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Abstract  11 
 12 
To improve on the robustness of traditional machine learning approaches, emphasis has recently shifted to the 13 

integration of such methods with Deep Learning techniques. However, the classification problems, complexity 14 

and inconsistency in several spectral classifiers developed for hyperspectral images are some reasons warranting 15 

further research. This study investigates the application of Deep Support Vector Machine (DSVM) for 16 

hyperspectral image classification. Two hyperspectral images, Indian Pines and University of Pavia are used as 17 

tentative test beds for the experiment. The DSVM is implemented with four kernel functions: Exponential Radial 18 

Basis Function (ERBF), Gaussian Radial Basis Function (GRBF), neural and polynomial. Stand-alone SVMs 19 

form the interconnecting weights of the entire network. The network is trained with one hundred input datasets, 20 

and the interconnecting weights of the network are initialised using the regularisation parameter of the model. 21 

Numerical results show that the classification accuracies of the DSVM for Indian Pines and University of Pavia 22 

based on each DSVM kernel functions are: ERBF (98.87%, 98.16%), GRBF (98.90%, 98.47%), neural (98.41%, 23 

97.27%), and polynomial (99.24%, 98.79%). By comparing the DSVM algorithm against well-known classifiers, 24 

Support Vector Machine (SVM), Deep Neural Network (DNN), Gaussian Mixture Model (GMM), K Nearest 25 

Neighbour (KNN), and K Means (KM) classifiers, the mean classification accuracies for Indian Pines and 26 

University of Pavia are: DSVM (98.86%, 98.17%), SVM (76.03%, 73.52%), DNN (94.45%, 93.79%), GMM 27 

(76.82%, 78.35%), KNN (76.87%, 78.80%), and KM (21.65%, 18.18%). These results indicate that the DSVM 28 

outperformed the other classification algorithms. The high accuracy obtained with the DSVM validates its 29 

efficacy as state-of-the-art algorithm for hyperspectral image classification.  30 

 31 
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1.0 Introduction 38 

 39 

Hyperspectral Image (HSI) has been found invaluable because of its numerous applications and ability 40 

to obtain remotely sensed information from the visible through the near infrared wavelength ranges thus 41 

providing multi-spectral channels from the same location (e.g. Pan et al., 2018; Ghamisi et al., 2007). 42 

HSIs are highly innovative remote sensing imageries that consist of hundreds of contiguous narrow 43 

spectral bands, which unlike the conventional panchromatic and multispectral imageries enable a better 44 

distinct discrimination of object classes (Zhang et al., 2018).  However, the major challenge for 45 

scientists is how to efficiently classify HSIs (see, e.g., Li et al., 2018). Some of these challenges as 46 

detailed by Ghamisi et al., (2007) include increased presence of redundant spectral information and 47 

high dimensionality in observed data, among others. Several conventional unsupervised and supervised 48 

machine learning classifiers have been used for classifying HSIs and includes prominent unsupervised 49 

conventional classifiers such as Fuzzy C-Means (FCM) and K Means (KM). While notable 50 

conventional supervised classifiers (e.g., K Nearest Neighbour (KNN) and Gaussian Mixture Model 51 

(GMM)) have been used in the classification of HSIs, the use of contemporary classifiers such as 52 

Support Vector Machine (SVM) and Artificial Neural Network (ANN) are gradually emerging 53 

(Melgani & Bruzzone, 2004; Ratle et al., 2010).  54 

     But recently, emphasis has shifted from conventional methods to the integration of Deep Learning 55 

(DL) and ANN, which scientists have argued grossly enhanced the robustness of the traditional ANN. 56 

For example, Paoletti et al. (2018) showed that the use of DL to train the conventional ANN 57 

significantly increased the efficiency of the ANN for HSI classification. Haut et al. (2018) implemented 58 

an integrated Deep Convolutional Neural Network (DCNN) using a new Bayesian approach and found 59 

that the hybrid of DL and the traditional ANN classifier enhanced the efficiency of the traditional ANN 60 

classifier. Furthermore, a novel guided filter based Deep Recurrent Neural Network (DRNN) for HSI 61 

classification has proved to be more efficient than the traditional ANN classifier (Guo et al. 2018). 62 

Zhao et al. (2019) recently proposed an integrated Convolutional Neural Network (CNN) and Gray 63 

Level Co-occurrence Matrix (GLCM) textural features for HSI classification using limited training 64 

sample. More recently (e.g., Li et al., 2019), other DL ANN algorithms such as the use of Deep Belief 65 
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Network have been employed in HSI classification with major highlights on their merits as opposed to 66 

conventional methods. However, classification problems associated with small-size training dataset in 67 

traditional machine learning techniques have been reported (e.g., Chi et al., 2008). 68 

      Recent advances in convolutional neural networks, including activation function, loss function, 69 

regularization, optimization and fast computation have been documented. Gu et al., (2018) who 70 

provided details on these advances also highlighted the weakness of CNN, indicating computational 71 

efficiency and the choice of a suitable hyper-parameters (e.g., learning rate, kernel sizes of 72 

convolutional filters) are still challenging issues, especially for large-scale data. The use of a new CNN 73 

architecture for the classification of hyperspectral images was therefore predicated on the computational 74 

constraints of CNN algorithms to high-dimensional data contained in multidimensional data cubes 75 

(Paoletti et al., 2018). Although the application of deep learning techniques, especially CNN in image-76 

based cancer detection, diagnosis and other disciplines have shown significant strength (Hu et al., 2018; 77 

Li et al., 2018), improvements are required to handle large-scale multi-resolution data cubes. It is 78 

against this background, that assessing the skills of other non-parametric deep learning algorithms such 79 

as the deep SVM has become necessary. 80 

              In addition to other classification methods such as random forests, neural networks, and 81 

logistic regression-based techniques, the SVM (Cortes and Vapnik 1995) is another robust classifier 82 

that has been used in hyperspectral data classification (e.g., Bigdeli et al., 2013; Ghamisi et al., 2007). 83 

Since the introduction of the SVM it has proven to be very efficient in remote sensing (RS) image 84 

classification, tide analysis, and prediction of urban land use change (e.g., Okwuashi & Ndehedehe, 85 

2017). Due to SVM’s ability to model complex real-world data, they were found to be relatively better 86 

predictive models as opposed to agent-based models whose inability to evaluate model constraints and 87 

results have been highlighted in previous studies (e.g., Poursaee, 2018; O'Sullivan, 2004; Zhao & Peng, 88 

2012; Okwuashi, 2011).  Even though new algorithms such as the Supervised Fuzzy Partitioning are 89 

now competitive with the SVM, the latter is still largely characterized as a state-of-the-art algorithm 90 

(Ashtari et al., 2020). SVM is intrinsically a binary classifier, it can be modified however, for multi-91 

class problems by using mainly the One Against All (OAA) or One Against One (OAO) technique 92 
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(Kang et al., 2015). The OAA and OAO techniques have proven to be considerably effective in the 93 

classification of remote sensing images (Pal & Mather, 2005).  94 

          While classification problems still exist with traditional machine learning techniques, the 95 

complexity (e.g., availability of training samples) surrounding the implementation of different 96 

classification algorithms are some reasons warranting further research on ideal techniques for HSI. This 97 

was echoed in Ghamisi et al., (2007) who noted the inconsistency in several spectral classifiers 98 

developed for HSI based on selected metrics. Furthermore, the use of deep belief network in improving 99 

classification outputs of hyperspectral images and multi-temporal images has recently been 100 

demonstrated (Li et al., 2019; Kussul et al., 2017).  Whereas several parametric and prominent non-101 

parametric algorithms have been widely used in image classification (see, e.g., Melgani & Bruzzone, 102 

2004; Ratle et al., 2010; Ghamisi et al., 2007), the assessment and accuracy of HSI classification based 103 

on Deep Support Vector Machine (DSVM) however, is largely undocumented. One of the key 104 

challenges with HSI classification is limited training samples. It is for this reason that the development 105 

of new optimization algorithms such as deep learning is increasingly becoming popular and effective in 106 

the fields of image recognition and classification, especially for the classification of large multi-spectral 107 

and hyperspectral datasets (Paoletti et al 2018).  Moreover, the success of these new algorithms in 108 

automatic feature extraction, computer vision, language processing and speech recognition have 109 

recently been re-echoed (Li et al 2018). There are still some constraints nonetheless, on the application 110 

of these methods to multispectral and hyperspectral images. A regularized ensemble framework of deep 111 

learning that incorporates SVM is therefore crucial to further explore these challenges. 112 

    Arguably, deep learning algorithms have attracted the attention of the remote sensing community and 113 

several other experts in the fields of speech recognition, computer vision, and natural language 114 

processing among others.  To explore the application of deep learning methods in hyperspectral image 115 

classification, a multi-grained network that appears to be an ensemble deep learning method has been 116 

proposed (Pan et al., 2018). Another hybrid model that integrates unsupervised deep belief network 117 

with a one-class SVM were found to be scalable and computationally efficient in an earlier study 118 

(Erfani et al., 2016). While theoretical foundations and optimization techniques for learning deep CNN 119 
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architectures are required (Gu et al., 2018), ensemble deep learning methods have shown considerable 120 

potentials in the classification of HSI classification. For example, the coupling of deep belief network 121 

with a SVM algorithm addressed complexity and scalability issues of SVM in large datasets (Erfani et 122 

al., 2016). The use of hybrid models is therefore emerging as efficient, accurate and scalable techniques 123 

that can improve the classification accuracy of large-scale and high-dimensional data.  124 

               The aim of this research therefore is to integrate DL and SVM to formulate a hybrid DSVM. 125 

The architecture of the DSVM proposed for this experiment imitates the Deep Neural Network (DNN) 126 

that consists of multiple hidden layers. Normally the hidden layer neurons are connected by series of 127 

weights; but instead the weights are initialised by several SVM functions modified with the SVM 128 

regularisation parameter. The optimal DSVM output for each input is found by updating all the 129 

connecting SVM functions in the hidden layer. Two HSIs, Indian Pines and University of Pavia are 130 

used as experimental and tentative test beds for the study. The OAA multi-class technique are used to 131 

modify the SVM for multi-class separation. To assess the robustness of our hybrid DSVM model, the 132 

results of the DSVM are compared to those of the SVM, DNN, GMM, KNN, and KM.   133 

 134 

2.0 Materials and method 135 

2.1.1 Deep support vector machine framework 136 

 SVM classifies a binary problem using a linear hyperplane by assuming that the training set has n-137 

training samples, that is, ),(),...,,(),,( 2211 nn yxyxyx , where N

ix 
 
is an N dimensional vector that 138 

belongs to one of classes }1,1{ +−iy  (Guyon et al., 2002). The stated binary classification problem can 139 

be separated using a linear decision function, 140 

bxwxf +=)(                                                                                                                                      (1) 141 

where Nw  is a vector that determines the orientation of the desired hyperplane required for the 142 

separation, and b  is called the “bias.” The optimal hyperplane needed to separate the two objects 143 

is, 144 

1)( + bxwyi
                                                                                                                                    (2) 145 
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The solution to this problem can be found by solving the following constrained optimization problem 146 

(or primal problem),  147 

minimise 
=

+
n

i

iCww
12

1
                                                                                                                    (3) 148 

subject to: 
ii bxwy −+ 1)( , 0i , and for ni ,...,1= ; where C ,  C0 , is called the penalty 149 

value or regularisation parameter; while 
i  are the slack variables (Chen et al., 2018). For a nonlinear 150 

case the optimisation problem can be written as,  151 

maximise 
= = =

−
n

i

jiji

n

i

j

n

j

ii xxKyy
1 1 1

),(
2

1
                                                                                          (4) 152 

subject to: 
=

=
n

i

ii y
1

0 , and, Ci  0 , for ni ,...,1= . While the resulting decision function is, 153 

( ) 







+= 

=

n

i

iii bxxKysignxf
1

00 ,)(   (Pirra & Diana, 2019).                                                             (5)                                                             154 

0

i
 
is the support vector while ),( xxK i  

is the kernel function or kernel trick. DSVM can be formulated 155 

by using a multi-layer architecture that contains multiple hidden layers (Figure 1). 156 

 157 

 158 

1X , 
2X , …,

nX  represent the input layer data points. The multiple hidden layers consist 
11SVM ,

12SVM159 

, …, 
kSVM1
, 

21SVM ,
22SVM , …, 

kSVM 2
, and 

1nSVM ,
2nSVM , …, 

nkSVM ; while )(1 XF , )(2 XF ,…,160 

)(XFn
 represent the output layer points. For 

1X , the output for training  
11SVM ,

12SVM , …, 
kSVM1
 is 161 

)(1 XF . For 
2X , the output for training  

21SVM ,
22SVM , …, 

kSVM 2
 is )(2 XF . For 

nX , the output for 162 

training  
1nSVM ,

2nSVM , …, 
nkSVM  is )(XFn

. The network weights are represented as )(xf . All the 163 

various )(xf  are evaluated in the hidden layers, which are multiple layers that connect all the input 164 

)(
12 xf k

 

Figure 1: Architecture of the DSVM implemented in this study. 
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neurons with the output neurons (Fig. 1). The total net input to each hidden layer neuron can be 165 

expressed as, 166 

 167 

1)()(

1)()()(

1)()()(
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                                                                          (6)
 168 

The logistic activation function is used to compute the output for each input neuron as,  169 
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                                                                                                                                   (7)
 170 

The output of the hidden layer neurons are used as input to compute the output layer neurons 171 

noo netnet 11 ...,
1

, 
noo netnet 22 ...,

1
, and 

nonon netnet ...,
1

 as,  172 

2121111
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     For simplicity let us consider only the case of 
noo netnet 11 ...,

1
. Its output can be computed with the 177 

logistic activation function as,  178 

non

o

neto

neto

e
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e
out

1

111
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1

1

1

1

1

−

−

+
=

•
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.                                                                                                                             (11) 179 

     The error for computing the output 
1ooutput for only 

1X  , can be calculated by subtracting the 180 

computed output  
1ooutput  from the known value of )(1 XF  as,  181 

( )
=

−=
n

i

oo i
outputXFE

1

112

1
1 )(                                                                                                       (12) 182 

In like manner the total error can be computed by summing all the computed errors 
1oE , 

2oE ,…,
onE  as,  183 

onoototal EEEE +++= 21                                                                                                            (13) 184 

     By applying the method of backpropagation we can update each )(xf  in the network so that they 185 

will ensure that the actual output becomes closer to the target output )(XF , thereby minimising the 186 

error for each of the output neurons as well as the entire network. For example, )(
111 xf can be computed 187 

as the gradient of 
totalE  as,  188 

 

                                                                                       (14) 189 

  190 

The updated function )()(

11 xf new  can be computed as,  191 

)(
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1
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11
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E
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


−=                                                                                                   (15) 192 

Where   denotes the learning rate for adjusting the weights of the network. In like manner all the 193 

weights in the network that is )(xf  will be updated, and the process will be repeated iteratively from 194 

equation 6 until totalE  becomes zero or infinitesimal.  195 
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2.1.2 Data and implementation   197 

The first HSI dataset is the Indian Pines region in Northwest Indiana, USA acquired by the Airborne 198 

Visible/Infrared Imaging Spectrometer (AVIRIS) that covers the agricultural fields with regular 199 

geometry. It has a 145 X 145 pixels scene with 20m spatial resolution and 220 spectral bands in the 0.4-200 

2.45 m region (Fig. 2). The image contains 16 ground-truth classes. The second HSI dataset is the 201 

University of Pavia, Italy acquired by Reflective Optics Spectrographic Image System (ROSIS-03) 202 

sensor over the urban area of the University of Pavia, Italy. It generates 115 spectral bands. It has a 203 

spatial resolution of 1.3 m and a scene that contains 610 × 340 pixels. The image contains 9 ground-204 

truth classes (Fig. 2). For Indian Pines 10,114 pixels were extracted which consisted of 1,022 training 205 

datasets (
1X ,

2X ,…, 100X ) and 9,092 test datasets (Table 1). For University of Pavia a total of 42,779 206 

pixels were extracted that consisted of 441 training datasets  (
1X ,

2X ,…,
100X ) and 42,338 testing 207 

datasets (Table 2). For Indian Pines, the training and test samples were extracted from each of the 208 

sixteen classes, while for University of Pavia the training and test samples were extracted from each of 209 

the nine classes. The Exponential Radial Basis Function (ERBF) kernel 












 −
−=

22
exp),(



yx
xxK ji

, 210 

Gaussian Radial Basis Function (GRBF) kernel 












 −
−=

2

2

2
exp),(



yx
xxK ji

, neural kernel 211 

)tanh(),( bxaxxxK jiji += , and polynomial kernel d

jiji cxxxxK )(),( += were implemented for the 212 

DSVM. The designated output labels were -1 and +1. The optimal model parameters for ERBF, GRBF, 213 

neural and polynomial kernels were obtained using a cross-validation procedure (He & Fan, 2019). For 214 

)(
111 xf , for ERBF and GRBF, the optimal Gamma value was determined as  = 0.6, for the neural 215 

kernel a
 
= 0.4 and b

 
= 0, for polynomial kernel c

 
= 0, and d

 
= 2 (Fig. 3).  216 

 217 

 218 

 219 

 220 

 221 
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Corn-mintill

Corn-notill

Soybean-mintill

Woods

Grass-trees

Soybean-clean

Grass-pasture

Soybean-notill

Buildings-grass-trees-drives

Stone-steel-towers

Alfalfa

Wheat

Grass-pasture-mowed

Corn

Oats

Hay-windrowned

Figure 2: (a) False colour image for Indian Pines (b) Ground truth labels for Indian Pines (c) False colour for 

University of Pavia (d) Ground truth labels for University of Pavia. 

                       

 

 

 

  

Meadows

Asphalt

Gravel

Trees

Self-blocking bricks

Painted metal sheets

Bare soil

Bitumen

Shadows

    (a)     (c) 

    (b)     (d) 

Class Name Training set Testing set 

    

2X  

   

1 Corn-mintill 86 82  84 755 

2 Corn-notill 142 140  139 1283 

3 Soybean-mintill 247 248  247 2210 

4 Woods 130 129  130 1143 

5 Grass-trees 75 76  74 658 

6 Soybean-clean 55 56  57 530 

7 Grass-pasture 49 45  48 435 

8 Soybean-notill 96 93  95 875 

9 Buiding-grass-trees-

drives 

39 39  42 349 

10 Stone-steel-towers 10 14  10 86 

11 Alfalfa 5 7  6 41 

12 Wheat 6 9  8 43 

13 Grass-pasture-

mowed 

7 7  8 25 

14 Corn 23 25  25 212 

15 Oats 5 6  7 16 

16 Hay-windrowned 47 46  42 431 

Total  1,022 1,022  1,022 9,092 

 

Table 1: Training and testing sets for the Indian Pines. 

1X  

 

 

 

100X  

 

  
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 251 

 252 

 253 

 254 

 255 

 256 

     The experiment was based on a multi-class OAA approach. The idea of the OAA approach is to 257 

classify a multi-class data by classifying each of the classes of interest against the remaining classes. 258 

The OAA technique is a traditional and the most widely used approach to extend SVM binary 259 

classification to a multi-class scenario. Different regularisation values C0  were used to set the 260 

initial weights of the network for )(
111 xf , )(

211 xf , )(
112 xf , )(

212 xf , …, )(xf
nkn

. The next procedure was 261 

the training of the network by backpropagation which simply updates the network weights )(xf .  The 262 

error function or loss function  ( ) −= outputXFE )(
2
1  was used to determine when to terminate 263 

the iteration.  The learning of the network terminates when the error function is zero or infinitesimal. In 264 

terms of computational cost of any algorithm that solves the SVM problem for arbitrary kernel 265 

matrices, there are two complexities involved: training and testing time. Generally, experimental results 266 

could indicate that the running-time associated with testing is smaller than training. Although 267 

characterizing the time complexity of DSVM is somewhat complex, in running a traditional SVM, 268 

space and time complexity are linear with respect to the number of support vectors. Given that 269 

asymptotical number of support vectors grows linearly with the number of examples, the computational 270 

cost of solving the SVM problem has both a quadratic and a cubic component.  271 

 272 

3.0 Results 273 

The DSVM presented in this study was designed to mimic the operation of the DNN. The individual 274 

SVMs that is, )(xf  
were made to function as interconnecting weights of the network. The resulting 275 

outputs were compared against the target output )(XF  based on the backpropagation technique. One 276 

Class Name Training set Testing set 

      

 

 

1 Meadows 191 189  190 18,450 

2 Asphalt 67 70  66 6,564 

3 Gravel 22 20  21 2,081 

4 Trees 33 33  32 3,030 

5 Self-blocking bricks 39 40  42 3,644 

6 Painted metal sheets 15 16  15 1,333 

7 Bare soil 50 48  49 4,980 

8 Bitumen 14 14  15 1,319 

9 Shadows 10 11  11 937 

Total  441 441  441 42,338 

 

Table 2: Training and testing sets for the University of Pavia. 

  

 

1X  

 

2X  

 

100X  

 

  
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hundred distinct inputs 
1X ,

2X ,…,
100X were used to obtain one hundred distinct outputs )(1 XF ,277 

)(2 XF ,…, )(100 XF . The regularisation parameter was used to initialise the network in order to ensure 278 

that the network was initialised with different weights. Starting with an initial weight from +1 to -1 for279 

)(
111 xf , Table 3 shows some of the results of the updated weights of )(

111 xf and some of the predicted 280 

results of )(1 XF . The weights of )(
111 xf  yielded new results in each iteration )(

111 xf (1), )(
111 xf (2), 281 

)(
111 xf (3), )(

111 xf (4). The support vectors are the non-zero values 3.1958 and 5.1466, hence the 282 

predicted )(
111 xf (1) that corresponds to each support vector must either be -1.0000 or +1.0000. The 283 

results of )(1 XF , )(2 XF ,…, )(100 XF
 
is depicted in Fig. 4. It can be observed  that the accuracies of 284 

)(1 XF , )(2 XF ,…, )(100 XF vary relatively significantly (Fig 4). Based on all the DSVM kernels, 285 

classification accuracies for Indian Pines are generally higher than those of University of Pavia (Fig 4). 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

    300 

 301 

 302 

 303 

 

Figure 3: Selection of optimal model parameters for ERBF, GRBF, neural, and  

polynomial kernels.  
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 322 

 The DSVM classification results for Indian Pines and University of Pavia for the four kernel functions 323 

are indicated in Figs. 5a-l and 6a-l. The results of a second set of experiment implemented with SVM, 324 

DNN, GMM, KNN, and KM for Indian Pines and University of Pavia are given in Figs. 5 and 6. 325 

Generally, the DSVM technique showed little misclassification of land cover states in Indian Pines and 326 

University of Pavia as opposed to other methods where misclassifications are obvious and somewhat 327 

widespread. The classification accuracy results for Indian Pines are summarised in Table 4. It shows 328 

 

Figure 4: Mean classification accuracy for Indian Pines and University of Pavia for DSVM.  
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+1 0 +5.1327 +5.1554 +5.1641 +5.1600  +1 +5.1462 
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-1 0 -9.2946 -9.2808 -9.2509 -9.2773 .  .  . -1 -9.2840 

-1 0 -6.3453 -6.3597 -6.3810 -6.3702 .  .  . -1 -6.3678 

-1 5.1466 -1.0000 -1.0088 -1.0212 -1.0197  -1 -1.0141 
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. 
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. 

. 

. 
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Table 3: Some of the SVM-based training and testing results. 
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that GRBF, neural, and polynomial kernels achieved 100% classification accuracy for Corn-mintill; 329 

while only ERBF and polynomial kernels achieved 100% classification accuracy for Corn-notill. The 330 

results further showed that all the four kernels achieved 100% classification accuracy for Soybean-331 

mintill (Table 4). Notably, GRBF and polynomial kernels achieved 100% classification accuracy for 332 

Woods. But only GRBF kernel achieved 100% classification accuracy for Grass-trees; while only 333 

ERBF kernel achieved 100% classification accuracy for Soybean-clean. The polynomial kernel 334 

achieved 100% classification accuracy for Grass-pasture while only ERBF and GRBF kernels yielded 335 

100% classification accuracy for Soybean-notill. 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

  349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

     (a)  DSVM (ERBF)            (b)  DSVM (GRBF)               (c) DSVM (Neural)          (d)  DSVM (Polynomial)                                                         

    

 

   (e) SVM (ERBF)                  (f)  SVM (GRBF)                   (g) SVM (Neural)             (h)  SVM (Polynomial)                                                         

 

 

  

Figure 5: Classified images for Indian Pines. The legend is the same as indicated in Fig. 2. 

 

                (i) DNN                            (j)  GMM                                  (k) KNN                                 (l)  KM                                                         
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     Moreover, all the four kernels achieved 100% classification accuracy for Building-grass-trees-drives 357 

while the neural kernel yielded the highest classification accuracy (98.11%) for Stone-steel-towers. 358 

Only the ERBF and polynomial kernels yielded 100% classification accuracy for Alfalfa; while ERBF, 359 

GRBF and neural kernels were consistent, and all yielded a 100% classification accuracy for Wheat. 360 

ERBF, GRBF and polynomial kernels yielded 100% classification accuracy for Grass-pasture-mowed 361 

while only ERBF, neural and polynomial kernels yielded 100% classification accuracy for Corn. ERBF 362 

kernel yielded the highest classification accuracy for Oats (99.14%) while GRBF and polynomial 363 

kernels performed relatively better as the yielded 100% classification accuracy for Hay-windrowned 364 

unlike ERBF and neural kernels (Table 4 and Fig 5).  365 

In Table 5 classification accuracy results have been summarised for University of Pavia. Apparently, 366 

polynomial kernel achieved the highest classification accuracy for Meadows (99.53%) while GRBF 367 

kernel achieved the highest classification accuracy for Asphalt (99.41%). Moreover, the polynomial 368 

kernel showed the highest classification accuracy for Gravel, Trees and Self-blocking bricks (Table 5 369 

and Figs. 6a-l). GRBF and polynomial kernels achieved the highest classification accuracy for Painted 370 

metal sheets (100%). While ERBF kernel showed a 100% classification accuracy for Bare soil, the 371 

polynomial kernel achieved the highest accuracy for Bitumen and Shadows compared to other three 372 

kernels (Table 5). The comparison between DSVM and SVM accuracy in Table 6 shows that 373 

polynomial kernel yielded the highest mean classification accuracy for both Indian Pines and University 374 

of Pavia, followed by GRBF kernel while the neural kernel yielded the lowest mean classification 375 

accuracy.  376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 
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 412 

    

     (a)  DSVM (ERBF)            (b)  DSVM (GRBF)               (c) DSVM (Neural)           (d)  DSVM (Polynomial)                                                         

 

    (e)  SVM (ERBF)                  (f)  SVM (GRBF)                  (g)  SVM (Neural)             (h)  SVM (Polynomial)                                                         

 

    

  

 

           (i)  DNN                            (j)  GMM                                  (k)  KNN                                (l)  KM                                                         

   

Figure 6: Classified images for University of Pavia. 

 

Class Name ERBF GRBF Neural Polynomial 

1 Corn-mintill 99.34 100 100 100 

2 Corn-notill 100 99.21 95.10 100 

3 Soybean-mintill 100 100 100 100 

4 Woods 98.69 100 98.74 100 

5 Grass-trees 98.73 100 98.95 99.43 

6 Soybean-clean 100 99.35 99.02 98.89 

7 Grass-pasture 95.42 99.26 97.93 100 

8 Soybean-notill 100 100 99.22 98.72 

9 Buiding-grass-trees-drives 100 100 100 100 

10 Stone-steel-towers 95.01 95.26 98.11 95.75 

11 Alfalfa 100 95.13 95.47 100 

12 Wheat 100 100 100 99.63 

13 Grass-pasture-mowed 100 100 97.91 100 

14 Corn 100 95.35 100 100 

15 Oats 99.14 98.78 98.77 95.45 

16 Hay-windrowned 95.55 100 95.36 100 

 

Table 4: Classification accuracy for Indian Pines for DSVM. 
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 418 

 419 
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 421 

 422 

 423 
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 425 

 426 

 427 

     A breakdown of the accuracies of the four kernels for DSVM and SVM are given in Table 6, while 428 

the mean accuracies for DSVM, SVM, DNN, GMM, KNN, and KM are highlighted in Table 7. Table 6 429 

expressed the comparison of the mean classification accuracies between the DSVM and SVM for 430 

Indian Pines and University of Pavia. For both DSVM and SVM the polynomial kernel yielded the 431 

highest accuracy while the neural kernel yielded the lowest for both the Indian Pines and University of 432 

Pavia. From the results of the four kernels, it was obvious that the DSVM outperformed the SVM; this 433 

is an indication that the infusion of DL technique significantly enhanced the hybrid DSVM. Table 7 434 

shows the comparison of the classification accuracies of the DSVM, SVM, DNN, GMM, KNN, and 435 

KM for Indian Pines and University of Pavia.  The DSVM yielded the highest classification accuracy 436 

followed by the DNN while KM yielded the least accuracy. We noticed that the KM accuracy is 437 

considerably low. Our guess is that this is because the KM is a conventional unsupervised classifier and 438 

as with several unsupervised classifiers, they usually perform poorly when applied to hyperspectral data 439 

due to the cumbersome nature of the hyperspectral data. The conventional supervised classifiers GMM 440 

Table 7: Comparison of the classification accuracies of DSVM, SVM, DNN, GMM, KNN, and KM. 

Type DSVM SVM DNN GMM KNN KM 

Indian Pines 98.86 76.03 94.45 76.82   76.87    21.65 

University of Pavia 98.17 73.52 93.79 78.35    79.80    18.18 

 

Type ERBF GRBF Neural Polynomial 

Indian Pines 98.87 (74.87) 98.90 (78.90) 98.41 (70.10) 99.24 (80.24) 

University of Pavia 98.16 (73.32) 98.47 (74.00) 97.27 (70.00) 98.79 (76.77)_ 

 

Table 6: Comparison of the classification accuracy between DSVM and SVM. 

Class Name ERBF GRBF Neural Polynomial 

1 Meadows 99.43 99.53 95.04 99.55 

2 Asphalt 99.24 99.41 99.28 99.36 

3 Gravel 95.11 99.10 98.49 99.43 

4 Trees 98.42 99.05 97.72 99.45 

5 Self-blocking bricks 95.28 95.04 95.09 95.64 

6 Painted metal sheets 98.89 100 98.58 100 

7 Bare soil 100 97.04 95.98 97.66 

8 Bitumen 98.03 98.00 97.22 98.92 

9 Shadows 99.06 99.07 98.01 99.11 

 

Table 5: Classification accuracy for University of Pavia for DSVM. 
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and KNN performed slightly better than the SVM, while DSVM performed slightly better than the 441 

DNN. Based on the overall classification accuracies of these algorithms (Table 7), it can be discerned 442 

that the two DL techniques stood out.  443 

 444 

4.0 Discussion and conclusion  445 

Imbalanced, multi-class learning problems have recently been addressed by Yuan, et al., (2018) who 446 

used a regularized ensemble framework of DL methods.  They showed that DL algorithms are capable 447 

of handling multi-class data sets because of the regularization parameter. Although several other 448 

sophisticated algorithms have been used to address similar problems, especially in image-based cancer 449 

detection and diagnosis (Hu et al., 2018), reduced computational cost and efficiency of ensemble-based 450 

approaches have been identified as additional key strength of ensemble DL based methods. Moreover, 451 

hybrid-based models have shown increasing potential applications in solving high-dimensional 452 

multivariate problems. For example, the coupling of a deep belief network (DBN) with a single class 453 

SVM was found useful since it addresses the complexity and scalability issues of the SVM, especially 454 

when training with large-scale datasets (Erfani et al., 2016). To leverage upon the unique potential of 455 

DL techniques, we integrated DL and SVM to formulate a hybrid DSVM model for the classification of 456 

hyperspectral data. Although the architecture of this model imitates the DNN, the optimized DSVM 457 

output was found by updating all the connecting SVM functions in the hidden layer. This study shows 458 

that the DSVM performed better than the DNN but significantly outperformed the SVM. For Indian 459 

Pines and University of Pavia images the DSVM’s ERBF, GRBF, neural, and polynomial kernels 460 

yielded classification accuracies close to 100%. Insignificant misclassifications were recorded in the 461 

classification of Hay-windrowned, Grass-trees, Soybean-mintill, Oats, and Stone-steel-towers. Slight 462 

misclassifications were also recorded in the classification of Meadows, Gravel, Self-blocking bricks, 463 

and Bare soil for University of Pavia data. However, the misclassification problem was mitigated by the 464 

diligent selection of the best spectral bands possible out of the numerous spectral bands. The overall 465 

result of this experiment indicated that the DSVM appear to be highly robust and significantly better 466 

than the traditional SVM in the classification of hyperspectral remote sensing images.  467 

 468 
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With the growing applications of remote sensing observations in environmental monitoring, research 469 

efforts that focus on improving remote sensing classification algorithms are required to boost feature 470 

identification, optimisation, and interpretation of remote sensing images. This has been the prime 471 

motivation of the use of advance machine learning (e.g., Deep Learning), multivariate methods, and 472 

fourth order cumulant statistics in land cover classification and identification of complex hydrological 473 

signals from satellite geodetic systems on a variety of spatial and temporal scales (Ndehedehe & 474 

Ferreira, 2020; Kussul et al., 2017). As a proof of concept to the efficacy of such techniques, the recent 475 

work by Xu et al (2020) has demonstrated the effectiveness of ensemble learning in the field of object 476 

detection and computer vision. Their study noted that ensemble learning has been widely used to 477 

improve the performance of single detectors in recent years.  Generally, the rapid advancement of these 478 

ensemble methods from traditional models such as Neural Networks, Random Forests amongst others 479 

to ensemble deep learning are strong indications of their underlying prospects in future applications in 480 

improving feature identification in HSI and multi-spectral images. Furthermore, the use of cumulant 481 

statistics in the decomposition of time-variable satellite gravity observations has proved to be robust in 482 

the identification of complex hydro-geodetic phenomena in regions where interactions between physical 483 

processes and climate fluctuations induce considerable large crustal displacements (Ndehedehe & 484 

Ferreira, 2020). Improved and advanced algorithms in the analysis of remote sensing observations, be it 485 

from optical or geodetic systems are therefore crucial to effective feature identification and 486 

interpretation of earth observation. 487 

In the last few years, DL algorithms have emerged as powerful state-of-the-art technique for the 488 

analysis and classification of remotely sensed observations at different scales.  The recent improved 489 

performance of the DBN in the classification of multi-temporal and HSI as opposed to other traditional 490 

methods (Li et al., 2019; Kussul et al., 2017) confirm the need to optimize the classification of 491 

hyperspectral images using DL techniques. Although Li et al., (2019) argued that the DBN performed 492 

better than traditional classification and other DL approaches, computational efficiency and accuracy 493 

are some challenges that have been identified with the use of DBN in HSI classification. However, our 494 

numerical results indicate that the DSVM outperformed the DNN. The high accuracy obtained with the 495 

DSVM validates its efficacy for hyperspectral remote sensing image classification. Notably, the GMM 496 
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and KNN, and the KM are two conventional supervised classifiers and unsupervised classifiers 497 

respectively that were experimented for the purpose of comparison.  The results in this study (Table 7) 498 

show that the DSVM substantially outperformed the litany of other classification algorithms assessed in 499 

this study.  The findings from our analysis also indicate that the GMM and KNN are slightly better than 500 

those of the SVM. In terms of robustness of all the algorithms used in the classification of hyperspectral 501 

remote sensing imageries, the overall results of this experiment indicate the DSVM is better as opposed 502 

to the DNN, SVM, and other renowned conventional classifiers. 503 

The emergence of DL methods has been widely received because of their efficiency and success in 504 

several disciplines. For example, past studies (e.g., Langkvist et al., 2014)   have argued that they have 505 

better representation and classification in several time-series problems as opposed to other methods. 506 

Recent review undertaken by Li et al., (2018) highlighted several issues with DL methods, including the 507 

tremendous success of DL in visual tracking. Among other observations, they noted that the use of the 508 

convolutional neural network model could significantly improve tracking performance.  509 

Given the inefficiency of one-class support vector machines in modelling the variation in large, high-510 

dimensional datasets, a hybrid model that combines DBN with a one-class SVM has significantly 511 

reduced training and testing time (Erfani et al., 2016).  512 

In terms of land cover classification based on hyperspectral data, traditional methods appear to be 513 

limited. This among other factors have been attributed to the high number of spectral bands. The limited 514 

availability of training data or small-size sample training set (Chi et al., 2008) creates the ‘curse of 515 

dimensionality’ problem in hyperspectral observations. So, the current state of HSI classification has 516 

been the integration of non-parametric methods to address the complexities associated with 517 

hyperspectral data using conventional classification strategies. This has been illustrated, for example, by 518 

Moughal (2013) who integrated Minimum Noise Fraction and SVM technique to significantly reduce 519 

classification complexity and improved classification accuracy of HSI. In a related study seeking to 520 

address the multiclass problem of HSI, a new method for hyperspectral data classification employed a 521 

band clustering strategy through a multiple SVM system to improve the classification accuracy of HSI 522 

as opposed to the standard SVM (Bigdeli et al., 2013). However, only recently has deep learning based 523 

methods emerge as new options in optimising HSI classification. But Pan et al., (2018) argue that 524 
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massive parameters and the complex network structure may lead to poor performance when only few 525 

training samples are used. To address this, they proposed a small-scale data-based method, multi-526 

grained network (MugNet). The performance of MugNet which was designed to make full use of the 527 

spectral and spatial correlations (Pan et al., 2018) has supported the notion that ensemble deep learning 528 

based method are excellent techniques in HSI classification. The robustness of our hybrid DSVM model 529 

for land cover classification is further demonstrated by analytical comparison with those of the SVM, 530 

DNN, GMM, KNN, and KM.  As traditional SVMs and other nonparametric algorithms are limited in 531 

high-dimensional data, ensemble-based approaches that incorporates DL are novel methods to address 532 

the curse of dimensionality problem in HSI classification. 533 

However, the application of DL methods in several disciplines is not without challenges. An important 534 

issue of this DL method in cancer detection was the size variation of target objects within the images. 535 

While the need to optimise the performance of deep learning-based cancer detection is an important 536 

direction for future research, a proposal to train the same CNN models using a broad range of image 537 

data on different scales and fused the outputs of multiple models to gain final result has been advocated 538 

in several studies summarised by Hu et al., (2018). Other improvements of DL in time series data 539 

analyses focus on improving redundant signals in multivariate input data. To this end, recommendations 540 

on developing algorithms for time-series modelling that learn even better features and are easier and 541 

faster to train are suggested as future research direction (Langkvist et al., 2014). 542 
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