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Abstract. Over the last decade, processing of biomedical signals using machine 

learning algorithms has gained widespread attention. Amongst these, one of the 

most important signals is electroencephalography (EEG) signal that is used to 

monitor the brain activities. Brain-computer-interface (BCI) has also become a 

hot topic of research where EEG signals are usually acquired using non-

invasive sensors. In this work, we propose a scheme based on common spatial 

spectral pattern (CSSP) and optimization of temporal filters for improved motor 

imagery (MI) EEG signal recognition. CSSP is proposed as it improves the spa-

tial resolution, while the temporal filter is optimized for each subject as the fre-

quency band which contains most significant information varies amongst dif-

ferent subjects. The proposed scheme is evaluated using two publicly available 

datasets: BCI competition III dataset IVa and BCI competition IV dataset 1. 

The proposed scheme obtained promising results and outperformed other state-

of-the-art methods. The findings of this work will be beneficial for developing 

improved BCI systems.    

Keywords: Brain-Computer-Interface (BCI), Motor Imagery (MI), EEG Signal 

Recognition. 

1 Introduction 

Machine learning has gained widespread attention in this modern era due to techno-

logical advancements over the last few decades. These advancements in technology 

have provided means to high computational power and speed. As a result, machine 

learning has been widely applied in various applications, one of which is pattern 

recognition. Manually recognizing patterns in different types of complex signals is 
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time consuming and a difficult task. Machine learning techniques help us to tackle 

these problems.  

Brain-computer-interface (BCI) has recently gained increased attention with appli-

cations in gaming [1], stroke rehabilitation [2-6], emotion recognition [7-12], sleep 

stage classification [13-16], seizure detection/diagnosing epilepsy [17-23] and other 

applications [2, 24-27]. The use of non-invasive sensors are preferred over invasive 

sensors due to the fact that it does not require any surgery, is low cost, portable and 

simple to use. In a BCI system, usually non-invasive sensors are used to capture the 

brain activities. The patterns of the brain activities acquired are then recognized using 

machine learning and pattern recognition techniques. A BCI system involves three 

basic steps: signal acquisition, feature extraction and signal classification/recognition 

as shown in Fig. 1. Once the signal is recognized, it is then appropriately translated to 

control signals for communication with external devices. It is very much desirable 

that a BCI system has the ability to correctly recognize the signals as accurately as 

possible. Therefore, obtaining high recognition rate or classification accuracy for a 

BCI application is driving more and more research to be carried out with various 

methods being proposed. 

 

Fig. 1. Conceptual overview of a BCI system 

The EEG signals for the same MI task varies from one subject to another due to 

different skull size, skin thickness, age and due to the fact that the way subjects think 

about the same task differs amongst different subjects. Although subject independent 

BCI systems would be highly desirable, due to the factors mentioned above, subject 

specific BCI systems have been usually proposed. Furthermore, these factors also 

affect the frequency range in which the signals are significantly discriminative for 

each of the subjects. Manually finding or tuning the filter band parameters is a diffi-

cult and time consuming exercise. Therefore, to tackle these problems, many re-

searchers have proposed various methods for autonomously finding the filter bands. 
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This would provide signals that are as discriminative as possible between different 

tasks thereby boosting the ability to correctly recognize different categories of MI 

tasks. Filter bank common spatial pattern (FBCSP) [28], discriminative FBCSP 

(DFBCSP) [29], and binary particle swarm optimization (BPSO) for frequency band 

selection [30] are some of the methods proposed to tackle this problem. In the FBCSP 

approach [28], the raw EEG signal is filtered using multiple zero-phase Chebyshev 

Type II Infinite Impulse Response (IIR) filter banks in the range of 4-40 Hz, each 

having a bandwidth of 4 Hz. There was no overlap in the frequencies of the different 

filter banks. CSP spatial filters were computed using the filtered signal for each of the 

filter banks. The CSP features obtained from each filter bank were then concatenated 

and several methods of feature selection were used to select the significant features. A 

number of classifiers were also evaluated and promising results were obtained. To 

further improve the FBCSP approach, DFBCSP was proposed. In DFBCSP [29], the 

raw EEG signal is filtered using multiple filters in the range of 6-40 Hz. The filter 

banks have a bandwidth of 4 Hz with an overlap of 2 Hz. Instead of extracting fea-

tures from the filtered signals of all the filter banks the authors have proposed using 

fisher’s ratio of the single channels band power calculated using channel C3 or C4 to 

select four filter banks that will contain most discriminative information about the MI 

tasks. Using these four selected bands, CSP features are obtained from each band to 

train a support vector machine (SVM) classifier. The DFBCSP method outperformed 

the FBCSP method.  Wei and Wei [30] proposed using BPSO for selecting the best 

frequency sub-bands from ten frequency sub-bands in the range of 8-30Hz each hav-

ing bandwidth of 4 Hz with an overlap of 2 Hz. Due to computational complexity, the 

authors performed evaluation using selected 24 and 14 channels. As such the results 

were not compared with FBCSP or DFBCSP approaches. However, they showed 

promising improvements in comparison to the conventional CSP approach. Other 

approaches have also been proposed which looked at other aspects such as ways of 

extracting more significant features [31-41], feature selection [42-44] and classifica-

tion [45-48] approaches. 

The FBCSP and DFBCSP approaches use multiple frequency bands and these re-

sults in an increase in computational complexity of the system. The BPSO approach 

for selecting the frequency bands or sub-bands mostly selected only a single sub-

band. However, it requires high computational power in the training phase as the 

number of channels is increased. To tackle this problem, we proposed a scheme to 

find a single frequency band that will contain the most discriminative information 

between the MI tasks [49]. Genetic algorithm (GA) was employed for this purpose. In 

this work, we extend our previous work [49] by proposing the use of common spatial 

spectral pattern (CSSP) instead of CSP to further improve the scheme. This is a sim-

ple yet an effective approach (mostly ignored by researchers in this field) that im-

proves the spatial resolution of the signal resulting in improved performance. We 

achieved promising results using the proposed scheme.  

The remainder of this paper is organized as follows: in section 2 we present our 

proposed scheme in detail. Section 3 presents the description of the datasets used 

together with the results. Discussion of the results and future works are presented in 

section 4 while conclusions are presented in the last section. 
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2 Methodology 

BCI has become a hot topic of research. One of the major challenges faced by re-

searchers is the low signal-to-noise ratio (SNR) of the EEG signals acquired using 

non-invasive sensors. The SNR is improved to some extent by using non-invasive 

sensors. However, since non-invasive sensors require surgery, they are not preferred 

for the majority of BCI applications. As such, more and more approaches are pro-

posed by researchers with the aim to improve the classification accuracy of a BCI 

system. A major solution to the low SNR is to filter out the unwanted signal. Finding 

the frequency range which contains the most important information about the MI 

tasks is quite challenging. While the use of multiple sub-bands have been a key to the 

improved performance, it also increased the computational complexity. Keeping this 

in mind, we propose a scheme based on CSSP that autonomously finds a single fre-

quency band which provides maximum information to distinguish between different 

MI tasks. This results in an increased recognition ability of our proposed scheme and 

is the major contribution of this work. Our proposed scheme is presented in detail in 

the following sub-sections.   

  

2.1 The Proposed Scheme 

The overall framework of our proposed scheme is shown in Fig. 2. In our proposed 

scheme, the filter parameters of a bandpass filter are optimized using optimization 

algorithm. Once the parameters are determined, the training data is filtered using the 

filter parameters. CSSP spatial filters are determined using the filtered data and the 

filtered data is transformed using the learned spatial filters. The variance based fea-

tures are then extracted, which are used to train a support vector machine (SVM) clas-

sifier. The test data also undergo the same procedure, except that the learned parame-

ters are used for bandpass filtering, spatial filtering and classification is done using 

the trained classifier. 

 

Fig. 2. Overall framework of the proposed scheme 
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2.2 Common Spatial Spectral Pattern (CSSP) 

CSSP is a simple method that was proposed to increase the spatial resolution of the 

signal, which results in the signal containing more information that helps in the 

recognition of the MI EEG signals with higher accuracies. The only difference be-

tween CSP and CSSP is the training and test samples. In CSSP a temporal delayed 

signal is inserted to the raw signal, which in turn doubles the dimension of the signal. 

All other processes are the same for CSP and CSSP approaches. The spatial filters 

     are learned from the training data, and the training and test data are transformed 

to a new time series using (1). The variance based features are then extracted from the 

spatially filtered data. 

          X (1) 

2.3 Optimization of Filter Parameters 

Filtering the signal using appropriate temporal filter to obtain as much important in-

formation as possible is a vital step in a BCI system. Here, we employ the method 

proposed in our previous work [49]. The three main parameters of a Butterworth 

bandpass filter (filter order, lower cutoff frequency and upper cutoff frequency) are 

optimized. Any optimization algorithm can be used for this purpose. However, we 

used genetic algorithm (GA) as used in [49]. 10-fold cross validation method has been 

used to evaluate the performance of the filter parameters during the optimization 

phase.   

3 Results and Discussion 

In order to validate our work, we have evaluated the proposed scheme on two publicly 

available datasets, BCI Competition III Dataset IVa and BCI Competition IV Dataset 

1 referred to as dataset 1 and dataset 2, respectively from here onwards. These da-

tasets have been widely used in this field. Dataset 1 contains 2 classes of MI EEG 

signals recorded from 5 subjects. We have utilized the down sampled signal at 100 Hz 

as used in other works. Dataset 2 contains 2 classes of MI EEG signals sampled at 

1000 Hz, however, the down sampled signal at 100 Hz is used. It contains signals 

recorded from 7 subjects. A detailed description of the datasets can be obtained at 

http://www.bbci.de/competition/.  

We have utilized 10×10-fold cross validation approach to evaluate our proposed 

scheme. The 10×10-fold cross validation results are also reported for all other com-

peting methods in order to make a fair comparison between the methods. The average 

misclassification rates and their kappa coefficient values for different methods are 

shown in Table 1 and Table 2 for dataset 1 and dataset 2, respectively. For the con-

ventional CSP approach, we have used a 7-30 Hz frequency band. Parameters such as 

the number of spatial filters and the number of bands used are adopted from the re-

spective works as initially proposed by the respective authors. It can be seen from 

Table 1 and Table 2 that our proposed scheme outperformed all other competing 

methods achieving the lowest misclassification rate of 9.95% and 18.72%, and also 
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achieved highest average kappa coefficient values of 0.801 and 0.624 for dataset 1 

and dataset 2, respectively. Subjects al and aw of dataset 1 and subjects b, e and f of 

dataset 2 obtained the lowest misclassification rates using the proposed scheme. 

Compared to the conventional CSP approach and the GA based filter optimization 

approach using CSP (GA-CSP) [49], the proposed scheme achieved reduction in the 

misclassification rate by 3.52% and 0.80% for dataset 1 and, 5.52% and 1.52% for  

dataset 2, respectively. Our method also outperformed the scheme proposed in [42], 

which utilized sparse Bayesian learning to obtain the sparse feature vectors (SBLFB).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

Table 1. The average misclassification rates and their kappa coefficient values (given in brack-

ets) for different methods evaluated using dataset 1 

Subject CSP CSSP FBCSP DFBCSP SBLFB  GA-CSP Proposed 

aa 
21.00 

(0.613) 

17.00 

(0.659) 

19.93 

(0.601) 

9.21 

(0.816) 

16.79 

(0.664) 

16.96 

(0.661) 

14.77 

(0.705) 

al 
3.86 

(0.927) 

3.07 

(0.940) 

1.50 

(0.970) 

1.21 

(0.976) 

1.36 

(0.973) 

1.79 

(0.964) 

1.07 

(0.979) 

av 
28.29 

(0.426) 

28.86 

(0.423) 

30.79 

(0.384) 

33.57 

(0.329) 

28.07 

(0.439) 

24.82 

(0.504) 

26.67 

(0.467) 

aw 
10.36 

(0.800) 

8.43 

(0.837) 

8.14 

(0.837) 

4.71 

(0.890) 

5.57 

(0.889) 

5.36 

(0.943) 

3.21 

(0.936) 

ay 
3.86 

(0.903) 

4.29 

(0.926) 

5.93 

(0.881) 

7.64 

(0.847) 

11.00 

(0.780) 

4.82 

(0.904) 

4.05 

(0.919) 

Average 
13.47 

(0.734) 

12.16 

(0.757) 

13.26 

(0.735) 

11.27 

(0.771) 

12.56 

(0.749) 

10.75 

(0.795) 

9.95 

(0.801) 

Table 2. The average misclassification rates and their kappa coefficient values (given in brack-

ets) for different methods evaluated using dataset 2 

Subject CSP CSSP FBCSP DFBCSP SBLFB GA-CSP Proposed 

a 
13.20 

(0.736) 

13.65 

(0.727) 

19.10 

(0.618) 

16.80 

(0.664) 

19.10 

(0.618) 

12.67 

(0.747) 

13.30 

(0.723) 

b 
42.80 

(0.144) 

42.70 

(0.146) 

44.70 

(0.106) 

42.90 

(0.142) 

41.50 

(0.170) 

43.67 

(0.127) 

41.17 

(0.177) 

c 
43.70 

(0.126) 

39.95 

(0.201) 

35.70 

(0.286) 

35.20 

(0.290) 

33.20 

(0.336) 

33.00 

(0.340) 

34.20 

(0.316) 

d 
22.40 

(0.552) 

14.60 

(0.708) 

22.20 

(0.556) 

23.50 

(0.530) 

11.50 

(0.770) 

20.50 

(0.590) 

12.70 

(0.746) 

e 
18.00 

(0.640) 

18.05 

(0.639) 

14.00 

(0.720) 

18.30 

(0.634) 

11.60 

(0.768) 

10.50 

(0.790) 

8.30 

(0.834) 

f 
22.50 

(0.550) 

18.55 

(0.629) 

19.60 

(0.608) 

14.30 

(0.714) 

21.20 

(0.576) 

14.02 

(0.720) 

14.00 

(0.720) 

g 
7.10 

(0.858) 

6.35 

(0.873) 

6.90 

(0.862) 

9.00 

(0.820) 

5.90 

(0.882) 

7.33 

(0.853) 

7.40 

(0.852) 

Average 
24.24 

(0.515) 

21.98 

(0.560) 

23.17 

(0.537) 

22.86 

(0.542) 

20.57 

(0.589) 

20.24 

(0.595) 

18.72 

(0.624) 
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As mentioned earlier, using CSSP instead of CSP improves the spatial resolution 

of the signal and thus the signal contains more important information. This results in a 

reduction in the misclassification rate. Fig. 3 shows the distribution of the best 2 fea-

tures for one of the trial runs of subject d (of dataset 2) for CSP, GA-CSP and the 

proposed scheme. It is clearly evident from Fig. 3 that the features learned by the 

proposed scheme contains more information about the different MI tasks and is due to 

the increased spatial resolution. Thus, the proposed method takes advantage of the 

spatial resolution and filter optimization for achieving improved performance. 

 

Fig. 3. Distribution of the best 2 features for one of the trial runs of subject d (of dataset 2). On 

the left is the distribution of training data and on the right is the distribution of the test data. 

It should also be noted that the proposed scheme did not achieve the lowest mis-

classification rate for all subjects. However, in such cases the misclassification rate of 

the subjects using the proposed scheme was within 1.85% of the lowest misclassifica-

tion rate for that particular subject except for subject aa of dataset 1. Subject aa of 

dataset 1 achieved lowest misclassification rate of 9.21% using DFBCSP approach, 
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while the proposed scheme achieved the second lowest misclassification rate of 

14.77%, a difference of 5.56%. This is because the important information about the 

different MI tasks for this subject was around two different frequency bands and 

DFBCSP was successfully able to select those frequency bands. On the other hand, 

the proposed scheme only finds a single wide band. This is evident from [33], where 

it is shown that the wide band was not selected. This also paves way for future works 

to test the proposed scheme for tuning multiple filters. With multiple filters we can 

also employ dimensionality reduction techniques [50-54], feature selection  [55, 56] 

and clustering methods [57, 58], and classifiers [41, 59, 60].  Furthermore, in this 

work we have utilized a single sample point delay in the CSSP approach. In future, 

we will consider multiple sample point delays and develop methods to select the best 

number of sample point delays for each subject in a quest to try and further improve 

the performance of the proposed scheme. 

4 Conclusions 

In this paper we have proposed a scheme that utilizes CSSP and filter optimization 

using GA. The proposed scheme achieved the lowest misclassification rate and high-

est kappa coefficient values outperforming all other competing methods. Another 

advantage of the scheme is that any optimization algorithm can be used for optimizing 

the filter parameters. It is recommended that future works be carried out to test and 

evaluate the effects of parameter optimization of multiple filter bands. Also, future 

works may consider optimizing the number of sample point delays for each of the 

subject that would give optimal results. The proposed scheme would prove vital for 

developing improved BCI systems.  
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