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Abstract6

The underlying uncertainties in the prediction of freshwater evolutions in some regions can7

be induced by several unmitigated human actions, multi-scale climatic drivers, and dynamic8

physical processes. These factors have enduring hydro-ecological effects on the environments9

and combine to limit our understanding of large scale hydrological processes and impacts of10

climate on water availability. Considering the fact that several hydrogeological perturbations11

and disturbances have been reported during the last decade in South America (SA), a further12

assessment of continental land water storage is therefore warranted. In this study, a two-13

step regularization approach that combined the JADE (Joint Approximate Diagonalisation of14

Eigen matrices) algorithm and PLSR (partial least squares regression) was employed to assess15

GRACE (Gravity Recovery and Climate Experiment)-terrestrial water storage (TWS) over16

SA. Based on the Bartlett’s statistics, significant independent patterns of SST (Sea Surface17

Temperature) anomalies from the Pacific and Atlantic oceans were used in the PLSR scheme to18

model the temporal evolutions of TWS (2002−2017) over twelve prominent river basins in SA.19

From the JADE rotation of TWS over SA, strong inter-annual changes in TWS observed over20

the Amazon basin and within its floodplain corridors were identified. The unabated mass loss in21

Patagonia ice-field caused by warming of the climate and other GRACE-hydrological signals22

were also retrieved from the JADE scheme. The rainfall-TWS relationship is considerably23

strong (r=0.80 at 0− 2 months lag) in much of tropical SA, including the Amazon basin and24

highlights the influence of climate variability in the region. Medium (r = 0.40) and moderately25

strong (r = 0.60) rainfall-TWS relationship were also found to be significant (α = 0.05) but26

with up to 4 months lag and more in some basins. During the 2010− 2017 period, estimated27

TWS trends (α = 0.05) showed a considerable fall in Orinoco (−38.48±7.90 mm/yr) and Sao28

Francisco (−30.84±4.17) while the strongest rise was found in Uruguay (28.28±3.49 mm/yr).29

As the rainfall-TWS relationship is not statistically significant (α = 0.05) in some areas, the30

spatial distribution of trends in TWS and rainfall, especially in some arid regions, which are31
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inconsistent confirm possible impacts resulting from complex hydrogeological processes and/or32

anthropogenic influence. Further, in the modelling of TWS time series using the JADE-33

PLSR scheme, several validation skill metrics (e.g., R2, Nash-Sutcliffe Efficiency) confirm34

the considerable agreements between predicted and observed TWS in the Amazon (R2 =35

0.95), Orinoco (R2 = 0.94), Tocantins (R2 = 0.91), and Chobut (R2 = 0.88). However,36

GRACE-hydrological signals in some regions are somewhat complex given the relatively higher37

uncertainties in the multivariate models employed in this study.38

Keywords: Rainfall, sea surface temperature, Amazon basin, partial least square regression,39

ENSO, Climate variability40

1. Introduction41

The knowledge of global freshwater response to critical stressors (e.g., human abstraction42

and climate) is an emerging aspect of freshwater science that is significant to model the in-43

fluence of threats to water and food security (75, 92). However, the underlying uncertainties44

in the prediction of freshwater evolutions in some regions can be induced by non-climatic fac-45

tors, e.g., earthquakes, land subsidence, and unmitigated human actions (e.g., 75, 24, 40, 17).46

Within the context of dynamic earth processes, South America, for instance, is a hub of fre-47

quent considerable crustal and lithospheric deformations, seismicity, and geo-hazards (see,48

e.g., 76, 27, 55, 54, 42, 91, 40, 51). These geodetic disturbances and the composite influence49

of climate and physical processes could have implications on surface mass variations and the50

acceleration of the water cycle.51

In the light of the aforementioned perturbations on surface hydrology, time-variable geo-52

physical signals observed by the Gravity Recovery and Climate Experiment (GRACE, 87) are53

expected to be driven not only by climate oscillations and key processes of inter-annual vari-54

ability (e.g., 65, 64, 63, 22, 50, 70) but natural and other non-climatic elements, e.g., human55

water abstraction and deformations (e.g., 75, 15, 13, 24, 17). This assumption is anchored56

on the fact that apart from the redistribution in continental water storage, other dynamic57

processes such as gravitational tide in the solid Earth, post glacial rebound and variations in58

Antarctic and Greenland ice volumes cause significant changes in the Earth’s gravity (e.g.,59

85, 94). Whereas a plethora of scientific reports on freshwater dynamics are mostly focused on60

climate variability related changes (e.g., 75, 6, 73, 88, 50, 70), very little attention is paid to61

improving our understanding of the possible contributions of non-climatic factors, especially62

those not related to groundwater abstraction.63
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For regions with frequent repeat cycles of such factors, freshwater dynamics is expected to64

be poorly understood. Hence, predicting freshwater systems at regional or continental scales65

require large scale assessment of TWS(terrestrial water storage) variations and an understand-66

ing of prominent drivers of surface hydrology. While this knowledge will lay the foundation67

for an efficient modelling framework for water resources, limited ground observations and the68

lack of a suitable modelling approach to characterize key hydrological metrics however, are69

some important constraints to such assessments. Further, the proliferation of dams and surface70

water developments for hydropower, agriculture and other relevant applications are gradually71

emerging as considerable drivers of TWS. In Africa, such impacts have been reported for the72

lake Volta and Victoria (see, 62, 56, 2). While the global expansion of dams and hydro-power73

stations are welcomed initiatives that could significantly boost global hydroelectricity capacity74

(101), they are also expected however, to have considerable impact on hydrological changes as75

is the case in Lake Volta (see, 62, 59), or over the Amazon basin where dam constructions are76

impacting on the ecosystems by modifying vital flood pulses1.77

Since the advent of GRACE, quantitative estimates of monthly changes in TWS (soil78

moisture, groundwater, surface water, wetlands, etc.) have been recovered across the globe.79

Because of its spatial resolution (90,000 km2), the dynamics in multi-layered land water storage80

can be measured at global or regional scales with an accuracy of 15 mm expressed in terms of81

equivalent water height (26). Apparently, the preponderance of GRACE-hydrological studies82

in South America-SA (Figs. 1a and b) focused on some sections of the Amazon basin (see,83

e.g., 89, 50, 21, 34, 30, 31, 3, 46, 39). However, the validation of regional mass solutions of84

GRACE Level-1 data and the estimates of TWS over SA based on constrained least-squares85

method have been reported (35, 72). Considering the complex hydrogeological structures of86

SA (Fig. 1a), these studies emphasize the need to further assess the inter-annual variations of87

land water storage and the representation of dynamic processes in time-variable gravity obser-88

vations. Given that SA accounts for nearly one fifth of global continental freshwater discharge89

(e.g., 50), a continent-wide assessment of GRACE-derived TWS has become necessary not90

only to improve our contemporary understanding of large scale hydrological processes, but to91

support the tracking and modelling of freshwater dynamics in the region.92

Consequently, to improve our understanding of the spatial and temporal variations of ex-93

tended GRACE-derived TWS (2002−2017) over SA, this study, localises GRACE-hydrological94

1https://news.mongabay.com/2018/01/study-amazon-dams-are-disrupting-ecologically-vital-flood-pulses/

3



signals by rotating it towards statistical independence using the Joint Approximate Diagonal-95

isation of Eigen matrices (JADE) algorithm (e.g., 60, 102, 12, 11, 18, 10). Given the lack of96

sufficient groundwater monitoring bores in many regions of the world, the JADE algorithm97

could be used to identify strong hydrological signals induced by droughts or even characterize98

groundwater variations from GRACE-TWS without using apriori information. For the first99

time, a partial least squares regression (PLSR) model is combined with JADE rotation and100

multi-linear regression to model GRACE-TWS over SA. The specific aims of this study are to101

(i) assess localised spatial and temporal variations of GRACE-derived TWS over SA through102

the rotation of prefiltered GRACE-hydrological signals, (ii) assess inter-annual variations in103

TWS in relation to precipitation, and (iii) predict temporal evolutions of GRACE-derived104

TWS over 12 prominent river basins in SA. To achieve this, localised sea surface temperature105

(SST) anomalies were used as input in a PLSR model. The assumption here is that strong106

ocean-land atmosphere interaction and the nearby oceans produce the systems that regulates107

precipitation. For most tropical systems, one key aspect of the hydrological cycle that shows108

an increasing acceleration is precipitation. Unprecedented anomalies in precipitation are ex-109

pected to have considerable impacts on continental TWS variations. In general, this is the110

case given the widely reported influence and the feedback mechanism of anomalous warming111

of the surrounding oceans on inter-annual rainfall variations (e.g., 103, 64, 68, 66, 29). So, the112

PLSR model uncertainties in the simulation of TWS based on leading SST modes from the113

Pacific and Atlantic oceans are assessed in relation to observed continent-wide and basin-scale114

long terms trends in TWS and rainfall. More details on the methodological development and115

applications are highlighted in Section 3.116

2. Data117

2.1. Global Precipitation Climatology Centre precipitation118

The Global Precipitation Climatology Centre (GPCC, 78) based precipitation data pro-119

vides monthly grids of global land-surface precipitation. The 0.5◦◦ x 0.5◦ GPCC data used120

in this study to examine TWS-rainfall relationship was downloaded from the GPCC data121

portal (www.ftp.dwd.de/pub/data/gpcc/html/downloadgate.html) and covers the period be-122

tween 2002 and 2017. The data is one of the most reliable observational reference precipitation123

product derived from gauge observations across the globe and has been widely used in several124

hydro-climatic studies (1, 5).125
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Figure 1: Map showing countries, rivers, and groundwater aquifers in South America. (a) The hydrogeological

map of South America indicating aquifers, rivers, lakes and groundwater vulnerability areas. The Classification

of groundwater recharge (mm/a) rates are in numbers (e.g., 2(= 20 - 100)). The aquifer maps and hydrological

units (river distribution networks and lakes) are those of World-wide Hydrogeological Mapping and Assessment

Programme produced under the Global Groundwater Vulnerability to Floods and Droughts project (WHYMAP

GWV © BGR & UNESCO 2015). (b) The prominent river basins in South America and the network of

transboundary rivers in each wetland and the annual distribution of rainfall from the Tropical Rainfall Measuring

Mission satellite-based precipitation (2003− 2016).

2.2. Land water storage assessment using GRACE mascons126

Gravity Recovery and Climate Experiment-derived TWS is now one of the most vital tools127

in hydrological research, specifically in monitoring sub-surface water storage, aquifer system128

processes, and evaluating groundwater resources (see, e.g., 13, 62, 25, 86). The applications129

of GRACE data in hydrology research globally is growing and well documented (see, 41, 100,130

and the references therein) and is only summarised here. In this study, the GRACE mass131

concentration solutions (mascons), which solves for monthly gravity field variations in terms132

of 40,962 geodesic grid tiles over the Earth (77) were used for estimating land water storage133

over SA. The mascon blocks were down-sampled to a spatial resolution of 0.5◦ -by-0.5◦ in134

order to facilitate the regional averaging whereas the re-sampled cells (i.e., 0.5◦ -by-0.5◦) is135

still limited to the nominal resolution of GRACE, which is about 300 km. The CSR mascon136

approach is based on two-step process (using an intermediate solution in a first step for deriving137

a time-variable regularization matrices for estimating the mascon solution in a last step), which138
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allows the development of a time-variable regularization purely based on GRACE data. This139

regularization prevents the signal leakage into the oceans (77). The constrained regional water140

mass solutions used over South America showed they offer a reliable geographical location of141

hydrological structures (35). Apparently, these pre-processed GRACE products simplify the142

use of GRACE TWS observations for several hydrological and water resources applications.143

More details regarding the derivation of the mascon solutions and its performance metrics144

have been documented by Watkins et al. (95). The mascon data (2002 − 2017) was accessed145

from the CSR data portal (http://www2.csr.utexas.edu/grace/RL05_mascons.html) in146

its Release 05 (RL05). The use of GRACE mascons is gradually emerging in global freshwater147

analyses and offer the opportunity to implement geophysical constraints with ease, which in148

turn help to filter out noise from the level 2 GRACE data (e.g., 96). Apart from not requiring149

rigourous pre-processing protocols such as destriping and smoothing, it has been argued that150

the mascon solutions provide similar results consistent with other global GRACE products151

(e.g., 7). River basin estimates of TWS values TWS were recovered from the global mascon152

solutions by using the area weighted average approach, i.e., the approximated area of the basin153

(region) as (e.g., 62)154

TWS(t) =
1

A

n ∑
i=1

TWS(ϕi, λi, t)Ai, (1)

where n is the number of cells within the basin, Ai is the area of each cell i, A is the total155

area of the basin and ϕi and λi are the corresponding latitudes and longitudes of the center156

of each grid cell, respectively.157

2.3. Sea surface temperature anomalies158

The Sea Surface Temperature (SST) data (monthly means from 2002 to 2017) used in159

this study is the NOAA’s Optimum Interpolation SST V2 and was downloaded from NOAA’s160

portal (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). The161

influence of SST anomalies on land water storage in tropical regions have been reported (e.g.,162

50, 21, 64). So significant modes of localised SST variability from the Atlantic and Pacific163

oceans were used as predictors in the partial least square regression model (Section 3.3).164

Except in cases of human water management (e.g., water transfers), SST is a key predictor165

of rainfall and water availability because de Linage et al. (21) identified several studies that166

showed evidence of the interactions between SST and Intertropical Convergence Zone, which167

resulted in the severe droughts of 2005 and 2010 in the central and western Amazon.168
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3. Methods169

3.1. Pre-orthogonalization of terrestrial water storage170

The pre-orthogonalization (i.e., pre-filtering) of terrestrial water storage (TWS) was achieved171

using the principal component analysis (PCA, 58, 44). A scree plot analysis and the Bartlett’s172

test statistics (53, 82) were employed to identify the statistically significant orthogonal modes173

of variability from the PCA scheme. Before the decomposition of TWS over SA, these test174

statistics ensured that only the significant orthogonal modes necessary to explain the non-175

random variations in TWS at 95% confidence level were used as inputs. The filtering of TWS176

using this method is given as (e.g., 58),177

X(t) =

n ∑
k=1

a(k)pk (2)

where a(k)(t) are the temporal variations also called expansion coefficients (or sometimes stan-178

dardised scores) and pk are the corresponding spatial maps (empirical orthogonal functions-179

EOF loadings). The leading orthogonal modes of TWS (a combination of the temporal and180

spatial patterns) retained for further rotation are the first few pairs obtained from this tech-181

nique. Each expansion coefficients represents a fraction of the total variation that is propor-182

tional to the amount of covariance in time explained by each eigenvector (EOF).183

3.2. Decomposition of TWS using the Joint Approximate Diagonalisation of Eigen matrices184

The JADE (Joint Approximate Diagonalisation of Eigen matrices) technique is a generic185

algorithm for blind source separation (e.g., 12, 11, 18, 10). There are several formulations of the186

JADE algorithm based on three cost functions (e.g., 102) , however, on grounds of numerical187

and computational efficiency, the approach in this study was based on the joint diagonalization188

of the fourth order cumulant matrices as formulated and implemented by Cardoso (11) and189

Cardoso and Souloumiac (12). After the pre-orthogonalization of TWS using the PCA tool,190

which yielded significant orthogonal modes of TWS, the fourth order cumulant matrices were191

then estimated. These cumulants provide the suitable matrices to be diagonalized before a192

rotation towards statistical independence. In this study, the JADE algorithm fully detailed193

in previous studies (e.g., 102, 11, 12) was used to rotate the PCA-regularised data matrix X194

(i.e., Eqn. 2). Through a contrast optimization by the joint diagonalization approach, the195

rotated cumulant matrices resulted in well localised spatial maps M, and temporal patterns196

A, as: (e.g., 60)197

XTWS(x, y, t) = AM, (3)
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where (x, y) are pixel locations, t is the monthly time step. A is also known as independent198

components, which is unit-less since it has been normalised using its standard deviation while199

the corresponding spatial patterns M, have been scaled using the normalised independent200

components (i.e., A). Note that SST anomalies over the Pacific and Atlantic oceans were201

also subjected to the JADE process before use in the partial least squares regression (PLSR)202

model.203

Although one could argue that working with basin-wise analysis of TWS in the continent204

is rather easy, the JADE technique is employed to support the localisation (both spatial and205

temporal) of GRACE hydrological signals that could be masked by other leading signals result-206

ing from strong rainfall seasonality and surface flow from other hydrological regions (typical of207

the Amazon floodplain). So, the JADE analysis is essential to unpack hydrological elements208

(signals) in this region, which are largely characterized by rainfall, changes in floodplain rivers209

and complex hydrological processes. This method was efficient in the Volta basin where the210

Lake Volta shows strong gravitational signatures in the GRACE observations. The JADE ro-211

tation facilitated an understanding of the pseudo increase in TWS over the Volta basin caused212

by water impoundment of the Lake at the Akosombo dam despite more than a decade decline213

in observed rainfall (62). Through an innovative combination of this method with partial least214

squares regression (Section 3.3.1), this study attempts to provide further understanding related215

to both climate and non-climatic processes that provide constraints on freshwater availability216

in South America.217

Furthermore, the linear rates (trends) in observed time series of estimated TWS over each218

river basin were estimated using the Sen’s slope (80) estimator since it is robust and resistant219

to outliers. Sen slope (Si) is the median overall values of the whole data and is estimated as220

Sk = Median(Pj − Pi

j − i
), for (1 ≤ i < j ≤ n), (4)

where Pj and Pi represents data values at time j and i (j > i), respectively while n is221

the number of observations in the time series. To assess the significance of observed trends,222

the null hypothesis of no trend, H0, was tested at α = 0.05 using the Man-Kendall’s test223

(52, 45). As one of our key objective here is to also assess TWS-rainfall relationship, the224

spatial distribution of trends in TWS with rainfall was examined to understand hydrological225

processes of the region.226
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3.3. Parameter estimation techniques227

3.3.1. Partial least squares regression model228

The partial least squares regression (PLSR) model is a double barrel multivariate tool as it229

combines features from PCA and MLRA (multi-linear regression analysis). As opposed to these230

multivariate techniques, PLSR is a better choice for analysing high-dimensional data because of231

its robustness and adaptability (e.g., 14, 20). PLSR looks for latent vectors, which performs a232

simultaneous decomposition of independent variable, X and response variable Y (e.g., 49, 99).233

These PLSR components are so determined to maximize the covariance between the two234

variables whilst complying with certain orthogonality and normalization constraints (20). In235

a simple formulation of the PLSR model (e.g., 14), the data elements xi = [xi1, xi2, xi3.., xip]
′236

∈ ℜp (i = 1, 2, 3, .., n) with n as the observation samples and yi = [yi1, yi2, yi3.., yiq]
′ ∈ ℜq237

(i = 1, 2, 3, .., n) where n is the corresponding dependent samples. Then the independent238

variable, X = [x1,x2,x3..,xn]
′ ∈ ℜn×p and the response variable Y = [y1,y2,y3..,yn]

′ ∈239

ℜn×q. The centered (i.e., removing the mean) data matrices X and Y are decomposed as240

(e.g., 14, 99),241

Xn×p = tn×1p′
p×1 + En×p, Yn×q = un×1q′

q×1 + Fn×q, (5)

where t and u are latent vectors for the n observations, p and q are the loading vectors while242

E and F are the residual matrices. PLSR model maximizes the squared covariance between243

the latent vectors (t and u) and obtains the projection vectors w and h as t=Xw and u= Yh.244

Lewis-Beck et al. (49) mentioned other ways of choosing the latent vectors and highlighted245

the iterative process of finding the latent vectors until X becomes a null matrix. If a linear246

association exist between t and u (e.g., 14, 99, 20), Eqn 5 above can be updated as247

X = tp′ + E, Y = tq′ + F. (6)

And through a least square solution, p=X′t(t′t)−1 and q=Y′t(t′t)−1 can be solved. The248

regression between X and Y results in c projection vectors and a set of weights, W =249

[w1,w2,w3..,wc]. The latent components or factor scores can be obtained as (14, 20), T =250

[t1, t2, t3.., tc] while the loading matrices are formulated as P = [p1,p2,p3..,pc] and Q =251

[q1,q2,q3..,qc]. If Eqn 6 is rewritten as252

X = TP′ + E, Y = TQ′ + F, (7)

then, from253

T = XW + E, Y = XWQ′ + F, (8)
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the final standard PLSR relation between the predictor data matrix (XSST ) and response254

(YTWS) variables is255

Y = Xβ + F, (9)

where β =WQ′ is the PLSR coefficients. After this multivariate calibration, the modelling of256

TWS for each river basin (TWSRB) over South America is subsequently obtained as257

TWSRB = βSSTLocalised modes + Yres. (10)

The predicted TWS series were compared with the observed using several validation metrics258

and statistical index of model performance, i.e., Nash–Sutcliffe model efficiency (NSE), refined259

index of agreement (IA), coefficient of determination (R2) and root mean square error (RMSE).260

Statistical details about the modified IA and the NSE coefficients are available for interested261

readers (e.g., 98, 57). Further, the Jargue-Bera statistical normality test (43) is an additional262

skill metric that was employed to validate the PLSR model output by evaluating the normality263

of the computed residuals (i.e., those obtained from the retrieved PLSR components) at the264

95% confidence level and is computed as265

JB =
N

6
[s2 +

(k − 3)2

4
], (11)

where JB denotes Jarque-Bera statistic, N is the sample size, s is the sample skewness, and k266

is the sample kurtosis. The Jargue-Bera test is similar to the Lagrange multiplier test and is267

preferred for large data sets, given the unreliability of other normality tests when the sample268

size is large. The test matches the skewness and kurtosis of data to examine if it matches269

a normal distribution of data, be it errors in a regression model or time series data. The270

significance of the probability values at 95% confidence level was determined by comparing271

the Jargue-Bera test statistics with the critical value for the test. If Jarque-Bera is large then272

normality is rejected at α = 0.05.273

3.3.2. Multi-linear regression analysis274

To explore the relationship between TWS changes and precipitation patterns over SA,275

multi-linear regression analysis (MLRA) was used to model the trends and harmonic com-276

ponents of TWS (mean annual and semi annual amplitudes) of GRACE-derived TWS and277

precipitation time series. This was achieved through the parameterizations of these compo-278

nents as reported in previous studies (e.g., 63, 74). Trends and harmonic components in the279
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data (yi,j) at time (t) were parameterised using the MLRA as (e.g., 74):280

yi,j(t) = ξ0 + ξ1t+

imax∑
i

(ξ2i cos(iωt) + ξ2i+1 sin(iωt)) + ε(t), (12)

where the least square-estimated coefficients, ξ0 is an offset, ξ1, linear trend and ξ2i and ξ2i+1281

represent the periodic components in the data. The annual amplitude of the data is captured282

when the period T of the angular frequency ω = 2π
T is 12 months with the coefficients, ξ2283

and ξ3 along with their corresponding trigonometric base functions (i.e., cos(ωt) and sin(ωt))284

representing the annual component. The coefficients, ξ4 and ξ5 represent the semi-annual285

component while ε is the error term, which is assumed to be normally distributed. Root mean286

square errors and coefficients of determination (R2) were employed to assess the skill of MLRA287

in modelling TWS and rainfall over South America.288

Figure 2: Regionalization of TWS (2002 − 2017) based on pre-orthogonalization and cumulant decomposition

methods. The spatial patterns are scaled using the standard deviation of the computed independent components,

i.e., the temporal series in Fig. 3. They are also interpreted in conjunction with their corresponding temporal

patterns (independent components). The axis labels, latitudes (Lat) and longitudes (Lon) are indicated.
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4. Results289

4.1. Rotation of terrestrial water storage using higher order statistical algorithms290

Other higher order statistical decomposition algorithms, which uses the fixed-point itera-291

tion scheme have been employed in filtering satellite gravity signals (32, 33). Contrary to these292

algorithms, the JADE technique exploits the fourth order cumulants of the data matrix based293

on remote properties that include non-stationarity, spectral non-Flatness, and non-Gaussianity294

(e.g., 60, 102, 11, 18). Because of the statistical and numerical efficiency of the JADE approach295

in solving the optimisation problem (e.g., 102, 12), eight significant independent and well lo-296

calised spatio-temporal patterns (will be interchangeably designated as ‘regions’) of TWS were297

recovered over South America (SA). These patterns highlights considerable inter-annual vari-298

ability and regional GRACE-hydrological signals over the continent (Fig. 2). The surface299

water dynamics of the Amazon basin and much of Brazil dominate the independent patterns300

of TWS in SA (TWS-1 and TWS-2, Fig. 2 and 3) and together account for approximately301

60% of the total variability. Region one is localised over the Amazon floodplain (cf. Fig. 1b)302

and the exchange of water fluxes within this domain is somewhat complex. Apart from the303

indication that the highest proportion of stored water on the Amazon floodplain comes from304

the mainstem river, Alsdorf et al. (3) also found that the mainstem discharge was higher305

compared to the sum of annual water storage and that drained from the Amazon floodplain.306

Although variations in surface waters represent a considerable component of TWS as observed307

by GRACE (e.g., 31, 46, 39), the strong exchange of fluxes within the floodplain corridors308

explains why the dominant patterns of TWS over SA is observed over the Amazon floodplain309

(TWS-1, Fig. 2 and 3). This is consistent with the results of Frappart et al. (35), who found310

the strongest spatial loadings of TWS along the Solimões-Amazon corridor and includes the311

south of the Amazonian and the Negro basins.312

In regions three and four (TWS-3 and TWS-4, Figs. 2 and 3), observed GRACE-hydrological313

signals are annual variations with probable contributions from multi-scale climate oscillations,314

e.g., El-Ninõ Southern Oscillation (ENSO)-related teleconnections. Some studies found the315

connections between ENSO and inter-annual TWS variations in these regions (e.g., 65, 50, 70).316

By further exploring the interplay between ENSO-teleconnections and GRACE-hydrological317

signals for regions three (northern Brazil) and four (Venezuela), we also found strong evidence318

that suggests climate teleconnection-driven influence on TWS dynamics. But it is not clear,319

which hydrological stores or component of GRACE TWS (e.g., surface water, soil moisture,320

aquifer, etc.) provides this response to climate. The GRACE-hydrological signal in region321
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Figure 3: Localised temporal patterns of TWS (2002 − 2017) based on the cumulant decomposition methods

similar to Fig. 2. These temporal patterns are in standardised units (y-axis) and correspond to the spatial

evolutions and hydrological regions shown in Fig. 2. Amplitudes of TWS for each region (e.g., TWS-1, TWS-

2, etc.) are recovered by a joint interpretation of these temporal patterns (in standardised units) with the

corresponding spatial patterns in Fig. 2.

five (TWS-5, Figs. 2 and 3) is the melting of the Patagonia ice-field. Consistent with this322

study, different methods, which includes forward modeling approach have been employed to323

highlight the continued mass loss in Patagonia (75, 97, 16). This extensive and unabated mass324

loss in Patagonia ice-field (TWS-5, Fig. 3) is caused by the warming of the climate system,325

and being the second largest ice body in the Southern Hemisphere, GRACE is a viable tool for326

the continued monitoring of the impact of rising temperature on Ice fields. Note that similar327

to the JADE algorithm, estimated negative trends observed over the Patagonia ice-field using328

the Sen’s slope and multi-linear regression model are consistent (Sections 4.2.1 and 4.3.2.329

Region six (TWS-6, Figs. 2 and 3) highlights amplitudes of TWS in the Chile region but330

with most parts falling within Argentina while region seven (TWS-7, Figs. 2 and 3) depicts331
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multi-annual variations in TWS over south Brazil and the neighbouring Central Argentina332

with a weak opposite phase in north-east Brazil. Having experienced repeated earthquakes,333

deformations, and other forms of natural disturbances (e.g., 76, 42, 91, 51), the geophysical334

signals in Chile and the neighbouring Argentina is expected to be dominated and driven by335

natural and climatic elements. The temporal pattern (TWS-6, Fig. 3) associated with this336

signal in the Chile/Argentina regions (TWS-6, Fig. 2) show a falling amplitude between 2005337

and 2011 while the period after 2011 shows a rising trend, consistent with the results in338

Section 4.3. Note that region 6 (TWS-6, Fig. 2) also indicates relatively strong opposite TWS

Figure 4: Assessing inter-annual variations of TWS (2002 − 2017) for twelve prominent global river basins in

Southern America.
339

anomalies in the central Amazon basin area and could be related to floodplain and wetland340

water storage gain between 2005 and 2010, i.e., when jointly interpreted from the corresponding341

temporal patterns (TWS-6, Fig. 3) and again coincides with numerical results in Section 4.3.342

The argument here is that elevation of the flood plains of Amazon basin (low elevation areas less343

than 200 m above mean sea level) coincides with the unique features of TWS for region 6 (e.g.,344

the region with the most freshwater-Fig. 1) as depicted in its spatial patterns (TWS-6, Fig. 2).345

That is, the spatial patterns with positive loadings in Chile and environ (TWS-6, Fig. 2) are346

interpreted as wet conditions (or gain in surface mass) if multiplied with its corresponding347

positive amplitudes in Fig. 3. Similarly, the spatial patterns with negative loadings in Fig. 2348

(Amazon region) are interpreted as wet conditions (or rise in surface mass) if multiplied with349
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its corresponding negative amplitudes (TWS-6, Fig. 3). The low elevation areas of the Amazon350

and the strong annual fluctuations (TWS-6, Fig. 3) suggests that it appears to be a rather351

permanent wetland water storage induced by rainfall seasonality (cf. Fig. 1). As opposed to352

the high elevation areas of Chile (greater than 3500 m above mean sea level), which shows353

annual fluctuations in TWS, it can be argued that elevation plays a role in the Amazon flood354

plain wetland water storage. Notably, this Amazon signal (region 6) is different from regions 1355

and 2 where river storage, exchange of fluxes between tributaries, including vertical movement356

of shallow groundwater could be major drivers of GRACE-derived TWS variations along the357

Amazon corridor.358

Regarding the spatial patterns in region 7 (TWS-7, Fig. 2), the strongest signals with359

opposite phase occur within southern Brazil. The corresponding time series (TWS-7, Fig. 3)360

show relatively strong negative anomalies in 2004 and 2009 before the strong rise that occurred361

after 2010. The peak negative anomalies in 2004 and 2009 appear to coincide with severe362

droughts in the region, especially the summer drought of 2004/2005. As highlighted further in363

Section 4.2.1, the short term trends in TWS and rainfall during this period around this region364

(2012−2017) show consistency between 2012 and 2014 but with small dissimilarity during the365

2010 − 2012 period and can be explored further in future studies that focus on this region.366

Region eight (TWS-8, Figs. 2 and 3) is the GRACE-hydrological signal native to north-east367

Brazil (e.g., 84). The declining trend in TWS during the 2011−2015 period and the strongest368

negative anomaly observed between 2014 and 2015 (TWS-8, Fig. 3) coincide with the widely369

reported super extreme droughts that ravaged most eastern sections of Brazil during the same370

period, especially 2015 (e.g., 27, 103, 36). This prolonged drought, which occurred in much371

of north-east Brazil during most of the 2010–2013 period, resulting in considerable declines in372

TWS (TWS-8, Fig. 3) triggered the need to improve drought-related policy and management373

strategies at various levels of government Brazil (see, 38). Owing to limited annual rainfall,374

north-east Brazil is generally a water deficit region and depends on surface water from the375

Amazon basin for irrigation and hydropower generation. The Sao Francisco river basin in376

Brazil depends on water transfers between river basins. Moreover, the National Water Agency377

of Brazil reported in 2015 that 79% of total water withdrawn was for irrigated agriculture.378

Hence, GRACE is a viable hydrological tool to support the monitoring of hydrological drought379

and its impacts on water availability and human abstraction (see, 27).380
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Figure 5: Spatial distribution of trends in TWS (a-c) and precipitation (d-f) for three different periods (2002−

2014, 2010− 2012, and 2012− 2014). All units are in mm/year.

4.2. Assessing inter-annual variations and changes in TWS381

In this section, results for the region-specific (twelve river basins) estimates of linear rates382

in TWS are highlighted. These river basins are among the well known global river basins.383

Add to this, time series of TWS grids are compared to those of rainfall over SA based on384

cross-correlograms.385

4.2.1. Recent changes in TWS in South American river basins386

Observed temporal variations in the 15-year GRACE-derived TWS over 12 river basins387

are marked with strong fluctuations. With an estimated linear rate of −11.29±1.71 mm/yr,388

Sao Francisco showed the strongest fall while Parana indicated the strongest rise (6.88±1.13389

mm/yr) in TWS during the 2002−2017 period (Fig. 4). The summary of Mann-Kendall’s test390

statistics for all significant (α = 0.05) linear trends observed in the 12 river basins for the two391

periods (2002 − 2017 and 2010 − 2017) analysed are highlighted in Table 1. Considering the392

estimated linear rates between 2010 and 2017, the strongest decline (−38.48±7.90 mm/yr) in393

TWS was found in Orinoco while Uruguay showed a considerable increase in TWS (28.28±3.49394

mm/yr) unlike other basins (Fig. 4 and Table 1). During the same period (2010 − 2017),395

significant increase in TWS were also observed in Parana (17.92±3.44 mm/yr), Rio Colorado396
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Table 1: Estimated trends in temporal variations of TWS for 12 river basins in South America during the

2002 − 2017 and 2010 − 2017 periods. The null hypothesis (no significant trend), H0, was tested at α = 0.05

(95% confidence level) using the Mann-Kendall’s statistics. The p-value (probability threshold agreed for

the significance level) and root mean square error are indicated. Note, the trends with asterisks (*) are not

statistically significant.

River basins 2002/04− 2017/06 2010/04− 2017/06

S/N Trend (mm/yr) p-value RMSE Trend (mm/yr) p-value RMSE

1 Amazon 6.54 ±2.60 0.004 141.755 *11.06 ±8.49 0.221 151.317

2 Parana 6.88 ±1.13 0.000 61.441 17.92 ±3.44 0.000 61.29

3 Orinoco *-4.25 ±2.89 0.096 157.598 -38.48 ±7.90 0.000 142.128

4 Tocantins *-2.60 ±3.06 0.5186 166.345 *-16.65 ±8.98 0.265 160.039

5 Sao Francisco -11.29 ±1.71 0.000 93.126 -30.84 ±4.17 0.000 74.30

6 Rio Colorado -9.91 ±1.22 0.000 66.437 23.99 ±2.60 0.000 46.377

7 Uruguay 5.33 ±1.54 0.000 83.982 28.28 ±3.49 0.000 62.13

8 Parnaiba -5.38 ±2.05 0.0108 111.733 -24.42 ±4.95 0.000 88.151

9 Magdalena *-0.44 ±1.25 0.925 68.134 -18.76 ±3.58 0.000 63.86

10 Negro *-1.51 ±1.20 0.1699 65.124 13.0 ±3.27 0.000 58.268

11 Chobut -3.74 ±0.78 0.000 42.578 *-4.17 ±2.30 0.011 41.068

12 Rio Salado *-1.49 ±1.31 0.1671 71.137 25.17 ±2.78 0.000 49.611

(23.99±2.60 mm/yr), Negro (13.0±3.27 mm/yr), and Rio Salado (25.17±2.78 mm/yr) while397

Sao Francisco (−30.84±4.17) and Parnaiba (−24.42±4.95) indicated relatively strong negative398

trends in TWS (Fig. 4 and Table 1).399

The spatial distribution of trends in TWS and precipitation over South America suggest400

complex hydrological structures and processes. For instance, the long term declines in TWS401

over Chile/Argentina regions and melting of the Patagonia ice field are inconsistent with402

rainfall (Figs. 5a and d). This is because the factors driving the hydrology of these areas are403

beyond rainfall. Recall that these signals coincide with the spatial and temporal patterns in404

regions five and six (TWS-5 and TWS-6, Figs. 2 and 3) and further highlights the effectiveness405

of the JADE rotation in localizing geophysical signals. Further, the analyses of short term406

trends (2010−2012 and 2012−2014) also highlights the remarkable difference in recent changes407

in TWS in relation to rainfall. Such inconsistencies are mostly observed over Venezuela, Brazil,408

and Argentina (Figs. 5b-c and e-f). However, the TWS trends in Northeast Brazil between409

2012 and 2014 are consistent with those of rainfall (Figs. 5e and f). Whereas TWS in some410

regions in SA respond to changes in rainfall and climatic conditions as is the case in north411
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east and southern Brazil (Figs. 5b-c and e-f), the complex hydrogeological structures in some412

areas may trigger interesting hydrological processes. To understands this processes, the grid413

based TWS-rainfall association and phase lags during the entire period are explored in the414

next section by implementing a cross-correlation.415

4.2.2. GRACE TWS vs rainfall416

To explore the TWS-rainfall relationship, cross-correlation between detrended series of417

GRACE-TWS and GPCC-rainfall was analysed. From the water budget equation, TWS418

changes in time. In other words, observed changes in TWS balances precipitation minus419

evaporation and runoff. Figure 6 shows the lags (presented as colored surface) at which the420

two series present the maximum correlation coefficients (presented as contour lines). Overall,421

rainfall rates lead TWS in approximately zero to three months for almost all of SA with corre-422

lation coefficient ranging from approximately 0.60 to 0.80 (Fig. 6). For example, considering423

the physiographic regions of SA, the Brazilian Highlands, the Amazon Rainforest, and the424

Gran Chaco regions (spreads across eastern Bolivia, western Paraguay, northern Argentina425

and sections of Brazil) all indicate relatively high correlations with rainfall leading TWS.426

Moreover, the Lianos and Guiana Highlands (both at northern SA), and the Andes Moun-427

tains (apart from the portion that surrounds the Altiplano and Atacama Desert) present good428

phase agreement with high correlation coefficients. While this shows good feedback of TWS429

on rainfall for almost all SA, the relationship between TWS and rainfall during the period is430

statistically not significant at the 95% confidence interval.431

However, there are exceptions in the regions below latitude 16◦, which are arid regions432

characterized by relatively low precipitation rates (Fig. 1b). The Chile coastline and the433

Patagonia are regions where correlations are modest ranging from 0.40 to 0.60 and rainfall434

generally leads TWS with a phase greater than four months (Fig. 6). There are also some435

hydrological hot spots (regions below latitude 16 ◦) with TWS leading rainfall with a phase436

of 12 months but with high correlation only for the Lake Titicaca region (cf. Fig. 1 and437

6). But around the Patagonian region and Chobut, Colorado and Salgado basins, correlation438

coefficients between the series are low (r = 0.40) indicating that the key driver of variations439

in TWS is beyond rainfall. For example, the Pampas of Argentina (approximately between440

latitudes 40◦S to 32°S and longitudes 56◦W to 64◦W) is characterized by annual precipitations441

of 500 − 1000 mm (Fig. 1b). TWS shows relatively low annual peaks with a negative linear442

trends of -5 to -15 mm/yr of mass loss. This could be attributed to changes in the land use443
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Figure 6: Correlation analysis showing phase lags at which maximum correlation coefficients occurred for TWS

versus rainfall during a common period (2002− 2017). The contour lines show the correlation coefficients while

the values depicted in the color bar indicate the lags in months. Regarding lags, negative values mean TWS

leads rainfall while positive values imply rainfall leads TWS. Only statistically significant correlations (α = 0.05)

are presented.

due to the crop rotations or natural vegetation, which might decrease groundwater recharge444

and thus decrease TWS storages (e.g., 48). This is particularly true for Patagonia since it is445

characteristically a dry climate. As shown in region 6 (Figs. 2 and Fig. 3), the Patagonia ice446

fields are undergoing a contemporary melting and retreating of glacial ice and is consistent447
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with previous studies (e.g., 97, 16). The Andean Plateau (Altiplano) presents a phase lead448

greater than twelve months for rainfall relative to TWS series and includes part of the Pampas449

region. Furthermore, part of the Pampas region (southern) also shows a phase lead of about450

12 months (TWS lags rainfall). In both cases, we found that correlation coefficients were low,451

mostly between around 0.10 and 0.20 and insignificant.

Figure 7: Modelling GRACE-derived TWS (2002 − 2017) using the PLSR model. Temporal patterns of

predicted and observed TWS for the 12 prominent river basins in Fig. 5 are compared using several validation

metrics.
452

4.3. Modelling TWS using parameter estimation techniques453

4.3.1. Partial least square regression prediction of river basin TWS454

Overall, the temporal variations of TWS are well predicted for most of the river basins455

(Fig. 7) and show reasonable residuals and considerable association with observed TWS based456

on three validation metrics used (Figs. 8a-b). In terms of the performance of PLSR model,457

time series of TWS in the Amazon, Orinoco Tocantins, and Chobut basins were well predicted458

and showed optimum skills based on these validation metrics (R2, IA, and NSE). These basins459

indicated R2, IA, and NSE coefficients above 0.83 (Fig. 8b) but with Chobut having the least460

residual and RMSE (Fig. 8a). However, Rio Colorado, Rio Salado, Uruguay, Sao Francisco,461

and Parnaiba indicated relatively higher TWS residuals and RMSEs (Figs. 7 and 8a). The462

uncertainties (i.e., residuals and RMSEs) in predicted time series of TWS in these locations463

were also reflected in their observed validation metrics with Rio Colorado showing the lowestR2464

(0.49), IA (0.66), and NSE (0.49) (Fig. 8b). The obvious poor performance of the PLSR model465
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Figure 8: Analysis of PLSR model outputs for TWS in South American river basins.(a) Uncertainties in the

PLSR model prediction of TWS over the 12 river basins for 157 time steps (2002/04 − 2015/04). The TWS

residuals (i.e., the difference between the predicted and observed obtained in mm) indicated here are for PLSR

calibration based on nine significant components. (b) Performance of PLSR model in predicting TWS in

the 12 river basins based on three skill metrics (coefficient of determination (R2), Index of Agreement (IA),

Nash-Sutcliffe Efficiency (NSE)).

in Rio Colorado, Rio Salado, and Sao Francisco (Fig. 8a and b) gives credence to the argument466

of the perceived contributions of non-climatic elements to observed inter-annual variations in467

TWS. Especially for the basins located in Brazil (e.g., Sao Francisco), Uruguay, and Argentina,468

the TWS-rainfall relationship as was highlighted in Section 4.2.2 indicated poor association469

with considerable phase lags in most catchments. This may not be unconnected with human470

water management as Getirana (36), for example, found considerable correlations of monthly471

time series of TWSA and ground-based water storage observations with most reservoirs within472

southeastern Brazil. Given the observed residuals and the index of agreement (Figs. 7 and473

8a), it seems the predictability of TWS based on hydro-climatic variables could be challenging474

in some river basins of SA. As indicated in Fig. 6, some of these regions (Andean Plateau,475

Pampas, etc.) showed low correlation values ranging from 0.00 to 0.20 and with more than 12476

months in phase lag between.477
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Figure 9: Modelling (a-e) GRACE-derived TWS and (f-j) GPCC precipitation using the multi-linear regression

formulation during the period 2002− 2017.

4.3.2. Multi-linear regression of TWS grids478

In this section, the results of simulated TWS and rainfall grids over SA using the MLRA479

technique are highlighted. The mean annual amplitudes of rainfall observed over the Amazon480

basin area is consistent with TWS (Figs. 9a and f) while the trends and mean semi-annual481

amplitudes of TWS show significant disparity and does not completely mimic the modelled482

patterns of rainfall (Figs. 9b-c and g-h). As opposed to rainfall, the only spot with consid-483

erable semi-annual signal is in the Brazil section of the Amazon basin (Figs. 9b and g). The484

dissimilarity in trends (TWS and rainfall), especially those observed in Brazil and Argentina485

(Figs. 9c and h) confirm the complex geophysical processes in the continent as highlighted in486

previous sections. Overall, the root mean square error (RMSE) is relatively low over the arid487

regions of SA for rainfall and TWS but somewhat higher for TWS in the central Amazon basin488

(Figs. 9d and i). Such relatively high uncertainties may result from the influence of important489

processes of inter-annual variability (e.g., Pacific Decadal Oscillation) or the complex proper-490

ties of the Amazon floodplain as it relates to exchange of fluxes and water storage (e.g., 3).491

However, the coefficient of determination (R2) suggest the model predicts variations in TWS492

and rainfall quite well with R2 values ranging from 1.00 to 0.80 (Figs. 9e and j). Except for493

R2 values (i.e., TWS) over Patagonia (Figs. 9e), the regions that are poorly simulated in the494

two products are generally found below Latitude 20◦ (Figs. 9e and j). The low R2 values in495

TWS for example, could imply strong interactions with non-climatic factors and/or the multi-496

linear regression model is not suitable for those locations. Overall, the modelling of TWS and497
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rainfall over the Amazon basin show a good fit and suggest it can be predicted quite well.498

This is justified by the result in Section 4.2.2 where the TWS-rainfall relationship around the499

Brazilian highlands and much of the Amazon rainforest is relatively high with rainfall leading500

TWS. But the plenitude of observed R2 ranging from 0 to 0.30 in some regions of the continent501

could imply the predominant influence of other hydrological drivers, e.g., natural disturbances502

and perturbations of multi-scale global climate signals. The influence of the latter on TWS in503

tropical SA has been reported (e.g., 50) while the contributions of the former to changes in504

TWS in the Chile/Argentina regions have been affirmed in some studies (e.g., 75, 40).505

5. Discussion506

5.1. Assessing drivers of land water storage507

Global climate is changing. The impacts of such changes, which have been attributed508

to rising anthropogenic emissions of greenhouse gases, amongst other things are evident in509

natural systems and acceleration of the water cycle, be it at regional or global scales. The rise510

in global sea levels, long-term declines in rainfall and TWS, and increased frequency in flood511

and drought events (e.g., 75, 83, 67, 9, 69, 90, 81) across the globe are some apparent indices of a512

changing global climate. As with other regions whose TWS variations and discharge are largely513

rainfall-dependent (e.g., 59, 58, 70, 19), land water storage dynamics (includes river discharge514

and surface runoff) in SA are arguably driven by changes in climate and other key processes515

of inter-annual variability such as ENSO (e.g., 50, 21, 34, 35). Incessant extreme droughts516

event in South America, for instance, have been linked to large scale variations in the tropical517

oceans (Pacific and Atlantic). This was recently echoed by Erfanian et al. (23) who also found518

significant relationship between unparalleled drought events in South America and extreme519

anomalies in SST of the nearby oceans. Whereas inter-annual changes in rainfall over tropical520

ecosystems are significantly modulated by the tropical oceans (64, 68, 79, 66), our results in521

Section 4.1 confirm that these drought episodes have considerable impacts on TWS. This is522

true for Brazil where the observed decline in TWS between 2012 and 2015 (TWS-8, Figs. 2,523

3; and 5) coincided with the extreme drought that ravaged Brazil during the period (e.g., 27).524

Apart from the continued mass loss in Patagonia (TWS-5, Figs. 2 and 3) caused by climate525

warming, the observed TWS-rainfall relationship (Section 4.2) also highlights the importance526

of climate variability in observed variations in TWS over most sub-regions of SA. Within the527

context of TWS response to climate variability induced rainfall, there are indications however,528

that some hydrological signals are not unconnected with non-climatic influence.529
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In practical geodetic concepts as it relates to mass redistributions caused by changes in530

gravity fields, Chile (TWS-6, Figs. 2 and 3) is one of the most complex hydrological regions in531

SA (28). Because of its hydro-geodetic characteristics and geophysical formation, the Chilean532

region and environ, for example, are vulnerable to vertical deformations, seismicity, and earth-533

quakes. (see, e.g., 55, 54, 42). Some of these geodetic perturbations and disturbances as also534

found in other regions (e.g., 17), have enduring hydro-ecological effects on the environments535

(e.g., 42). Hydrologically, they leave behind extraneous geophysical signals that become avail-536

able as an integral part of observed hydrological changes in such regions. These signals com-537

plicate our understanding of land water storage drivers. For example, in the Chile earthquake538

of 27 February 2010, Han et al. (40) found a gravity anomaly of −5µGal with a spatial scale of539

500 km east of the epicenter after the earthquake. If we consider the relation between water540

storage change (∆h, in meters) and gravitational attraction due to the water mass (∆gTWS,541

m/s2) as: ∆gTWS ≈ 4.2 · sy ·∆h, the change in gravity due to the Maule event of −5 × 10−8542

m/s2 would be equivalent to an apparent change in TWS of about -39 mm considering sy, the543

specific yield (dimensionless), equals 0.3. Correcting the impacts of this gravity shift on the544

overall surface mass changes around the region is a complex geodetic problem and this was545

not address in this study since it is a localized effect.546

Since the inception of GRACE, there have been at least four earthquakes (e.g., 2010(Mw=8.8),547

2014(Mw=8.2), 2015(Mw=8.3), and 2016(Mw=7.6)) and other geodetic disturbances, e.g.,548

tsunamis and volcanism in Chile (e.g., 76, 42, 55, 54, 91, 16). While Han et al. (40) found strong549

gravity shift after the 2010 Chile earthquake, which affected gravity anomalies in Argentina,550

the observed TWS trend in Central Argentina was partly attributed to this magnitude-8.8551

earthquake, in addition to natural drivers such as rainfall (75). It is obvious that the GRACE552

hydrological time series in Fig. 3 are mostly dominated by strong inter-annual variations. But553

when the trends, annual and semi annual amplitudes of TWS were isolated using a multi-linear554

regression parameterisation, region 6 (TWS-6, Fig. 3) showed a considerable rise in TWS after555

2011 when it was statistically decomposed (not shown). This rise in TWS could be artificial556

jumps in surface mass variations related to post seismic deformations or coseismic jump in the557

geoid (54).558

Based on the PLSR model, TWS in Sao Francisco, Rio Colorado and Rio Salado showed less559

association with climatic parameters. This association results probably from a combined influ-560

ence of human water management practices and other complex environmental conditions and561

processes mentioned earlier. For instance, In the Sao Francisco river basin in South America,562
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for example, about 44 million people depend on water transfers between river basins. Further,563

the National Water Agency of Brazil reported in 2015 that 79% of total water withdrawn564

was for irrigated agriculture. This kind of footprints and perhaps those caused by geodetic565

perturbations could leave behind surface mass variations that can be misconstrued or inter-566

preted as those induced by rainfall seasonality. Also, water-limited regions in Brazil mostly567

coincide with semi-arid areas and those with fractured aquifers were there is heavy reliance on568

surface waters (4). The linear trend observed in water-limited basins such as Sao Francisco569

(−30.84±4.17 mm/yr) between 2010 and 2017 in Brazil shows a considerable fall (Table 1)570

and could result in a rise in water demand, especially in the light of unprecedented changes571

in rainfall. With a total of 19,361 man-made reservoirs as at 2016, Brazil apparently shows572

increased dependence on surface water resources for irrigation and hydropower with Sao Fran-573

cisco being one of the major hotspots for surface water consumption (4). Hence, this obvious574

anthropogenic footprint in the region is expected to impact the prediction of TWS variations.575

5.2. Predicting land water storage576

For an optimal prediction of TWS (response or dependent variables) over each river basin,577

a two-step regularization approach that combined JADE method and PLSR was employed.578

Fourteen independent components of SST anomalies (i.e., seven independent components each579

from the Pacific and Atlantic oceans), i.e., (independent variables) obtained from the combined580

PCA-cumulant decomposition were used in the PLSR model to predict TWS. A subset of581

the latent variables based on nine PLSR components were retrieved and used to develop a582

prediction model. The observed PLSR model uncertainties (Fig. 8) in the simulation of river583

basin TWS using the leading independent SST modes from the Pacific and Atlantic oceans for584

some regions (e.g., Amazon, Orinoco, Tocantins, etc.) suggest the considerable role of climate585

variability in long-term changes in river basin TWS. However, the PLSR model was somewhat586

less effective in other river basins (Rio Salado, Sao Francisco, Rio Colorado, and Uruguay)587

given their modest skills (R2, IA, and NSE; Fig. 8b) and relatively high RSMEs (not shown).588

The Jarque-Bera statistical test for these basins (p =0.5, 0.1, 0.2, 0.5, 0.39 for Sao Francisco,589

Rio Colorado, Uruguay, and Rio Salado, respectively) indicated the model’s estimated residuals590

were not normally distributed as their probability values were greater than the 0.05 confidence591

level. The modest predictive capacity of TWS using climate components as exhibited by the592

PLSR scheme in these basins merely imply that TWS are significantly driven by non-climatic593

factors as we have unpacked in previous sections. The increasing dynamics in global TWS594
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owing to the combined influence of climate and other stressors restricts other conventional595

models (e.g., least squares) in predictive frameworks. Although it bears some similarity to596

principal component analysis, i.e., in terms of seeking a hyperplane that maximizes the variance597

of the input variable (71), one key advantage of the PLSR model is that it mitigates the effect of598

multi-collinearity (e.g., 8, 49, 99) by ensuring that only significant components relevant to the599

response variable are retained for the regression. Although the orthogonality of the principal600

components apparently also solves this multi-collinearity problem, the choice of an optimum601

subset of predictors however, remains a key issue (e.g., 49, 99). The PLSR scheme addresses602

this problem, thus making it more suitable in the forecast of hydrological quantities such as603

GRACE-derived TWS. This innate potential of the PLSR model is what we have explored604

in this study for the prediction of river basin TWS in South America for the first time and605

complements existing frameworks of other statistical predictive models deployed recently for606

routine analysis and modelling of climatic variables (61, 47, 8).607

Considering the low R2 values in modelled TWS, optimising the multi-linear regression608

model for improved freshwater prediction could imply an expansion of the independent vari-609

ables. Unlike other regions where variations in rivers, lakes, and floodplains do not contribute610

to observed changes in GRACE-TWS (37), TWS over the Amazon basin is considerably driven611

mostly by its surface waters (rivers and estuaries) along the floodplain. The dominant patterns612

of TWS observed over the Amazon basin in this study aligns with an earlier report by Kim613

et al. (46) who found that river storage and sub-surface flow accounted for about 73% of TWS614

variations in Amazon. As opposed to the Amazon region, significant large scale alteration of615

hydrological processes resulting from multiple strings of human activities, e.g., surface water616

developments and water diversion in other large watersheds are well known drivers of surface617

water hydrology (e.g., 61, 93). Hence, independent variables, e.g., river discharge and evap-618

otranspiration are critical water budget quantities expected to improve freshwater prediction619

for the Amazon basin, in addition to accounting for climate teleconnection-driven rainfall.620

However, accounting for human-induced influence (e.g., surface water developments and621

increased water abstraction) in predictive models is challenging and may require advance sta-622

tistical approaches. For instance, in the light of the observed strong gravimetric contributions623

of Lake Volta to GRACE-derived TWS over the Volta basin, a weighted least squares for-624

mulation of global spherical harmonic analysis was integrated with a fourth-order cumulant625

statistics to isolate non-climatic hydrological time series of surface water storage (see, 62). By626

recovering this surface water contributions caused by human water management strategies,627
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TWS over the Volta basin can be predicted more accurately. Research problems that seek to628

quantify the impacts of anthropogenic contributions on regional or continental hydrology are629

new innovative directions that will support predictive frameworks and effective characterisa-630

tion of key hydrologic metrics.631

6. Conclusion632

The knowledge of global freshwater response to critical stressors, e.g., human water ab-633

straction is crucial to improving predictive frameworks that support water governance and634

management schemes. Hence, an innovative approach that combined JADE (Joint Approx-635

imate Diagonalisation of Eigen matrices) algorithm and partial least square regression was636

employed in this study to assess GRACE-derived terrestrial water storage (TWS) over South637

America (SA). The temporal evolutions of TWS over prominent river basins in the continent638

was also predicted using independent patterns of sea surface temperature (SST) anomalies of639

the nearby oceans. The conclusions from this study are summarised as follows:640

(i) GRACE-hydrological signals within the Amazon basin and much of Brazil dominate the641

independent patterns of TWS in SA and together account for approximately 60% of642

the total variability. The strong exchange of fluxes within the floodplain corridors of643

the Amazon and the influence of climate modes explain why strong spatial patterns of644

TWS is observed over the Amazon basin and the entire tropical SA. Amongst other645

geophysical signals identified, the JADE rotation of TWS over SA isolated the extensive646

and unabated mass loss in Patagonia ice-field caused by the warming of the climate647

system. Still on the JADE rotation of TWS, we noted that the GRACE-hydrological648

signals native to north-east Brazil are largely associated with extreme hydro-climatic649

events (droughts).650

(ii) Having experienced repeated earthquakes, seismicity, deformations, and other forms of651

natural disturbances, the geophysical signals in Chile and the neighbouring Argentina652

are expected to be dominated and driven by both dynamical physical processes and653

climatic elements. Because of this complex hydro-geodetic structure and geophysical654

formation, interpreting GRACE-hydrological signals in these regions is challenging and655

requires caution.656

(iii) Estimated TWS trends (α = 0.05) in the twelve river basins in SA for the 2010 − 2017657

period indicates Orinoco had the strongest fall (−38.48±7.90 mm/yr) in TWS while658
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Uruguay showed a considerable rise (28.28±3.49mm/yr) unlike other basins. During this659

same period (2010 − 2017), relatively strong increase in TWS was also observed in Rio660

Colorado (23.99±2.60 mm/yr) and Rio Salado (25.17±2.78 mm/yr) while Sao Francisco661

(−30.84±4.17) and Parnaiba (−24.42±4.95) indicated relatively strong negative trends662

in TWS. Generally, the grid-based comparisons of rainfall and TWS trends over some663

areas of SA are inconsistent and suggests that the hydrological drivers of these regions664

(e.g., Patagonia, Brazil, Argentina, and Venezuela) are beyond rainfall.665

(iv) Overall, rainfall leads TWS in approximately one to three months in much of SA with666

maximum correlation coefficients (r) ranging from approximately 0.6 to 0.8, especially667

around Brazil and the Amazon basin. TWS in some regions however, show low and668

modest correlations with rainfall. In these hydrological regions, rainfall leads TWS669

with a phase lag ranging from 2− 4 months and indicate that apart from rainfall other670

key drivers of variations in TWS exists since, for example, such regions are typically671

characterised by a dry climate. Similar conclusion applies to some hot spots in the semi-672

arid north-east Brazil, where the TWS-rainfall association is poor and not significant673

during the period.674

(v) Based on several skill metrics and the Jarque-Bera statistical test for the PLSR model675

output, TWS in Sao Francisco, Rio Colorado and Rio Salado showed less association676

with climatic parameters. This association could be the result of a combined influence677

of human water management practices and other complex environmental conditions and678

processes. The roles of reservoir storage and dams on surface hydrology, for example,679

in Sao Francisco where water abstraction for irrigation is nearly 80% require further680

investigation. Considering the low R2 values and uncertainties in modelled TWS over SA681

in some hydrological regions, optimising the multi-linear regression model for improved682

freshwater prediction could imply an expansion of the independent variables to include683

other relevant important physical processes.684
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