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With the rapid development of remote sensing technology, satellite or aerial 5 

images from the disaster area become available within 24 hours after an 6 

earthquake. The collapsed buildings can be easily identified from these images. In 7 

this work, a framework for near-real-time seismic loss estimation for regional 8 

buildings is proposed, which improves the accuracy of nonlinear time-history 9 

analysis (THA)-based loss estimations by taking advantages of the identified 10 

building collapse scene of the disaster area. Specifically, a series of THA are 11 

performed for the target regional buildings, thereby generating a number of 12 

simulation results. Those simulation results that bear strong similarities to the 13 

identified collapse scene are identified as the optimal solutions, which will be 14 

used to estimate the seismic loss. The simulation results of the case studies signify 15 

that the use of the identified building collapse scene leads to much closer 16 

estimations to actual economic losses. 17 

INTRODUCTION 18 

Rapid and accurate estimation of the building seismic loss is of great value to the 19 

development of a rational disaster relief and reconstruction plan. Existing methods to 20 

estimate building seismic loss mainly include those: (1) through site investigation (Masi et al. 21 

2016); (2) using seismic loss estimation models (Erdik et al. 2011, Jaiswal and Wald 2011); 22 

and (3) using remote sensing image data (Dong and Shan 2013). Method (1) is relatively 23 

most accurate, yet time-consuming. Site investigation often takes weeks or even months, and 24 

very labor intensive. Hence this method cannot adapt to the needs of timely post-earthquake 25 

loss assessment. Methods (2) and (3), on the other hand, are much time-efficient, hence have 26 

been widely used in rapid earthquake loss assessment (Yeh et al. 2006, Vu and Ban 2010). 27 
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The loss estimation models (i.e., Method (2)) can be used for estimating building seismic 28 

loss of a large area, in particular. Given correct seismic inputs and building fragility models, 29 

the loss estimation models can take account of the influence of different damage states (e.g., 30 

slight, moderate, extensive and collapse) on the building seismic loss. The regional loss 31 

estimation models have undergone three stages of development (Lu and Guan 2017): (1) the 32 

damage probability matrix method, e.g. ATC (1985) and Yin (1996); (2) the capacity 33 

spectrum method, e.g. FEMA (2012a); and (3) the nonlinear time-history analysis (THA)-34 

based method, e.g. Hori (2011), Lu et al. (2014), Xiong et al. (2016, 2017). Certain 35 

limitations exist with respect to the first two stages, such as difficulty in considering the 36 

influence of higher modes of vibration of the buildings and the ground motion characteristics 37 

(Zeng et al. 2016, Xiong et al. 2017). The THA-based method overcomes these limitations, 38 

but the rationality of its estimation depends largely on the quality of the input parameters 39 

(i.e., building information and ground motion time history). If there happens to be no seismic 40 

station near the disaster area, the selection of ground motion input should be carefully 41 

considered (Kalkan and Chopra 2010). 42 

By using satellite or unmanned aerial vehicle (UAV), remote sensing images of the 43 

disaster area can be obtained soon after an earthquake. The collapsed and non-collapsed 44 

buildings can then be identified by analyzing the images (Gusella et al. 2005, Ehrlich et al. 45 

2009), so as to rapidly identify the building collapse scene of the disaster area. Nevertheless, 46 

it is difficult to identify the damage inside the buildings from the available images, resulting 47 

in an underestimation of the seismic loss (Rathje and Adams 2008). Although quite a few 48 

studies attempted to recognize more refined damage states using aerial images, so far the 49 

accuracy of identification remains relatively low. For example, studies show that the 50 

accuracy of identifying “extensively damaged” buildings is merely 20%~30% (Yamazaki et 51 

al. 2005, Rathje and Adams 2008). Therefore, to date identifying the collapse status of a 52 

building is technically more mature and reliable than identifying refined damage states. 53 

Overall, using the THA-based regional seismic loss estimation method, the seismic loss 54 

of buildings with different damage states can be obtained easily, but the reliability of the 55 

estimated loss is largely affected by the quality of the input parameters. When lacking proper 56 

ground motion input, the accuracy of the estimation will be significantly reduced. On the 57 

other hand, remote sensing image analysis is able to reliably identify the collapsed buildings 58 

in a timely manner, but the estimation accuracy for non-collapsed buildings is relatively low. 59 



 

Therefore, it is logical to combine the advantages of the THA-based method and the remote 60 

sensing image analysis techniques, so as to improve the accuracy and reliability of the loss 61 

estimation. To achieve this objective, a possible solution is proposed herein: When lacking 62 

rational ground motions as input, a large quantity of (e.g., thousands of) ground motions with 63 

different intensities and time histories are selected as input, and a series of THA are 64 

performed, generating a suite of simulation results. Simultaneously, the building collapse 65 

scene of the disaster area can be identified via remote sensing image analyses. Among the 66 

suite of simulation results, those that bear strong similarities to the remote sensing collapse 67 

scene are identified as the optimal solutions, which will subsequently be used to estimate the 68 

seismic loss. One of the key issues is how to select the optimal simulation results. To address 69 

this issue, a framework of such a near-real-time seismic loss estimation is described, and two 70 

methods for selecting the optimal simulation results are proposed in this work. Validation is 71 

performed using a simulated 1730 Western Beijing earthquake and the actual 2014 Ludian 72 

earthquake in China, by which the advantages of the proposed method are demonstrated. 73 

FRAMEWORK OF NEAR-REAL-TIME SEISMIC LOSS ESTIMATION 74 

The proposed framework of seismic loss estimation of regional buildings, incorporating 75 

the THA-based method and post-earthquake remote sensing image analysis techniques, 76 

consists of five components (Figure 1). (1) Identify collapsed and non-collapsed buildings by 77 

analyzing the post-earthquake remote sensing images, so as to obtain the building collapse 78 

scene of the disaster area. (2) Generate a large number of seismic analysis load cases. For 79 

example, use a large number of ground motions with different intensities and time histories 80 

as input. (3) Perform regional seismic damage simulation for each load case, resulting in a 81 

suite of simulation results. These results not only include the information of the collapse 82 

status of the building, but also include different damage states (i.e., none, slight, moderate, or 83 

extensive damage). (4) From the suite of simulation results, identify those that are mostly 84 

similar to the identified collapse scene as the optimal. (5) Estimate the seismic loss of the 85 

building using the optimal simulation results. 86 

Much of the existing studies can be referred to for Components (1), (3), and (5). For the 87 

integrity of presentation, they are briefly introduced herein without detailed discussions. Note 88 

that Component (4) is one of the main focuses of this study, in which two similarity measures 89 

of building collapse distributions are proposed. Component (2) is also briefly described. It 90 

should also be noted that the framework proposed in this work (Figure 1) is generic and 91 



 

adaptable, i.e., each of the five components can be implemented through alterative means, not 92 

limiting to the implementation described in this work. 93 

 94 

IDENTIFICATION OF COLLAPSED BUILDINGS 95 

There exist many approaches to identify collapsed and non-collapsed buildings from the 96 

post-earthquake remote sensing images. For example, through crowdsourcing, the images are 97 

distributed to a group of people and collapsed buildings can be rapidly identified by human 98 

intelligence (Xie et al. 2016). Using image classification techniques (Li et al. 2014), 99 

collapsed / non-collapsed buildings can also be automatically identified. 100 

It should be noted that existing studies on collapsed building identification from remote 101 

sensing images demonstrate the likelihood of having some omission errors (i.e. false negative 102 

rate). For example, Booth (2011) reported a 42% omission error in identification of the 103 

collapsed buildings during the 2010 Haitian earthquake; Yamazaki (2005) reported a 37.5% 104 

omission error for the 2003 Bam Earthquake, Iran. Notwithstanding, some published 105 

literature also show that the omission error can be reduced by using ancillary data (e.g. vector 106 

map of buildings), multi-perspective, and oblique images (Dong and Shan 2013). For 107 

example, Samadzadegan and Rastiveisi (2008) combined the QuickBird images and building 108 

vector maps for collapsed building identification subsequent to the 2013 Bam earthquake, 109 

leading to a reduced omission error of 25%; Turker and Cetinkaya (2005) used digital 110 

elevation models for the 1999 Izmit earthquake, Turkey, and the omission error was reduced 111 

to 16%. Therefore, identifying collapsed buildings from remote sensing images is both 112 

feasible and achievable. 113 

Nevertheless, identifying non-collapsed damage states is a more challenging task. For 114 

instance, Foulser-Piggott (2016) attempted to identify the red tagged or yellow tagged non-115 

collapsed buildings from the 2011 Christchurch earthquake, and the omission error was 116 

found to be 56%~86%. Note that currently there is no feasible solution to effectively reduce 117 

such an error. 118 

Given the accuracy of the current remote sensing image identification techniques, this 119 

work thus suggests identifying collapse (rather than other refined damage states) from the 120 

remote sensing images. Extensive research and practical applications of remote sensing 121 

technologies have been well summarized and documented in several review articles (Rathje 122 



 

and Adams 2008, Dong and Shan 2013). As such, related topics are not discussed herein in 123 

detail. With respect to the case study of the 2014 Ludian earthquake presented in this work, 124 

the UAV aerial images from the China Earthquake Administration and news media, together 125 

with the building vector map were used. Visual interpretation (Dong and Shan 2013, Xie et 126 

al. 2016) was performed to identify the collapse situation of 56 buildings in the disaster area 127 

by human intelligence. Hence the identified collapse is consistent with the actual collapse 128 

situation. 129 

It should be noted, however, that regional seismic loss estimation is a challenging issue. 130 

This work proposed an alternative approach, which is most suitable for cases with sufficient 131 

accuracy in collapse identification. With potential advancement of the remote sensing 132 

techniques, the omission errors are expected to be further reduced. For cases when the 133 

omission errors are significant, the predicted seismic loss will be underestimated, which 134 

would require further studies to be undertaken. 135 

GENERATION OF DIFFERENT LOAD CASES 136 

The rationality of the THA results is influenced by (a) the building data, (b) the building 137 

models and parameters, and (c) the ground motion inputs. Firstly, with the advances in 138 

technologies such as big data and smart city, abundant urban building data become available 139 

(Qi et al. 2017). Secondly, with respect to the building models and parameters, the regional 140 

seismic damage simulation method developed by Xiong et al. (2016, 2017) with satisfactory 141 

modeling accuracy is adopted in this study. Thirdly, Lu et al. (2017) studied the uncertainty 142 

of the parameters of the structural models (e.g. the yield point, peak point, and soft point at 143 

the inter-story backbone curves) and its influence on the regional seismic damage simulation. 144 

Their results demonstrate that, assuming the parameters of the structural models of different 145 

buildings are independent, the uncertainty of those parameters has a small influence on the 146 

overall analysis results of a region. As a result, only ground motion uncertainty is considered 147 

when generating different load cases in this study. Therefore, the uncertainty of ground 148 

motion becomes the dominant factor influencing the accuracy of the THA results. Published 149 

studies also confirm that the randomness in structural seismic responses is mainly attributable 150 

to the uncertainty of the ground motion in particular when the seismic intensity is large 151 

(Kwon and Elnashai 2006).  152 

In order to obtain a suitable ground motion input, the following strategy is adopted in this 153 

work: a number of different ground motions are used as input, so as to generate a series of 154 



 

THA load cases; then determine which ground motion input yields the building collapse 155 

results that are most similar to the identified collapse. For a region lacking sufficient ground 156 

motion input, a total of p different ground motion prediction equations (GMPE) are adopted, 157 

and a total of q ground motion records are selected for each GMPE, hence generating n = pq 158 

load cases. 159 

REGIONAL SEISMIC DAMAGE SIMULATION 160 

In terms of regional seismic damage simulation, the method proposed by Xiong et al. 161 

(2016, 2017) is adopted in this work. In Xiong et al.’s study, low- and mid-rise buildings are 162 

simulated using the multiple degree-of-freedom (MDOF) shear model, while tall buildings 163 

are simulated using the MDOF flexural-shear model. Such numerical models of buildings are 164 

computationally very efficient. Based on the design process specified in the Chinese design 165 

codes and abundant experimental data, Xiong et al. (2016, 2017) proposed a model parameter 166 

determination method for reinforced concrete (RC) frame, reinforced masonry, unreinforced 167 

masonry, and RC tall buildings in China. With this method, the numerical models of 168 

buildings can be automatically established using basic building information (i.e. floor area, 169 

number of stories, height, structural type, construction period, and function). Xiong et al. 170 

(2016, 2017) compared the simulated building responses with the results of refined finite 171 

element models and experimental data. The comparisons validated the accuracy of the 172 

MDOF model and THA. For regions beyond China, it is suggested to use other parameter 173 

determination methods that are suitable for the particular region, such as the model parameter 174 

determination methods based on the HAZUS-database proposed by Lu et al. (2014) for the 175 

buildings in the United States.  176 

Xiong et al. (2017) considered five different damage states, i.e., none, slight, moderate, 177 

extensive and collapse. For different structural types, different damage criteria were 178 

proposed. It is assumed that when the inter-story force or displacement exceeds a certain 179 

threshold, the structure reaches a corresponding damage state. Different from the fragility 180 

curves, such a threshold-based damage assessment is a deterministic approach. Xiong et al. 181 

(2017) compared the predicted damage states with the actual building seismic damage during 182 

the 2014 Ludian earthquake. Overall, the simulation agrees well with actual damage (Table 183 

1). As a result, the parameters for damage assessment were treated as deterministic in this 184 

study. 185 

Table 1. Comparison between the predicted damage states and actual damage states (Xiong 2017). 186 
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 187 

With respect to the soil-structure interaction (SSI) effects, for regular-height buildings on 188 

normal soils (not extremely soft), the SSI will not affect the structural responses significantly. 189 

It should be noted that in the proposed method, the simulated building collapse scenes are 190 

compared with the collapse scene identified from the remote sensing images of the disaster 191 

area. As a result, when evaluating the most suitable load cases, the SSI and the site-city 192 

interaction (SCI) effects are implicitly considered. Specifically, the identified optimal ground 193 

motion should be the one closest to the actual ground motion that is inputted to the building, 194 

which includes the SSI and SCI effects, instead of a free field ground motion without any SSI 195 

or SCI effects. This is supported by the result of Ludian earthquake validation in this study 196 

which shows that the estimated loss using the proposed method, Vopt, agrees well with the 197 

actual loss, Vactual. For the sites with soft soils or densely distributed high-rise buildings, 198 

studies show that the SSI and the SCI effects become more complex (Semblat et al. 2008, 199 

Isbiliroglu et al. 2015, Smerzini 2017). The shape and the attenuation of ground motions on 200 

such site may significantly differ from any ground motions or GMPEs specified for 201 

generating the simulated scenarios. In view of the above, it would be worthwhile to conduct 202 

further study and extend the applicability of the proposed method to cover the 203 

aforementioned cases. 204 

Currently, the distributions of peak ground acceleration (PGA) or intensity (denoted as 205 

Shakemap) are widely used for loss estimations. For example, Huyck (2016) used ImageCat 206 

images to deduce the PGA Shakemap, and estimated the seismic loss based on ATC 13 (ATC 207 

1985), which is a form of the damage probability matrix method (stage (1) of Method (2) 208 

described in Section “Introduction”). However, Shakemap relies on macroseismic intensities 209 

and empirical seismic damage observations, resulting in an average and subjective 210 

description of the hazard (Lang et al. 2012). Consequently, it may lead to considerable errors 211 

in replicating the actual seismic damage of individual structures. In addition, Shakemap 212 

mainly represents the amplitude of ground motions. Further, some other characteristics (e.g. 213 

duration and spectrum) of the ground motion input are difficult to be considered using 214 

Shakemap. 215 



 

This study also compared the THA-based method and the damage probability matrix 216 

method. The damage probability matrix specific for Chinese buildings proposed by Yin 217 

(1996) is adopted in this study. This damage probability matrix has been widely used for the 218 

seismic loss estimation of past earthquakes in China. Note that the damage probability matrix 219 

method requires the use of the modified Mercalli intensity (MMI), and the relationship 220 

between PGA and MMI has shown to have a great uncertainty (Wald et al. 1999). In this 221 

work, the relationship suggested by the National Standard of China, “The Chinese seismic 222 

intensity scale” (GB/T 2008), is adopted, i.e. PGA of 0.09 g ~ 0.177 g corresponds to MMI 223 

of VII; PGA of 0.178 g ~ 0.353 g corresponds to MMI of VIII; and PGA of 0.354 g ~ 0.707 g 224 

corresponds to MMI of IX. 225 

SIMILARITY MEASURE OF COLLAPSE DISTRIBUTION 226 

Among all the simulation results, in order to identify which one is most similar to the 227 

identified collapse distribution, each simulation result should be evaluated with a score. A 228 

higher score indicates a higher similarity with the identified collapse distribution, and those 229 

results with highest scores are identified as the optimal simulation results (Figure 2). 230 

The similarity (or distance) measure quantifies the similarity between two objects, which 231 

plays an important role in pattern recognition, clustering, classification, and recommendation 232 

problems (Guo et al. 2013, Mahmoud 2011). In particular, binary similarity and distance 233 

measure is one of the most commonly used similarity measures. Since the building being of 234 

collapsed or non-collapsed is a binary event, the binary similarity and distance measure is 235 

thus considered in this work. Choi et al. (2010) summarized 76 binary similarity measures, 236 

including the widely used Jaccard similarity measure and Euclidean distance, etc. In this 237 

work, one of those measures is described in the Section “Evaluation of the similarity measure 238 

of collapse distribution” and denoted as the “simple counting method”. However, further 239 

discussions in that section show that binary similarity measures may not deliver reasonable 240 

outcomes for some cases. Hence the “weighted counting method” is proposed in this work 241 

taking into account the correction factors. Details are described in the Section “Evaluation of 242 

the similarity measure of collapse distribution”. 243 

 244 



 

SEISMIC LOSS ESTIMATION 245 

In this work, the building seismic loss is defined as the sum of the house damage loss Lh 246 

and decoration damage loss Ld. According to the National Standard of China, “Post-247 

Earthquake Field Works-Part 4: Assessment of Direct Loss. (GB/T 2011)”, Lh and Ld are 248 

calculated using Eqs. (1) and (2), respectively: 249 

PDSL hh =      (1) 250 

)()( PDSL dd =  21    (2) 251 

where S is the building area (m2); Dh and Dd are the loss ratios of the house and decoration 252 

damages; given a damage state, their values are suggested in GB/T (2011), as shown in Table 253 

2; P is the building replacement cost (RMB/m2, 1 RMB is approximately 0.145 USD in 254 

2017), shown in Table 3 according to Yuan (2008); 1  is the correction factor considering 255 

different economic conditions of different regions; 2  is the building function correction 256 

factor;   is the proportion of buildings with mid- to high-quality decoration; and   is the 257 

ratio of the building decoration cost to the building construction cost. The values of 258 

 ,,, 21  can be referred to Table A.1~A.4 in GB/T (2011). 259 

Table 2. Mean loss ratio of house damage and decoration damage under each damage state (GB/T 260 
2011) 261 

Damage state  None Slight Moderate Extensive Collapse 

Loss ratio of house 

damage 
 3 % 11 % 31 % 73 % 91 % 

Loss ratio of 

decoration damage  

Reinforced concrete (RC) 6 % 18 % 43 % 81 % 96 % 

Masonry 3 % 13 % 34 % 74 % 93 % 

 262 

Table 3. Mean building replacement cost (Yuan 2008) Unit: RMB/m2 263 

 RC frame Masonry Masonry-wood Adobe-wood Frame shear wall Shear wall 

Rural 1200 825 550 425 - - 

Urban 1300 850 850 600 1400 1700 

 264 

It should be noted that this approach, which mainly works for regions in China, is only 265 

one of the commonly used seismic loss estimation methods. Alternative equations, 266 

consequence functions, and replacement costs that are different from Eqs. (1) and (2), and 267 

Table 2 and Table 3 have been proposed in many other studies (Bal et al. 2008, FEMA 268 



 

2012a, Chaulagain et al. 2016, Martins et al. 2016). In practice, different methods are applied 269 

to different regions other than those in China. Taking the regions in USA as an example, the 270 

consequence functions and replacement costs can be referred to Tables 15.2~15.6 and Table 271 

3.6 provided in the HAZUS report (FEMA 2012a). As described above, using different 272 

seismic loss estimation methodologies will not change the conclusions of this work. 273 

EVALUATION OF THE SIMILARITY MEASURES OF COLLAPSE 274 

DISTRIBUTION 275 

Two methods to evaluate the similarity measures of collapse distribution are proposed 276 

herein, as shown in Figure 2. Note that the two methods are independent from each other. 277 

METHOD A, SIMPLE COUNTING METHOD 278 

Naturally, a simple yet effective method is to compare the simulated collapse results with 279 

the identified ones for each building. This idea is equivalent to the binary similarity measure 280 

defined by the Eq. (7) in Choi et al. (2010), denoted as “simple counting method” hereafter. 281 

Specifically: Let the random variable y be the collapse status of a building, where y obeys a 282 

Bernoulli distribution, i.e., y ~ B(1, p). y = 1 refers to collapsed building and y = 0 for non-283 

collapsed building. For any simulation result i and any building j, let yij be the simulated 284 

collapse status of this building, and yj be the identified collapse status of the same building. 285 

Then the score is defined as 286 
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Let m be the total number of buildings, then the total score of the simulation result i is 288 

defined as 289 
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It can be seen from Eqs. (3) and (4) that the score of the simulation result, SAi, only takes 291 

account of the building collapse status. Other important building information, such as 292 

building location and structural type, is not considered. Hence the simple counting method 293 

may not be rational under some circumstances. Assuming a region consisting of 12 buildings, 294 

Figure 3 shows the identified situation of building collapse (Figure 3a) and three simulation 295 

results (Figure 3b to 3d), in which solid red legends denote the collapsed buildings. The 296 



 

identified collapse situation shows that all collapsed buildings are masonry structures, 297 

indicating that the masonry structures have higher collapse probability than RC frame 298 

structures in this earthquake. It can be seen that Simulation result 1 (Figure 3b), having the 299 

lowest score (SA1 = 7/12), is least similar to the identified collapse situation. This result is 300 

reasonable. Simulation result 2 (Figure 3c) indicates that a RC frame structure is collapsed, 301 

which is unlikely to happen according to the identified collapse situation, although the 302 

simulation score is as high as 10/12. Having the same score (i.e., SA3 = SA2), Simulation result 303 

3 (Figure 3d) is obviously most similar to the identified collapse situation. This example 304 

demonstrates that the simple counting method is unable to identify the difference between the 305 

Simulation results 2 and 3. 306 

 307 

METHOD B, WEIGHTED COUNTING METHOD 308 

The above discussions show that Eq. (4) should be modified by multiplying the correction 309 

factors, which are related to the collapse probability of different buildings. Note that different 310 

buildings exhibit different collapse probabilities, depending on the features and locations of 311 

the building. In view of this, the weighted counting method is proposed herein. The scoring 312 

rule is defined as follows. 313 

aijbij SS =        (5) 314 
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where wbj and pj are the weighted factor and the collapse probability of building j, 316 

respectively. The total score of the simulation result i is defined as 317 
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At this point, the problem becomes how to calculate the collapse probability for each 319 

building. Let vector x be the determining factors for building collapse probability, and x 320 

comprises building location coordinates, structural type, construction type, number of stories, 321 

etc. Assuming 322 



 

 
jxjj xxx

T

e
hyPp T

j 


−
+

=====
1

1
)();|1(    (8) 323 

 )(1);|0(1 jj xxx
T

j hyPp  −====−         (9) 324 

where  is the vector of factors to be calculated; the range of the logistic function h(z) is (0, 325 

1). Eqs. (8) and (9) can be merged into a single equation: 326 

yTyT hhyP −−= 1)](1[)();|( xxx      (10) 327 

Since the identified situation of building collapse is known, this information can be used 328 

to estimate  following the maximum likelihood principle, i.e., the value of  should 329 

maximize the value of pj of the collapsed buildings, and minimize the value of pj of the non-330 

collapsed buildings. Therefore, solving  is equivalent to solving an optimization problem 331 

described by Eq. (11) 332 
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In practice, in order to avoid overfitting problem, Eq. (11) is often regularized by adding 334 

the regularization terms into Eq. (12), where  is a non-negative regularization parameter. 335 
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The above process described by Eqs. (10) to (12) belongs to a logistic classification 337 

(Bishop 2006), which represents a machine learning algorithm. The vector xj and identified 338 

collapse status yj of any building j make a training sample. The number of training samples is 339 

equal to the number of buildings, m. Generally, only a part of the training samples (e.g. 60%) 340 

are used as the training set to calculate the parameter vector ; another part of the training 341 

samples (e.g. 20%) are used for cross validation to determine the value of ; and the 342 

remaining training samples for testing the accuracy of the learning algorithm (Bishop 2006). 343 

After solving , the collapse probability of each building can be calculated using Eq. (8). 344 

Note that )( jx
Th   and the training samples are only related to the identified situation of 345 

building collapse, but not the simulation results.  346 



 

As shown in Figure 3, SB3 of Simulation result 3 is higher than SB2 of Simulation result 2 347 

using the weighted counting method. Therefore, the weighted counting method is more 348 

advantageous than the simple counting method. 349 

Given proper training samples (not only collapse states but refined damage states), the 350 

machine learning method along could be used as a loss estimation basis. However, as 351 

described in Sections “Introduction” and “Identification of collapsed buildings” above, the 352 

accuracy of identifying non-collapsed damage states from remote sensing images is relatively 353 

low. Hence it is difficult to provide qualified training data. A possible solution would be to 354 

use field investigation data and statistics of building seismic damage of historical earthquake 355 

events. This might be a viable option. However, similar to the damage probability matrix 356 

method, for those regions lacking historical seismic damage statistics, further study is 357 

necessary to investigate whether the classifier trained via statistics of other regions can 358 

produce reasonable results. 359 

CASE STUDY: A VIRTUAL EARTHQUAKE OCCURRING IN TSINGHUA 360 

UNIVERSITY CAMPUS  361 

EARTHQUAKE SCENARIO 362 

To further illustrate the performance of the above similarity evaluation methods, the 363 

campus of Tsinghua University (consisting of 619 buildings) in China is selected to conduct a 364 

case study. Detailed descriptions about the region can be found elsewhere in Zeng et al. 365 

(2016). A nearby strong earthquake event of 300 years ago was the 1730 Western Beijing 366 

earthquake. Given this event, a scenario based seismic damage simulation (FEMA 2012b) 367 

was performed, and denoted as the “target scenario”. 368 

According to the literature, the magnitude of the 1730 Western Beijing earthquake was 369 

M6.5, the epicenter was approximately located at 40.0 ° N, 116.2 ° E (Huan et al. 1996), 370 

which is approximately 4.3 km from the center of Tsinghua Campus. As shown in Figure 4, 371 

the fault that caused this earthquake was F3 Qinghe Fault (Huan et al. 1996). Due to the lack 372 

of ground motion records of this ancient earthquake, one of the widely used GMPEs 373 

developed by the Next Generation Attenuation (NGA) research group, the CB14 model 374 

(Campbell and Bozorgnia 2014), was used in this work to calculate the target acceleration 375 

spectrum of the Tsinghua University campus. Note that the CB14 model is merely used to 376 

generate a simulated “target scenario” to compare the accuracy of different similarity 377 



 

measures. An actual earthquake scenario is used in the validation section of this work to 378 

further demonstrate the outcomes of the proposed method. Using the NGA-West2 online tool 379 

(Ancheta et al. 2014) provided by the Pacific Earthquake Engineering Research Center 380 

(PEER), a ground motion record that matches the target spectrum was selected as input 381 

(Figure 5). As the campus area (4km2) is not very large, the same ground motion record was 382 

used for every building for simplicity, but was scaled to different values of PGA using the 383 

CB14 model. Since the epicenter was in the northwest of the campus, the PGAs of the 384 

buildings at the northwest campus were higher than those at the southeast campus. 385 

 386 

IDENTIFICATION OF COLLAPSED BUILDINGS 387 

Given the above ground motion input, different building seismic damage states of the 388 

“target scenario” is simulated. Then the building collapse distribution (Figure 6) of the 389 

“target scenario” is easily obtained from the simulated damage states. x’ and y’ indicate the 390 

building coordination. The positive directions of x’ and y’ axes point to the east and north, 391 

respectively. 392 

 393 

GENERATION OF DIFFERENT LOAD CASES 394 

As described above, due to the lack of ground motion records and suitable GMPEs of the 395 

1730 Western Beijing earthquake, 4 GMPE models were adopted, i.e., the BSSA14 (Boore et 396 

al. 2014), ASK14 (Abrahamson et al. 2014) and CY14 (Chiou and Youngs 2014) model 397 

proposed by NGA group, and the elliptical attenuation model proposed by the national 398 

standard of China (GB 2015). The distribution of the mean PGA values calculated from the 399 

four GMPEs is shown in Figure 7. It can be seen from the figure that within the target region, 400 

the PGA values are approximately linear to the building coordinates. However, the PGA 401 

values and the attenuation slope calculated by different GMPEs vary significantly, implying 402 

that only using the above four GMPEs may not generate a good simulation result that bears a 403 

strong similarity to the collapse distribution of the “target scenario”. Therefore, five linear 404 

attenuation functions as given in Eq. (13) were defined, where PGAmax represents the 405 

maximum PGA in the target area. The domain of PGAmax is {0.1 g, 0.2 g, ... 1.0 g}. Hence a 406 

total of 50 different GMPEs were defined using Eq. (13) (5 formulas, in which PGAmax takes 407 

10 different values). 408 



 

In total, 51 ground motion records were selected as input, including the widely used El-409 

Centro 1940 ground motion, and the 22 far-field and 28 near-field ground motions proposed 410 

by the FEMA P695 report (FEMA 2009). Hence a total of 2550 different THA load cases 411 

were generated. 412 

 413 
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It should be noted that a widely-used approach of ground motion selection is to adopt 415 

sufficient and proper GMPEs to calculate target spectra based on the source parameters of the 416 

particular earthquake, then select and scale the ground motion records accordingly. This 417 

approach involves two types of uncertainty, i.e., target spectra uncertainty (further classified 418 

as aleatory variability and epistemic uncertainty), and record-to-record uncertainty. If a target 419 

spectrum is well selected so that it is close to the actual spectrum, it can be used for the 420 

selection of ground motion records in the proposed method. Note that target spectra only 421 

represent the amplitude and spectrum of ground motions, the record-to-record uncertainty 422 

still exists given a target spectrum. As a result, the proposed method can be used to further 423 

reduce the record-to-record uncertainty. 424 

However, due to the complexity of ground motion, the target spectra uncertainty could be 425 

large. For example, Figure 7 shows the mean PGA calculated by different GMPEs varies 426 

significantly. Hence the target spectra calculated using GMPEs may differ from the actual 427 

spectrum. As a result, a sufficient number of GMPEs are needed to fully address the target 428 

spectra uncertainty. For simplicity, a set of GMPEs are defined using Eq. (13) in this work. 429 

These GMPEs “cover” the results calculated using some widely used GMPEs shown in 430 

Figure 7. Hence it is expected that among those generated load cases, there is at least one 431 

case of which the simulation result is “similar” to the actual result. Other reasonable GMPEs 432 

can (and are encouraged to) be used in addition to those defined by Eq. (13), on the condition 433 

that the epistemic uncertainty is fully addressed. Note that quantifying the epistemic 434 

uncertainty requires a reasonable selection of multiple GMPEs with different branch weights 435 



 

(Kale and Akkar 2017). In this work, however, the purpose is not to quantify the ground 436 

motion uncertainty, but to obtain a set of ground motion input that can produce a reasonable 437 

loss estimation using the extra information (i.e. the identified collapse scene of the disaster 438 

area). 439 

Overall, if the target spectra are well selected, they can then be used by the proposed 440 

method to reduce efforts of ground motion selection. And the proposed method can further 441 

reduce the record-to-record uncertainty. Otherwise, a sufficient number of GMPEs should be 442 

adopted to reflect the target spectra uncertainty. 443 

REGIONAL SEISMIC DAMAGE SIMULATION 444 

By performing the above THA load cases, 2550 simulation results were generated. Each 445 

result contains building-level damage states. Figure 8a shows the number of buildings in each 446 

damage state of each load case. The load cases are sorted by seismic intensity, hence the 447 

damage generally becomes severer from load case 1 to 2550. 448 

 449 

SIMILARITY MEASURE AND SEISMIC LOSS ESTIMATION 450 

Using the proposed two similarity measures, the scores of each simulation result were 451 

calculated, and the optimal simulation results were identified. The economic loss 452 

corresponding to each simulation result was also calculated using Eqs. (1) and (2). The 453 

similarity scores (using weighted counting method) and estimated loss are shown in Figures 454 

8b and 8c, respectively. In order to evaluate whether the calculated scores can effectively 455 

measure the similarity between the simulation results and the actual collapse distribution, the 456 

score-loss relationship is displayed in Figure 9. The blue dots in the figure represent the loss 457 

Vj for each simulation result j. The red solid lines denote the actual loss Vactual, which was 458 

calculated based on the damage states of the buildings under the target scenario. The black 459 

dashed lines signify the loss calculated using the damage probability matrix proposed by Yin 460 

(1996), Vyin. The figure illustrates that: 461 

(1) The seismic loss Vj tends to converge towards the actual loss Vactual when the simulation 462 

scores are increased. 463 

(2) The two methods of similarity measures are very close to each other. In particular, both 464 

methods lead to one optimal simulation result. The simulation score being ‘1’ indicated 465 



 

that the simulated building collapse distribution was exactly the same as that of the 466 

“target scenario” (Figure 6). 467 

(3) The estimated economic loss of the optimal simulation result Vopt was 1315.6 million 468 

RMB (Figure 9c). Compared to the actual loss Vactual (1100.4 million RMB), the error 469 

was 19.6%. This implies a reasonably good estimation. The different between Vopt and 470 

Vactual is due to the different damage states of the non-collapsed buildings, though the 471 

distribution of collapsed buildings are the same.  472 

(4) The seismic loss of the optimal simulation result was much better estimated than the loss 473 

Vyin (286.9 million RMB) using the damage probability matrix (Figure 9c). The damage 474 

probability matrix method greatly underestimates the seismic loss of the target scenario. 475 

This may be due to the fact that Beijing has not experienced strong earthquakes for 476 

nearly three hundred years. The rationality of a damage probability matrix relies on 477 

historical building damage statistics. Hence, this method may not accurately describe the 478 

seismic resistance of buildings in Beijing. In addition, the building seismic design code 479 

is continually being developed and the overall building seismic resistance is improving, 480 

which are difficult to be considered using historical seismic damage statistics. 481 

 482 

ADDITIONAL EARTHQUAKE SCENARIOS 483 

To evaluate the performance of the proposed method at the other hazard levels, two 484 

additional earthquake scenarios were studied: While other source parameters remain 485 

unchanged, the magnitude of the 1730 Western Beijing earthquake was set to be (1) M5, and 486 

(2) M8. For the two target scenarios, the CB14 model is still used to calculate PGA of each 487 

building. The same 2550 load cases and their simulation results were used in which the 488 

optimal results would be selected. The similarity score and estimated loss are shown in 489 

Figure 10. The results of the two similarity measures are close, hence only the results of 490 

weighted counting method are shown. For the M5 scenario, 5 optimal simulation results with 491 

the highest score of 1.0 were identified (Figure 10a), the median loss of those simulation 492 

results were calculated as the estimated loss Vopt; while for the M8 scenario, 302 optimal 493 

simulation results with the highest score of 1.0 were identified. Figures 10c and 10d shows 494 

that in both the M5 and the M8 scenarios, Vopt is close to Vactual, being a much better 495 

prediction than Vyin using the damage probability matrix. 496 



 

 497 

The case studies of the three virtual scenarios (earthquake magnitudes M5, M6.5, and M8) 498 

demonstrated the applicability of the proposed method at different hazard levels. It should be 499 

noted, however, that the proposed method is more suitable for high seismic intensity. On the 500 

one hand, the ground motion uncertainty is dominant when the seismic intensity is large 501 

(Kwon and Elnashai 2006). On the other hand, if an earthquake is so weak to cause only few 502 

buildings to collapse, the remote sensing images may not provide sufficient information to 503 

achieve the optimal solutions effectively. 504 

VALIDATION USING 2014 LUDIAN EARTHQUAKE 505 

The case study presented above confirms that the proposed similarity evaluation methods 506 

are able to offer a relatively good loss estimation. Nevertheless, the “target scenarios” are 507 

merely virtual cases based on the ancient 1730 Western Beijing earthquake. 508 

In order to further validate the rationality of the proposed methods, the seismic loss 509 

estimation was performed using the August 31, 2014 Ludian earthquake data recorded in 510 

Yunnan Province of China. The magnitude of the earthquake was M6.5, the focal depth was 511 

12 km, and the epicenter was located at 27.189 ° N, 103.409 ° E. The earthquake caused 512 

severe damage to the Longtoushan town 9 km away from the epicenter (Xu et al. 2015, Hu et 513 

al. 2016). The next day after the earthquake, China Earthquake Administration utilized UAVs 514 

and obtained aerial images of the disaster area. Using these images, the building collapse 515 

scene at Longtoushan town was timely identified (Figure 11a). According to the refined 516 

damage states of the buildings obtained through site investigations (Lin et al. 2015), the 517 

actual seismic loss Vactual can be calculated using Eqs. (1) and (2). Nevertheless, the Vactual 518 

was only obtained after nearly a month since the earthquake occurred. 519 

 520 

Similar to the Section “Generation of different load cases” of the case study of Tsinghua 521 

Campus, five linear attenuation functions were defined by Eq. (13), where the domain of 522 

PGAmax is {0.2 g, 0.4 g, ... 1.2 g}. Hence a total of 30 different GMPEs were defined. The 28 523 

near-field ground motions proposed by FEMA (2009) were selected as input. As a result, a 524 

total of 840 different THA load cases were generated leading to 840 simulation results. Using 525 

the two similarity measures proposed above, the scores of each simulation results were 526 



 

calculated, and the optimal simulation results were identified. The score-loss relationship is 527 

presented in Figure 12. 528 

In addition, the National Strong Motion Observation Network System of China captured 529 

more than 70 ground motion records of the main shock (Xu et al. 2015, Hu et al. 2016), one 530 

of which was recorded by the strong motion station located rightly at Longtoushan town. 531 

This ground motion record, together with a regressed attenuation relationship (Xiong et al. 532 

2017) was also used for comparison. The THA using this input was performed, the similarity 533 

score of the simulation result was calculated, and the corresponding loss was calculated and 534 

denoted as Vrecorded. The score-loss pair of this load case is presented as a star in Figures 12a 535 

and 12b. Note that the recorded ground motion only represents the earthquake tremor on a 536 

certain point. The inputted ground motion for different buildings may have some differences 537 

from it. Hence, the predicted collapse scene using the recorded ground motion, although is 538 

also very close to the real collapse scene, is not 100-percentage identical. 539 

(1) Both the simple counting method and the weighted counting method led to the same 540 

optimal simulation result. The score of the optimal simulation result was less than 1, 541 

indicating that the simulated collapse distribution was not completely identical with the 542 

actual collapse distribution. However, comparing the simulated collapse (Figure 11b) 543 

with the actual collapse (Figure 11a), they were fairly similar. 544 

(2) The loss estimation of the optimal simulation result was close to the actual loss, and far 545 

better than the estimation using the damage probability matrix (Figure 12c). The 546 

underlying key reason is that the proposed method takes advantage of an important 547 

information, i.e. the identified situation of building collapse. 548 

(3) The estimated loss using the recorded Ludian ground motion, Vrecorded, agrees well with 549 

the actual loss, Vactual.  550 

The seismic loss estimation was performed on a multi-core desktop computer (CPU: Intel 551 

E5-2695 v4@2.10Hz, 36 cores; RAM: 64GB). It should be noted that it took only 4 minutes 552 

to perform the above 840 nonlinear THAs in parallel. The similarity measures were 553 

computed within seconds. The computational efficiency can be further improved if using 554 

GPU parallel computing (Lu et al. 2014) or distributed computing (Xu et al. 2016), so that 555 

computation can be completed within several minutes even for a much larger region or much 556 

more THA load cases. With advances in remote sensing technologies, the satellite or aerial 557 



 

images of disaster areas are expected to be available within 24 hours, making a rapid 558 

attainment of the identified collapse situation of the buildings. Therefore, the methods 559 

proposed in this work represent a near-real-time seismic loss estimation method. The loss 560 

estimation can be provided within one or two days after an earthquake, with satisfactory 561 

accuracy compared to the site investigated loss, which may take weeks to obtain. 562 

 563 

In this work, the optimal simulation results are identified merely based on matching 564 

collapse scene. This involves an assumption that if the collapse distribution of a simulation 565 

result is similar to the identified collapse distribution from the remote sensing images, then 566 

the simulated building damage states and the estimated loss are also regarded to be similar. In 567 

other words, the regional building seismic loss is highly correlated to the building collapse 568 

distribution. Due to the complexity of the nonlinear behaviors of the structures subjected to 569 

earthquake excitation, currently the analytical prove to this assumption was not given in this 570 

study. Nevertheless, the case studies (3 virtual earthquakes on Tsinghua Campus and the 571 

Ludian earthquake) could be treated as numerical experiments. The results of these case 572 

studies (Figures 9, 10, and 12) confirm that this assumption is relatively reasonable.  573 

This work uses building-level damage, assessed by damage criteria, to calculate the 574 

seismic loss. As a matter of fact, nonlinear THA can provide detailed structural responses, 575 

such as displacement and acceleration time histories and peak values at each story of each 576 

building. Using these detailed responses, the damage states and repair costs of structural, 577 

drift-sensitive nonstructural, and acceleration-sensitive nonstructural components can be 578 

estimated based on FEMA P-58 method (FEMA 2012b), so as to obtain more refined 579 

building seismic damage and loss estimation. This also represents a proven advantage of the 580 

THA-based method against the damage probability matrix or the capacity spectrum method. 581 

Study on the combination of the THA-based and FEMA P-58 methods for regional loss 582 

estimation can be found elsewhere in Zeng et al. (2016). It should be noted, however, that 583 

such a combination method was not adopted as the implementation of Component (5) (see 584 

Figure 1) in order not to distract the focus of the proposed framework presented in this study. 585 

CONCLUSIONS 586 

In this work, a framework for near-real-time regional building seismic loss estimation is 587 

proposed. By taking advantages of the building collapse scene of the disaster area, which can 588 



 

be rapidly identified through remote sensing image analysis, the accuracy of the THA-based 589 

loss estimations is improved. The fact that the seismic loss estimation can be done within one 590 

or two days after an earthquake confirms a near-real-time efficiency. Two methods for 591 

selecting the optimal simulation results are proposed, i.e., simple counting method, and 592 

weighted counting method. Through the validation using the simulated case of the 1730 593 

Western Beijing earthquake and the actual 2014 Ludian earthquake in China, the advantages 594 

of the proposed methods are demonstrated. The results indicate that: 595 

(1) The two proposed similarity measure methods of collapse distribution can reasonably 596 

evaluate the similarity between simulated results and the identified building collapse 597 

situation. The simulated seismic loss tends to converge towards the actual loss when the 598 

similarity increases. 599 

(2) Even when lacking rational ground motion input, the loss estimation of the optimal 600 

simulation results can be very close to the actual loss. The key reason behind is that the 601 

proposed method takes advantage of an important information, i.e. the identified situation of 602 

building collapse. 603 

(3) The THAs can be completed within several minutes, while the similarity measure 604 

takes merely seconds. Using the satellite or aerial images of disaster areas which are expected 605 

to be available within 24 hours, the proposed method can adapt to the needs of rapid post-606 

earthquake loss assessment. 607 

 608 
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 774 

Figure 1. The framework proposed in this work. *Source of the building collapse distribution image: 775 

Gusella et al., (2005) 776 

 777 

Figure 2. The flow chart of similarity measure of collapse distribution. 778 

 779 



 

Figure 3. Example showing the outcomes of the simple counting method and the weighted counting 780 

method. 781 

 782 

Figure 4. The isoseismal map of the 1730 M6.5 Western Beijing earthquake. Modified from Hua et 783 

al. (2005). 784 

 785 

Figure 5. The target spectrum at the central campus and the spectrum of the selected ground motion. 786 



 

 787 

Figure 6. The building collapse distribution of the “target scenario” (i.e. the 1730 M6.5 Western 788 

Beijing earthquake). A-A is a profile shown in Figure 7b. 789 
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(a) 792 
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(b) 794 

Figure 7. The mean PGA distributions calculated using four GMPEs, i.e., ASK14, BSSA14, CY14, 795 

and GB(2015). (a) Overlook. (b) Profile A-A in Figure 6. 796 
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(c) 802 

Figure 8. Simulation results for each load case. (a) Number of buildings in each damage states. (b) 803 

Similarity scores using the weighted counting method. (c) Estimated loss. 804 
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Figure 9. The score-loss relationship of the simulation results (1730 Western Beijing earthquake). (a) 811 

Simple counting method (Method A). (b) Weighted counting method (Method B). (c) Comparison of 812 

simulated loss and actual loss. 813 
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(d) 821 

Figure 10. The results of the two additional earthquake scenarios. (a) The loss-score relationship of 822 

M5 scenario. (b) The loss-score relationship of M8 scenario. (c) Comparison of simulated loss and 823 

actual loss of M5 scenario. (d) Comparison of simulated loss and actual loss of M8 scenario. 824 
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Figure 11. The (a) identified, and (b) simulated building collapse distribution at Longtoushan town in 830 

Ludian earthquake. 831 
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(c) 837 

Figure 12. The score-loss relationship of the simulation results (2014 Ludian earthquake). (a) Simple 838 

counting method (Method A). (b) Weighted counting method (Method B). (c) Comparison of 839 

simulated loss and actual loss. 840 


