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Abstract15

Interest in region-specific assessments of droughts and the need to optimise water resources16

planning and allocation on a local scale via additional investments in water infrastructures is17

emerging as novel management initiatives to build drought resilience. In this study, a novel two-18

step regularization procedure that combines statistical rotation with support vector machine19

regression (SVMR) is employed to assess and identify hydrological regions in Brazil associated20

with global climate teleconnection patterns (e.g., ENSO, PDO, etc.). To enhance realistic21

drought impacts assessments, region-specific attributes of drought and the climate modes22

associated with its variability and characteristics are studied using standardised precipitation23

index (SPI) and reanalysis data (MERRA). Compared to other regions, results show that24

drought variability and its occurrence are relatively higher in the extreme north, north-east,25

and south of Brazil. The predominance of extreme drought events shows that more than 50%26

of Brazil was affected by the 1998/1999 drought while areas under droughts in recent times27

fluctuated between 25% in 2012 and 70% in 2015. Results also show significant association of28

ENSO (e.g., R2=28%) and PDO (e.g., R2=18%) with drought indicators in several climatic hot29

spots. The synthesis of climate modes as predictors of droughts in the SVMR scheme highlights30

the influence and importance of the Pacific and Atlantic oceans on drought evolutions in Brazil.31

The MERRA-derived drought indicator extracted this influence better (e.g., r = 0.72) than32

the SPI and appears to be a more suitable drought metric to understand the impacts of global33

climate on extreme events in the region.34
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1. Introduction36

On a global scale, the risks emanating from a rise in drought extremes (e.g., Xu et al.,37

2019, Basu et al., 2017, Yu et al., 2014, Spinoni et al., 2014, van der Molen et al., 2011) and38

vulnerability to droughts will produce a complex web of impacts that trickles down to physical,39

economic, environmental, and social aspects of every day life. For instance, limited water40

availability and supplies caused by prolonged droughts will translate into multiple risks for41

food security because of constraints on global supply chain of agricultural produce. Although42

the impacts of extreme droughts and hydrological variability on gross domestic product and43

regional and global economy are widely reported (e.g., Rippey, 2015, Hall et al., 2014, Brown44

and Lall, 2006, Benson and Clay, 1994), drought statistics in several regions of the world45

where the propensity and vulnerability to extreme drought condition is higher are yet to be46

fully articulated.47

However, the impacts of prolonged extreme drought on water availability in Brazil (Fig. 1)48

is gradually increasing the awareness of its population to the reality of deleterious impacts of49

climate (e.g., Melati et al., 2019, Ferreira et al., 2018, Erfanian et al., 2017, Getirana, 2016).50

This awareness comes as result of the unequivocal impacts of droughts on its socio-economic51

systems. While estimated financial losses due to agricultural drought is 6 billion US dollars,52

large depletion rates in groundwater in the semi arid regions of Brazil is perceived as a response53

to prolonged droughts that occurred during the 2010− 2017 period (Melati et al., 2019, Brito54

et al., 2018). The quantitative assessment of drought events in Brazil undertaken by Brito55

et al. (2018) confirm a rise in drought frequency and severity during the 2011 − 2016 period.56

Several important studies focused on drought events in Brazil have been documented and57

summarised by Ferreira et al. (2018), and the stupendous impacts of extreme drought on the58

availability of freshwater in Brazil have been highlighted in some reports (e.g., Ndehedehe and59

Ferreira, 2020a, Awange et al., 2016, Getirana, 2016). Some of these studies, for example,60

noted the impacts of the unprecedented droughts during the 2012−2015 period on land water61

storage and surface displacement (e.g., Ferreira et al., 2018, Erfanian et al., 2017, Getirana,62

2016) while others identified the influence of climate modes on drought evolutions in the63

region (e.g., Marengo et al., 2018, Erfanian et al., 2017, Costa et al., 2016). Given that some64

of these studies were undertaken with no additional information on drought variability and65

predictability (e.g., Marengo et al., 2017), further drought studies are warranted to reveal the66
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intrinsic response of droughts in Brazil to indices of oceanic variability and other important67

processes of inter-annual variability as was the case with land water storage (e.g., Ndehedehe68

and Ferreira, 2020b).69

The aforementioned drought studies nonetheless, lacked localized information on drought70

statistics and attributes, and the prediction of climate teleconnections associated with drought71

evolutions. The notion that management of drought risk requires adequate long-term statistics72

of the attributes of drought events has been advocated as crucial to policy making and public73

accountability (e.g., Brito et al., 2018, Marengo et al., 2017, Awange et al., 2016). We argue74

that if drought varies in time and space and is also influenced by multiple physical mechanisms75

and bio-physical processes, realistic drought impacts assessments that can support policies on76

crises management requires localization of drought signals on a smaller scale and an inves-77

tigation of region-specific climatic factors that drives it variability. Superimposing this on78

a robust drought statistics and characteristics provides a useful framework for an empirical79

drought assessment that will improve knowledge on drought evolution, risk mitigation and80

management in drought-prone regions.81

Furthermore, the argument that Standardized Precipitation Index (SPI) computed from82

averaged rainfall data in estimating drought conditions hides the underlying spatial variability83

of the index (e.g., Ndehedehe et al., 2016, Ali and Lebel, 2009) created the quest for opti-84

mised statistical framework to determine its space–time occurrence (e.g., Agutu et al., 2017,85

Montazerolghaem et al., 2016, Santos et al., 2010). Such framework would be more useful in86

drought studies, in view of the fact that temporal analysis of drought indicators as shown in87

some studies (e.g., Haile et al., 2019, Wang et al., 2018, Mao et al., 2017, Awange et al., 2016)88

are somewhat insufficient to improve knowledge on drought evolutions and the intrinsic re-89

sponse of some regions to the multi-scale interactions of oceanic processes and drivers. Apart90

from constraint on data and framework, the complexities of drought contributes to limited91

knowledge on climate change-induced drought events and their characteristics. This complex92

nature of drought precludes simplistic explanations and diagnosis of drivers and other interact-93

ing factors, e.g., politics, technology, culture (e.g., Cook et al., 2018). To handle some of these94

complexities, e.g., the influence of terrain, gauge density, model forcings, climate variabil-95

ity, and uncertainties in hydro-climatic variables on drought characterization (meteorological,96

agricultural, hydrological), statistical rotation is emerging as useful and innovative contempo-97

rary methods (see, e.g., Agutu et al., 2020, 2017, Montazerolghaem et al., 2016, Kurnik et al.,98

2015).99
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In this study, a novel two-step regularization procedure that combines cumulant rotation100

(Ziehe, 2005, Cardoso, 1999, Cardoso and Souloumiac, 1993) with support vector machine re-101

gression (SVMR, Vapnik, 1995) is employed to assess and identify hydrological regions in Brazil102

where extreme events (floods and droughts) have been associated with indices of oceanic vari-103

ability such as El-Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)104

among others (e.g., Erfanian et al., 2017). Indeed, science must take the lead in providing in-105

formation and evidence and strive to enhance an unequivocal understanding and visualization106

of relevant conditions (Sullivan, 2011). It is on this premise that this study specifically seeks to107

(i) characterize spatial and temporal variability of drought evolution based on meteorological108

and land water storage data, (ii) provide information on drought statistics and characteris-109

tics on different spatio-temporal scales, and (iii) identify regions where drought events are110

considerably associated with climate tele-connection patterns in order to understand the com-111

plexities and interactions of climate with freshwater availability. The use of indicators, be112

it in the context of human development, water management and governance, environmental113

assessment or even economic policy is well known. With this in mind, the World Meteorolog-114

ical Organization (WMO) recommended SPI is employed for drought characterisation and its115

long-term statistics. While SPI is widely used because of its ability to ensure a more useful116

and consistent interpretation of drought events for practical purposes, reanalysis data is also117

introduced in drought assessment over Brazil for the first time to assess its potential as a118

suitable metrics to identify influence of global climate on temporal drought patterns. More119

details about the data and method used are indicated in subsequent sections.120

2. Materials and method121

The methodological framework and work flow, including the data used in this study are122

summarised in Fig. 2.123

2.1. Study region124

Brazil, a country covering the north and south hemispheres within a latitude band ranging125

from 5◦ N to 34◦ S (Fig. 1), has approximately 8.5×106 km2 ranking as the world’s fifth-largest126

country by area. About 60% of Brazil lies within the tropics because of its shape and due to127

its latitude range and physiography, there is strong variation in climate across the north-south128

band. The Kopen climate types of Brazil consist of rainforest (Af) at the northwest; monsoon129

(Am) at the central Amazon; savanna (Aw), which covers the Brazilian Plateau over most of130
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the eastern, southern and central portions of the country; hot semi-arid (BSh) covering a large131

part of northeast Brazil; humid subtropical (Cwa) and subtropical highland (Cwb) over the132

southeast; and humid subtropical (Cfa) and oceanic (Cfb) over the south. Figure 1b shows133

that on the average, annual temperature decreases gradually from about 28◦C in the north134

to about 18°C or less in the south of the country. Annual averaged rainfall varies from 500135

to 3500 mm (Fig. 1a) with most rainfall occurring during the austral summer (December and136

April). The Northeast region is notoriously dry and it contrasts with the rest of the country137

(Fig. 1a). The mean annual rainfall in Northeast Brazil is less than 800 mm and the region138

is a scenario of severe drought events that are correlated with El Niño years. The Brazilian139

Plateau has annual precipitation ranging from 1000 to 2000 mm with a dry season from June140

to August. The South and Southeast Brazil also present high amounts of annual rainfall with141

values reaching up to 2000 mm per year. The quantity of annual precipitation over the Amazon142

region reaches amplitudes as high as 3000 mm per year (Fig. 1a), in which dry season generally143

lasts up to five months.144

Figure 1a shows the mean values of the annual accumulated rainfall at which a ridge is seen145

from northwest-southeast across southeast Brazil into the southwest Atlantic Ocean, which is146

mainly due to the Brazilian highlands (plateau) and South Atlantic convergence zone (SACZ).147

The SACZ is strong in warm seasons and weak or nonexistent during the cold seasons. The148

increase of humidity in South Brazil supports the SACZ when the country warms up and149

generates the advection of moisture from the Atlantic to the Amazon by the low-level jet150

stream (LLJ), which feeds convective rainfall over the sub-tropical plains in South America.151

Furthermore, the Bolivian high, an upper-level (approx. 200 mb) anticyclone, contributes152

to the intensification of the SACZ during austral summer impacting, for example, Southeast153

Brazil with heavy rainfalls. Another wet belt evident in Fig. 1a is due to the intertropical154

convergence zone (ITCZ) that produces the highest precipitation over the western Amazon155

basin and near the mouth of its river (Amazon River). Furthermore, rainfall anomalies in156

this regions also presents correlations with SST where its warm condition to the north of the157

equator (Figs. 1a-b) leads to enhanced convection in the ITCZ, brings drought to Northeast158

Brazil and, conversely, when the warm anomalies lies to the south of the equator the position159

of the ITCZ causes above-normal rainfall in the region. Despite the plenitude of rainfall,160

droughts have also occurred in the Southeast (e.g., 2014 − 2015) and Amazonia (2005, 2010,161

2016) areas of Brazil.162
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(a) (b)

Figure 1: Study area showing mean annual distribution of (a) rainfall and (b) over Brazil. Surface temperature

was computed based on GLDAS-Noah version 2.0 (https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_

2.0/summary) during the January 1980 to December 2014 period.

2.2. GPCC-based Precipitation163

The Global Precipitation Climatology Centre (GPCC) precipitation data (Schneider et al.,164

2014) was used to construct the standardised precipitation index (SPI) used in this study.165

GPCC provides reliable monthly gridded data sets of global land-surface precipitation and is166

a well known reference precipitation data because it has the largest gauge-observation data167

available globally. The 0.5 ◦ x 0.5 ◦ GPCC precipitation was downloaded from the GPCC data168

portal (www.ftp.dwd.de/pub/data/gpcc/html/downloadgate.html) and covers the period169

between 1980 and 2015. As a widely used observational reference data, it was found suitable170

drought characterization in East and West Africa and consistent with Climate Research Unit171

(CRU) observations over the Congo basin (e.g., Ndehedehe et al., 2020, Agutu et al., 2017).172

2.3. MERRA land water storage173

Modern-Era Retrospective Analysis for Research and Applications (MERRA) National174

Aeronautic and Space Administration (NASA) global high-resolution MERRA reanalysis data175

(Rienecker et al., 2011) was also use in drought analysis. The MERRA data is a state-of-the-176

art reanalysis land water storage that provides atmospheric fields, water fluxes, and global177
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estimates of soil moisture (Rienecker et al., 2011). Although it excludes canopy water content,178

outputs from MERRA have been used in the study of agricultural drought assessment, and179

climate teleconnections in the African continent (e.g., Agutu et al., 2017, Ndehedehe et al.,180

2017) and has been evaluated and recommended for land surface hydrological studies (e.g.,181

Jung et al., 2017, Reichle et al., 2011). The land TWS data component of MERRA used in182

this study, covers the period of 1980−2015 at 0.5◦ latitude by 0.625◦ longitude and is available183

for download through NASA’s website (http://disc.sci.gsfc.nasa.gov/mdisc/).

Figure 2: A schematic representation of the work flow used in this study. Specific details on data processing,

analytical procedures, and implementation of equations 1-10 are provided in Section 2

.
184

2.4. Global climate variability indices185

To identify hydrological hot spots in Brazil the relationship of localised drought indicators186

with several prominent indices of oceanic variability was explored. These climate variabil-187

ities include, El-Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Atlantic188

Multi-decadal Oscillation (AMO), Atlantic Meridional Mode (AMM), Pacific Decadal Os-189

cillation (PDO), Quasi-Biennial Oscillation (QBO), and Maiden Julian Oscillation (MJO).190

These datasets were downloaded from NOAA’s data portal (http://www.ncdc.noaa.gov/191

teleconnections). Over South America, the influence of these climate teleconnections on192

land water storage and extreme droughts and water deficit conditions have been reported (e.g.,193

Ndehedehe and Ferreira, 2020b, Erfanian et al., 2017, Sun et al., 2016, de Linage et al., 2014).194

7

(http://www.ncdc.noaa.gov/teleconnections)
(http://www.ncdc.noaa.gov/teleconnections)
(http://www.ncdc.noaa.gov/teleconnections)


As with other regions, interannual climate variability in Brazil is associated with the occur-195

rences of, among other factors, the El Niño (warm condition) and La Niña (cold condition)196

phenomena. El Niño episodes are generally associated with below-normal rainfall in north-197

ern Brazil and above-normal conditions in southern Brazil. Conversely, rainfall anomalies in198

both regions are usually observed during La Niña events. This generalization of ENSO-related199

anomaly in rainfall regimes could vary while analyzing its impact at regional to local scales200

in Brazil. For instance, the droughts of northeast Brazil are generally recognized when El201

Niño conditions take place in the tropical Pacific (e.g., Marengo et al., 2018, Erfanian et al.,202

2017). As the mesoscale convective systems, physical and other atmospheric mechanisms and203

teleconnections that drive precipitation differ across continents and regions, the role of these204

teleconnections on drought properties and evolutions are examined for Brazil, which is home205

to the Amazon basin. Further description of these climate modes and how they were generated206

are available on NOAA’s online data repository.207

2.5. Empirical probability-derived drought indicators208

As with several other aspects of human development, environmental sustainability and per-209

formance, quantifying drought can easily be achieved through the use of indicators and metrics210

(e.g., Ndehedehe et al., 2020). Drought-related stress arising from precipitation deficits (me-211

teorological), limited soil moisture (agricultural) and abnormally low water levels, in lakes,212

reservoir levels, and groundwater (hydrological) can be studied using several drought indi-213

cators. These indices/indicators are crucial for understanding water availability and the as-214

sessment of different drought intensities (meteorological, agricultural and hydrological) on a215

broad range of scales. In this study, drought indicators (SPI) at 6 and 12 month cumulation216

(agricultural and hydrological) were based on the GPCC-derived standardised precipitation217

index (SPI, McKee et al., 1993). The need for a comprehensive drought monitoring system218

that provides accurate drought statistics and early warning, led to The Lincoln Declaration219

on Drought Indices to unanimously adopt SPI and recommend same to WMO as a standard220

index to track and characterize various levels of drought events (Hayes et al., 2011). Our221

use of SPI in this study was mainly driven by this consensus and the fact that it is now222

widely used and a recommended drought index by WMO for meteorological and hydrological223

drought assessment, in addition to other less popular drought indicators. Depending on the224

hydrological response of some semi-arid regions to rainfall conditions, 6-month cumulation can225

be used to assess impacts of rainfall deficits on hydrological stores such as soil moisture and226
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groundwater. Hydrological processes are complex in some regions and drought impacts and227

its cascading effects could be difficult to understand because of local climatic influence or land228

surface conditions. Consequently, the MERRA data is synthesized after the similitude of SPI229

and is also introduced as a drought indicator over Brazil. These indicators including, that230

the MERRA data use an empirical probability method, pioneered by Hao and AghaKouchak231

(2014) to derive a non-parametric standardised index as,232

p(xj) =
mj − 0.44

n+ 0.12
, (1)

where n is the sample size, i represents the rank of non-zero precipitation data starting from233

the smallest while p(xj) is the corresponding empirical probability. Eqn 1 is transformed to a234

standardised index as (Farahmand and AghaKouchak, 2015)235

SI = ϕ−1(p) (2)

where ϕ is the standard normal distribution function and p is the probability obtained from236

Eqn. 1. Drought classification and the various drought intensities (extreme, severe, and237

moderate) during the period and their aerial extent were estimated based on the thresholds238

described in McKee et al. (1993), which assumed that a drought condition occurs when the239

drought index is consistently negative and reaches a value of −1. A drought event ends when240

the SPI becomes positive. For every drought event, there is a duration, which is defined by241

its beginning and end. Drought magnitude is the positive sum of the SPI values for all the242

months within a drought event. The use of SPI in this study as an appropriate indicator is243

motivated by the recommendation of WMO and the assumption that drought is primarily244

driven by precipitation deficits (e.g., Ndehedehe et al., 2020, Spinoni et al., 2014). However,245

given that strong land-atmosphere interactions could slightly interfere with drought intensities246

and the propagation of droughts in some regions, the same empirical probability method is247

employed to standardise the MERRA data similar to GPCC.248

2.6. Two-step regularization approach for spatial and temporal regionalization of hydrological249

indicators250

A two-step regularization approach was employed to localise empirically-derived drought251

indicators. To this end, the gridded time series of computed drought indicator (X) at 6252

and 12 month scales were decomposed into temporal and spatial patterns using the principal253

component analysis (PCA, e.g., Jolliffe, 2002). Given a centered matrix of SPI values as X=254

[x(pk, t)] where pk is space locations; k = 1, 2, . . ., Nx, which are the number of spatial255
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locations for X, and t is the time (monthly) step from 1980−2014. The technique decomposes256

the fields X into spatial and temporal series as,257

X(t) =

N  ∑
k=1

a(k)pk (3)

where a(k)(t) are the temporal series also called expansion coefficients (or sometimes standard-258

ised scores) and pk are the corresponding spatial patterns (empirical orthogonal functions-EOF259

loadings). Although this tool as been broadly employed in the regionalization and spatio-260

temporal analysis of geophysical time series and drought patterns globally (e.g., Ndehedehe261

et al., 2020, Agutu et al., 2017, Montazerolghaem et al., 2016, Santos et al., 2010), this tech-262

nique serves primarily as a regularization tool to minimize and filter the noise and random263

signals in the data and the Bartlett’s test statistics (Snedecor and Cochran, 1989) was em-264

ployed to ensure that random variations from the PCA scheme were not retained. Notably, the265

process of retaining significant modes of variability from this scheme can vary from, e.g., rules266

based on hypothesis testing to subjective choices (e.g., log-eigenvalue diagram and retaining267

PCs that represent a ‘sufficient fraction’of the variance in the original data) depending on the268

purpose of the statistical decomposition (see, e.g., Wilks, 2011, Martinez and Martinez, 2005).269

Our choice of Bartlett’s test statistics for Brazil was sufficient for the pre-orthogonalization270

stage (step 1). In the second stage after the data has been pre-orthogonalized, a classical271

rotation towards statistical independence based on the fourth order cumulant matrices was272

performed to localised all drought indicators at 6 and 12 month aggregation scale. These273

cumulants provide the suitable matrices to be diagonalized before a rotation towards sta-274

tistical independence. The algorithm used to rotate the PCA-regularised data matrix X is275

detailed in pioneering works of Cardoso and Souloumiac (1993) and Cardoso (1999). This276

algorithm is computationally efficient and exploits key remote properties of the signals, such277

as non-Gaussianity and uses the Joint Approximate Diagonalisation of Eigen matrices (JADE)278

approach (Ziehe, 2005, Cardoso, 1999, Cardoso and Souloumiac, 1993). From the JADE al-279

gorithm, the fourth-order cumulant tensor provides the suitable matrices to be diagonalized,280

which are non-gaussian (see, e.g., Cardoso, 1999, Ziehe, 2005):281

Ci,j(M) =
∑

cum(xi, xj , xu, xv)Mu,v, (4)

such that M is an arbitrary matrix. After the eigen decomposition of the centered covariance282

matrix x, an approximate joint diagonalisation of the set of eigen matrices of the cumulant283

tensor with an orthogonal transformation, which comprises a sequence of plane rotations is284
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then implemented by the JADE algorithm (see, e.g., Ndehedehe et al., 2016, Ziehe, 2005,285

Cardoso and Souloumiac, 1993). For interested readers, this cumulant-based methods have286

been described in detail with further numerical steps and mathematical formulations available287

(Theis et al., 2005, Common, 1994, Cardoso and Souloumiac, 1993, Cardoso, 1999). Through288

a contrast optimization by the joint diagonalization approach, the rotated cumulant matrices289

resulted in well localised spatial patterns (ISPI and IWSI) S, and temporal patterns A, as:290

(e.g., Ndehedehe and Ferreira, 2020a)291

RSPI/MERRA(x, y, t) = AS, (5)

where RSPI/MERRA is the rotated drought indicator, (x, y) are pixel locations, t is the monthly292

time step. A is also known as independent components, which is unit-less since it has been293

normalised using its standard deviation while the corresponding spatial patterns S, have been294

scaled using the normalised independent components (i.e., A). The spatial and temporal295

patterns of SPI at 6 and 12 month cumulation were localised over Brazil using the cumulant296

decomposition method. The classification scales (e.g., extremely wet, moderately dry, severely297

dry, extremely dry) for the SPI values (hereafter independent standardised precipitation index298

ISPI for the spatial patterns) are jointly derived from each independent mode (i.e., spatial299

and temporal patterns). This statistical decomposition enables the identification of extreme300

climatic hot spots (droughts) in the region.301

2.7. Drought statistics and characteristics302

Drought properties including, the duration, frequency, intensity and distribution of affected303

areas (see, e.g., Diaz et al., 2019, Wang et al., 2018, Mao et al., 2017, Spinoni et al., 2014) are304

determined for each drought event during the study period (1980 − 2015). The prediction of305

areas under drought following the method of Diaz et al. (2019) allows estimation of drought-306

affected areas and the visualization of outcomes in space and time as opposed to previous307

studies (e.g., Agutu et al., 2017). The integration of SPI time series events into aggregated308

areas of drought, and the subsequent estimation of the percentage of drought area (PDA) for309

each time scale and step is computed as (Diaz et al., 2019)310

PDA =
100

Ar

N∑
c=1

(ds(t) ∗A), (6)

where where A is the area of the cell c and Ar is the region area, t is time step, ds, drought state311

and the magnitude of drought is the PDA value. In this study, drought duration is defined as312
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the time length (i.e. the number of months) between the drought onset and termination (e.g.,313

Mao et al., 2017, Spinoni et al., 2014). It is calculated by the sum of durations for all drought314

events divided by the number of drought events (e.g., Haile et al., 2020, Xu et al., 2019) as315

D =

∑n
i=1

n
di, (7)

where D is the drought duration (months), di, duration of ith drought event, and n the total316

number of drought events. Drought frequency refers to the number of drought occurrences317

in a given time period (Yu et al., 2014). It is estimated as the ratio between the number of318

drought months and the total number of months in the time series (e.g., Wang et al., 2018,319

Spinoni et al., 2014) as320

F =
nm

Nm
× 100, (8)

where F drought frequency (%), nm, the number of drought months, and Nm the total number321

of months. Drought intensity measures drought severity per its duration useful to inform the322

strength of droughts (Zhang et al., 2015). It is the absolute value of the average of accumulated323

SPEI values during the drought events and is computed as (e.g., Haile et al., 2020, Wang et al.,324

2018)325

I =| 1
n

n∑
i=1

SPIi |, (9)

where I is drought intensity (-), n = number of drought occurrences in months, SPIi, is326

SPI value below the threshold (–1). For each duration of the drought event, drought severity327

measures the cumulative deficit below the truncation level to quantify drought intensity (Zhang328

et al., 2015).329

2.7.1. Oceanic hot spots associated with temporal drought patterns330

To understand the influence of global climate on hydrological hot spots, the support vector331

machine regression model (SVMR, Vapnik, 1995) was employed. The support vector machine332

(Cortes and Vapnik, 1995) algorithm was extended by Vapnik (1995) for regression using an ε-333

insensitive loss function. The SVMR concept is based on the computation of a linear regression334

function in a high-dimensional feature space in which the input data (xi) are mapped through335

a non-linear function (e.g., Okwuashi and Ndehedehe, 2017). This mapping is warranted336

because most of the time, the relationship between a multidimensional input vector x and the337

output y is unknown and could be non-linear (e.g., Wauters and Vanhoucke, 2014). A two-step338

procedure is adopted in the implementation of the SVMR scheme. Finding a linear hyperplane339

that fits the multidimensional input vectors to output values is the first step, thereafter, the340
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SVMR predict future output values that are contained in a validation set (e.g., Okwuashi and341

Ndehedehe, 2017, Wauters and Vanhoucke, 2014, Smola and Schölkopf, 2004, Vapnik, 1995).342

Assuming the set of data points X = (xi, pi), i = 1..., n with xi being the predictand data343

point i, pi the actual value and n the number of data points. The linear SVMR function f(x)344

takes the form (e.g., Vapnik, 1995)345

f(x) = wx+ b. (10)

The assume linear parameterization in Eqn 10 above bears similarity to a linear regression346

model. That is because the predicted value, f(x), depends on a slope w and an intercept347

b. However, The goal of the SVMR is to identify a function f(x) that has a maximum de-348

viation ε from the target values pi and has a maximum margin for all training patterns xi.349

In order words, a balance between learning the relation between inputs and outputs whilst350

maintaining a good generalization behavior is targeted. As highlighted further in Wauters351

and Vanhoucke (2014) too much focus on minimizing training errors may lead to overfitting.352

Hence, a pre-specified penalty value (C) is introduced as a trade-off to create the balanced353

between generalization and good training. That is, C regulates the trade-off between the354

regularization term (12 ∥ w ∥2) and the training accuracy in the formulation below as (e.g.,355

Wauters and Vanhoucke, 2014, Vapnik, 1995),356

ζ =
C

n

n∑
i=1

Lε(pi, f(x))
1

2
∥ w ∥2, (11)

where the compound risk caused by training errors and model complexity is given as ζ. Eqn.357

10 provides the estimated values for w and b and comprises the empirical risk measured by358

the ε-insensitive loss function, Lε and the regularization term 1
2 ∥ w ∥2, which describes the359

model complexity (Wauters and Vanhoucke, 2014, Cortes and Vapnik, 1995). Specifically, a360

linear SVM regression model was trained to fit the data. The SVMR technique evaluates361

each run of the experiment using regression, by partitioning the data internally into training,362

validation, and testing components (i.e., 55% of the total data). The remaining 45% of the363

observed data were thereafter used for forward prediction based on the hold-out method of364

cross-validation (e.g., Haley, 2017). The stratified partitioning of the data using this approach365

ensures that each partition includes similar amount of observations from each group. Further,366

the relationship of climate teleconnections and drought indicators are assessed using Pearson367

correlation and coefficient of determination (R2).368
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Figure 3: Spatial and temporal independent standardised precipitation index (ISPI) patterns over Brazil using

6-month SPI values. SPI values are computed using GPCC-based precipitation for the period between 1980 and

2015. Actual values for drought classification and categorization with respect to McKee et al. (1993) description

are jointly derived from the regionalised spatial patterns (first and third columns) and their corresponding

temporal evolutions (second and fourth columns). The black solid line is the drought threshold.

Figure 4: Same as Fig. 3 above but using 12-month SPI values.

3. Results369

3.1. Regionalization of hydrological hotspots through pre-orthogonalization370

Well localised spatio-temporal patterns of drought indicators (ISPI and IWSI) were identi-371

fied through a classical rotation of the pre-orthogonalized SPI data matrices towards statistical372
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Figure 5: Spatial and temporal MERRA-SPI patterns over Brazil using 12-month aggregation. MERRA-SPI

implies that the MERRA indicator values are computed similar to SPI for the period between 1980 and 2015.

The black solid line is the drought threshold.

independence using the cumulant method (Figs. 3-5). Previous approaches to spatio-temporal373

drought analysis relied on component extraction techniques (e.g., Agutu et al., 2017, Bazraf-374

shan et al., 2014). But the regionalization of drought indicators as implemented here leverages375

on the fourth order cumulant of the data matrix based on remote properties that include, non-376

Gaussianity, spectral non-Flatness, and non-stationarity (e.g., Theis et al., 2005, Cardoso and377

Souloumiac, 1993, Cardoso, 1991) and is different from other fixed-point iteration schemes em-378

ployed in the decomposition of gravity observations and geological objects identification (e.g.,379

Yang and Cheng, 2015, Frappart et al., 2011). This method resulted in the localization and380

extraction of physically meaningful and independent spatial patterns of drought indicators.381

The localised spatial patterns (ISPI and IWSI) over Brazil are captured in eight independent382

patterns (temporal and spatial) and represent hydrological hotspots with significant variability383

in SPI during the 1980− 2015 period.384

Regardless of the time scales, the spatial patterns of localised drought indicators based on385

the cumulant rotation are consistent (Figs. 3-5) even though there are slight differences in the386

total variabilities accounted for in their independent modes. Be it 6 or 12 month cumulation,387

SPI spatial patterns over Brazil are localised over the north, north-east, south, south-east,388

central and north-west regions. Drought variability is higher in the extreme north accounting389

for 20.8% and 22% in SPI-6 and SPI-12, respectively (SPI-1, Figs. 3-4) compared to other390
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regions. It is noted that drought events in the most humid regions (the Amozon catchments)391

are less frequent and accounts for little variability in the observed SPI and MERRA indicators392

unlike the strong climatic hot spots in the north/north-east sections (Figs. 3-5 and cf 1).393

However, the spatial patterns of drought indicator based on MERRA (IWSI) appear to be394

slightly different except for some key areas (e.g., north, south and north-east Brazil) that395

are consistent with the localised spatial patterns of ISPI (Fig. 5). Different from the SPI396

indicators, areas along central Brazil (mostly the Amazon) show strong decline in IWSI since397

1980 and specifically highlights the major drought events that ravaged the Amazon region398

(MERRA-1/IWSI-1, Fig. 5). While the MERRA indicator also revealed the drought events399

between 2000 and 2015 in south-west Brazil (MERRA-6/IWSI-6, Fig. 5), the most humid part400

of Brazil (cf. Fig. 5) was also affected by the prominent drought events of 1998/1999, 2005, and401

2012− 2015 period (MERRA-7/IWSI-7, Fig. 5). Given that rainfall only provides an indirect402

observation of water availability (e.g., Chen et al., 2014), some of these differences between403

SPI and MERRA indicators would be expected. This is because of the intrinsic hydrological404

response of surface hydrology and land surface conditions in some semi-arid/or moderately405

humid regions to extreme climate events such as droughts.406

As would be expected, drought frequency (number of events from the temporal evolutions)407

in all hydrological hotspots tend to be higher at 6 month cumulation (Fig. 3) compared to 12408

month cumulation (Fig. 4). The regionalization of SPI over Brazil confirms that the occurrence409

of severe and extreme drought conditions vary in time and space. For example, temporal410

drought evolutions in northern Brazil significantly contrast with the southern section of the411

country (ISPI-1 and ISPI-4, Fig. 3). However, drought frequency tend to reduce at 12 month412

scale but with longer duration (Fig. 4). But the spatio-temporal variability of drought event413

is again obvious (ISPI-1 and ISPI-3, Fig. 4), confirming that the influence of strong spatial414

variability in rainfall at all temporal scales and inter-annual climatological gradients across415

regions modulate drought magnitudes and its properties. This is true for north-east Brazil416

(ISPI-2, Fig. 4) where the number of drought events is relatively higher than other regions.417

3.2. Drought characteristics and statistics418

3.2.1. Percentage of areas under drought419

To understand the impacts of droughts from a more holistic view, some statistics of drought420

characteristics are presented. These statistics are based on percentage of affected areas,421

drought duration frequency, and intensity. At the 6 and 12 month aggregation, evolution-422
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Figure 6: Areas under drought over Brazil for various drought intensities (extreme, severe, and moderate)

during 1980-2015 period expressed in percentage (%). The affected areas are characterized based on SPI-6,

SPI-12, and MERRA-12 months aggregation.

ary drought patterns of droughts in terms of their characteristics and intensities (moderate,423

severe, extreme) over Brazil have shown temporal patterns that are somewhat similar to the424

results in previous section. From the SPI indicator, key periods when areas affected by ex-425

treme drought exceeded 25% were the early 1982/1983, 1992/1993, 1998, and 2012/2013. The426

MERRA indicator show similar patterns but a bit exaggerated for the period between 2005427
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and 2010. The predominance of extreme drought events from SPI-12 and MERRA-12 drought428

indicators however, agree that more than 50% of Brazil was affected by the 1998/1999 drought429

(Fig. 6). Given Brazil’s considerable dependence on hydroelectric power, Getirana (2016) noted430

that this drought (1998/1999) was the cause of the biggest energy crisis that ever occurred in431

the country. As the MERRA data extends to 2015, it has shown that one of the worst drought432

in recent times occurred during the 2012− 2015 period, fluctuating between 25% in 2012 and433

70% in 2015 (Fig. 6). A comparative analysis of the three indicators (SPI-6, SPI-12, and434

MERRA-12) in their characterisation of various drought intensities and estimation of affected435

areas for specific drought periods (2007/2008, 2012/2013, and 2013/2014) show consistency436

between SPI-6 and SPI-12 month (Fig. 7a-c). However, there are significant differences in the437

predicted extents of affected areas from the MERRA indicator. This dissimilarity between438

the MERRA and SPI indicators in their estimated areas under drought are notable and varies439

during the three periods analysed (Fig. 7a-c). This might be attributed to difference in data440

sources (e.g., differences in MERRA precipitation rates). While rainfall is an indirect indicator441

of available water, the MERRA data accounts for total water held in all land surface reservoirs442

(e.g., soil moisture). If land surface processes, such as temperature, groundwater withdrawals443

for irrigation, and catchment characteristics influence drought propagation, these could have444

impacts on hydrological processes (e.g., infiltration and flow dynamics) and interactions be-445

tween land surface-moisture fluxes and the atmosphere under an extreme drought scenario.446

MERRA-drought indicator therefore will be more reliable to capture these impacts because447

of the inclusion of soil moisture and latent heat flux in the model whereas precipitation-based448

drought indicator might be restricted.449

In 2012, the predicted areas under drought by all indicators are rather close unlike in 2013450

when the MERRA indicator shows considerable difference and contrast (Fig. 7b-c). Given451

the extreme drought condition of 2012/2013 period, this demonstrates the utility of MERRA452

indicator in capturing the cascading influence of droughts on soil hydrology and land water453

storage. The percentage of areas under drought showing the response of Brazil to drought454

events on both annual (January-December) and inter-annual time scales are indicated for all455

indicators (Fig. 8a-f). Most drought affected areas occurred in the months between April and456

October as was the case in 1982 and 1998. But areas affected by the 2015 drought in Brazil was457

phenomenal and is consistent with previous reports (e.g., Ferreira et al., 2018). The MERRA458

indicator shows this drought was an all-year (January-December) event with at least 60% areas459

under drought observed per month (Fig. 8e and f). Generally, all of these patterns are also460
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Figure 7: Areas under drought over Brazil similar to Fig. 6 above but only specific periods (2007 − 2008,

2012− 2013, and 2013− 2014) and is expressed in percentage (%). The affected areas are characterized based

on SPI-6, SPI-12, and MERRA-12 months aggregation.

reflected in the yearly time series of percentage of areas under drought (Fig. 8b, d, and f).461

3.2.2. Drought duration, frequency, and intensity462

The spatial distribution of averaged drought properties (duration, frequency, and intensity)463

during the 1980-2014 period are summarised in (Figs. 9a-i). Drought duration is more extensive464

and wide spread on a 6 month (SPI-6) cumulation compared to 12-month (SPI-12) cumulation465

(Figs. 9a-c). A key observation is that the mean duration of drought episodes appear to be466

prevalent in around the Amazon and north-west sections of Brazil. The intrinsic response467

of these regions to limited rainfall is expected to be different because of their diverse climate468

feature. On a 12 month time scale, these regions tend to have longer drought duration, ranging469

from 8 − 10 months compared to areas located on the south and north-east Brazil (Figs. 9b-470

c). Longer drought duration would generally be expected on a relatively higher cumulation471

scales (SPI-12) unlike shorter time scales (SPI-6). Although the MERRA indicator was also472

synthesize similar to the SPI-12, there is a significant difference in the mean duration of473
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Figure 8: Averaged areas under drought for annual (a, c, and e) and inter-annual (b, d, and f) time scales over

Brazil for the period between 1980 and 2014.

droughts quantified (Figs. 9b-c), especially in the south and north-east Brazil. Considering474

that rainfall is an indirect indicator of water availability, this difference can be embedded in the475

interactions of topography, soil characteristics, and vegetation with droughts or its propagation476

process under a rising temperature.477

Estimated drought frequency tend to be much unique only for SPI-6 but similar for SPI-12478

and MERRA indicators (Figs. 9d-f). The distinctiveness in the observed spatial patterns of479

drought frequency in Fig. 9d is consistent with the observed temporal evolutions of drought480

(SPI-6) in Fig. 3 where drought occurrence is relatively higher when compared to SPI-12481

month temporal patterns (Fig. 4). Moreover, based on SPI-6, it is noted that drought is more482

frequent in the south of Brazil, ranging from 16% to 15.5% than some regions in the central483

and north-east sections where drought frequency is approximately between less than 15.5 and484

14.5%. While drought is generally less frequent (slightly greater than 14.75%) when viewed485

from the spectacles of drought indicators with higher cumulation scales (12 month), there486

are few hot spots around the Amazon basin where it is even much less frequent and shows487
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Figure 9: Estimated spatial distribution of drought (a-c) duration, (d-f) frequency and (g-i) intensity during

the 1980− 2014 period (drought intensity is in standardised units.)

values less than 14.55% (Fig. 9e). But the spatial distribution of drought intensities shows488

they are fairly similar with large distributions of intensities ranging from 1.4 to 1.5 over Brazil489

regardless of time scales (Fig. 9g-i). In some regions however, especially at the shorter time490

scales, the distributions of intensities towards northern Brazil vary significantly.491

3.3. Hydrological hotspots associated with multi-scale ocean atmosphere phenomena492

The coupled variability of the temporal series of drought indicators associated with the493

hydrological hot spots (localised spatial patterns) identified in previous section with climate494

Table 1: Relationship between observed and predicted drought indicator (SPI-12) in each hydrological region

identified in Figs. 3-5 using all global climate teleconnection indices in Section 2.4 as predictors. Correlation

values are statistically significant at α = 0.05.

Region ISPI-1 ISPI-2 ISPI-3 ISPI-4 ISPI-5 ISPI-6 ISPI-7 ISPI-8

SPI-6 0.52 0.28 0.15 0.40 0.32 0.49 0.46 0.43

SPI-12 0.36 0.46 0.35 0.53 0.31 0.42 0.26 0.54

MERRA-12 0.72 0.71 0.52 0.31 0.24 0.44 0.62 0.57
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Figure 10: Influence of ENSO on evolutionary patterns of SPI. The relationship of ENSO with (a-d) SPI-6

month and (e-h) SPI-12 month are based on linear regression.

teleconnection patterns were assessed. Although this is a preliminary first step to evaluating495

the influence of multi-scale ocean atmosphere phenomena in these hot spots, we found consid-496

erable relationship between the time series of drought indicators with ENSO and PDO. For497

SPI-6, a relatively stronger association exist and explains 23.8% and 28.2%, respectively of the498

variability in ENSO over northern Brazil (Figs. 10a-b). Other regions (ISPI-4, ISPI-7, Fig. 3)499

also show significant relationship (Figs. 10c-d). In SPE-12, the influence of ENSO is also no-500

table (Fig. 10e-h) but relatively stronger in northern Brazil explaining 20% (R2%) of observed501

variability in ENSO (Fig. 10g, cf. ISPI-4, Fig. 4). The MERRA indicator captures the influ-502

ence of ENSO and PDO in the region (Figs. 11a-e). The influence of ENSO (R2 = 15.1%) and503
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PDO (R2 = 17.1% and R2 = 18.1%) are more pronounced in the east and central regions of504

Brazil (Fig. 11a-b and d-e, cf. ISPI-1/ISPI-4, Fig. 5). This diagnostics confirm the interplay505

between interactions of ENSO and PDO with meteorological processes in Brazil and shows506

significant relationship (Figs. 11a-b). A simple linear regression of these indicators with cli-507

mate modes show that generally, the SPI-6 can be used to extract and identify the influence508

of these teleconnections (PDO and ENSO) better than other indicators. The relationships509

of these indicators with teleconnections as reported here are fundamentally linear but these510

indications can interact in non-linear ways with climate modes.

Figure 11: Influence of ENSO and PDO on evolutionary patterns of MERRA-derived drought indicator. Similar

to Fig. 10 above the (a-e) relationship of ENSO with the MERRA indicator is based on linear regression.
511

For each of the hot spots identified in Section 3.1, the influence of global climate was further512

diagnosed by using a suite of climate modes as independent variables in the SVMR scheme to513

predict the temporal variations associated with the hot spot. The results of the observed and514

predicted drought indicators, which make a case for the coupled variability between climate515

teleconnection patterns and drought events in some regions of Brazil are summarised in Table516

1. While there is an obvious evidence of the interplay between interactions of teleconnection517

patterns with the temporal evolutions of drought (Figs. 12a-f), the synthesis of all climate518

teleconnection indices as predictors of extreme events show that the Brazilian sub-region is a519
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Figure 12: The influence of climate oscillations on the temporal patterns of regionalised modes of SPI-6 (a-b),

SPI-12 (c-d) and MERRA SPI-12 (e-f) indicators using SVMR. Relationship between observed and predicted

drought indicator uses all seven climate teleconnection indices as predictands in the SVMR scheme based on

the hold-out cross validation partition.

complex web of climatic hot spot (Table 1). From the regression coefficients (SPI-6/SPI-12 vs520

all climate modes), ENSO, PDO, and AMO were the leading drivers of drought patterns in521

the region. However, the SVMR coefficients also revealed the influence of QBO AMM, MJO in522

the hot spots. As with SPI drought indices, the regression coefficients of MERRA indicator for523

example confirm the contributions of ENSO, MJO, AMO and AMM in Brazil. As illustrated524

in Figs. 12e-f, the MERRA indicator, with a considerable correlation (r = 0.72 and r = 0.71)525

between observed and predicted is a more suitable drought metric to understand the impacts526

of global climate on extreme events compared to other SPIs (Figs. 12a-d).527
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4. Discussion528

4.1. Interactions of climate teleconnection patterns with hydrological hot spots529

The statistical rotation of drought indicators has recently been employed in the analytical530

and quantitative assessment of the effectiveness of various drought indicators, particularly in531

exploring inconsistencies emanating from topographical variations, gauge density, and model532

forcing parameters on drought impacts (Agutu et al., 2020). Given the considerable variability533

in the distribution of rainfall and the role of global climate tele-connection patterns on extreme534

events at different scales (e.g., Cook et al., 2018, Kiem et al., 2016, Paeth et al., 2012), a535

spatio-temporal approach to drought analysis through localization and regionalization is thus536

crucial. It is with this in mind that cumulant rotation was employed to localize and characterize537

spatial and temporal variability of drought evolution over Brazil. To avoid generalizing drought538

intensities, severities, and its cascading impacts over largely heterogenous regions, this study539

has demonstrated the importance of this approach over Brazil where strong spatial variability540

of rainfall at annual scale along climatological gradients across region is obvious (cf. Fig. 1).541

Localised SPI and MERRA patterns show that drought variability is relatively higher in542

the north and north-east Brazil. While each of the hydrological regions identified through543

the decomposition of drought indicators have unique response to climate teleconnections, the544

impact of time scales (i.e., SPI-6 and SPI-12) in extracting tele-connection influence also differ545

with region. For example, in the entire northern section of Brazil, SPI-6 extracts the influence546

of ENSO better than SPI-12 while the latter extracts tele-connection influence better than547

SPI-6 in the south of Brazil. Notably, as earlier mentioned, the SPI is widely recognised548

for its computational simplicity and ability to track meteorological (precipitation deficits),549

agricultural (soil moisture deficits leading to crop failure) and hydrological (abnormally low550

water levels, in lakes, reservoir levels, and groundwater) drought events based on different551

aggregation scales (e.g., Basu et al., 2017, Hayes et al., 2011, Mishra and Singh, 2010, McKee552

et al., 1995). As with other emerging drought indicators, the multi-scalar nature of SPI (e.g.,553

SPI aggregated at 3 and 6 months can be used to characterize meteorological and agricultural554

droughts, respectively while 9 and 12 months aggregation can be used to capture hydrological555

droughts) allows the monitoring of impacts and understanding characteristics and propaga-556

tion. On the one hand, this is crucial in the context of predicting drought early warning557

systems. On the other hand, it can aid the assessment of key drivers, be it anthropogenic558

or climatic, e.g., global climate teleconnection patterns. Depending on regions, SPI accumu-559

lation on different time scales (e.g., 3, 6, 9 and 12 months) could have different response or560
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association with climate teleconnection indices. This study confirms that for Brazil and is561

consistent with reports from other regions (e.g., Ndehedehe et al., 2016). Ultimately, the key562

message is the predominant influence of ENSO in the north/north-east and south of Brazil.563

However, in addition to these regions and the region that encompasses the central Brazil,564

the MERRA-based drought indicator reveals the significant contribution of PDO and ENSO.565

From a machine learning perspective that utilizes all climate modes to predict the temporal566

variations of drought indicators in all regions identified in Section 3, i.e, based on the hold-out567

method of cross validation, there is evidence to suggest global multi-scale climate influence568

on drought evolutions. These climatic influence range from multi-decadal (AMO and PDO)569

to quasi-biennial (QBO, inter-annual oscillations (ENSO) and other climate oscillation (AMM570

and MJO). In studying the influence of global climate on the temporal variations of extreme571

event over Brazil, the MERRA data is considerably promising and extracts the influence of572

these climate teleconnections better than the SPI (Table1).573

It should be noted that identifying the role of these teleconnections in the region was en-574

hanced by the combined use of machine learning and cumulant rotation to localize drought575

indicators. Third order statistics such as the PCA (Jolliffe, 2002) is now emerging in drought576

studies after it was first introduced by Karl and Koscielny (1982) to analysed long-term Palmer577

Drought Severity Indices over the United States. For example, based on PCA, the study by578

Santos et al. (2010) confirmed that drought events vary in time and space. They showed579

that the south of Portugal had more frequent cycles of dry events (every 3.6 years) compared580

to the northern region where severe to extreme droughts occurred approximately every 13.4581

years. However, the robustness of fourth order statistical methods such as cumulant rotation582

in drought analysis is not well known and was explored here to localize drought signals, com-583

plementing existing frameworks of multivariate methods that have been deployed for routine584

analysis of drought variability. The innate potential of advanced statistical rotation was re-585

cently demonstrated in East Africa where it was used to assess groundwater changes in nine586

major aquifers (Agutu et al., 2019).587

The influence of climate teleconnections on the hydrology of South America is well known588

(e.g., Ndehedehe and Ferreira, 2020b, Peng et al., 2019, Erfanian et al., 2017, Linage et al.,589

2013). In Brazil, ENSO and tropical North Atlantic sea surface temperature field play ma-590

jor roles in drought occurrence (Marengo et al., 2018). And consistent with our study Costa591

et al. (2016) acknowledged the influence of ENSO on rainfall variability and droughts in east-592

ern north-east Brazil, specifically highlighting the roles of Pacific and Atlantic on extreme593
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events. Arguably, ENSO is the largest inter-annual climate phenomenon and its influence594

on hydro-meteorological processes and drought events has been widely studied and acknowl-595

edged globally (e.g., Costa et al., 2016, Paeth et al., 2012, Williams and Hanan, 2011, White596

et al., 2004, Nicholson et al., 2000). However, the observed coefficients in the SVMR scheme,597

show that apart from ENSO, AMO, PDO, and AMM explained significant variability in the598

predicted drought indicator, thus emphasizing the key role of the Atlantic and Pacific in the599

hydrological hot spots identified in Brazil. To further buttress the influence of these oceans,600

for example, the regression coefficients did not change significantly when only AMO, ENSO,601

and PDO were used as predictors in SVMR model, especially in the north/north-east regions.602

Given the linear relationship between these teleconnections and localized drought indicators,603

the continued application of this method in drought characterization is important to predict604

and track the ocean-atmosphere interactions and low frequency climate oscillations associated605

with drought episodes in Brazil.606

4.2. Drought statistics and the role of science and policy solutions in risk mitigation607

In the light of several precarious drought events, similar to other emerging economies,608

the Brazilian government has responded to several critical climatic thresholds through the609

construction of massive water infrastructures. As at 2016, for example, a total of 19,361 man-610

made reservoirs used for irrigation and hydropower, among others existed in Brazil (ANA,611

2017). In our drought analysis, two periods exist when drought affected areas reached and612

exceeded 50%. Based on the MERRA indicator, the first was during the 1998/1999 period613

and the second occurred between 2012 and 2016. It was mentioned in Getirana (2016) that614

the former was the cause of the biggest energy crisis that occurred in Brazil while the impacts615

of the 2012 − 2015 extreme droughts have been fully detailed and includes, major freshwater616

crises, groundwater depletion, agricultural losses, depletion of moisture influx from the Amazon617

basin, among several other causes (e.g., Ferreira et al., 2018, Marengo et al., 2018, Awange618

et al., 2016, Getirana, 2016). Drought statistics as provided here could be a key step towards619

improving water allocation systems thus diminishing the impacts of extreme droughts in the620

region. In this study, the spatio-temporal variability of drought indicators and mean drought621

duration over Brazil in the last 35 years can be useful parameters to strengthen policy efforts622

in water management and allocation. Our SPI analysis show high frequency in the temporal623

evolutions of drought in the north-east Brazil with prolonged events noted between 2008 and624

2015 and coincides with periods of groundwater depletion in some aquifer systems in the north-625
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east region (Gonçalves et al., 2020, Melati et al., 2019). As key hot spots of climatic influence,626

the north-east region of Brazil has a long history of water-related environmental issues, which627

for the most part is linked to limited rainfall and climate-induced extreme prolonged drought.628

The key solutions put forward during risk mitigation is effective management of water629

resources. This approach should encompass the wider challenges affecting drought monitor-630

ing and management. Thus, efficient drought management and monitoring of water resources631

and designing response policies and strategies at national, regional and international levels632

are required for building resilience to droughts (Haile et al., 2019, Sheffield et al., 2014).633

These activities could further help to minimize the natural climate variabilities and anthro-634

pogenic influences in aggravating drought conditions (Haile et al., 2019). Further, building635

a drought-resilient economy is needed for drought-vulnerable societies as it can help for bet-636

ter preparedness for coping, awareness for early warning of droughts (e.g., Sheffield et al.,637

2014). These could help to reduce the future impacts of droughts on socio-economic activities638

and the natural ecosystem functions across. Furthermore, mitigation strategies, risk-based639

decisions, and science-based adaptive approaches are also expected key outcomes aimed at640

increasing drought preparedness (e.g., Ndehedehe et al., 2019). These outcomes may play a641

role not only in raising the level of drought preparedness but could promote region-specific642

drought risk-management policy solutions. Some of these solutions may range from effective643

freshwater-based management decisions and drought mitigation strategies to important com-644

plementary interventions, such as insurance programs and government aids to affected regions645

and rural agro-communities to help cushion the effects of drought-inflicted calamity and losses.646

Through stake-holder participation, public policy and outcry, this is currently being imple-647

mented in some drought-prone regions of developed and emerging economies. For example,648

public policy framework on drought response in Brazil has been designed to allocate funds and649

water distribution to small scale farmers to help cushion drought impacts (Brito et al., 2018).650

Water transfer and additional water storage infrastructure are other management initiatives651

to build drought resilience.652

5. Conclusions653

Direct impacts of extreme droughts on contemporary human societies have resulted in the654

increased interest in region-specific assessments of droughts and the need to build drought655

resilience. In this study, a novel two-step regularization procedure that combines advanced656

multivariate methods with support vector machine regression was employed to assess and iden-657
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tify hydrological regions in Brazil where extreme events (droughts) are significantly associated658

with indices of oceanic variability. The results from this study are summarised as follows;659

(i) Statistical rotation of drought indicators (SPI and MERRA) show that drought variabil-660

ity is relatively higher in the extreme north and north-east region of Brazil. The influ-661

ence of strong spatial variability in rainfall at all temporal scales across regions modulate662

drought magnitudes and its properties. This largely explains the increased frequency and663

higher variability of drought events in the semi-arid north-east region compared to the664

humid (Amazon and environs) regions of Brazil. Areas along the Amazon and humid665

parts of Brazil show considerable and continued decline in MERRA indicator since 1980666

and also highlights the major drought events (1998/1999, 2005, and 2012 − 2015) that667

ravaged the region.668

(ii) The predominance of extreme drought events from drought indicators agree that more669

than 50% of Brazil was affected by the 1998/1999 drought. But the extreme drought of670

2015 was the worst since 1980 affecting approximately 70% of the country. The MERRA671

indicator shows this was an all-year (January-December) event with at least 60% areas672

being under drought every month.673

(iii) SPI analysis show high frequency in the temporal evolutions of drought in the north-east674

Brazil with prolonged events noted between 2008 and 2015 and coincides with periods675

of groundwater depletion in some aquifer systems in the region. Mean drought duration676

appear to be prevalent and higher around the Amazon and north-west sections of Brazil677

but generally less frequent in some areas of the Amazon basin. On a longer time scale,678

this drought duration is higher in the central Amazon area and ranges from 8 − 10679

months compared to areas located on the south and north-east Brazil. But the spatial680

distribution of drought intensities over Brazil tend to be fairly similar except in some681

north-west regions.682

(iv) In the climatic hotspots identified in Brazil (north/north-east and south of Brazil),683

ENSO, AMO, and PDO are the predominant climate teleconnections significantly as-684

sociated with droughts. However, the significant contributions of MJO, AMM, and685

other multi-scale climate modes were detected in the SVMR scheme, thus emphasizing686

the role of the Atlantic and Pacific in these climatic hot spots. The impact of timescales687

(e.g. SPI-6 or SPI-12) in extracting tele-connection influence on droughts is noted but688
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overall the MERRA indicator is considerably promising and extracts climate influence689

better than the SPI.690

(v) Some of the differences between SPI and MERRA indicators demonstrate the intrinsic691

hydrological response of surface hydrology and land surface conditions in some semi-692

arid/or moderately humid regions to extreme climate events such as drought. Due to a693

possible impacts of land surface processes, such as temperature and groundwater with-694

drawals for irrigation as is the case in Brazil, MERRA-drought indicator therefore will695

be more reliable to capture these impacts because of the inclusion of soil moisture and696

latent heat flux in the model. In this regard, precipitation-based drought indicator might697

be restricted because of complex hydrological processes (e.g., infiltration and flow dy-698

namics) that could be linked to interactions between land surface-moisture fluxes and699

the atmosphere under an extreme drought scenario.700

(vi) Identifying the role of climate teleconnections in Brazil was enhanced by the combined701

use of machine learning and cumulant rotation to localize drought indicators. Hence, the702

continued application of this method in drought characterization is important to improve703

knowledge on the ocean-atmosphere interactions and low frequency climate oscillations704

associated with drought episodes in several sub-regions of Brazil. We note that reanalysis705

data such as MERRA could be restricted in some regions because of the lack of sufficient706

direct observations for adequate initialization of its outputs. However, the novel two-step707

regularization framework developed in this study using the GPCC-derived SPI confirms708

the importance of the Pacific and Atlantic oceans on drought evolutions in Brazil.709
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