Causal Convolutional Encoder Decoder-Based Augmented Kalman Filter for Speech Enhancement

Sujan Kumar Roy, Kuldip K. Paliwal

Signal Processing Laboratory, Griffith School of Engineering
Griffith University, Brisbane, QLD, Australia, 4111
sujankumar.roy@griffithuni.edu.au, k.paliwal@griffith.edu.au

Abstract—Speech enhancement using augmented Kalman filter (AKF) suffers from the biased estimates of the linear prediction coefficients (LPCs) of speech and noise signal in noisy conditions. The existing AKF was particularly designed to enhance the colored noise corrupted speech. In this paper, a causal convolutional encoder-decoder (CCED)-based method utilizes the LPC estimates of the AKF for speech enhancement. Specifically, a CCED network is used to estimate the instantaneous noise spectrum for computing the LPCs of noise on a framewise basis. Each noise corrupted speech frame is pre-whitened by a whitening filter, which is constructed with the noise LPCs. The speech LPCs are computed from the pre-whitened speech. The improved speech and noise LPCs enables the AKF to minimize the residual noise as well as distortion in the enhanced speech. Objective and subjective testing on NOIZEUS corpus reveal that the enhanced speech produced by the proposed method exhibits higher quality and intelligibility than the benchmark methods in various noise conditions for a wide range of SNR levels.

Index Terms—Speech enhancement, augmented Kalman filter, convolution neural network, LPC, whitening filter.

I. INTRODUCTION

The objective of a speech enhancement algorithm (SEA) is to estimate the clean speech from the noisy speech signal. The SEAs can be used as a pre-processor for many speech processing systems, such as voice communication systems, hearing-aid devices, speech recognition. Various SEAs, such as spectral subtraction (SS) [1], [2], MMSE [3], [4], Wiener Filter (WF) [5], [6], Kalman filter (KF) [7] have been introduced over the decades. However, it is still a demanding work to develop an efficient SEA for real-world noise conditions.

The SS-based SEA heavily depends on the accuracy of noise power spectral density (PSD) estimates [8]. The under/over-estimation of the noise PSD introduces musical noise and distortion in the enhanced speech [9, Chapter 5]. The performance of the MMSE and WF based SEAs somehow depends on the accuracy of the a priori SNR estimates in practice. In [3], Ephraim and Malah proposed a decision-directed (DD) approach to compute the a priori SNR in noisy conditions. However, this approach uses the speech and noise power spectrum estimated from the previous noisy speech frame, leading to an inaccurate estimate of the a priori SNR for the current frame. The biased estimate of the a priori SNR in the MMSE-based SEA typically introduce musical noise and spectral distortion in the enhanced speech [9].

The efficiency of KF-based SEA depends on how accurately the key parameters, LPCs are estimated in noisy conditions. Paliwal and Basu for the first time introduced KF-based SEA for enhancing stationary noise corrupted speech [7]. However, the LPCs are computed from the clean speech signal, which is unavailable in practice. In [10], Gibson et al. introduced an augmented KF (AKF) for enhancing colored noise corrupted speech. In this method, the LPC estimates for the current noisy speech frame are computed from the filtered signal of the previous iteration by AKF. Although the enhanced speech (after 2-3 iterations) shows SNR improvement, however, suffering from spectral distortion as well as musical noise. In [11], Roy et al. proposed a sub-band iterative KF-based SEA. Due to processing the high-frequency sub-bands (SBs) among the 16 decomposed SBs for a given noise corrupted utterance, some noise components may still remain in the low-frequency SBs. The enhanced speech also suffers from distortion. In [12], George et al. introduced a robustness metric-based tuning of the AKF. This SEA is particularly designed for colored noise suppression. In addition, the robustness metric-based tuning of the AKF gain causes distortion in the enhanced speech.

Over the decades, the deep neural network (DNN) has been used widely for speech enhancement [13]. The DNN usually gives an estimate of the ideal binary mask (IBM), which is used to compute the clean speech spectrum [13]. It is shown that the ideal ratio mask (IRM) [14] exhibits better speech quality than the IBM. In [15], Williamson et al. introduced a complex ideal ratio mask (cIRM), which is capable to recover both the amplitude and phase spectrum of clean speech. However, the masking technique usually introduces musical noise in the enhanced speech [14].

In [16], a convolutional encoder decoder (CED)-based SEA has been proposed. It was particularly designed to enhance the babble noise corrupted speech. In [17], a long short-term memory (LSTM) was incorporated with a CED to form a convolutional recurrent network (CRM) for speech enhancement. The CRM network [17] is constructed with 2D Convolution (Conv2D) layers, which is normally required for processing image data. Since speech signal is 1D, it can be processed with 1D convolution (Conv1D) layer as used in CED [16]. Thus, CRM [17] takes huge training parameters, which increases the training time accordingly. In [18], a fully convolutional neural network (FCNN)-based SEA has been introduced. It processes the raw-waveform of noise corrupted speech, yielding an estimate of clean speech waveform. Thus, the enhanced speech does not depend on the phase spectrum,
which has a significant impact on other acoustic-domain SEAs [13], [14], [16] (keep the phase-spectrum unprocessed). In [19], Zheng et al. introduced a phase-aware SEA using DNN. Here, the phase information (converted to the instantaneous frequency deviation (IFD)) is jointly used with different masks, namely ideal amplitude mask (IAM) as a training target. The clean speech spectrum is reconstructed with the estimated mask and the phase information (extracted from the IFD).

Yu et al. introduced a KF-based SEA, where the LPCs are estimated using a traditional DNN [20]. However, the training is performed with four different noise recordings including four SNR levels. Technically, it reduces the performance of this SEA for a wide range of noise conditions as well as SNR levels. Also, the noise covariance is estimated from the initial frames of noisy speech (considered as silent), which is irrespective with the non-stationary noise conditions.

The direct estimation of speech spectrum using benchmark deep learning methods reported in literature may suffer from musical noise and distortion. Our investigation reveals that deep learning methods reported in literature may suffer from SNR levels. Also, the noise covariance is estimated from the traditional DNN [20]. However, the training clean speech spectrum is reconstructed with the estimated frequency deviation (IFD) is jointly used with different masks, Here, the phase information (converted to the instantaneous frequency deviation (IFD)) is jointly used with different masks, respectively. Eqs. (1)-(3) can be used to form the following augmented state-space model (ASSM) of AKF as [12]:

\[x(n) = \Phi x(n-1) + dz(n), \] (4)

\[y(n) = c^T x(n). \] (5)

In the above ASSM,

1) \[x(n) = [s(n) \ldots s(n - p + 1) v(n) \ldots v(n - q + 1)]^T \]

is a \((p + q) \times 1\) state-vector,

2) \[\Phi = \begin{bmatrix} \Phi_s & 0 \\ 0 & \Phi_v \end{bmatrix} \]

is a \((p + q) \times (p + q)\) state-transition matrix with:

\[\Phi_s = \begin{bmatrix} -a_1 & -a_2 & \cdots & a_{p-1} & a_p \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \]

\[\Phi_v = \begin{bmatrix} -b_1 & -b_2 & \cdots & b_{q-1} & b_q \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \]

3) \[d = [d_s \ 0 \ d_v], \]

where \(d_s = [1 \ 0 \ \ldots \ 0]^T, d_v = [1 \ 0 \ \ldots \ 0]^T, \)

4) \[z(n) = \begin{bmatrix} w(n) \\ u(n) \end{bmatrix}, \]

5) \[c^T = \begin{bmatrix} c_s^T \\ c_v^T \end{bmatrix}, \]

where \(c_s = [1 \ 0 \ \ldots \ 0]^T\) and \(c_v = [1 \ 0 \ \ldots \ 0]^T\) are \(p \times 1\) and \(q \times 1\) vectors,

6) \(y(n)\) is the noisy measurement at sample \(n\).

Firstly, \(y(n)\) is windowed into non-overlapped and short (e.g., 20 ms) frames. For a particular frame, the AKF computes an unbiased and linear MMSE estimate, \(\hat{x}(n)\) at sample \(n\), given \(y(n)\) by using the following recursive equations [12]:

\[\hat{x}(n|n-1) = \Phi \hat{x}(n-1|n-1), \] (6)

\[\Psi(n|n-1) = \Phi \Psi(n-1|n-1) \Phi^T + Q d d^T, \] (7)

\[K(n) = \Psi(n|n-1) c (c^T \Psi(n|n-1) c)^{-1}, \] (8)

\[\hat{x}(n|n) = \hat{x}(n|n-1) + K(n) [y(n) - c^T \hat{x}(n|n-1)], \] (9)

\[\Psi(n|n) = [I - K(n) c^T] \Psi(n|n-1), \] (10)

where \(Q = \begin{bmatrix} \sigma_w^2 & 0 \\ 0 & \sigma_u^2 \end{bmatrix}\) is the process noise covariance.

For a noisy speech frame, the error covariances \(\Psi(n|n-1)\) and \(\Psi(n|n)\) corresponding to \(\hat{x}(n|n-1)\) and \(\hat{x}(n|n)\), and the Kalman gain \(K(n)\) are continually updated on a samplewise basis, while \((\{a_i\}, \sigma_w^2)\) and \((\{b_j\}, \sigma_u^2)\) remain constant. At sample \(n\), \(g \hat{x}(n|n)\) gives the estimated speech, \(\hat{s}(n|n)\), where \(g = \begin{bmatrix} 1 & 0 & \ldots & 0 \end{bmatrix}\) is a \((p + q) \times 1\) column vector. As in [12], \(\hat{s}(n|n)\) is given by:

\[\hat{s}(n|n) = [1 - K_0(n)] \hat{s}(n|n-1) + K_0(n) [y(n) - \hat{v}(n|n-1)], \] (11)
where \(K_0(n) \) is the 1st component of \(\mathbf{K}(n) \), given by \[K_0(n) = \frac{\alpha^2(n) + \sigma_w^2}{\alpha^2(n) + \sigma_w^2 + \beta^2(n) + \sigma_u^2}, \] (12)

where \(\alpha^2(n) \) and \(\beta^2(n) \) are the transmission of \textit{a posteriori} error variances (of the speech and measurement noise samples) by the augmented dynamic model from the previous time sample, \(n - 1 \) [12].

Eq. (11) reveals that \(K_0(n) \) has a significant impact on \(\hat{s}(n|n) \) estimates (the output of the AKF). In practice, the poor estimates of \(\{a_i\}, \sigma_w^2 \) and \(\{b_k\}, \sigma_u^2 \) introduce bias in \(K_0(n) \), which affects the estimates of \(\hat{s}(n|n) \). In the proposed SEA, a CCED network utilizes the speech and noise LPC estimates of the AKF, leading to an improved \(\hat{s}(n|n) \) estimate.

III. PROPOSED SPEECH ENHANCEMENT SYSTEM

Fig. 1 shows the block diagram of the proposed SEA. Firstly, a 32 ms rectangular window with 50\% overlap was considered for converting \(y(n) \) (eq. (1)) into frames \(y(n,l) \), i.e., \(y(n,l) = s(n,l) + v(n,l) \), where \(l \epsilon \{0, 1, 2, \ldots, N - 1\} \) is the frame index with \(N \) being the total number of frames in an utterance, and \(M \) is the total number of samples within each frame, i.e., \(n \epsilon \{0, 1, 2, \ldots, M - 1\} \). The DFT coefficients \(\lambda_u(l,m) \), and \(E\{|V(l,m)|^2\} = \lambda_v(l,m) \), where \(E\{} \) represents the statistical expectation operator.

A. Proposed \((\{b_k\}, \sigma_u^2)\) and \((\{a_i\}, \sigma_w^2)\) Estimation Method

The existing AKF-based SEA [12] estimates the noise from the initial noise corrupted speech frames by considering that there remains no speech. Then compute \(\{b_k\}, \sigma_u^2 \) from the estimated noise, which remains constant during processing all the frames for a given noise corrupted speech utterance. This concept may be effective for enhancing the colored noise corrupted speech. Due to the time varying nature of non-stationary noise amplitude, it is required to update \(\{b_k\}, \sigma_u^2 \) continuously during processing each noise corrupted speech frame. Thus, \(\{b_k\}, \sigma_u^2 \) estimation process in [12] becomes irrespective with the non-stationary noise conditions.

In the proposed SEA, we introduce a CCED-based method (described in section III-B) to estimate the instantaneous noise spectrum, \(|\hat{V}(l,m)| \) for a given noisy speech spectrum, \(|Y(l,m)| \) on a framewise basis. By taking square of \(|\hat{V}(l,m)| \), i.e., \(|\hat{V}(l,m)|^2 \), we get the instantaneous noise PSD from where \(\{b_k\}, \sigma_u^2 \) are computed. Specifically, the |IDFT| of \(|\hat{V}(l,m)|^2 \) yields an estimate of the noise autocorrelation, \(\hat{R}_uv(\tau) \), where \(\tau \) is the autocorrelation lag. By solving \(\hat{R}_uv(\tau) \) using the Levinson-Durbin recursion [21], the \(\{b_k\}, \sigma_u^2 \) (\(q = 20 \)) estimates are obtained. Then \(\{b_k\} \)’s are used to design the whitening filter, \(H_w(z) \) as [21]:

\[H_w(z) = 1 + \sum_{k=1}^{q} b_k z^{-k}. \] (14)

Employing \(H_w(z) \) to \(y(n,l) \) gives the pre-whitened speech, \(y_w(n,l) \). Then \(\{a_i\}, \sigma_w^2 \) (\(p = 10 \)) are computed from \(y_w(n,l) \) using autocorrelation method [21].

B. CCED for Noise Spectrum Estimation

We propose a CCED-based method to estimate \(|\hat{V}(l,m)| \). The proposed CCED network structure is shown in Fig. 2. It consists of a convolution encoder followed by a corresponding decoder. The encoder consists of a stack of five convolution layers. Unlike 2-dimensional convolution layers (Conv2D) in [17], we have used 1-dimensional convolutional layer (Conv1D), since it is appropriate to process the 1D speech signal. The Conv1D layer also reduces huge training parameter as well training time. The decoder also consists of a stack of five Conv1D layers. In addition, we have used the causal Conv1D layer [22]. Fig. 3 demonstrates the operating principle of the standard and causal Conv1D layers. The standard Conv1D layers (Fig. 3 (a)) are comprised of filters that capture the local correlation of nearby data points, thus leaking the future information into the current data during operating. Conversely, in the causal Conv1D layer (Fig. 3 (b)), the output at any time step \(t \) only uses the information from the previous time steps, i.e., \(0 \) to \(t - 1 \) [22]. It allows the CCED network for real-time noise spectrum estimation.

The CCED network maps the single-sided magnitude spectrum (257-point DFT coefficients including the Nyquist frequency components) of noisy speech, \(|Y(l,m)| \) to that of the
Fig. 3. Working principle of: (a) standard and (b) causal Conv1D layer.

Each of the encoder-decoder layer is passed through a layer normalization (LN) [23] followed by SELU activation function [24], except the last layer, which passes through a sigmoid activation function [25] as it is the output layer. Reason of using SELU activation is that it has less impact on vanishing gradients than that of ReLU [26] and ELU [27]. Also, SELUs itself learn faster and better than ReLU and ELU even if they are combined with layer normalization [24]. Unlike [17], the Conv1D layer in the CCED network makes pooling and up-sampling unnecessary in the encoder and decoder layers.

To improve the flow of information and gradients throughout the network, we also utilize skip connection between the causal Conv1D usits of encoder and decoder. It resolves the so called vanishing gradient issue in a deep neural network. The skip connection is represented by arrows (used same color for the corresponding Conv1D units) as shown in Fig. 2.

IV. SPEECH ENHANCEMENT EXPERIMENT

A. Training Set

For training the proposed CCED network, a total of 30,000 clean speech recordings are randomly selected belonging to the train-clean-100 set of the Librispeech corpus [28] (28,539), the CSTR VCTK corpus [29] (42,015), and the \textit{si} and \textit{sx} training sets of the TIMIT corpus [30] (3,696). The 5% of 30,000, i.e., 1500 speech recordings are randomly selected for cross-validation of the CCED network accuracy during training. Thus, 28,500 speech recordings are used for training of the CCED network. Also, a total of 500 noise recordings are randomly selected from the QUT-NOISE dataset [31], the Nonspeech dataset [32], the Environmental Background Noise dataset [33], [34], the noise set from the MUSAN corpus [35]. The 5% of 500, i.e., 25 noise recordings are selected for cross-validation purposes, while the remaining 475 of them are used for training. All the clean speech and noise recordings are single-channel, with a sampling frequency of 16 kHz.
Fig. 4. Performance comparison of the proposed SEA with the benchmark SEAs in terms of the average: PESQ; (a) passing car, (b) restaurant and QSTI; (c) passing car, (d) cafe babble noise conditions.

Fig. 5. (a) Clean speech, (b) noisy speech (sp05 is corrupted with 5 dB passing car noise), the enhanced speech spectrograms produced by the: (c) RWF-FCN [18], (d) DNN-KF [20], (e) IAM+IFD [19], (f) proposed, and (g) AKF-Ideal methods.
B. Training Strategy

The following training strategy was employed to train the proposed CCED network for noise spectrum estimation:

- The 'mean square error' is chosen as the loss function.
- The Adam algorithm [36] with default hyperparameters is also selected for gradient descent optimisation.
- Gradients are clipped between $[-1, 1]$.
- 120 epochs are used to train the CCED network.
- The number of training examples in an epoch is equal to the number of clean speech recordings used in the training set (28,500).
- The noisy speech signals are generated as follows: each randomly selected clean speech recording (without replacement) is corrupted with a randomly selected noise recording (without replacement) at a randomly selected SNR level (-10 to +20 dB, in 1 dB increments).

C. Test Set

For objective experiments, 30 clean speech utterances belonging to six speakers (3 male and 3 female) are taken from the NOIZEUS corpus. The speech recordings are sampled at 16 kHz [9, Chapter 12]. We generate a noisy speech data set by corrupting the speech recordings with (passing car) and (cafe babble) noise recordings selected from [33], [34] at multiple SNR levels varying from -5 dB to +15 dB, in 5 dB increments. It is important to note that both the speech and noise recordings are unseen and not used in training the CCED network.

D. Evaluation Metrics

The objective quality and intelligibility evaluation are carried out through the perceptual evaluation of speech quality (PESQ) [37] and quasi-stationary speech transmission index (QSTI) [38] measures. We also analyze the spectrograms of the enhanced speech produced by the proposed and benchmark SEAs to quantify the level of residual noise and distortion.

The subjective evaluation was carried out through blind AB listening test [39, Section 3.3.4]. It is conducted on the utterance sp05 (“Wipe the grease off his dirty face”) corrupted with 5 dB passing car noise. The enhanced speech produced by five SEAs as well as the corresponding clean and noisy speech recordings, a total of 42 stimuli pairs played in a random order to each listener, excluding the comparisons between the same method. For each pair, the listener prefers the first or second stimulus which is perceptually better, or a third response indicating no difference is found between them. A 100% award is given to the preferred method, 0% to the other, and 50% to each method for the similar preference response. Participants could re-listen to stimuli if required. Five English speaking listeners participate in the AB listening tests. The average of the preference scores given by the listeners, termed as the mean preference score (%).

The performance of the proposed method is carried out by comparing it with the benchmark methods, such as raw waveform processing using FCNN (RWF-FCN) method [18], phase-aware DNN (IAM+IFD) method [19], deep learning-based KF (DNN-KF) method [20], AKF-Ideal method (where ($\{a_i\}$, σ^2_w) and ($\{b_k\}$, σ^2_n) are computed from the clean speech and noise signal) and Noisy (noise corrupted speech).

E. Results and Discussion

Fig. 4 (a)-(b) demonstrates that the proposed SEA consistently shows improved PESQ scores over the benchmark SEAs, except the AKF-Ideal method for all noise conditions as well as the SNR levels. The IAM+IFD method [19] relatively exhibits better PESQ score among the benchmark methods across the noise experiments. The Noisy speech shows the worse PESQ score for all noise conditions.

Fig. 4 (c)-(d) also shows that the proposed method demonstrates a consistent QSTI score improvement across the noise experiments as well as the SNR levels, apart from the AKF-Ideal method. The existing IAM+IFD method [19] is found to be competitive with the proposed method in QSTI improvement typically at low SNR levels. However, at high SNR levels, all the SEAs, even the noisy speech signal relatively shows the competitive QSTI score for all noise conditions.

It can be seen that the proposed SEA (Fig. 5 (f)) exhibits significantly less residual noise in the enhanced speech than that of the benchmark SEAs (Fig. 5 (c)-(e)) and is closely similar to the AKF-Ideal method (Fig. 5 (g)). When going from RWF-FCN method [18] to IAM+IFD method [19] (Fig. 5 (c)-(e)), noise-flooring is seen decreasing. The informal listening tests conducted on the enhanced speech also confirm that the benchmark SEAs relatively produce annoying sound as compared to negligible audio artifacts by the proposed method.

![Fig. 6. The mean preference score (%) for each SEA on sp05 corrupted with 5 dB passing car noise.](image-url)
This paper introduced a causal convolution encoder decoder-based augmented Kalman filter for speech enhancement in various noise conditions. Specifically, the proposed CCED network gives an estimate of the instantaneous noise magnitude spectrum to compute the noise PSD. Then the noise LPCs are computed from the estimated noise PSD. A whitening filter is also constructed with the estimated noise LPCs. It is employed to the noise corrupted speech, yielding a pre-whitened speech. The speech LPCs are computed from the pre-whitened speech. The large training set of CCED network enables the speech and noise LPC estimates to be effective in various noise conditions. As a result, the AKF constructed with the improved LPCs of speech and noise signal minimizes the residual noise as well as distortion in the enhanced speech. Extensive objective and subjective testing imply that the proposed method outperforms the benchmark methods in various noise conditions for a wide range of SNR levels.

REFERENCES