Design, synthesis, and \textit{in vitro} and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-\(\beta\)-lactamase IMP-1

Omid Khalili Arjomandi, Waleed M. Hussein, Peter Vella, Yusralina Yusof, Hanna E. Sidjabat, Gerhard Schenk, Ross P. McGeary

PII: S0223-5234(16)30191-X
DOI: 10.1016/j.ejmech.2016.03.017
Reference: EJMECH 8442

To appear in: \textit{European Journal of Medicinal Chemistry}

Received Date: 30 November 2015
Revised Date: 4 March 2016
Accepted Date: 5 March 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Competitive inhibitor of IMP-1
$K_i = 86 \text{ nM}$
Design, synthesis, and \textit{in vitro} and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-\(\beta\)-lactamase IMP-1

Omid Khalili Arjomandia, Waleed M. Husseina,b, Peter Vellaa, Yusralina Yusofa, Hanna E. Sidjabatc, Gerhard Schenka and Ross P. McGearya,*

a The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Qld 4072, Australia

b Helwan University, Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Ein Helwan, Helwan, Egypt

c The University of Queensland, UQ Centre for Clinical Research, Building 71/918, Royal Brisbane & Women's Hospital Campus, Herston QLD 4029, Australia

*Corresponding author

Tel. + 61-7-3365-3955

E-mail: r.mcgeary@uq.edu.au
Abstract

There are currently no clinically available inhibitors of metallo-β-lactamases (MBLs). These enzymes confer resistance to bacteria against a broad range of commonly used β-lactam antibiotics, and are produced by an increasing number of bacterial pathogens. In this study, several thiol derivatives of L-amino acids were designed and synthesized, and their inhibitory effects against the metallo-β-lactamase IMP-1 (subclass B1) were investigated. The most potent compound, derived from L-tyrosine, exhibited competitive inhibition, with a K_i of 86 nanomolar. The ability of this compound to render MBL-expressing bacteria susceptible to imipenem was examined. Reductions in MIC values up to 5.2—fold were observed.
1. Introduction

The β-lactam antibiotics are the most widely prescribed drugs for the treatment of bacterial infections, but in recent years the emergence of pathogenic bacteria that can secrete β-lactamases (enzymes that deactivate these antibiotics by hydrolyzing their β-lactam ring) has led to great concern regarding the continuing ability of current drugs to adequately treat diseases caused by these bacteria [1]. β-Lactamases may be classified as either serine-β-lactamases (SBLs, Classes A, C and D) or metallo-β-lactamases (MBLs, Class B), according to their mechanisms of action. MBLs are further divided into three subclasses, B1, B2 and B3, depending on their amino acid sequences and metal occupancies [2], and we have recently tentatively identified a fourth MBL subclass, B4 [3, 4]. There can be one or two zinc(II) ions in their active sites [3, 5-10].

Since MBLs can deactivate most β-lactam antibiotics, including such widely used drug families as the carbapenems, cephalosporins and penams [11, 12], the development of inhibitors of MBLs is an essential strategy for maintaining the usefulness of existing β-lactam antibiotics. While clavulanic acid is a potent inhibitor of SBLs [13], being widely prescribed in combination with amoxicillin, there are currently no clinically useful inhibitors against MBLs. Accordingly, the development of new MBL inhibitors is urgent [14, 15].

Various classes of MBL inhibitors have been reported [16], including trifluoromethyl ketones and alcohols [17], dicarboxylic acids [18-23], thiols [24-30], sulfates [31], hydroxamates [32], tetrazoles [33] and sulfonamides [34]. The aim of this work was to develop lead inhibitors of the MBL enzyme IMP-1 (subclass B1) through docking studies, synthesis, kinetic enzyme assays and cell-based assays. IMP-1, which may be secreted by both *Pseudomonas aeruginosa* and *Klebsiella pneumoniae* [35-38], was selected as our target since these pathogens have been responsible for outbreaks of antibiotic-
resistant bacterial infections in clinical settings. In addition, this enzyme is well-characterized and its crystal structure has been reported [39].

The design of this project was based on the work of Liénard et al. [40]. That group reported that the N-(3-mercapto)propanoyl derivative of unnatural D-phenylalanine was a competitive inhibitor of IMP-1, with a K_i of 0.088 micromolar (Fig. 1). The work presented here focusses on the design, synthesis and testing of thiol derivatives of the three natural aromatic amino acids, L-phenylalanine, L-tyrosine and L-tryptophan.

![IMP-1 inhibitor](image)

Figure 1. IMP-1 inhibitor reported by Liénard et al. [40].

2. Chemistry

The synthetic routes to compounds 1a-c are shown in Scheme 1. Compounds 1a [41] and 1b [42] were synthesized by the reaction of thioacetic acid with bromoacetic acid and acrylic acid, respectively. Compound 1c [43] was prepared by the reaction of potassium thioacetate with 4-chlorobutanoic acid. In all cases isolated yields were around 60%.
Scheme 1. Reagents and conditions: (a) NaHCO₃, H₂O, r.t., overnight, 65%; (b) neat, 100 °C, 90 min, 62%; (c) DMF, r.t., 2 h, 59%.

Boc-protected L-tyrosine 3 was synthesized from L-tyrosine 2 by standard methods [44]. Benzylation of the phenolic group of 3 using benzyl bromide and sodium methoxide in methanol produced benzyl ether 4 in 64% yield (Scheme 2) [45]. Heating benzyl ether 4 in refluxing methanol containing thionyl chloride produced the methyl ester hydrochloride salt 5 in quantitative yield.

Scheme 2. Reagents and conditions: (a) Boc₂O, NaOH, THF/H₂O, r.t., overnight, 100%; (b) BnBr, NaOMe, MeOH, 40 °C, 3 h, 64%; (c) SOCl₂, MeOH, Δ, 3 h, 100%.

L-Amino acid methyl esters 6-8 were synthesized by refluxing the appropriate L-amino acids in methanol containing thionyl chloride. Compounds 9a-c, 10a-c, 11a-c and 12a-c were synthesized by condensing the L-amino acid methyl esters with thioester-acid intermediates 1a-c using HBTU/DIPEA.
as the coupling reagent (Scheme 3). Hydrolyzed compounds 13a-c, 14a-c, 15a-c and 16a-c were prepared by treatment of intermediates 9a-c, 10a-c, 11a-c and 12a-c with degassed sodium hydroxide solution to give the final thiol products. Thiols 13a-c, 14a-c, 15a-c and 16a-c are sensitive to aerial oxidation, readily forming disulfides, which were apparent as trace impurities in the mass spectra of all of these thiols, even after careful purification by flash column chromatography.

Scheme 3. Reagents and conditions: (a) 1a, 1b or 1c, HBTU, DIPEA, THF, r.t., overnight; (b) NaOH, H$_2$O/MeOH, r.t., 1 h.
3. Docking Studies

For computational modeling, the crystal coordinates of the IMP-1 enzyme (PDB code 1JJT) [19] were downloaded from the Protein Data Bank (PDB) and used in all subsequent docking studies. The IMP-1 MBL is functionally a monomeric protein but crystallizes as a dimer with 221 amino acids in each chain. Both chain A and chain B have identical amino acid residues and each has two zinc (II) ions in the active site. The topologies of the active sites of both chain A and chain B are identical and hence chain B was deleted from the crystal coordinates and only chain A was used for the docking studies. Since the enzyme kinetic assays (see Supplementary data) were performed at pH 7, the carboxylic acid functional groups of the docked inhibitors were deprotonated and anionic. As the thiol groups of the inhibitors were anticipated to coordinate to the zinc metal ions in the active site, these functional groups were also deprotonated for the docking studies. MolDock was used for all docking studies [46]. Calculated binding energies for all of the inhibitors (MolDock Scores) may be found in the Supplementary data.

Docking studies predicted that all of the inhibitors coordinated to both zinc ions in the active site of IMP-1 via their thiolate groups, with Zn—S distances of around 2.0—3.0 Ångstroms. Figure 2 shows the lowest energy docking result for the most potent inhibitor in the series, 13a (see Section 4). In this example, Zn—S distances are less than 2.0 Å. A hydrogen bond between the amide carbonyl oxygen atom of 13a and the side chain amide NH$_2$ group of Asn233 is present (3.2 Å). Distances between the central aromatic ring of 13a and the aromatic rings of Trp64 and His263 are approximately 4 Å, slightly longer than the sum of the van der Waals radii of these groups.
Figure 2: Interactions of docked ligand 13a at the active site of IMP-1 (PDB: 1JJT). Atom colors are as follows: blue–nitrogen, red–oxygen, grey–carbon and yellow–zinc atom (of IMP-1), and red–oxygen, blue–nitrogen, green–carbon, and yellow–sulfur (on inhibitor).

4. Enzyme Kinetics Studies

The inhibitory activities (IC$_{50}$ values) of the inhibitors against IMP-1 were first evaluated by a screening assay which measured the residual activity of the enzyme. In our previous work in the area of MBL inhibitors [28-30], we have employed the chromogenic cephalosporin CENTA [47] as substrate in our enzyme assays. However, thiol-containing inhibitors react with this compound, displacing the 5-nitro-2-
sulfidobenzoate chromophore [38]. Therefore, in this study benzylpenicillin was used as the substrate. Initial assay results showed that all of the thiol compounds exhibited more than 50% inhibition at 10 µM. Further kinetic analyses then allowed the determination of the competitive (K_{ic}) and uncompetitive (K_{iuc}) values of these compounds (Table 1). A representative inhibition curve of compound 13a is shown in the Supplementary data.

Table 1

Inhibitory activities of the target compounds 13a-c, 14a-c, 15a-c, 16a-c and 1a against IMP-1. Benzylpenicillin was used as the substrate.

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_{ic} (µM)a</th>
<th>K_{iuc} (µM)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>13a</td>
<td>0.086 ± 0.024</td>
<td>-</td>
</tr>
<tr>
<td>13b</td>
<td>9.39 ± 4.60</td>
<td>-</td>
</tr>
<tr>
<td>13c</td>
<td>5.85 ± 1.30</td>
<td>-</td>
</tr>
<tr>
<td>14a</td>
<td>0.47 ± 0.09</td>
<td>-</td>
</tr>
<tr>
<td>14b</td>
<td>5.02 ± 1.64</td>
<td>-</td>
</tr>
<tr>
<td>14c</td>
<td>8.62 ± 3.30</td>
<td>-</td>
</tr>
<tr>
<td>15a</td>
<td>0.25 ± 0.20</td>
<td>-</td>
</tr>
<tr>
<td>15b</td>
<td>1.45 ± 0.67</td>
<td>60.25 ± 20</td>
</tr>
<tr>
<td>15c</td>
<td>2.82 ± 1.98</td>
<td>-</td>
</tr>
</tbody>
</table>
16a 4.55 ± 1.96 -

16b 5.18 ± 1.55 -

16c 5.63 ± 4.50 -

1a 0.32 ± 4.50 2.64 ± 0.46

$^a K_{ic}$: Inhibition constant for competitive inhibition mode.

$^b K_{iuc}$: Inhibition constant for uncompetitive inhibition mode.

$^c -$: Insignificant (> 1 mM) contribution of this mode.

All of the compounds demonstrated K_{ic} values lower than 10 µM against IMP-1. It was observed that the shorter-chain thioacetic acid-derived inhibitors (13a, 14a and 15a) were more potent than their longer chain counterparts (Table 1). In most cases the inhibitory mode was exclusively competitive; the exception was compound 15b which showed a mixed mode of inhibition, although its K_{iuc} value (60 µM) was much larger than its K_{ic} value (1.45 µM). Compound 13a exhibited the most potent inhibitory activity with a K_{ic} value of 86 nM. Since several low-molecular weight thiols have been reported to exhibit moderate inhibitory activities against MBLs [24-26], we also assayed the thioacetate intermediates 1a-c. Interestingly, compound 1a was a mixed-mode inhibitor of IMP-1 with a K_{ic} value of 0.32 µM. Compounds 1b and 1c showed no inhibitory activity towards IMP-1 (data not shown).

5. Biological Evaluation
The effects of the most potent IMP-1 inhibitor, compound 13a, were examined on the three following MBL-producing bacterial strains: 1) *Escherichia coli* expressing IMP-1 (*i.e.* bla\textsubscript{IMP-1} expressed in BL21 cells); 2) a clinical isolate of *Enterobacter cloacae* expressing the very closely related MBL IMP-4 (95% homology) [48]; and 3) a clinical isolate of *E. cloacae* expressing both IMP-4 and TEM-1, a Class A serine-\(\beta\)-lactamase [2]. The imipenem MIC in combination with 13a was tested by incorporating 20 \(\mu\)L of 13a at a concentration of 50 mM into Mueller-Hinton (MH) agar. Bacterial suspensions at 0.5 McFarland were spread onto the agar plates supplemented with compound 13a. The imipenem E-test strip (bioMerieux) was then placed on the media. As a control the imipenem MICs of the three test strains were also determined on plain MH agar (*i.e.* in the absence of 13a).

Table 2 summarizes the results of these trials. Administration of 13a to the *E. cloacae* strain expressing both IMP-4 and TEM-1 resulted in no difference in the growth of the bacteria when imipenem was administered. For the *E. cloacae* expressing only IMP-4, a marked reduction in the imipenem MIC (3.9–fold) was noted (Fig. 3). For *E. coli* expressing only IMP-1, an even greater reduction in the imipenem MIC was observed (5.2–fold) (Fig. 4).

Table 2

Imipenem MIC values in the absence or presence of compound 13a

<table>
<thead>
<tr>
<th>Strains</th>
<th>(\beta)-Lactamases</th>
<th>Imipenem MICs ((\mu)g/mL)</th>
<th>Reduction in MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without inhibitor</td>
<td>With 13a</td>
</tr>
<tr>
<td>E. coli BL21</td>
<td>IMP-1</td>
<td>2</td>
<td>0.38</td>
</tr>
<tr>
<td>E. cloacae ECL1</td>
<td>IMP-4</td>
<td>1.5</td>
<td>0.38</td>
</tr>
</tbody>
</table>
The results suggest that 13a, as well as being a potent *in vitro* inhibitor of IMP-1, also significantly inhibits IMP-1 and IMP-4 in strains of *E. coli* and *E. cloacae* that express this MBL and its variant. The absence of an effect of 13a on the strain of *E. cloacae* that expresses the serine-β-lactamase TEM-1 is expected, as 13a would not be anticipated to inhibit this enzyme, and hence would have no effect on the ability of TEM-1 to degrade imipenem.

Figure 3. Imipenem-induced growth inhibition of *E. cloacae* ECL1 expressing IMP-4 in the absence of an MBL inhibitor (A, left) and the presence of compound 13a (B, right).
6. Conclusions

We describe a straightforward and efficient synthesis of novel thiol compounds based on naturally occurring aromatic amino acids as inhibitors against the metallo-β-lactamase IMP-1. All of these compounds demonstrated promising *in vitro* inhibitory activity against IMP-1. Among them, compound 13a is the most potent inhibitor, with a competitive *K_i* of 86 nanomolar. Importantly, this inhibitor also
significantly decreases the imipenem MIC for bacteria expressing IMP-1 or IMP-4. We expect that this compound can be used as a lead for further development of potent MBL inhibitors of clinical relevance.

7. Experimental

All chemicals were purchased from Sigma-Aldrich, Merck and Fluka chemical companies. All NMR experiments were recorded on Bruker AVANCE 500, 400 or 300 MHz spectrometers. Chemical shifts are reported in parts per million (ppm) on a δ scale and referenced to the residual solvent peak (\(^1\)H, 7.24 ppm, \(^{13}\)C, 77.0 ppm for CDCl\(_3\); \(^1\)H, 2.49 ppm, \(^{13}\)C, 39.5 ppm for DMSO-d\(_6\); \(^1\)H, 3.30 ppm, \(^{13}\)C, 49.5 ppm for CD\(_3\)OD). Coupling constants (\(J\)) are reported in Hertz. Multiplicities of the peaks are abbreviated as follows: s for singlet, bs for broad singlet, d for doublet, t for triplet, and q for quartet. Low- and high-resolution EI-MS were measured on a Finnigan MAT 900 XL-Trap mass spectrometer in positive and negative ionization mode. LR-ESI were recorded on a Bruker HCT 3D Ion Trap and HR-ESI were performed on a BrukerMicrOTof-Q with the DIONEX Ultimate 3000 LC in positive and negative electrospray ionization mode, with CH\(_3\)OH as solvent. For IR analyses samples were measured neat on a PerkinElmer Frontier FT-IR Spectrometer.

7.1. Enzyme expression

The IMP-1 enzyme, lacking the first 21 signal peptide amino acid residues, was expressed and purified using the protocol of Vella et al. [38, 49]. Details of the enzyme kinetic assays are presented in the Supplementary data.

7.2. General procedure 1: esterification of amino acids

Compounds 6-8 were synthesized using the following general procedure reported by Maiti and Banerjee [50]: a solution of amino acid (18.2 mmol) in MeOH (20 mL) was stirred at 0 °C. Thionyl chloride (1.6
mL, 22 mmol) was added dropwise over 10 minutes. The reaction mixture was then allowed to warm to room temperature before being heated under reflux for 3 hours. The solvent and volatiles were evaporated under reduced pressure and the product was triturated with ethyl acetate to give the methyl ester hydrochloride salt as a colorless solid (100%).

7.3. General procedure 2: amide coupling reactions

Compounds 9a-c, 10a-c, 11a-c and 12a-c were synthesized using the following general procedure: L-amino acid methyl ester hydrochlorides 5-8 (4.50 mmol), thioesters 1a-c (4.95 mmol), HBTU (1.88 g, 4.95 mmol), DIPEA (1.75 g, 2.35 mL, 13.5 mmol) in THF (40 mL) were stirred overnight. The THF was evaporated under reduced pressure then either DCM or ethyl acetate (40 mL) was added. The organic solution was washed with saturated sodium bicarbonate solution (40 mL), dried (Na₂SO₄), filtered and evaporated to give the crude product, which was purified by flash chromatography (30-100% EtOAc in petroleum ether).

7.4. General procedure 3: saponification

Compounds 13a-c, 14a-c, 15a-c and 16a-c were synthesized using the following general procedure: Compounds 9a-c, 10a-c, 11a-c and 12a-c (2.4 mmol) were dissolved in degassed methanol (10 mL), then degassed sodium hydroxide solution (1 M, 10 mL) was added and the solution was stirred under argon for one hour. The organic solvent was evaporated under reduced pressure, then degassed water (30 mL) was added and the water phase was washed with degassed ethyl acetate (40 mL). The pH was adjusted to 1 using concentrated HCl. The solution was extracted with ethyl acetate (40 mL) and washed with water (5×50 mL). The organic phase was dried (Na₂SO₄), filtered and evaporated under reduced pressure to give the pure products.
7.5. 2-(Acetylthio)acetic acid (1a)

A variation of the method of Benary was used [41]. Sodium bicarbonate (15.7 g, 187 mmol) was added slowly to a stirred solution of thioacetic acid (8.1 g, 7.5 mL, 106 mmol) and bromoacetic acid (11.2 g, 80 mmol) in water (100 mL). The mixture was stirred at room temperature overnight, then acidified to pH 1 with concentrated HCl and extracted with ethyl acetate (100 mL). The organic layer was separated and washed with water (3×100 mL), then dried (Na₂SO₄), filtered and evaporated to give 2-(acetylthio)acetic acid (1a) as a yellow oil (7.05 g, 65%). ¹H NMR (300 MHz, CDCl₃): δ 9.44 (1H, s, OH), 3.71 (2H, s, CH₂), 2.37 (3H, s, CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 193.9 (SCO), 174.5 (CO₂), 31.2 (CH₂), 30.0 (CH₃). The NMR spectra are in agreement with the literature [51].

7.6. 3-(Acetylthio)propanoic acid (1b)

A variation on the method of Li et al. was used [42]. Thioacetic acid (10.8 g, 10 mL, 142 mmol) was added with stirring to acrylic acid (7.9 g, 7.5 mL, 110 mmol). The mixture was stirred under argon for 30 min at room temperature and then at 100 °C for 90 min. Crystals formed on cooling to room temperature. Excess thioacetic acid was removed under reduced pressure then the residue was dissolved in ethyl acetate (100 mL). The solution was washed with water (3×100 mL) then dried (Na₂SO₄), filtered and evaporated to give 3-(acetylthio)propanoic acid (1b) as a yellow hygroscopic solid (10.1 g, 62%). ¹H NMR (400 MHz, CDCl₃): δ 10.01 (1H, bs, OH), 3.08 (2H, t, J=6.9 Hz, SCH₂), 2.67 (2H, t, J=6.9 Hz, CH₂CO), 2.31 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 195.5 (SCO), 177.7 (CO₂), 34.1 (CH₂S), 30.5 (CH₂CO), 23.8 (CH₃). The ¹H NMR spectrum is in agreement with the literature [52].
7.7. 4-(Acetylthio)butanoic acid (1c)

The method of Hogg et al. was adapted [43]. Potassium thioacetate (1.0 g, 8.8 mmol) was added portionwise to a solution of 4-chlorobutyric acid (1.0 g, 8.2 mmol) in dry DMF (5 mL) at room temperature. The reaction mixture was stirred under argon for 2 hours then the organic solvent was removed under reduced pressure. The residue was taken up in ethyl acetate (50 mL) and washed with HCl (5%, 2×50 mL) and water (3×50 mL). The organic phase was dried (Na$_2$SO$_4$), filtered and evaporated to give 4-(acetylthio)butanoic acid (1c) as a dark oil (0.78 g, 59%). 1H NMR (400 MHz, CDCl$_3$): δ 2.91 (2H, t, $J=7.1$ Hz, CH$_2$S), 2.42 (2H, t, $J=7.4$ Hz, CH$_2$CO), 2.32 (3H, s, CH$_3$), 1.91 (2H, quintet, $J=7.2$ Hz, CH$_2$CH$_2$CH$_2$). 13C NMR (100 MHz, CDCl$_3$): δ 195.6 (SCO), 178.3 (CO$_2$), 32.5 (CH$_2$CO), 30.6 (CH$_2$S), 28.2 (CH$_3$), 24.5 (CH$_2$CH$_2$CH$_2$). The NMR spectra are in agreement with the literature [43].

7.8. (S)-Methyl 2-amino-3-(4-(benzyloxy)phenyl)propanoate hydrochloride (5)

White solid, 5.85 g (100%). 1H NMR (300 MHz, DMSO-d$_6$): δ 8.63 (3H, bs, NH$_3$), 7.47-7.25 (5H, m, Ar-H), 7.14 (2H, d, $J=8.5$ Hz, Ar-H), 6.96 (2H, d, $J=8.5$ Hz, Ar-H), 5.07 (2H, s, PhCH$_2$O), 4.18 (1H, t, $J=6.9$ Hz, CHNH$_3$), 3.65 (3H, s, OCH$_3$), 3.09-3.00 (2H, m, CH$_2$CHN). 13C NMR (75 MHz, DMSO-d$_6$): δ 169.8 (CO$_2$), 158.0 (Ar-C), 137.5 (Ar-C), 131.0 (Ar-C), 128.8 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 127.0 (Ar-C), 115.3 (Ar-C), 69.6 (CH$_2$O), 53.7 (CHN), 53.0 (OCH$_3$), 35.4 (CH$_2$CHN). The NMR spectra are in agreement with the literature [53].

7.9. (S)-Methyl 2-(2-(acetylthio)acetamido)-3-(4-(benzyloxy)phenyl)propanoate (9a)
Yellow-brown oil, 1.63 g (90%). IR ν_{max}: 3676, 3269, 2988, 2901, 1733 (CO$_2$), 1700 (COS) 1656 (CON), 1511, 733 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 7.45-7.26 (5H, m, Ar-H), 6.98 (2H, d, $J=8.5$ Hz, Ar-H), 6.87 (2H, d, $J=8.5$ Hz, Ar-H), 6.58 (1H, d, $J=7.8$ Hz, NH), 5.02 (2H, s, PhCH$_2$O), 4.76 (1H, dt, $J=7.8$, 5.8 Hz, CHNH), 3.71 (3H, s, OCH$_3$), 3.55 (1H, d, $J=15.0$ Hz, CH$_A$H$_B$S), 3.49 (1H, d, $J=15.0$ Hz, CH$_A$H$_B$S), 3.08 (1H, dd, $J=14.1$, 5.7 Hz, CH$_A$H$_B$CHN), 3.00 (1H, dd, $J=14.1$, 6.7 Hz, CH$_A$CH$_B$CHN), 2.31 (3H, s, CH$_3$CO).

13C NMR (100 MHz, CDCl$_3$): δ 195.1 (COS), 171.5 (CO$_2$), 167.5 (CON), 157.8 (Ar-C), 136.9 (Ar-C), 130.2 (Ar-C), 128.5 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 127.4 (Ar-C), 114.8 (Ar-C), 69.9 (PhCH$_2$O), 53.5 (CHN), 52.3 (OCH$_3$), 36.7 (CH$_2$CHN), 32.7 (CH$_2$S), 30.1 (CH$_3$CO). HRMS calculated for C$_{21}$H$_{23}$NNaO$_5$S [M+Na]$^+$ 424.1189, found 424.1202.

7.10. (S)-3-(4-(Benzylxy)phenyl)-2-(2-mercaptoacetamido)propanoic acid (13a)

Colorless solid, 0.70 g (84%). IR ν_{max}: 3676, 3325, 2989, 2598 (SH), 2901, 1702 (CO$_2$), 1610 (CON), 1543, 1512, 1235, 736 cm$^{-1}$. 1H NMR (400 MHz, DMSO-d$_6$): δ 8.22 (1H, d, $J=8.2$ Hz, NH), 7.40-7.27 (5H, m, Ar-H), 7.09 (2H, d, $J=9.2$ Hz, Ar-H), 6.87 (2H, d, $J=9.2$ Hz, Ar-H), 5.01 (2H, s, PhCH$_2$O), 4.31 (1H, dt, $J=7.8$, 5.8 Hz, CHNH), 3.06 (2H, s, CH$_2$S), 2.93 (1H, dd, $J=13.7$, 5.0 Hz, CH$_A$H$_B$CHN), 2.77 (1H, dd, $J=13.7$, 6.8 Hz, CH$_A$H$_B$CHN). 13C NMR (100 MHz, DMSO-d$_6$): δ 172.7 (CO$_2$), 169.4 (CON), 157.0 (Ar-C), 137.2 (Ar-C), 130.2 (Ar-C), 129.4 (Ar-C), 128.4 (Ar-C), 127.7 (Ar-C), 127.6 (Ar-C), 114.5 (Ar-C), 69.1 (CH$_2$O), 53.8 (CHN), 35.9 (CH$_2$CHN), 26.8 (CH$_2$S). HRMS calculated for C$_{18}$H$_{18}$NO$_4$S [M-H]$^- 344.0962$, found 344.0949.

7.11. (S)-Methyl 2-(3-(acetylthio)propanamido)-3-(4-(benzylxy)phenyl)propanoate (9b)

Pale brown oil, 1.50 g (80%). IR ν_{max}: 3675, 3304, 2989, 2901, 1740 (CO$_2$), 1679 (COS), 1650 (CON), 1510, 1233, 1109, 737 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 7.42-7.25 (5H, m, Ar-H), 7.00 (2H, d, $J=8.5$ Hz, Ar-H), 6.87 (2H, d, $J=8.5$ Hz, Ar-H), 6.04 (1H, d, $J=7.7$ Hz, NH), 5.01 (2H, s, PhCH$_2$O), 4.31 (1H, dt, $J=7.8$, 5.8 Hz, CHNH), 3.06 (2H, s, CH$_2$S), 2.93 (1H, dd, $J=13.7$, 5.0 Hz, CH$_A$H$_B$CHN), 2.77 (1H, dd, $J=13.7$, 6.8 Hz, CH$_A$H$_B$CHN). 13C NMR (100 MHz, DMSO-d$_6$): δ 172.7 (CO$_2$), 169.4 (CON), 157.0 (Ar-C), 137.2 (Ar-C), 130.2 (Ar-C), 129.4 (Ar-C), 128.4 (Ar-C), 127.7 (Ar-C), 127.6 (Ar-C), 114.5 (Ar-C), 69.1 (CH$_2$O), 53.8 (CHN), 35.9 (CH$_2$CHN), 26.8 (CH$_2$S). HRMS calculated for C$_{18}$H$_{18}$NO$_4$S [M-H]$^- 344.0962$, found 344.0949.
4.81 (1H, dt, J=7.8, 5.8 Hz, CHNH), 3.69 (3H, s, CH3O), 3.13-2.96 (4H, m, SCH2 and CH2CHN), 2.49 (2H, dt, J=6.8, 3.0 Hz, CH2CO), 2.28 (3H, s, CH3CO). 13C NMR (100 MHz, CDCl3): δ 195.9 (COS), 172.0 (CON), 170.2 (CO2), 158.0 (Ar-C), 136.9 (Ar-C), 130.3 (Ar-C), 128.6 (Ar-C), 127.98 (Ar-C), 127.97 (Ar-C), 127.5 (Ar-C), 114.9 (Ar-C), 70.0 (CH2O), 53.3 (CHNH), 52.3 (OCH3), 37.0 (CH2CHN), 36.0 (CH2S), 30.6 (CH2CO), 24.7 (CH3CO). HRMS calculated for C22H25NNaO5S [M+Na]+ 438.1346, found 438.1352.

7.12. (S)-3-(4-(Benzyloxy)phenyl)-2-(3-mercaptopropanamido)propanoic acid (13b)

Pale yellow viscous oil, 0.71 g (82%). IR νmax: 3676, 3325, 2989, 2598 (SH), 2901, 1702 (CO2), 1610 (CON), 1543, 1511, 1232, 736 cm⁻¹. 1H NMR (400 MHz, CD3OD): δ 7.41-7.21 (5H, m, Ar-H), 7.13 (2H, d, J=9.2 Hz, Ar-H), 6.84 (2H, d, J=9.2 Hz, Ar-H), 4.97 (2H, s, PhCH2O), 4.51 (1H, dd, J=7.5, 5.5 Hz, CHNH), 3.14 (1H, dd, J=14.0, 5.0 Hz, CHA H B CHN), 2.88 (1H, dd, J=14.0, 7.9 Hz, CHA H B CHN), 2.62 (2H, dt, J=6.5, 2.6 Hz, CH2S), 2.40 (2H, dt, J=7.5, 2.5 Hz, CH2CO). 13C NMR (100 MHz, CD3OD): δ 173.3 (CO2), 172.8 (CON), 158.9 (Ar-C), 138.9 (Ar-C), 151.64 (Ar-C), 131.65 (Ar-C), 128.7 (Ar-C), 128.5 (Ar-C), 115.69 (Ar-C), 115.66 (Ar-C), 70.9 (CH2O), 57.1 (CHN), 38.3 (CH2CHN), 37.4 (CH2CO), 28.3 (CH2S). HRMS calculated for C19H20NO4S [M-H]- 358.1119, found 358.1110.

7.13. (S)-Methyl 2-(4-(acetylthio)butanamido)-3-(4-(benzyloxy)phenyl)propanoate (9c)

Brown viscous oil, 1.35 g (70%). IR νmax: 3676, 3292, 2989, 2901, 1749, 1736 (CO2), 1688 (COS), 1650 (CON), 1610, 1544, 1242, 697 cm⁻¹. 1H NMR (400 MHz, CDCl3): δ 7.43-7.26 (5H, m, Ar-H), 6.99 (2H, dt, J=8.5, 2.7 Hz, Ar-H), 6.88 (2H, dt, J=8.5, 2.4 Hz, Ar-H), 6.03 (1H, d, J=7.8 Hz, NH), 5.01 (2H, s, PhCH2O), 4.82 (1H, dt, J=7.8, 3.9 Hz, CHNH), 3.70 (3H, s, CH3O), 3.08 (1H, dd, J=14.0, 5.8 Hz, CHA H B CHN), 2.99 (1H, dd, J=14.0, 6.1 Hz, CHA H B CHN), 2.83 (2H, dt, J=7.1, 4.1 Hz, CH2S), 2.30 (3H, s, CH3CO), 2.22 (2H, dt, J=5.4, 1.7 Hz, CH2CO), 1.86 (2H, quintet, J=7.2 Hz, CH2CH2CH2). 13C
NMR (100 MHz, CDCl₃): δ 195.9 (COS), 172.2 (CON), 171.5 (CO₂), 157.9 (Ar-C), 136.9 (Ar-C), 130.2 (Ar-C), 128.5 (Ar-C), 128.1 (Ar-C), 127.9 (Ar-C), 127.4 (Ar-C), 114.9 (Ar-C), 70.0 (CH₂O), 53.1 (CHN), 52.3 (OCH₃), 37.0 (CH₂CHN), 34.8 (CH₂CO), 30.6 (CH₂S), 28.3 (CH₂CO), 25.4 (CH₂CH₂CH₂).

HRMS calculated for C₂₃H₂₇NNaO₅S [M+Na]+ 452.1502, found 452.1511.

7.14. (S)-3-(4-(Benzyloxy)phenyl)-2-(4-mercaptobutanamido)propanoic acid (13c)

Brown semisolid, 0.72 g (80%). IR νmax: 3675, 3325, 2989, 2598 (SH), 2925, 1722 (CO₂), 1611 (CON), 1510, 1226, 1176, 695 cm⁻¹. ¹H NMR (500 MHz, CD₃OD): δ 7.40 (2H, t, J=7.9 Hz, Ar-H), 7.35 (2H, t, J=7.1 Hz, Ar-H), 7.28 (1H, t, J=6.5 Hz, Ar-H), 7.12 (2H, d, J=7.8 Hz, Ar-H), 6.90 (2H, d, J=8.8 Hz, Ar-H), 5.04 (2H, s, PhCH₂O), 4.64 (1H, dd, J=7.2, 4.8 Hz, CHNH), 3.21 (1H, dd, J=14.0, 4.4 Hz, CH₃H₆CHN), 2.85 (1H, dd, J=14.0, 9.8 Hz, CH₃H₆CHN), 2.31 (2H, t, J=7.0 Hz, CH₂CO), 2.28-2.21 (2H, m, CH₂S), 1.79-1.70 (2H, m, CH₂CH₂CH₂). ¹³C NMR (125 MHz, CD₃OD): δ 175.2 (CO₂), 174.9 (CON), 159.2 (Ar-C), 138.8 (Ar-C), 131.3 (Ar-C), 130.8 (Ar-C), 129.5 (Ar-C), 128.8 (Ar-C), 128.6 (Ar-C), 115.9 (Ar-C), 71.0 (CH₂O), 55.0 (CHN), 37.6 (CH₂CHN), 35.2 (CH₂CO), 31.2 (CH₂S), 24.2 (CH₂CH₂CH₂). HRMS calculated for C₂₀H₂₁NO₄S [M-H] 372.1275, found 372.1269.

7.15. (S)-Methyl 2-amino-3-(1H-indol-3-yl)propanoate hydrochloride (6)

White solid, 4.63 g (100%). ³¹H NMR (400 MHz, CD₃OD): δ 7.53 (1H, d, J=7.9 Hz, Ar-H), 7.39 (1H, d, J=8.1 Hz, Ar-H), 7.22 (1H, s, Ar-H), 7.13 (1H, t, J=7.0 Hz, Ar-H), 7.06 (1H, t, J=7.0 Hz, Ar-H), 4.33 (1H, dd, J=7.2, 5.6 Hz, CH₃NH₃), 3.77 (3H, s, OCH₃), 3.45 (1H, dd, J=15.0, 5.6 Hz, CH₃H₆CHN), 3.37 (1H, dd, J=15.0, 7.2 Hz, CH₃H₆CHN). ¹³C NMR (100 MHz, CD₃OD): δ 171.3 (CO), 138.8 (Ar-C), 128.7 (Ar-C), 126.2 (Ar-C), 123.4 (Ar-C), 120.8 (Ar-C), 119.3 (Ar-C), 113.2 (Ar-C), 107.9 (Ar-C), 55.1 (CHNH₃), 54.1 (OCH₃), 28.0 (CH₂CHN). The ¹H NMR spectrum is in agreement with the literature [54].
7.16. (S)-Methyl 2-(2-(acetylthio)acetamido)-3-(1H-indol-3-yl)propanoate (10a)

Orange oil, 1.44 g (96%). IR ν_{max}: 3349, 2954, 1737 (CO$_2$), 1680 (COS), 1662 (CON), 1524, 1357, 1222, 847 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ 8.23 (1H, s, indole-NH), 7.52 (1H, d, $J=8.1$ Hz, Ar-H), 7.34 (1H, d, $J=8.5$ Hz, Ar-H), 7.18 (1H, t, $J=7.9$ Hz, Ar-H), 7.11 (1H, t, $J=7.2$ Hz, Ar-H), 7.00 (1H, d, $J=2.4$ Hz, Ar-H), 6.67 (1H, d, $J=8.8$ Hz, CHNH), 4.89 (1H, dt, $J=7.0$, 5.5 Hz, CHNH), 3.69 (3H, s, OCH$_3$), 3.54 (1H, d, $J=15.0$ Hz, CH$_A$CH$_B$S), 3.50 (1H, d, $J=15.0$ Hz, CH$_A$CH$_B$S), 3.29 (2H, m, CH$_2$CHN), 2.24 (3H, s, CH$_3$CO). 13C NMR (125 MHz, CDCl$_3$): δ 195.2 (COS), 172.1 (CO$_2$), 167.8 (CON), 136.2 (Ar-C), 127.7 (Ar-C), 123.0 (Ar-C), 122.3 (Ar-C), 119.8 (Ar-C), 118.7 (Ar-C), 111.4 (Ar-C), 109.9 (Ar-C), 53.3 (CHN), 52.6 (CH$_3$O), 33.0 (CH$_2$S), 30.2 (CH$_2$CHN), 27.5 (CH$_3$CO). HRMS calculated for C$_{16}$H$_{18}$N$_2$NaO$_4$S [M+Na]$^+$ 357.0879, found 357.0886.

7.17. (S)-3-(1H-Indol-3-yl)-2-(2-mercaptoacetamido)propanoic acid (14a)

Yellow waxy solid, 0.47 g (70%). IR ν_{max}: 3379, 2929, 2550 (SH), 1717 (CO$_2$), 1618 (CON), 1530, 1214, 742 cm$^{-1}$. 1H NMR (300 MHz, CD$_3$OD): δ 7.55 (1H, d, $J=8.1$ Hz, Ar-H), 7.31 (1H, d, $J=8.1$ Hz, Ar-H), 7.13-6.92 (3H, m, Ar-H), 4.72 (1H, dd, $J=7.0$, 5.1 Hz, CHNH), 3.36 (1H, dd, $J=14.7$, 5.2 Hz, CH$_A$H$_B$CHN), 3.22 (1H, dd, $J=14.7$, 7.2 Hz, CH$_A$H$_B$CHN), 3.12 (2H, s, CH$_2$S). 13C NMR (75 MHz, CD$_3$OD): δ 175.3 (CO$_2$), 173.3 (CON), 138.5 (Ar-C), 129.4 (Ar-C), 125.0 (Ar-C), 122.9 (Ar-C), 120.3 (Ar-C), 119.8 (Ar-C), 112.8 (Ar-C), 111.2 (Ar-C), 55.4 (CHNH), 28.8 (CH$_3$SH), 28.6 (CH$_2$CHN). HRMS calculated for C$_{13}$H$_{13}$N$_2$O$_3$S [M-H]$^-$ 277.0652, found 277.0658.

7.18. (S)-Methyl 2-(3-(acetylthio)propanamido)-3-(1H-indol-3-yl)propanoate (10b)
Brown viscous oil, 1.49 g (95%). IR ν_{max}: 3323, 2951, 1737 (CO$_2$), 1680 (COS), 1658 (CON), 1527, 1435, 1216, 745 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$): δ 8.12 (1H, s, indole-NH), 7.50 (1H, d, J=8.1 Hz, Ar-H), 7.34 (1H, d, J=9.6 Hz, Ar-H), 7.18 (1H, t, J=6.9 Hz, Ar-H), 7.09 (1H, t, J=7.8 Hz, Ar-H), 6.97 (1H, d, J=2.4 Hz, Ar-H), 6.00 (1H, d, J=7.8 Hz, NHCO), 4.94 (1H, dt, J=7.8, 5.4 Hz, CHNH), 3.68 (3H, s, OCH$_3$), 3.30 (2H, dd, J=5.1, 2.6 Hz, CH$_2$CHN), 3.09 (2H, t, J=6.9 Hz, CH$_2$S), 2.45 (2H, t, J=6.9 Hz, CH$_2$CO), 2.30 (3H, s, CH$_3$CO). 13C NMR (75 MHz, CDCl$_3$): δ 195.9 (COS), 172.2 (CON), 170.2 (CO$_2$), 136.1 (Ar-C), 127.7 (Ar-C), 122.7 (Ar-C), 122.3 (Ar-C), 119.8 (Ar-C), 118.5 (Ar-C), 111.3 (Ar-C), 110.0 (Ar-C), 53.0 (CHN), 52.4 (CH$_3$O), 36.1 (CH$_2$S), 30.5 (CH$_2$CO), 27.6 (OCH$_3$), 24.6 (CH$_2$CHN). HRMS calculated for C$_{17}$H$_{20}$N$_2$O$_4$S $[M+Na]^+$ 371.1052, found 371.1036.

7.19. (S)-3-(1H-Indol-3-yl)-2-(3-mercaptopropanamido)propanoic acid (14b)

Brown waxy solid, 0.47 g (67%). IR ν_{max}: 3379, 2940, 2550 (SH), 1718 (CO$_2$), 1625 (CON), 1525, 1210, 742 cm$^{-1}$. 1H NMR (300 MHz, DMSO-d$_6$): δ 10.82 (1H, s, indole-NH), 8.20 (1H, d, J=7.7 Hz, NHCO), 7.52 (1H, d, J=8.1 Hz, Ar-H), 7.31 (1H, d, J=7.7 Hz, Ar-H), 7.13 (1H, d, J=2.2 Hz, Ar-H), 7.05 (1H, dt, J=7.3 Hz, 1.3 Hz, Ar-H), 6.96 (1H, dt, J=7.3, 1.3 Hz, Ar-H), 4.47 (1H, dt, J=7.8, 5.4 Hz, CHNH), 3.16 (1H, dd, J=15.0, 5.0 Hz, CH$_3$H$_5$CHN), 2.99 (1H, dd, J=15.0, 9.0 Hz, CH$_3$H$_5$CHN), 2.69-2.52 (2H, m, CH$_2$S), 2.44-2.30 (2H, m, CH$_2$CO), 2.17 (1H, t, J=9.3 Hz, SH). 13C NMR (75 MHz, DMSO-d$_6$): δ 173.4 (CO$_2$), 170.2 (CON), 136.0 (Ar-C), 127.2 (Ar-C), 123.5 (Ar-C), 120.9 (Ar-C), 118.3 (Ar-C), 118.1 (Ar-C), 111.3 (Ar-C), 109.9 (Ar-C), 52.9 (CHN), 30.7 (CH$_2$CO), 27.1 (CH$_2$CHN), 19.8 (CH$_2$SH). HRMS calculated for C$_{14}$H$_{15}$N$_2$O$_4$S $[M-H]^{-}$ 291.0809, found 291.0812.

7.20. (S)-Methyl 2-(4-(acetylthio)butanamido)-3-(1H-indol-3-yl)propanoate (10c)

Brown viscous oil, 1.47 g (90%). IR ν_{max}: 3313, 2936, 1736 (CO$_2$), 1680 (COS), 1652 (CON), 1523, 1435, 1214, 744 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 8.20 (1H, bs, indole-NH), 7.50 (1H, d, J=7.8 Hz, 22
A-CEPTED MANUSCRIPT

Ar-H), 7.34 (1H, d, J=7.4 Hz, Ar-H), 7.17 (1H, t, J=7.1 Hz, Ar-H), 7.10 (1H, t, J=7.1 Hz, Ar-H), 6.97 (1H, d, J=2.3 Hz, Ar-H), 6.05 (1H, d, J=7.7 Hz, NHCO), 4.93 (1H, dt, J=7.8, 5.5 Hz, CHNH), 3.68 (3H, s, OCH₃), 3.36-3.23 (2H, dd, J=8.4, 5.6 Hz, CH₂CHN), 2.82 (2H, dt, J=2.8, 7.3 Hz, CH₂S), 2.29 (3H, s, CH₃CO), 2.17 (2H, t, J=7.6 Hz, CH₂CO), 1.85 (2H, quintet, J=7.2 Hz, CH₂CH₂CH₂). ¹³C NMR (100 MHz, CDCl₃): δ 195.9 (COS), 172.4 (CON), 171.5 (CO₂), 136.1 (Ar-C), 127.7 (Ar-C), 122.7 (Ar-C), 122.3 (Ar-C), 119.7 (Ar-C), 118.5 (Ar-C), 111.3 (Ar-C), 110.1 (Ar-C), 52.9 (CHN), 52.4 (CH₃O), 34.9 (CH₂CO), 30.6 (CH₂S), 28.3 (CH₃CO), 27.6 (CH₂CH₂), 25.3 (CH₂CH₂CH₂). HRMS calculated for C₁₈H₂₂N₂O₄S [M+Na]⁺ 385.1192, found 385.1203.

7.21. (S)-3-(1H-Indol-3-yl)-2-(4-mercaptobutanamido)propanoic acid (14c)

Brown viscous oil, 0.48 g (65%). IR νmax: 3287, 2971, 2901, 2550 (SH), 1735 (CO₂), 1634 (CON), 1527, 1230, 1066, 743 cm⁻¹. ¹H NMR (500 MHz, CD₃OD): δ 7.54 (1H, t, J=7.2 Hz, Ar-H), 7.31 (1H, t, J=7.2 Hz, Ar-H), 7.11-7.03 (2H, m, Ar-H), 6.99 (1H, q, J=7.0 Hz, Ar-H), 4.75 (1H, dt, J=7.8, 5.5 Hz, CHNH), 3.36 (1H, dd, J=15.0, 4.5 Hz, CH₃H₃CHN), 3.13 (1H, dd, J=15.0, 8.3 Hz, CH₃H₃CHN), 2.42 (2H, t, J=7.2 Hz, CH₂S), 2.27-2.21 (2H, m, CH₂CO), 1.81 (2H, quintet, J=7.2 Hz, CH₂CH₂CH₂). ¹³C NMR (125 MHz, CD₃OD): δ 175.3 (CO₂), 175.2 (CON), 138.0 (Ar-C), 128.8 (Ar-C), 124.4 (Ar-C), 122.4 (Ar-C), 119.8 (Ar-C), 119.2 (Ar-C), 112.3 (Ar-C), 111.1 (Ar-C), 54.6 (CHN), 38.3 (CH₂CH₂), 35.1 (CH₂CO), 28.5 (CH₂S), 26.1 (CH₂CH₂CH₂). HRMS calculated for C₁₅H₁₇N₂O₃S [M-H]⁻ 305.0965, found 305.0960.

7.22. (S)-Methyl 2-amino-3-phenylpropanoate hydrochloride (7)

White solid, 3.92 g (100%). ¹H NMR (300 MHz, DMSO-d₆): δ 8.83 (3H, bs, NH₃), 7.34-7.22 (5H, m, Ar-H), 4.20 (1H, dd, J=7.6, 5.5 Hz, CH₃NH), 3.63 (3H, s, OCH₃), 3.23 (1H, dd, J=13.4, 5.0 Hz, CH₃H₃CHN), 3.09 (1H, dd, J=13.4, 7.4 Hz, CH₃H₃CHN). ¹³C NMR (75 MHz, DMSO-d₆): δ 169.3
(CO), 134.8 (Ar-C), 129.4 (Ar-C), 128.6 (Ar-C), 127.2 (Ar-C), 53.3 (CHN), 52.5 (OCH$_3$), 35.8 (CH$_2$CHN). The NMR spectra are in agreement with the literature [55].

7.23. (S)-Methyl 2-(2-(acetylthio)acetamido)-3-phenylpropanoate (11a)

Orange oil, 1.30 g (98%). IR ν_{max}: 3317, 2953, 1740 (CO$_2$), 1680 (COS), 1662 (CON), 1526, 1215, 846 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$): δ 7.31-7.21 (3H, m, Ar-H), 7.10-7.06 (2H, m, Ar-H), 6.63 (1H, d, $J=7.3$ Hz, NH), 4.81 (1H, dd, $J=7.6$, 6.2 Hz, CHNH), 3.72 (3H, s, OCH$_3$), 3.57 (1H, d, $J=14.9$ Hz, CH$_A$H$_B$S), 3.49 (1H, d, $J=14.9$ Hz, CH$_A$H$_B$S), 3.15 (1H, dd, $J=5.6$, 14.0 Hz, CH$_A$H$_B$CHN), 3.06 (1H, dd, $J=6.2$, 14.0 Hz, CH$_A$H$_B$CHN), 2.34 (3H, s, CH$_3$CO). 13C NMR (75 MHz, CDCl$_3$): δ 195.2 (COS), 171.5 (CO$_2$), 167.6 (CON), 135.6 (Ar-C), 129.3 (Ar-C), 128.5 (Ar-C), 127.1 (Ar-C), 53.4 (CHN), 52.4 (OCH$_3$), 37.6 (CH$_2$CHN), 32.7 (CH$_2$S), 30.1 (CH$_3$CO). HRMS calculated for C$_{14}$H$_{17}$NNaO$_4$S [M+Na]$^+$ 318.0770, found 318.0769.

7.24. (S)-2-(2-Mercaptoacetamido)-3-phenylpropanoic acid (15a)

Brown oil, 0.45 g (79%). IR ν_{max}: 3318, 2947, 2565 (SH), 1719 (CO$_2$), 1632 (CON), 1526, 1208, 699 cm$^{-1}$. 1H NMR (400 MHz, DMSO-d$_6$): δ 8.36 (1H, d, $J=9.0$ Hz, NH), 7.27-7.17 (5H, m, Ar-H), 4.46-4.41 (1H, m, CHNH), 3.42 (2H, s, CH$_2$S), 3.05 (1H, dd, $J=14.1$, 5.3 Hz, CH$_A$H$_B$CHN), 2.87 (1H, dd, $J=14.1$, 8.4 Hz, CH$_A$H$_B$CHN). 13C NMR (100 MHz, DMSO-d$_6$): δ 172.7 (CO$_2$), 167.8 (CON), 137.3 (Ar-C), 129.2 (Ar-C), 128.2 (Ar-C), 126.5 (Ar-C), 53.8 (CHN), 41.8 (CH$_2$CHN), 36.8 (CH$_2$S). HRMS calculated for C$_{11}$H$_{12}$NO$_3$S [M-H]$^- 238.0543$, found 238.0543.

7.25. (S)-Methyl 2-(3-(acetylthio)propanamido)-3-phenylpropanoate (11b)

Tan solid, 1.34 g (96%). IR ν_{max}: 3292, 2953, 1728 (CO$_2$), 1696 (COS), 1642 (CON), 1545, 1131, 696 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$): δ 7.32-7.23 (3H, m, Ar-H), 7.12-7.08 (2H, m, Ar-H), 6.02 (1H, d,
$J=7.0$ Hz, NH), 4.89 (1H, dt, $J=7.8$, 5.8 Hz, CHNH), 3.73 (3H, s, OCH$_3$), 3.20-3.05 (4H, m, CH$_2$-CHN and CH$_2$S), 2.51-2.46 (2H, m, COCH$_2$), 2.32 (3H, s, CH$_3$CO). 13C NMR (75 MHz, CDCl$_3$): δ 195.9 (COS), 171.9 (CONH), 170.2 (CO$_2$), 135.7 (Ar-C), 129.2 (Ar-C), 128.6 (Ar-C), 127.1 (Ar-C), 53.1 (CHN), 52.3 (OCH$_3$), 37.8 (CH$_2$-CHN), 36.0 (CH$_2$S), 30.5 (COCH$_2$), 24.7 (CH$_3$CO). HRMS calculated for C$_{15}$H$_{19}$NNaO$_4$S $[M+Na]^+$ 332.0937, found 332.0919. The NMR spectra are in agreement with those reported for the enantiomer [40].

7.26. (S)-2-(3-Mercaptopropanamido)-3-phenylpropanoic acid (15b)

Brown oil, 0.43 g (70%). IR ν_{max}: 3318, 2973, 2565 (SH), 1712 (CO$_2$), 1656 (CON), 1089, 1047, 879 cm$^{-1}$. 1H NMR (400 MHz, CD$_2$OD): δ 7.27-7.18 (5H, m, Ar-H), 4.68 (1H, dd, $J=9.1$, 5.1, CHNH), 3.20 (1H, dd, $J=14.1$, 4.8 Hz, CH$_A$H$_B$CHN), 2.93 (1H, dd, $J=14.1$, 9.3 Hz, CH$_A$H$_B$CHN), 2.81-2.76 (2H, m, CH$_2$S), 2.55-2.51 (2H, m, CH$_2$CO). 13C NMR (100 MHz, CD$_2$OD): δ 175.2 (CO$_2$), 174.1 (CON), 138.9 (Ar-C), 130.8 (Ar-C), 130.0 (Ar-C), 128.3 (Ar-C), 55.5 (CHN), 38.9 (CH$_2$CHN), 36.7 (CH$_2$CO), 35.4 (CH$_2$S). HRMS calculated for C$_{24}$H$_{28}$N$_2$NaO$_6$S$_2$ [2M+Na]$^+$ 527.1281, found 527.1275. The 1H NMR spectrum is in agreement with that reported for the enantiomer [40].

7.27. (S)-Methyl 2-(4-(acetylthio)butanamido)-3-phenylpropanoate (11c)

Brown oil, 1.31 g (90%). IR ν_{max}: 3333, 2954, 1737 (CO$_2$), 1680 (COS), 1658 (CON), 1531, 1221, 847 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ 7.28-7.22 (3H, m, Ar-H), 7.07 (2H, d, $J=7.0$ Hz, Ar-H), 6.01 (1H, d, $J=7.7$ Hz, NH), 4.87 (1H, dd, $J=9.7$, 5.0 Hz, CHNH), 3.71 (3H, s, OCH$_3$), 3.15 (1H, dd, $J=14.0$, 5.5 Hz, CH$_A$H$_B$CHN), 3.05 (1H, dd, $J=14.0$, 6.5 Hz, CH$_A$H$_B$CHN), 2.87-2.80 (2H, m, CH$_2$S), 2.30 (3H, s, CH$_3$CO), 2.21 (2H, dt, $J=7.3$, 2.5 Hz, CH$_2$CO), 1.85 (2H, quintet, $J=7.2$ Hz, CH$_2$CH$_2$CH$_2$). 13C NMR (125 MHz, CDCl$_3$): δ 195.9 (COS), 172.1 (CON), 171.4 (CO$_2$), 135.9 (Ar-C), 129.2 (Ar-C), 128.6 (Ar-C), 127.1 (Ar-C), 53.0 (CHN), 52.3 (OCH$_3$), 37.9 (CH$_2$CHN), 34.8 (CH$_2$CO), 30.6 (CH$_2$S), 28.3
(CH$_3$CO), 25.4 (CH$_2$CH$_2$CH$_2$). HRMS calculated for C$_{16}$H$_{21}$NNaO$_4$S [M+Na]$^+$ 346.1083, found 346.1080.

7.28. (S)-2-(4-mercaptobutanamido)-3-phenylpropanoic acid (15c)
Brown viscous oil, 0.42 g (65%). IR ν_{max}: 3318, 2941, 2565 (SH), 1718 (CO$_2$), 1633 (CON), 1531, 1219, 699 cm$^{-1}$. 1H NMR (500 MHz, CD$_3$OD): δ 7.27-7.17 (5H, m, Ar-H), 4.68 (1H, dd, J=9.7, 5.0 Hz, CHNH), 3.22 (1H, dd, J=14.0, 4.7 Hz, CH$_A$H$_B$CHN), 2.91 (1H, dd, J=14.0, 10.0 Hz, CH$_A$H$_B$CHN), 2.48 (2H, t, J=7.3 Hz, CH$_2$CO), 2.24 (2H, dt, J=4.7, 7.3 Hz, CH$_2$S), 1.84 (2H, quintet, J=7.0 Hz, CH$_2$CH$_2$CH$_2$). 13C NMR (125 MHz, CD$_3$OD): δ 175.1 (CO$_2$), 174.8 (CON), 138.5 (Ar-C), 130.2 (Ar-C), 129.5 (Ar-C), 127.8 (Ar-C), 54.9 (CHNH), 38.38 (CH$_2$CHN), 38.36 (CH$_2$SH), 35.1 (CH$_2$CO), 26.2 (CH$_2$CH$_2$CH$_2$). HRMS calculated for C$_{13}$H$_{17}$NNaO$_3$S [M+Na]$^+$ 290.0821, found 290.0827.

7.29. (S)-Methyl 2-amino-3-(4-hydroxyphenyl)propanoate hydrochloride (8)
White solid, 4.21 g (100%). 1H NMR (300 MHz, DMSO-d$_6$): δ 9.47 (1H, bs, OH), 8.63 (3H, bs, NH$_3$), 7.00 (2H, d, J=8.5 Hz, Ar-H), 6.71 (2H, d, J=8.5 Hz, Ar-H), 4.13 (1H, t, J=5.8 Hz, CHNH$_3$), 3.65 (3H, s, OCH$_3$), 3.07 (1H, dd, J=15.0, 5.6 Hz, CH$_A$H$_B$CHN), 2.97 (1H, dd, J=15.0, 7.2 Hz, CH$_A$H$_B$CHN). 13C NMR (75 MHz, DMSO-d$_6$): δ 169.4 (CO$_2$), 156.7 (Ar-C), 130.3 (Ar-C), 124.3 (Ar-C), 115.4 (Ar-C), 53.4 (CHN), 52.5 (CH$_3$O), 35.0 (CH$_2$CHN). The NMR spectra are in agreement with the literature [56].

7.30. (S)-Methyl 2-(2-(acetylthio)acetamido)-3-(4-hydroxyphenyl)propanoate (12a)
Pale yellow oil, 1.35 g (95%). IR ν_{max}: 3675, 3304, 2989, 2901, 1740 (CO$_2$), 1698 (COS), 1655 (CON), 1510, 1233, 1109, 737 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$): δ 6.91 (2H, d, J=8.8 Hz, Ar-H), 6.70 (2H, d, J=8.4 Hz, Ar-H), 6.66 (1H, d, J=8.9 Hz, NH), 4.82-4.70 (1H, dt, J=7.8, 5.5 Hz, CHNH), 3.71 (3H, s, OCH$_3$), 3.55 (1H, d, J=15.0 Hz, CH$_A$H$_B$S), 3.49 (1H, d, J=15.0 Hz, CH$_A$H$_B$S), 3.06 (1H, dd, J=14.1, 5.7
Hz, CH$_{2}$A$_{B}$CHN), 2.93 (1H, dd, J=14.1, 6.7 Hz, CH$_{2}$A$_{B}$CHN), 2.33 (3H, s, CH$_{3}$CO). 13C NMR (75 MHz, CDCl$_3$): δ 195.4 (COS), 171.7 (CO$_2$), 168.0 (CON), 155.2 (Ar-C), 130.3 (Ar-C), 127.0 (Ar-C), 115.5 (Ar-C), 53.6 (CHN), 52.5 (OCH$_3$), 36.9 (CH$_2$CHN), 32.7 (CH$_2$S), 30.2 (CH$_3$CO). HRMS calculated for C$_{14}$H$_{17}$NNaO$_5$S [M+Na]$^+$ 334.0720, found 334.0728.

7.31. (S)-3-(4-Hydroxyphenyl)-2-(2-mercaptoacetamido)propanoic acid (16a)

Pale yellow viscous oil, 0.40 g (65%). IR ν_{max}: 3314, 2972, 2550 (SH), 1721 (CO$_2$), 1653 (CON), 1513, 1186 cm$^{-1}$. 1H NMR (400 MHz, CD$_3$OD): δ 7.03 (2H, d, J=8.4 Hz, Ar-H), 6.69 (2H, d, J=8.4 Hz, Ar-H), 4.59 (1H, dd, J=8.1, 5.2 Hz, CHNH), 3.13 (2H, s, CH$_2$S), 3.10 (1H, dd, J=14.1, 5.2 Hz, CH$_{2}$A$_{B}$CHN), 2.91 (1H, dd, J=14.1, 8.3 Hz, CH$_{2}$A$_{B}$CHN). 13C NMR (100 MHz, CD$_3$OD): δ 174.5 (CO$_2$), 172.9 (CON), 157.4 (Ar-C), 131.4 (Ar-C), 128.7 (Ar-C), 116.2 (Ar-C), 55.4 (CHN), 37.5 (CH$_2$CHN), 28.0 (CH$_2$S). HRMS calculated for C$_{11}$H$_{12}$NO$_4$S [M-H]$^-$ 254.0493, found 254.0492.

7.32. (S)-Methyl 2-(3-(acetylthio)propanamido)-3-(4-hydroxyphenyl)propanoate (12b)

Brown viscous oil, 1.35 g (92%). IR ν_{max}: 3675, 3317, 2974, 1736 (CO$_2$), 1680 (COS), 1652 (CON), 1514, 1221, 844 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ 6.91 (2H, d, J=8.5 Hz, Ar-H), 6.70 (2H, d, J=8.6 Hz, Ar-H), 6.22 (1H, d, J=8.0 Hz, NH), 4.83 (1H, dt, J=7.7, 6.1 Hz, CHNH), 3.71 (3H, s, OCH$_3$), 3.07-3.02 (3H, m, CH$_2$S and CH$_2$A$_{B}$CHN), 2.95 (1H, dd, J=14.2, 6.1 Hz, CH$_{2}$A$_{B}$CHN), 2.51-2.42 (2H, m, CH$_2$CO), 2.29 (3H, s, CH$_3$CO). 13C NMR (125 MHz, CDCl$_3$): δ 196.4 (COS), 172.1 (CON), 170.8 (CO$_2$), 155.4 (Ar-C), 130.3 (Ar-C), 126.9 (Ar-C), 115.5 (Ar-C), 53.3 (CHN), 52.4 (OCH$_3$), 37.0 (CH$_2$CHN), 36.0 (CH$_2$S), 30.5 (CH$_2$CO), 24.7 (CH$_3$CO). HRMS calculated for C$_{15}$H$_{19}$NNaO$_5$S [M+Na]$^+$ 348.0876, found 348.0873.
7.33. (S)-3-(4-Hydroxyphenyl)-2-(3-mercaptopropanamido)propanoic acid (16b)

Pale yellow viscous oil, 0.41 g (63%). IR ν_max: 3314, 2973, 2550 (SH), 1722 (CO_2), 1654 (CON), 1514, 1190 cm^{-1}. 1H NMR (300 MHz, DMSO-d_6): δ 9.17 (1H, s, OH), 8.16 (1H, d, J=9.5 Hz, NH), 7.00 (2H, d, J=8.0 Hz, Ar-H), 6.63 (2H, J=8.3 Hz, Ar-H), 4.40-4.26 (1H, m, CHNH), 2.91 (1H, dd, J=13.8, 5.2 Hz, CH_{A}H_{B}CHN), 2.72 (1H, dd, J=13.8, 9.7 Hz, CH_{A}H_{B}CHN), 2.56 (2H, t, J=7.5 Hz, CH_{2}S), 2.37 (2H, t, J=7.5 Hz, CH_{2}CO), 2.14 (1H, t, J=8.0 Hz, SH). 13C NMR (75 MHz, DMSO-d_6): δ 172.0 (CO_2), 170.2 (CON), 155.9 (Ar-C), 130.0 (Ar-C), 127.6 (Ar-C), 114.9 (Ar-C), 53.7 (CHN), 38.1 (CH_{2}CHN), 36.0 (CH_{2}CO), 21.0 (CH_{2}S). (HRMS calculated for C_{12}H_{14}NO_{4}S [M-H]^- 268.0649, found 268.0644.

7.34. (S)-Methyl 2-(4-(acetylthio)butanamido)-3-(4-hydroxyphenyl)propanoate (12c)

Brown viscous oil, 1.37 g (90%). IR ν_max: 3676, 3332, 2972, 1737 (CO_2), 1680 (COS), 1653 (CON), 1514, 1223, 841 cm^{-1}. 1H NMR (500 MHz, CDCl_3): δ 6.93 (2H, d, J=8.4 Hz, Ar-H), 6.71 (2H, d, J=8.4 Hz, Ar-H), 6.12 (1H, d, J=8.1 Hz, NH), 4.84 (1H, dt, J=7.5, 5.5 Hz, CHNH), 3.71 (3H, s, OCH_3), 3.07 (1H, dd, J=13.0, 5.7 Hz, CH_{A}H_{B}CHN), 2.95 (1H, dd, J=14.0, 6.7 Hz, CH_{A}H_{B}CHN), 2.86-2.76 (2H, m, CH_{2}S), 2.31 (3H, s, CH_{3}CO), 2.24-2.19 (2H, m, CH_{2}CO), 1.84 (2H, quintet, J=7.2 Hz, CH_{2}CH_{2}CH_{2}). 13C NMR (125 MHz, CDCl_3): δ 196.3 (COS), 172.3 (CON), 171.9 (CO_2), 155.3 (Ar-C), 130.3 (Ar-C), 127.3 (Ar-C), 115.5 (Ar-C), 53.2 (CHN), 52.4 (OCH_3), 37.1 (CH_{2}CHN), 34.8 (CH_{2}CO), 30.6 (CH_{2}S), 28.2 (CH_{3}CO), 25.4 (CH_{2}CH_{2}CH_{2}). HRMS calculated for C_{16}H_{21}NNaO_{5}S [M+Na]^+ 362.1033, found 362.1042.

7.35. (S)-3-(4-Hydroxyphenyl)-2-(4-mercaptopbutanamido)propanoic acid (16c)
Brown viscous oil, 0.41 g, 60%. IR ν_{max}: 3314, 2973, 2550 (SH), 1700 (CO$_2$), 1614 (CON), 1379, 1045 cm$^{-1}$. 1H NMR (500 MHz, CD$_3$OD): δ 7.03 (2H, d, $J=8.5$ Hz, Ar-H), 6.69 (2H, d, $J=8.5$ Hz, Ar-H), 4.64-4.58 (1H, m, CHNH), 3.11 (1H, dd, $J=14.0$, 4.9 Hz, CH$_A$H$_B$CHN), 2.82 (1H, dd, $J=14.0$, 9.6 Hz, CH$_A$H$_B$CHN), 2.51 (2H, t, $J=6.9$ Hz, CH$_2$CO), 2.30-2.22 (2H, m, CH$_3$S), 1.87 (2H, quintet, $J=7.2$ Hz, CH$_2$CH$_3$CH$_2$). 13C NMR (125 MHz, CD$_3$OD): δ 175.2 (CO$_2$), 175.0 (CON), 157.3 (Ar-C), 131.2 (Ar-C), 129.1 (Ar-C), 116.2 (Ar-C), 55.2 (CHN), 37.6 (CH$_2$CHN), 35.2 (CH$_2$CO), 31.2 (CH$_3$S), 26.2 (CH$_2$CH$_2$CH$_2$). HRMS calculated for C$_{13}$H$_{16}$NO$_4$S [M-H] 282.0806, found 282.0795.

Acknowledgments

We are grateful to Dr Tri Le for NMR support and Mr Graham MacFarlane for all the low and high resolution mass spectra. We thank Jed Burns, Daniel Tan and Siti Hajar Mohd Pahmi for helpful discussions and Daniel Feder for instruction regarding the docking software. O.K.A. gratefully acknowledges the receipt of a PhD scholarship from The University of Queensland. The authors would like to acknowledge the National Health and Medical Research Council (NHMRC) of Australia for funding (Project Grant 631433). G.S. also thanks the Australian Research Council for the award of a Future Fellowship (FT120100694)

Appendix A. Supplementary data

Details of kinetic assays; MolDock scores for binding of inhibitors to the IMP-1 enzyme; NMR spectra of synthesized compounds.
8. References

List of Captions

Figure 1. IMP-1 inhibitor reported by Liénard et al. [40].

Figure 2: Interactions of docked ligand 13a at the active site of IMP-1 (PDB: 1JJT). Atom colors are as follows: blue–nitrogen, red–oxygen, grey–carbon and yellow–zinc atom (of IMP-1), and red–oxygen, blue–nitrogen, green–carbon, and yellow–sulfur (on inhibitor).

Figure 3. Imipenem-induced growth inhibition of *E. cloacae* ECL1 expressing IMP-4 in the absence of an MBL inhibitor (A, left) and the presence of compound 13a (B, right).

Figure 4. Imipenem-induced growth inhibition of *E. coli* BL21 expressing IMP-1 in the absence of an MBL inhibitor (A, left) and the presence of compound 13a (B, right).

Scheme 1. Reagents and conditions: (a) NaHCO$_3$, H$_2$O, r.t., overnight, 65%; (b) neat, 100 °C, 90 min, 62%; (c) DMF, r.t., 2 h, 59%.

Scheme 2. Reagents and conditions: (a) Boc$_2$O, NaOH, THF/H$_2$O, r.t., overnight, 100%; (b) BnBr, NaOMe, MeOH, 40 °C, 3 h, 64%; (c) SOCl$_2$, MeOH, Δ, 3 h, 100%.

Scheme 3. Reagents and conditions: (a) 1a, 1b or 1c, HBTU, DIPEA, THF, r.t., overnight; (b) NaOH, H$_2$O/MeOH, r.t., 1 h.
Table 1

Inhibitory activities of the target compounds 13a-c, 14a-c, 15a-c, 16a-c and 1a against IMP-1. Benzylpenicillin was used as the substrate.

Table 2

Imipenem MIC values in the absence or presence of compound 13a
Re: Ms. Ref. No.: EJMECH-D-15-02298 – Revised Manuscript Submission

“Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-\(\beta\)-lactamase IMP-1” by Arjomandi and co-workers.

Highlights:

- Inhibitors of metallo-\(\beta\)-lactamase were synthesized from aromatic amino acids.
- These compounds were assayed in vitro against IMP-1.
- A decrease in the resistance of MBL-producing bacteria towards imipenem was shown.
- Docking studies were performed on these molecules.