solution is represented by a string of numbers containing
a permutation of N aircraft, i.e., π = {[1], [2], ..., [N]}. The [k] represents the
aircraft at the kth position of the permutation. For example, for a problem

Constraint-Guided Local Search for Single Mixed-Operation Runway 5

with 7 aircraft, one possible solution is π = {3, 5, 4, 2, 7, 1, 6}; which means that
aircraft 3 must be operated first, followed by aircraft 5, 4, 2, 7, 1 and aircraft 6.

As the initial solution, we use the simplest and the most common heuristic
of aircraft sequencing, first-come-first-served (FCFS). In this method, the per-
mutation of aircraft is based on a non-decreasing order of their desired operation
time. Note that this very simple heuristic is still used in the air traffic control
these days, e.g., in Doha International Airport [5]. However, it is not an efficient
heuristic and can lead to the waste of resources and make the congestion in the
terminal area severer [3]. Using this heuristic in the initialisation of the proposed
algorithm can help find out how much improvement would be obtained by using
the proposed method instead of the typical FCFS.

3.2 Intensification Method

To intensify the search, we propose an intensification method that is made up of
two neighbourhood operators, instead of a single one. The reason is that different
neighbourhood operators produce different landscapes and hence different local
optima. We use insert and swap operators since they are widely used when solu-
tions are represented as permutations e.g., in the flowshop scheduling problems
[11, 12] and the order scheduling problems [13].

Let π be a permutation of the given N aircraft. In the operator Insert(π, j, k),
aircraft at position j is selected and then inserted at a different position k. In
the Insert(π, j), aircraft at position j is inserted at all k (k 6= j). On the other
hand, in the Swap(π, j, k) operator, an aircraft at position j is exchanged with
another aircraft at position k. However, in the Swap(π, j) operator, an aircraft
at position j is exchanged with all aircraft at positions k (k 6= j).

In this paper, we use Insert(π, j) and Swap(π, j) operators mentioned in an
iterative procedure. It means that they would be applied for all N aircraft in
the permutation π, one by one, in a given order and as soon as a better solution
is found, it would be considered as the current solution and the procedure is
restarted with the new solution. We refer them to Insert(π) and Swap(π).

Greedy Aircraft Selection: Our main contribution in the intensification
method is to employ a greedy aircraft selection by using a constraint guidance. In
the proposed greedy selection procedure, first, the weighted tardiness (WTj) of
each aircraft j in the current solution π is calculated. Then, the aircraft are sorted
in a non-increasing order of WTj in a reference list πL. Next, in the Insert(π) and
Swap(π) operators, the aircraft are selected based on their order in the reference
list πL. For instance, suppose for a problem with 6 aircraft, the current sequence
is π = {2, 3, 6, 4, 5, 1} and the reference list is πL = {4, 2, 6, 1, 3, 5}. The Insert(π)
or Swap(π) operator first selects aircraft 4 for insertion or swap process from
the sequence π. Then, it selects aircraft 2 from the sequence π. This process is
continued until all aircraft in the reference list πL are selected. The idea behind
this greedy procedure is that aircraft with higher objective values should get
more priorities over aircraft with lower objective values. Our idea is to reschedule
these aircraft and thus fix the sequence.

The proposed Insert(π) and Swap(π) operators with greedy aircraft selection
are given in Algorithm 2. With the use of the Insert(π) and the Swap(π) operators,

6 Riahi, Newton, Sattar

the proposed intensification method is shown in Algorithm 3. At each iteration,
it first applies N1 on the current solution π. If the new solution obtained by N1 is
better than the current solution, it would be considered as the current solution
and the process is again continued with N1; otherwise the algorithm moves
to N2. The current solution would be updated if the new solution obtained
by N2 is better and algorithm also goes back to N1; otherwise intensification
phase is finished. Note that, in the intensification method, Insert(π) and Swap(π)
operators are selected as N1 and N2 respectively based on the results obtained
in the literature [18].

Algorithm 2: Insert(π) and Swap(π) operators
1 Let π be the input solution
2 foreach aircraft j, calculate weighted tardiness WTj , and sort them in the

non-increasing order of WTj to get a reference list πL = (πL
1 , π

L
2 , ..., π

L
N).

3 for k = 1 to N do
4 πj ← The position of the aircraft πL

k in π
5 Apply Insert(π, πj) or Swap(π, πj) and take the permutation π′ with the

lowest total weighted tardiness.
6 if π′ has a lower objective than π then let π = π′ and go to Step 2

7 end
8 return π as the output solution

Algorithm 3: Intensification Method
1 Input: sequence π
2 Set Insert(π) as N1 and Swap(π) as N2. Also l = 1
3 while l ≤ 2 do
4 Find the best neighbor π′ of π in Nl(π).
5 if π′ is better than π then Set π = π′ and l = 1
6 else l = l + 1

7 end
8 Output: sequence π

3.3 Diversification Method

The proposed algorithm uses a diversification method to avoid getting stuck
and convergence towards local optima and also to explore new areas in the
solution space. Diversification method helps the algorithm generate new solu-
tions for the intensification method by modifying the current solution instead
of a fully random solution. The diversification procedure includes a number of
moves, diversification strength λ, that are applied to the current local optimum.
In this paper the diversification method also used two neighbourhood operators:
Swap(π, j, k) and Insert(π, j, k). In this phase, for each diversification move, with
50%-50% probabilities, we apply either Swap(π, j, k) or Insert(π, j, k) operators.

The value of the parameter λ is very important. A small λ may lead to
the stagnation of the search and cycling among the previously visited solutions.

Constraint-Guided Local Search for Single Mixed-Operation Runway 7

On the other hand, a large λ may lead the algorithm to conduct like a random
restart algorithm which in most cases generates low quality solutions. Therefore,
we carefully calibrate the parameter λ which can be seen in Section 4.1.

Bounded-Diversification Technique: Unlike the typical diversification
procedure that moves the selected aircraft to the completely randomly selected
positions, we inject the problem specific knowledge into this method to find
diverse as well as reasonable positions for the selected aircraft. As mentioned
already, ASP has two types of hard constraint including time window con-
straint that forces each aircraft j to be operated within a window, i.e, OTj ∈
[DOTj , LOTj]. Being operated the more closer to DOTj leads to the less penalty
value. Therefore, moving an aircraft to a position that is far from its current po-
sition could not be very effective and reasonable. Therefore, in this paper, we
propose a bounded-diversification technique that does not allow a selected air-
craft to move far away from its current position. To that end, we introduce a
parameter γ that controls the position of each selected aircraft. In detail, when
an aircraft at position j is selected for diversification, it could be moved just
to the position k such that max(1, j − γ) ≤ k ≤ min(N, j + γ). Similar to λ,
this parameter is also carefully calibrated which can be seen in Section 4.1. The
procedure of the proposed diversification method is given in Algorithm 4.

Algorithm 4: Proposed bounded diversification method
1 Input: Solution π, the diversification strength λ, the diversification bound γ.
2 for h = 1 to λ do
3 j ← pick a random position
4 k ← pick another random position from [max(1, j − γ),min(N, j + γ)]
5 if rand() ≤ 0.5 then π ← Insert(π, j, k) else π ← Swap(π, j, k)

6 end
7 return π

4 Experimental Results

In order to evaluate the performance of the proposed algorithm, we use 20 well-
known instances generated based on the Doha International Airport parameters
[5]. These instances are made up of 50 aircraft and time windows of 30 minutes.
We compare our algorithm with ILS algorithm [15] (called here as ILS-SK) as
one of the leading algorithms for the single runway ASP. The ILS-SK algorithm
uses a variant of FCFS as initialisation. In this paper, to have a fair comparison,
we use the FCFS as initialisation of the ILS-SK as well. Both algorithms have
been implemented in C++ language and on top of the constraint-guided local
search system, Kangaroo [9]. The functions and the constraints are defined by
using invariants in Kangaroo. Invariants are special constructs that are defined
by using mathematical operators over the variables. Algorithms are also tested
on the same computer.

To compare the performance of the algorithms, we use the relative percentage

deviation RPD = TWTA−TWTBEST

TWTBEST × 100 where TWTA is the total weighted

8 Riahi, Newton, Sattar

tardiness obtained by algorithm A and TWTBEST is the best total weighted
tardiness achieved by any of the algorithms compared. We run each algorithm
on each instance 5 times and compute average RPD (ARPD) over the 5 runs.
We also compute a further average of RPDs or ARPDs over all instances in a
benchmark set. As a stopping criterion, the algorithms were run for 20N ms
CPU time.

4.1 CGLS Parameter Calibration

The proposed CGLS contains two parameters: the diversification strength λ,
and the diversification bound γ. To analyse the effect of these two parameters, a
full factorial design is used by considering 3 different values for each parameter:
λ ∈ {10, 20, 30} and γ ∈ {3, 4, 5}. For this experiment, we randomly select 8
instances from those 20 instances in our benchmark. Our algorithm is run 5
times for each of the 3 × 3 = 9 settings and for each instance with the same
stopping criterion as already mentioned.

The 95% confidence interval plots of the parameters are shown in Fig. 1. The
results of Fig. 1 says that CGLS algorithm is robust with respect to λ and γ as
the tested values are statistically equivalent and each of them could be selected.
However, since the λ and γ have lower ARPD in 20 and 4 respectively, these
values are selected for further experiments.

Fig. 1. Mean and 95% confidence intervals for parameters.

4.2 Effectiveness of Multi Neighbourhood

The proposed intensification method includes two neighbourhoods N1 and N2.
In this paper, we use insertion and swap operators with greedy aircraft selection,
GI and GS respectively. In this section, we are to evaluate the efficiency of the
greedy neighbourhoods against the random insertion and swap operators, RI and
RS, and also to find the best order for the neighbourhood operators mentioned.
To that end, the following four cases are considered:

1. Case 1: Consider GI as N1 and GS as N2.
2. Case 2: Consider GS as N1 and GI as N2.
3. Case 3: Consider RI as N1 and RS as N2.

Constraint-Guided Local Search for Single Mixed-Operation Runway 9

4. Case 4: Consider RS as N1 and RI as N2.

In this experiment, the proposed CGLS is tested by considering each of the
cases mentioned as the intensification method on those 8 instances used already
for parameter tuning. The 95% confidence interval plot for each case is given in
Fig. 2. From this figure, it can be seen that cases 1 and 2 are significantly better
than cases 3 and 4. It can be concluded that the proposed problem-dependent
greedy strategies for Insertion and Swap moves statistically outperform the ran-
dom cases. In addition, although cases 1 and 2 are statistically equivalent, we
use case 1 for the intensification phase due to its lower ARPD.

Fig. 2. 95% Confidence intervals for CGLS variants.

4.3 Effectiveness of CGLS Components

CGLS has two main contributions: a new constraint based greedy aircraft selec-
tion in the neighbourhood operators of the intensification method, and a con-
straint based bounded-diversification procedure. To test the effectiveness of each
component mentioned, we create three variants of CGLS as follows:

1. CGLS: Proposed CGLS that includes both greedy intensification and bounded-
diversification.

2. CGLS R: CGLS but greedy intensification is replaced by a random one.

3. CGLS NB: CGLS but no bound in the diversification phase.

The algorithms are tested on the 8 instances which are the same as the ones
for parameter tuning. A 95% confidence interval plot in Fig. 3 is carried out
to show the effectiveness of the three variants. Note that non-overlapping confi-
dence intervals of each two methods represent a statistically significant difference
between them. From Fig. 3, we can see that both new components significantly
affect the performance of CGLS. Among these two components, the bounded-
diversification is more crucial as the algorithm obtained worse performance with
the absence of this method.

10 Riahi, Newton, Sattar

Fig. 3. 95% Confidence interval for CGLS variants.

4.4 Comparison with FCFS Method

As mentioned before, the first-come-first-served (FCFS) heuristic is the simplest
and the most common heuristic for aircraft sequencing, and is still applied in the
air traffic control these days, e.g., in Doha International Airport [5]. As a result,
comparing CGLS with FCFS can show how much the proposed CGLS improves
over FCFS. The results are shown in Table 1. As can be seen from this table,
CGLS hugely outperforms the FCFS obtaining ARPD of 0.157% compared to
99.353% of FCFS.

Table 1. Comparison of CGLS and FCFS algorithms.

instance 1 2 3 4 5 6 7 8 9 10 11

FCFS 155.67 138.61 212.54 160.93 178.10 102.55 133.63 75.99 90.06 82.97 68.75

CGLS 0.29 0.60 0.26 0.14 0.39 0.00 0.07 0.20 0.23 0.00 0.23

instance 12 13 14 15 16 17 18 19 20 Average

FCFS 67.29 71.41 79.03 43.40 59.31 60.14 75.83 69.23 61.64 99.35

CGLS 0.10 0.06 0.07 0.00 0.08 0.05 0.28 0.04 0.13 0.16

4.5 Comparison with the State-of-the-art Method

We compare the results of CGLS with the results of ILS-SK algorithm [15] shown
in Table 2. In this table, besides the ARPD, we also show the number of times
each algorithm finds the TWTBEST (the best total weighted tardiness achieved
by any of the tested algorithms) for each instance out of 5 runs. As can be seen,
CGLS outperforms ILS-SK i.e., it achieves lower ARPD in 19 instances out of 20.
In addition, except in instance 7, CGLS obtains the TWTBEST in all instances
at least once, while ILS-SK finds the TWTBEST only in 6 instances out of the
20. To examine the difference of the algorithms statistically, we also perform a
student t-test with significance level of α = 0.05. Statistical results confirm a
significant difference between CGLS and ILS-SK since p-value = 0.00 < 0.05

Constraint-Guided Local Search for Single Mixed-Operation Runway 11

Table 2. Comparison of CGLS and ILS-SK algorithms

Instance CGLS ILS-SK

ARPD #best ARPD #best

1 0.287 3 3.222 0

2 0.597 1 1.119 0

3 0.257 3 1.427 0

4 0.140 2 1.440 1

5 0.387 2 4.230 0

6 0.000 5 0.361 1

7 0.067 0 0.149 2

8 0.199 2 0.668 0

9 0.229 1 1.415 0

10 0.000 5 0.641 0

11 0.225 2 0.149 1

12 0.103 1 1.117 0

13 0.061 2 0.240 0

14 0.071 2 0.150 1

15 0.000 5 0.207 0

16 0.007 3 0.292 0

17 0.053 1 0.244 1

18 0.275 2 0.431 0

19 0.044 2 0.751 0

20 0.134 1 0.355 0

Average 0.157 0.930

5 Conclusion

In this paper, we proposed a Constraint-Guided Local Search (CGLS) for aircraft
sequencing problem (ASP) with a single mixed-operation runway considering
the total weighted tardiness as criterion. Unlike the other existing algorithms
in the literature, CGLS injects the specific knowledge of the problem in its
different phases. In the intensification phase, it uses a greedy approach that gives
more priorities to aircraft that are more problematic and create more delays. In
the diversification phase, it employs a bounded-diversification technique that
controls the new position of each selected aircraft in this phase and do not allow
aircraft to move very far away from their current position. The results show
that the good performance of the proposed CGLS hugely depends on these two
proposed main contributions. Moreover, the computational results show that
CGLS significantly outperforms existing state-of-the-art methods.

References

1. bitre: Bureau of Infrastructure, Transport and Regional Economics (2017), https:
//bitre.gov.au/

12 Riahi, Newton, Sattar

2. BNE: Brisbane Airport Corporation (2017), http://www.bne.com.au/
3. Caprı, S., Ignaccolo, M.: Genetic algorithms for solving the aircraft-sequencing

problem: the introduction of departures into the dynamic model. Journal of Air
Transport Management 10(5), 345–351 (2004)

4. Eurocontrol: Eurocontrol - Driving excellence in ATM performance (2017), http:
//www.eurocontrol.int/

5. Farhadi, F., Ghoniem, A., Al-Salem, M.: Runway capacity management–an empir-
ical study with application to doha international airport. Transportation Research
Part E: Logistics and Transportation Review 68, 53–63 (2014)

6. Hancerliogullari, G., Rabadi, G., Al-Salem, A.H., Kharbeche, M.: Greedy algo-
rithms and metaheuristics for a multiple runway combined arrival-departure air-
craft sequencing problem. Journal of Air Transport Management 32, 39–48 (2013)

7. Lawler, E.L., Lenstra, J.K., Kan, A.R.: Recent developments in deterministic se-
quencing and scheduling: a survey. In: Deterministic and stochastic scheduling, pp.
35–73. Springer (1982)

8. Mehta, V., Reynolds, T., Ishutkina, M., Joachim, D., Glina, Y., Troxel, S., Taylor,
B., Evans, J.: Airport surface traffic management decision support: Perspectives
based on tower flight data manager prototype. Tech. rep. (2013)

9. Newton, M.H., Pham, D.N., Sattar, A., Maher, M.: Kangaroo: An efficient
constraint-based local search system using lazy propagation. In: International
Conference on Principles and Practice of Constraint Programming. pp. 645–659.
Springer (2011)

10. Pinol, H., Beasley, J.E.: Scatter search and bionomic algorithms for the aircraft
landing problem. European Journal of Operational Research 171(2), 439–462
(2006)

11. Riahi, V., Khorramizadeh, M., Newton, M.H., Sattar, A.: Scatter search for mixed
blocking flowshop scheduling. Expert Systems with Applications 79, 20–32 (2017)

12. Riahi, V., Newton, M.H., Su, K., Sattar, A.: Local search for flowshops with setup
times and blocking constraints. In: ICAPS. pp. 199–207 (2018)

13. Riahi, V., Polash, M., Newton, M.H., Sattar, A.: Mixed neighbourhood local search
for customer order scheduling problem. In: Pacific Rim International Conference
on Artificial Intelligence. pp. 296–309. Springer (2018)

14. Rodŕıguez-Dı́az, A., Adenso-Dı́az, B., González-Torre, P.L.: Minimizing deviation
from scheduled times in a single mixed-operation runway. Computers & Operations
Research 78, 193–202 (2017)

15. Sabar, N.R., Kendall, G.: An iterated local search with multiple perturbation op-
erators and time varying perturbation strength for the aircraft landing problem.
Omega 56, 88–98 (2015)

16. Salehipour, A., Modarres, M., Naeni, L.M.: An efficient hybrid meta-heuristic for
aircraft landing problem. Computers & Operations Research 40(1), 207–213 (2013)

17. Sherali, H., Ghoniem, A., Baik, H., Trani, A.: A combined arrival-departure aircraft
sequencing problem. Manuscript, Grado Department of Industrial and Systems
Engineering (0118). Virginia Polytechnic Institute and State University 250 (2010)

18. Soykan, B., Rabadi, G.: A tabu search algorithm for the multiple runway aircraft
scheduling problem. In: Heuristics, Metaheuristics and Approximate Methods in
Planning and Scheduling, pp. 165–186. Springer (2016)

