The effect of *Echinacea* spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: a rapid review **Authors**: Monique Aucoin¹, Kieran Cooley^{1,2,3,4}, Paul Richard Saunders¹, Jenny Carè², Dennis Anheyer^{4,5}, Daen N. Medina^{2,6}, Valentina Cardozo¹, Daniella Remy¹, Nicole Hannan⁷, Anna Garber¹ ## **Corresponding author:** Monique Aucoin Canadian College of Naturopathic Medicine Toronto, Canada maucoin@ccnm.edu #### **Brief Overview** Current evidence suggests that *Echinacea* supplementation may decrease the duration and severity of acute respiratory tract infections; however, no studies using *Echinacea* in the prevention or treatment of conditions similar to COVID-19 have been identified. Few adverse events were reported, suggesting that this herbal therapy is reasonably safe. Because *Echinacea* can increase immune function, there is a concern that it could worsen over-activation of the immune system in cytokine storm; however, clinical trials show that *Echinacea* decreases levels of immune molecules involved in cytokine storm. #### Verdict Echinacea supplementation may assist with the symptoms of acute respiratory infections (ARI) and the common cold, particularly when administered at the first sign of infection; however, no studies using Echinacea in the prevention or treatment of conditions similar to COVID-19 have been identified. Previous studies have reported that Echinacea may decrease the severity and/or duration of ARI when taken at the onset of symptoms. The studies reporting benefit used E. purpurea or a combination of E. purpurea and E. angustifolia containing standardized amounts of active constituents. ¹Canadian College of Naturopathic Medicine, Toronto, Canada ²University of Technology Sydney, Ultimo, Australia ³Pacific College of Health Sciences, San Diego, USA ⁴ National Centre for Naturopathic Medicine, Southern Cross University, Lismore, Australia ⁵Department of Internal and Integrative Medicine, University of Duisburg-Essen, Kliniken Essen-Mitte, Germany ⁶Torrens University, Sydney NSW, Australia ⁷Griffith University, Gold Coast, Australia Few adverse events from the use of *Echinacea* were reported, suggesting that this herbal therapy is reasonably safe. No human trials could be located reporting evidence of cytokine storm when *Echinacea* was used for up to 4 months. When assessing all human trials which reported changes in cytokine levels in response to *Echinacea* supplementation, the results were largely consistent with a decrease in the pro-inflammatory cytokines that play a role in the progression of cytokine storm and Acute Respiratory Distress Syndrome (ARDS), factors that play a significant role in the death of COVID-19 patients. While there is currently no research on the therapeutic effects of *Echinacea* in the management of cytokine storm, this evidence suggests that further research is warranted. ## Background Echinacea species are native to North America and have been used by indigenous peoples for a range of illnesses. As an herbal medicine, Echinacea has been the subject of significant research over the past century, particularly with respect to its role in the treatment and prevention of respiratory illnesses. It is one of the most popular natural health products purchased worldwide, with the majority of commercially available products containing E. purpurea and/or E. angustifolia (1). Many naturopathic doctors recommend Echinacea supplements for immune support. A wide range of reports have described its immuno-modulatory properties including macrophage activation and effects on cytokine expression. Because significant effects on cytokine levels have been observed in response to Echinacea use, there is a theoretical concern about its contribution to cytokine storm (also known as cytokine release syndrome) (1). Cytokine storm is a poorly understood phenomenon involving excessive, rapid release of pro-inflammatory cytokines (2). In COVID-19, cytokine storm can lead to ARDS which carries a 40% mortality rate (3). Cytokines associated with cytokine storm include pro-inflammatory interleukin (IL)-6, IL-8, IL-1B, IL-12 and tumor necrosis factor (TNF)α, while other cytokines, such as IL-10, have established anti-inflammatory effects and a role in downregulating excessive immune activity (2). In COVID-19 specifically, cytokine storm is a significant factor in driving a more severe clinical course with patients requiring Intensive Care Unit admission showing higher levels of cytokines TNF α and IL-6 (3). ## Search Strategy #### **Research Questions** 1) What is the role of *Echinacea* in the prevention and treatment of COVID-19 and other respiratory tract infections? 2) Is there any evidence suggesting that *Echinacea* supplementation could increase the risk of cytokine storm in COVID-19 patients based on the changes in cytokine levels observed in human clinical trials? # Inclusion/exclusion criteria - 1) Studies were included if they reported human prospective intervention studies sampling adults (aged 18 and over), and assessed the effect of *Echinacea* supplementation on the prevention or treatment of respiratory tract infections. Studies including pediatric populations were excluded. - 2) Studies were included if they reported human prospective studies sampling adults, and assessed the effect of *Echinacea* supplementation on levels of cytokines which have been identified as playing a role in cytokine storm (interferons, interleukins, chemokines, colony-stimulating factors, tumor necrosis factors) or the incidence of cytokine storm or cytokine release syndrome. #### **Databases** Medline (Ovid), AMED (Ovid), CINAHL (EBSCO), EMBASE (Ovid) Search terms (example) -clinical efficacy search [Medline (Ovid)] ((Randomized Controlled Trials as Topic/ OR randomized controlled trial/ OR Random Allocation/ OR Double Blind Method/ OR Single Blind Method/ OR clinical trial/ OR clinical trial, phase i.pt. OR clinical trial, phase ii.pt. OR clinical trial, phase ii.pt. OR clinical trial, phase iv.pt. OR controlled clinical trial.pt. OR randomized controlled trial.pt. OR multicenter study.pt. OR clinical trial.pt. OR exp Clinical Trials as topic/ OR (clinical adj trial\$).tw. OR ((singl\$ or doubl\$ or treb\$ or tripl\$) adj (blind\$3 or mask\$3)).tw. OR PLACEBOS/ OR placebo\$.tw. OR randomly allocated.tw. OR allocated adj2 random\$).tw.) NOT (letter/ OR historical article/)) AND (Echinacea or Echinacea angustifolia or Echinacea purpurea or Echinace or coneflower) AND ("avian influenza (H5N1)"/ or "influenza A (H1N1)"/ or Influenza A virus/ or influenza C/ or exp influenza/ or highly pathogenic avian influenza/ or Influenza B virus/ or highly pathogenic avian influenza virus/ or seasonal influenza/ or "Influenza A virus (H1N1)"/ or Asian influenza/ or swine influenza/ or influenza A/ or pandemic influenza/ or Influenza C virus/ or influenza B/ or avian influenza/ or Influenza virus or SARS or MERS or respir\$ or Middle East Respiratory Syndrome Coronavirus or severe acute respiratory syndrome/) Search terms (example) -cytokine search [Medline (Ovid)] ((Randomized Controlled Trials as Topic/ OR randomized controlled trial/ OR Random Allocation/ OR Double Blind Method/ OR Single Blind Method/ OR clinical trial/ OR clinical trial, phase i.pt. OR clinical trial, phase ii.pt. OR clinical trial, phase ii.pt. OR clinical trial, phase iv.pt. OR controlled clinical trial.pt. OR randomized controlled trial.pt. OR multicenter study.pt. OR clinical trial.pt. OR exp Clinical Trials as topic/ OR (clinical adj trial\$).tw. OR ((singl\$ or doubl\$ or treb\$ or tripl\$) adj (blind\$3 or mask\$3)).tw. OR PLACEBOS/ OR placebo\$.tw. OR randomly allocated.tw. OR allocated adj2 random\$).tw.) NOT (letter/ OR historical article/)) AND (Echinacea or Echinacea angustifolia or Echinacea purpurea or Echinace or coneflower) AND (Cytokine\$ or cytokine storm or cytokine release syndrome or chemokine\$ or interferon\$ or interleukin\$ or tumour necrosis factor\$ or colony-stimulating factor\$) ## Screening Titles and abstract screening and full text screening were completed by one reviewer and checked for accuracy by a second reviewer. Similarly, data extraction was completed by a single reviewer and checked for accuracy by a second reviewer. Any discrepancies were resolved by consensus. ## Critical appraisal The risk of bias (RoB) of study findings was assessed using the revised Cochrane RoB tool for randomised trials (RoB 2) https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/current-version-of-rob-2?authuser=0. ## **Protocol Registration** The protocol was registered with PROSPERO: https://www.crd.york.ac.uk/PROSPERO/display record.php?RecordID=186339 #### Results Clinical Efficacy Search: The search identified 382 results, including 85 duplicates. 297 citations were screened. After title and abstract reviews, 37 citations remained and 260 citations were excluded, as these did not meet the inclusion and exclusion criteria. The full-text of the remaining 37 articles were assessed for eligibility and 23 were excluded (wrong study design n=20, duplicate n=1, not accessible n=1, wrong outcome n=1). Three additional studies were identified through a bibliography search. A total of 17 studies underwent data extraction (Table 1). Ten studies were conducted in the World Health Organization (WHO) region of the Americas, with five in the European region, one in the Western Pacific region and one in the South-East Asia region. All 17 studies were double-blind, placebo-controlled, randomized clinical trials. One study had additional arms using open-label *Echinacea* and no treatment (4) and several studies had multiple arms comparing different *Echinacea* species, commercial formulas or doses (5-8). Studies were designed to assess for the prevention or
treatment of ARI, primarily, the common cold. Six studies assessed the impact on prevention: four in normal daily life (duration 6 to 16 weeks), one in response to a strenuous exercise challenge (duration 4 weeks) (9) and one in response to long-distance air travel (duration 4 weeks) (10). Two studies assessed the impact of *Echinacea* 7 days before and 5 to 7 days after a viral challenge (8,11). Nine studies assessed the use of *Echinacea* for 5 to 14 days in the treatment of a new onset respiratory tract infection, one in patients with chronic obstructive pulmonary disease (COPD) who were administered antibiotics concurrently and the remaining were conducted in healthy adults (5). In all 17 studies, participants were located in the community (i.e. not in-patient settings). In total, the 17 studies included 3363 participants with a mean sample size of 224 participants (SD=229, range: 32 to 755). Eleven studies used intervention formulas containing *E. purpurea*, two used *E. angustifolia*, four used a combination of *E. purpurea* and *E. angustifolia*, and one used *E. pallidae* radix. Echinacea dose and method of extraction across all of the included studies were quite variable. Studies used different parts of the herb, including root, whole plant and aerial parts, as well as different methods of preparation. Echinacea interventions were delivered in the form of pressed juice, hydroalcohol extracts, capsules of dry herb and infusions. The lowest dose used was 100 mg of herb (12) while other studies used as much as 10.2g per day in capsules on the first day of treatment (4). Five studies reported using formulas that were standardized to include a specific amount of active constituent (6, 12-14). The studies assessed for ARI, viral respiratory infections or the common cold. The two studies that used a viral challenge administered rhinovirus 39 and monitored for the common cold (8, 11). The Cochrane Risk of Bias 2.0 assessment tool was used to evaluate the included studies. Of the six studies assessing prevention, four were rated low risk of bias (7, 10, 13, 15) while two were rated high risk (9, 16). Among the two studies testing prevention and treatment in response to a viral challenge, one was rated high risk of bias (11) and one low risk of bias (8). Among the nine studies assessing treatment of new onset infections, four were rated low (4, 14, 17, 18), four rated high (5, 6, 19, 20) and one was rated as having some concerns (12). Reasons for a high risk of bias included per-protocol analysis (6, 16), lack of description of dropouts (9), incomplete reporting of data (5, 19), and lack of baseline data comparing the treatment groups (20). One study terminated the study before recruiting the sample size needed to detect significance based on a power calculation completed midway through the study (11). These judgments should be taken into consideration when interpreting the findings of this review. #### Cytokine Search: The search identified 100 results, including 26 duplicates. 74 citations were screened. After title and abstract reviews, 18 citations remained and 56 citations were excluded as these did not meet the inclusion and exclusion criteria. The full-text of the remaining 18 articles were assessed for eligibility and six were excluded (protocol only n=1, incorrect outcome n=2, duplicate data from included publication n=1, unable to locate full text n=1). A total of 12 studies underwent data extraction (Table 2). Of these, five included healthy participants who consumed oral doses of *Echinacea* before blood levels of cytokines were measured (21-25). Three studies included participants with respiratory tract infections (4, 5, 8) and four included healthy participants whose *ex vivo* blood samples were stimulated and immune response observed (26-29). The studies assessed cytokines including TNF α (n=9), IL-1B, IL-2, IL-3 IL-6, IL-8, IL-10, IL-12 and Interferon (IFN) α 2. ## Summary of Findings #### Clinical Efficacy The six studies that administered *Echinacea* to healthy participants for two to four months and assessed prevention of naturally acquired upper respiratory tract infections (URIs), measured the frequency and/or duration of infections (7, 9, 10, 13, 15, 16). Five of these studies assessed infection frequency and of these, two reported a statistically significant reduction (10, 13). Three studies assessed duration of illness and of these, one reported a statistically significant decrease (9). In the two studies that provided *Echinacea* supplementation before and after study-administered viral challenge, one reported no difference in infection frequency or severity compared to placebo (8). The nine studies assessing the use of *Echinacea* at the onset of a URTI measured infection duration and symptom severity (4-6, 12, 14, 17-20). All studies assessed for impact on symptom severity and five reported statistically significant reductions in symptom severity (4, 6, 14, 19, 20). A sixth study, that included participants with COPD experiencing an acute exacerbation of respiratory symptoms, found a reduction in severity in response to supplementation with *Echinacea* in combination with zinc, selenium and ascorbic acid but not for *Echinacea* alone (5). Seven of the studies using *Echinacea* at URTI symptom onset assessed the duration of symptoms and five reported a statistically significant reduction in duration compared to participants receiving placebo (4, 14, 18-20). With respect to risk of bias, of the ten studies that reported a positive outcome, five were rated as high risk of bias (5, 6, 9, 19, 20) and five were rated as low risk of bias (4, 10, 13, 14, 18). Among the 13 studies that reported intervention dose with an equivalent dose of dry herb (or a liquid extraction and extraction strength), the mean dose was calculated. In cases where a range or variable doses were given, the highest doses was selected. The mean dose used in studies reporting benefit was 7.3 grams per day (SD 6.4) and the mean dose used in studies that failed to detect benefit was 1.7 grams per day (SD 2.1). The studies reporting benefit used *E. purpurea* (n=6) or a combination of *E. purpurea* and *E. angustifolia* (n=3) or *E. pallidae* radix (n=1). Of the five studies using extracts with a standardized level of active constituents, four reported benefit. These active constituents included dodecatetraenoic acid, isobutylamide, alkylamides, cichoric acid and soluble -1,2-D-fructofuranosides (6, 10, 12-14). #### Cytokine Search: Table 3 presents the number of studies showing statistically significant increases or decreases in different pro- and anti-inflammatory cytokine levels in response to *Echinacea* supplementation in 12 clinical trials. None of the clinical trials included in this review reported occurrence of cytokine storm or other immune or inflammatory disturbance which could be attributed to the *Echinacea* intervention. While seven studies did not report adverse events, the remainder reported few adverse effects, in most cases similar to the control group. One reported a serious reaction involving generalized erythema which resolved with anti-histamine treatment (5) and mild adverse events of which insomnia was the most common. Another reported primarily gastro-intestinal side effects (8) and another reported one case of anxiety and nervousness and a recurrence of bilateral arthritis symptoms which the patient had previously experienced (22). ## Clinical Significance: Echinacea supplementation may assist with the symptoms of ARI and the common cold, particularly when administered at the first sign of infection; however, no studies have been identified which use *Echinacea* in the prevention or treatment of conditions similar to COVID-19. When taken at the onset of symptoms, *Echinacea* may decrease the severity or duration of ARI. Because the vast majority of studies involved participants who were free from serious or chronic illness, and without known issues related to immune function, it is not possible to infer what the role of *Echinacea* spp. could be in those at highest risk of COVID-19. With respect to the impact of *Echinacea* on cytokine levels, the majority of evidence suggests a decrease in levels of pro-inflammatory cytokines associated with cytokine storm. While the potential for *Echinacea* to provide a clinical therapeutic benefit is speculative, animal studies using pharmaceuticals that decrease production of IL-1 α , IL-6 and TNF α cytokines have increased survival of mice infected with severe influenza (2), and SARS-CoV (3). Tocilizumab, an anti-IL-6 receptor antibody, is being studied in the treatment of cytokine storm in COVID-19 patients with elevated IL-6 levels (3). Research of the use of *Echinacea* in cytokine storm may be warranted. ## Disclaimer This article has not been peer-reviewed; it should not replace individual clinical judgment. The views expressed in this rapid review are the views of the authors and not necessarily from the host institutions. The views are not a substitute for professional medical advice. #### References #### **Included Studies** - [1] G. Kembuan, W. Lie, and A. Tumimomor, "Potential usage of immune modulating supplements of the Echinacea genus for COVID-19 infection," International Journal of Medical Reviews and Case Reports, vol. 4, no. Reports in Clinical Medicine and. p. 1, 2020, doi: 10.5455/ijmrcr.immune-modulating-supplements-echinacea-genus-covid-19-infection. - [2] J. R. Tisoncik, M. J. Korth, C. P. Simmons, J. Farrar, T. R. Martin, and M. G. Katze, "Into the eye of the cytokine storm," Microbiol. Mol. Biol. Rev., vol. 76, no. 1, pp. 16–32, Mar. 2012. - [3] F. Coperchini, L. Chiovato, L. Croce, F. Magri, and M. Rotondi, "The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system," Cytokine & Growth Factor Reviews, vol. 53. pp. 25–32, 2020, doi:
10.1016/j.cytogfr.2020.05.003. - [4] B. Barrett et al., "Echinacea for Treating the Common Cold," Annals of Internal Medicine, vol. 153, no. 12. p. 769, 2010, doi: 10.7326/0003-4819-153-12-201012210-00003. - [5] F. Isbaniah, W. H. Wiyono, F. Yunus, A. Setiawati, U. Totzke, and M. A. Verbruggen, "Echinacea purpurea along with zinc, selenium and vitamin C to alleviate exacerbations of chronic obstructive pulmonary disease: results from a randomized controlled trial," J. Clin. Pharm. Ther., vol. 36, no. 5, pp. 568–576, Oct. 2011. - [6] V. Goel et al., "A proprietary extract from the echinacea plant (Echinacea purpurea) enhances systemic immune response during a common cold," Phytotherapy Research, vol. 19, no. 8. pp. 689–694, 2005, doi: 10.1002/ptr.1733. - [7] D. Melchart, E. Walther, K. Linde, R. Brandmaier, and C. Lersch, "Echinacea root extracts for the prevention of upper respiratory tract infections: a double-blind, placebo-controlled randomized trial," Arch. Fam. Med., vol. 7, no. 6, pp. 541–545, Nov. 1998. - [8] R. B. Turner, R. Bauer, K. Woelkart, T. C. Hulsey, and J. David Gangemi, "An Evaluation of Echinacea angustifolia in Experimental Rhinovirus Infections," New England Journal of Medicine, vol. 353, no. 4. pp. 341–348, 2005, doi: 10.1056/nejmoa044441. - [9] H. Hall, M. Fahlman, and H. Engels, "Echinacea Purpurea and Mucosal Immunity," International Journal of Sports Medicine, vol. 28, no. 9. pp. 792–797, 2007, doi: 10.1055/s-2007-964895. - [10] E. Tiralongo, R. A. Lea, S. S. Wee, M. M. Hanna, and L. R. Griffiths, "Randomised, Double Blind, Placebo-Controlled Trial of Echinacea Supplementation in Air Travellers," Evidence-Based Complementary and Alternative Medicine, vol. 2012. pp. 1–9, 2012, doi: 10.1155/2012/417267. - [11] S. J. Sperber, L. P. Shah, R. D. Gilbert, T. W. Ritchey, and A. S. Monto, "Echinacea purpurea for Prevention of Experimental Rhinovirus Colds," Clinical Infectious Diseases, vol. 38, no. 10. pp. 1367–1371, 2004, doi: 10.1086/386324. - [12] S. H. Yale and K. Liu, "Echinacea purpurea therapy for the treatment of the common cold: a randomized, double-blind, placebo-controlled clinical trial," Arch. Intern. Med., vol. 164, no. 11, pp. 1237–1241, Jun. 2004. - [13] M. Jawad, R. Schoop, A. Suter, P. Klein, and R. Eccles, "Safety and Efficacy Profile of Echinacea purpurea to Prevent Common Cold Episodes: A Randomized, Double-Blind, Placebo-Controlled Trial," Evidence-Based Complementary and Alternative Medicine, vol. 2012. pp. 1–7, 2012, doi: 10.1155/2012/841315. - [14] V. Goel et al., "Efficacy of a standardized echinacea preparation (EchinilinTM) for the treatment of the common cold: a randomized, double-blind, placebo-controlled trial," Journal of Clinical Pharmacy and Therapeutics, vol. 29, no. 1. pp. 75–83, 2004, doi: 10.1111/j.1365-2710.2003.00542.x. - [15] W. Grimm and H.-H. Müller, "A randomized controlled trial of the effect of fluid extract of Echinacea purpurea on the incidence and severity of colds and respiratory infections **Access the 'Journal Club' discussion of this paper at http://www.elsevier.com/locate/ajmselect/," The American Journal of Medicine, vol. 106, no. 2. pp. 138–143, 1999, doi: 10.1016/s0002-9343(98)00406-9. - [16] J. O'Neil, S. Hughes, A. Lourie, and J. Zweifler, "Effects of echinacea on the frequency of upper respiratory tract symptoms: a randomized, double-blind, placebo-controlled trial," Annals of Allergy, Asthma & Immunology, vol. 100, no. 4. pp. 384–388, 2008, doi: 10.1016/s1081-1206(10)60603-5. - [17] B. P. Barrett, "Treatment of the Common Cold with Unrefined Echinacea," Annals of Internal Medicine, vol. 137, no. 12. p. 939, 2002, doi: 10.7326/0003-4819-137-12-200212170-00006. - [18] B. Schulten, M. Bulitta, B. Ballering-Brühl, U. Köster, and M. Schäfer, "Efficacy of Echinacea purpurea in Patients with a Common Cold," Arzneimittelforschung, vol. 51, no. 07. pp. 563–568, 2011, doi: 10.1055/s-0031-1300080. - [19] M. Dorn, E. Knick, and G. Lewith, "Placebo-controlled, double-blind study of Echinaceae pallidae radix in upper respiratory tract infections," Complementary Therapies in Medicine, vol. 5, no. 1. pp. 40–42, 1997, doi: 10.1016/s0965-2299(97)80089-1. - [20] G. F. Lindenmuth, G. Frank Lindenmuth, and E. B. Lindenmuth, "The Efficacy of Echinacea Compound Herbal Tea Preparation on the Severity and Duration of Upper Respiratory and Flu Symptoms: A Randomized, Double-Blind Placebo-Controlled Study," The Journal of Alternative and Complementary Medicine, vol. 6, no. 4. pp. 327–334, 2000, doi: 10.1089/10755530050120691. - [21] S. Dall'Acqua et al., "Pharmacokinetics and immunomodulatory effect of lipophilic Echinacea extract formulated in softgel capsules," European Journal of Pharmaceutics and Biopharmaceutics, vol. 97. pp. 8–14, 2015, doi: 10.1016/j.ejpb.2015.09.021. - [22] L. S. Kim, R. F. Waters, and P. M. Burkholder, "Immunological activity of larch arabinogalactan and Echinacea: a preliminary, randomized, double-blind, placebo-controlled trial," Altern. Med. Rev., vol. 7, no. 2, pp. 138–149, Apr. 2002. - [23] M. T. Whitehead, T. D. Martin, T. P. Scheett, and M. J. Webster, "The effect of 4 wk of oral echinacea supplementation on serum erythropoietin and indices of erythropoietic status," Int. J. Sport Nutr. Exerc. Metab., vol. 17, no. 4, pp. 378–390, Aug. 2007. - [24] R. K. Randolph et al., "Regulation of human immune gene expression as influenced by a commercial blended Echinacea product: preliminary studies," Exp. Biol. Med., vol. 228, no. 9, pp. 1051–1056, Oct. 2003. - [25] P. Guiotto et al., "Pharmacokinetics and immunomodulatory effects of phytotherapeutic lozenges (bonbons) with Echinacea purpurea extract," Phytomedicine, vol. 15, no. 8, pp. 547–554, Aug. 2008. - [26] B. Dapas et al., "Immunomodulation mediated by a herbal syrup containing a standardized Echinacea root extract: A pilot study in healthy human subjects on cytokine gene expression," Phytomedicine, vol. 21, no. 11. pp. 1406–1410, 2014, doi: 10.1016/j.phymed.2014.04.034. - [27] M. R. Ritchie, J. Gertsch, P. Klein, and R. Schoop, "Effects of Echinaforce® treatment on ex vivo-stimulated blood cells," Phytomedicine, vol. 18, no. 10, pp. 826–831, Jul. 2011. - [28] K. Woelkart et al., "Bioavailability and pharmacokinetics of Echinacea purpurea preparations and their interaction with the immune system," Int. Journal of Clinical Pharmacology and Therapeutics, vol. 44, no. 09. pp. 401–408, 2006, doi: 10.5414/cpp44401. - [29] E. Schwarz, J. Metzler, J. P. Diedrich, J. Freudenstein, C. Bode, and J. C. Bode, "Oral administration of freshly expressed juice of Echinacea purpurea herbs fail to stimulate the nonspecific immune response in healthy young men: results of a double-blind, placebo-controlled crossover study," J. Immunother., vol. 25, no. 5, pp. 413–420, Sep. 2002. | Author | Country,
WHO
Region | Sponsorshi
p
source/ass
ociation | Desig n (eg Cohor t, cross- sectio nal) | Statistical
method (s) | Study
Population
/ Disease
or
Condition | Echinace
a spp,
part of
plant | Form of
supplem
ent
(juice,
tincture,
capsule) | Extracti
on
Strength
and
Standar
dization | Dose | Durat
ion of
Treat
ment | Inclusion
criteria | Exclusion criteria | Control
or
Placebo | Number
Subjects, N
in
interventio
n and
placebo | Measure of
Outcome | Outcome | |------------------------------------|--|--|--|---|--|---|--|--|---|--|--|---|--|---|--|--| | Grimm
W et
al.
(1999) | German
y,
Europea
n Region | Madaus AG,
Cologne/
Philipps-
University
of Marburg,
Germany | DBPC
RCT | * A priori measures * Fisher's exact test for b/line categorical variable & incidence of AEs * Mann-Whitney U test for continuous demographic variables, infection incidence/ severity/duratio n *
Nonparametric Mann-Whitney U to estimate Cls for infection no./duration (normal distribution assumed) * Hochberg procedure adjusted for multiple testing | Patients
from a
large
general
practice | Echinace
a
purpure
a, whole
flowerin
g plant
(no
roots) | Freshly
expresse
d juice
22%
alcohol
identical
to the
commer
cially
available
Echinaci
n-
Liquidu
m | Not
provide
d | 4 mL
2x/day | 8
weeks | 1. More than 3 respiratory airway infections or common colds in the preceding year 2. At least 12 years old 3. Gave written informed consent for study participation | 1. Acute infections of any kind within 1 week of recruitment 2. Pregnancy or nursing 3. Use of immunostimulatin g drugs in preceding 4 weeks 4. Known allergy against coneflowers 5. Severe underlying disease or immunosuppression 6. Inability to give informed consent 7. Unreliability for follow-up as judged by the investigator | Placebo
(alcohol
/ water
solution
with
artificial
colour) | 108,
Echin = 54
Placebo =
54 | # participants with one infection Mean no. of infections/patie nt Infection severity Desire to continue supplement Duration of infection Adverse events | No difference No difference No significant difference No difference No significant difference No significant difference | | Melcha
rt D et
al.
(1998) | German
y,
Europea
n Region | The Center for Complementary Medicine Research; Bavarian Parliament; Plantaphar mazie, Gottingen, Germany; Medizinische Klinik, Technische Universitat, Biometrisches Zentrum fur Therapiest udien | DBPC
RCT
three-
arme
d
study | * SAS and SPSS
for as
randomised, ITT
& PP
populations
* Log rank test
(for ITT) for
main outcome
measure
* All other data;
Kruskal-Wallis
and x2 tests for
exploratory
inference
statistics | 4 military
institutions & 1
industrial
plant. | Echinace
a purpure
a roots
OR
Echinace
a angustif
olia
roots | Extract
in 30%
alcohol | 1:11 | 2.5ml
2x/day | 12
weeks
from
Mond
ay to
Frida
y | 1. 18-65 years 2. Free of acute illness at the time of enrollment 3. written informed consent for study participation | 1. Acute respiratory tract infection or other infections within the last 7 days 2. Serious progressive disease such as tuberculosis, multiple sclerosis, or acquired immunodeficiency syndrome 3. Systemic intake of corticosteroids, antibiotics, or immunostimulants in the previous 2 weeks 4. Allergy to the Compositae family 5. Pregnancy | Placebo
coloured
ethanoli
c
solution | 302, E
august =
103
(3 drop
outs)
E purp =
103
(4 drop
outs)
Placebo =
96
(6 drop
outs) | Time until first URTI (time to event) Number of participants with at least 1 infection Patient assessment Adverse events | No difference No significant difference Treatment groups believed they had more benefit from treatment than placebo (P = 0.04) No difference in frequency of AE reporting | | Hall H
et al.
(2007) | USA,
Region
of the
America
s | Sponsorshi
p or
funding
source not
stated, a
supplemen
t
manufactur
er | DBPC
RCT
parall
el
group
desig
n | ANOVA performed on test data & salivary tests. Post hoc (Least Sig. Diff: LSD) used for significant main effects. | Non-
smoking,
active
adults 19-
46 years
subjected
to
strenuous | Echinace
a
purpure
a | Capsule
containi
ng
pressed
juice | 1.7-2.5:1 | 8 capsules /day (2 with each meal and bedtime); each | 28
days | 1. Successful
assessment of
a medical
history,
present
health status,
and 12-lead
resting
ECG | Cigarette smoking Respiratory disease, or signs and symptoms of URT1 the preceding week Taking any medications | Placebo
prepare
d in-
house;
gelatin
caps:
sugar
mixture
(sugar, | 32, Echin =
18
Placebo =
14 | s-IgA
concentrations,
saliva
flow rate, and
secretion rate of
s-IgA (pre- and
post-exercise at
baseline and
after 28 days of | Baseline: significant
exercise induced reduction
in s-1gA in both groups
(Control -69%; Ech - 43%)
& secretion rate of s-1gA
(Control - 79%; Ech -
53%) (p < 0.05) | | | | provided
the active
interventio
n free of
charge
(with no
input to the
study and
no
expectation
s or
agreement
s) | | Interactions subjected to simple main effects analysis, followed by post hoc (LSD) analysis. Independent samples t-test used for URTI incidence & duration SPSSX used for all analyses. | exercise
testing | | | | 800g
juice | | 2. Healthy,
habitually
active
subjects
3. Gave
written
informed
consent for
study
participation | and/or dietary
supplements
4. Exhibited
contraindications
to strenuous
exercise
5. If unable to
distinguish
between allergies
from the symptoms
of a URTI on a pre-
study intake form | sucrose,
cornstar
ch,
brown
sugar,
molasse
s) | | Number of URTI symptoms duration of URTI symptoms | End: placebo grp experienced decrease in s- IgA compared to Ech group (Control –45%; Ech +7%) & secretion rate of s-IgA (Control –45%; Experimental –7%, p=0.004). No difference Reported URTI duration significantly decreased (placebo 8.6 days vs. Ech 3.4 days, p=<0.001) | |---------------------------|--|--|-------------|--|--|---|--------|--|---|---|--|--|---|---|---|--| | O'Neil
et al
(2008) | USA, The
Region
of the
America
s | grant 5 D39 HP 00023-09 from the Health Resources and Services Administra tion Border Health Education and Training Center. Medication used was donated by Natures Resource. | DBPC
RCT | A prospective power analysis was calculated. Wilcoxon rank sum test was used to compare the treatment and placebo groups for each of the 8 symptoms over 8 weeks; with max poss symptom days @56. Missing data from drop out precluded intention -to treat- analysis | Volunteers recruited from hospital personnel; This population was expected to have more equitable exposure to cold/influe nza. | Echinace
a
purpure
a, 300
mg | | | 3 capsules 2x/day daily, 300 mg per capsule | 8
weeks | 1. Healthy adults working in the University Medical Center Family Health Center including residents, staff, faculty, and nursing staff 2. Responded to flyer voluntarily 3. Gave written informed consent for study participation 4. 18-65 years | 1. Known immune dysfunction 2. Undergoing immunosuppressiv e therapy 3. Pregnancy or lactation 4. Currently using echinacea 5. Allergies to echinacea and/or parsley | Parsley,
300 mg
per
capsule | 90,
Enrolled
Placebo: n
=45;
Echinacea:
n=45.
Completed
Placebo: n
= 30;
Echinacea
n = 28 | Number of days during that week in which they experienced sore throat, runny nose, headache, hoarseness, nasal congestion, muscle aches, cough, and fever Number of days missed from work Medications used to treat symptoms | No difference in total symptoms or any induvial symptom. The median total number of sick days was 9.0 for the echinacea group and 14.0 for the placebo group (p=0.67). 3 capsules BID of 300mg Echinacea (exp grp) or parsley (control grp) for 8 weeks (total = | | | | | | | | | | | | | of age | | | | Number of
capsules missed
that week | 1800mg/day) Significant differences between drop- outs/nonadherent and those who completed the study. Persons not included in the final analysis used fewer vitamins and herbs (p<0.1) or fewer allergies (p=0.3) | | Jawad
et al
(2012) | UK,
Europea
n Region | Unclear,
possibly
the product
manufactur
er | DBPC
RCT | Chi-squared | Healthy
adults
observed
for
common
cold | Echinace
a
purpure
a (A
Vogel
Echinafo
rce),
95% | Liquid |
95%
herba
(DER =
1: 12)
and 5%
roots
(DER =
1: 11) | Preventi on: 0.9ml/d ose 3x/day (2400m g of extrat | 4
mont
hs
(Oct
to
Nov
2009) | 1. Adults in
good physical
health
2. Experience
2+ colds per
year | 1. Ineffective
contraception
2. Participating in
another study
3. Pregnancy or
lactation
4. Currently using
cold or | drops
similar
shape,
colour,
odor,
taste | 755,
ech 355,
placebo
362 | Safety/adverse events Number of colds | No difference in AEs Significantly fewer colds in the tx group vs placebo, and fewer recurring episodes (P < 0.05, chi-square test) | | | | | | | | her, 5%
root | | standard
ized to
contain
5
mg/100
g of
dodecat
etraenoi
c acid | per day); during acute stages of a cold: 0.9m 5x/day (4000m | | | antimicrobial medication 5. Alcohol or drug abuse 6. Psychiatric disorder, epilepsy, or suicidal ideation 7. Planned surgery 8. Serious chronic disease that could | | | Days of having a cold Concurrent medication | cumulated events (episodes and episode days) was 26% lower in tx grp (P <0.05, chi-square test) significantly fewer (-52%) cold episodes were additionally treated with pain medication (P < 0.05, chi-square test) | | | | | | | | | | isobutyl
amide | g
extract) | | | affect absorption,
metabolism,
and/or elimination
9. AIDS or another
autoimmune
disease
10. Diabetes
11. Steroid-treated
asthma
12. Medically-
treated
allergy/atopy
13. Allergy to
echinacea | | | Lab confirmed
viruses in nasal
secretions | Fewer total viral infections detected (not statistically significant) Strongest effect was seen with membranous viruses, like Corona-, Influenza-, Parainfluenza-, Respiratory Syncytial- and Metapneumovirus with 24 and 47 detected infections in the Ech/placebo groups (P < 0.05). | |-------------------------------------|--|---|-------------|---|--|---|----------|---|---|---|---|--|--|---|---|---| | Tiralo
ngo E
et al.
(2012) | Australi
a,
Western
Pacific
Region | Manufactur ers of the interventio ns funded two of the authors leveraged from and Australian Governmen t grant / Griffith University, Australia. Conflict statement not made. | DBPC
RCT | Nonparametric Kolmogorov- Smirnov test for median differences in independent samples. 2 × 2 chi- squared test of independence and the Odds Ratio. t-tests and chi- square tests | Passengers
travelling
from
Australia to
America,
Europe, or
Africa and
back again
on
commercia
1 flights, of
15–25
hours
flying time
and < 12
hour
stopovers | Echinace
a
purpure
a,
Echinace
a
angustif
olia, root | | standard
ised to
4.4mg
alkylami
des | 1 tablet per day before and after travel; 2 tablets per day during travel; 112.5mg Echinace a purpure a 6:1 extract (equival ent to 675 mg) and 150 mg E. angustif olia 4:1 extract (equival ent to 600 mg) | 1-5 weeks depen ding on travel durati on; Varie d, from 5 weeks (if 7 days of travel) to 9 weeks (if 35 days of travel) | 1. 18-65 years of age 2. In good general health 3. Suffered from no previous or current serious illness | 1. Presence of a known plant allergy 2. Suffering from respiratory diseases (e.g., asthma, COPD) 3. Suffering from any other condition that could compromise the study or the participants health (e.g., autoimmune disease, cystic fibrosis) 4. Received flu vaccination within 20 days of starting the trial 5. Pregnant, planning pregnancy, or lactating 6. On regular treatment with Echinacea, antibiotics, corticosteroids, antihistamines, and/or immunosuppressants | Manufac
tured
to match
the
Echinace
a tablets
in size,
excipien
t, and
colour | 175, Echinacea
n=88
Placebo
n=87 | Wisconsin Upper Respiratory Symptom Survey (WURSS- 44) to assess upper respiratory symptom- related quality of life, administered: baseline, post travel, 4 week follow up. Frequency of illness Adverse events | 4 weeks post travel: no difference in WURSS-44 scores (P = 0.18). During travel: the placebo group had border line significantly higher WURSS-44 scores compared to the Ech group (26 versus 13, P = 0.05). Significantly reduced percentage of respiratory disorder symptom-affected participants in the Echinacea group compared to placebo (43% versus 57%, P = 0.05) during travel. 4 weeks post travel: significantly lower percentage of illness in the Echinacea-treated group compared to placebo (i.e., 25% versus 39%) corresponding to ~50% relative reduction (P = 0.03) Reported by 2 participants (1 in each group) during the trial. After trial cessation 2 participants in the Echinacea group reported adverse events. | | Turner
2005 | USA,
region of
the
America
s | National Center for Complimen tary and Alternative Medicine of the NIH | DBPC
RCT | 6 pairwise
comparisons
with between
groups using
chi-square
analysis.
Multiple logistic- | Healthy
volunteers
exposed to
rhinovirus
experiment
ally | E. angustif olia root - 3 versions with supercri | tincture | | 1.5 ml
tincture
containi
ng
300mg
of
echinace | Either 1) 7 days befor e viral challe nge | 1. Healthy
young adults
2. Susceptible
to rhinovirus
type 39
(based on Ab
testing) | Existing antibodies to test virus at screening or at day 0 | alcoholic
beverag
e,
denatoni
um
benzoat
e and | 419, 7
groups
(different
extraction
methods
for herb +
prophylaxi | Rate of infection Severity of symptoms | No difference in outcome No difference in outcome | | | | the MIII | | regression
analysis
including | | tical
CO2,
60% | | | a root
3x/day | (prop
hylaxi
s) or | coungj | | tap
water | s vs
treatment
options) | Volume of nasal secretions | No difference in outcome | | | | | | covariates | | ethanol
or 20%
ethanol | | | | 2)
starti
ng at
time | | | | Spuonsj | Polymorphonucl
ear leukocytes | No difference in outcome | | | | | | | | | | | | of
viral
challe
nge | | | | | Interleukins | No difference in outcome | | | | | | | | | | | (treat
ment)
for 5
days | | | | | Virus titers | No difference in outcome | |------------------------------------|---|--|---|---|---|--|--
--|--|---|---|---|--|---|---| | Sperbe
r | USA,
region of
the
America
s | Madaus
Aktiengesel
Ischaft. | DBPC
RCT | treatment group
difference by
students t or x2
analysis | healthy
adults
infected
with
rhinovirus
39 | E.
Purpura,
pressed
juice of
the
above-
ground
plant
parts | tincture,
22%
alcohol
(Echina
Guard) | 2.5ml tid
(no
equiv
given) | days
prior
and 7
days
after
viral
challe
nge | 1. Susceptible
to rhinovirus
(based on Ab
testing) | Conditions that would affect susceptibility to colds Taking medication know to affect symptoms being measured Pregnancy or lactation Clinical or lab signs of infection at baseline | matchin
g
placebo
- same
taste,
smell,
appeara
nce | 48, 24 in
each | Development of
infection by
measuring
increase in Abs
or culture virus
Symptom diary | No difference Colds developed in more placebo cases, but not statistically significant 58% (CI 37-78) vs 82% (CI 60-94) | | Isbani
ah F et
al.
(2011) | Indonesi
a, South-
East
Asia
Region | The study was supported by Frutarom Switzerlan d Ltd.'/Unive rsity of Indonesia, Persahabat Indonesia, Totzke Scientific Geneva Switzerlan d, Frutarom Switzerlan d Ltd Switzerlan d | DBPC
RCT,
three
arm,
parall
el
group
,
single
centr
e trial | * Continuous data: mean SD, differences tested with parametric & non-parametric analyses * ANOVA & Kruskal-Wallis test for between-group differences * Paired t-test & Wilcoxon-signed rank test for within-group diff between time-points * Kaplan-Meier plots and log- rank tests used for time-to- event | COPD Patients | Echinace
a purpure
a (L.)
Moench
(EP),
aerial
parts | Capsule
from
dried
pressed
juice | 500 mg
(or with
10 mg
zinc, 15
ug
seleniu
m and
50 mg
ascorbic
acid
(EP+)) | 14 days; At enrol ment 500m g ciprof loxaci n bid for 7 days Then rando mized to take in additi on: Place bo OR EP 1/day 2 wks OR EP+1/day 2 wks | 1. Patients at least 40 years of age 2. Existing chronic obstructive pulmonary disease 3. An acute exacerbation episode, defined as a non-gradual increase in at least 1 of the 3 major symptoms of dyspnea, sputum production and sputum purulence, supposedly caused by an acute infection 3. Gave informed consent for study participation | 1. asthma, a severe immune system disorder, a malignancy or haematologic disorder, an obstructive pulmonary disease caused by other reasons (e.g. tuberculosis), or any other disease with known impact on disease recovery such as diabetes mellitus, congestive heart disorder, cardiomyopathy, arrhythmia, severe hypertension or hepatic cirrhosis 2. An increase of >/=12% of the pulmonary function after using a bronchodilator, severe clinical symptoms in addition to cor pulmonale and heart failure, utilization of extra respirator ymuscles, and oxygen dependence 3. Requirement for treatment with steroids or nonsteroid anti-inflammatory drugs 4. Pregnancy or lactation 5. Hypersensitivity to Echinacea or ciprofloxacin | Composi
tion not
stated | 120,
Placebo n = 35
EP n = 36
EP+ n = 37
108
completed
the trial
and
included in
analysis | Duration of exacerbation CD4, CD8, TNF alpha, interleukins (IL) 1b, 6, and 10 before and after treatment Use/amount of bronchodilators during treatment Adverse events | 'duration of the exacerbationsignificantly shorter in the EP+ as compared with the other two groups.' [Placebo vs EP+ p = 0.021, EP vs Placebo p = 0.242, EP+ vs EP p = 0.001] Significant differences in IL 1b (p=0.106), IL6 (p=0.253), IL10 (p=0.234), CD8 abs (p=0.182), CD8 rel (p=0.266) found. No difference 'Study medication was safe and well tolerated with overall 15 adverse events one of which was serious. Among those, sleeping disorders were most frequent and likely related to the underlying disease.' (no statistical analysis completed) | | Barrett
BP et | USA, The
Region | U.S. Dept
Health & | DBPC
RCT | Frequency analysis, | University
student | E.angust
if. root | capsule | 4
capsules | Up to | 1. At least 18
years of age | Reported having
any listed symptom | Capsule:
333 mg | 148,
Enrolled: | Duration of illness | No difference | |----------------------------|--|--|-------------|---|--|---|---|---|--|---|---|--|--|--|--| | al. (2002) | of the
America
s | Human Services and NIH, Shaklee Tecnica provided the products and monetary support (no role in design, conduct, reporting or submission for publication). | KUI | ANOVA, multivariate analysis, bootstrap resampling to calculate means and CIs, Cox multivariable proportional hazard regression. Study may be slightly underpowered: 150 participants provided at least 80% power to detect a benefit of 2 days' duration. 148 participants enrolled, 142 completed and | population,
asked to
make
contact at
first sign of
cold/flu
symptoms | (50%) and E. purp herb (25%) and root (25%) Addition al ingred: 49 mg thyme, 31 mg peppermint, 3 mg citric acid | | 6 or 3 times per day (first day and subsequent days) Total of 6g and 3g Ech | days * In first 24 hrs (6g Echin acea) * There after (3g Echin acea) until sympt oms resolv ed or max 9 days | years of age 2. Answer "Yes" to "Do you believe that you are coming down with a cold?" 3. Report at least 2 of 15 listed cold symptoms (at least 1 of which had to be in the
respiratory tract) 4. Able & willing to adhere to the study protocol | any insteat symptom for >36 hours 2. Pregnancy 3. Currently using antibiotics, antihistamines, or decongestants 4. Had specified chronic diseases (autoimmune disease, chronic bronchitis, HIV infection, lupus, rheumatoid arthritis) at time of enrolment 5. History of asthma or allergic rhinitis and corresponding symptoms (itchy eyes, sneezing, wheezing) at the time of enrolment | alfalfa | Echin n=73
Placebo
n=75
Completed:
Echin n=69
Placebo
n=73 | swerity of 15 symptoms: productive cough, dry cough, cough impacting sleep, sore throat, hoarseness, scratchy throat, runny nose, plugged or stuffy nose, sneezing, headache, fever, sweats, muscle aches, loss of appetite, and feeling "run down" Global severity of illness | No significant differences No difference | | Dorn
M et al.
(1997) | UK/Ger
many
and UK;
Europea
n region | Sponsorshi
p not
stated | DBPC
RCT | data presented for 142. Mixed factorial ANOVA showed no sign diff between the sexes for outcome, age and weight and no sign diff when correlated with outcome (does not specify outcome), chi squared test for individual & overall symptom scores | Consecutively seen patients in a family clinic with a clinical indication of URTI | Echinace
ae
pallidae
radix | 90 drops
of liquid
(no
details
of
extractio
n
method)
, in
divided
doses
(not
elaborat
ed) | extract equivale nt to 900mg of Echinac ae pallidae radix per day | 8-10
days | 1. Clinical
indication of
URTI
2. Over 18
years
3. Total
symptom
score greater
than 15 | 1. Ill for longer than 3 days prior to entry 2. Infection involving other organs 3. Treatments with drugs that may interfere with intervention 4. Presence of other significant diseases such as multiple sclerosis or polyarthritis 5. Suffering from pneumonia or fungal infections | Coloure d aqueous alcoholic solution s mimicki ng & indisting uishable from verum treatme nt | 160, Echin
n=80
Placebo
n=80 | Duration of illness Clinical symptoms score Overall Symptoms | Illness days significantly lower in Echin group cw placebo for both bacterial and viral infections (p<0.0001) significantly lower in Ech vs placebo (p<0.001 in abstract) Significantly lower (p<0.004) | | Goel V
et al.
(2005) | Canada,
The
Region
of the
America
s | 3 authors were employed by the company suppling the interventio n/placebo which was also the sponsor | DBPC
RCT | * Summation of daily symptom scores * Blood parameters computed by Students t-test (paired and unpaired) * SOD activity & neutrophil index computed by % change from baseline values, ANOVA using type 3 error were compared * Pearson correlation coefficients between symptom scores and WBC differentials | Volunteers
recruited
through
media ads
in
Edmonton
and
surroundin
g areas; at
onset of
cold | E. purpure a various parts, propriet ary product Echinilin | Concent
rated
water-
ethanol
extractio
n, purified
to >95%
(verified
),
combine
d in 40%
ethanol
to give | standard
ized
alkamid
es/cicho
ric
acid/pol
ysacchar
ides at
concentr
ations of
0.25/2.5
/25.5
mg/mL | 5ml
doses
taken 8x
on the
first day,
followed
by 3x
per day
for the
next 6
days | 7 days, Day 1 throu ghout /day Days 2-7 as above Doses dilute d in half a glass of water. Partic ipants instru cted not to take other medic ation durin g treat ment | 1. Adults over
18 years
2. History of 2
or more
common cold
infections in
the previous
year | 1. Vaccinated against influenza in the past 6 months 2. Had multiple sclerosis, tuberculosis, diabetes, cancer, lupus, asthma, fibromyalgia, HIV/AIDS or cardiovascular disease 3. Were on immunosuppressiv e drugs such as corticosteroids or cyclosporin 4. Participants who used concomitant relief medication on a regular basis during study period (excluded from analysis) | Placebo
containe
d similar
ingredie
nts,
without
the
echinace
a | 62, Echin n=25 Placebo n=31 completed the study and did not use meds; 150 recruited, 62 caught cold, 6 used rescue medication (1 in ech, 5 in placebo) | Total symptom
severity score
(sore throat,
runny nose,
sneeze, stuffy
nose, headache,
achy muscles,
hoarseness
and cough) | Echin group demonstrated significantly lower scores by day 4 compared to placebo group, which was significantly lower by day 7 (p < 0.05). No significant effects on the distribution of CD3+, CD8+ and CD20+ cells. Decrease in CD4+ cells on day 3 (p=0.01) and increase in the CD16+ (NK cells) on day 8 (p=0.05) of echinacea treatment group. Both groups increased erythrocytic Cu Zn SOD activity | |----------------------------|--|--|-------------|---|---|--|--|--|---|--|--|---|---|--|---|---| | Yale et al. (2004) | Canada,
The
Region
of the
America
s | Marshfield
Clinic
Research
Foundation | DBPC
RCT | *Symptom scores were summarized with means of the 4-point severity scale *The Kaplan-Meier method was used to construct curves for time to symptom resolution in each group. *Brookmeyer and Crowley for median time to resolution *The Wilcoxon rank sum test was used to compare the time to resolution between the 2 groups. | Patients were recruited from the Marshfield Clinic system through advertisem ent in the Marshfield Clinic staff newsletter and through advertisem ents in local newspaper s | E
purpure
a, aerial
portion | freeze-
dried
pressed
juice | standard
ized for
a
content
of 2.4%
soluble -
1,2-D-
fructofur
anosides | 100mg
3x/day | ment Up to 14 days, 1 capsu le 3 times daily for as long as their sympt oms remai ned (max 14 days) | 1. 18 years or older 2. Having acute sneezing and nasal discharge, with or without fever, occurring no less than 6 hours and no longer than 24 hours before enrollment 3. Free of cold symptoms and fever (temperature, 38.1°C) for at least 2 weeks before enrollment 4. Having at least 2 of the following symptoms: sneezing, nasal discharge, nasal congestion, muscle aches, headache, sore or scratchy | 1. Hypersensitivity to Echinacea or a history of allergy to plants of the Compositae family 2. Received antibiotics, antihistamines, decongestants, nasal sprays, or corticosteroids in the 48 hours before enrollment 3. Used corticosteroids during the 8 weeks before enrollment 4. Had rales or rhonchi suggestive of a lower respiratory tract infection 5. History of allergic rhinitis due to seasonal allergy or ubiquitous environmental allergy 6. Bronchitis or sinustits during the previous month 7. Had fever (temperature > /= 38.1°C) 8. Pregnancy or breastfeeding | lactose
placebo
capsule | 128,
Echinacea
Group
n=63;
Placebo
n=65 | Symptom
severity Time to
resolution of
symptoms
Adverse events | No difference No difference Few adverse events were reported, with headache and dry mouth being the predominant adverse effects in both treatment groups | | | 1 | | 1 | 1 | 1 | T | | | | 1 | I a . | 0 11 11 1 | 1 | | 1 | 1 | |--------|---------|-------------|------|------------------|--------------|-----------|---------------|-----------|------------|------|------------------------|---------------------------------------|-----------------|------------|----------|---| | | | | | | | | | | | | throat,
hoarseness, | 9. Unable to complete a diary | | | | | | | | | | | | | | | | | or cough | 10. Had an | | | | | | | | | | | | | | | | | 4. No other | underlying | | | | | | | | | | | | | | | | | primary | immunodeficiency, | | | | | | | | | | | | | | | | | sources of | renal failure | | | | | | | | | | | | | | | | | infection, | (serum creatinine | | | | | | | | | | | | | | | | | including | level 2.0 mg/dL | | | | | | | | | | | | | | | | | acute | [176.8 µmol/L]), | | | | | | | | | | | | | | | | | bacterial | known bacterial | | | | | | | | | | | | | | | | | sinusitis, | infection, liver | | | | | | | | | | | | | | | | | otitis media, | disease, eczema or | | | | | | | | | | | | | | | | | and | allergic rhinitis, | | | | | | | | | | | | | | | | | pneumonia | diabetes mellitus, | | | | | | | | | | | | | | | | | 5. Using a | congestive heart | | | | | | | | | | | | | | | | | reliable | failure, or clinically | | | | | | | | | | | | | | | | | method of | active neoplastic | | | | | | | | | | | | | | | | | contraception | disease | | | | | | 1 | | | | | | | | | | | , if a woman | 11. Had | | 1 | 1 | | | | | | | | | | | | | | of | emphysema, | | 1 | | | | | | | | | | | | | | | childbearing | asthma, or another | | 1 | | | | | | | | | | | | | | | age | chronic lung | | 1 | | | | | | | | | | | | | | | 6. Able to | disease | | | | | | | | | | | | | | | | | read, write, | 12. Positive | | | | | | | | | | | | | | | | | and | screening results | | | | | | | | | | | | | | | | | understand
English | for group A
streptococcal | | | | | | | | | | | | | | | | | 7. Available | pharyngitis | | | | | | | | | | | | | | | | | for the 2- | 13. Active | | | | | | | | | | | | | | | | | week period | dependency on | | | | | | | | | | | | | | | | | of the study | alcohol or other | | | | | | | | | | | | | | | | | 8. Gave | drugs | | | | | | | | | | | | | | | | | written | 14. Known | | | | | | | | | | | | | | | | | informed | psychiatric | | | | | | | | | | | | | | | | | consent for | disorders that | | | | | | | | | | | | | | | | | study | might reduce the | | | | | | | | | | | | | | | | | participation | likelihood | | | | | | | | | | | | | | | | | F F | of successful | | | | | | | | | | | | | | | | | | completion of the | | | | | | | | | | | | | | | | | | protocol | | | | | | Goel V | Canada; | Participant | DBPC | *Repeated | Volunteers | E. | *water | standard | 5 ml | 7 | 1. Volunteers | 1. Vaccinated | placebo | 282 | Symptom | Mean severity scores | | et al. | The | s paid an | RCT | measures | were | purpure | ethanol | ized | dose; 8 | Days | aged 18-65 | against influenza in | was | enrolled, | severity | (mean of 7 days) for all | | (2004) | Region | honorariu | | ANOVA with log | required to | a | extractio | alkamid | doses on | | years | the past 6 months | made to | 128 caught | , | specific symptoms, except | | 1 | of the | m on | | transformation | be in good | various | n of | es/cicho | first day, | | 2. In good | 2. Allergy to | look, | a cold | | for cough, were found to be | | | America | completion | | to adjust for | general | parts, | various | ric | 3 doses | | general health | ragweed | taste, | | | significantly ower in the | | | S | of the | | Type 3 error for | health, and | propriet | parts | acid/pol | on | | 3. Contracted | 3. Had multiple | and | Echinacea | | echinacea group (p<0.05). | | | | study. | | interaction | to have | ary . | Echinace | ysacchar | subsequ | | at least 2 | sclerosis, | smell | n=59 | | (ITT and PP) | | I | | | | effects | contracted | product | a | ides at | ent days | | infections of a | tuberculosis, | like the | Placebo | İ | | | I | | | | *one-way | at least two | Echinilin | purpure | concentr | | | cold in the | diabetes, cancer, | echinace | n=69 | İ | PP analysis: the overall | | | | | | ANOVA for | infections | 1.64 | a 40% | ations of | | | past year | lupus, asthma, | a extract | Total n= | | mean severity scores for | | | | | | treatment | of a cold in | | ethanol: | 0.25/2.5 | | | 4. Responded | fibromyalgia, | but | 128; | | runny nose, sore throat, | | I | | | | effects | the past | l | 10 doses | /25.5 | | | to media | HIV/AIDS, or | containe | I | İ | stuffy nose, fatigue, | | I | | | | *Pearson | year; Start | l | the first | mg/mL | | | advertisemen | cardiovascular | d no | I | İ | headache, and chills, were | | | | | | correlation for | at onset of | | day, | | | | ts and | disease | detectab | 1 | | found to be 27, 25, 22, 31, | | 1 | | | | group | a cold | l | distribut | | | | screened by | 4.Taking | le | I | İ | 39 and 44% (P < 0.05) | | 1 | | | | differences. | | | ed
equally | | | | phone
5. Gave | immunosuppressiv
e drugs such as | alkamid | 1 | | lower in the echinacea than in placebo, respectively. | | 1 | | | | | | l | through | | | | 5. Gave
written | e drugs such as
corticosteroids or | es,
cichoric | I | Donation | | | 1 | | | | | | | out the | | | | informed | cyclosporine | acid, or | 1 | Duration | Illness resolved in 95% of
the subjects in the | | 1 | | | | | | | day, | | | | consent for | 5. Pregnancy and | polysacc | 1 | | echinacea group by day 7 | | | | | | | | 1 | followed | I | | | study | lactation | harides. | I | ĺ | and only 63% of the | | | | | | | | | by four | | | | participation | | nanacs. | 1 | | placebo (p<0.5) | | | | | | | | | | | | | pai acipation | i . | i | • | | | | | | | | | | | doses
per day
for the
next 6
days. | | | | | | | | Total daily
symptom scores | Day 4,50% of the subjects
in the echinacea (PP) group
showed at least a 50%
reduction of their
maximum TDSS | |------------------------------|--|--|--|---|--|--|---|----------|---|-----------|---|---|--------------------------|---|---|---| | Schult
en et al
(2001) | German
y;
Europea
n region | Madaus AG | DBPC
RCT | *adaptive design with an interim analysis combined with a multiple testing procedure for a closed family of hypotheses, controlling the multiple a-level of 5 %, *interim analysis was intended to lead to either early termination in case of sufficient or missing treatment effects or continuation with a second independent trial step using the adaptively calculated sample size *3 priori: 1) days ill, 2) patients ill, 3) AUC for the modified Jackson score *Fisher's exact test | Adult male or female patients, employees of a German pharmaceutical company presenting with first sign s of URTI | Echinace
ae
purpure
ae
(Ecbinac
in,
EC31J0
extract) | pressed
juice,
stabilise
d by
ethanol |
1.7-2.5: | 5ml
2xday | 10 Days | 1. Had an incipient infection of upper respiratory tract (subjective sensation of having a cold) 2. At least one of the following symptoms: sneezing, rhinorrhea, congestion of the nose, sore throat, cough, headache, malaise, or chilliness during previous 24 hours | 1. Acute respiratory tract infection during the week preceding the trial 2. Allergy to composites 3. Progressive systemic diseases (e.g. tuberculosis, multiple sclerosis, AIDS, HIV infections, other auto-immune diseases) 4. Pregnancy and lactation 5. Therapy with immunosuppressa ints in the week prior to the trial and during participation 6. Therapy with immunostimulants (herbal immunostimulants, cytokines, thymus fractions) 7. Zinc or antibiotics during two weeks before commencement of the trial | placebo | 80, EC31J0
n=41
Placebo
n=39 | Duration of illness and Jackson score Severity of illness Patients who had developed a complete picture of a common cold Area under the curve (AUC) standardised to baseline with regard to the modified lackson score | Ech group: median time of illness was 6.0 days compared to 9.0 days; mean Jackson score decreased more rapidly in the Ech group than in the placebo group (p=0.01) 61.0% of the patients in the verum group assessed subjectively that their cold was "shorter than usual" compared to 28.2 % in the placebo group (two-sided p=0.007) No statistically significant differences Fewer in Ech group (85.4 %) versus placebo (97.4 %) versus placebo (97.4 %); not statistically significant (Fisher's exact test: one-sided p=0.062) AUC was smaller in the verum group (mean: 36.18, SD: 32.21.2) than in the placebo group (mean: 51.63, SD: 32.51.), indicating a beneficial impact of the active treatment (one-sided p=0.008) | | Barrett
2010 | USA,
region of
the
America
s | National
Center for
Complimen
tary and
Alternative
Medicine of
the NIH | 4 arm
RCT,
no
treat
ment,
place
bo
(blind
), ech
(blind
),
open
label
ech | * predecessor instrument WURSS-21 for a priori power calculations *Box-Cox transformation for skewed distribution *t test and the Mann-Whitney U test for group comparisons * general linear model for treatment effects | new-onset
common
cold, age
12-80
years | Mediher
b tablets
containing E.
purpure
a and E.
anguslif
olia; root | tablets | | 10.2g of
dried
echinace
a first
24 hrs,
5.1g
during
next 4
days | 5
days | Symptoms of cold in past 36 hrs with score of 2 or higher on Jackson criteria Must be min of 12 yrs and have parental permission if under 18. | istory of allergic rhinitis who reported sneezing or itching of the nose or eyes and those with a history of asthma who reported current cough, wheezing, or shortness of breath, pregnant, or history of autoimmune disdease or immune deficiency disease | inert
ingredie
nts | 713, No pill group n = 173 Unblinded Echinacea Group n= 181 Blinded Placebo Group n = 176 Blinded Echinacea Group n = 183 | Area-under-the- curve global severity, based on the Wisconsin Upper respiratory symptom survey Area-under-the- curve duration, based on the Wisconsin Upper respiratory symptom survey Psychosocial questionnaire | Significantly lower in blinded and open-label echinacea Significantly lower in blinded and open-label echinacea No difference | | | | | | | | | | | | | | | | Biomarkers of immune response and inflammation | Not statistically significant | |---|--|---|--|---|--|--|-------|--|--|---------------------------------|---|--|---|--|---| | Linden
muth
GF et
al
(2000) | USA,
Region
of the
America
s | Products
donated by
Traditional
Medicinals
®,
Inc./Rest | DBPC
RCT
altho
ugh
altern
ating | Means and
standard
deviations, t-test | Nursing
home
employees,
enrolled to
the study
at the | E. purpure a and E. angustif olia; Leaves, | (6:1) | equivale
nt to
1,275
mg of
dried
herb and | 5
days
of
treat
ment,
Drink | 1. Nursing
home
employees | 1. Pregnancy or
breastfeeding
2. Known allergies
to coneflowers or
claiming to be
allergic to many | Eater's Digest tea (ginger, cinnamo n, | 95,
Echinacea
n = 48
Placebo n =
47 | Relief of
symptoms | Significant difference in
symptom relief
Ech mean = 4.125, SD 5
0.9593
Placebo mean = 2.787, SD 5
0.9541; t 5 6.814; p= 0.001 | | | | Haven-
York and
York
College of
Pennsylvan
ia. Conflict
statement
not made | assign
ment
was
used | | earliest
symptoms
of cold or
flu: runny
nose,
scratchy
throat,
fever, etc | flowers,
and
stems of
plant | | root per
tea bag -
5-6 cups
per day | 5-6 cups on the first day of sympt oms titrati ng to 1 cup by the fifth day. | | different flowering
plants and pollens
3. Having acute
infections and
already taking
antibiotics | pepper
mint,
fennel
seed,
papaya
leaf,
rosehip,
alfalfa
leaf that
'at
higher
dosage
might
have an | | Duration of
symptoms Days taken for
relief of
symptoms | Significant difference in number symptom days Ech mean 5 4.333, SD 5 0.9302 Placebo mean = 2.340, SD 5 1.088; t 5 9.499; p= 0.001. Significant difference in days taken for relief of symptoms. Ech mean = 3.854, SD 5 0.9735 Placebo mean = 2.297, SD 5 1.204; t 5 6.865; p=0.001. | | | | | | | | | | | | | | effect
but in
included
amounts
serve
the
purpose
of flavor
correctiv
es.' | | Adverse events | No side effects were
reported by any of the
subjects | Table 1 | Author | Country,
WHO
regio | Sponsorship
source/association | Design | Study
Population | Echinacea Spp | Dose | Duration of
Treatment | Inclusion criteria | Exclusion criteria | Control or
Placebo | Total Number
of Subjects, N
in intervention
and placebo | Change in
interferon
s (IFN) | Change in interleukins (IL) | Other safety
outcomes | |--------------------------------|--|--|--|---|---|--|--|---|---|---|--|--|---|--| | Barrett
2010 | USA,
Region
of the
America
s | National Center for
Complementary
and Alternative
Medicine (NCCAM) f
the National
Institutes of Health
(NIH). Medifierb
provided the
products and
conducted
phytochemical
analysis but did
not contribute
financially | Placebo
controlled
RCT (4
arm) | New onset
common
cold in
people age
12 - 80 | Extracts of E.
purpurea and E.
Angustifolia root | 10.2g of dried echinacea root first 24 hour, 5.1g during each of the next four days; 675 mg E. purpurea root standardized to 2.1mg alkamides and 600 mg E. angustifolia root standardized to 2.1mg alkamides | 5 days | At least 1 of 4 symptoms
(nasal discharge, nasal
obstruction, sneezing or
sore throat) Score of 2 or higher on
Jackson criteria | 1. Use of antibiotics, antivirals, nasal steroids, decongestants, antihistamines, combination cold formulas, echinacea,
zinc or vitamin C. 2. History of allergic rhinitis who reported sneezing or itching of the nose or eyes 3. History of asthma who reported current cough, wheezing or shortness of breath 4. Self-reported autoimmune and/or immune deficiency diseases 5. Pregnancy | Visual matched placebo containing identical amounts of exipients (calcium acid phosphate, cellulose, silica, sodium starch glycollate, hypromellose and magnesium stearate) | 713 173 (no pill), 176 (blinded placebo), 183 (blinded Echinacea), 181 (unblinded Echinacea) | IL-8 in
nasal rinse | No difference between
Ech group and placebo | No differences
between groups in
adverse effects
(rash, nausea,
headache,
diarrhea) | | Dall'Acq
ua 2015 | Italy,
Europea
n
Region | Farmaderbe,
Pradamano
(Udine) and
Inden S.p.A. | Open label | Healthy
adults,
both
genders | Echinacea
angustifolia | 10 mg of lipophilic
extract containing
1 mg of isolate
dodeca-
2E,4E,8Z,10E/Z- | Single dose | Healthy Fasting at baseline | Dietary restrictions Allergy to Compositae or Grossulariacee plants Abnormal liver function | n/a | 10 | IL-2
IL-6 | Significant decrease from baseline p<0.05 Significant decrease | There was no reporting regarding adverse events | | | | (Milan, Italy) for
providing product | | | | tetraenoic
isobutylamides | | | Use of medicines during
the study | | | IL-8 | from baseline p<0.001 Significant decrease | | | | | | | | | | | | | | | IL-10 | from baseline p<0.001 Increase from baseline | | | | | | | | | | | | | | | | p=0.001 | | | | | | | | | | | | | | | TNFα | Statistically significant reduction p=0.002 | | | Dapas
2014 | Italy,
Europea
n
Region | | Open label
pilot
study;
some ex | Healthy
adults
both
genders | Echinacea
angusifolia (triple
standardized
extract syrup | 10 ml daily | 4 weeks | Healthy No dietary restrictions Fasting at baseline | Dietary restrictions Allergy to Compositae or Grossulariacee plants Abnormal liver function | n/a | 10 | Plasma IL-
2 mRNA | Increased (p=0.002) | No data reported
on AE | | | | | vivo
analysis | | Polinacea®) | | | | Use of medicines during
the study | | | Plasma IL-
6 mRNA | Decreased (p=0.02) | | | | | | | | | | | | | | | Ex vivo
lympohocy
te IL-8 | Increased (p<0.001) | | | | | | | | | | | | | | | Ex vivo
lympohocy
te RNA
TNFα | Decreased (p=0.02) | | | Isbaniah
F et al.
(2011) | Indones
ia,
South- | The study was
supported by
Frutarom | DBPC RCT,
three arm,
parallel | COPD
Patients | Echinacea
purpurea (L. | 500 mg Echinacea
purpurea (L.)
Moench (EP), from | 14 days; At
enrolment
500mg | At least 40 years of age Existing chronic obstructive pulmonary | Asthma, severe immune
system disorder,
malignancy or | Composition
not stated | 120
randomised
108 completed | Chemokin
es | No difference between
Ech and placebo | one serious AE in
ech grp:
generalized | | | East
Asia
Region | Switzerland
Ltd.'/University of
Indonesia, | group,
single
centre | | | dried pressed juice
of the aerial parts
or | ciprofloxacin
bid for 7 days
Then | disease 3. An acute exacerbation episode (non-gradual | haematologic disorder,
obstructive pulmonary
disease caused by other | | the trial and
included in
analysis | IL-1B | No difference between
Ech and placebo | erythema,
resolved with
antihistamine tx; | | | | Persahabatan
Hospital Indonesia,
Totzke Scientific | trial | | | 500 mg EP with 10
mg zinc, 15 ug
selenium and 50 | randomized to
take in
addition: | increase in at least 1 of the
3 major symptoms of
dyspnea, sputum | reasons (e.g. tuberculosis),
or any other disease with
known impact on disease | | Placebo n = 35 | IL6 | No difference between
Ech and placebo | mild Aes more
common in ech
grp, most common | | | | Geneva
Switzerland,
Frutarom
Switzerland Ltd
Switzerland | | | | mg ascorbic acid
(EP+) | Placebo OR EP 1/day 2 wks OR EP+ 1/day 2 wks | production and sputum
purulence) supposedly
caused by an acute
infection
4. Gave written informed
consent for study
participation | recovery such as diabetes
mellitus, congestive heart
disorder, cardiomyopathy,
arrhythmia, severe
hypertension or hepatic
cirrhosis
2. An increase of >/=12%
of the pulmonary function
after using a | | Echin n = 36
Echin + n = 37 | IL10 | No difference between
Ech and placebo | was insomnia | | Turner
2005 | USA,
America | National Center for
Complimentary
and Alternative | DBPC RCT | Healthy
volunteers
exposed to | E. angustifolia root
- 3 versions with
supercritical (O2, | 1.5 ml tincture
containing 300mg
of echinacea root | Either 1) 7
days before
viral | Healthy young adults Susceptible to rhinovirus type 39 (based) | bronchodilator, severe clinical symptoms in addition to cor pulmonale and heart failure, utilization of extra respiratory muscles, and oxygen dependence 3. Requirement for treatment with steroids or non-steroid anti-inflammatory drugs 4. Pregnancy or lactation 5. Hypersensitivity to Echinacea or ciprofloxacin 1. Existing antibodies to test virus at screening or at day 0 | alcoholic
beverage,
denatonium | 419
7 groups | IL-8 | No difference between
Ech and placebo | reported that 2%
had adverse
events, mostly GI | |--------------------------------|------------------------------------|--|--|--|---|---|---|--|--|---|--|--|--|---| | | | Medicine of the
NIH | | rhinovirus
experimen
tally | 60% ethanol or
20% ethanol | | chanllenge
(prophylaxis)
or 2) starting
at time of viral
challenge
(treatment)
for 5 days | on Ab testing) | | benzoate and
tap water | (different
extraction
methods for
herb +
prophylaxis vs
treatment
options) | | | related; no
mention of
immune issues | | Kim
2002 | USA,
America
s | Celestial
Seasonings inc,
Larex inc, Lee
Dexter and
associates | DBPC RCT | healthy
volunteers | E. purpura and E.
angustifolia | Standardized
extact of E.
purpura
(1500mg) or E.
P+Ang OR ultra-
refined EP+A (or
larch
arabinogalactan or
Ech + larch) | 4 weeks | 1. Healthy females | Major illness and/or acute illness at enrollment or during study period Taking immune-enhancing/altering supplements and/or medications | alfalfa and rice | 48
8 in each of the
6 groups | ΤΝΓα | significant decrease
from baseline in group
taking ultra refined
EPA (p=0.04) | 1 reported anxiety,
nervousness and
ht palpitations; 1
reported bilateral
arthritic
symptoms | | Woelkar
K. et al,
(2006) | Austria,
Europea
n
Region | The study was
supported by
A.VogelBioforce
AG, Switzerland. | randomize
d, single-
dose,
crossover
study,
placebo
controlled | Healthy adults both genders (30.2 ± 3.6 (SD) years of age with abody mass | E.purpurea | 4 ml E.purpurea (Echinaforce®) tincture or 12x 150mg E.purpurea (Echinaforce®) tablets. *Echinaforce®= hydro-alcoholic extract made from | *Single dose
(at 8:30a.m.
after over-
night fasting)
*1-week
washout
period
between | Healthy adults No special diet She special diet She special from caffeine, alcohol and grapefruit juice 12 hours before administration | 1.Any progressive systemic illness including HIV, hepatitis B or C, tuberculosis, leukemia, connective tissue diseases, multiple sclerosis or other autoimmune diseases 2. History of relevant allergy, including allergy to | alcohol or
lactose with
100 ml water
at 8:30a.m.
after over-
night fasting | 8 tested for
each
intervention, 2
tested with
placebo | TNF alpha in LPS pre- | Both forms led to a
significant (p < 0.01)
decrease in production
in LPS pre-stimulated
whole blood samples
Both forms of
medication, tincture | No data reported
on AE/safety | | | | | | index
(BMI) of
22.3 ± 2.7
(SD)) | | Echinacea
purpurea, 95%
herb and 5% roots.
(Both doses
contained the
same amount
(0.07mg) of the
major alkamides,
dodeca-
2E,4E,8Z,10E/Z-
tetraenoicacid
isobutylamides) | administration
s
of 1 of the 2
different
formulations. | | plants of the species
Compositae
3. Pregnancy | | | stimulated
whole
blood
samples | and tablets, led to a significant (p < 0.001) decrease | | | Ritchie
M.R. et al | UK,
Europea | This research was founded and | open label
study; ex- | *Healthy
subject | E.purpurea | *First 5 days: oral
administration of | *10 days per
study period | 1. Healthy adults 2. Aged 18–57 years | Use of any other medication during study | n/a | 30 | TNFα | Decreased (p<0.05) | "No adverse
events were | | (2011) | n
Region | sponsored by A.
Vogel, Bioforce AG,
Switzerland | vivo
analysis in
reponse to | with 2+
colds per
year; | | 4x1-ml doses of
Echinaforce® per
day. | (i.e. the
stressful
period and the | ≥2 colds per year (not
explicitly stated as
inclusion criteria) | periods 2. Vigorous physical activity during study | | 30 (but 2
subjects were
excluded from | IL-1B | significantly reduced
from baseline (p<0.05) | observed
aside from
reddening of the | | | | 5tzci miu | LPS/SEB
or | subjects
were | | *Following 3 days:
oral | non-stressful
period). | Experiencing heightened stress due to academic | periods 3. Excessive drinking or | | the analysis
for not strictly | IL-10 | increased from
baseline (p<0.05) | skin at the
puncture site" | | | | | Zymosan
stimulatio
n | studied
once
during a
period of
increased
stress | | administration of
10x1-ml doses of
Echinaforce® per
day.
*Echinaforce®= | *2 days of
baseline
measurements
followed by 5
days of 4x1mL
dose, followed | examination (assessed by
the perceived stress score-
10 questionnaire) | 5. Excessive drinking of
smoking during the study
periods | | adhering to
protocol) | IL-8 in
subgroup
with low
pre-
treatment
levels of
IL8 | significant stimulation
of these factors upon
treatment (30–49%
increases; p < 0.05) | parturesite | | | | | | (during
academic
examinati
ons) and
again 5
weeks
later) | | hydro-alcoholic
extract made from
Echinacea
purpurea, 95%
herb and 5% roots. | by 3 days of
1X10mL dose. | | | | | IFN-y | Increased in these
levels in subgroup of
subjects with low
(p<0.05) | | | Whitehe
ad 2007 | USA,
america
s | unclear | randomize
d-match,
double-
blind (first
12
randomize
d, rest
assigned
to make
balanced
groups
base don
baseline
RBC
count) | health
adults | E. purpura
(Puritan's Pride) | 8000mg/day | 28 days | Healthy and active male students Aged 18-30 years | On medications or diet
supplements Using tobacco Having signs/symptoms of cardiovascular or metabolic disease | wheat flour;
both goups
took a multi
vitamin | 24
12 Ech, 12
placebo | IL-3 | increased at day 14
and 21 in ech group vs
placebo (65% and
73% incr) p=0.011 | nothing reported | |--------------------------------|----------------------------------|--|--|-----------------------|---|---|--|--|--|---|-----------------------------|--|--|------------------| | Schwarz
2002 | German
y, | Supported by equally distributed | double
blind | healthy
males | E. purpura, freshly
expressed juice; | not specified | 14 days,
washout, 14 | 1. Healthy men
2. Aged 20-40 years | Acute or chronic disease,
atopic diathesis, or acute | control liquid | 40 | IL-1B | no change in production | not reported | | | Europea
n
Region | grantsfrom Shaper
& Bruemmer and
two of the authors
(C. Bode andJ. C.
Bode) | placebo
controlled
cross over | | identical to the
commercially
available
ESBERITOX mono
ofSHAPER &
BRUEMMER
(Salzgitter,
Germany) | | days | | infection in last month 2. Taking any immunomodulating drugs (NSAIDs) 3. Smoking and/or excess alcohol intake 4. Obesity | | | TNFa
productio
n of
monocytes
cultured
with LPS | No difference between
Ech and control | | | Randolp
h 2003 | Usa,
america
s | unclear | open label
study | healthy
adults | NUTRILITE Triple
Guard
Echinaceatablets | 1518mg/day | 1518mg for 2
days, 506 mg
on third day | Adults aged 18-65 years Non-smokers Normally active In good health based on interview and physical exam | None | None | 6 | gene
expression
of IFN-a2 | increased steadily
through day 12 in all
subjects; achieved
statistical significance
on day 12 | not reported | | | | | | | | | | | | | | IL-1B,
gene
expression | small down-regulation
in some but not all
subjects | | | | | | | | | | | | | | | IL-8 gene
expression | small down-regulation
in some but not all
subjects | | | | | | | | | | | | | | | TNFa gene
expression | small down-regulation
in some but not all
subjects p=0.04 | | | Guiotto
P. et al.
(2008) | Italy,
Europea
n
Region | Financial support
from the DALCO
s.r.l. and the
Region Friuli
Venezia Giulia
University of | Stated as
single
blind
study but
there was
no placebo | Healthy
volunteers | Echinacea
purpurea dry root
extract | Single lozenge
after overnight
fasting.
Dry extract
containing dodeca-
2E,4E,8Z,10E/Z- | Doses were
administered
in increasing
order;
wash-out
period | Abstinence from
smoking, eating and
drinking until the last
blood sample was taken
180 min after lozenge
administration | 1. On a special diet 2. Smoking, eating, and/or drinking (other than water) 12 hours before administration 3. Taking medicine 1 week | None | 6 | IL-12p70 | Statistically
significant decrease at
all three dosage levels
(p=0.016, 0.031) | not reported | | | | Trieste, Italy, Karl
Franzens
University, Graz,
Austria, University
of Ljubljana,
Slovenia, and | so was
open label | | | tetraenoic
isobutylamides:
0.07%, 0.21% and
0.9% (w/w). No
other details given. | between
treatments
was 2 weeks.
Blood samples
(5 mL)
collected in | | before to the end of the
study, except for oral
contraceptives | | | IL-8 | Statistically significant decrease at all three dosage levels (p=0.016) Statistically | | | | | Cellular
Immunology
Laboratory, IRCCS
Burlo Garofolo,
Trieste, Italy. | | | | | heparinised
tubes were
taken at 0
(before
administration | | | | | | significant decrease at
all three dosage levels
(p=0.036, 0.016) | | | | | Conflict
declaration not
made. | | | | |) and at 10, 20,
30, 40, 60, 120
and 180 min | | | | | IL-10 | Significant decrease at
the higher dose of
0.90mg (p=0.022) | | | | after each
dose. | | TNFα significant decrease at the higher dose 0.90mg (p=0.036) | |--|---------------------|--|---| |--|---------------------|--|---| Table 2 Table 3: Number of studies reporting increased or decreased levels of cytokines following *Echinacea* use. | Cytokine | Impact on Inflammation Levels and Cytokine storm (CS) | Studies reporting increased levels | Studies reporting no effect on levels | Studies reporting decreased levels | |----------|---|---|---------------------------------------|------------------------------------| | TNFα | Proinflammatory Key CS contributor | | 2 studies (5, 29) | 7 studies (21-26) | | IL-1B | Proinflammatory Key CS contributor | | 1 study (29) | 2 studies (24, 27) | | IL-6 | Proinflammatory Key CS contributor | | 1 study (28) | 3 studies (21, 25, 26) | | IL-8 | Proinflammatory | 1 study (26) and
1 study, only in patients
with low baseline levels
(27) | 2 studies (4, 8) | 4 studies (21, 24, 25, 28) | | IL-12 | Proinflammatory | | | 1 study (25) | | IFN-α | Key CS contributor | 1 study, only in patients with low baseline levels (27) | | | | IL-10 | Anti-inflammatory Role in regulating pro-inflammatory responses | 2 studies (21, 27) | 1 study (5) | 1 study (25) | | IL-3 | Not associated with CS | 1 study (23) | | | | IL-2 | Not associated with CS | 1 study (26) | | 1 study (21) |