Carbon sources supporting Australia’s most widely distributed freshwater fish, *Nematalosa erebi* (Günther) (Clupeidae: Dorosomatinae)

Bradley J. Pusey, Timothy D. Jardine, Leah S. Beesley, Mark J. Kennard, Tsz Wai Ho, Stuart E. Bunn and Michael M. Douglas

Marine and Freshwater Research. [Published online early 11 June 2020].
https://doi.org/10.1071/MF20014

The authors of the above-mentioned paper regret to inform readers that, in the Online Early version of their paper, the fifth author was incorrectly included as ‘Tze Wai Ho’. The correct name is Tsz Wai Ho and the ORCID ID is https://orcid.org/0000-0001-5096-3954.
Carbon sources supporting Australia’s most widely distributed freshwater fish, *Nematalosa erebi* (Günther) (Clupeidae: Dorosomatinacae)

A National Environmental Science Program, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia.
B Australian Rivers Institute, Griffith University, Kessels Road, Nathan, Qld 4111, Australia.
C School of Environment and Sustainability, Toxicology Centre, University of Saskatchewan, Preston Road, Saskatoon, SK, S7N5B3, Canada.
D Biological Sciences, The University of Western Australia, Stirling Highway, Crawley, WA 6009, Australia.
E Corresponding author. Email: bpusey@westnet.com.au

Abstract. Both brown (detrital-based) and green (algal-based) food pathways support freshwater food webs, although the importance of either source may vary within species, regions and different phases of the flow regime. The bony bream (*Nematalosa erebi* Clupeidae: Dorosomatinacae) is one of Australia’s most widely distributed freshwater fish species and is a key component of freshwater food webs, especially in northern Australia. We sought to better define the feeding habits of this species, previously classified as a detritivore, algivore or zooplanktivore (or combinations thereof), by undertaking meta-analyses of published accounts based on stomach content analysis and 13C and 15N stable isotope analysis. Stomach content analysis clearly indicated that detritus was the dominant food item, although benthic algae could be an important dietary component in some habitats (inland river flood plains) and during the wet season. Zooplankton were important for small fish (i.e. juveniles <100 mm in length). When data were pooled across a large number of locations, stable isotope analysis indicated that detritus derived from terrestrial vegetation was better aligned isotopically with values for both adult and juvenile bony bream, whereas algae were comparatively 13C enriched, indicating the latter source was not the dominant contributor to the biomass of this species. However, using site-specific data and a regression approach, a significant relationship was revealed between algal carbon and that of large fish, suggesting that carbon derived from benthic algae contributed ~20% of the carbon of adult bony bream. Zooplankton contributed a similar amount. Zooplankton provided the majority of carbon for small fish. We contend that detritus derived from terrestrial vegetation is the likely remaining carbon source for large bony bream, and this interpretation was supported by the outcomes of multiple regression analyses. Although previous studies of aquatic food webs in northern Australia have emphasised the importance of high-quality algal basal resources, this study indicates that terrestrial sources may be important for some species and demonstrates the need to better consider the circumstances that cause biota to switch between different food sources.

Additional keywords: algivory, aquatic food webs, detritivory, northern Australia, zooplanktivory.

Received 10 January 2020, accepted 3 May 2020, published online 11 June 2020

Introduction

Most plant matter ends up as detritus and most community food webs contain both detrital and living primary producer energy channels (brown and green food chains respectively; Moore et al. 2004; Rooney et al. 2006). Early models of aquatic ecosystem function emphasised the importance of terrestrial or aquatic vascular plant material in supporting the biomass of aquatic consumers via a detrital breakdown pathway (Vannote et al. 1980; Junk et al. 1989). Qualification of this viewpoint has included the inclusion of microbiota as both conditioners of detritus that make nutrients and energy more available and as constituents, which are themselves consumed (e.g. France 2011). By contrast, while not discounting the importance of terrestrial inputs, Thorp and Delong (1994) emphasised the importance of algal production in supporting consumer biomass. The use of stable isotopes and fatty acid markers in food web studies has largely confirmed the importance of autochthonous algal production in aquatic food webs (Lewis et al. 2001;
Bunn et al. 2003; Guo et al. 2016a, 2016b; Brett et al. 2017). Algal carbon is easier to digest and assimilate than that of vascular plant material (Brett et al. 2017). Moreover, algae contain higher quantities of polyunsaturated fatty acids (PUFA), which are essential for metazoan growth (Guo et al. 2016a).

Douglas et al. (2005) proposed that most biomass of tropical northern Australian rivers was ultimately derived from algal production. This hypothesis is largely supported by subsequent research, although other sources, such as terrestrially derived detritus, may also be important (Bunn et al. 2013; Petit et al. 2017). Elsewhere, several experimental and field-based studies have revealed that some aquatic consumers are supported by carbon derived from detritus and attached microbes (e.g. McGoldrick et al. 2008; Reid et al. 2008; Brett et al. 2009; Solomon et al. 2011; Belicka et al. 2012). Further, fatty acid profiles of some primary consumer organisms indicate a detrital origin by microbial processors (Belicka et al. 2012), and some aquatic organisms may possess the capacity to convert some fatty acids into more physiologically active forms (Murray et al. 2014; Guo et al. 2016b). Brett et al. (2017) suggested that the extent to which terrestrial carbon supports upper trophic level production may depend on the simultaneous availability of essential biomolecules derived from algae and concluded that there is no doubt that terrestrially derived carbon is ingested and assimilated by herbivores, but that it is done so at much reduced efficiency. Clearly, an algal–detrital dichotomy oversimplifies the complex relationships present within aquatic food webs (Taylor and Batzer 2010; Jardine et al. 2015).

Detritivorous fishes are an important component of tropical aquatic food webs (Lowe-McConnell 1975; Goulding et al. 1988; Flecker 1996), transferring basal production to higher trophic levels and frequently forming the major prey of piscivorous fishes (N. erebi) and trophic levels. Only three of these studies were intended to examine nutrient and energy transfer between a variety of basal sources, many organisms (including many species of fish) and trophic levels. Only three of these studies were undertaken in the dry season only (Blanchette et al. 2014; Jardine et al. 2012a; Bunn, unpubl. data). We excluded any data that did not allow us to distinguish between fish of different size classes (i.e. <100 and >100 mm SL). The manner

Materials and methods

Sources of stable isotope information

Information was sourced on carbon and nitrogen stable isotope (SI) values of bony bream tissue (fin or muscle) and three potential food sources (benthic algae (primarily periphyton), TVEG and zooplankton) from 11 separate food web studies undertaken in northern, eastern and central Australia and the northern portion of the Murray–Darling Basin (Fig. 1) in which the authors have been individually or collectively involved and that included N. erebi (Beesley 2006; Blanchette et al. 2014; Bunn et al. 2003; Jardine et al. 2012a, 2012b, 2013, 2015, 2017; L. S. Beesley, B. J. Pusey, M. M. Douglas, C. A. Canham, C. S. Keogh, O. P. Pratt, M. J. Kennard, and S. A. Setterfield, unpubl. data; S. E. Bunn’s three unpublished data sets). These studies were intended to examine nutrient and energy transfer between a variety of basal sources, many organisms (including many species of fish) and trophic levels. Only three of these studies were undertaken in the dry season only (Blanchette et al. 2014; Jardine et al. 2012a; Bunn, unpubl. data). We excluded any data that did not allow us to distinguish between fish of different size classes (i.e. <100 and >100 mm SL). The manner
in which samples were collected and analysed was largely consistent across studies (for detailed methods, see Jardine et al. 2012a) with the exception of particulate organic matter for which different particle sizes (i.e. coarse particulate organic matter, CPOM, and fine particulate organic matter, FPOM) were not consistently differentiated or collected. By contrast, all studies collected dead leaves of riparian trees (i.e. TVEG; primarily Melaleuca and Eucalyptus spp.), and these species contribute most allochthonous carbon inputs to freshwater systems in the study area. For those samples in which SI information was available for TVEG, CPOM and FPOM, $d^{13}C$ values of CPOM and FPOM differed from TVEG by less than $+1$ and $+2$–3%, respectively, and differences in $d^{15}N$ were less than $+1\%$. These differences accord well with similar comparisons elsewhere (e.g. Finlay and Kendall 2007). In total, SI information was available for fish collected from 120 separate locations (i.e. sites). $d^{13}C$ and $d^{15}N$ values for putative source material for each site were estimates based on the mean of at least three samples. Similarly, information from at least 3, but often up to 20, individuals for each size class of N. erebi was used to estimate mean $d^{13}C$ and $d^{15}N$ values of fish at each site.

We generated histograms of the frequency distributions for $d^{13}C$ and $d^{15}N$ for the three food sources and both size classes of N. erebi across all sites to assess the extent of spatial variation in isotope values and the extent of overlap in isotope values for different potential food sources. Broad distributions (i.e. high variance) indicate high spatial variation. We also assessed whether $d^{13}C$ or $d^{15}N$ of individual source materials varied independently using Pearson’s correlation. Gradient-based approaches where isotope variation of producers and consumers is measured at multiple locations have proved useful for determining the importance of different food sources exhibiting large spatial variation in isotope values (Rasmussen 2010; Jardine et al. 2012a). This approach, in contrast to a mixing model

![Fig. 1. Distribution of Nematalosa erebi within freshwater regions of Australia. Unshaded areas do not contain N. erebi. Region delineation is based on general similarities in climate and catchment physiography, as well as biogeographic variation in fish species distributions (Unmack 2013). The approximate location of studies used here is given and denoted by numbers as follows: 1, Bishop et al. (2001); 2, Pusey et al. (2000); 3, Kennard (1995); 4, Hortle and Person (1990); 5, Pusey et al. (1995); 6, Raynet et al. (2009); 7, Morgan et al. (2004); 8, Thorburn et al. (2014); 9, Pusey et al. (2010); 10, P. M. Davies, unpubl. fish diet data from Robe River, Pilbara, Western Australia; 11, Balcombe et al. (2005); 12, Bluhdorn and Arthington (1994); 13, Arthington et al. (1992); 14, Medeiros and Arthington (2014); 15, Medeiros and Arthington (2008); 16, Sternberg et al. (2008); 17, Atkins (1984); 18, Beesley (2006); 19, L. S. Beesley, B. J. Pusey, M. M. Douglas, C. A. Canham, C. S. Koegh, O. P. Pratt, M. J. Kennard, and S. A. Setterfield (unpubl. data); 20, S. E. Bunn (unpubl. data); 21, Jardine et al. (2017); 22, Jardine et al. (2012b); 23, Jardine et al. (2013); 24, Blanchette et al. (2014); 25, Jardine et al. (2015); 26, S. E. Bunn (unpubl. data, collected as part of the DryLand Refugia Project; see https://ewater.org.au/archive/crce/ewater/dominio/html/Site-CRCFE/CRCFE_WebSite.nsf/pages/Program+C+i+Progress+2004.html, accessed 18 May 2020); 27, Bunn et al. (2003); 28, S. E. Bunn (unpubl. data, collected in the Cooper Creek but not included in Bunn et al. 2003).]
<table>
<thead>
<tr>
<th>Study</th>
<th>Region (habitat)</th>
<th>Season</th>
<th>Size</th>
<th>Proportion of diet (%)</th>
<th>Total</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NTH AUS (R, FP), All seasonal flow phases</td>
<td>Seasonal means ranged from 76 to 216 mm; overall mean 120 mm CFL for entire sample</td>
<td>471</td>
<td>2.5 0.0 42.9 41.8 12.6</td>
<td>99.8</td>
<td>Distinguished between detritus, desmids or diatoms and other algae</td>
</tr>
<tr>
<td>2</td>
<td>GOC-CYP (R), Dry season</td>
<td>120–270 mm SL</td>
<td>20</td>
<td>5.0 0.0 95.0 0.0 0.0</td>
<td>100.0</td>
<td>Distinguished between detritus, desmids or diatoms and algae</td>
</tr>
<tr>
<td>3</td>
<td>GOC-CYP (FP) Dry season</td>
<td>200 ± 7 and 178 ± 7 mm SL for early and late dry season respectively</td>
<td>98</td>
<td>0.1 0.0 99.1 0.6 0.1</td>
<td>99.9</td>
<td>Distinguished between detritus and algae</td>
</tr>
<tr>
<td>4</td>
<td>GOC-CYP (R) Dry season</td>
<td>187–262 TL</td>
<td>7</td>
<td>0.0 0.0 50.0 50.0 0.0</td>
<td>100.0</td>
<td>Distinguished between detritus and algae</td>
</tr>
<tr>
<td>5</td>
<td>WT (R) Dry season</td>
<td>200–300 SL</td>
<td>7</td>
<td>0.0 0.0 100.0 0.0 0.0</td>
<td>100.0</td>
<td>Distinguished between detritus and algae</td>
</tr>
<tr>
<td>6</td>
<td>WT (R) Wet and dry season</td>
<td>209 ± 18 mm SL</td>
<td>66</td>
<td>0.1 0.2 97.2 0.8 0.2</td>
<td>98.4</td>
<td>Distinguished between detritus and algae</td>
</tr>
<tr>
<td>7</td>
<td>KIMB (L) Dry season</td>
<td>47–330 mm TL</td>
<td>21</td>
<td>7.3 0.0 59.4 4.1 2.0</td>
<td>72.8</td>
<td>Distinguished between detritus, desmids or filaments and other algae</td>
</tr>
<tr>
<td>8</td>
<td>KIMB (R) All flow phases</td>
<td>25–420 mm TL</td>
<td>132</td>
<td>0.3 0.0 58.6 15.7 12.9</td>
<td>87.2</td>
<td>Distinguished between biofilm or silts and filamentous algae. Tables list the contribution by biofilm or silts, but summary figures and text refer to this component as detritus. Other plant material contributed to 23.4% of the diet</td>
</tr>
<tr>
<td>9</td>
<td>CNQ (R) Dry season</td>
<td>70 ± 2 mm SL</td>
<td>508</td>
<td>10.3 0.0 86.0 1.3 0.0</td>
<td>97.6</td>
<td>Distinguished between biofilm and silt and filamentous algae. Sand contributed to 26.4% of the diet in the late dry season and to 9.7% of the overall total diet (not included here). Tables list the contribution by biofilm or silts, but summary figures and text refer to this component as detritus</td>
</tr>
<tr>
<td>10</td>
<td>PILB (R) Dry season</td>
<td>NA</td>
<td>9</td>
<td>6.0 0.0 0.0 92.0 0.0</td>
<td>98.0</td>
<td>Distinguished between biofilm and silt and filamentous algae. Sand contributed to 26.4% of the diet in the late dry season and to 9.7% of the overall total diet (not included here). Tables list the contribution by biofilm or silts, but summary figures and text refer to this component as detritus</td>
</tr>
<tr>
<td>11</td>
<td>CENT AUS Wet and dry season</td>
<td>29–260 mm (most <100 mm TL)</td>
<td>98</td>
<td>3.0 3.2 16.8 52.2 23.9</td>
<td>99.2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SEQ-NEN (R) Dry season</td>
<td>>100 mm</td>
<td>88</td>
<td>0.0 0.0 76.3 23.0 0.0</td>
<td>99.2</td>
<td>Distinguished between biofilm and silt and filamentous algae. Sand contributed to 26.4% of the diet in the late dry season and to 9.7% of the overall total diet (not included here). Tables list the contribution by biofilm or silts, but summary figures and text refer to this component as detritus</td>
</tr>
<tr>
<td>13</td>
<td>SEQ-NEN (R) Dry season</td>
<td>>100 mm</td>
<td>411</td>
<td>8.0 6.7 40.1 13.4 20.1</td>
<td>88.3</td>
<td>Distinguished between biofilm and silt and filamentous algae. Sand contributed to 26.4% of the diet in the late dry season and to 9.7% of the overall total diet (not included here). Tables list the contribution by biofilm or silts, but summary figures and text refer to this component as detritus</td>
</tr>
<tr>
<td>14</td>
<td>MDB (WH) Dry season</td>
<td>Mean ± s.d. from 67 ± 7 to 100 ± 16 mm</td>
<td>948</td>
<td>0.0 0.9 93.8 0.4 4.9</td>
<td>100.0</td>
<td>Distinguished between biofilm, filamentous alga, Volvox and 'algal matter'</td>
</tr>
<tr>
<td>15</td>
<td>MDB (WH) Dry season</td>
<td>72% of sample <69 mm SL</td>
<td>212</td>
<td>0.5 8.1 69.0 12.3 10.1</td>
<td>100.0</td>
<td>Distinguished between biofilm, filamentous alga, Volvox and 'algal matter'</td>
</tr>
<tr>
<td>16</td>
<td>MDB (WH) Dry season</td>
<td>100–150 mm SL</td>
<td>61</td>
<td>0.0 0.0 54.1 45.9 0.0</td>
<td>100.0</td>
<td>Distinguished between biofilm, filamentous alga, Volvox and 'algal matter'</td>
</tr>
<tr>
<td>17</td>
<td>MDB (R) Dry season</td>
<td>34–396 mm TL (most <80 mm TL)</td>
<td>98</td>
<td>0.0 0.0 33.3 0.0 66.7</td>
<td>100.0</td>
<td>Mean ± s.e.m. 2.5 ± 0.9 1.1 ± 0.6 63.0 ± 7.6 20.8 ± 6.6 9.0 ± 4.2 96.5 ± 1.8</td>
</tr>
</tbody>
</table>
approach, does not require potential sources to be distinct at all sites, does not require a priori knowledge of the extent of isotope trophic discrimination and does not require spatial variation in isotope values of different consumers to be independent (Moore and Semmens 2008; Rasmussen 2010). From a practical viewpoint, a gradient-based approach can maximise the number of locations used in analyses because it does not require all three potential sources of carbon to have been measured at every site.

Such an approach is well suited to the present case, where data were collected from multiple locations within many rivers. We plotted $\delta^{13}C$ values of each size class of *N. erebi* against $\delta^{13}C$ values of algae, TVEG and zooplankton. We used simple linear regression to assess the strength of the relationship between consumer (i.e. *N. erebi*) $\delta^{13}C$ values and food source (i.e. algae, TVEG and zooplankton) $\delta^{13}C$ values and report statistical significance at the $\alpha = 0.05$ level. We estimated whether the slopes of the relationship between isotope values were significantly different from 0 or 1 (i.e. not within the 95% confidence limits of the estimated slope). A close dependency on one source or the other should see $\delta^{13}C$ values aligned with spatial variation in $\delta^{13}C$ for that potential source (i.e. values should fall along a line denoting a 1:1 relationship or slope = 1). Conversely, if no significant relationship (i.e. slope = 0) is detected between consumer and food sources isotope values, then it is assumed that source is unlikely to be important. Slopes significantly different from both 0 or 1 indicate a mixed feeding model (i.e. more than one source to be important. Slopes significantly different from both 0 or 1 indicate a mixed feeding strategy with algae and zooplankton together accounting for approximately one-half of assimilated carbon. No significant relationship between $\delta^{13}C$ of large *N. erebi* and terrestrial carbon was detected. Variation in $\delta^{13}C$ of small *N. erebi* was

Results

Stomach contents analysis

Across all studies, the mean contribution of detritus to the diet was 63 ± 8% and that of algae was 20.8 ± 9.0% (Table 1). Zooplankton contributed a further 9 ± 4%, whereas aquatic insect larvae and aquatic macrophytes formed only a minor fraction of the diet (2.5 and 1.1% respectively). Detritus was the dominant dietary component in most studies except two undertaken in arid zone rivers, where algae contributed 90% and 52% to the diet (Studies 10 and 11 respectively, Table 1) and another undertaken in the Gulf Cape York Peninsula region (Study 4, Table 1) in which detritus and algae were codominant. Consumption of zooplankton was greatest in arid zone or southern regions (i.e. the Murray–Darling Basin); however, high consumption of zooplankton was also recorded in northern regions (i.e. the Kimberley and north Australia). All studies in which zooplankton contributed more than 1% of the diet (seven studies) were either dominated by or included fish <100 mm SL. For example, zooplankton comprised 87.3% of the diet in a seasonal subsample comprised entirely of small fish within one study undertaken in the Kimberley region (Study 8, Table 1). Similarly, a high contribution of zooplankton was recorded in the most southern study available (in the Murray–Darling Basin; Study 17, Table 1) and in which the sample was dominated by small individuals. Aquatic insect larvae (chironomid larvae) comprised ~10% of the diet in another study (Study 9, Table 1) undertaken in a large shallow sand bed river. Individuals included in that study were also small (mean ± s.e.m. SL 70 ± 2 mm). Thus, consumption of zooplankton and, to a lesser extent, aquatic insect larvae was limited to individuals of small size. Consumption of detritus and algae was greatest in larger individuals (i.e. >100 mm SL).

Stable isotope analyses

A wide range of $\delta^{13}C$ values from –34.6 to –12.0‰ (mean –23.0 ± 0.5‰) was recorded for benthic algae (Fig. 2). TVEG was relatively depleted in ^{13}C and varied little (mean $\delta^{13}C$ –29.1 ± 0.2‰; range –33.3 to –26.5‰). Zooplankton $\delta^{13}C$ values ranged from –38.2 to –23.5% and were typically highly depleted in ^{13}C (mean $\delta^{13}C$ –31.1 ± 0.4‰). Large *N. erebi* exhibited an intermediate range of $\delta^{13}C$ values (ranging from –33.3 to –18.5‰; mean $\delta^{13}C$ –27.4 ± 0.3‰) and were more depleted in ^{13}C compared with algae (as were small *N. erebi*: range –33.7 to –20.9‰; mean $\delta^{13}C$ –28.4 ± 0.3‰). The $\delta^{13}C$ values of algae, TVEG and zooplankton varied independently of one another ($r < 0.20, P > 0.05$ for all comparisons).

Algae and TVEG had similar mean values and variability in $\delta^{15}N$ values (mean $\delta^{15}N$ 4.5 ± 0.3 and 4.3 ± 0.2‰ respectively; Fig. 2). By contrast, zooplankton were comparatively enriched in ^{15}N (mean $\delta^{15}N$ 9.2 ± 0.5‰) and some samples were highly enriched (maximum 18.9‰). Large *N. erebi* were similarly enriched in ^{15}N (mean $\delta^{15}N$ 9.0 ± 0.2‰) and small *N. erebi* were slightly more enriched in ^{15}N than larger fish and zooplankton (mean $\delta^{15}N$ 10.8 ± 0.3‰). The $\delta^{15}N$ values of algae, TVEG and zooplankton did not vary independently of one another ($r = 0.60$, 0.51 and 0.93 for algae and TVEG, algae and zooplankton, and TVEG and zooplankton respectively; $P < 0.001$ for all).

Fig. 3 plots isotope variation ($\delta^{13}C$ and $\delta^{15}N$) in large and small *N. erebi* against variation in isotope values of putative dietary components across a large number of sites (for sample sizes and regression statistics, see Table 2). Variation in $\delta^{13}C$ of large *N. erebi* was significantly positively related to variation in $\delta^{13}C$ of both algae and zooplankton, and the slopes for these relationships (0.22 and 0.33 respectively) were both significantly different from 0 and 1, suggesting a mixed feeding strategy with algae and zooplankton together accounting for approximately one-half of assimilated carbon. No significant relationship between $\delta^{13}C$ of large *N. erebi* and terrestrial carbon was detected. Variation in $\delta^{13}C$ of small *N. erebi* was
not significantly related to variation in benthic algal δ^{13}C values, but was significantly positively correlated with zooplankton δ^{13}C, with the slope of this relationship (0.52) being significantly different from 0 and 1 (Table 2), again suggesting a mixed feeding model with approximately one-half of assimilated carbon being derived from this source (Fig. 3; Table 2).

δ^{15}N variation in both large and small Nematalosa erebi was significantly positively correlated with variation in all putative food sources (algae, terrestrial vegetation and zooplankton). Each point represents the mean value from an individual site within each study. Closed symbols indicate large fish (>100-mm standard length, SL); open symbols indicate small fish (<100 mm SL). Unbroken lines represent significant regressions between consumer and producer values for large fish, whereas broken lines are for the smaller size class. Sample sizes and regression statistics are given in Table 2.

Discussion

Stomach content analysis from multiple studies indicates that *N. erebi* is zooplanktivorous as a juvenile before transitioning to a primarily detrital diet with increasing size. These ontogenetic changes in diet mirror similar changes observed in a closely related clupeid, the American gizzard shad *Dorosoma cepedianum* (Smoot and Findlay 2010). When based on all samples, stable isotope information also suggested that detritus derived from TVEG, and zooplankton, provided a large fraction of the assimilated carbon. On average, the δ^{13}C values of both small and large *N. erebi* (-28.5 ± 0.3 and -27.4 ± 0.3‰ respectively) were very closely aligned to that of TVEG, depleted in δ^{13}C with respect to algal δ^{13}C values (-23.0 ± 0.5‰) and enriched compared with zooplankton (-31.1 ± 0.4‰). Collectively, these data do not support a significant contribution by benthic algae to carbon assimilation in large *N. erebi*. However,
regression analyses using site-specific data revealed a significant positive relationship between algal carbon and that of large fish, suggesting that benthic algae may also form an important carbon source for this size class of *N. erebi*.

Important methodological considerations for both stomach content and stable isotope analyses must be considered before accepting the generality of these findings. First, most studies, particularly those undertaken in northern Australia, examined diet during the dry season only, whereas the consumption of algae was greatest in those few studies undertaken over a long period and that included either wet seasons or periods immediately following a wet season. Thus, the contribution of algae to the diet of *N. erebi* could conceivably be higher than reported here. Second, trituration of ingested material within the muscular gizzard renders most material to a fine paste and it is highly likely that, despite the best intentions of researchers, algal material, other than filamentous algae, may not be readily identifiable (i.e. distinguished from detritus) and reliably quantified when examined macroscopically. Third, in aggregating stable isotope information across studies and locations, any spatial variation in the relationship between algal isotope values and those of the consumer is likely obscured. As a consequence, conclusions regarding the importance of detritus derived from TVEG and a minimal contribution by benthic algae warrant further scrutiny.

Indeed, isotope values for the putative food sources of algae and zooplankton varied greatly and the range of values over-lapped substantially for all sources. Such large variation in ... dissolved) and the wide array of factors that affect carbon fractionation in aquatic systems (Finlay 2004; Barnes et al. 2007). Similarly, baseline values of δ15N vary extensively in space due to variation in the taxonomic composition of producers, isotope distinction between various sources (i.e. N2, NO3, NH3) and variation in the efficiency with which they are used (Akiyama et al. 1997). However, it is notable that δ15N values of TVEG (riparian species primarily within Myrtaceae) and benthic algae in the present study were highly correlated despite their taxonomic distinctiveness. This finding suggests that both derived their nitrogen from the same source (i.e. that dissolved within the stream or groundwater).

Rather than being an impediment to interpreting relationships between sources and consumers, the presence of spatial variation in algal and zooplankton δ13C values helps identify the source of carbon sustaining *N. erebi*. Our data suggest a mixed feeding strategy in both large and small individuals. A significant relationship between δ13C values of algae and large fish with a slope (0.22) significantly different from both 0 and 1 indicates that algae contribute approximately one-quarter (range, as defined by confidence intervals, 10–35%) of the carbon assimilated by this size class. Carbon derived from benthic algal production is important in freshwater ecosystems globally (Roach 2013), including in Australia and especially in northern regions and arid zones (Bunn et al. 2003, 2006; Douglas et al. 2005; Leigh et al. 2010; Jardine et al. 2012a, 2012b). However the present study suggests that benthic algal carbon contributed little to the biomass of small *N. erebi*, which were, in contrast, more reliant on zooplankton carbon (52%; range 26–77%). Zooplankton also contributed substantially to the biomass of large *N. erebi* (33%; range 11–54%). Stomach content analysis for small *N. erebi* also identified zooplankton as an important dietary component. Medeiros and Arthington (2011) reported a significant correlation between spatial variation in δ13C values for *N. erebi* (and other fish species) and zooplankton that is consistent with the findings of stomach content analysis (Medeiros and Arthington 2008). Further, Jardine et al. (2015) found that zooplankton accounted for 50% of assimilated carbon in small (~1 g) *N. erebi*, declining to 25% in fish as large as 500 g. Phytoplankton are typically highly depleted in δ13C (Vuorio et al. 2006) and are the most likely source of carbon for zooplankton in the present study. In contrast to benthic algal production, planktomic algal production likely contributes to carbon assimilation in small individuals by their consumption of zooplankton.

Thus, algae and zooplankton potentially contribute approximately one-half of the carbon assimilated by large *N. erebi*, whereas zooplankton contribute approximately one-half of the

Table 2. Regressions statistics (intercept, slope and F values) for comparisons of isotope values of sizes classes of *Nematalosa erebi* and putative food sources (see Fig. 3)

Also given are the lower and upper 95% confidence limits (CLs) of the slope. n.s., $P > 0.05$; *, $P < 0.05$; ***, $P < 0.001$

<table>
<thead>
<tr>
<th>Source</th>
<th>Consumer size class (mm)</th>
<th>Isotope</th>
<th>n</th>
<th>Intercept</th>
<th>Slope</th>
<th>Lower 95% CL</th>
<th>Upper 95% CL</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benthic algae</td>
<td><100</td>
<td>δ13C</td>
<td>64</td>
<td>−11.32</td>
<td>0.39</td>
<td>−0.07</td>
<td>0.84</td>
<td>2.96**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ15N</td>
<td>63</td>
<td>8.37</td>
<td>0.52</td>
<td>0.27</td>
<td>0.77</td>
<td>18.17***</td>
</tr>
<tr>
<td></td>
<td>>100</td>
<td>δ13C</td>
<td>73</td>
<td>−22.16</td>
<td>0.22</td>
<td>0.10</td>
<td>0.37</td>
<td>12.17***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ15N</td>
<td>72</td>
<td>7.13</td>
<td>0.44</td>
<td>0.26</td>
<td>0.63</td>
<td>22.91***</td>
</tr>
<tr>
<td>Terrestrial vegetation</td>
<td><100</td>
<td>δ13C</td>
<td>58</td>
<td>−44.85</td>
<td>−0.55</td>
<td>−0.96</td>
<td>−0.14</td>
<td>7.10*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ15N</td>
<td>58</td>
<td>10.15</td>
<td>0.29</td>
<td>0.03</td>
<td>0.56</td>
<td>4.98*</td>
</tr>
<tr>
<td></td>
<td>>100</td>
<td>δ13C</td>
<td>55</td>
<td>−30.67</td>
<td>−0.10</td>
<td>−0.48</td>
<td>0.27</td>
<td>0.30NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ15N</td>
<td>55</td>
<td>7.74</td>
<td>0.53</td>
<td>0.32</td>
<td>0.74</td>
<td>26.80***</td>
</tr>
<tr>
<td>Zooplankton</td>
<td><100</td>
<td>δ13C</td>
<td>54</td>
<td>−12.44</td>
<td>0.52</td>
<td>0.26</td>
<td>0.77</td>
<td>16.94***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ15N</td>
<td>52</td>
<td>7.54</td>
<td>0.38</td>
<td>0.25</td>
<td>0.52</td>
<td>32.41***</td>
</tr>
<tr>
<td></td>
<td>>100</td>
<td>δ13C</td>
<td>56</td>
<td>−16.91</td>
<td>0.33</td>
<td>0.11</td>
<td>0.54</td>
<td>9.81***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ15N</td>
<td>54</td>
<td>6.75</td>
<td>0.31</td>
<td>0.19</td>
<td>0.43</td>
<td>28.39***</td>
</tr>
</tbody>
</table>
carbon assimilated by small *N. erebi*. What then accounts for the remaining fractions? Whereas spatial variation and correlation between source and consumer isotope values proved useful here for quantifying the contribution of algae and zooplankton, the minimal spatial variation in δ¹³C values of TVEG provided little scope for doing so. Nonetheless, stomach content analysis clearly indicates that detritus is the dominant food item, and the near absence of potential food items other than zooplankton or algae in stomach contents strongly suggests that we have not failed to consider or assess other potential sources. Moreover, the multiple regression analysis strongly supported a significant contribution by TVEG to *N. erebi* biomass. Thus, it seems most parsimonious to suggest that terrestrial detritus is, indeed, the missing source, despite the failure to detect a correlation between detrital δ¹³C values and those of fish, and the apparent poor nutritional quality of this food source (Brett et al. 2017). In addition, dead phytoplankton that have entered the detrital pool may have also contributed to the carbon assimilated by *N. erebi*.

It is rare for detritus not to have attached or embedded bacteria and fungi (Bowen 1987; Findlay et al. 2002). Detrital δ¹³C values do not change greatly with conditioning, and thus the isotope value of detritus, and of the microbial community living upon it, reflects its source origin (Finlay and Kendall 2007). As a result, δ¹³C values alone are unlikely to differentiate between carbon derived from detritus and that derived from microorganisms feeding upon that detritus. Given the refractory nature of vascular plant detritus, its nutritive value may be derived mostly from these attached organisms (France 2011) despite their low biomass relative to their substrate (Bowen 1987). Smoot and Findlay (2010) showed that the ingesta of the closely related facultative detritivore *D. cepedianum* contained eightfold more low-density material and was nutritionally enriched than the detrital or sediment material upon which it foraged. Moreover, the microbial biomass in ingesta was sevenfold greater than sediment. Smoot and Findlay (2010) suggested this living component of detritus was used as a food source by *D. cepedianum*. A similar comparison has not been performed for *N. erebi*. If, however, *N. erebi* possesses the same capacity to winnow detrital particles of differing quality, then it is possible that assimilation of carbon and nitrogen derived from microbiota feeding upon detritus is substantial. There is scant information on δ¹⁵N fractionation by microorganisms, making any interpretation of enrichment patterns in consumers of this form of prey difficult (Vanderklift and Fonsard 2003); however, the high availability of microbial biomass within the detrital pool can exert a disproportionate effect on enrichment dynamics on higher-order consumers that feed from both brown and green food chains (Steffan et al. 2017). We estimated a trophic enrichment of 4.1 and 3.2% for large and small *N. erebi* respectively; these values are not dissimilar to the ~3% per trophic level increase reported by Vander Zanden and Rasmussen (2001) and Post (2002). Bunn et al. (2013) reported a trophic enrichment of 3.9 ± 1.4% for a range of Australasian herbivorous fishes.

Although the quality of the fine detrital fraction may not be as high as that of algae, and certainly not that of zooplankton, it is nonetheless an abundant food source. Moreover, if the higher-value microbial fraction can be separated from lesser-quality larger fractions, then its value is increased further. Fish faced with a diet of low or reduced quality, particularly of protein, can compensate by increasing consumption rates to meet both energy and essential nutrient demands provided the food source is not limiting, which is not usually the case for detritus. Notwithstanding the constraint imposed by the absence of intestinal structures enabling the processing of algae or detritus (e.g. the muscular gizzard is largely absent in fish <60 mm in length), switching between algal, detrital and zooplankton sources to achieve a blended diet across green and brown food chains may enable juvenile *N. erebi* >60 mm in length to achieve and maintain high growth and the intake of essential nutrients such as limiting amino acids and PUFAs.

This study has shown that detritus (with or without associated microbiota), algae and zooplankton are all important sources of carbon and nutrients for *N. erebi*. This species is almost ubiquitous across northern Australia and may dominate fish biomass (Pusey et al. 2017). It is itself consumed by many higher-order predators, some of which can move great distances, even across catchment boundaries in the case of water birds (Kingsford et al. 2010). Thus, the contribution of terrestrial-derived carbon to *N. erebi* biomass, albeit occurring with low efficiency, may be

Table 3. Summary of results of multiple regression analyses for comparisons of isotope values of sizes classes of *Nematalosa erebi* and putative food sources

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Size class</th>
<th>Source</th>
<th>Estimated slope</th>
<th>t</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹³C</td>
<td>Small</td>
<td>Benthic algae</td>
<td>0.024</td>
<td>0.236**</td>
<td>167.7***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terrestrial vegetation</td>
<td>0.198</td>
<td>1.163N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>Benthic algae</td>
<td>0.278</td>
<td>3.257**</td>
<td>193.8***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terrestrial vegetation</td>
<td>0.463</td>
<td>3.465**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zooplankton</td>
<td>0.218</td>
<td>2.027NS</td>
<td></td>
</tr>
<tr>
<td>¹⁵N</td>
<td>Small</td>
<td>Benthic algae</td>
<td>0.069</td>
<td>0.322N</td>
<td>0.992NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terrestrial vegetation</td>
<td>−0.276</td>
<td>−1.232NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large</td>
<td>Benthic algae</td>
<td>0.079</td>
<td>0.589NS</td>
<td>5.967***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terrestrial vegetation</td>
<td>0.296</td>
<td>1.449N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zooplankton</td>
<td>0.115</td>
<td>1.172N</td>
<td></td>
</tr>
</tbody>
</table>

ns, *P > 0.05; *, *P < 0.05; **, *P < 0.01; ***, *P < 0.001*
translated up into higher trophic levels of aquatic food webs of northern Australia. Furthermore, the liberation of nutrients due to mass mortality of *N. erebi* in dry season waterholes of arid zone rivers contributes greatly to the production dynamics of dry season waters (Burford et al. 2008). *N. erebi* is clearly an important component of riverine food webs. Although not entirely dependent on detritus as a food source, detritus is an important component of the diet of *N. erebi*, and may thus contribute more to tropical and subtropical Australian aquatic food webs than previously considered. Our knowledge of the biology of *N. erebi* is scant, particularly in regard to the relationships among hydrological variation, reproduction and movement. Changes in flow regimes and connectivity between parts of the riverine landscape arising from the expansion of water resource use in northern Australia (Douglas et al. 2011; Petitit et al. 2017) and that affect the production dynamics of *N. erebi* have the potential to disrupt riverine food webs (Turschwell et al. 2019). The present study has shown that both detritus and algae are important sources of energy and nutrients for this common species, and hence for food web structure in general. Moreover, the findings support the assertion by Jardine et al. (2015) that a focus on an algal–detrital dichotomy is unhelpful and that a greater focus on the circumstances in which species switch between different food sources would provide a better appreciation of the way in which food webs are structured and how they may change in response to changes in hydrology. Furthermore, a greater focus on the carbon sources supporting zooplankton production is warranted because zooplankton are key to early life history development of *N. erebi*, and probably to that of most other freshwater fish species of the region.

Conflicts of interest
The authors declare that they have no conflicts of interest.

Declaration of funding
Much of the research included here was supported by the Tropical Rivers and Coastal Knowledge (TRAck) Programme, the Northern Environmental research Programme and the National Environmental Science Programme funded through the Australian Government’s Commonwealth Environment Research Facilities initiative, the Australian Government’s Raising National Water Standards Program, Land and Water Australia, the Fisheries Research and Development Corporation and the Queensland Government’s Smart State Innovation Fund.

Acknowledgements
The authors thank the two anonymous reviewers for their constructive and valuable contributions. We also thank the numerous people who have provided assistance in the field and the laboratory.

References

Handling Editor: Gerry Closs