Accepted Manuscript

Partially hydrolyzed formula in non-exclusively breastfed infants: a systematic review and expert consensus

Yvan Vandenplas MD, PhD, Amir Hamzah Abdul Latiff MMED, MRCP, FACAAI, FAAAAI, David M. Fleischer MD, FAAAAI, Pedro Gutiérrez-Castrellón MD, MSc, DSc, Mohamad-Iqbal S. Miqdady MD, FAAP, Peter K. Smith MD, PhD, Andrea von Berg MD, Matthew J. Greenhawt MD, MBA, MSc

PII: S0899-9007(18)30486-6
DOI: 10.1016/j.nut.2018.05.018
Reference: NUT 10228

To appear in: The End-to-end Journal

Received date: 1 February 2018
Revised date: 6 May 2018
Accepted date: 26 May 2018

Please cite this article as: Yvan Vandenplas MD, PhD, Amir Hamzah Abdul Latiff MMED, MRCP, FACAAI, FAAAAI, David M. Fleischer MD, FAAAAI, Pedro Gutiérrez-Castrellón MD, MSc, DSc, Mohamad-Iqbal S. Miqdady MD, FAAP, Peter K. Smith MD, PhD, Andrea von Berg MD, Matthew J. Greenhawt MD, MBA, MSc, Partially hydrolyzed formula in non-exclusively breastfed infants: a systematic review and expert consensus, The End-to-end Journal (2018), doi: 10.1016/j.nut.2018.05.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Highlights:

- There is limited data regarding routine use of partially hydrolyzed formula (pHF).
- Our systematic review noted that studies show no evidence of harm, but limited benefits of such use.
- There is expert consensus that routine use of pHF results in normal growth.
- Residual allergenicity, tolerability and effectiveness among available pHF products differ.
- Cost-effectiveness cannot be appreciated because cost of pHF differs in different countries.
Partially hydrolyzed formula in non-exclusively breastfed infants: a systematic review and expert consensus

Yvan Vandenplasa, MD, PhD, Amir Hamzah Abdul Latifb, MMED, MRCP, FACAAL, FAAAAI, David M. Fleischerc, MD, FAAAAI, Pedro Gutiérrez-Castrellónd, MD, MSc, DSc, Mohamad-Iqbal S. Miqdadye, MD, FAAP, Peter K. Smithf, MD, PhD, Andrea von Bergg, MD, Matthew J. Greenhawtc, MD, MBA, MSc

Affiliations: aUZ Brussel, Department of Paediatrics, Vrije Universiteit Brussel, Brussels, Belgium; bAllergy & Immunology Centre, Pantai Hospital, Kuala Lumpur, Malaysia; cSection of Allergy/Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA; dHospital General Dr Manuel Gea González & Universidad Tecnológica de México, UNITEC, México; eDepartment of Pediatrics, Sheikh Khalifa Medical City (SKMC), Abu Dhabi, UAE; fClinical Medicine, Griffith University, Southport, QLD, Australia; gResearch Institute, Department of Pediatrics, Marien-Hospital, Wesel, Germany

Corresponding Author:
Matthew J. Greenhawt, MD, MBA, MSc
Section of Allergy/Immunology
Children’s Hospital Colorado
University of Colorado School of Medicine
13123 East 16th Avenue
Aurora, CO 80045
matthew.greenhawt@childrenscolorado.org
720-777-2264 (phone), 720-777-7247 (fax)

Funding source: An unrestricted grant was provided by Nestlé to facilitate the systematic review, Delphi consensus process and the expert face-to-face meeting. Editorial support was provided by Fishawack Communications, funded by an unrestricted grant from Nestlé. The authors are fully responsible for the content of this manuscript.

Financial disclosures: The authors report have no financial relationships to disclose other than those described in the COI statement.

Potential Conflicts of Interest: All authors report travel support and consulting fee from Nestlé for the Delphi consensus expert face-to-face meeting. In addition, Yvan Vandenplas reports participation as a clinical investigator, and/or advisory board member, and/or consultant, and/or speaker for Abbott Nutrition, Biocodex, Danone, Nestlé Health Science, Nestlé Nutrition Institute, Nutricia, Phacobel, Rontis, and United Pharmaceuticals. David M. Fleischer reports receiving payment for writing or reviewing manuscripts from Nestlé Nutrition Institute; participation in advisory boards for Aimmune Therapeutics, DBV Technologies, Kaleo Pharma and Monsanto; grant funding from Aimmune Therapeutics, DBV Technologies, Monsanto and Nestlé Nutrition Institute; payment for lecturing for
continuing medical education from the American College of Allergy, Asthma & Immunology (ACAAI), Canadian Society of Allergy and Clinical Immunology (CSACI) and Nestlé Nutrition Institute; receiving royalties from UpToDate; and is an employee of University Physicians, Inc.. Peter K. Smith reports personal fees and other from Nestlé (advisory board and speaker fee), other from Nutricia (advisory board), and personal fees from Novalac (honoraria). Andrea von Berg reports personal fees from Nestlé Germany and Vevey/Switzerland (honoraria for lectures at symposia organized by Nestlé); and financial support from Nestlé and Mead Johnson to the clinical centers of the GINI study for the 15-years follow-up. Matthew J Greenhawt reports research support from grant number 5K08HS024599 from the Agency for Healthcare Quality and Research; is an expert panel and coordinating committee member of the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Guidelines for Peanut Allergy Prevention; has served as a consultant for the Canadian Transportation Agency, Thermo Fisher, and Aimmune Therapeutics; is a member of physician/medical advisory boards for Aimmune, DBV, Nutricia, Kaleo Pharmaceutical, Nestlé, and Monsanto; is a member of the scientific advisory council for the National Peanut Board; has received honorarium for lectures from Thermo Fisher and multiple state allergy societies, the ACAAI and the European Academy of Allergy and Clinical Immunology (EAACI); is an associate editor for the Annals of Allergy, Asthma, and Immunology; and is a member of the Joint Taskforce on Allergy Practice Parameters. Amir Hamzah Abdul Latiff, Pedro Gutiérrez-Castrellón and Mohamad-Iqbal S. Miqdady have no other disclosures to report.
Keywords: partially hydrolyzed formula; cow’s milk formula; breastfeeding; systematic review; Delphi panel; hypoallergenic formula; allergy prevention; food allergy; GI tolerability; allergenicity; health economics; preference-sensitive choice

Abbreviations

AD, atopic dermatitis
CMP, cows’ milk protein
EAACI, European Academy of Allergy and Clinical Immunology
EC, European Commission
EFSA, European Food Safety Authority
eHF, extensively hydrolyzed formula
eHF-C, extensively hydrolyzed casein formula
eHF-W, extensively hydrolyzed whey formula
ESPGHAN, European Society for Pediatric Gastroenterology, Hepatology and Nutrition
FDA, US Food and Drug Administration
GI, gastrointestinal
GINI, German Infant Nutritional Intervention
OR, odds ratio
pHF, partially hydrolyzed formula
pHF-W, partially hydrolyzed whey formula
WAO, World Allergy Organization
Contributors’ statement:

Yvan Vandenplas: Prof. Vandenplas critically reviewed the existing literature; drafted, critically reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted. In addition, he acted as lead together with Dr Greenhawt during the entire process, facilitated the discussion at the consensus meeting, and had final say over the submitted content.

Amir Hamzah Abdul Latiff: Dr. Abdul Latiff critically reviewed the existing literature; drafted, critically reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

David M. Fleischer: Dr. Fleischer critically reviewed the existing literature; drafted, critically reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

Pedro Gutiérrez-Castrellón: Dr. Gutiérrez-Castrellón critically reviewed the existing literature; drafted, critically reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

Mohamad-Iqbal S. Miqdady: Dr Miqdady critically reviewed the existing literature; drafted, critically reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

Peter K. Smith: Prof. Smith critically reviewed the existing literature; drafted, critically
reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

Andrea von Berg: Dr. von Berg critically reviewed the existing literature; drafted, critically reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted.

Matthew J. Greenhawt: Dr. Greenhawt critically reviewed the existing literature; drafted, critically reviewed and completed the two rounds of the Delphi survey; participated in the expert panel consensus meeting; drafted, critically reviewed and revised the manuscript, and approved the final manuscript as submitted. In addition, he acted as lead together with Prof. Vandenplas during the entire process, facilitated the discussion at the consensus meeting, and had final say over the submitted content.

All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work. Nestlé had no role in authorship or editing of any content in this manuscript but did review the final draft for regulatory purposes pertaining to current product indications.
Abstract

Background: Guidance and evidence supporting routine use of partially hydrolyzed formula (pHF) vs intact cows’ milk protein (CMP) formula are limited in non-exclusively breastfed infants.

Methods: A systematic review and Delphi consensus panel (consisting of 8 international pediatric allergists and gastroenterologists) was conducted to evaluate evidence supporting growth, tolerability and effectiveness of pHF in non-exclusively breastfed infants.

Results: No studies identified potential harm of pHF use compared to CMP in non-exclusively breastfed infants. There was an expert consensus that pHF use is likely as safe as intact CMP formula, given studies suggesting these have comparable nutritional parameters. No high quality studies were identified evaluating the use of pHF to prevent allergic disease in not-at-risk non-exclusively breastfed infants (e.g., lacking a parental history of allergy). Limited data suggest that pHF use in non-exclusively breastfed infants may be associated with improved gastric emptying, decreased colic incidence and other common functional gastrointestinal symptoms vs CMP. However, due to data being of insufficient quality, the findings from these studies have to be taken with caution. No studies were identified that directly compared the different types of pHF, but there was an expert consensus that growth, allergenicity, tolerability, effectiveness and clinical role among such pHF products may differ.

Conclusions: Limited data exist evaluating routine use of pHFs in non-exclusively breastfed infants, with no contraindications identified in the systematic review. An expert consensus considers pHFs for which data were available to be as safe as CMP formula as growth is normal. The preventive effect on allergy of pHF in non-at-risk infants has only been poorly studied. Cost of pHF vs. starter formula with intact protein differs from country to
country. However, further studies in larger populations are needed to clinically confirm the benefits of routine use of pHF in non-exclusively breastfed infants. These studies should also address potential consumer preference bias.
Introduction

Childhood atopic diseases are becoming increasingly common in both high- and low-income countries, and are a major public health concern. Family history has long been considered an important risk factor for atopic disease. However, >50% of allergic children have no family history of atopy. The role of family atopic history as a risk factor for the development of food allergy remains unclear, in light of recent studies of peanut and egg allergy.

Partially hydrolyzed formulas (pHFs) were originally developed to have enhanced tolerability and reduced allergenicity, compared with intact cows’ milk protein (CMP) formula, and may therefore potentially have benefit in decreasing the occurrence of atopic diseases. pHFs are used worldwide in healthy infants, and in certain countries, as indicated for the potential prevention of eczema through age 2 years in infants who may be at high-risk of allergy. The Food and Drug Administration (FDA) allows marketing of pHF in the US for this potential indication. Current guidance on the routine use of pHF vs intact CMP formula in healthy infants who are not exclusively breastfed is limited and sometimes conflicting (Table 1). The European Commission (EC), European Food Safety Authority (EFSA), Codex Alimentarius Commission and European Society for Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) emphasize the importance of scientific data to demonstrate that a product meets the infant’s nutritional needs and safety requirements. The US Food and Drug Administration (FDA) and EFSA have provided frameworks supporting qualified claims of pHFs as routine feeding options for healthy infants. In the US, pHF’s are subject to the requirements of the Infant Formula Act (21 USC 350a) and all health claims for the formula must be evaluated by the FDA. The EC directive 2016/127 and EFSA Scientific Opinion mandate that pHF safety and suitability should be established by clinical evaluation. Data from systematic reviews and meta-analyses remain mixed in supporting that pHF containing
100% whey protects against development of atopic dermatitis in early childhood (infancy and toddlerhood). There are limited data regarding routine use of pHF’s (e.g. use as an option as a primary infant formula) in non-exclusively breastfed infants and other not at-risk populations.

To better clarify issues of routine use of pHF in non-exclusively breastfed infants who are not at-risk for allergic disease, a panel of Pediatric Allergy, Gastroenterology and Nutrition experts was convened to explore this topic using a systematic review and Delphi Panel consensus. Our findings are reported herein.

Methods

To systematically evaluate the evidence regarding the routine use of pHF in non-exclusively breastfed infants not considered at-risk for the development of allergic disease, an international panel of pediatric allergists (n=5) and gastroenterologists (n=3) from the Asia-Pacific region (Australia, Malaysia: n=1 each), Europe (Belgium, Germany: n=1 each), Middle East (UAE: n=1) and North/Latin America (USA: n=2, Mexico: n=1) was assembled. Routine use was defined as use of a pHF as an option as a primary infant formula in a standard-risk (e.g. not at-risk for allergic disease), non-breastfed child. The group was asked to conduct a systematic literature review on the topic, and use the Delphi method to provide consensus opinion to back the literature review findings and to supplement any gaps in the literature on the subject.

Systematic literature search

A systematic literature search of the MEDLINE database up to September 2016 was performed using the search terms shown in Supplementary Tables S1 and S2 to inform the Delphi consensus process. No search restrictions were applied. Resulting publications were
manually screened for potential relevance by the expert panel, with duplicates removed, and additional publications were identified from cross-referencing. The outcome of the search strategy is shown in Supplementary Figure S1. A total of 231 citations were identified for final inclusion in this systematic review, falling under the general outcomes of formula definition; growth, tolerability, and general infant development; allergenicity and allergic disease prevention; prior systematic reviews and clinical practice guidelines; and health economics of pHF use.

Delphi consensus method

To better frame and organize discussion regarding the findings of the systematic review, a Delphi panel was conducted among the expert panel. Based on the systematic literature search, a three-stage process was followed, with experts completing a first-round questionnaire on topics including defining terms around partially hydrolyzed formulas for routine use as we defined; evidence on growth, gastrointestinal (GI) tolerability, and effectiveness for potential allergy risk reduction; cost-benefits of pHF use; guidelines on pHF use; and clinical practice. First-round responses were summarized and presented to the experts, who could then revise their opinions, if desired. The questionnaire was amended for a second evaluation round, involving further refinement of the experts’ responses and rating of answers on a 5-point Likert scale. After completion of the second round, the experts met to discuss the findings and generate/finalize a consensus of opinion on topics, where possible. Consensus was defined as ≥75% agreement among experts (n≥6). Questionnaire responses from each round were anonymously collected to minimize any potential bias from the influence of dominant individuals and/or group pressure for conformity.

The findings from the systematic literature search and Delphi consensus project were used as the basis for development of this narrative review and summary of the consensus on these topics. Per group consensus, it was decided that no meta-analysis would be attempted given
considerable heterogeneity in the available data (specifically that data were limited, where available these involved use of different formulations of pHF, and different populations were studied). As such, it was also decided that this document would not attempt to make summary statements or qualified recommendations with GRADE evidence weighting. The panel sponsor had no role in the Delphi process and no involvement with drafting of the manuscript. Experts were chosen based on their expertise on infant nutrition or allergy disease prevention, and not chosen based on any relationship with the sponsor. Prior to submission, the sponsor was allowed to view the manuscript exclusively for regulatory purposes related to consistency with current approved product indications but otherwise had no decision-making related to the content.

Results

Definition of terms

There were 12 publications identified in the systematic review that discussed the protein contents of infant formula, to define and differentiate pHF from other formulas, and to define hypoallergenicity with respect to an infant formula.

Intact protein vs hydrolyzed protein formulas

Specifically, intact protein formulas are not treated in any way to break down native proteins into smaller peptides (*e.g.* by hydrolyzation). In contrast, hydrolyzed formulas are composed of a protein base, degraded to a variable extent (partially or extensively) by enzymes, heat, pressure and/or ultrafiltration, to increase tolerance and digestibility, and possibly reduce allergenicity and immunogenicity on the basis that the lesser degrees of intact protein content is associated with enhanced immunologic tolerability. Both casein and whey hydrolyzed formula products exist worldwide. There was unanimous expert consensus regarding the accuracy of these definitions.
The literature suggests that residual cows’ milk IgE and T-cell epitopes can remain after hydrolysis, and could be recognized by the immune systems of some individuals. Peptides as small as 10–15 amino acids can bind to IgE and T cells. There are multiple IgE-binding epitopes in both whey and casein which fall within this size range. However, it is estimated that allergens must be ≥25–30 amino acids for cross-linking of IgE receptors and activation of a pro-inflammatory immune response. No studies were identified that recommend pHF are appropriate for use in treatment of allergic diseases. Multiple studies were identified which indicate that eHF may be considered for prevention and/or management of allergic disorders such as AD or CMP allergy-related symptoms. There was unanimous expert agreement on these points.

The extent of the size of remaining casein or whey peptides after hydrolysis determines whether the formula is deemed a pHF or eHF. The literature review noted that irrespective of protein base, pHFs typically contain peptides of average molecular weight <5 kDa, whereas eHFs are composed of >90% of peptides with molecular weight ≤3 kDa. While the expert panel agreed with the literature regarding definition of formula type by size of the hydrolyzed formulas, there was also consensus that the definition of a pHF should be based on established, clear guideline standards, such as the existing EC directives and regulations, FDA Guidance for Industry and/or ESPGHAN guidelines to promote maximal consistency in product labeling.

Avoidance of terminology related to ‘hypoallergenicity’

We noted multiple definitions in the literature describing the term “hypoallergenic”, and no clear consistency in what this definition implied. In Europe, ‘hypoallergenic’ denotes a formula with reduced allergenicity related to the cow’s milk protein base, which includes
both eHF and pHF. In the US, ‘hypoallergenic’ refers to a formula that is used for treatment and/or primary prevention of CMP allergy; therefore, ‘hypoallergenicity’ is also defined more stringently (i.e. under double-blind, placebo-controlled conditions, 95% confidence that 90% of infants with documented CMP allergy will not react with defined symptoms to the formula). Thus, both eHF and pHF could be considered hypoallergenic under these definitions. There was expert consensus that the term ‘hypoallergenic’ should be avoided when discussing infant formulas because it is ambiguous and potentially confusing.

Overall effects of pHFs

There were 26 publications identified in the systematic review that discussed the growth and safety of pHF use. The systematic literature review identified no studies which demonstrated harm in use of pHF in any population, including routine use in non-exclusively breastfed infants not at-risk for the development of allergic disease. Though outside the context of our population of interest, the most current Cochrane systematic review of hydrolysates for the prevention of infant allergy and food intolerance found no adverse effects on infant growth associated with hydrolyzed formulas in any of the studies included for analysis. In a prospective, double-blind, controlled, non-inferiority trial of healthy infants (n=335) randomized to intact CMP formula or whey pHF (pHF-W) for 60 days, no significant between-group difference in frequency of serious adverse events was observed. Parent-reported formula intake, and physician-assessed weight gain and tolerance (fussiness, gas, stool consistency, and incidence of diarrhea or constipation) were similar, irrespective of formula use. In another randomized, double-blind study, daily weight gain over 4 months did not significantly differ between breastfed full-term, healthy infants or those receiving pHF-W or intact whey-predominant CMP formula (n=205). Growth parameters at 6 weeks and 3 and 6 months also did not differ in unselected infants who were exclusively breastfed, or in whom breastfeeding was supplemented or replaced with pHF-W use (n=564) in a cohort
As well, though outside our population of interest the ongoing follow-up of the German Infant Nutritional Intervention (GINI) cohort study has demonstrated no significant differences in absolute or World Health Organization-standardized body mass index trajectories through the first 10 years of life in children at high-risk of atopy, who were breastfed (n=448) or received pHF-W (n=118), whey eHF (eHF-W; n=123) or intact CMP formula (n=127).31

The panel had unanimous consensus that sufficient growth data exist to conclude that infants fed pHF grow within normal limits and that as a consequence, there is no harm in using a pHF over an intact CMP formula in infants who are not exclusively breastfed. pHFs appear to result least in similar data as as intact CMP formula, with comparable nutritional parameters, though there are no similar long-term studies involving pHF use in healthy children without a familial risk of atopy. The panel also unanimously agreed that sufficiently powered, randomized, controlled trials are needed to evaluate both short-term nutritional outcomes and long-term developmental and health outcomes for routine pHF use.7

GI tolerability/digestive comfort of pHFs

The literature review identified 92 publications that discussed overall pHF tolerability (16 publications), and specific aspects of gastrointestinal tolerability (29 publications for “GI tolerability”, 15 publications for colic, 32 publications regarding prebiotic/probiotic supplementation). Both prospective, randomized studies and an observational study were identified which provide support for certain pHFs being associated with both potentially improved gastric emptying and beneficial effects on common functional GI symptoms (e.g. colicky symptoms, regurgitation, functional constipation). However, data were of insufficient
quality and limited due to potential confounding factors (e.g. changes in carbohydrate, fat composition and additives) to draw firm conclusions, and few were felt to be specific to the general population of interest.32

In a prospective, randomized study of infants aged <1 year (n=28) with gastroesophageal reflux, mean values for gastric emptying after a single feed of casein-predominant formula, soy formula or pHF-W were 39.7%, 44.6%, and 48.5%, respectively. A significant difference in gastric emptying time was observed between casein-predominant formula and pHF-W (p<0.05).33 In a double-blind, randomized, crossover study in healthy newborns (n=17) fed intact CMP formula, pHF or eHF, gastric emptying was significantly faster in the eHF group than in the intact CMP formula and pHF groups (median of 46 vs 55 and 53 min, respectively; p<0.05 for both comparisons). There was no significant difference between emptying times for pHF and intact CMP formula.34 However, both studies involved small samples and were of inadequate power.

There were no randomized clinical trials identified demonstrating the efficacy of pHF-W in infantile colic.32 Similarly, there were no studies identified evaluating the efficacy of pHF-W as a solitary intervention in infants with constipation.32 A prospective, double-blind, crossover trial in exclusively formula-fed infants with regurgitation (n=12) who previously failed to improve with thickened and/or hydrolyzed formulas, pro-kinetic and acid-blocking drug medication showed that a pHF-W combined with two thickeners significantly decreased regurgitation and crying compared with a thickened casein-predominant formula.35 The review identified 32 publications regarding pre/probiotic supplementation in pHF, but found that current evidence is insufficient to show clear clinical benefits from adding prebiotics or probiotics to pHFs to influence the outcome of functional GI disorders. A systematic review by the ESPGHAN Committee on Nutrition concluded in 2011 that based on the limited available evidence, administering prebiotic- and/or probiotic-supplemented formulas to
healthy infants does not raise any safety concerns, although this is not recommended as a routine practice.36 The World Allergy Organization (WAO) advised in 2015 that while currently available evidence does not indicate that probiotic supplementation reduces the risk of developing allergic outcomes in children, it likely has a net benefit, resulting primarily from eczema prevention.37

In evaluating the evidence, there was expert consensus from the Delphi panel that pHF’s have acceptable GI tolerability for routine use as defined herein, that there is no current evidence supporting benefit associated with pro-biotic supplementation in pHF’s. Furthermore, the panel had consensus agreement that better designed studies are needed to help determine optimal probiotic dose and strain, as well as adjust for potential confounding from other formula ingredients such as vitamin D.

Value of pHFs in reducing allergy risk

A total of 190 studies were identified dealing with the allergy-related manifestations including prevention (107 publications for atopic dermatitis, 51 for food allergy, and 32 for asthma). Additionally, the majority of 31 previously published clinical guidelines/systematic reviews on pHF use specifically discussed pHF use for allergy prevention. There were no studies or prior systematic reviews/clinical guidelines identified supporting potential allergy prevention benefit associated with routine use of a specific pHF-W in not at-risk populations. Data on this subject has been exclusively studied only in the at-risk population, and are not without some controversy as not all studies have universally concluded nor demonstrated a preventative benefit (associated with a reduced risk of development of atopic dermatitis through age 2) in intention-to-treat populations. Thus, meta-analyses and systematic reviews have offered conflicting results of pooled data regarding such benefits.2,14-17,38 The literature search noted multiple potential definitions of “at-risk” or “high-risk” for the development of allergic disease, complicating delineation of a consistent population being studied. Risk
defined by primary relative/family history of any allergic disease has been the primary
definition used in most of the published literature. However, newer criteria used in the recent
food allergy early introduction trials have also specifically defined risk by either the presence
of egg allergy and/or severe atopic dermatitis, presence of IgE (food specific or general), or
just on the presence of severity of atopic dermatitis, and de-emphasizes the presence of any
family history of allergic disease. The family history based definition has been used in two
prevention studies specific to egg allergy, and all of the studies utilizing hydrolyzed formula
for possible prevention of multiple possible atopic manifestations. The newer risk definitions
have been used in trials of early intervention specific to the development of either egg or
peanut allergy. This may possibly account for the heterogeneity in the baseline definition of
risk.

The panel reached unanimous consensus that there may be limited instances in which data
could potentially be extrapolated from at-risk populations to the general population. However, there was unanimous consensus that additional data are needed to confirm any
potential allergic risk-reducing benefit ascribed to a particular pHF formula in non-at-risk
populations. Moreover, there was unanimous consensus that for prevention of allergic
disease, data from at-risk populations should not be extrapolated to not at-risk population.
More importantly, the panel had unanimous consensus that there is inconsistency in the
definition of high-risk, making comparison between trials more difficult, and necessitating a
firmer consensus on a more standardized definition to even study any potential allergy related
risk-reducing potential associated with pHF for routine use so that study populations are
clearly delineated.39
Limitations in Extrapolating Data on Hydrolysed Formulas to Non-studied Populations

The systematic review identified multiple references which suggested that while there are commonalities within the types of eHF and pHF’s sold, that these may have distinct properties and should not be considered economic substitutes of one another. A recent peptidomic analysis of four commercially available eHFs showed that their peptide profiles differ and are distinct from each other. Each profile provides a descriptive and recognizable signature, determined by the specific hydrolysis process used for each product.40 These findings support the consensus that individual pHFs and other hydrolyzed-formula products should not be considered the same without trials clearly demonstrating non-inferiority. This was also influenced to some degree by discussion regarding if data from older clinical trials still hold value in comparison with more modern trials, considering that infant-formula recipes may have evolved since those studies were performed. There was consensus that while subtle modification of existing pHFs (\textit{e.g.} addition of probiotics, prebiotics, polyunsaturated fatty acids, or vitamin D) would likely not have any clinically relevant negative effects, and comparisons between these modern and older infant formulas would remain valid. However, there was consensus that alterations in the hydrolysis process of an existing pHF would likely necessitate new testing to determine any effects such changes may have on its established clinical effectiveness. There was unanimous consensus that it is inappropriate to extrapolate the effectiveness of specific individual hydrolyzed formulas to other populations that have been untested. As well, there was unanimous consensus that the potential allergy prevention benefit has been noted only with a particular pHF-W product, and that such benefits should not be extrapolated to all pHF’s (and must be independently studied) when considering design of future studies for the not at-risk target population.

Timing of use of pHF

From among 45 publications identified that specifically dealt with pHF use and infant
growth/development, there were no studies specifically identified describing a specific, appropriate age for pHF use in terms of an upper age limit, or a specific time of introduction that has proven superior to another time. There was unanimous consensus of the Delphi panel that an upper age limit for pHF consumption is not required, provided the formula given is still considered appropriate for the infant’s age and developmental stage. However, the timing for commencing pHF consumption was considered important, with all experts agreeing that the highest potential value in starting pHF use occurs in the first 6 months of life if children cannot be exclusively breastfed, with markedly less value if starting >6 months, and likely no value if starting >12 months given that non-breastfed infants transition to non-formula sources of nutrition at about a year of age notwithstanding a co-morbidity that necessitates a specific formula.

Health economics research on pHFs

Though 15 publications were identified in the systematic review related to the cost-effectiveness of pHF use, no study was identified that studied and supported any cost-effectiveness of routine pHF use as we have defined “routine”. Cost savings from pHF use have mainly been demonstrated from reduction in AD in at-risk populations – an argument that presently has no translation to populations not at risk. There was consensus that routine use of pHF as defined, while often more expensive initially than intact CMP formula, could conditionally have long-term cost benefits through potential prevention of functional GI disorders. It was felt such savings could arise from avoiding the need for increased medical consultations and use of treatments, as well as indirect savings related to possible decreased productivity, absenteeism, and other negative effects on the parent. There was unanimous consensus that the current cost-savings models related to pHF-W use are highly dependent on the validity of findings from one particular study, the GINI study, which only applies to a narrowly defined population of at-risk children. However, one US-focused analysis was
identified that estimated that administering pHF-W rather than intact CMP formula to all infants not exclusively breastfed (and not exclusively at-risk) infants, could result in annual societal savings of approximately US$ 750 million. However, it is difficult to make a strong recommendation regarding the cost-effectiveness of pHF-W versus standard infant formula, because the cost of formula differs a lot from country to country. In the USA, the cost of pHF-W and starter formula is quite similar, while e.g. in France, pHF-W is 50 % more expensive that standard starter formula with intact protein (7).

pHF use: current guidelines and regulatory aspects

No literature was identified that suggested that pHF would not be an appropriate starter formula compared to intact CMF. From a regulatory perspective, pHFs are an accepted starter formula for infants who cannot be exclusively breastfed, and this is echoed by current guidelines (Table 1). However, these recommendations are limited by being based mainly on clinical studies involving use in a selected high-risk population, extrapolated to more general potential use. Only the EFSA\(^{13}\), ESPGHAN\(^{11}\) and European Academy of Allergy and Clinical Immunology (EAACI)\(^{45}\) guidelines currently consider that specific pHFs and other hydrolyzed formulas may vary in their clinical effectiveness.\(^{42}\) While no study was identified that compared the superiority or inferiority of different pHFs, there was consensus that protein standards for pHFs may be defined differently by organizing and regulatory bodies, and by country, and that individual hydrolyzed formulas, including pHFs, are not considered to be the same with regards to proven effectiveness and tolerability. There was also unanimous consensus that choice of pHF as a routine starter formula may be a preference-sensitive decision on behalf of the infant’s parents.
Discussion

Exclusively breastfeeding during the first 4–6 months of life is the recognized first choice for infant nutrition and development, but is not always possible. Infant formulas, in particular those derived from cows’ milk, are a commonly used substitute for breastfeeding, but there is a plethora of products available, some chosen by consumer preference, and some with specific medical uses indicated in certain conditions, supported by varying levels of clinical evidence and limited guidance.

This group was tasked with performing a systematic literature review exploring the routine use of pHF in the general population. Foremost, no data suggest harm from routine use in not-at-risk populations, and this was unanimously backed by the expert consensus. The bigger issue was lack of compelling data for benefit, either from the literature or from expert consensus. Data weakly suggest that routine pHF use may be associated with possible improvements in functional GI disorders, and data support pHF use is not associated with apparent deficits in growth and development. The literature search yielded little else—no studies were identified regarding allergy in this population, no studies were identified suggesting an optimal time for introduction of pHF or specific cost-benefit analysis of the routine use of pHF outside the at-risk population, no studies were identified that compared differing forms of pHF that could be used for these outcomes, and overall there was a rather inconsistent definition of “hypoallergenic” used in the literature. Accordingly, considering the available data in the literature, there was consensus that, given a setting where this conceivable real-world issue may not be appropriate or financially feasible to investigate through a well-designed clinical trial, use of pHF in populations not at-risk may be more a practical matter of patient preference for the parent.
This process resulted in a narrative systematic review, with no meta-analysis performed given the heterogeneity of the data. We also made no attempt at making a formal GRADE-based recommendation for such use of pHF. A consensus of a Delphi panel with international representation was used to supplement the gaps in evidence. We feel this dual process is a strength of this review. In evaluating the available data, there were no studies identifying harm, a point with which there was unanimous consensus. There were limited potential benefits, mainly related to data related to functional GI tolerability, which despite poorer quality evidence, the expert consensus was that there could be some benefit associated with such use. However, routine use of pHF could not be recommended for allergy prevention, given no data and a clear consensus that such use needed to be rigorously evaluated (in particular given controversial potential benefits in the at-risk population for which meta-analyses have vacillated). Furthermore, the expert consensus denoted a need for better clarification of what an “at-risk” population constituted, to better delineate the “not at-risk” population for selection before future study should be undertaken. There was consensus that inclusion of validated disease-specific measures in future clinical trials may facilitate better evaluation of infant-formula effectiveness, in particular across differing types of populations.

Our review and consensus concluded that not all pHFs and hydrolyzed formulas are equivalent and that comparability across different formulas is limited, and there was unanimous group consensus that this has not always been recognized by policy-makers. The group agreed that the recent systematic review and meta-analysis from the British Medical Journal, which did not find any benefit for allergy prevention of pooled pHF and eHF data, compared with intact CMP formula, is a prime example of potential issues that may arise from not considering differences in the specific nature of individual pHFs, which may be a limiting factor to the conclusion of that particular review, compared to other reviews. Therefore, a need for high-quality, prospective, independently funded clinical trials which
investigate the effect of specific pHFs still remains, irrespective of the study population (at-risk or not).

Conclusions

The literature review noted, and expert panel agreed that pHFs derived from different source proteins should not be considered equivalent. Infants fed pHF-W grow within normal range. However, use of pHF in populations not at-risk has not been associated with any preventative or protective benefit, given that demonstration of such benefit related to particular pHF products (vs intact CMP formula in infants for the first 4–6 months of life who are not exclusively breastfed) has only been studied and demonstrated (in some cases inconsistently) in populations at-risk for the development of allergic disease. It is not possible to conclude about cost-effectiveness given the huge variation in cost of pHF-W in comparison to starter formula with intact protein (7). Thus, future study is necessary to address if such use in populations not at-risk has any similar benefit. There was strong, unanimous consensus that use of pHF products in the population not at-risk would be safe given no risks or known hazards of this practice were identified, and potentially aligned with a strong caregiver preference to try these products as available market options.
References

17. Boyle RJ, Ierodiakonou D, Khan T, et al. Hydrolysed formula and risk of allergic or

Table 1. Summary of guidance on the routine use of partially hydrolyzed formula (pHF) vs intact cows’ milk protein (CMP) formula (adapted from Vandenplas et al. 2016).

<table>
<thead>
<tr>
<th>Guidance</th>
<th>Definition of infant formula and other relevant information</th>
<th>Protein specifications for standard and partially hydrolyzed infant formulas</th>
</tr>
</thead>
</table>
| US Food and Drug Administration (FDA)\(^{12}\) | ● “A food which purports to be or is represented for special dietary use solely as a food for infants by reason of its simulation of human milk or its suitability as a complete or partial substitute for human milk” (FDA regulations define infants as persons ≤12 months old)
● “The use of 100% whey pHF is safe and lawful” |
| | | Standard formula |
| | | ● Range: ≥1.8 and ≤4.5 g/100 kcal |
| | | ● No protein with a biological quality <70% of casein shall be used |
| European Commission (EC) directive 2016/127\(^{8}\) | ● “Foodstuffs intended for particular nutritional use by infants during the first months of life and satisfying by themselves the nutritional requirements of such infants until the introduction of appropriate complementary feeding”
● Formulas “must satisfy the nutritional needs of healthy |
<p>| | | Formula manufactured from protein hydrolysates |
| | | ● Range: 1.86–2.80 g/100 kcal |
| | | ● Nutritional safety and suitability of all infant and follow-on formula manufactured from protein hydrolysates should be clinically tested (if do not comply with the criteria laid |</p>
<table>
<thead>
<tr>
<th>European Food Safety Authority (EFSA) Scientific Opinion<sup>9</sup></th>
<th>Formulae must be safe, and suitable to meet the nutritional requirements and promote the growth and development of infants”</th>
<th>Formula manufactured from protein hydrolysates</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Food Safety Authority (EFSA) Scientific Opinion<sup>9</sup></td>
<td>“Formulae must be safe, and suitable to meet the nutritional requirements and promote the growth and development of infants”</td>
<td>Formula manufactured from protein hydrolysates</td>
</tr>
<tr>
<td>Formula manufactured from protein hydrolysates</td>
<td>Range: ≥1.8 and ≤ maximum of 2.8 g/100 kcal</td>
<td>Safety and suitability of each specific formula containing protein hydrolysates should be established by clinical studies</td>
</tr>
<tr>
<td>Codex Alimentarius Commission<sup>10</sup></td>
<td>“A product based on milk of cows or other animals or a mixture thereof and/or other ingredients which have been proven to be suitable for infant feeding”</td>
<td>Standard formula and pHF</td>
</tr>
<tr>
<td>Codex Alimentarius Commission<sup>10</sup></td>
<td>“A product based on milk of cows or other animals or a mixture thereof and/or other ingredients which have been proven to be suitable for infant feeding”</td>
<td>Standard formula and pHF</td>
</tr>
<tr>
<td>Standard formula and pHF</td>
<td>Range: ≥1.8 and ≤3.0 g/100 kcal</td>
<td>pHF containing <2.25 g of proteins/100 kcal should be clinically tested</td>
</tr>
<tr>
<td>European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN)<sup>11</sup></td>
<td>“A product based on milk of cows or other animals and/or other ingredients which have been proven to be suitable for infant feeding”</td>
<td>Standard formula and pHF</td>
</tr>
<tr>
<td>European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN)<sup>11</sup></td>
<td>“A product based on milk of cows or other animals and/or other ingredients which have been proven to be suitable for infant feeding”</td>
<td>Standard formula and pHF</td>
</tr>
<tr>
<td>Standard formula and pHF</td>
<td>Range: ≥1.8 and ≤3.0 g/100 kcal</td>
<td>pHF containing <2.25 g of proteins/100 kcal</td>
</tr>
</tbody>
</table>
| Health Canada⁵³ | **feeding**
- States that the nutritional safety and adequacy of infant formulas should be scientifically demonstrated to support normal anthropometric growth and development of infants |
| | **Clear differentiation**
- between CMP formula and formula for special medical purposes (FSMP)
- FSMP are intended for use only under medical supervision, which include formulas for the dietary management of various conditions, as well as formulas for preterm infants
- FSMP are not intended for healthy, term infants |
| | **Standard formula and pHF**
- Range: \(\geq 1.8 \) and \(\leq 4.0 \) g/100 kcal
- Protein in these formulas may be whole milk protein; a combination of casein and whey proteins; or just 1 of these proteins. Some or all of the protein may be partially hydrolyzed |