MITOCHONDRIAL TARGETING OF VITAMIN E SUCCINATE ENHANCES ITS PRO-APOPTOTIC AND ANTI-CANCER ACTIVITY

Lan-Feng Dong‡, Victoria J. A. Jameson§, David Tilly¶, Jiri Cerny#, Elahe Mahdavian†, Alvaro Marín-Hernández‡‡, Luz Hernández-Esquível‡‡, Sara Rodríguez-Enriquez‡‡, Jan Stursa, Paul K. Witting¶¶, Bela Stantic§§, Jakub Rohlena, Jaroslav Truka, Katarina Kluckova, Jeffrey C. Dyason, Miroslav Ledvina, Brian A. Salvatore, Rafael Moreno-Sánchez‡‡, Mark J. Coster‡, Stephen J. Ralph‡, Robin A. J. Smith§, and Jiri Neuzil‡,#

1School of Medical Science, Griffith University, Southport 4222, Qld, Australia, §Department of Chemistry, University of Otago, Dunedin 9016, New Zealand, ¶Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan 4111, Qld, Australia, #Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic, †Department of Chemistry and Physics, Louisiana State University, Shreveport, LA, 71115 USA, ‡‡Department of Biochemistry, National Institute of Cardiology, Mexico City 14080, Mexico, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech republic, §§Discipline of Pathology, Bosch Research Institute, Sydney Medical School, University of Sydney, Sydney 2006, NSW, Australia, ¶¶Institute for Integrated and Intelligent Systems, and ‡‡Institute for Glycomics, Griffith University, Southport 4222, Qld, Australia

Running head: Mitochondrially targeted vitamin E succinate and complex II

Address correspondence to: Jiri Neuzil, Apoptosis Research Group, School of Medical Science, Griffith Health Institute, Griffith University Gold Coast Campus, Parklands Avenue, Southport, Qld 4222, Australia. Phone: +61-2-555-29109. Fax: +61-2-555-28804. E-mail: j.neuzil@griffith.edu.au

Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC₅₀ of 80 μM, while the electron transfer from CII to CIII was inhibited with IC₅₀ of 1.5 μM. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudo-hypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site, and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation and SDH activity. Mutation of the UbQ-binding Ser68 within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix optimising its biological effects as an anti-cancer drug.

Mitochondria are emerging as targets for a variety of anti-cancer drugs (1-5) that belong to a group of compounds termed ‘mitocans’ (6, 7). Of these agents, we and others have been studying the group of vitamin E (VE) analogs, epitomized by the ‘redox-silent’ α-tocopheryl succinate (α-TOS) and α-tocopheryl acetyl ether (α-TEA) (8). Both these agents proved to be selective inducers of apoptosis in cancer cells and efficient suppressors of tumors in experimental models (9-16).

VE analogs with anti-cancer activity have been classified as ‘mitocans’, i.e. small anti-cancer agents that act by selectively destabilizing mitochondria in cancer cells (6-
2). Of the several groups of mitocans, the anti-cancer VE analogs belong to both the class of BH3 mimetics, which includes compounds interfering with the interactions of the Bcl-2 family proteins (17), as well as to the class of agents that compromise the mitochondrial electron redox chain. The latter activity is likely the main reason for the strong apoptogenic efficacy of agents like α-TOS (18). More specifically, α-TOS interferes with the ubiquinone (UbQ)-binding site(s) of the mitochondrial complex II (CII), an event that results in generation of reactive oxygen species (ROS), in turn causing apoptosis induction (19). Moreover, CII has also been shown to be important for the anti-tumor efficacy of α-TOS (20).

While α-TOS acts on mitochondria, it does not discriminate between the different membranous compartments within the cell. Therefore, we decided to generate a variant of the agent that would be targeted to mitochondria, anticipating that by doing so, its apoptogenic activity would be increased. This reasoning was based on the work from the group of Murphy and Smith, who prepared a series of mitochondrially targeted antioxidants by tagging them with the positively charged triphenylphosphonium group (TPP+) (21), producing very efficient redox-active compounds (22-24). Further, we assumed that the TPP+ group will be advantageous also for the cancer cell-specificity of the agents, since cancer cell mitochondria feature greater mitochondrial inner membrane potential (ΔΨm,i) than normal cells (25-27). Our recent work (Dong et al., submitted for publication) documents that the prototypic compound of such a targeted VE analog, i.e. mitochondrially targeted vitamin E succinate (MitoVES), indeed, is some 1-2 orders of magnitude more apoptogenic than the untargeted, parental compound.

Molecular modeling as well as theoretical considerations suggests that tagging a hydrophobic compound with a cationic group, such as in the case of MitoVES, will dictate its position at the interface of the mitochondrial inner membrane (MIM) and the mitochondrial matrix. Therefore, we expect that it will be juxtaposed to preferentially interact with CII more than the untargeted VE analog, such that its apoptogenic activity would be much greater. In this communication we show that, indeed, MitoVES interacts with the proximal UbQ-binding (Q₃) site of CII, which endows it with greater activity for inducing cancer cell apoptosis.

Experimental Procedures

Cell culture - Human T lymphoma Jurkat cells were grown in the RPMI medium supplemented with 10% FCS and antibiotics. Chinese hamster lung fibroblasts with a dysfunctional CII (B9 cells), as well as the parental cells (B1 cells) (28), were grown in DMEM with 10% FCS, antibiotics, 10 mg glucose/ml and 1% non-essential amino acids. The cells were transformed to malignancy by transfection with an H-RAS vector (29) and CII in the B9 cells was reconstituted as reported elsewhere (20, 30). The human colon cancer cells HCT116ODD-GFP were cultured in DMEM with 10% FCS plus antibiotics; this sub-line was prepared by stable transfection of HCT116 cells using a plasmid coding for the oxygen-dependent destruction (ODD) domain of the HIF1α protein fused with GFP (31, 32).

Preparation of sub-mitochondrial particles (SMPs) - Coupled bovine heart SMPs were obtained from frozen mitochondria (20-30 mg protein/ml) incubated in the SHE medium (250 mM sucrose, 10 mM HEPES, 1 mM EGTA, pH 7.2) supplemented with 3 mM MgCl₂, 3 mM ATP and 20 mM succinate. The mitochondrial suspensions were sonicated three times in aliquots of 20 ml on ice for 15 s, with a 5-mm diameter probe tip using a Branson Sonifier 450 sonicator. The suspensions were diluted in the SHE medium and centrifuged twice at 17,370 x g for 5 min at 4°C. The supernatant was then centrifuged at 105,000 x g for 40 min at 4°C. The pellet was resuspended in the SHE medium plus 1% (w/v) fatty acid-free BSA and stored at -70°C until use (33).

Synthesis of VE analogs - The synthesis of the prototypic, racemic MitoVE₁₁S (2), an agent with an 11-C chain linking the TPP and the tocopheryl succinyl group, and its shorter-chain homologs MitoVE₉S (3), MitoVE₇S (4), MitoVE₅S (5), as well as its stereoisomers S-MitoVE₁₁S (6) and R-MitoVE₁₁S (7...
Molecular Probes) and flow cytometry, and expressed as mean fluorescence intensity (MFI), or by trapping with 5,5-dimethyl-1-pyrroline N-oxide (DMPO; Sigma) using EPR spectroscopy (19), which was expressed in arbitrary unites (AU) per mg cellular protein. Mitochondrial inner trans-membrane potential (ΔΨₘᵢ) was assessed using the fluorescent probe tetramethylrhodamine methyl ester (TMRM) and flow cytometry according to a standard protocol.

Assessment of CI, CII and CIII activity - In whole cells, SDH activity was estimated using a short term (1 h) modified MTT assay with succinate as the sole source of electrons driving the respiratory system specifically via CII, as described (18). For SMPs, CI and CII dehydrogenase activities were determined at 37°C in 1 ml of the SHE medium that also contained 0.075-0.1 mM DCPIP (2,6-dichlorophenol indophenol) and 0.025 mg protein/ml. The reaction was started after a 15-min pre-incubation with MitoVE₁₁S by adding succinate (0.25-2 mM) or NADH (0.1-1 mM) as CII or CI substrates, respectively. The rate of DCPIP reduction was determined by measuring the absorbance change at 600 nm and using the extinction coefficient of 21.3 mM⁻¹cm⁻¹. The CII dehydrogenase activity (SDH) was completely inhibited by malonate.

The activities of both succinate-cytochrome c oxidoreductase (complex II+III) and NADH-cyt c oxidoreductase (complex I+III) were determined at 37°C in 1 ml of 50 mM HEPES, pH 7.2, 1 mM cyanide, 50 μM cyt c (from horse heart) and SMPs at 25 μg protein. The reaction was started after a 15-min pre-incubation with MitoVE₁₁S by adding succinate (0.25-2 mM) or NADH (0.1-1 mM) as CII or CI substrates, respectively. The rate of DCPIP reduction was determined by measuring the absorbance change at 600 nm and using the extinction coefficient of 21.3 mM⁻¹cm⁻¹. The CII dehydrogenase activity (SDH) was completely inhibited by malonate.

Isolation of mitochondria and gel filtration chromatography - Cells (1.2 x 10⁸) were treated with MitoVE₁₁S for different periods and harvested. The pellet was resuspended in 0.5 ml of ice-cold hypotonic fractionation buffer (25 mM Tris at pH 7.4, 2 mM EDTA, 5 mM MgCl₂, 10 mM KCl, 125 mM sucrose, 1 mM PMSF, plus a protease inhibitor cocktail), and left on ice for 10 min. The swollen cells were lysed using a glass homogenizer (Kontes Glass Co.). The isotonicity of each sample was achieved by the addition of 250 μl of ice-cold hypertonic fractionation buffer with 0.5 M sucrose. Organelles and unbroken cells were centrifuged at 900 x g for 10 min, followed by centrifugation of the supernatant at 1,700 x g for 5 min. The remaining supernatant was then centrifuged at 15,000 x g for 10 min and the mitochondrial pellet lysed in a buffer comprising 25 mM HEPES, pH 7.5, 0.3 M NaCl and 2% CHAPS. The mitochondrial lysates were centrifuged at 19,000 x g for 5 min and loaded onto a Superdex-200 10/300 Preparation Grade column (separation range ~600-10 kDa; Amersham Biosciences) equilibrated with the 2% CHAPS lysis buffer (see above). Proteins were eluted at 0.3 ml/min, and fractions of 0.5 ml collected and mixed with 3-times Laemmli reducing sample buffer and boiled. The samples were then analyzed by SDS-PAGE and western blotting for subunits of CI, CII and CIII.

Western blotting - Proteins in whole cell lysates or mitochondrial fractions were separated using SDS-polyacrylamide gel electrophoresis before western blotting was performed according to a standard protocol using the antibody to the CI 39-kDa subunit (clone 20C11), the CIII core-2 subunit (clone 16D10; both Invitrogen) and the CII SDHC subunit (clone M01; Santa Cruz Biotechnology).

RT-PCR and qPCR - The amount of target mRNA was assessed by RT-PCR and qPCR. Total RNA was isolated using the Aurum RNA Total Mini Kit including the DNase treatment step (BioRad) and reverse-transcribed by Revertaid First Strand cDNA Synthesis Kit (Fermentas) according to the manufacturer’s instructions (1-5 μg total RNA per 20 μl reaction mixture). RT-PCR was carried out using the standard procedure. For qPCR, cDNA corresponding to 12 ng starting total RNA was diluted with water into 4.5 μl, 0.5 μl of the combined 10 μM forward and reverse primers were added, and, finally, 5 μl of 2 x SYBR Green JumpStart Taq ready mix (Sigma) was added and the reaction was carried out on a BioRad CFX96 real time thermal cycler using three step PCR (98°C 5s, 60°C 15s, 72°C 25s) for 40 cycles followed by melting curve analysis. Primers were designed.
on the intron/exon boundaries to prevent DNA amplification and are listed in Table I.

Site-directed mutagenesis - The S68A and S68L substitutions were introduced by site-directed mutagenesis of human wt SDHC cDNA in the pEF-IRE-PURO expression vector using the QuickChange Lightening mutagenesis kit (Stratagene) and the primers S68A: 5'-TCC CAT GGC GAT GGC CAT CTG CCA CCG-3' (forward) and 5'-CGG TGG CAG ATG GCC ATC ATG GGA-3' (reverse); S68L: 5'-CTT CCC ATG GCG ATG TTA ATC TGC CAC CGT GGC A-3' (forward) and 5'-TGC CAC GGT GGC AGA TTA ACA TCG CCA TGG GAA G-3' (reverse). The constructs were confirmed by sequencing and used to transfect the SDHC-deficient B9 fibroblasts using the Superfect reagent (Qiagen), followed by incubation with 2-4 μg/ml puromycin (Sigma) for two weeks. Clones were analyzed for the expression of human SDHC by RT-PCR and those selected were then transformed using the pEGFP-C3-H-Ras vector as previously described (20).

Total RNA was collected, and the presence of the S68A or S68L mutation was verified by cDNA sequencing.

Confocal microscopy - HCT116ODD-GFP cells were cultured on cover slips, exposed to MitoVE11S, mounted with DAPI-containing Vectashield (Victor Laboratories), and inspected in a confocal microscope. Sections from paraffin-embedded tumors derived from control or MitoVE11S-treated mice were processed as above for the cultured cells.

Mouse tumor experiments - Tumors were established in immunocompromized, athymic (Balb/c nu/nu) mice by injecting HCT116ODD-GFP cells subcutaneously at 5 x 10⁶ cells per animal. Mice were regularly checked by ultrasound imaging (USI) using the Vevo770 USI apparatus equipped with the 30-μm resolution RMV708 scan-head (VisualSonics) as detailed elsewhere (18, 20, 35, 36). As soon as tumors reached ~40 mm³, the animals were treated by i.p. injection of 1-2 μmol MitoVE11S or 15 μmol α-TOS in corn oil containing 4% EtOH every 3-4 d. Control mice were injected with an equal volume (100 μl) of the vehicle only. Progression of tumor growth was assessed using USI, which enables 3-dimensional reconstruction of tumors and precise quantification of their volume.

All animal experimentation was performed according to the guidelines of the Australian and New Zealand Council for the Care and Use of Animals in Research and Teaching and was approved by the Griffith University Animal Ethics Committee.

Molecular modeling - The binding of different MitoVE11S compounds to the mitochondrial respiratory CII protein was analyzed by means of empirical force field molecular modeling/molecular dynamics. The initial geometry of the protein was taken from the available crystal structure of the porcine heart CII (PDB code 1ZOY). As ligands, we selected both R- and S-stereoisomeric forms of MitoVE11S as well as a series of compounds with 9, 7, and 5 carbons in the aliphatic chain.

To make the simulations feasible, the extended structure of CII was partitioned accordingly to allow closer examination of the regions of interest. The properties of the membrane-bound part of the protein and the membrane itself were analyzed by placing the hydrophobic chains (C, D) into the bilayer of phosphatidylethanolamine (POPE). For the MitoVE11S binding site study the residues found within 10 Å from the Qp site were included. The protein/membrane study was initiated using a pre-equilibrated 6.7 nm rectangular patch of the POPE bilayer. The C and D chains of the protein were inserted into the center of the bilayer and the overlapping POPE molecules were removed, resulting in the complex containing 76 POPE molecules.

For the MitoVE11S complexes, the protein residues within 10 Å from the Qp site were first selected. In those situations where only one or two residues were missing between consecutive residues, these residues were also added into the selection. Terminal residues of the selection were capped with ACE and NME groups.

The molecular dynamics study was performed employing the AMBER force field. The parm99 force field (37) was used for the standard protein residues, while for the MitoVES molecules the general AMBER force field (GAFF) (38) parameters were used. The MitoVE11S point charges were determined by a restrained fit to the electrostatic potential (RESP) according to recommended procedures (39).

The modeled complexes were placed in a periodic rectangular box 1 nm larger than the complex along all three axes. For the study of the interaction of the hydrophobic chains (C, D) of the protein with the membrane, a 1 nm
extension of the box size was used only in the ‘out of plane’ coordinate, resulting in periodic lipid bilayer slabs. The box was filled with TIP3P water molecules. Chlorine ions were added to neutralize the system placing them at the positions with the lowest electrostatic potential. An MD simulation was then conducted employing the GROMACS suite of programs (40). The used equilibration procedure used consists of heating the water molecules separately to 300 K during 20 ps with the system held at 10 K, followed by a 20 ps heating of the whole system to 300 K, while applying position restraints on the heavy atoms of the solute. After heating, the position restraints only on the carbonyl carbons of protein were used (allowing for side-chain rearrangement while keeping the backbone fixed), and the 2 ns simulation at constant temperature of 300 K and constant pressure of 1 atm was performed. A time-step of 2 fs with van der Waals and electrostatic cut-offs of 1 nm were used throughout the simulations.

For calculating interaction energies, the energy groups were introduced, the periodic conditions were removed while increasing the cut-offs to 3 nm and the energies were calculated using the re-run switch of the mdrun program operating on the previously obtained trajectories. The group energies were collected for the (equilibrated) second half of the trajectories and analyzed with the g_analyze program.

For assessment of changes in the structure of CII upon replacing Ser68 with Leu, the original geometry of the protein was taken from the available crystal structure (PDB code 1Z0Y). Modeling of the 3D structure was performed by Asmara version 8.12.26 (41). The cell boundaries were defined as 80 x 80 x 120 Å, which were filled with a water density of 1.0 g/ml and the AMBER99 Force field was then applied. When modeling of the 3D structure was completed, structural alignment to establish equivalences between the original structure 1Z0Y and the structure with the mutated residue, based on their shape and 3D conformation was carried out. It is common for structural alignment methods to use only the backbone atoms included in the peptide bond. For simplicity and efficiency, only the Ca positions were considered, since the peptide bond has a minimally variant planar conformation. The root mean square deviation (RMSD) is the measure of the average distance between the backbones of superimposed proteins. In the study of globular protein conformations, one customarily measures the similarity of the 3D structure by the RMSD of the Ca atomic coordinates after optimal rigid body superposition (42).

Statistics - All data shown are mean values of three independent experiments (unless stated otherwise) ± S.D. Statistical significance was assessed using Student’s t-test and differences were considered significant at \(p < 0.05 \).

RESULTS

Induction of apoptosis by MitoVE11S is dependent on mitochondrial potential and complex II – We recently found that the mitochondrially targeted vitamin E analog, MitoVE11S, is some 20-50-fold more efficient than the untargeted α-TOS (Dong et al., submitted for publication), as documented in Fig 2A for Jurkat cells. This is in good agreement with the IC₅₀ value of ~0.5 μM for MitoVES for apoptosis induction in Jurkat cells, which was ~20 μM for α-TOS. Mitochondrial accumulation of MitoVE11S can be ascribed to the TPP⁺ tag and the high mitochondrial potential (ΔΨm,i). To prove this, we carried out experiments, in which Jurkat cells were exposed to MitoVE11S or α-TOS in the absence or presence of the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) and assessed for apoptosis. Fig. 2B documents that FCCP considerably lowered apoptosis induced by MitoVE11S but not by α-TOS, documenting that ΔΨm,i is important for high biological activity of the mitochondrially targeted vitamin E analog, which is not the case for α-TOS lacking the TPP⁺ tag.

Due to the superior activity of MitoVE11S, we investigated its molecular target. Given the fact that α-TOS, which lacks specific mitochondrial targeting, was shown to cause apoptosis by interacting with CII lying at the interphase of the MIM and the mitochondrial matrix (18), it was reasoned that MitoVE11S (compound 2)
CII-dysfunctional and CII-reconstituted B1Ras, B9Ras and B9Ras-SDHC cells, respectively, was tested (20). Fig. 2B documents that the parental as well as CII-reconstituted cells were susceptible to MitoVE11S, while the CII-dysfunctional cells were resistant. Notably, the capacity of the three cell lines to generate radicals in response to MitoVE11S exposure correlated with their susceptibility to apoptosis, as shown by EPR spectroscopy using a radical trap and flow cytometry using a fluorescent probe (Fig. 2C-E).

We next tested whether the generation of radicals was due to an effect of MitoVE11S on the integrity of the mitochondrial electron transport complexes. This was particularly important given that CI-CIII are considered to be major sources of mitochondrially derived ROS (43). To ascertain this point, Jurkat cells, which are very sensitive to MitoVE11S (Dong et al., submitted), were used. The cells were treated with 5 μM MitoVE11S for 6 h before mitochondria were isolated and their extracts separated by size-exclusion chromatography, followed by western blotting of the individual fractions for subunits of CI, CII and CIII. Fig. 2F documents virtually no effect of the agent on the integrity of any of the three complexes. We did, though, observe a slight shift towards higher molecular weight for CI and CII. Further, it was examined whether MitoVE11S affects the expression of any of the 13 proteins coded by mtDNA as subunits of mitochondrial electron redox chain complexes. A 6-h exposure of Jurkat cells to 5 μM MitoVE11S followed by RT-PCR revealed a very small, if any, effect on expression of the mtDNA-coded genes at the level of mRNA, with a mild effect on ND3, ND6, COX1 and COX2 (Fig.2G) Analysis by qPCR confirmed this mild effect (data not shown). This indicates that generation of ROS in cancer cells exposed to MitoVE11S is not due to an effect of the agent on the levels or integrity of the mitochondrial complexes.

MitoVE11S inhibits the oxidoreductase activity of complex II – Next, the effects of MitoVE11S on the enzymatic and oxidoreductase activities of CI and CII were examined. For these studies, heart tissue derived mitochondrial preparations as SMPs were used because of their ready availability and as they would be directly accessible to drug testing on the function of the respiratory chain. MitoVE11S was examined for its capacity to disrupt the electron transfer between CI or CII, and CI and CIII. Fig. 3A reveals that the oxidoreductase activity of CII (transfer of electrons from CII to CIII) was very sensitive to low levels of the compound (IC50 values of 1.5 μM and 10 μM at high and low levels of succinate, respectively) (Table II), whereas no effect was evident on the electron transfer activity from CI to CIII (Fig. 3A). This suggests that MitoVE11S preferentially binds to the fully active CII. At low succinate, addition of detergent to the reaction mixture only minimally affected the MitoVE11S IC50 value, while at high succinate, the detergent’s effects became more pronounced, revealing the importance of the natural and fully active conformation of the CII tetramer to allow for maximal effects of MitoVE11S (Table II). The SDH enzymatic activity of CII, on the other hand, was only inhibited by high MitoVE11S concentrations (Fig. 3A) (IC50 values for conversion of succinate to fumarate by CII were 80 μM at high and 76 μM at low succinate; Table II), whereas the NADH dehydrogenase (NDH) activity of CI was not affected (Fig. 3A).

Inhibition of SDH can cause the state of pseudohypoxia, leading to activation of prolyl hydroxylase that modifies two proline residues flanking the ODD domain of HIF-1α, resulting in the accumulation of this transcription factor (31). To find out whether this process was invoked by MitoVE11S, HCT116 cells stably transfected with ODD-GFP were used. Prolonged exposure of the cells under normoxia to MitoVE11S at 1-5 μM resulted in the expression of the ODD-GFP fusion protein (Fig. 3B,C). This indicates that even at relatively low drug levels, sufficient SDH inhibition can occur over the long term to enable succinate levels to accumulate which activate the pseudohypoxic state and further documents the role for CII as a target for MitoVE11S. In support of this premise, we have recently found that exposure of cancer cells to vitamin E analogs results in succinate accumulation (J.N. et al., unpublished data).

MitoVE11S targets the proximal UbQ-binding site of complex II - In order to characterize the interaction of MitoVE11S with CII in more detail, computer modeling was used, based on the published crystal structure of CII (44), which we inserted within a phosphatidylethanol-amine (POPE) bilayer simulating the environment of the MIM. Our
The model predicts that the TPP⁺ group of MitoVE₁₁S is located at the matrix interface of the MIM, whereas the active succinyl group of the drug is buried within the membrane, interacting with the Qₚ site of CII (Fig. 4). This requires the aliphatic linker separating the chromanol succinate and TPP⁺ moieties to be of a certain length. Indeed, when serially shorter linkers were used in the simulation, the model-derived binding energies of these MitoVES homologs were correspondingly successively reduced (Table III). Experimental results confirmed these predictions: reducing the length of the linker lowered the biological activity of the MitoVES homologs, and the shortest variant, MitoVE₁₁S (compound 5), lost most of its activity, as shown by low levels of apoptosis in Jurkat cells (Fig. 5A), as well as in HCT1₁₆//= cells examined for SDH activity inhibition, ROS accumulation, apoptosis induction, and ODD-GFP stabilization (Fig. 5B-E). Similar results were obtained for the reduction of CII oxidoreductase activity in isolated SMPs, thereby excluding the possibility of a reduction in cellular uptake of the shorter MitoVES homologs (Table II).

The model also predicted that the R enantiomer of MitoVE₁₁S (compound 7 in Fig. 1) would bind CII ~20% more efficiently than the S enantiomer (compound 6) (Fig. 6A and Table III). In support of this, the R enantiomer induced apoptosis more efficiently in Jurkat cells than the S enantiomer, with the results for the racemic mixture of MitoVE₁₁S between the two (Fig. 6B). This difference in the apoptotic efficacy of the stereoisomers was apparent at relatively low levels of MitoVE₁₁S (e.g. the concentration of 2.5 μM shown in Fig. 6B), and it was lost at 5 μM MitoVE₁₁S (data not shown).

Mutation of the CII UbQ-binding Ser68 in the Qₚ site causes resistance to MitoVE₁₁S - In order to verify the significance of the Qₚ site for the biological activity of MitoVE₁₁S, we reconstituted the SDHC-deficient B9 cells with SDHC variants mutated at Ser68, a residue important for UbQ binding (44) (Ser27 in E. coli, 45). Substitution of Ser68 by either Ala or Leu, which according to the model should cause only minor shifts within the binding site (the root mean square deviation being 44 Å for S68A and 52 Å for S68L) abrogated the capacity of MitoVE₁₁S to induce ROS production and apoptosis (Fig. 7A,B), confirming the importance of the Qₚ site and, more specifically, the UbQ-binding S68 of SDHC for the activity of MitoVE₁₁S.

MitoVE₁₁S suppresses tumor progression and causes pseudohypoxia in tumor cells - To assess the effect of MitoVE₁₁S on tumors and obtain insight into the molecular mechanism of its anti-cancer effects, nude mice with xenografts derived from the HCT1₁₆//= cells were used. Once palpable tumors appeared (volume of ~40 mm³), the animals were treated by i.p. administration of either MitoVE₁₁S at 1–2 μmol or α-TOS at 15 μmol. Fig. 8A shows that MitoVE₁₁S, applied at 10-fold lower concentration than the untargeted α-TOS, suppressed the growth of colorectal carcinomas and was, therefore, much more efficient. At the end of the experiment, the mice were sacrificed and tumors used for preparation of paraffin-embedded sections, which were inspected by light microscopy for their morphology and by confocal microscopy for the appearance of the ODD-GFP green fluorescence (Fig. 8B). Unlike tumors from the control mice, tumors from the MitoVE₁₁S-treated animals showed abundant green fluorescence in the tumor cell cytoplasm, documenting the stable expression of the ODD-GFP transgene. This result suggests that the molecular mechanism, by which MitoVE₁₁S induces apoptosis in cultured tumor cells and in experimental tumors to suppress their growth involves targeting of CII, resulting in generation of ROS and culminates in the state of cell pseudohypoxia.

DISCUSSION

In this communication, we present data on the molecular mechanism of generation of ROS in cancer cells exposed to the novel VE analog, mitochondrially targeted vitamin E succinate (MitoVE₁₁S). We show that (i) MitoVE₁₁S requires a functional CII for ROS generation and apoptosis induction; (ii) MitoVE₁₁S very efficiently suppresses electron transfer from CII to CIII, while only mildly inhibiting the SDH head group enzymatic activity of CII; (iii) the length of the hydrophobic chain of MitoVE₁₁S is critical to allow the biologically active succinate moiety of the agent to reach the Qₚ of CII; (iv) the UbQ-interacting Ser68 of the Qₚ is important for the biological activity of MitoVE₁₁S; and (v) the molecular mechanism by which
MitoVE₁₁S triggers apoptosis in cultured cells *in vitro* and suppresses tumor progression *in vivo* can be closely correlated to involve the CII’s Qₘ binding and the downstream effects. These major findings document that MitoVE₁₁S, as an efficient anti-cancer agent, has the propensity to interact with CII, which plays a role in the pro-apoptotic activity of several anti-cancer drugs (46), and has been proposed as a novel target for mitocans from the group of VE analogs (18, 20).

While CII has only now been identified as a target for anti-cancer drugs, its subunits *SDHB*, *SDHC* and *SDHD* have been reported as tumor suppressor genes (47-49), whose mutations give rise to relatively rare neoplastic diseases, including familial paragangliomas and pheochromocytomas (50, 51). The molecular mechanism of tumorigenicity arising from mutations in *SDHB*, *SDHC* or *SDHD* is not completely clear at present, although it has been suggested that mutations resulting in impaired expression of the protein(s), imperfect assembly or lack of binding of UbQ may give rise to slightly increased generation of ROS, likely promoting the malignant transformation (52-57). In the light of these findings, it is interesting that CII can also serve as a target for anti-cancer drugs, an intriguing paradigm corroborated by the notion that CII mutates mostly in relatively benign neoplastic diseases, while, for example, only one out of 1 million breast cancer patients is positive for a mutation in a CII subunit (51).

Our recent finding of CII as a target for anti-cancer drugs comes from experiments with α-TOS, which showed that a mutation in the *SDHC* gene, whereby the protein is not expressed, renders the cells resistant to the VE analog. Since CII appears to be a highly intriguing, invariant target (mutating very rarely in major carcinomas), especially considering the findings that cancers are extremely promiscuous and feature different sets of mutations even within the same type of the disease (58), our aim was to maximize the efficacy of CII-targeting agents. To do this, the strategy of Murphy and Smith, used previously to deliver antioxidants to the mitochondria of cultured cells and tissues *in vivo* was adapted here. For their studies, a lipophilic cationic group was used to tag and modify antioxidants (21, 59), thereby endowing them with profound biological activity (60, 61) while not jeopardizing the normal mitochondrial physiology (62). Further, incorporation of lipophilic cationic compounds inside tumor mitochondria is favored by the inherent nature of their much greater electrochemical gradient (by 20-60 mV vs. normal cell mitochondria). This promotes increased lipophilic cation accumulation at the matrix face of the MIM, imparting higher selectivity for such modified drugs to target cancer cells (63). The premise that ∆Ψₘᵢ is greater in cancer cells when compared to their non-malignant counterparts (25-27) would also indicate that TPP⁺-tagged compounds would be selective for cancer cells. Indeed, we found that the IC₅₀ for killing of cancer cells by MitoVE₁₁S is ~0.5-3 μM for cancer cell and ~20-60 μM for non-malignant cells (Dong et al., submitted for publication), further supporting the intriguing nature of such compounds.

We therefore synthesized analogs of anti-cancer agents, with the mitochondrially targeted vitamin E succinate, MitoVE₁₁S, as the prototypic compound, by tagging VES with the TPP⁺ group (c.f. Fig. 1), since such a modification is expected to cause preferential compartmentalization of the compounds in mitochondria, enhancing their bioactivity (64). We have shown that, indeed, MitoVE₁₁S causes a greater level of apoptosis in cancer cells, some 1-2 log greater than does α-TOS and that it does partition to mitochondria, while retaining the cancer cell selectivity of the untargeted α-TOS (Dong et al., submitted). Due to the structure of MitoVE₁₁S and the data shown for the mitochondrially targeted UbQ (MitoQ) (21, 23, 24), we reasoned that MitoVE₁₁S would be positioned so that its TPP⁺ group is at the matrix face of the MIM and the tocopheryl succinyl group buried in the MIM, potentially in the vicinity or inside the Qₘ site of CII. To test whether MitoVE₁₁S induces ROS generation and apoptosis via CII, we used the parental, CII-dysfunction and CII-reconstituted, RAS-transformed, Chinese hamster lung fibroblasts (20), and found that the agent was relatively inefficient in inducing the two processes in the CII-dysfunctional cells compared to cells with normal SDH activity.

The role of CII as a target for MitoVE₁₁S is further documented by the stabilization of the ODD-GFP protein expressed in HCT116ODD-GFP cells when exposed to the agent. This is because inhibiting SDH, even with low levels of the drug over extended periods, likely results in an increase in the
succinate/fumarate ratio, diffusion of succinate to the cytosol and inhibition of prolyl hydroxylases, invoking the state of pseudo-hypoxia (31, 32). This, in turn, stabilizes the ODD domain of the HIF1α, which in the ODD-GFP construct regulates the stability of GFP. Since we did not observe GFP fluorescence in HCT116 ODD-GFP cells exposed to MitoVE11S in less than 6 h (data not shown) whereas significant ROS accumulation occurred within relatively short periods, the pseudohypoxic state is likely secondary to the importance of ROS in promoting the onset of apoptosis in cancer cells exposed to MitoVE11S. To corroborate this premise, using live confocal microscopy and cells transfected with the pHyPer-dMito plasmid coding for the redox sensor OxyR (65), we observed generation of ROS in cancer cells as early as in 5 min following addition of MitoVE11S (Dong et al., submitted for publication). This further supports the primary role of the CII’s UbQ-binding site in the molecular action of the agent, and is consistent with the notion that inhibition of CII can result in HIF1α stabilization (31, 32, 66, 67).

MitoVE11S-induced ROS did not significantly affect the expression of individual mtDNA-encoded subunits examined or the stability of the CI-CIII assemblies, although some shift towards the higher molecular weight was observed for CII and CIII (c.f. Fig. 2E). It is unlikely that this has a direct effect, such as on the generation of ROS, since this is observed within minutes after addition of MitoVE11S (see above). It is likely that the observed increase in the molecular weight of CI and CII is a consequence of the early ROS generation and the ensuing apoptosis. Most importantly, generation of ROS is not a result of destabilization of the mitochondrial complexes. However, MitoVE11S did specifically affect CII, inhibiting the conversion of succinate to fumarate and transfer of electrons from CII to CIII, which is normally accomplished by CII’s endogenous UbQ. The IC50 values for the two activities indicate a much stronger inhibition of electron transfer than that of the SDH enzymatic activity (1.5 vs. 80 μM, respectively). Since MitoVE11S very efficiently blocks electron transfer from CII to CIII, electrons will be redirected to produce superoxide anion radicals, triggering the apoptotic pathway (68). At the same time, the relatively mild inhibition of the SDH activity of CII allows for succinate conversion to fumarate, resulting in generation of electrons to form superoxide levels high enough for apoptosis induction.

Since TPP+ acts as a charged anchor excluded from the lipid bilayer, it cannot be incorporated into the MIM (23, 24, 69). Shortening the aliphatic chain of MitoVE11S is proposed to restrict the access of the tocopheryl succinate head group penetrating down into the bilayer, causing loss of CII binding and apoptotic activity. Consistent with this premise, the short-chain MitoVE11S homologs were much less efficient in ROS generation and apoptosis induction. In addition, the shorter-chain compounds were less effective in causing GFP stabilization in the HCT116 ODD-GFP cells and in inhibiting the electron transfer from CII to CIII. Hence, the data is consistent with the molecular mechanism of MitoVE11S with its biologically active moiety most likely binding into the Qp site, thereby affecting the function of UbQ. This is consistent with a report on MitoQ, a TPP-tagged analog of UbQ with a 10-C hydrophobic chain, whose quinone head group interacts with CII but not CI or CIII, such that it becomes the acceptor of electrons coming from the conversion of succinate to fumarate. The authors also showed that shortening the hydrophobic chain resulted in a lower level of its reduction by CII (23, 24).

The above findings were corroborated by molecular modeling, which was based on the published crystal structure of mammalian CII (44). Phospholipids were introduced to mimic the MIM in which the SDHC and SDHD subunits of CII are buried, enabling calculations of the interaction energies. MitoVES homologs with TPP+ at the surface of the mitochondrial face of the MIM and succinate lying at the Qp site showed affinities paralleling their relative activities in killing cancer cells as well as in causing ROS accumulation. The results of the modeling were also consistent with the higher apoptogenic activity obtained for R-MitoVE11S over the S-isomer. The data for the calculated affinity of MitoVE11S binding in the Qp site was supported by the results of an experiment in which we used SDHC-deficient cells transfected with the wt SDHC gene (18, 20) or with an SDHC gene in which the UbQ-binding Ser68 (44) was replaced with Ala or Leu. Cells expressing mutant SDHC showed greater
resistance to ROS generation and apoptosis induction in response to MitoVE11S, supporting the importance of the UbQ-binding of S68 in the Qₚ site for the biological activity of the agent.

Finally, we assessed the effect of MitoVE11S on a pre-clinical model of cancer, based on nude mice with HCT116_ODD-GFP cell-derived xenografts. While MitoVE11S was >10-fold more efficient than the non-targeted α-TOS, it caused stabilization of GFP in the tumors, as revealed by their sectioning followed by confocal microscopy. This result suggests that the molecular basis for induction of apoptosis by MitoVE11S in cultured cells, involving the state of pseudohypoxia, is also operational in suppression of tumor growth in pre-clinical, experimental carcinomas.

We propose that the molecular mechanism by which MitoVE11S affects cancer cells is based on its strong interaction with the binding of UbQ to the CII Qₚ site. Consequently, the agent very efficiently blocks transfer of electrons from CII to CIII, which yields superoxide that acts as a signal triggering apoptosis. It is possible that in the presence of MitoVE11S, some electrons may proceed to CIII via the Qᵳ site. However, since this site is less well defined than Qₚ and since its biological relevance is not defined, the potential flow of electrons via the Qᵳ is questionable at this stage.

Present MitoVE11S results provide very strong evidence for mitochondrial CII as a bona fide target for potential cancer treatment, and considerably extend our previous data obtained with α-TOS (18, 20). We conclude that mitochondrial targeting, achieved by tagging hydrophobic compounds with cationic groups, epitomized by VES modified with the TPP⁺ group, endows such agents with superior efficacy in apoptosis induction, translating into efficient anti-cancer activity, while retaining selectivity for malignant cells. Given the bleak outlook for cancer management (70, 71), finding novel, highly efficient and selective drugs, is of the utmost importance. Our proposal to target drugs that relay their activity by interfering with the mitochondrial function (mitocans) (1-5, 72) to these organelles to increase their concentration at their molecular target is a highly intriguing paradigm that ought to be exploited at the clinical level.

REFERENCES

11

FOOTNOTES

We would like to thank I. Scheffler for B1 and B9 cells, E. Gottlieb for HCT116ODD-GFP cells, D. Spitz and F. Domann for pCR3.1-SDHC, and J. Hancock for pEGFP-C3-H-Ras. This work was in part supported by grants from the Australian Research Council, the Cancer Council Queensland, the National Breast Cancer Foundation, the Grant Agency of the Czech Republic (204/08/0811, 305/07/1008), the Grant Agency of the Academy of Sciences of the Czech Republic (IAA500520702, KJB500970904, KAN200520703) to JN, the Griffith Health Institute to LFD, the Otago University Research Grants Committee funding to RAJS, CONACyT-México (80534 and 20675) to RMS and SRE, the Grant Agency of the Czech Republic (GP204/09/P632) to LP, and grant P20RR016456 from the National Center for Research Resources to EM and BAS.

The abbreviations used are: CII, complex II; cyt c, cytochrome c; DCPIP, 2,6-dichlorophenol indophenol; DHE, dihydroethidium; DMPO, 5,5-dimethyl-1-pyrroline N-oxide; EPR, electron paramagnetic resonance; FCCP, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone; MIM, mitochondrial inner membrane; MFI, mean fluorescence intensity; MitoQ, mitochondrially targeted coenzyme Q; MitoVE11S, mitochondrially targeted vitamin E succinate; ODD domain, oxygen-dependent destruction domain; POPE, phosphotidylethanolamine; RMSD, root mean square deviation; ROS, reactive oxygen species; SDH, succinate dehydrogenase; SMP, sub-mitochondrial particle; TMRM, tetramethylrhodamine methyl ester; α-TOS, α-tocopheryl succinate; TPP+, triphenylphosphonium; UbQ, ubiquinone; USI, ultrasound imaging; VE, vitamin E; VES, vitamin E succinate, ΔΨm,i, mitochondrial inner trans-membrane potential.

LEGEND TO FIGURES

Fig. 1. Structures of the compounds used in this study.

Fig. 2. MitoVE11S is superior to α-TOS, requires high ΔΨm,i, and acts by targeting the mitochondrial respiratory complex II (CII). _A._ Jurkat cells were exposed to MitoVE11S or α-TOS at the concentrations shown (µM) for 10 or 20 h and assessed for apoptosis by flow cytometry. _B._ Jurkat cells were exposed to 4 µM MitoVE11S (MVES) for 4 h or 100 µM α-TOS (TOS) for 6 h in the presence or absence of 5 µM FCCP (FC) and assessed for apoptosis. The insert shows that exposure of Jurkat cells to increasing doses (µM) of FCCP for 6 h results in dissipation of ΔΨm,i, as assessed using the fluorescent probe TMRM and flow cytometry (MFI, mean fluorescence intensity). _B1Ras, B9Ras and B9Ras-SDHC_ cells were exposed to 5 µM MitoVE11S for the times shown (C, D) or for 2 h (E, F), and assessed for apoptosis induction (C) and ROS accumulation by flow cytometry (D) and EPR spectroscopy (E, EPR spectra; F, double integration evaluation of the signal; AU, arbitrary units). _G_ Jurkat cells were exposed to 5 µM MitoVE11S (MV) for 6 h, their mitochondria lyzed, and the lysates fractionated using size-exclusion chromatography. Individual fractions were probed by western blotting for the presence of CI-CIII using specific antibodies. _H_ Jurkat cells were exposed to 5 µM MitoVE11S for 6 h and mRNA levels of the mtDNA genes coding subunits of mitochondrial complexes assessed using RT-PCR (left lanes, control; right lanes, MitoVE11S; M, markers). The data shown are mean ± S.D. (n=3), the images are representative of 3 independent experiments. The symbol ‘*’ in panel _A_ indicates statistically significant differences between corresponding treatments with MitoVE11S and α-TOS, symbol ‘**’ in panel _B_ denotes statistically significant differences between treatments in the absence and presence of FCCP, the symbols ‘*’ and ‘**’ in panels _C, D_ and
denote significant differences between B1 Ras or B9 Ras-SDHC cells and B9 Ras cells treated with MitoVE11S for 3 h and 6 h, respectively (p<0.05).

Fig. 3. MitoVE11S efficiently inhibits the oxidoreductase activity of CII. A. SMPs were assessed for the transfer of electrons from CI to CIII and CII to CIII (left panel) and the activity of CI (NDH) and CII (SDH) (right panel) in the presence of MitoVE11S. HCT116_ODD-GFP cells were assessed for stabilization of GFP by western blotting after exposure to MitoVE11S at the levels shown (μM) for 24 h by western blotting (B) or by fluorescence microscopy following 24 h exposure to 5 μM MitoVE11S (C). The data in panel A are average values from 2 independent experiments, the images are representative of 3 independent experiments.

Fig. 4. Molecular modeling predicts binding of MitoVE11S at the QP site. The CII model was refined by addition of POPE molecules simulating the MIM. The position of the heme group is indicated in green color, the predicted position of MitoVE11S is shown in red.

Fig. 5. Shortening the aliphatic chain of MitoVE11S successively reduces its cancer cell cytotoxic activity. A. Jurkat cells were exposed to homologs of MitoVES at 5 μM and evaluated for the level of apoptosis. HCT116_ODD-GFP cells were exposed to MitoVES homologs at 5 μM for 3 h and assessed for SDH activity (B) and ROS accumulation (C), or for 12 h and assessed for the level of apoptosis (D) and expression of GFP (E). The data in panels A-D are mean ± S.D. (n=3), data in panel E are representative of 3 independent experiments. The symbol ‘*’ denotes significant difference (p<0.05) between control cells and cells treated with different MitoVES homologs.

Fig. 6. Apoptogenic efficacy of MitoVE11S depends on its chirality. A. Molecular modeling documents the predicted interaction of R- (blue) and S-MitoVE11ES (brown) with the UbQ-interacting Ser68 in the QP site of SDHC. B. Jurkat cells were exposed to rac-, R- or S-MitoVE11S at 2.5 μM for the times shown and assessed for apoptosis induction. The data are mean ± S.D. (n=3). The symbol ‘**’ denotes significant difference (p<0.05) between cells treated with S- and R-MitoVE11S.

Fig. 7. The UbQ-binding Ser68 in the QP site of CII is important for the effect of MitoVE11S. B9 Ras-SDHC (WT), B9 Ras-SDHC_S68A (S68A) or B9 Ras-SDHC_S68L (S68L) cells were exposed to MitoVE11S at 2 μM for the times shown and assessed for ROS accumulation (A) and apoptosis levels (B). The data are mean ± S.D. (n=3), the symbol ‘**’ denotes significant difference (p<0.05) between MitoVE11S-treated B9 Ras cells stably transfected with wt SDHC, S68A- or C68L-mutant SDHC.

Fig. 8. MitoVE11S suppresses tumor progression and causes the state of pseudohypoxia. A. Balb/c nu/nu mice with xenografts derived from HCT116_ODD-GFP cells were treated by i.p. injection of 1-2 μmol MitoVE11S or 15 μmol α-TOS per mouse every 3-4 d, and tumors were visualized and their volume quantified using USI on day 11, day 18 and day 28. B. Tumors were paraffin-embedded, sectioned and stained with H&E and photographed in a light microscope (left images) or mounted in DAPI-containing Vectashield and imaged using a confocal microscope (right images). The data are mean ± S.D. (n=6-7), the symbol ‘*’ denotes significant difference between corresponding control and MitoVE11S-treated animals (p<0.05).

Fig. 9.
suppresses transfer of electrons from Q₉ of CII to CIII (IC₅₀ ~ 1.5 μM). Consequently, this situation is highly unstable and gives rise to generation of superoxide as a by-product.
Table I
Primers used for qPCR and RT-PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Primers</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND1</td>
<td>5’-ATA CCC ATG GCC AAC CTC CT-3’</td>
<td>5’-GGG CCT TTG CGT AGT TGT AT-3’</td>
<td></td>
</tr>
<tr>
<td>ND2</td>
<td>5’-GGC CCA ACC CGT CAT CTA CT3’</td>
<td>5’-GAT GCG GTT GCT TGC GTG AG-3’</td>
<td></td>
</tr>
<tr>
<td>ND3</td>
<td>5’-CCG CGT CCC TTT CTC CAT AA-3’</td>
<td>5’-GGT AGG GGT AAA AGG AGG GC-3’</td>
<td></td>
</tr>
<tr>
<td>ND4</td>
<td>5’-ACT ACT CAC TCT CAC TGC CC-3’</td>
<td>5’-AGT GGA GTC CGT AAA GAG GT-3’</td>
<td></td>
</tr>
<tr>
<td>ND4L</td>
<td>5’-AAC CCT CAA CAC CCA CTC CC-3’</td>
<td>5’-TAG GCC CAC CGC TGC TTC GC-3’</td>
<td></td>
</tr>
<tr>
<td>ND5</td>
<td>5’-AAC AGA GTG GTG ATA GCG CC-3’</td>
<td>5’-CCC TAC TCC ACT CAA GCA CT-3’</td>
<td></td>
</tr>
<tr>
<td>ND6</td>
<td>5’-CCT ACC TCC ATC GCT AAC CC-3’</td>
<td>5’-AGG GGG AAT GAT GGT TGT CT-3’</td>
<td></td>
</tr>
<tr>
<td>CYTB</td>
<td>5’-GAA ACT TCG GCT CAC TCC TT-3’</td>
<td>5’-GGC GAT TGA TGA AAA GCC GG-3’</td>
<td></td>
</tr>
<tr>
<td>COX1</td>
<td>5’-GCC TCC GTA GAC CTA ACC AT-3’</td>
<td>5’-GTT ATG GCA GGG GGT TTT AT-3’</td>
<td></td>
</tr>
<tr>
<td>COX2</td>
<td>5’-AGT CCT GTA TGC CCT TTT CC-3’</td>
<td>5’-GCG ATG AGG ACT AGG ATG AT-3’</td>
<td></td>
</tr>
<tr>
<td>COX3</td>
<td>5’-CCC ACC AAT CAC ATG CCT AT-3’</td>
<td>5’-TAG GCC GGA GGT CAT TAG GA-3’</td>
<td></td>
</tr>
<tr>
<td>ATP6</td>
<td>5’-CTG TTC GCT TCA TCC ATT GC-3’</td>
<td>5’-GAT TAG TCA TTG TTT GGT GG-3’</td>
<td></td>
</tr>
<tr>
<td>ATP8</td>
<td>5’-TGC CCC AAC TAA ATA CTA CC-3’</td>
<td>5’-CTT TGG TGA GGG AGG TAG GT-3’</td>
<td></td>
</tr>
<tr>
<td>P0</td>
<td>5’-TCG ACA ATG GCA GCA TCT AC-3’</td>
<td>5’-ATC CGT CTC CAC AGA CAA GG-3’</td>
<td></td>
</tr>
</tbody>
</table>
Table II
IC₅₀ values of MitoVE₁₁S for CII activities.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Activity</th>
<th>Succinate</th>
<th>0.25 mM</th>
<th>2 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MitoVE₁₁S</td>
<td>SDH⁹</td>
<td></td>
<td>76</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>e⁻ transfer</td>
<td>- Tween</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Tween</td>
<td>20</td>
<td>18.5</td>
</tr>
<tr>
<td>MitoVE₅S</td>
<td>e⁻ transfer</td>
<td>- Tween</td>
<td>35</td>
<td>24</td>
</tr>
</tbody>
</table>

⁹The SDH activity refers to conversion of succinate to fumarate.

bThe electron transfer activity refers to transfer of e⁻ from CII to CIII.

cThe IC₅₀ values are given in μM and are average values of two independent experiment with the individual values differing by not more than 10%.
Table III
Relative interaction energies for MitoVES homologues and MitoQ binding the Qₚ site of CII.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Relative interaction energy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-MitoVE₁₁Sᵇ</td>
<td>100ᵇ</td>
</tr>
<tr>
<td>S-MitoVE₁₁S</td>
<td>79.5</td>
</tr>
<tr>
<td>R-MitoVE₉S</td>
<td>79.3</td>
</tr>
<tr>
<td>R-MitoVE₇S</td>
<td>70.5</td>
</tr>
<tr>
<td>R-MitoVE₅S</td>
<td>58.6</td>
</tr>
<tr>
<td>MitoQ</td>
<td>51.2</td>
</tr>
</tbody>
</table>

ᵃExcept for S-MitoVE₁₁S, all other homologues used for calculations of their relative interaction energies with Qₚ of CII were in the R conformation.
ᵇThe calculated interaction energy of R-MitoVE₁₁S was set as 100%.
Figure 1

α-TOS (1)

MitoVE_{11}S (2)

MitoVE_{9}S (3)

MitoVE_{7}S (4)

MitoVE_{5}S (5)

S-MitoVE_{11}S (6)

R-MitoVE_{11}S (7)
Figure 2
Figure 3

A

![Graph showing concentration vs. activity](image)

B

![Control and MitoVES images](image)

C

![Western blot images](image)
Figure 5
Figure 7

Figure showing MFI and percentage of apoptosis for WT, S68A, and S68L genotypes under different conditions.
Figure 8

Graph A shows the relative tumor volume over days 11, 18, and 28 for Control, α-TOS, and MitoVES treatments. The graph indicates a significant increase in tumor volume for the MitoVES group compared to the Control and α-TOS groups.

Graph B includes images of tissue sections stained with MitoVES, highlighting the presence of mitochondria in the treated samples.

Scale bars: 100 μm and 25 μm.