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Spillover of a pathogen from a wildlife reservoir into a human or livestock host

requires the pathogen to overcome a hierarchical series of barriers. Inter-

ventions aimed at one or more of these barriers may be able to prevent the

occurrence of spillover. Here, we demonstrate how interventions that target

the ecological context in which spillover occurs (i.e. ecological interventions)

can complement conventional approaches like vaccination, treatment, disinfec-

tion and chemical control. Accelerating spillover owing to environmental

change requires effective, affordable, durable and scalable solutions that fully

harness the complex processes involved in cross-species pathogen spillover.

This article is part of the theme issue ‘Dynamic and integrative

approaches to understanding pathogen spillover’.
1. Introduction
Pathogen spillover, or the transmission of infections among species, can occur

from animals to humans (zoonoses), from humans to animals (reverse zoonoses),

or even from abiotic environmental reservoirs into vertebrates (sapronoses).

Environmental change—including deforestation, habitat fragmentation or cli-

mate change—can create new opportunities for pathogens that were previously

circulating only in wildlife or environmental reservoirs to spill over into people

or livestock hosts [1]. The ecological drivers of pathogen spillover have become

a focus of attention after a series of high-profile spillover events, including

avian influenza, Ebola and Hendra viruses. Spillover to humans can be

common for some disease agents, as in the case of Lyme disease, where every

human case is a spillover event from a wildlife reservoir; or rare, as with HIV,

which emerged after a handful of spillover events of simian immunodeficiency

virus mutated into HIV [2]. While it would be ideal to prevent spillover, especially

in cases like Ebola virus and HIV, where onward transmission leads to many

human cases, data on the best way to mitigate risk at specific points along the

spillover process are lacking.

Here, we focus on ecological interventions: actions that target the ecological

context in which the spillover process occurs. We distinguish between ecological

interventions and conventional interventions. We make this distinction as a
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practical way to focus our attention on novel (ecological) inter-

ventions and distinguish them from more conventional

approaches in the medical and veterinary literature that have

been well-treated previously, although we acknowledge that

the designation of ‘ecological’ versus ‘conventional’ can be

context-specific and not mutually exclusive. We define con-

ventional interventions as medical and veterinary

approaches, like disinfection, vaccination and treatment, that

have been used widely by public health communities and

focus primarily on the medical or chemical management of

risk in human or domestic animals, or their immediate

environments, without regard to more complex ecological

interactions. While acknowledging successful conventional

interventions, here, we focus on systems-based approaches

that target spillover by harnessing a better understanding of

a system’s ecology. For example, although culling the reservoir

and mass vaccinating the spillover hosts indeed change the

ecology of pathogen transmission, here we expand to a diverse

set of additional interventions that target the natural inter-

actions or ecosystem services that occur upstream or

downstream in the spillover process. If we can better under-

stand the disease ecology, including the interactions among

disease-carrying organisms, or between organisms and their

complex environments contributing to spillover, we may be

able to devise novel, actionable solutions to manage or

reduce spillover (for example, augmentation of natural ene-

mies, habitat modification or restoration of ecosystem

services such as water purification provided by wetlands,

etc.; table 1). Drawing on real-world examples of well-studied

spillover systems, we outline some important collective

insights and general concepts about successfully using

ecological interventions to manage spillover.
2. Ecological interventions targeting different
spillover barriers

The ecological processes governing spillover can be described

as a series of barriers that a pathogen must overcome to

eventually traverse from the vertebrate reservoir to the final

spillover host at a particular place and moment in time [22].

While our understanding of disease ecology is improving,

options to manage or control spillover in wildlife hosts

remain limited. Conventional solutions like culling, vacci-

nation and chemical control (e.g. drugs, insecticides and

disinfectants) can have adverse consequences such as environ-

mental damage, the evolution of resistance or non-target

effects, and are often logistically challenging to implement.

In general, we can prevent or limit spillover by reducing or

preventing the flow of pathogens across one or more of the

potential barriers (e.g. managing population size or prevalence

in reservoir hosts, pathogen persistence in the environment,

or vector abundance, or by changing reservoir distribution or

contact between reservoir and spillover hosts to prevent the

pathogens and hosts from aligning in space and time). An eco-

logical intervention may also target pathogen flow in several

layers and systems, not just one (figure 1).

A major difference between many ecological and conven-

tional interventions is in how these actions alter the pathogen

transmission process. Many conventional management actions

directly—and often temporarily—change the numbers of

susceptible, infectious and recovered individuals. This is true,

for instance, of vaccination (which reduces the number of
susceptible individuals), culling (which temporarily reduces

reservoir host density) and test-and-slaughter (which tempor-

arily reduces diseased individuals but also reduces herd

immunity). However, without sustained management effort,

the effects of these actions can wane. This was observed in

human measles, for instance, whereby measles risk increased

following vaccination disruption after the 2014 Ebola epidemic

in Sierra Leone, Liberia and Guinea [23]; we would expect the

same pattern to emerge in many vaccination scenarios aimed

at managing spillover. Ecological interventions, on the other

hand, try to manage the underlying transmission processes,

based on ecological understanding. For instance, introduction

or restoration of a natural enemy through conservation of its

habitat could impose a longer-term change on host mortality

rates than a single reduction in host density owing to culling

(table 1 and figure 1) and increasing host genetic diversity

might provide a lasting reduction in susceptibility [24].

Here, we begin to explore some of the complexities

involved in designing effective solutions that target ecological

processes involved in zoonotic spillover. We focus on case

studies that demonstrate logical ecological interventions that

can (or have been proposed to) control the density, distribution

or infectiousness of vertebrate reservoir hosts; survival or

spread of pathogens in the environment; or contact risk, sus-

ceptibility or treatment success in the focal spillover host

(table 1 and figure 1).

(a) Targeting reservoir hosts: moving beyond culling
towards alternative non-lethal approaches

Throughout history, culling the reservoir host has been a

common intervention for reducing spillover risk from wild

or domestic vertebrates, but culling often incurs unacceptable

economic or ecological costs, or unintended negative conse-

quences [25,26], such as potential increases in pathogen

transmission or virulence [25,27]. For example, Nipah virus

was first discovered after it caused encephalitis outbreaks in

Malaysia and Singapore among people involved in raising

or slaughtering commercial pigs [28]. Culling pigs was effec-

tive at managing disease risk for people; however, there was

substantial economic fallout, including production losses and

the loss of approximately 36 000 jobs from farms that were

not re-opened after the pigs were culled [29] (table 1). It

was soon discovered that the natural reservoirs of the virus

included several species of flying fox (i.e. Pteropus spp.

bats). An ecological intervention to reduce transmission

from bats to pigs was devised as a more sustainable solution

to manage spillover: policies were put in place that required

fruit trees, which attract bats and were implicated as the path-

way for multiple spillover events on the outbreak’s index

farm, to be planted a minimum distance from pig sties [12]

(table 1). Because the pig farming communities were heavily

affected by the outbreak and incurred minimal cost from

adopting this practice, this relatively simple ecological inter-

vention has prevented further outbreaks of Nipah virus in

Malaysia since 1998 [12].

Rabies control has also relied on culling at the level of the

bat reservoir host. In Latin America, bats account for more

cases of rabies than canines or other carnivores [30,31], and con-

trol efforts focus on the main reservoir host, the common

vampire bat (Desmodus rotundus) [32,33]. Control efforts have

included destruction of roosts, which indiscriminately kill

other bat species in addition to vampire bats [34], alongside
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the application of a lethal anticoagulant paste applied to cap-

tured bats that spreads through colonies via allogrooming at

the roost [33,35]. Recent studies suggest that rabies seropreva-

lence in vampire bats was highest in bat colonies with a history

of culling, and that culling might inadvertently increase viral

transmission by altering vampire bat movement [25,36].

Culling can alter host movement dynamics, in tandem with

host densities, leading to unexpected disease consequences,

as shown in several well-studied systems (e.g. Mycobacterium
bovis in badgers; Mycoplasma aggasizi in desert tortoises).

Culling can also alter pathogen dynamics in the reservoir host

through increased population turnover. For instance, a theoreti-

cal analysis of classical swine fever in wild boars showed that

culling led to the counterintuitive result that both disease preva-

lence and absolute number of infectious individuals increased

as a consequence of host population reduction [27,37]. Studies

of test-and-cull in bison and elk in an effort to control brucellosis

have produced similar counterintuitive results, whereby herd

immunity was reduced, resulting in subsequent outbreaks

[38]. Thus, (often reactive) culling practices can be an effective

intervention in controlling wildlife diseases, or can be ineffec-

tive, especially where efforts are not spatially coordinated and

do not account for important nonlinearities and heterogeneities

in disease transmission and host demography.

Beyond culling, there are many non-lethal interventions that

can be employed to reduce spillover at the level of the reservoir

host, including reservoir-host vaccination, treating infections or

co-infections and ecological interventions such as contact or

connectivity manipulations (e.g. fences and translocation), or

fertility control. Oral vaccination of vampire bats has been pro-

posed to reduce rabies spillover by capitalizing on the same

social behaviour that facilitates anticoagulant-based bat culling

efforts (table 1). Yet, while vaccination of reservoir hosts has

been a successful alternative to culling for terrestrial rabies con-

trol in North America and Europe, no commercial vaccine is

available for rabies control in vampire bats [39].

Complications associated with widespread vaccination

campaigns are not limited to rabies. For many wildlife patho-

gens, vaccines are unavailable, costly to develop and deploy,

and logistically challenging to implement at appropriate spatial

and temporal scales [40,41]. Even where vaccines for reservoir

hosts are available, vaccination is sometimes not socially accep-

table. For example, after the recent development of a highly

effective Hendra virus vaccine for horses, social factors includ-

ing spread of anti-vaccination information by some members of

the community, cost of the vaccine and export implications for

vaccinated horses has meant that vaccine uptake is relatively

low [42]. Similarly, in the case of avian influenza, decreasing

spillover risk at the wild bird–poultry interface through vacci-

nation may not always be effective against newly (rapidly)

evolving strains, and vaccination of poultry is sometimes not

affordable owing to the large number and high turnover of

poultry, relative to the rare frequency of spillover of highly

pathogenic avian influenza strains [43].

Employing natural enemies to control disease may

sometimes be more effective and less costly than culling

and can have additional benefits for the environment, like

restoring threatened or endangered predators [44]. Predators

are likely to affect the diseases of their prey through several

mechanisms: killing sick individuals [43,44], lowering

prey population size and altering aggregation patterns. For

these reasons, wolf management has been proposed as a

potential intervention for reducing chronic wasting disease
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and brucellosis in elk [5,45], but this ecological intervention

has not been fully implemented owing to potential societal

costs associated with larger wolf populations.

Ecological interventions to control reservoir host move-

ment, connectivity or distribution have sometimes been

employed, with variable success owing to opposing impacts

on multiple layers of the spillover process. For example, food

distribution to keep elk away from cattle during winter

months and to reduce risk of brucellosis spillover has been

ongoing for many decades in the Yellowstone area [3]. How-

ever, while supplemental feeding helps to separate elk and

cattle, it also concentrates elk on feed grounds during winter,

potentially elevating brucellosis prevalence within the wildlife

reservoir and increasing the spillover risk associated with

contacts that do occur [46,47]. Research continues to flesh out

the multiple interacting effects of supplemental feeding, but

to date, the effects are equivocal [48,49] and it is hard to

detect any benefit in this highly variable system with many

environmental drivers.

Ultimately, ecological approaches targeting the reservoir

require a sophisticated understanding of the structure of, and

processes involved with, the various components of the reser-

voir community [50]. Gaps in our understanding of the

complex ecology of reservoirs have hindered progress in mana-

ging spillover of Ebola virus and rabies virus [51,52], among

other zoonotic pathogens. Interventions can offer important

clues to disentangle which reservoir components are most

important to spillover [53]. For example, in Zimbabwe, sylvatic

canids may play a role in the maintenance and spillover of

human rabies in some areas. If domestic dogs are the main

reservoir and source of spillover cases in people, then a cam-

paign vaccinating domestic dogs within a region should lead
to strong reductions in human infection, but if jackals are a sec-

ondary component of spillover risk (which some studies

suggest) then oral baiting of jackals with rabies vaccine may

be additionally required to reduce human rabies [50]. This

illustrates a broader theme in spillover management, namely,

that one strategy does not fit all cases owing to differences in

reservoir ecologies.

(b) Targeting the environment: habitat, vector control
and ecosystem management

Understanding pathogen persistence in abiotic environmental

reservoirs sometimes leads to simple interventions that operate

on many interacting levels to manage spillover risk. For

example, spillover transmission of avian influenza can be man-

aged in live-bird market systems by ‘rest days’ (during which

no birds are brought to market) and lessening stay-time in mar-

kets; if birds are removed before the virus can infect and

become infectious in a new host, then outbreaks can be avoided

[54]. Limiting stay-time also serves to strongly reduce viral

genome reassortment (gene shuffling that can result in novel

strains that may have expanded host range or higher virulence

in donor hosts) of avian influenza in retail markets by limiting

co-infection and thus reducing the probability of generating

novel spillover strains [10]. For Hendra virus spillover, block-

ing horses’ overnight access to trees in pastures has been

proposed as a solution to prevent viral transmission from

bats to horses, since this intervention would delay horses’

access to grass contaminated by bat urine (if bats happen to

roost in those trees), thereby reducing the probability that a

horse would come into contact with recently secreted, live

Hendra virus [55].
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Targeting the environmental components in the ecology

of disease transmission has a long history in vector manage-

ment. For example, vector control using chemical pesticides

has been a primary method of defence in reducing vector-

borne disease risk, but this conventional intervention is

prone to limitations, such as resistance evolution, non-target

effects and environmental damage [56]. Chemical control

can be replaced or enhanced by stocking mosquito predators

in mosquito breeding habitats and this strategy has been used

in diverse habitats to control disease-carrying mosquito vec-

tors, including ponds, cisterns, irrigation canals and rice

fields, with mixed success [57,58]. Similarly, control of black-

legged ticks (Ixodes scapularis, a Lyme disease vector) by

spraying entomopathogenic fungi (e.g. Beauveria bassiana or

Metarhizium anisopliae) on pastures has shown promise [17].

Natural habitat manipulation to reduce environmental per-

sistence of pathogens has been used less, but holds promise.

For example, scavengers like vultures compete with spillover

pathogens for host tissue (a form of intra-guild predation). In

India and Pakistan, declines in vulture populations owing to

lethal effects of an anti-inflammatory drug, diclofenac, have

resulted in increased volumes of uneaten carcasses, which act

as environmental breeding grounds for diverse zoonotic spil-

lover pathogens including anthrax, brucellosis and bovine

tuberculosis [59–61]. Feral dog populations have also grown

owing to increased access to carcasses, and although a causal

association has not been definitively established, correlative

evidence suggests that loss of vultures indirectly led to an

increase in dogs and human rabies spillover [62]. Recent

policy reform in India and Pakistan, banning diclofenac, may

allow wild vulture restoration and lead to both conservation

and public health benefits.

(c) Targeting the interface between reservoir and
spillover hosts

Spillover can increase when landscape modification—like

habitat encroachment, agricultural expansion and road build-

ing—increase contact rates between reservoir and spillover

hosts [63]. Targeting this interface can sometimes offer the

most effective interventions for reducing spillover, but interface

controls could operate at a variety of scales. For instance, the

use of bed nets to curb malaria is a classic example of

controlling the interface between mosquitos and people.

In addition, a combination of ecological and conventional inter-

ventions have helped reduce Hendra virus spillover risk in

Australia by preventing contact at the interface between horses

and flying fox urine (e.g. covering food and water, keeping

horses away from fruiting and flowering trees [55]) and prevent-

ing exposure at the horse–human interface through use of

personal protective equipment for veterinarians and owners

dealing with sick horses [20].

Biosecurity is another example of a conventional inter-

vention to reduce spillover along the wildlife–domestic

animal interface. For example, biosecurity efforts to reduce

rates of contact appropriate for avian influenza virus trans-

mission between wild birds and poultry have been an

important component of avian influenza risk management.

But identifying biosecurity measures that prevent exposure

can be challenging [64]: prior to 2014, no highly pathogenic

avian influenza had been detected in the USA but then, after

three different highly pathogenic reassortants were detected

almost simultaneously in wild birds, these strains soon caused
at least 18 independent emergence events in US commercial

poultry operations, despite biosecurity measures [64,65].

Ecological interventions aimed at the interface between

donor and recipient hosts have sometimes targeted shared

food resources [48]. For example, Nipah virus in Bangladesh

can be transmitted to people through drinking uncooked date

palm sap contaminated by excreta from infected fruit bats

[66,67]. By limiting bat access to sap that is drip-collected in

clay pots overnight, viral contamination by bats can be

reduced [19,68]. In principle, this should be an effective and

acceptable ecological intervention because it only needs to

be implemented on trees from which sap will be collected

for drinking. However, wholesale adoption of this approach,

relying on modifications to human behaviour, has been

difficult to achieve across Bangladesh [18,69].

There can be ecological interventions that act at the scale of

habitat modification to alter the contact rate of reservoir and

spillover hosts. For example, forest fragmentation, wildlife

population declines and the proliferation of cattle rearing

have prompted shifts in vampire bat feeding from wildlife to

human and livestock prey [70]. It has been proposed that

rabies vaccination of livestock might be a viable conventio-

nal intervention [71]. Yet, if vaccination coverage is low, and

livestock density continues to increase, then growing bat

populations reliant on cattle near human settlements might

still worsen rabies spillover risk to humans, despite a livestock

vaccine [72,73]. Also, because vampire bats preferentially feed

on livestock, even when wildlife are available [74], rapid with-

drawal of livestock has been associated with prey switching to

humans by vampire bats, with consequent increases in human

rabies [75,76]. There might be more durable, conservation-

based approaches to mitigate bat–human contact, or reduce

forest-to-agricultural edge habitat where bats are exposed to

cattle, but more research about how shifting prey distributions

could impact vampire bat feeding ecology is needed to

disentangle many complex and interacting factors [71].

Similarly, the movement ecology of traditionally nomadic

flying foxes (Pteropus spp.) in Australia has shifted owing to

the loss of critical nectar resources after land clearing for

agriculture and urban development [11]. Flying foxes, in

turn, experience acute episodes of nutritional stress [77].

To decrease the energetic costs of foraging, colonies split into

many smaller populations that remain close to consistent but

poor-quality urban food resources [78]. Nutritional stress and

urban habituation likely drive shedding of Hendra virus

from these reservoir hosts as well as more contact with

equine recipient hosts [79]. One proposed habitat solution to

this problem has been to restore native winter nectar habitat

patches to draw flying foxes out of urban areas, away from

horses and people and towards their preferred resource [79].

(d) Targeting susceptibility and infection in spillover
hosts

Conventional biomedical approaches remain an important tool

in managing spillover and may be synergistic with ecological

interventions applied at processes that are upstream in the

spillover chain. Treating human or livestock cases, treating

co-infections (to reduce susceptibility) and vaccinating recipi-

ent hosts are classic examples and remain necessary tools to

preserve public health. But, particularly where treatments or

vaccines are not available or not affordable, such as for under-

studied pathogens and in resource-poor settings, taking



Box 1. A simple model system simulating stochastic Susceptible – Infectious – Recovered disease dynamics, involving transmission among donor (reservoir)
and recipient (focal) hosts, coupled by spillover. (a) Model schematic ( for details, see electronic supplementary material). (b,c) Heat maps simulating
cumulative cases in the recipient, given a set of interventions applied to varying degrees (ecological and conventional interventions targeting different model
parameters). An ‘intervention intensity’ of 0 represents the base case scenario, with no intervention, and all other intervention intensities can be compared to
the base case in each column. This exercise demonstrates the nonlinearities that emerge when comparing potential interventions in a relatively simple, but
qualitatively flexible, spillover system. This model is flexible enough to qualitatively represent several types of spillover diseases, including those where onward
transmission from human to human is limited (as in b), like (but not parameterized exactly as) Nipah virus, and those where onward transmission is high (as
in c), like (but not parameterized exactly as) Ebola virus. See electronic supplementary material for more details on model structure, parameterization and
results of the simulations.
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advantage of synergies with ecological approaches along the

spillover hierarchy may be beneficial.
3. Modelling and measuring disease systems to
find potential interventions to reduce spillover

Modelling a system to explore sensitivity to various interven-

tions (as well as costs and benefits) can help determine which

interventions are most important, which ones are not viable

and which ones require more monitoring data for better

decisions. Even simple model systems can demonstrate nonli-

nearities in outcomes that make straightforward comparisons

of interventions difficult (box 1). Sometimes thresholds emerge

that can be advantageous for control (e.g. cost-effective interven-

tions that disproportionately reduce spillover in the recipient

host with relatively little effort). Other times, nonlinearities intro-

duce challenges when an intervention results in a large reduction

in a particular parameter (or set of parameters) but may

have little effect on spillover rates to recipient populations if a

particular disease-transmission threshold is not surpassed. For

example, box 1c shows a threshold effect in a simple simulation

of a hypothetical spillover disease system (parameterized to

resemble bat–human spillover of viruses with high human-to-

human transmission, like Ebola): treatment of the donor (bats)

almost eliminates disease in the recipient when the coverage is

greater than 99%, but has little to no effect at lower intervention

intensities. Our toy model also illustrates that understanding the

dynamics in both host species is critical because some interven-

tions could inadvertently increase spillover rates to recipient

hosts (i.e. negative ecological feedback). For example, in box
1c, representing a disease with high human-to-human onward

transmission after spillover (like Ebola), behaviour modification

of the recipient (humans) to reduce contact with other sick

people and rapid treatment of human cases were the most two

most sensitive interventions in reducing total human disease;

however, these measures also resulted in an increase in the

total number of spillover transmissions (even while reducing

the total number of human cases; see electronic supplementary

material) because of a consequent build-up of susceptible

people in the system. A simulation approach like the one we pre-

sent here can enable visualization of complex outcomes,

including unintended consequences, which could be useful for

designing formal tests of ecological interventions for managing

spillover. The exercise we present here is intended to be illustra-

tive, not prescriptive, because tailoring models of this sort to

specific systems in order to guide real management decisions

would require a better parameterization effort, including deep

understanding of the ecological dynamics of donor and recipient

hosts and the potential for density-dependent processes (e.g. the

possibility of compensatory population growth in response to

culling activities); see, for example, [80] in this issue.
4. Economic, social and political considerations
can determine success or failure in
managing spillover

How can we integrate ecology, public health, stakeholder

perspectives and economics into the recommendations for

managing ecological interventions to reduce spillover risk? It is

not straightforward for a manager to decide which intervention
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to invest in, and whether it should be ecological, conventional, or

both. In general, successful implementation of an ecological

intervention requires: knowledge (we must be aware of and

understand the intervention), means (both financial and logisti-

cal), mandate ( jurisdiction) and motivation (benefits outweigh

costs and those incurring costs also realize the value of the

benefits) [81]. When the benefits of an action (e.g. reduced spil-

lover) do not align with where (and by whom) the costs are

incurred (e.g. one particular sector), social and political attention

to aligning or subsidizing those costs and benefits across sectors

may be necessary, and this is difficult.

In particular, ecological interventions that target habitats

and natural populations are likely to fall under the jurisdic-

tion of government agencies that have mandates other than

human or livestock health. So, wildlife and land management

agencies may have the means and mandate, but do not

necessarily have the motivation. Not all ecological interven-

tions will be win–win for all interested parties. In some

cases, reducing wildlife densities or manipulating habitats

to improve human or livestock health may not be a priority

for hunter or conservationist communities. In this case,

more collaboration among sectors and the sharing of costs

and benefits will be essential, and yet difficult to implement.

Just as for new biomedical tools (e.g. drugs or vaccines),

new potential ecological interventions should not be rolled

out wholesale, everywhere, until their safety and effectiveness

have been evaluated. Or, if this is not possible owing to the

urgency of a situation, interventions could be implemented

in an adaptive management framework, with attention to

monitoring both the effectiveness of the intervention and

comparable controls, wherever possible [82].

Conversely, sometimes potentially effective tools still fail

because of social, economic or political constraints. For

example, decreasing wolf hunts and removals has not been

implemented as an intervention to reduce brucellosis, owing

to the potential predation risk to livestock as well as the interests

of some in the hunting community to maintain large popu-

lations of elk. Also, the anti-vaccination movement highlights

how even conventional interventions like vaccination, although

relatively safe and effective, are not without controversy.
5. Conclusion
Spillover involves cross-species pathogen transmission across a

highly complex landscape of ecological processes, which calls

for ecological solutions. In this piece, we introduce the notion

of an ecological intervention as a potentially underused

approach to find effective, long-lasting and creative solutions

to reduce spillover, with minimal environmental damage.

Moreover, ecological interventions can be complementary,

not antagonistic, to conventional approaches, which often

target different barriers in the spillover process. However,

conventional interventions such as culling and medical

treatment are often reactive, short-lived, and can introduce

further complications: culling can sometimes inadvertently

enhance disease transmission, drugs can enhance virulence
and/or alter resistance, and for many spillover diseases, vac-

cines and effective treatments are not yet available. In these

cases, managing upstream risks using ecological interventions

may be the best option. Ecological interventions, like many con-

ventional ones, are not without their caveats and controversies.

Social, political and economic considerations can limit broad

changes to ecosystems that are sometimes needed to implement

ecological interventions. Here, we have explored some of

the next steps towards identifying and implementing effective

interventions to manage or reduce spillover. Examples of

ecological interventions provided here target reservoir hosts

(i.e. preventing wildlife–livestock contact), the environment

(i.e. ecosystem management) and the whole spectrum of the

interface between ecological reservoirs and people (or other

focal hosts like livestock). Finally, we demonstrate a simple

modelling framework for visualizing the complex and non-

linear effects of various interventions for simple disease

spillover systems. By better understanding and harnessing

our understanding of complex ecological systems, ecological

interventions might offer new ways to design cost-effective,

socially acceptable, sustainable interventions that can reduce

spillover risk.
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