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ABSTRACT Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract
infections. Nearly half of all UPEC strains secrete hemolysin, a cytotoxic pore-forming
toxin. Here, we show that the prevalence of the hemolysin toxin gene (hlyA) is
highly variable among the most common 83 E. coli sequence types (STs) repre-
sented on the EnteroBase genome database. To explore this diversity in the context
of a defined monophyletic lineage, we contextualized sequence variation of the hly-
CABD operon within the genealogy of the globally disseminated multidrug-resistant
ST131 clone. We show that sequence changes in hlyCABD and its newly defined
1.616-kb-long leader sequence correspond to phylogenetic designation, and that
ST131 strains with the strongest hemolytic activity belong to the most extensive
multidrug-resistant sublineage (clade C2). To define the set of genes involved in he-
molysin production, the clade C2 strain S65EC was completely sequenced and sub-
jected to a genome-wide screen by combining saturated transposon mutagenesis
and transposon-directed insertion site sequencing with the capacity to lyse red
blood cells. Using this approach, and subsequent targeted mutagenesis and comple-
mentation, 13 genes were confirmed to be specifically required for production of ac-
tive hemolysin. New hemolysin-controlling elements included discrete sets of genes
involved in lipopolysaccharide (LPS) inner core biosynthesis (waaC, waaF, waaG, and
rfak) and cytoplasmic chaperone activity (dnaK and dnaJ), and we show these are re-
quired for hemolysin secretion. Overall, this work provides a unique description of
hemolysin sequence diversity in a single clonal lineage and describes a complex
multilevel system of regulatory control for this important toxin.

IMPORTANCE Uropathogenic E. coli (UPEC) is the major cause of urinary tract infec-
tions and a frequent cause of sepsis. Nearly half of all UPEC strains produce the po-
tent cytotoxin hemolysin, and its expression is associated with enhanced virulence.
In this study, we explored hemolysin variation within the globally dominant UPEC
ST131 clone, finding that strains from the ST131 sublineage with the greatest multi-
drug resistance also possess the strongest hemolytic activity. We also employed an
innovative forward genetic screen to define the set of genes required for hemolysin
production. Using this approach, and subsequent targeted mutagenesis and comple-
mentation, we identified new hemolysin-controlling elements involved in LPS inner
core biosynthesis and cytoplasmic chaperone activity, and we show that mechanisti-
cally they are required for hemolysin secretion. These original discoveries substan-
tially enhance our understanding of hemolysin regulation, secretion and function.
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ropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infection

(UTI) and a frequent cause of sepsis, diseases of major significance to global
human health and increasingly associated with antibiotic resistance (1-3). Many UPEC
strains belong to globally disseminated clones that can be differentiated based on their
multilocus sequence type (ST), including ST69, ST73, ST95, and ST131 (4-6). Among
these, ST131 represents the predominant fluoroquinolone-resistant clone worldwide
and the most frequent cause of UTI and urosepsis (7-11). Despite the presence of
unique features that define ST131 and other clones, strains within these phylogeneti-
cally related lineages also exhibit extensive diversity in their accessory genome. This
occurs primarily through the possession of multiple large genomic islands that contain
different combinations of genes encoding virulence factors such as adhesins (e.g.,
fimbriae and autotransporters), surface polysaccharides (e.g., capsule and O antigen),
iron acquisition systems (e.g., siderophores and heme scavenging systems), and toxins
(e.g., hemolysin and cytotoxic necrotizing factor-1) that are associated with the capacity
to cause disease (10, 12, 13).

Hemolysin, a prototype member of the repeats-in-toxin (RTX) family, is a potent
pore-forming toxin secreted by 40 to 50% of all UPEC strains (14). The production of
hemolysin is strongly associated with UPEC strains that cause pyelonephritis and
urosepsis, suggesting a link with increased virulence (14-18). The genes responsible for
the production, maturation, and secretion of hemolysin include the genomic island
(Gl)-located hlyCABD operon, and the distally located to/C gene (19, 20). HlyA is
translated intracellularly as a nontoxic prohemolysin (proHIyA), which is then acylated
at Lys564 and Lys690 by the HlyC acyltransferase (21-23). The active HIyA toxin is
exported through a type | secretion system (T1SS) that contains an ATP-binding
cassette transporter, HlyB, the membrane fusion protein HlyD, and the outer membrane
TolC protein (20, 24). Correct folding and stabilization of HlyA also require the cofactor
Ca2™, which binds to glycine-rich repeats in the toxin (25, 26).

UPEC strains that possess either strong or weak hemolytic activity have been
described, as well as different effects of hemolysin on host cells at lytic and sublytic
doses (27-32). While these observations have been linked to differential expression of
hemolysin (32-34), the precise genetic basis for such differences remains to be properly
elucidated. Hemolysin expression is regulated by several environmental stimuli, includ-
ing temperature, oxygen, and osmolarity (35, 36). The histone-like nucleoid structuring
protein H-NS, an important global regulator that controls the transcription of multiple
genes associated with UPEC virulence, represses transcription of the hlyCABD genes (37,
38). Another regulator that senses environmental stimuli and responds to stress, CpxR,
negatively regulates hemolysin production (31). The noncoding region upstream of the
hlyCABD coding sequences also plays an important role in hemolysin regulation (34,
39-41). This region contains an 8-bp sequence termed the operon polarity suppressor
(ops [GGCGGTAG]) element, where RfaH, a transcriptional antiterminator, binds and
controls the transcription of the hlyCABD genes (42-46). Other features of this non-
coding region, including characterization of the promoter element, remain poorly
defined. In the context of UTI, the function of hemolysin has been associated with
exfoliation of uroepithelial cells in mice (47) and human bladder organoids (48), as well
as inhibition of the proinflammatory cytokine interleukin-6 (IL-6) from human bladder
epithelial cells (49) and peritoneal macrophages (50). We recently showed that hemo-
lysin activates the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome
and triggers macrophage cell death (30, 32, 51). We also found that variation in
hemolysin expression by UPEC can have profound effects on biological outcomes;
low-level hemolysin expression triggers NLRP3-mediated macrophage cell death that is
associated with host protection in a mouse model of experimental UTI, whereas
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high-level hemolysin expression triggers NLRP3-independent macrophage cell death
and increased bladder colonization (32).

Despite the above knowledge, a complete understanding of the molecular mech-
anisms that control hemolysin production remains to be fully elucidated. In addition,
the genetic basis for variation in the level of hemolysin expression between different
UPEC strains has not been resolved. In this study, we investigated the prevalence of
hemolysin genes in the context of major UPEC clones and then used our in-depth
knowledge of the genealogy of ST131 to assess variation within a single lineage.
Analysis of the hlyCABD operon indicates that variation in hemolysin expression be-
tween different ST131 strains is primarily related to sequence differences in the very
long 5’-untranslated leader sequence and hlyCABD coding regions, and these variations
follow a clade-specific association. We also describe the application of an innovative
genome-wide high-throughput forward genetic screen to identify the set of genes
involved in the production of active hemolysin, measured by the capacity to lyse red
blood cells. This unique approach revealed a requirement for lipopolysaccharide (LPS)
inner core biosynthesis and cytoplasmic chaperones for UPEC hemolytic activity, pro-
viding major conceptual advances in our understanding of how the secretion of this
important toxin is controlled.

RESULTS

Distribution of the hlyA gene varies among major UPEC clones. The production
of hemolysin is most frequently associated with UPEC strains that cause severe UTI
(52-55). To investigate the prevalence of hemolysin genes in the most common E. coli
STs, we used E. coli genomes from EnteroBase, a large publicly available Enterobacte-
riaceae genome sequence database (56). Analysis of randomly selected genome as-
semblies from the 83 highest represented STs revealed a perfect linear correlation
between the presence of hlyA and hlyCABD, demonstrating that the hlyA gene is always
located within the hlyCABD operon (see Fig. S1A in the supplemental material). Further
examination of these 83 STs showed extensive variation in the distribution of the hlyA
gene, with the highest prevalence in ST12, -73, and -127 (79 to 89%; all phylogroup B2),
midrange prevalence in ST38, -59, -131, -141, -372, -405 (12 to 49%; phylogroup B2/D),
and ST29 (26%; phylogroup B1), and low prevalence (=9%) in the remaining STs
(Fig. S1B). The four most dominant pandemic UPEC lineages, which are highly repre-
sented in EnteroBase, were also investigated as a complete data set (downloaded in
July 2018). In concordance with the data from 83 STs, the prevalence of hlyA in these
lineages was significantly higher in ST73 (605/936; 64.6%) compared to ST131 (502/
3,391; 14.8%), ST95 (116/859; 13.5%), and ST69 (26/684; 3.8%) (P < 0.0001, Chi-square
test) (Fig. 1A).

Despite the enormous diversity of UPEC at the genome level, the ST131 lineage
represents a monophyletic clone, and its genealogy has been well characterized (4, 9,
10, 57, 58). The ST131 clone is comprised of three major sublineages: clades A and B
and the fluoroquinolone-resistant clade C. Based on clade-defining single-nucleotide
polymorphisms (SNPs) characterized previously (10), 94.6% (3,207/3,391) of the ST131
strains from EnteroBase were classified into their specific clade designation with the
following distribution: clade A (n = 300), clade B (n = 70) and clade C (n = 2,737). The
hlyA gene was found more frequently in strains from clade B (15.9%) and clade C
(14.1%), compared to clade A (4.7%) (Fig. 1B). Within clade C, the presence of hlyA was
significantly more common in strains from the multidrug-resistant subclade C2 (16.7%)
compared to subclade C1 (8.4%) (P < 0.0001; Chi-square test) (Fig. 1B).

Variability in hemolysin expression in ST131 correlates with strain phylogeny.
Hemolysin was originally described as a factor that promoted enhanced virulence in an
experimental rat model of peritonitis (59), with subsequent studies revealing a com-
plicated picture of variable hemolysin expression in different unrelated hemolysin-
positive UPEC strains (34, 40, 41, 60, 61). We hypothesized new insight into hemolysin
biology could be gained by studying this variation in the context of a defined
phylogenetic lineage and thus investigated the level of hemolysin expression among

September/October 2019 Volume 10 Issue 5 €02248-19

mBio’

mbio.asm.org 3


https://mbio.asm.org

Nhu et al.

FIG 1 Prevalence of the hlyA gene. (A) Prevalence of hlyA in strains from the ST69, ST73, ST95, and ST131
UPEC lineages retrieved from EnteroBase. The percentage of strains containing hlyA was determined by
BLASTn against hlyA<FT073, with the cutoff at 95% nucleotide identity. (B) Prevalence of hlyA in different
ST131 clades (i) and in subclades C1 and C2 (ii). The percentage of hlyA was determined as described
above. ST131 strains were categorized based on clade-specific SNPs as defined in reference 10. Based on
this typing, 184 isolates (5.4%) could not be allocated into any of the clades and were therefore excluded
from this analysis. We note that 73/184 of these strains contained the hlyA gene.

hlyCABD-positive strains in our previously published ST131 collection (9). The hlyA gene
was found in 14/95 (14.7%) of strains with the following distribution: clade A = 1 strain,
clade B = 3 strains, and clade C = 10 strains (all of which belonged to subclade C2).
Hemolysin expression was quantified based on the level of red blood cell hemolysis,
revealing that the clade C strains were all strongly hemolytic (~63% hemolysis
[Fig. 2A]). In contrast, the clade B strains (range, 4 to 29% hemolysis) and clade A strain
(~22% hemolysis) were less hemolytic (Fig. 2A). These levels were congruent with
analyses based on the size of the zone of hemolysis on blood agar, which also showed
that the ST131 clade C strains were the most hemolytic (Fig. 2B).

We also investigated the impact of hemolysin expression on virulence by examining
the ability of representative strains to kill human macrophages. Comparative analysis of
the strongly hemolytic clade C strain S65EC and the weakly hemolytic strains S2EC
(clade A) and HVM277 (clade B) revealed a similar pattern with respect to macrophage
cell death; i.e., using a multiplicity of infection equal to 10, S65EC caused ~60% cell
death at 8 h postinfection compared to ~30% cell death caused by S2EC and HVM277
(see Fig. S2 in the supplemental material).

Hemolysin gene transcription and hemolysin expression correlate with the
level of hemolytic activity. To explore the basis of differential hemolytic activity in
ST131, we compared the hlyA and hlyC transcript levels from selected clade A (S2EC),
clade B (HVM277), and clade C (S65EC) strains against HVYM2044, the least hemolytic
clade B strain (Fig. 2B). Analysis of hlyA transcription by qRT-PCR revealed significantly
higher transcript levels in S65EC (~5-fold increase), S2EC (~1.8-fold increase) and
HVM277 (~1.6-fold increase) compared to HVYM2044 (Fig. 2C). Similarly, hlyC transcript
levels were high in S65EC (~6.3-fold increase compared to HVM2044), but low in S2EC
and HVM277 (levels virtually identical to HVM2044) (Fig. 2C). The level of secreted
hemolysin corresponded with these transcript levels, with strongest expression ob-
served in S65EC, the most hemolytic strain (Fig. 2D). Taken together, these data showed
for the first time that the variation in hemolytic phenotype between strains from
different ST131 clades occurs due to differences in transcription of the hlyCABD genes.

Sequence polymorphisms in the hlyCABD untranslated leader transcript cor-
respond with differential hemolysin gene transcription. Although it has been
shown that variation in the region upstream of the hlyCABD coding sequence affects
hemolysin expression (34, 40, 61), identification of the promoter element of this
chromosomal locus has remained elusive. We mapped the transcriptional start site of
the hlyCABD operon in S65EC using 5'-rapid amplification of cDNA ends (5'-RACE) to a
distant 1,616 nucleotides upstream from the hlyC start codon (Fig. 3A; see Fig. S3 in the
supplemental material). This very long leader transcript contains an ops element
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FIG 2 Hemolytic activity of ST131 strains. (A) Percentage of red blood cell hemolysis observed in liquid
suspension assay. Strain names are color coded according to their clade designation; red, clade A;
orange, clade B; green, clade C. Error bars denote the standard deviation of three biological replicates.
(B) Zone of red blood cell hemolysis observed on blood agar. Hemolysin-positive strains are indicated
and color coded according to their clade designation; red, clade A; orange, clade B; green, clade C. EC958,
which does not contain the hlyCABD genes, was used as a negative control. Data are representative of
three independent experiments. (C) Comparison of hlyA and hlyC transcription levels in representative
ST131 strains. Relative fold change in the transcription level of hlyA and hlyC in S2EC (clade A), HYM277
(clade B), and S65EC (clade C) compared to HVYM2044 (which expresses the lowest level of hemolysin) was
assessed via gRT-PCR, with gapA as an endogenous control. Results are displayed as the mean fold
change with standard deviation of three biological replicates. The horizontal dashed line represents a
fold change of 1, indicating no difference in the transcription level compared to HVYM2044. Asterisks
denote statistically significant differences as follows: * P < 0.05; ** P < 0.0001. (D) Western blot analysis
with HlyA-specific antibody in representative ST131 strains, performed using both concentrated super-
natant (i) and whole-cell lysates (ii), with OmpA-specific antibody as the loading control.

located 634 bp upstream of the hlyC start codon and within a putative 39-bp JUMPStart
sequence (Fig. 3A), a common element found in the regulatory region of RfaH-activated
genes (62). Comparison of this 1,616-kb leader sequence in our hlyCABD-positive ST131
strains revealed phylogenetic clustering into two well-supported groups that matched
the hemolysin expression profile of our strains: one for the region from clade A and B
strains, and the other for clade C strains, with 16 to 18 SNPs separating the two groups
(Fig. 3B). No sequence differences were detected within the JUMPStart element. The
promoter element associated with this transcription start site was conserved in all
strains examined and contains degenerate —10 and —35 regions (Fig. 3A).
Hemolysin gene sequences correspond to strain clade designation. We also
examined the level of sequence variation for individual genes in the hlyCABD operon.
Sequence analysis showed that the hlyA gene divided into two well-supported groups,
separating clade C strains from clade A/B strains with 28 to 29 SNPs (Fig. 4A). The
exception was the outlier strain S115EC (clade C), which contained 37 SNPs in hlyA
compared to hlyA from other clade C strains, most likely due to recombination. Analysis
of the hlyCBD genes revealed a similar phylogenetic relationship between the clade C
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FIG 3 Transcriptional start site of hlyC. (A) Diagram (i) and the sequence (ii) of hlyCABD operon and its
upstream regions. The predicted —10 and —35 regions are bold, with asterisks denoting nucleotides
identical to the corresponding E. coli consensus sequences (—10, TATAAT; —35, TTGACA). The ops
sequence (gray shaded box) is indicated within the JUMPStart sequence (gray shaded), and the hlyC
coding sequence is underlined. (B) Phylogenetic analyses of the hlyC 1.616-kb upstream region, with
1,000 bootstraps. Strain names are color coded according to their clade designation: red, clade A; orange,
clade B; green, clade C. The scale indicates the number of substitution SNPs. Asterisks denote branches
with a supported bootstrap value of >90%.

and clade A/B strains (see Fig. S4A in the supplemental material). To examine amino
acid variation in HIlyA further, we mapped the location of the changes and showed the
majority lie outside known HIlyA functional domains (see Fig. S5 in the supplemental
material). The impact of these sequence changes on hemolysin activity was also
examined by cloning the hlyCABD locus from strains representative of this clustering
(S65EC, HYM277, and S115EC) into the expression vector pSU2718 (~15 copies per cell
[63]) to generate plasmids pHIyS65EC, pHIyHYM277 and pHIly>'15EC, Transformation of

FIG 4 Sequence variation in HIyA. (A) Phylogenetic analysis of the hlyA gene retrieved from ST131
assemblies (10), with 1,000 bootstraps. Strain names are color coded according to their clade designation:
red, clade A; orange, clade B; green, clade C. The scale indicates the number of substitution SNPs and
asterisks denote branches with supported bootstrap values >90%. (B) Overexpression of three sequence
variants of hemolysin. All three recombinant constructs were hemolytic on sheep blood agar (i) and in
broth (ii). (i) Overnight cultures of MG1655 containing different hemolysin variants were 10-fold serially
diluted, and incubated with LB + 5% sheep blood cells for 3 h at 37°C. At a high concentration (i.e., 107
CFU), all three HlyA variants possessed equivalent hemolytic activity. At a lower concentration, the
HIyAHYM277 variant (pHIyHYM277) was the least hemolytic. Results are displayed as the mean and standard
error of the mean from three biological replicates. Asterisks represent statistically significant difference:
* P < 0.05; ** P < 0.0001.

September/October 2019 Volume 10 Issue 5 €02248-19

mBio’

mbio.asm.org 6


https://mbio.asm.org

Multilevel Control of Hemolysin Production by UPEC

these plasmids into the K-12 strain MG1655 revealed that the recombinant strains
possessed a similar hemolytic profile to their respective parent strain; i.e., MG1655
harboring pHIyAS65EC or pHIyAS''>EC was significantly more hemolytic than MG1655
harboring pHIyAHYM277 (Fig. 4B). Together, these data suggest that the polymorphisms
in the hlyCABD coding sequences, together with sequence variation in the leader
transcript region, account for the differential hemolytic activity of clade C versus clade
A/B strains.

We previously characterized the clade B strain HYM277 as a low-level hemolysin
producer (32). Intriguingly, while this strain possessed an identical 1.616-kb leader
sequence and similar hlyC/hlyA transcript levels to the other clade B strains HYM2044
and HVM52, their hemolytic activities differed significantly (Fig. 2A). Closer analysis
revealed only 1 nonsynonymous SNP difference in hlyB (P538L) between HVM277
(~29% hemolysis) and HVYM2044 and HVM52 (~4% hemolysis) (Fig. S4A). In addition,
Western blot analysis employing a HlyA-specific antibody revealed that although HIyA
could be found in the cell pellets of HYM2044, no HIyA could be detected in the
supernatant (Fig. 2D). Furthermore, MG1655 harboring pHIyAHYM2044 was less hemo-
lytic than MG1655 harboring pHlyAHYM277 ‘indicated by the smaller zone of hemolysis
on blood agar (Fig. S4B). Taken together, the data suggest this nonsynonymous
mutation in the hlyB gene in HVYM2044 and HVM52 may impair the HIyA export
machinery, and thus contribute to the weak hemolytic activity observed in these
strains.

Acquisition of the hemolysin locus in ST131 is linked to two independent
insertion events. The concordance between the sequence of the hlyCABD locus,
hemolytic activity, and strain phylogeny prompted us to examine the genetic location
of the hemolysin genes in our strain set. Analysis of the draft assembled lllumina
sequence data from the clade B strains HYM52 and HVM277 revealed the hlyCABD
genes are located on a single contig that spans a Gl integrated at leuX-tRNA (GI-HVM52-
leuX and GI-HVM277-leuX, respectively) (see Fig. S6 in the supplemental material). We
were unable to assemble a single contig that could define the genomic location of the
hlyCABD locus in any of the clade C2 strains, and thus we employed PacBio SMRT
sequencing and used this together with our lllumina data to generate a hybrid
assembly and complete genome sequence of the hemolysin-positive clade C2 strain
S65EC. Overall, the S65EC genome comprises a chromosome containing 5,187,769
nucleotides and a large IncF plasmid (pS65EC, 146,792 bp, F1:A-:B23) (see Fig. S7 in the
supplemental material). Analysis of the hlyCABD locus in S65EC revealed it is located
within a Gl integrated at pheU-tRNA (GI-S65EC-pheU [Fig. S6]). Although GI-S65EC-pheU
shares many common features with GI-HVM52-leuX and GI-HVM277-leuX, including
genes encoding P and F17 fimbriae and the Cnf1 toxin (Fig. S6), the sequence variation
and different genomic location of the hlyCABD genes suggest they were acquired
independently by clade A/B and clade C ST131 strains.

Development of a genome-wide screen for UPEC mutants with altered hemo-
lysin activity. To expand our analyses and to identify uncharacterized mechanisms by
which hemolysin expression is regulated, we devised a forward genetic screen to define
the set of genes involved in hemolysin production. We generated a saturated trans-
poson mutant library in S65EC using a mini-Tn5 transposon and screened the library on
sheep blood agar to identify mutants significantly altered in their hemolytic phenotype
(i.e., a decrease or increase in the zone of hemolysis compared to the parent strain). In
total, ~177,000 mini-Tn5 mutants were screened, from which there were 77 nonhe-
molytic mutants, 34 mutants with reduced hemolytic activity, and 22 mutants with
increased hemolytic activity. These mutants were pooled according to their hemolysis
phenotype and examined by TraDIS to enable en masse identification of the insertion
sites that led to altered hemolysin activity. In addition, colonies from the library of
177,000 transposon mutants were also pooled and analyzed by TraDIS as the input
pool, thus enabling us to accurately determine the overall insertion frequency and
coverage of our miniTn5 mutant library.
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TABLE 1 Genes impacting hemolysin activity identified by TraDIS

mBio’

HIyA expression by

Hemolysin activity in“: defined mutants in®:

No. of No.of Tn5 Defined
Gene name inserts  reads mutants mutants Supernatant  Cell lysate  Product(s)
hlyCABD
operon
hlyC 3 2,878 None ND ND ND Acyltransferase HlyC
hlyA 30 38,070 None None None None Hemolysin A
hlyB 2 1,951 None ND ND ND ATP-binding protein HlyB
hlyD 10 14,745  None ND ND ND Membrane fusion protein HlyD
Transporter
tolC 1 9,586 None None None Yes Outer membrane protein TolC
Regulators
hns 3 6,915 Increased ND ND ND Global regulator H-NS
rfaH 2 8,395 Reduced ND ND ND Transcriptional antiterminator RfaH
LPS inner
core biosynthesis
rfak 2 9,289 None None None Yes Fused heptose 7-phosphate kinase/
heptose 1-phosphate adenyltransferase
waaC 1 849 None None None Yes ADP-heptose:LPS heptosyltransferase |
waaF 3 10,017  None None None Yes ADP-heptose:LPS heptosyltransferase ||
wag 6 23,276  None Reduced None Yes Glucosyltransferase |
DnaKJ
chaperones
dnaK 5 11,329 Reduced ND ND ND Chaperone
dnal 4 16,622 No/reduced None None Yes Chaperone
Other genes
acrR 2 7,709 Reduced As wt ND ND Repressor AcrR for AcrAB in
AcrAB-TolC multidrug efflux pump
rne 1 3,757 Reduced ND< ND ND Ribonuclease E
S65EC_04585 1 4,576 Increased As wtd ND ND Putative thiosulfate reductase
cytochrome b subunit YdhU
S65EC_04586 13 81,439 Increased As wtd ND ND Putative sulfite oxidase

subunit YedY

aHemolytic activity compared to the wild type. None, not detected; ND, not done; wt, wild type.
bHemolysin expression was detected by Western blotting using HlyA-specific antibody.
cUnable to generate defined mutant due to the essentiality of the gene.

dRefers to hemolytic activity of the mutant with the chloramphenicol resistance gene cassette removed. The mutant with the cat gene cassette present showed

increased hemolysin activity due to the read-through from the cat promoter.

Identification of genes associated with hemolysin production. TraDIS analysis of
the input pool from 1,307,913 sequence reads showed that these reads mapped to
75,330 unique insertion sites in the S65EC genome (see Fig. S8 in the supplemental
material). This equated to approximately one mini-Tn5 insertion every 70 bp of the
genome, demonstrating broad coverage of our screen. Analysis of the three output
pools from 444,245 sequence reads identified 122 insertion sites, broken down into 67
insertion sites from the nonhemolytic pool, 33 insertion sites from the reduced-
hemolytic pool, and 22 insertion sites from the increased-hemolytic pool, respectively
(Fig. S8). These insertion sites were further localized to 17 genes (Table 1; Fig. 5), of
which seven had a known role in hemolysin production (hlyCABD, tolC, rfaH, and hns).
A role for two of the genes (dnaK and rne) could not be verified due to inability to
generate defined mutants, while the other genes were novel or have not been well
studied with respect to their role in hemolysin production, and thus we focused the
remainder of our study on their characterization.

Disruption of LPS core biosynthesis prevents hemolysin secretion. Our TraDIS
analysis identified 12 unique insertion sites in four genes involved in LPS inner core
biosynthesis; waaC (from the nonhemolytic pool), and rfak, waaF and waaG (from the
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FIG 5 TraDIS identified novel genes involved in hemolysin production. Location and number of reads mapped to each
insertion site within the (A) waa locus, (B) dnakJ, and (C) the upstream region of hlyC. Each insertion site is represented
by “>" (mini-Tn5 insert with the promoter of the chloramphenicol resistance gene orientated in the forward direction) or
“<" (mini-Tn5 insert with the promoter of the chloramphenicol resistance gene orientated in the reverse direction). Arrows
represent the coding sequences. Locations of insertion sites in the input pool are shown by short vertical lines underneath,
with “F” and “R” indicating mini-Tn5 inserts with the promoter of the chloramphenicol resistance gene orientated in the
forward or reverse direction, respectively.

reduced-hemolytic pool) (Fig. 5A; Table 1). To validate the TraDIS data, we generated
defined mutants for each gene via A-Red mediated homologous recombination. Com-
pared to the parent S65EC strain, all four mutants possessed an abolished/reduced
hemolytic activity profile that was restored to wild-type level by in trans complemen-
tation with the corresponding gene (Fig. 6A). Next, we tested if the mutation of these
core LPS biosynthesis genes affected hemolysin secretion by examining the level of
HlyA in whole-cell lysates and the culture supernatant of each mutant by Western
blotting. We showed that mutation of each of these genes abolished hemolysin
secretion, and this could be restored by complementation (Fig. 6B). In contrast, HIyA
was detected in total cell lysates prepared from each mutant (Fig. 6B), demonstrating
that disruption of LPS inner core biosynthesis did not affect production of HIyA, but
impaired its secretion.

The DnaK and DnaJ chaperones are required for hemolysin secretion. The dnakK
(five unique insertion sites) and dnaJ (four unique insertion sites) genes were identified
in the pool of mutants with reduced hemolytic activity (Fig. 5B; Table 1). DnaK is the
major Hsp70 class chaperone in the E. coli cytosol, and together with its cochaperone
DnaJ and regulator GrpE it plays a key role in the folding of nascent polypeptides
(64-66). Given that a dnaK null mutant displays growth defects (67, 68) and the
complementation of dnaK on a multiple-copy plasmid has been shown to be unstable
(69), we confirmed our TraDIS data by mutating dnaJ, the second gene in the dnakJ
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FIG 6 Genes involved in LPS inner core biosynthesis contribute to hemolytic activity. (A) Hemolysin
activity of S65EC, S65hlyA, and defined LPS inner core mutants and their complemented strains on sheep
blood agar. Mutation of genes in LPS inner core biosynthesis abolished hemolysin activity, while
complementation restored this phenotype. (B) Western blot analysis of HlyA performed using concen-
trated supernatant (i) or whole-cell lysates (ii) prepared from S65EC, S65hlyA, and defined LPS inner core
mutants and their complemented strains. Bacterial cell lysates were analyzed for OmpA expression as a
loading control. Hemolytic assays and immunoblots in panels A and B, respectively, are representative of
three independent experiments.

operon. This strain, designated S65ECdnaJ, was nonhemolytic, and hemolysis was
restored by complementation with a plasmid containing the dnaJ gene (pDnal
[Fig. 7A]). Western blot analyses of supernatant and whole-cell lysate fractions revealed
that hemolysin was produced by S65ECdnaJ, but not secreted (Fig. 7B).

Hemolysin production increases when a strong promoter is inserted upstream
of hlyCABD. Previous studies have shown that the promoter of the chloramphenicol
resistance gene in our mini-Tn5 transposon can drive the transcription of a downstream
gene if the insertion position is favorable (70, 71). We therefore predicted that mini-Tn5
insertions upstream of hlyC would be associated with increased hemolysin activity.
TraDIS analysis of our input pool revealed five mini-Tn5 insertions within the long
hlyCABD leader transcript (Fig. 5C). Although all of these insertions introduced a
promoter orientated in the same direction as the hlyCABD genes, none of the mutants
were identified in the increased-hemolytic pool. In contrast, we identified 14 unique
mini-Tn5 insertions in the coding sequences upstream of this region in the increased-
hemolytic pool: one insertion within ydhU (S65EC_04585, encodes a putative thiosul-
fate reductase cytochrome b subunit) and 13 insertions within yedY (S65EC_04586,
encodes a putative sulfite oxidase subunit) (Fig. 5C; Table 1). These mini-Tn5 insertions
were all located upstream of the JUMPStart sequence, with the chloramphenicol
resistance gene promoter pointing in the direction of the downstream hlyCABD genes
(Fig. 5C). To show that this increase in hemolytic activity was not due to specific
disruption of the ydhU and yedY genes, we mutated these genes in S65EC using A-Red
recombination (with the chloramphenicol resistance gene cassette in the same direc-
tion of the hlyCABD genes and subsequent removal of the cassette using an FLP
recombinase). Both mutants possessed increased hemolytic activity when the chlor-

FIG 7 Dnal required for hemolysin secretion. (A) Hemolysin activity of S65EC, S65hlyA, and the S65dnaJ
defined mutant and its complementation on sheep blood agar. Disruption of dnaJ abolished hemolysin
activity, while complementation restored this phenotype. (B) Western blot analysis of HlyA performed
using concentrated supernatant (i) or whole-cell lysates (i) prepared from S65EC, S65hlyA, S65dnaJ and
its complementation grown to late log phase. Bacterial cell lysates were analyzed for OmpA expression
as a loading control. Hemolytic assays and immunoblots in A and B, respectively, are representative of
three independent experiments.
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FIG 8 Overexpression of hemolysin by a strong promoter inserted upstream of the 1.616-kb leader
sequence. Shown are phenotypes of defined S65EC mutants following insertional inactivation of
S65EC_04585 and S65EC_04586 and growth on sheep blood agar. Compared to the wild type, disruption
of S65EC_04585 and S65EC_04586 led to increased hemolysin activity due to read-through from the
chloramphenicol resistance gene cassette (CmR) promoter. When this CmR cassette was removed, the
defined mutants expressed hemolysin as the same level as the wild type. Hemolytic assays are
representative of three independent experiments.

amphenicol resistance gene was present, but this returned to the wild-type level upon
removal of the cassette (Fig. 8). Thus, we conclude that insertion of a strong promoter
upstream of the hlyCABD genes can enhance transcription of the hlyCABD genes, but
this occurs most favorably when the JUMPStart site and long 1.616-kb leader sequence
remain intact.

DISCUSSION

Epidemiological studies show that hlyA prevalence is associated with UPEC strains
that cause severe UTI (16, 17). However, the level of hemolysin expression and its
impact on virulence are variable and often strain specific (33, 34). Here, we investigated
the prevalence of the hlyA gene in 83 of the most common E. coli STs and then
performed a detailed analysis of sequence variation focusing on the globally dominant
multidrug-resistant ST131 clone. Using a combination of bioinformatics and functional
analyses, we examined the relationship between hemolytic activity and genomic
variation in the ST131 lineage. Finally, we also applied a large-scale forward genetic
screen to identify new genes involved in hemolysin production.

Within the ST131 clone, HlyA-positive clade C2 strains were more hemolytic than
clade A and B strains, and this corresponded with increased transcription of the
hlyCABD genes. Several studies have demonstrated that the production of hemolysin
leads to enhanced virulence (31, 32, 34, 40, 72). In the rat peritonitis model, hemolysin
production correlates with increased invasiveness and lethality (33, 34, 59). In the
mouse UTl model, hemolysin production leads to shedding of uroepithelial cells,
increased inflammation, and enhanced hemorrhaging during the early phase of infec-
tion (47). In addition, fine-tuning of hemolysin expression can alter the outcome of UTI,
ranging from persistence to acute infection (31). We also recently showed that high
levels of hemolysin production contribute to enhanced bladder colonization during
experimental UTI, with this linked to rapid macrophage cell death that limits host-
protective cytokine production (32). Our findings in this study demonstrate the most
multidrug-resistant clade C2 ST131 strains also possess the strongest hemolytic activity,
revealing a new link between enhanced virulence and multidrug resistance.

The region upstream of the hlyCABD coding sequence plays a role in the regulation
of hemolysin expression (34, 39, 41, 45). We mapped the promoter of the hlyCABD
genes in S65EC and identified a long 1.616-kb leader transcript that is conserved in all
HlyA-positive ST131 strains. This 1.616-kb long 5’ leader sequence contains a high AT
content (64.4%), which could increase stability of the hlyCABD mRNA and therefore
enhance translation as reported previously for other AU-rich 5’ leader mRNA sequences
(73, 74). Our results are in line with a study from Cross et al., who also showed that the
2-kb upstream region of hlyC is involved in the regulation of hemolysin expression in
UPEC strain LE2001 (39). In the reference UPEC strain J96, the leader transcript is shorter
and lies 462 to 464 bp upstream of the hlyC start codon (75). This transcription start site
in J96 was mapped from a plasmid containing the cloned hlyCABD genes (76), so we
cannot exclude the possibility that the differences are due to the plasmid versus
chromosomal location of the hlyCABD genes. Sequence analysis of this long leader
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sequence and the hlyCABD genes, together with their chromosomal location, suggests
their acquisition in ST131 has occurred independently in clade A/B versus clade C
strains.

The combination of high-throughput genome-wide random transposon mutagen-
esis and TraDIS represents a powerful tool for understanding complex phenotypes (70,
77-80). By screening large numbers of transposon mutants under stringent selective
conditions, it is possible to simultaneously identify all of the genes involved in a given
pathway. In this study, we screened ~177,000 transposon mutants for altered hemo-
lytic activity. Notably, by performing TraDIS analysis on the input pool, we were also
able to verify high coverage of our mutant library and thus demonstrate the compre-
hensiveness of our screen. In total, we confirmed a role for 13 genes in hemolysin
production. This included the previously characterized hlyCABD genes, the outer mem-
brane transporter to/C and the transcriptional antiterminator rfaH, where in all cases the
mini-Tn5 insertion led to the abolition or severe reduction of hemolysin activity. The
role of these genes in hemolysin production and secretion is well established (20, 23,
43, 45, 76, 81); hence their detection validated our screen. In line with previous reports
(37, 38, 82), we also confirmed the role of H-NS as a repressor of hemolysin.

The identification of four core LPS biosynthesis genes in our screen provides very
strong evidence that the secretion of hemolysin is intrinsically tied to LPS biosynthesis.
Although early studies also demonstrated this connection, they were performed in E.
coli K-12 mutants with the hlyCABD genes introduced in trans on a plasmid (83-85),
thus possibly masking subtle phenotypic changes due to high levels of hemolysin
expression. Our TraDIS screen, performed in the completely sequenced S65EC clade C2
ST131 strain, showed that mutants containing deletions in rfak, waaC, and waaF were
unable to lyse red blood cells, while a waaG mutant caused reduced hemolytic activity.
With respect to function, the rfaE gene encodes an enzyme required for heptose
synthesis (86), while the waaF and waaC genes encode enzymes involved in synthesis
of the inner LPS core oligosaccharide, where they transfer the first and second heptoses
onto the Kdo,-lipid A (87, 88). The waaG gene encodes an enzyme involved in synthesis
of the outer LPS core and functions by adding the first glucose to the second heptose
residue (89). We hypothesize that interaction between TolC and the LPS core is critical
for hemolysin secretion, as has been suggested previously (85), thus explaining the
subtle difference in the phenotype of our waaG versus rfak, waaC, and waaF mutants.
We note that hemolysin has also been shown to form a complex with LPS (90-92), and
the binding of LPS enhances the stability of the toxin and reduces HIyA self-
aggregation. In addition, due to its negative charge, it has been suggested that LPS
may provide a reservoir of calcium, an important cofactor required for HlyA activity (93).
Thus, we cannot rule out other mechanisms by which disruption of the LPS core might
affect hemolysin secretion and activity.

Our study also revealed the involvement of the DnaK-DnaJ chaperones in control-
ling hemolysin activity. DnaK (and DnaJ) function as ATP-dependent Hsp70 chaperones
that play a critical role in the folding of nascent polypeptides and the refolding of
damaged proteins in the cytoplasm (64). The activity of DnaKJ involves the regulator
GrpE (64). Dnal binds to nonnative substrate proteins, and transfers them to ATP-
bound DnaK. ATP hydrolysis, elevated by Dnal, enhances interaction of the DnakK-
substrate complex. After ATP hydrolysis, DnaJ is released, and GrpE binds to the ATPase
domain of DnaK to catalyze the formation of ADP, resulting in release of the substrate
for folding or transfer to other chaperones (64-66). Previous studies have shown that
DnaK interacts with ~700 proteins, the majority of which are cytosolic and prone to
aggregation during and after initial folding (64). Although the precise molecular
mechanism by which DnaK-DnaJ chaperones interact with HlyA remains unclear, it has
been demonstrated that folded substrates are not effectively secreted through the type
1 secretion system (94, 95). Thus, we suggest that DnaK/Dnal contribute to efficient
secretion of HlyA by maintaining its unfolded state or slowing down its folding rate in
the cytoplasm.

Several genes were identified in our screen but could not be verified based on the
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phenotypic characterization of a defined mutant, including acrR, ydhU, yedY, and rne
(Table 1). While mini-Tn5 insertions in ydhU and yedY led to enhanced hemolytic
activity, we showed this was not due to mutation of the respective genes, but rather
due to favorable insertion of a strong promoter upstream of the hlyCABD genes. In the
case of the rne gene, which encodes RNase E, we were unable to generate a defined
mutant to confirm our TraDIS data despite multiple attempts. The rne gene has been
described as essential in another study (96), offering some explanation for the difficulty
in generating this mutant. Finally, we previously identified the cof gene as a regulator
of secreted HIyA in CFT073 (which belongs to ST73), where mutation of the cof gene led
to reduced hemolysin production (30). In the current screen performed on ST131 strain
S65EC, we did not identify insertions in cof that resulted in reduced hemolysin activity
(despite nine insertions in this gene in the input pool), suggesting that the role of cof
in hemolysin regulation may be strain-specific.

Factors that negatively regulate hemolysin expression have been reported, includ-
ing H-NS and the stress response regulator CpxR. Disruption of hns increases the
expression of several virulence factors in E. coli, including hemolysin (37, 38, 82, 97).
CpxR has been shown to bind to the hlyCABD promoter and repress hlyA transcription
(31). In this study, we also screened for mutants that possessed enhanced hemolysin
activity and confirmed the role of hns as a repressor of hemolysin. However, we did not
identify insertions in cpxR that resulted in enhanced hemolysin activity, even though
there were 16 unique insertion sites in this gene in the input pool. This could be due
to the difference in strains used in the two studies (UTI89, ST95, versus S65EC, ST131).
We also identified 14 independent insertion sites immediately upstream of the 1.616-kb
hlyCABD leader sequence that caused enhanced hemolytic activity. Precise mapping of
these insertions by TraDIS revealed they all contained the cat promoter pointing
toward the hlyCABD operon, and we demonstrated that these insertions lead to an
increase in hemolysin expression caused by read-through from the cat promoter, as
reported in other studies (70, 71). Intriguingly, we did not identify mini-Tn5 insertions
within the 1.616-kb hlyCABD leader sequence that caused enhanced hemolytic activity,
even though such insertions were present in the input pool, suggesting there are
multiple features within this untranslated mRNA leader sequence (including the ops
element and JUMPStart sequence) that are critical for transcription of the hlyCABD
genes.

In summary, this work has discovered important new features of hemolysin regu-
lation and variation by studying its biology in the context of the well-defined genealogy
of the globally disseminated multidrug-resistant ST131 clone. Our study revealed that
nucleotide sequence variation in the hemolysin locus (including its long 5’ leader
sequence) accounts for differential gene transcription, as well as altered hemolysin
secretion and activity, and these differences are underpinned by the location of this
locus within diverse horizontally acquired genomic islands. Furthermore, our applica-
tion of a large-scale forward genetic screen has defined new chaperone and core LPS
components that are required for secretion of this important UPEC toxin.

MATERIALS AND METHODS

Ethics approval. All experiments using primary human cells were approved by the University of
Queensland Medical Research Ethics Committee (2013001519).

Key experimental procedures used in the study are listed below. Extended experimental methods,
including (i) generation of human monocyte-derived macrophages, (ii) in vitro infection assays, (iii)
whole-genome sequencing and analysis, (iv) transposon mutagenesis and transposon-directed insertion
site sequencing, (v) targeted gene mutation and complementation, (vi) generation of plasmids contain-
ing variant hlyCABD alleles, and (vii) sample preparation for Western blotting, are provided in Text S1 in
the supplemental material.

Strains and bacterial growth conditions. The E. coli ST131 strains used in this study have been
described previously (9). Bacterial strains were grown at 37°C on solid or in liquid lysogeny broth (LB)
medium unless otherwise indicated. Chloramphenicol (30 wg/ml) or kanamycin (50 pg/ml) was added as
required.

Hemolysis assays. Hemolysis assays were performed on blood agar or in liquid culture, essentially
as described previously (98) but with minor modifications. Briefly, the zone of hemolysis was measured
after spotting 5 ul of filtered supernatant from a bacterial overnight culture onto blood agar (LB agar
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containing 5% fresh sheep red blood cells and 10 mM CaCl,) and incubating at 37°C for 16 to 24 h. In
addition, the level of hemolysis was quantitated by incubating approximately 107 CFU/ml of bacteria for
3 hin LB broth containing 5% sheep blood and 10 mM CaCl, and measuring the released hemoglobin
at a wavelength of 540 nm compared to the released hemoglobin of blood in water alone.

Sequencing data, sequence alignment, and phylogenetic analyses. Assemblies of E. coli strains
belonging to ST69, ST73, ST95, and ST131 were downloaded from EnteroBase in July 2018 (https://
enterobase.warwick.ac.uk). In addition, approximately 100 sequence assemblies were randomly chosen
from each of the top 83 E. coli sequence types in the E. coli collection on EnteroBase, resulting in a
collection of 8,247 assemblies downloaded in January 2019. The prevalence of the hlyA gene encoding
hemolysin or hlyCABD was determined in these strains from EnteroBase and 95 in-house ST131 strains
(9) using BLASTnN (99) against the hlyA gene or hlyCABD from the CFT073 genome (AE014075.1), with the
cutoff at 90% nucleotide sequence conservation and 80% length coverage.

To compare sequence variation, the hlyCABD operon, as well as individual genes, was extracted from
the 14 hemolysin-positive ST131 strains from previous studies (9, 10). Alignment was performed with
ClustalO (100), from which maximum likelihood trees were generated using RaxML v.7.2.8, with the
general time-reversible (GTR) GAMMA model of among-site rate variation (ASRV) (101). The robustness
of the trees was tested with 1,000 bootstraps. Trees were visualized and edited using FigTree v1.3.1.

RNA extraction, qRT-PCR, and 5’ RACE. Total bacterial RNA was extracted from late-log-phase
bacterial cultures (optical density at 600 nm [ODg,,] = 0.9 to 1) in LB broth using the RNeasy minikit
(Qiagen) as per the manufacturer’s instructions. Total mMRNA was converted into cDNA using random
hexamer primers and SuperScript Il reverse transcriptase (Invitrogen, Life Technologies). Quantitative
reverse transcription-PCR (qRT-PCR) was performed for the hlyC and hlyA genes using the ABI SYBR green
PCR master mix on the ViiA 7 real-time PCR system (Life Technologies) with primers listed in Table S1 in
the supplemental material. The relative transcript level of each gene was compared to the corresponding
gene in HYM2044; fold change was calculated by the threshold cycle (2-22¢7) method (102) using gapA
as an endogenous control (103).

The transcriptional start site of the hlyCABD genes in S65EC was identified using the 5" RACE system
(Qiagen) according to the manufacturer’s instructions. cDNA specific for hlyC was synthesized from total
RNA using SuperScript lll reverse transcriptase (Invitrogen, Life Technologies) with specific primers
hlyC_GSP1 and hlyC_GSP12 (Table S1). These PCR amplicons were sequenced using the BigDye Termi-
nator v3.1 Cycle Sequencing kit (Life Technology) with the primer hlyC_GSP14 (Table S1).

Western blotting. Bacterial cell pellets were harvested from the late-log-phase cultures and resus-
pended in TCU buffer (1:100 [vol/vol]) (104). The supernatants were sterilized by filtering through a
0.22-um-pore membrane, and secreted proteins were concentrated 100 times using ammonium sulfate
60% (wt/vol) overnight at 4°C. Detection of HIlyA in secreted proteins and the cell lysates was performed
with specific monoclonal antibody H10 against HIlyA as described previously (30).

Accession number(s). All sequence data for this study have been deposited under BioProject no.
PRINA517996. The sequences for the S65EC chromosome and plasmid pS65EC are available in the NCBI
GenBank database under accession no. CP036245 and CP036244, respectively. The raw PacBio sequence
reads have been deposited in the Sequence Read Archive (SRA) under accession no. SRR8535518. The
TraDIS reads have been deposited in the SRA under accession no. SRR8535515 to SRR8535517.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio
.02248-19.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, TIF file, 1.8 MB.
FIG S2, TIF file, 1.7 MB.
FIG S3, TIF file, 0.6 MB.
FIG S4, TIF file, 2.5 MB.
FIG S5, TIF file, 1.8 MB.
FIG S6, TIF file, 1.5 MB.
FIG S7, TIF file, 1 MB.
FIG S8, TIF file, 2.7 MB.
TABLE S1, DOCX file, 0.1 MB.
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