Response to:


Full title: Tissue adhesive and chlorhexidine gluconate interaction: implications for vascular access device securement

Short title: CHG and glue

Authors: Amanda J Ullman¹,²,³,⁴, Tim R Dargaville ¹,⁵, Claire M Rickard ¹,²,³

¹Alliance for Vascular Access Teaching and Research Group, Menzies Health Institute Queensland, Griffith University, Australia
²School of Nursing and Midwifery, Griffith University, Australia
³Centre for Clinical Nursing, Royal Brisbane and Women’s Hospital, Australia
⁴Paediatric Critical Care Research Group, Lady Cilento Children’s Hospital, Australia
⁵Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia

Corresponding author:
Dr Amanda Ullman
N48, Menzies Health Institute Queensland
Griffith University
Nathan, Queensland, Australia 4111
Phone: +61 7 3735 6462
Email: a.ullman@griffith.edu.au

Word count: 464

Keywords: tissue adhesive; securement; dressing; skin; wounds
The growing evidence supporting tissue adhesive (TA), or medical-grade superglue, to promote vascular access security has resulted in rapid uptake in clinical settings [1, 2]. TA manufacturers are exploring different chemical compositions to optimise viscosity and strength while maintaining biocompatibility. However, TAs are being applied within already complex clinical situations. Many other chemicals are already being used, and interactions between current practices and emerging technologies need to be examined. We read with interest Di Puccio and colleagues’[1] laboratory study demonstrating the safety of applying TA onto a range of uncoated polyurethane peripherally inserted central catheters (PICCs), without adversely affecting the catheter surfaces or mechanical strength. This safety data are reassuring for clinicians currently applying TA onto PICCs made of these materials, however the interaction with silicone demonstrates further testing with anti-microbial and anti-thrombogenic materials is important.

Further guidance regarding the application of TA is necessary, to ensure its success in the heterogeneous clinical settings where TA is being applied. Chlorhexidine gluconate (CHG) is a vital antiseptic used in combination with alcohol for skin decontamination [3]. What is currently unknown from the literature and clinical practice is whether there is potential for adverse interaction between TA and CHG at vascular access insertion sites.

From a chemical perspective, CHG may interact with TAs in two ways. Firstly, the mechanism in which cyanoacrylate TA polymerizes is based on trace amounts of water on skin or in the air initiating the chemical reaction. Both the chlorhexidine and
gluconate components of CHG have the potential to act similarly to water and commence the cyanoacrylate TA reaction process. Thus, in the presence of CHG TA's hardening reaction may be accelerated which could, theoretically, change the adhesive strength. The second potential interaction is with the alcohol component of CHG (usually isopropanol), which if not fully allowed to evaporate before application of TA may possibly also affect the chemical reaction. Preliminary experiments on healthy volunteers showed 2-octyl cyanoacrylate (Dermabond™, Ethicon, US) reacted faster and with greater heterogeneity on skin freshly swabbed with 2% CHG with 70% isopropyl alcohol (SoluPrep™ Swab; 3M, US), compared with non-swabbed skin. The same TA applied to swabbed then dried skin reacted faster than the non-swabbed control, but only at the skin surface.

Dermatitis injuries caused by inadequate CHG drying time prior to dressing application are common[4]. Vascular access device insertion and dressing change procedures can be harried, due to non-compliant patients (e.g., paediatrics) and staffing shortages. If TA becomes a primary securement method for vascular access devices, clinicians must ensure adequate CHG drying time, prior to TA application. Otherwise, this new innovation, instead of promoting device security, may possibly be associated with accidental dislodgement and consequential treatment disruption.

Financial support: None to declare

Conflicts of interest: Griffith University has received investigator-initiated research grants from tissue adhesive and dressing manufacturers (3M, Adhezion, BD, Centurion Medical Products) to support the research of AJU, unrelated to the current
manuscript. Griffith University has received investigator-initiated research/education grants on CMR’s behalf from tissue adhesive and dressing manufacturers (3M, Adhezion, BBraun, BD-Bard; Centurion Medical Products; Entrotech; Medtronic; Teleflex), and consultancy payments from tissue adhesive and dressing manufacturers (3M, BBraun, BD-Bard, ResQDevices).

References:


