A REVIEW OF THE PACIFIC ISLANDS SUBGENUS NOTODACUS PERKINS OF BACTROCERA MACQUART (DIPTERA: TEPHRITIDAE: DACINAE)

D.L. HANCOCK¹ and R.A.I. DREW²

¹8/3 McPherson Close, Edge Hill, Cairns, Qld 4870
²International Centre for the Management of Pest Fruit Flies, Griffith University, Qld 4111

Abstract
The Bactrocera Macquart subgenus Notodacus Perkins is reviewed and four species recognised, including one undescribed. Based on both morphological and molecular evidence, the subgenus is transferred from the Bactrocera group of subgenera to the Melanodacus group of subgenera. A key to species is included.

Introduction
Subgenus Notodacus Perkins contains a small group of Pacific Island species, one of economic importance, that belong in the widespread genus Bactrocera Macquart. Traditionally included in the Bactrocera group of subgenera, based on morphology of the male terminalia in its type species B. xanthodes (Broun) (e.g. Drew 1972, 1989), subsequent information from later described species, together with molecular evidence, indicate an actual placement in the Melanodacus group of subgenera.

Genus Bactrocera Macquart
Subgenus Notodacus Perkins

Notodacus Perkins, 1937: 56. Type species Dacus xanthodes Broun, 1905 [= Tephrites (Dacus) xanthodes Broun, 1904], by original designation.

Definition. Abdominal sternite V of male broad with a shallow to deep posterior emargination (Figs 1-2); posterior lobe of male surstylus short; pecten of cilia present on abdominal tergite III of male; postpronotal setae present, placed posterolaterally; supra-alar and prescutellar acrostichal setae present; one pair of scutellar setae; scutum with a long and narrow medial postsutural yellow vitta and lateral presutural and postsutural yellow vittae; scutellum large and bilobed; pair of large [non-shiny] spots (ceromata) on abdominal tergite V present; head, thorax and abdomen fulvous to red-brown and with a glossy, transparent appearance; aculeus apically acute.

Response to male lures. Methyl eugenol (2 spp) or none known (2 spp).

Included species. Bactrocera (N.) neoxanthodes Drew & Romig, B. (N.) paraxanthodes Drew & Hancock, B. (N.) xanthodes (Broun), plus an undescribed sp. (Drew et al. 1997).

Host plants. Recorded from various families, with one species polyphagous.

Comments. The posterolateral postpronotal seta, glossy, transparent appearance and large, bilobed scutellum appear to be synapomorphies for this subgenus. Other defining characters are largely plesiomorphic. The
placement of the postpronotal seta suggests it is not homologous with the centrally placed seta seen in \textit{B. (Heminotodacus) dissidens} Drew, or with the small, posterocentrally placed seta seen in \textit{B. (Zeugodacus) hatyaiensis} Drew & Romig, with the seta evidently derived independently in each of these three cases.

\textbf{Figs 1-2.} \textit{Bactrocera (Notodacus)} spp, male sternite V: (1) \textit{B. (N.) neoxanthodes}; (2) \textit{B. (N.) xanthodes}.

\textit{B. (Notodacus) neoxanthodes} Drew & Romig (Fig. 3)
\textit{Bactrocera (Notodacus) neoxanthodes} Drew & Romig, 2001: 142. Type locality Kwero, Loh I., Vanuatu.

\textbf{Fig. 3.} \textit{Bactrocera (Notodacus) neoxanthodes} female from Vanuatu. Photo by Steve K. Wilson © Pacific Community 2017.
Distribution. Vanuatu (Loh, Santo and Efaté islands).

Male lure. None known.

Host plants. *Barringtonia edulis* (Lecythidaceae) and *Passiflora suberosa* (Passifloraceae) (Drew and Romig 2001).

Comments. Male sternite V (Fig. 1) broad and weakly emarginate posteriorly. Adult illustrated in Fig. 3 and by Drew and Romig (2001) and Leblanc et al. (2012).

**B. (Notodacus) paraxanthodes** Drew & Hancock

*Bactrocera (Notodacus) paraxanthodes* Drew & Hancock, 1995: 10. Type locality Maré, New Caledonia [the handwritten locality ‘Maré’ was interpreted as ‘Mavé’ in the original description].


Host plants. *Schefflera gabriellae* and *Meryta* sp. (Araliaceae) (Leblanc et al. 2012); a record from *Tylophora biglandulosa* (Apocynaceae) is doubtful, this being an asclepiad and host of *Dacus (Neodacus) aneuviitatus* Drew.

Comments. Shape of male sternite V not discernible on available specimens due to curvature of the lateral abdominal margins. This species was illustrated by Drew and Hancock (1995).

**B. (Notodacus) xanthodes** (Broun) (Figs 4-5)

*Tephrites (Dacus) xanthodes* Broun, 1904: 306. Type localities Rarotonga, Cook Is; Suva, Fiji; and Tonga [ex fruit imported into New Zealand].

*Tephrites xanthodes* Broun, 1905a [February]: 3. Type localities Rarotonga, Cook Is; Suva, Fiji; and Tonga [ex fruit imported into New Zealand]. Preoccupied: Broun 1904.

*Dacus xanthodes* Broun, 1905b [June]: 327. Type localities Rarotonga, Cook Is; Suva, Fiji; and Tonga [ex fruit imported into New Zealand]. Preoccupied: Broun 1904.

*Chaetodacus xanthodes* (Broun): BeZZi 1928: 105.


*Dacus (Notodacus) xanthodes* (Broun): Hardy 1955: 434.


Distribution. American Samoa, Cook Islands (southern group), Fiji, French Polynesia (Austral group), Niue, Rotuma, Samoa, Tonga, Wallis and Futuna; eradicated from Nauru in 1999 (Leblanc et al. 2012). Records from Vanuatu are of *B. neoxanthodes* Drew & Romig (see above).

Male lure. Methyl eugenol.
Host plants. This species is highly polyphagous, being recorded from fruit of 34 plant species in 20 families, including many of economic importance (Leblanc et al. 2012). Breadfruit (Artocarpus altilis: Moraceae) is an important host on many islands (Tora Vueti et al. 1997). Records from Cucurbitaceae (Citrullus lanatus: watermelon) appear to refer only to damaged fruit (Leblanc et al. 2012).

Comments. This species was described three times from the same type series bred from larvae found in fruit imported into New Zealand from Rarotonga, Suva and Tonga (Broun 1904, 1905a, 1905b), with their chronological sequence established by Norrbom et al. (1999). However, no types were designated and no specimens attributable to the original series are known to exist (Drew 1989). Male sternite V (Fig. 2) broad and relatively deeply emarginate posteriorly. Adult illustrated in Figs 4-5 and by Drew (1974, 1989). For a full description see Drew (1974).

\textit{B. (Notodacus)} undescribed species 1

\textit{Bactrocera (Notodacus) paraxanthodes} Drew & Hancock, 1995: 10. \textit{Partim}: Western Samoa records only; misidentification.


\textbf{Distribution.} Samoa.

\textbf{Male lure.} None known.

\textit{Host plants.} \textit{Ficus} sp. (Moraceae) (Drew and Hancock 1995), plus \textit{Meryta} sp. (Araliaceae) and \textit{Mammea glauca} (Calophyllaceae) (Leblanc et al. 2012).

Comments. Examined specimens are teneral with curled abdomens, the shape of male sternite V thus not discernible. This species has not been illustrated but distinguishing characters were noted by Drew et al. (1997).

\textbf{Key to species of subgenus Notodacus}

* = presumed apomorphic characters.

1. Wing with costal band narrow and uniformly fuscous from end of vein R\textsubscript{2+3} to apex; scutum red-brown, contrasting with fulvous abdomen and with a narrow whitish to pale yellow medial vitta extending as a fulvous area to hind margin and fulvous anterior to suture; scutellum red-brown laterally, fulvous medially and with distinct whitish or yellow lateral margins over at least basal half*; male sternite V deeply emarginate posteriorly*; female oviscape extensively black posteriorly* [numerous South Pacific islands; Figs 4-5] ............... \textit{B. (N.) xanthodes} (Broun, 1904)

– Wing with costal band either broad and uniformly pale or narrow and pale except fuscous at apex; scutum orange-brown with the yellow medial vitta continuing anterior to suture; scutellum without distinct yellow margins but an indistinct yellow area sometimes present; male sternite V either not described or with a shallow emargination posteriorly; female oviscape entirely or almost entirely fulvous ............................................................ 2

2. Wing with costal band narrow and confluent with vein R\textsubscript{2+3}, dark fuscous at apex of cell r\textsubscript{4+5} but paler elsewhere*; scutellum fulvous centrally and broadly dark fulvous to pale fuscous laterally, sometimes with a small yellow basolateral area [Vanuatu; Fig. 3] ..................................................

................................................................................. \textit{B. (N.) neoxanthodes} Drew & Romig, 2001
– Wing with costal band broad and confluent with vein R<sub>4+5</sub>, entirely pale, not dark fuscous apically; scutellum not as above .......................... 3

3 Wing without a pale, transverse infuscation enclosing crossveins; scutellum fulvous with black lateral vittae reaching apical setae posteriorly but ending narrowly before base anteriorly* [New Caledonia] .......................... B. (N.) paraxanthodes Drew & Hancock, 1995

– Wing with a narrow, pale transverse infuscation enclosing both crossveins R-M and DM-Cu*; scutellum fulvous without black lateral vittae [Samoa] .......................... B. (N.) undescribed sp. (No. 1 of Drew et al. 1997)

**Discussion**

Subgenus *Notodacus* species are known only from islands of the South Pacific (Zone F of Hancock and Drew 2015). They have individual apomorphies (see Key) and do not appear to form related pairs or triplets. Rather, they appear to represent vicariant species derived from a single ancestral entity, with the most polyphagous species, *B. xanthodes*, subsequently dispersing (most likely by human introduction) throughout much of the South Pacific. The remaining three species appear to be endemic (and restricted) to single island groups (New Caledonia, Vanuatu and Samoa respectively), suggesting that *B. xanthodes* originated in Fiji.

The male sternite V (Figs 1-2) is broader than in the *Bactrocera* group of subgenera, resembling more that of the *Zeugodacus* and *Melanodacus* groups (*cf.* Drew 1972, figs 1-2); hence, despite the relatively deep emargination in the type species, *Notodacus* is referred here to the *Melanodacus* group of subgenera. This is supported by molecular studies (Krosch et al. 2012, Virgilio et al. 2015), which both placed *B. (Notodacus) xanthodes* in a clade with other *Melanodacus* group subgenera such as *Daculus* Speiser, *Gymnodacus* Munro and (Krosch et al. 2012) *Paratridacus* Shiraki. Leblanc et al. (2015) placed *B. (N.) xanthodes* as basal to both *Daculus* and the *Bactrocera* group.

Jiang et al. (2016) also showed that the *Bactrocera* and *Melanodacus* groups of subgenera formed separate monophyletic clades and followed Krosch et al. (2012) in placing *Tetradacus* Miyake as a separate lineage basal to both groups, all separated from the *Zeugodacus* group of subgenera (and other examined genera of Dacinae and Tephritinae) in possessing a TA (apomorphy) instead of TAA stop codon (plesiomorphy) for the COI gene.

The presence of presutural and postsutural lateral yellow vittae and a medial yellow vitta on the scutum, plus a single pair of scutellar setae, suggest a relationship with subgenus *Tetradacus* (*sensu* Hancock and Drew 2015), which has similarly short posterior surstylus lobes and a shallow emargination to sternite V in males. *Tetradacus*, however, differs in having a normally shaped scutellum and in lacking postpronotal, prescutellar acrostichal and, usually, supra-alar setae.
Notodacus also resembles the B. (H.) aglaiae (Hardy) group of subgenus Hemizeugodacus Hardy (sensu Hancock and Drew 2015) in possessing a medial yellow vitta on the scutum and retaining both supra-alar and prescutellar acrostichal setae, but the latter has two pairs of scutellar setae. Hemizeugodacus, however, is likely to be the most closely related subgenus, the lack of basal scutellar setae in Notodacus being possibly a consequence of its distinctly modified scutellum.

Acknowledgements

We thank Susan Wright (Queensland Museum, Brisbane) for images of the handwritten type labels of B. paraxanthodes and access to specimens. We also thank Steve Wilson (Queensland Museum, Brisbane) and the Secretariat of the Pacific Community, Nouméa (per Stuart Roberts) for provision of Figs 3-5 and permission to use them.

References


