
Towards Practical Ontology-based Data
Access for Existential Rules

Peng Xiao

BEng, MEng

Institute for Integrated and Intelligent Systems

School of Information and Communication Technology

Griffith University

Submitted in fulfilment of the requirements of the

degree of Doctor of Philosophy

October, 2020

Principal Supervisor

Prof. Kewen Wang

Principal Supervisor

Dr. Zhe Wang

Statement of Originality

This work has not previously been submitted for a degree or diploma in any university.

To the best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made in the thesis

itself.

Signed:

Date: 10/02/2020

i

Acknowledgements

This thesis would not have been completed without the support and assistance from a

number of people.

First, I would give my sincere gratefulness to my supervisors Prof. Kewen Wang and

Dr. Zhe Wang for their exceptional support and guidance throughout my PhD study. I

thank Kewen for teaching me being a qualified researcher, I am greatly affected by his

academic attitude. I thank him for providing me valuable advice on both research and

life. I thank Zhe for his immense help and feedback to my research, I have gained so

much in the discussion with him, without his suggestions and experience I would not

be able to tackle the difficulties encountered in my research problems. I will not forget

their encouragement when I was finding my foot and suffering from pressure. I could not

have asked for more supportive supervisors and I sincerely appreciate their supervision.

I thank Griffith University for giving me the opportunity to do PhD and providing

scholarship support. I also would like to thank the academic members of the Institute

for Integrated and Intelligent Systems and ICT school. I thank Natalie Dunstan and

Mel Gilbert for assisting me with my student affair. I thank Prof. Adual Sattar for

holding seminars for my important milestones and supporting my requests in the PhD

program.

I extend my thanks to my colleagues in our research group. I have received a lot

in our weekly group meetings during the early stage of my PhD. I thank YiFan Jin

for providing me helps when I was new to everything in Australia. I thank ZhiQiang

Zhuang and Pouya Ghiasnezhad for all of the interesting research discussions. I thank

my friend ZongJie Ma and his partner Summer, traveling with them was really relaxing

and brounght me a lot of joy.

I also want to thank my master supervisor Hai Wan, who brounght me into the field of

KR and encourage me doing PhD.

Finally, I want to thank my parents for their loves and understandings, they have always

been my backing across the sea. I thank my sister and brother for their caring and life

support. I wish to give my special thanks to my girl friend, Chi-Yu Chiu, I could not

have gone through the toughness without her company during my whole PhD study.

ii

Publication Arising From This Thesis

This thesis contains work that is published and/or prepared for publication. The details

of these publications and their locations in this thesis are outlined below.

1. P. Xiao , K. Wang, and Z. Wang. Incosistency-Tolerant Forgetting in DL-lite. In

International Semantic Web Conference 2017 (Posters, Demos & Industry Tracks).

(Chapter 5)

2. P. Xiao , Z. Wang, K. Wang. Practical Datalog Rewriting for Existential Rules,

32nd International Workshop on Description Logics, 2019. (Chapter 3)

3. Z. Wang, P. Xiao, K. Wang, Z. Zhuang and H. Wan. Query Answering for Ex-

istential Rules via Efficient Datalog Rewriting. Proceedings of the Twenty-Ninth

International Joint Conference on Artificial Intelligence, IJCAI 2020, 1933–1939.

(Chapter 3)

The following work is prepared for publication:

1. P. Xiao , K. Wang, and Z. Wang. Practical Query Abduction for Existential Rules.

(Chapter 4)

iii

Abstract

Nowadays, knowledge reasoning is gaining more attentions in Artificial Intelligence,

which stimulates the development of modern information systems. As the key ingre-

dient of new generation of information systems, ontology-based data access (OBDA),

which employs domain-specific knowledge provided by an ontology to reason over data,

has received considerable attention in recent years. However, current research on onto-

logical reasoning is not sufficient to establish practical OBDA with regards to scalability,

feasibility, and usability. The primary aim of this thesis is to promote the applications

of OBDA, by addressing the typical limitations of several research problems that are im-

portant to the practicality of OBDA systems. In this thesis, we focus on studying these

problems in existential rules, a prominent family of ontological languages that proves to

be both expressive and tractable.

Observing that current query rewriting techniques are not scalable over expressive on-

tologies, we propose a novel datalog rewriting approach for existential rules based on the

notion of unfolding. While datalog rewritability cannot be guaranteed in general exis-

tential rules, we propose a novel abstract class called weakly-separable rules for datalog

rewriting and show that it can generalize several combinations of existing well-accepted

classes. We develop a prototype of query answering system called Drewer based on our

proposed datalog rewriting method and evaluations show that our system has superior

performance to state-of-the-art systems.

While query answering is the essential reasoning task for OBDA, it is necessary to

provide appropriate explanations to query answers. We study the problem of query

abduction, which is the underlying problem of explaining negative query answers. To

make the abduction process more user-oriented, we present a novel abduction framework

that discriminates between predicates expressing high-level and low-level concepts. We

also develop an efficient algorithm for its computation based on first-order rewriting in

existential rules, which shows scalability over large databases in experiments.

Forgetting is a well-known mechanism that can have a variety of potential applications

to the manipulation of ontologies. However, current studies about forgetting cannot

handle inconsistent ontologies, which hinders its applications to OBDA scenarios where

errors of knowledge might occur. We present the first study of inconsistency-tolerant

forgetting, that is, forgetting with the presence of inconsistencies. Three different defini-

tions based on inconsistency-tolerant query answering are proposed and their rationality

is illustrated by comparing to other possible solutions. We explored their properties and

computation methods in a light-weight Description Logic language, DL-litecore.

iv

Contents

Abstract iv

1 Introduction 1

1.1 Backgrounds . 1

1.2 Challenges in Ontology-based Data Access 4

1.3 Contributions . 8

1.4 Thesis Organization . 9

2 Ontology-based Data Access 11

2.1 Preliminaries . 11

2.1.1 Mathematical Basics . 11

2.1.2 Computational Theory . 12

2.1.3 First-order Logic . 15

2.2 Ontology Languages . 17

2.2.1 Description Logics . 18

2.2.2 Existential Rules . 22

2.3 Ontology Reasoning and Manipulation . 24

2.3.1 Query Answering . 25

2.3.2 Query Rewriting . 27

2.3.3 Decidable classes for Existential Rules 30

2.3.4 Query Abduction . 32

2.3.5 Inconsistency-Tolerant Query Answering 35

2.3.6 Forgetting . 39

3 Efficient Datalog Rewriting for Existential Rules 44

3.1 Compact Datalog Rewriting . 46

3.2 Datalog Rewritable Classes . 53

3.3 Efficient Rewriting Algorithms . 62

3.4 Systems and Benchmarks . 65

3.5 Evaluation . 69

4 Practical Abduction for Existential Rules 75

4.1 Selective Explanations . 77

4.2 Computing Explanations . 84

4.3 Compact Explanations . 89

4.4 Evaluation . 95

v

Contents vi

5 Inconsistency-tolerant Forgetting for Ontologies 97

5.1 Inconsistency-tolerant Forgetting Definitions 98

5.2 Inconsistency-tolerant forgetting for DL-lite 105

5.3 Graph-based Implementation and Evaluation 116

5.3.1 Graph-based Implementation . 116

5.3.2 Evaluation . 117

6 Conclusion and Future Work 119

6.1 Conclusion . 119

6.2 Future Work . 120

References 122

Chapter 1

Introduction

1.1 Backgrounds

In recent years, the growing importance of Knowledge Representation and Reason-

ing (KR&R) in Artificial Intelligence have stimulated activities exploiting large volumes

of Web data with semantic approaches.

To integrate data with semantics, ontologies, which are typically used to formalize do-

main knowledge, have received significant attention in KR studies. An ontology is a

formal representation of the knowledge about a domain in terms of types, properties

and relationships of entities, which allows users to have an abstract overview of data

from the domain, and to infer implicit knowledge from incomplete information provide

by the data.

Introducing ontologies to data leads to a new paradigm of data access, named ontology-

based data access (OBDA) [Calvanese et al., 2007c], which is regarded as the key ingre-

dient of the next generation of information system. In a nutshell, the general idea of

OBDA is to place an ontological layer between user queries and the actual databases so

that users are separated from the actual structure of data and the data is accessed after

being enriched by domain-specific knowledge provided by the ontology.

To explain OBDA in more details, let us consider the following query,

q(x, y) = flight(x), has flight(y, x), fly to(x,London), city(London).

1

Introduction 2

The query asks for information on flights that fly to London city and the airlines they

belong to. Assume we have information about flights, airlines, and airports, which is

represented as the following database D:

flight(AE806), has flight(ExpressAir,AE806),

arrive at(AE806,LCAirport), airport(LCAirport), locate in(LCAirport,London),

city(London).

Since D does not have a record on fly to, when the query is posed to D, there is no result

for the query. However, if we adopt a simple ontology Π that contains the following rule

to describe a straightforward idea in this scenario,

∀x, y, z.(fly to(x, z)← arrive at(x, y), airport(y), locate in(y, z)).

which says that if a flight x arrives at an airport located in city y, it is a flight that flies

to city y, then our knowledge can be enriched with the information of fly to and it can

be entailed that (AE806,ExpressAir) is an answer to the query.

It shall be noted that the information in D is not necessarily the same as what is

actually stored in databases. In general, these data are gathered from heterogeneous

data sources, thus have different vocabularies and could be raw data that are obscure

to users. In OBDA, such issue is usually addressed by data mapping techniques, which

unify data using a predefined declarative mapping so that they are available for the

ontology. Thus, users can focus on the design of queries, which are formulated solely

according to the ontology. Data mapping is one essential component in the research of

OBDA, but it’s not the focus of this thesis. In the setting of OBDA in this thesis, we

assume all data have been retrieved as facts that can directly apply to ontologies. In

fact, these mappings can also be regarded as a special type of ontologies that unify data

with additional vocabulary.

The above scenario is typically a kind of knowledge reasoning process, where ontologies

are logical theories employed to represent knowledge and the querying results are what

we can obtain from data through reasoning. Such a reasoning process is actually defined

as ontological query answering, which is the main reasoning task in OBDA.

Introduction 3

To satisfy the requirements of knowledge reasoning nowadays, OBDA systems should

scale well over large volumes of data and if possible, be as efficient as traditional relational

database management systems (RDBMS). Moreover, they should be able to handle

data with complex forms. All these capabilities are highly related to the computational

properties and expressiveness of the language used to represent ontologies. This makes

the choice of formal language for ontologies rather important to the application of OBDA.

A major family of formalisms for representing and reasoning over ontologies is the family

of Description Logics (DLs) [Baader et al., 2003], which have been extensively studied.

DLs are decidable fragments of first-order logic, having a clear-cut semantics and conve-

nient syntax. As DLs are very suitable to model relationships in taxonomic knowledge,

they are widely used in the Semantic Web and underpin the Web Ontology Language

(OWL) [McGuinness et al., 2004]. Various families of DLs have been proposed and stud-

ied [Calvanese et al., 2007a, Baader et al., 2005, Trivela et al., 2015, Kontchakov et al.,

2011]. In particular, light-weight DLs such as DL-lite and EL were designed to achieve

tractability in query answering. Research into query answering over these languages has

also produced a series of practical prototype systems [Trivela et al., 2015, Calvanese

et al., 2011, Rodriguez-Muro et al., 2013, Venetis et al., 2014].

Though DLs are successful in ontological reasoning, they still have critical limitations.

Because of the convenient syntax of DLs, many real-world problems containing complex

relations between objects cannot be expressed by DLs. Furthermore, in DLs only unary

and binary relations can be described, which could not satisfy the need of modeling

diverse web data [Bellomarini et al., 2017]. Recently, a new more expressive formalism

called existential rules (a.k.a Datalog±) is proposed. Existential rules are rule formulas

having the form H ← B, whose head and body are conjunctions of positive atoms. In

particular, existentially quantified variables are allowed in the heads of existential rules.

For instance, the following formula is an existential rule,

∀x.(∃y.(fly to(x, y), city(y))← flight(x)).

The introduction of existential variables gives existential rules the ability to describe

individuals that may not be presented in the current ontology, which has been recognized

as a crucial ability to model domain knowledge. General existential rules are undecidable

for query answering, therefore, appropriate restrictions to the syntax of rules need to

Introduction 4

be made, which give rise to a variety of classes of existential rules [Cal̀ı et al., 2012,

Gottlob et al., 2014d, Baget et al., 2011, Grau et al., 2013]. These classes are not only

expressive enough to cover popular DLs such as DL-lite and EL, but also tractable in

the problem of query answering, which makes existential rules a promising formalism for

OBDA. Moreover, in recent years, it has become a trend to extend existing studies of

ontological reasoning problems to cover existential rules [Gottlob et al., 2014a, Gottlob

et al., 2015, König et al., 2013, Wan et al., 2016, Wang et al., 2018].

1.2 Challenges in Ontology-based Data Access

In this section, we will talk about the challenges faced in the application of OBDA in

four ways, corresponding to the different research problems in OBDA. We will introduce

current studies of these research problems and demonstrate their limitations.

(1) Efficient query answering in expressive ontologies. Due to the limitations

of DLs, expressive languages for ontologies need to be considered to establish flexible

and applicable OBDA for modern applications. Also, as the most important reasoning

problem in OBDA, query answering in the prominent expressive language, existential

rules is not as well studied as in DLs. Though several tractable classes of existential

rules has been proposed, where query answering in polynomial time is possible, it is a

challenging task to develop practical algorithms and system prototypes for these classes

in real-world applications where the scales of ontologies and data are significantly large.

One prominent technique to achieve efficient query answering accepted by many re-

searchers is query rewriting. Briefly, in query rewriting approaches, queries and on-

tologies are reformulated into formulas expressed in formalisms for which mature data

management and retrieval systems are already available. In the above scenario, one can

rewrite the query into the following one,

q′(x, y) = flight(x), has flight(y, x), arrive at(x, y), locate in(y, z), airport(y).

which is obtained by replacing fly to with its causes as shown in the ontology. As we

have embedded necessary information from the ontology into q′ through rewriting, even

without the ontology, q′ can still produce the same answer as q does, which means it

becomes a classical query answering problem in the field of database [Abiteboul et al.,

Introduction 5

1995]. Hence, the task of query answering can be accomplished using RDBMS rather

than inefficient logical reasoners.

While rewriting-based query answering has been studied in various DL fragments [Hansen

et al., 2015, Trivela et al., 2015, Eiter et al., 2012, Pérez-Urbina et al., 2010], very few

practical approaches to rewriting for existential rules are proposed. Existing query

rewriting systems for existential rules are typically based on first-order rewritings, i.e.,

the queries are rewritten into first-order formulas [Gottlob et al., 2014b, König et al.,

2013, König et al., 2015a]. Unfortunately, evaluations have revealed that first-order

rewriting systems cannot provide sufficient scalability even for ontologies of medium

sizes (with a few hundred of rules) [König et al., 2015b, Bienvenu et al., 2017]. In

most known techniques, the sizes of first-order rewritings are worst-case exponential

w.r.t the length of the query [Kontchakov et al., 2011]. Recently, because of the ad-

vance of datalog solvers, such as RDFox [Nenov et al., 2015], VLog [Urbani et al., 2016],

rewriting queries into datalog programs becomes a competitive alternative for query

rewriting. Compared to first-order rewriting, the results of datalog rewriting are usu-

ally more compact, and more datalog rewritable classes of existential rules are known.

However, current studies about datalog rewriting for existential rules are mostly theo-

retical [Gottlob and Schwentick, 2012, Bienvenu et al., 2014c], and very few practical

datalog rewriting systems for existential rules have been developed. Filling this gap

would be an important step on the road to practical OBDA.

(2) Explanations to query answers. Explainability of intelligent systems is one

important research topic in Artificial Intelligence. In the setting of OBDA, query an-

swering is fully interpretable and the explanations to query answers can potentially

benefit the applications of ontologies in data exchange [Fagin et al., 2005], medical di-

agnosis [Bertaud-Gounot et al., 2012] and life sciences [Bard and Rhee, 2004]. In the

literature, there are two main types of explanations for query answering, one of them

is used to explain why a query answer is obtained, i.e., give the facts that support its

entailment. Such explanations are also called explanations to positive answers, which

are generally defined as a minimal subset of the database that are sufficient to derive

the query answers, which have been well studied in the DL literature [Kalyanpur et al.,

2007, Suntisrivaraporn et al., 2008, Baader and Suntisrivaraporn, 2008] and also explored

in existential rules [Ceylan et al., 2019].

Introduction 6

While there are also scenarios where some query answers are expected to occur in the

result, but they are not entailed with current knowledge, then users are interested in why

they cannot be entailed and what kind of information is missing in the database. We call

such query answers negative answers and the problem of explaining negative answers can

be formalized as query abduction, a new research topic in abductive reasoning [Calvanese

et al., 2013]. In the example, say we observe that a flight CU125 also flies to London,

which cannot be entailed by Π and D. An explanation of this surprising observation is

that the database D misses the fact of arrive at(CU125,LCAirport).

In query abduction, because no hypothesis is presumed, sometimes we need to introduce

new (abstract) objects to represent the explanations, which means the search space of

explanations can be infinite. Moreover, without restrictions, there can be a large number

of explanations for a query abduction problem, which is not favorable to users in practice.

To reduce the number of possible explanations, one typical approach is to set abducibles,

which are the only predicate symbols allowed to occur in an explanation [Du et al.,

2011]. The most recent effort from [Du et al., 2014] tries to detect similar explanations

and represent them compactly. However these approaches are far from feasible for actual

scenarios, as they still cannot scale well over large database. Therefore, it is necessary

to propose more refined definitions for query abduction so that the problem can be

appropriately handled in practice. Besides, current works on query abduction [Calvanese

et al., 2013, Wang et al., 2015, Du et al., 2014, Du et al., 2011] are mostly based on

light-weight ontology languages; given the complex nature of the problem, it’s a big

challenge to solve it in existential rules.

(3) Modularization of ontologies. To satisfy the requirement of web reasoning,

ontologies are growing much larger nowadays, due to the high complexity of ontological

reasoning, reasoning tasks such as query answering over these ontologies can be rather

inefficient, even with sophisticated algorithms and optimizations. However, in many

cases, it is unnecessary to consider a whole ontology for reasoning. For example, when

the content of a query is related to only a small portion of knowledge from the ontology,

a possible strategy is to extract a module containing all needed information from the

ontology, then query answering can be performed over a much smaller theory, thus

efficiency is achieved. For this purpose, a well known concept, forgetting, which has been

thoroughly studied in classical logic and logic programming, is introduced for ontologies

[Wang et al., 2008, Konev et al., 2009, Koopmann and Schmidt, 2015, Arenas et al.,

Introduction 7

2016]. Informally, forgetting is a mechanism that eliminates or hides symbols from a set

of logical formulas, while the result still retain a certain kind of equivalence with the

original formulas.

Again in our example, if a user is only interested in flights and their destination cities,

we can forget all other symbols from the ontology and database, as a result, the rule

in the ontology and facts about arrive at, airport, locate in in the database are removed.

In order to have the same query answers as before, an extra operation that need to be

performed is to add fly to(AE806,London) to D.

Adapting forgetting to ontologies gives rise to a variety of applications, such as ontology

reuse, ontology versioning, privacy protection [Kontchakov et al., 2008]. While forgetting

is well-studied in DLs [Kontchakov et al., 2008, Wang et al., 2008, Koopmann and

Schmidt, 2015, Wang et al., 2010] and explored in existential rules [Wang et al., 2018],

it still suffers from several limitations. Particularly, current studies of forgetting are

not able to handle inconsistent ontologies; this is an important issue that need to be

addressed, as we shall demonstrate next.

(4) Inconsistency-Tolerance. Dealing with inconsistent information is one of the

essential issues in logical reasoning. As inconsistencies can easily arise in the development

of ontologies due to the errors of knowledge engineers, this problem is gaining increasing

importance in real-world scenarios. Consider the following sentence:

⊥ ← fly to(x, y), fly to(x, z), y 6= z.

which describes a natural constraint that a flight cannot fly to two different places. With

this constraint, an inconsistency would occur if we add the fact fly to(AE806,Paris) to

the database D. To handle the inconsistencies, one straightforward approach is to re-

solve inconsistencies by cleaning the database; however, on many occasions it may not

be practical because cleaning procedures are usually non-deterministic and removal of

any data may result in loss of critical information. As in the above case, although the

information about flights is in conflict, we can still come up with a conclusion that

the flight AE806 flies to a capital city. The idea of extracting meaningful informa-

tion with the presence of inconsistencies leads to the notion of inconsistency-tolerant

query answering, which was first explored in the field of database [Arenas et al., 1999],

and was then adapted for ontologies [Calvanese et al., 2007b]. In recent years, various

Introduction 8

semantics for inconsistency-tolerant query answering were proposed [Calvanese et al.,

2007b, Bienvenu and Bourgaux, 2016, Baget et al., 2016], and were studied in different

formalisms [Zhang et al., 2014, Bienvenu and Bourgaux, 2016, Bienvenu et al., 2014a],

including existential rules [Lukasiewicz et al., 2012, Lukasiewicz et al., 2013]. Apart

from query answering, inconsistency-tolerant approaches are also introduced for other

reasoning problems, such as query abduction [Du et al., 2015], however, to the best of

our knowledge, no inconsistency-tolerant approach for forgetting is studied.

1.3 Contributions

The prime aim of this thesis is to provide practical solutions for reasoning problems

related to OBDA, then to facilitate the development of modern OBDA systems that

are scalable, feasible and efficient in real-world applications. Specifically, we studied

the problems of query rewriting, query abduction, and inconsistency-tolerant forget-

ting. Our studies mainly focus on the expressive language existential rules, except for

inconsistency-tolerant forgetting, the main results of which are based on light-weight

DLs.

The contributions of this thesis are summarized as follows,

• We present both a practical approach and a prototype system for datalog rewriting

and query answering over a wide range of ontologies expressed in existential rules.

The rewriting process is based on the notion of unfolding [Wang et al., 2018].

While such a rewriting process may not terminate, we move on to identify classes of

ontologies where the rewriting process terminates, introducing a class by combining

existing well-accepted classes. And we also introduce a concrete efficient algorithm

for the computation of datalog rewritings. A prototype system Drewer based on

our proposed approach is implemented. Experiments show that it is able to handle

a wide range of benchmarks in the literature and shows superior or comparable

performance to state-of-the-art systems on both the compactness of rewriting and

the efficiency of query answering.

• We propose a novel framework for query abduction, where a new type of explana-

tion called selective explanations is introduced. Selective explanations generalize

Introduction 9

the existing representative explanations and allows users to distinguish high-level

pattern explanations from low-level concrete explanations. We present an algo-

rithm for computing selective explanations based on an efficient query rewriting

method for existential rules obtained recently. We also introduce a compact rep-

resentation for selective explanations which can significantly reduce the number

of generated explanations and can be computed efficiently. Evaluations show that

our approach can effectively generate meaningful explanations and scale well over

large databases.

• We present the first study about forgetting over inconsistent ontologies. When tra-

ditional forgetting definitions are not available for inconsistent ontologies, we pro-

pose three different definitions for inconsistency-tolerant forgetting, called strong

forgetting, semantics-independent forgetting and γ-forgetting respectively. These

definitions are based on inconsistency-tolerant query answering semantics and

available for most ontology languages, including existential rules. We study their

properties and propose algorithms for their computation in the language of DL-

litecore. Experiments show that our forgetting can be effectively computed for

large inconsistent ontologies.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

1. In chapter 2, we first briefly introduce preliminary knowledge to the topics of this

thesis. Then we introduce ontology languages and reasoning problems that we

studied for practical ontology-based data access.

2. In chapter 3, we present our work about datalog rewriting for existential rules. We

first demonstrate how to produce a datalog rewriting for existential rules using un-

folding. Then we discuss about conditions of terminations and datalog rewritable

classes of existential rules. Finally, we present our prototype system Drewer and

experimental results.

3. In chapter 4, we present our novel work on query abduction. We define selective

explanations and study their computation. Besides, a compact representation is

Introduction 10

introduced for the explanations. An evaluation is performed to show the effective-

ness of our query abduction approach.

4. In chapter 5, we present our work of inconsistency-tolerant forgetting. It begins

with discussions about desiderata of forgetting for inconsistent ontologies and ex-

ploration of possible definitions. Then we define three different forgettings based

on inconsistency-tolerant semantics. Their properties are studied and algorithms

are designed for their computation.

5. Finally, in chapter 6, the works in this thesis are summarized and future directions

are discussed.

Chapter 2

Ontology-based Data Access

This chapter will firstly gives an overview of necessary basic knowledge for this the-

sis, which includes fundamentals from discrete mathematics, computational theory, and

first-order logic. Then we will introduce ontological languages concerned in this thesis,

including light-weight DLs and existential rules. The third part of this chapter discusses

about important ontology reasoning problems related to OBDA, which include query

answering, query abduction and forgetting. These problems are the main concerns of

this thesis, and some existing techniques developed for them will also be introduced.

2.1 Preliminaries

2.1.1 Mathematical Basics

An n-ary relation over a set S is subset R of Sn (n times cross-product of S with itself),

we write R(s1, . . . , sn) for each tuple (s1, . . . , sn) ∈ R. A binary relation is a 2-ary

relation, particularly, we write xRy to denote (x, y) ∈ R.

A binary relation R over S is reflexive if (x, x) ∈ R for all x ∈ S; it is symmetric if

(x, y) ∈ R implies (y, x) ∈ R; and it is transitive if (x, y) ∈ R and (y, z) ∈ R implies

(x, z) ∈ R.

A preorder of a set S is binary relation over S that is reflexive and transitive. A binary

relation R is anti-symmetric if (x, y) ∈ R implies (y, x) 6∈ R. A partial order of S is

11

Ontology-based Data Access 12

a preorder of S that is anti-symmetric. A total order of S is a partial order R of S

satisfying that for any x, y ∈ S, either (x, y) ∈ R or (y, x) ∈ R.

A partition of a nonempty set S is a set P of subsets of S such that (1)
⋃
Si∈P Si = S

(2) Si ∩ Sj = ∅ for i 6= j. A partition P is a bipartition if |P| = 2.

A graph is a pair G = (V,E), where V is a finite set of vertexes and E is a finite set of

edges such that E ⊆ V × V . A directed graph is a graph whose edges are ordered pairs.

Let G = (V,E) be a directed graph. Given a vertex v in G, the in-edges of v are edges

that end at v and the out-edges of v are edges that start from v. A directed path in G

is a nonempty sequence of vertexes p = (v0, . . . , vn) where n is the length of p and for

0 ≤ i < n, (vi, vi+1) ∈ E. An undirected path in G is a nonempty sequence of vertexes

p = (v0, . . . , vn) and for 0 ≤ i < n, (vi, vi+1) ∈ E or (vi+1, vi) ∈ E. A circle (resp.

undirected circle) in G is a directed path (resp. undirected path) p = (v0, . . . , vn) in G

such that v0 = vn. Two vertexes v, v′ in G are connected if there exists a directed path

in G between v and v′. A strongly connected component (SCC) of G is a subset C of V

such that for any v, v′ ∈ C, there exists a path from v to v′.

Let G = (V,E) and G′ = (V ′, E′) be two graphs, a homomorphism from G to G′ is a

function h : V → V ′ such that for any (v, v′) ∈ E, (h(v), h(v)′) ∈ E′. G′ is a subgraph

of G if V ′ ⊆ V and E′ ⊆ E. G′ is a core of G if G′ is a subgraph of G and there exists

a homomorphism from G′ to G. It can be proved that each graph has a unique core.

A tree is a directed graph that has exactly one vertex with no in-edges, which is called

the root of the tree, and contains no undirected circles.

2.1.2 Computational Theory

In this section, we introduce basic notions and results from complexity theory that are

used in this thesis. The content of this section is based on a book about introduction to

computational theory [Sipser, 1996].

Turing machine is a powerful and widely accepted computational model for a general

purpose computer. A Turing machine constitutes a head and a tape with infinite length,

which simulates unlimited and unrestricted memory. And the core of a Turing machine

Ontology-based Data Access 13

is a transition function that describes how the machine behaves (head moving right or

left) when reading different symbols at different states. Formally,

Definition 2.1. A deterministic Turing machine (DTM) is a tuple M = (Q,Γ, δ, q0,

qaccept, qreject), where Q,Σ,Γ are all finite sets and

1. Q is the set of states of the machine,

2. Γ is the alphabet for tapes, containing the blank symbol ,

3. δ is the transition function of the machine, δ : Q × Γ → Q × Γ × {L,R}, where

L,R indicate the moving directions of the head.

4. q0 ∈ Q is the starting state, qaccept ∈ Q is the accept state and qreject ∈ Q is the

reject state.

The computing process of a DTM M = (Q,Γ, δ, q0, qaccept, qreject) works as follows. M

receives a string w = w1w2 . . . wn as input on the leftmost n cells of the tape, where

wn are symbols from Γ except the blank symbol , and the rest of tape is filled with .

Initially, M is at state q0 and the head starts on the leftmost cell of the tape. Then

machine proceed according to the rules described by δ: let δ(q, a) = (r, b, L) and M is

at q, when the head is over a cell containing symbol a ∈ Γ, the machine writes symbol

b ∈ Γ replacing a and goes to state r, and after writing, the head is moved to the left

of the cell. The machine halts when it enters either the accept state qaccept or the reject

state qreject. Note that a machine can continue the process forever as long as it never

enters the halting states. Given a Turing machine M , we say M accepts string w if it

halts at accept state, and M rejects w if it halts at reject state.

A language is a collection of strings. Given a decision problem X, the language of X is

L = {w | w is the encoding of input y of X, the answer of X for y is true.}

Definition 2.2. Let L ⊆ Γ∗ be a language, M be a Turing machine with Γ as its

alphabet. We say M decides L, if for any x ∈ Γ∗, it holds that if x ∈ L, then M accepts

x, otherwise M rejects x. A language L is decidable if it can be decided by a Turing

machine, otherwise it is undecidable.

Ontology-based Data Access 14

An important variant of Turing machine is nondeterministic Turing machine (NTM).

The transition function of a NTM has the form

δ : Q× Γ→ 2Q×Γ×{L,R}

It means that at every step of transition, the machine may proceed with several pos-

sibilities. So the computation of an NTM forms a tree whose branches correspond to

different choices of the transition. An NTM accepts an input if there exists a branch

that leads to the accept state, and it rejects an input if there is no branch can lead to

the accept state.

Definition 2.3. A Turning machine M decides a language L in time O(f(n)) if taking

any w ∈ Γ∗ as input, M can halt in k steps, where k ≤ f(n).

Definition 2.4. A time complexity class DTime(f(n)) (NTime(f(n))) is a collection

of languages that can be decided by a DTM (NTM) in time O(f(n)).

The following are complexity classes that considered in this thesis.

P =
⋃
k∈N

(DTime(O(nk)))

NP =
⋃
k∈N

(NTime(O(nk)))

ExpTime =
⋃
k∈N

(DTime(O(2n
k
)))

The above classes satisfies relation:

P ⊆ NP ⊆ EXPTime

Generally, problems in P is accepted to be tractable, and problems in NP (or beyond

NP) are considered intractable. Note that whether P = NP is still an important open

problem in computer science, while it is widely believed that the two classes are unequal.

To obtain the decidability and complexity class of a problem, an important mathematical

tool, reduction is needed.

Ontology-based Data Access 15

Definition 2.5. A function f : Σ∗ → Σ∗ is a computable function if some Turing

machine M , on every input w halts with f(w) on its tape.

Definition 2.6. A language L1 is reducible to a language L2, written L1 ≤m L2 if there

is a computable function f satisfying, for every w,

w ∈ L1 ⇐⇒ f(w) ∈ L2

L1 is polynomially reducible to L2, written L1 ≤ L2 if f can be done in polynomial time.

f is called the reduction of L1 to L2.

If a language L is undecidable and we have L′ ≤m L, we can safely say L′ is also

undecidable. We say a language L is at least difficult as a language L′ if L′ ≤ L.

Definition 2.7. Let C be a complexity class, a language L is called C-hard if for any

L′ ∈ C, L′ ≤ L. L is called C-complete if L is also in C.

Definition 2.8. Let L be a language in complexity class C, the complement of L,

denoted L, is Σ∗ \ L. A language L′ is in class co-C if L′ ∈ L.

2.1.3 First-order Logic

First-order logic is the foundation of logics discussed in this thesis. In this section we

introduce first-order logic without functions, which is sufficient to support the topics we

studied in this thesis.

In the formulation of first-order logic, three mutually disjoint infinite sets of symbols

NP , NI , NV are considered, where NP is a set of n-ary predicate symbols (n ≥ 0),

NI is a set of constant symbols and NV is set of variable symbols.. In particular, NP

is usually assumed to contain two special 0-ary predicates, > and ⊥, called top and

bottom respectively.

Definition 2.9. A first-order formula is recursively defined as follows:

(1) A term is an element in NI ∪ NV .

(2) An atom is a formula with expression p(t0, . . . , tn), where p is an n-ary predicate

symbol and ti (0 ≤ i ≤ n) are terms.

Ontology-based Data Access 16

(3) If φ is a formula, then ¬φ is a formula.

(4) if φ and ψ are formulas, then φ⊕ ψ is a formula, where ⊕ ∈ {∨,∧,→}.

(5) If φ is a formula and x is a variable, then ∀x.φ and ∃x.φ are formulas.

A variable in a first-formula is quantified if it is in the scope of a quantifier, otherwise,

it is a free variable. A sentence is a first-formula without free variables. In addition, we

call a first-order formula which is a disjunction of atoms of form α0∨¬α1∨¬α2∨ . . .¬αn,

a horn clause. A horn clause is usually written as α0 ← α1 ∧α2 ∧ · · · ∧αn, in this form,

we call α0 the head of the clause and the set {α1, . . . , αn} the body the clause.

The semantics of a first-order logic is given by the notion of interpretation.

Definition 2.10. Let L be a first-order logic. An interpretation for L is a triple I =

(U, I, V), where

(1) U is an infinite set called the universe of I.

(2) I is a mapping function that satisfies: (i) for any constant c ∈ NI , I(c) ∈ U ; (ii)

for any P ∈ P, I(P) ⊆ Un, where n is the arity of P .

(3) V is a mapping function for variables, called variable assignment. For each variable

x ∈ NV , V (x) ∈ U .

Let t be a term and I be an interpretation, for shorthand, we use tI to denote the element

associated with t by I. It’s extended to predicate symbols and atoms in a natural way.

Let V be a variable assignment, V [x 7→ u] is a variable assignment identical to V except

that it maps x to u. And by I[x 7→ u], we denote that the variable assignment V in I

is replaced by V [x 7→ u].

Definition 2.11. Let I be an interpretation with universe U , and φ be a first-order

formula, we write I |= φ to indicate I satisfies φ, which is recursively defined as follows:

1. I |= >; I 6|= ⊥.

2. I |= p(t0, . . . , tn), iff (tI0 , . . . , t
I
n) ∈ pI .

3. I |= ¬φ, if I 6|= φ.

Ontology-based Data Access 17

4. I |= φ1 ∨ φ2, if I |= φ1 or I |= φ2.

5. I |= φ1 ∧ φ2, if I |= φ1 and I |= φ2.

6. I |= ∃x.φ, if there exists u ∈ U such that I[x 7→ u] |= φ.

7. I |= ∀x.φ, if for all u ∈ U , it satisfies I[x 7→ u] |= φ.

A first-order theory is a finite set of first-order formulas. An interpretation I is a model

of a first-order theory Π if I satisfies every formula in Π. Π is satisfiable or consistent

if Π has at least one model. Given two theories Π and Π′, we say Π entails Π′, denoted

Π |= Π′, if every model of Π is also a model of Π′. And we say Π and Π′ are equivalent

if Π |= Π′ and Π′ |= Π.

A substitution is a mapping function σ : NV → NV ∪ NI , it can be expressed as a

(possibly empty) set {t1 7→ t′1, . . . , tn 7→ t′n} such that for 1 ≤ i ≤ n, tiσ = t′i and for

other t not defined in σ, tσ = t. It extends to other first-order formulas in a natural

way.

Given two sets of atoms A, A′, a homomorphism from A to A′ is a substitution σ that

satisfies Aσ ⊆ A′. A unifier between A and A′ is a substitution τ such that Aτ = A′τ .

A unifier τ between A and A′ is most general, if for every unifier τ ′ between A and A,

there exists a substitution σ s.t τσ = τ ′.

A signature is a set of predicate symbols. A first-order formula is said to be defined

over a signature Σ if all predicate symbols in the formula belong to Σ. Given a first-

order theory Π, we use sig(Π) to denote the signature of Π, which is the set of predicate

symbols occurring in Π, and we use const(Π) and vars(Π) to denote the set of constants

and variable occurring in Π respectively. The Herbrand Base of Π, denoted HB(Π), is

the set of all atoms that can be constructed from sig(Π) and const(Π).

2.2 Ontology Languages

In this section, we introduce Description Logics (DLs) and existential rules, which en-

compass the most widely used knowledge representation languages in the context of

ontology-based data access.

Ontology-based Data Access 18

2.2.1 Description Logics

Description Logics are decidable fragments of first-order logic. However, traditional

DLs are mostly intractable: checking satisfiability of the ‘basic’ DL ALC is EXPTime-

complete, and that of SROIQ, which underpins OWL2, is 2NEXPTime-complete.

Therefore, to achieve tractable reasoning and handle large scale of data, two light-weight

families of DLs, the DL-lite family [Calvanese et al., 2007a] and the EL family [Baader

et al., 2008] are proposed, which respectively associate to the simplified profiles of OWL2,

OWL2 QL and OWL2 EL [Krötzsch, 2012]. Because of their nice properties over query

answering, lightweight DLs receive significant attention in recent years. In this thesis,

we focus on lightweight DLs.

We first introduce the core language of DL-lite family, DL-litecore. Three mutually

disjoint infinite sets NC ,NR,NI are considered in the construction of DL axioms. NC

and NR are sets of concept names and role names respectively, and as in first-order logic

NI is a set of constant symbols, which are also called individual names in DLs. Concept

names (resp. role names) are actually unary (resp. binary) predicate symbols.

The concepts and roles of DL-litecore are constructed in the following syntax, where

A ∈ NC , R ∈ NR:

B → A | ∃R, R→ P | P−, C → B | ¬B

Particularly, we say A is an atomic concept, R is an atomic role, and B is a general

concept. A concept inclusion axiom is of form B v C, if C occurs negatively, the axiom

is also called negative inclusion axiom. A DL-litecore TBox is a set of concept inclusion

axioms. A DL-lite ABox is a set of membership assertions of form A(a), and P (a, b),

where a, b are individuals from NI . A DL ontology is a pair O = (T ,A), where T is a

TBox and A is an ABox.

DL-litecore can be extended to other fragments in DL-lite by introducing more complex

syntax and constructs. DL-liteF allows role functionality axioms of form (func R).

DL-liteR allows role inclusion axioms of form R v S, where S → R | ¬R. There

are a few other expressive fragments in the DL-lite family, which are omitted here.

The following is a set of DL-lite TBox axioms adapted from the Lehigh University

Ontology-based Data Access 19

Benchmark (LUBM) [Guo et al., 2005], which is a university domain ontology frequently

used in OBDA evaluations.

Example 2.1.

TU = {Faculty v Employee, Professor v Faculty, Student v ¬Professor,

Employee v ∃worksFor, Student v ∃takeCourse, member ≡ memberOf−

ResearchAssistant v ∃member−, worksFor v memberOf}

The above axioms describe the hierarchy of a university. The first and the second axioms

say a faculty is an employee and a professor is a faculty member. ∃worksFor is a complex

concept constructed with the role worksFor using existential restriction, and the fourth

axiom says an employee is an individual that works for someone. The third axiom

is a restriction, which states that a student cannot be a professor. Particularly, the

sixth axiom is a simplified representation of two axioms member v memberOf− and

memberOf− v member, which states member is the inverse role of memberOf.

The semantics of a DL ontology is also given by interpretations.

Definition 2.12. An interpretation I to a DL ontology over Σ is a pair (∆I , ·I), where

∆I is a non-empty domain of I, ·I is a mapping function over NC ∪ NR ∪ NI , which

satisfies that,

1. AI ⊆ ∆I , for A ∈ NC ∩ Σ.

2. P I ⊆ ∆I ×∆I , for P ∈ NR ∩ Σ.

3. aI ∈ ∆I , for a ∈ NI .

In the construction of DL-lite, ·I is extended to satisfy,

1. (¬B)I = ∆I \BI .

2. (∃R)I = {o | ∃o′ ∈ ∆I st. (o, o′) ∈ RI}.

3. (P−)I = {(o′, o) | (o, o′) ∈ P I}.

Ontology-based Data Access 20

By default, the semantics of DL ontologies follow the unique name assumption(UNA),

which requires that different individuals a, b ∈ NI cannot be interpreted as the same

object, i.e., aI 6= bI .

An interpretation I is said to satisfy a concept inclusion axiom B v C, if BI v CI ;

I is said to satisfy a membership assertion A(a) (resp. R(a, b)) if aI ∈ AI (resp.

(aI , bI) ∈ RI)). Analogous to concept inclusion axioms, I satisfies a role inclusion

axiom R v S, if RI ⊆ SI . Besides, I satisfies (func R), if (o, o1) ∈ RI and (o, o2) ∈ RI ,

then o1 = o2.

I is said to satisfy an ontology O = (T ,A), if I satisfies every axiom in T and every

assertion in A.

Example 2.2. Let O = (TU ,A), where TU is the DL-lite TBox from Example 2.1, and

A = {Student(John),Student(Joy),Faculty(Frank),member(ICT ,Frank)}

Then a possible interpretation IU = (∆, ·IU) that satisfies O can be constructed as

follows:

the domain: ∆U = {John, Joy ,Frank , ICT ,Math}.

the interpretations of concepts:

StudentI
U

= {John, Joy}, FacultyI
U

= {Frank}, EmployeeI
U

= {Frank}

the interpretations of roles:

memberI
U

= {(ICT ,Frank)}, memberOfI
U

= {(Frank , ICT)},

takeCourseI
U

= {(Jonh,Math), (Joy ,Math)}, worksForI
U

= {(Frank , ICT)}

Apart from the classical interpretation, there is one important type of interpretation for

ontologies called canonical interpretation (canonical model) [Kontchakov et al., 2011].

Intuitively, a canonical interpretation of an ontology is an interpretation that can be

homomorphically embedded into any other interpretations of the ontology. In the fol-

lowing, we introduce the construction of canonical models of DL-lite ontologies.

Ontology-based Data Access 21

Definition 2.13 (Canonical Interpretation). Let O = (T ,A) be a DL-lite ontology,

the Canonical interpretation of O, denote IO, is defined as follows: the domain of IO,

denoted ∆IO , consists of paths of the form acR1 . . . cRn , with a ∈ const(A), n ≥ 0,

a cR1 and cRi−1 cRi , for 1 < i ≤ n, where the is defined by the following two

conditions:

• a cR1 , if O |= ∃R1(a) but R1(a, b) 6∈ A for all b ∈ const(A);

• cRi cRi+1 , if for i ≤ n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1.

The last element of a domain path σ is denoted as tail(σ), and IO is defined as follows:

aIO = a for a ∈ const(A),

AIO = {a ∈ const(A) | O |= A(a)} ∪

{σcR ∈ ∆IO | T |= ∃R v A},

P IO = {(a, b) ∈ const(A)× const(A) | P (a, b) ∈ A} ∪

{(σ, σcP) ∈ ∆IO ×∆IO | tail(σ) cP } ∪

{(σcP , σ) ∈ ∆IO ×∆IO | tail(σ) cP−}.

Note that the canonical interpretation of a DL-lite ontology may still be infinite.

Example 2.3 ([Kontchakov et al., 2010]). Consider ontology O = (T , {A(a)}), where

T = {A v ∃P,∃P− v B,B v ∃R, ∃R− v A}. The canonical model of O is depicted below,

A

a

B

acP

A

acPcR

B

acPcRcP

. . .
P R P

The concept and role constructs in EL are more complex than DL-lite, which make it

expressive enough to model professional ontologies like SNOMED CT [Donnelly, 2006].

The syntax of concept constructs in EL is as follows:

C,D → > | {a} | C uD | ∃P.C

Notice that the major difference between DL-lite and EL is that in EL, existential re-

strictions are also applied to concepts, but inverse of role is not allowed. A common

Ontology-based Data Access 22

feature shared by DL-lite and EL is that there are no disjunctions and no universal

restrictions, which guarantees their tractabilities. Similar to DL-lite, TBoxs in EL on-

tologies consist of inclusion axiom of form C v D and ABoxs is a set of membership

assertions.

An interpretation I = (∆I , ·I) interprets the constructs in EL as follows:

1. (>)I = ∆I , (⊥)I = ∅.

2. ({a})I = {aI}.

3. (C uD)I = CI ∩DI .

4. (∃P.C)I = {x ∈ ∆I | ∃y ∈ CI , (x, y) ∈ P I}

In addition, we say a DL language is a horn DL if its axioms can be represented by

first-order horn clauses. Apparently, DL-litecore is a horn DL.

2.2.2 Existential Rules

Though DLs are widely accepted and successful underlying languages for ontologies,

there are still a lot of real world problems that cannot be expressed by DLs, for exam-

ple, roles (which are actually binary relations) could not satisfy the need of modeling

relational data with more than two attributes (expressing these data in binary relation is

very clumsy), so a family of more expressive language, existential rules (a.k.a Datalog±),

is proposed.

Datalog± is a family of languages that extend datalog with useful modelling features,

such as adding existential quantifiers to the rule heads (+ in ±) [Cal̀ı et al., 2012].

Datalog rules extended in this way are also called tuple generating dependencies (TGDs).

A datalog clause (or datalog rule) is a horn clause without function terms, and particu-

larly, it satisfies that variables occur in the head also occur in the body.

A TGD r is an extension of a datalog clause, which is a first-order formula of form,

∀~x.∀~y.(∃~z.ψ(~x, ~z)← φ(~x, ~y))

Ontology-based Data Access 23

where φ and ψ are conjunctions of atoms. The formula ψ is the head of r, and the

formula φ is the body of the σ. For simplicity, the universal quantifiers in the formula

are usually omitted. The sets of atoms in the head and the body of σ are denoted by

head(r) and body(r) respectively. Variables occurring both in the body and the head

are called frontier variables.

Besides TGDs, Datalog± is also extended with two types of constraints, negative con-

straints and equality-generating dependencies (EGDs), which are also important ele-

ments for representing ontologies. Negative constraint is a first-order formula of form

⊥ ← ∀~xφ(~x), where φ(~x) is a conjunction of atoms. It is easy to see that it is a general-

ization of negative inclusions axiom in DL-lite. An EGD is a first-order formula of form

∀~x.(xi = xj ← φ(~x)), where φ(~x) is a conjunction of atoms and xi, xj are variables in

~x. Note that if UNA is not considered, according to the semantics of first-order logic,

the formula actually performs an implication that xi and xj are interpreted to the same

object.

A Datalog± program consists of TGDs, EGDs and negative constraints. In some re-

search problems, such as query answering, where consistency is not the main concern (or

consistency is guaranteed), EGDs and negative constraints are usually ignored because

they do not contribute to the reasoning results. By default, when we refer to existential

rules, it means only TGD rules.

A ground atom (ground fact) is an atom whose terms are all constants. A database is set

of ground atoms. Similar to a DL ontology, we also represent an ontology in existential

rules as a pair O = (Π,D), where Π is a set of existential rules (or a Datalog± program

containing constraints), D is a database. In fact, such ontologies taking databases into

account are also called knowledge bases (KBs). Note that Π and D are similar to the

TBox and ABox components in a DL ontology; when we use these notations to represent

an ontology, we assume they can also represent TBoxs and ABoxs.

Next we introduce an important notion used to check the implication of dependencies,

called chase. There are two types of chase rules, restricted chase and oblivious chase.

Intuitively, in restricted chase, TGDs are applied in the sense of repairing database, i.e.,

they are applied only when they are not satisfied, while in the case of oblivious chase,

TGDs are always applied to generate new information. Given that restricted chase

Ontology-based Data Access 24

cannot fully capture the structure of models of existential rules, we focus on oblivious

chase.

To describe chase, an extra infinite set of symbols called labeled nulls is considered, we

denote it with NN . Labeled nulls are used to represent ‘fresh’ terms introduced in the

implications of rules, in other words, they are placeholders for unknown values, thus can

be treated as special variables. An instance is a (possibly infinite) set of atoms that

contains only constants and labeled nulls. Now we are ready to define (oblivious) chase

for existential rules.

Let r be a TGD of form ∃~z.ψ(~x, ~z) ← φ(~x, ~y). Given an instance I, r is said to be

applicable to I if there exists a homomorphism σ from body(r) to I. Let r be applicable

to I with homomorphism σ, σ′ is defined as follows: for each variable x ∈ ~x, xσ = xσ′,

and for each variable z ∈ ~z, zσ′ = z′, where z′ is a fresh label null not occurring in I. The

result of applying r to I with σ, denoted rσ(I), is I ∪ head(r)σ′; Let H be the set of all

homomorphisms from body(r) to I, we define r(I) =
⋃
σ∈H r

σ(I). Given a database D, a

set of TGDs Π, the chase of level up to k of D w.r.t Π, denoted chasek(D,Π), is defined as

follows: (1) chase0(D,Π) = D; (2) for k ≥ 1, chasek(D,Π) =
⋃
r∈Π(r(chasek−1(D,Π))).

In fact, the chase result above is the canonical model of ontology (Π,D).

It has been proved that query answering (as well as other classical reasoning tasks)

under general existential rules is undecidable [Beeri and Vardi, 1981], so the syntax of

the rule must be restricted (the - in ±), which leads to a variety of decidable classes of

Datalog±. We will discuss these classes in the next section.

2.3 Ontology Reasoning and Manipulation

Ontology-based data access is regarded as the essential element of new generation of

information system. Efficient approaches to solve classical reasoning problems over ex-

pressive ontologies are important to the application of ODBA. Given the complexity of

expressive languages and the scale of real-world data, finding these approaches is very

challenging. In this section, we will introduce reasoning problems studied in this thesis

and some typical methods solving these problems will be discussed.

Ontology-based Data Access 25

2.3.1 Query Answering

Query answering is the main reasoning task in ontology-based data access.

A conjunctive query (CQ) q is a first-order formula of form ∃~y.φ(~x, ~y), where φ(~x, ~y) is

a conjunction of atoms. We called ~x the answer variables of q. If ~x is empty, q is a

boolean conjunctive query (BCQ). A CQ can also be represented as a datalog clause of

form Q(~x)← ∃~y.φ(~x, ~y) where Q is special predicate called query predicate, which does

not occur in the body of the query. A union of conjunctive queries (UCQ) is a set of

conjunctive queries that have the same query predicate. Given the specialty of BCQs,

it is often convenient to consider a BCQ as the set of atoms in it.

The satisfaction in an interpretation and the entailment by an ontology of a BCQ q are

the same as in first-order logic: we write I |= q to denote that q is satisfied in I, and q

is entailed by an ontology O, denoted O |= q, if for every interpretation I of O, I |= q.

While for a non-BCQ q, let (x1, . . . , xn) be the set of answer variables of q, then a tuple

(a1, . . . , an) ⊆ const(O) is a certain answer to q over O, if O |= q[x1 7→ a1, . . . , xn 7→ an],

where q[x1 7→ a1, . . . , xn 7→ an] is obtained from q by substituting every answer variable

xi with ai. Also, ans(q,O) is used to denote the set of all certain answers to q over O.

In the setting of OBDA, the data components are usually separated from ontologies:

an ontology containing only rules (or TBox) serves as a middle layer between user

queries and different databases, which produces the notion of ontology-mediate query

answering [Bienvenu et al., 2014c]. An ontology-mediate query (OMQ) is a pair (q,Π),

where q is a conjunctive query and Π is an ontology without data, i.e., a set of rules or

a set of TBox axioms. Then ontology-mediate query answering is the task of evaluating

an ontology-mediate query over different databases.

As noticed in the definition of answering CQs, the task of answering non-BCQs can

be straightforwardly reduced to the task of answering BCQs: for every possible an-

swer (a1, . . . , an), check whether the BCQ q[x1 7→ a1, . . . , xn 7→ an] can be entailed.

Therefore, in the studies of query answering for ontology, it is usual to consider BCQs

only.

There are two major approaches for query answering over ontologies expressed in exis-

tential rules or Horn Description Logics, the forward chaining approaches and the query

Ontology-based Data Access 26

rewriting approaches. The forward chaining approaches are about computing the canon-

ical model of the ontology. As we have discussed, the canonical model of an ontology

O is a model I of O that can be homomorphically embedded into any other model of

O, that is, for every I ′ ∈ Mod(O), there exists a homomorphism h from I to I ′. Par-

ticularly, deciding the entailment of a BCQ q by a database D is equivalent to checking

whether there exists a homomorphism from q to D. According to the definition of ho-

momorphism, the homomorphical relation is apparently transitive, that means, if there

is a homomorphism from q to the canonical model of O, then there is a homomorphism

from q to all other models of O; thus we have the following well-known result for query

answering.

Theorem 2.1 ([Kontchakov et al., 2011]). For every consistent ontology O in existential

rules or horn DLs, and every BCQ q, O |= q if and only if IO |= q, where IO is the

canonical model of O.

The procedure of computing canonical models, such as the chase in existential rules, is

called forward chaining. Forward chaining based approaches highly rely on the termina-

tion of the forward chaining procedure, as we know the canonical model of an ontology

can be infinite. Moreover, it is shown that computing a full model can be rather in-

efficient when query answers depend on only a small portion of the model [Benedikt

et al., 2018]. Sometimes, the results of forward chaining are reserved in the databases to

avoid repeated computations when there are multiple queries to be handled, the enriched

results are also called materializations of databases.

In contrast to forward chaining based approaches, the key idea of query rewriting ap-

proaches is to reformulate queries and ontologies (without data) into other formalisms

so that the querying task can be accomplished by existing mature data management

systems, and moreover, the results can be applied to any databases.

In particular, when we are talking about the complexity of reasoning problems for on-

tologies, there are two different settings: (1) combined complexity, which takes all the

components (including rules and data) in the ontology as inputs, and (2) data complex-

ity, which fixes the rules in the ontology and only considers data as inputs. Hence, if an

ontology-mediate query answering problem can be translated into a traditional query

answering problem, then we can consider the problem as tractable w.r.t data complexity.

Ontology-based Data Access 27

In the next subsection, we will focus on introducing the query rewriting approaches.

2.3.2 Query Rewriting

Definition 2.14 (Rewriting). Let q be a CQ with query predicate Q and Π be a set of

existential rules (or a TBox), a datalog rewriting of q w.r.t Π is a set of datalog clauses

RD ∪ Rq, where RD does not contain Q and Rq is a UCQ whose query predicate is Q,

and for any database D, it holds that

ans(q,Π ∪ D) = ans(Rq,RD ∪ D)

If RD is empty, then Rq is a first-order rewriting (or UCQ rewriting) of q w.r.t Π.

When q is a BCQ, we can use the following condition alternatively,

Π ∪ D |= q iff RD ∪ D ∪Rq |= Q

For a result of first-order rewriting of BCQs, we sometimes call it a rewriting set, be-

cause it is literally a set of BCQs. We say a set of existential rules Π is first-order

rewritable (resp. datalog rewritable) if for any BCQ q, there exists a finite first-order

rewriting (resp. datalog rewriting) of q w.r.t Π.

There are two main kinds of rewriting methods, one is resolution-based rewriting, the

other is backward chaining rewriting. Resolution-based rewriting is usually applied in

DLs, which is done by introducing a set resolution calculus according to the fixed syn-

tax of DL axioms [Trivela et al., 2015]. While current first-rewriting algorithms for

existential rules are mostly based on backward chaining, such as the XRewrite algo-

rithm [Gottlob et al., 2014c]. Our discussion focuses on rewriting methods based on

backward chaining for existential rules.

Intuitively, in backward chaining, a rewriting of a query is computed by exhaustively

searching replacements for atoms in the query according to the rules in ontology. Such

searching process is performed in a ‘backward’ manner, that is, when an atom in the

head of a rule r is searched, the atoms in the body of r will be considered for the next

round of searching.

Ontology-based Data Access 28

The classical backward chaining rewriting process is based on a unification operation

between the current query and a rule head. However, normal unification is problematic

in the rewriting in existential rules because the existential variables in a rule head may

‘glue’ multiple atoms in the head together, then it is inappropriate to unify single atoms.

Hence, a specific unification operation for rewriting in existential rules is necessary.

Definition 2.15 (Piece-Unification [Baget et al., 2011]). For a BCQ q and an existential

rule r, a piece-unifier between q and r is a tuple µ = (B,H, τ), where ∅ ⊂ B ⊆ q,

H ⊆ head(r), and τ is a substitution from terms(q′)∪terms(H) to terms(q′) that satisfies:

1. Bτ = Hτ , i.e., τ is a unifier between B and H.

2. If z is an existential variable of r, then z can only be mapped to a variable z′ that

occurs only in B, i.e., z′ ∈ vars(B) and z′ 6∈ vars(q \B).

In the above definition, B is a piece of q, that is, a minimal subset of atoms in q that

have to be replaced together. Note that condition 2 excludes the cases where z is unified

with a constant, with a variable in head(r) other than z, or with a variable in q occurring

both inside and outside B. Particularly, the variables occur both in B and q \ B are

called separating variables.

A piece-unifier µ = (B,H, τ) between q and r is most general if there does not exist

another piece-unifier µ = (B,H, τ ′) such that τ ′ is more general than τ .

Definition 2.16. Let q be a BCQ, r be an existential rule, and µ be a piece-unifier

between q and r, the one-step rewriting of q by r with µ, denoted FORew1(q, r, µ), is a

BCQ

(q \B)τ ∪ body(r)τ

By FORew1(q, r), we denote the union of FORew1(q, r, µ) for all the most general piece-

unifiers µ between q and r. For a set of queries Q and a set of rules Π, FORew1(Q,Π) =

{FORew1(q, r) | r ∈ Π, q ∈ Q}.

A result of first-order rewriting needs not to be a most compact one. Given two BCQs

q, q′, we say q is more general than q′ (or q′ is contained in q), denoted by q �h q′, if

there is a homomorphism from q to q′. It can be easily checked that if q is more general

than q′ and q′ can be entailed by an ontology O, then q is also entailed by O. That

Ontology-based Data Access 29

means for any query q that is not most general in a first-order rewriting result, q can

always be removed from the set without affecting the completeness of the first-order

rewriting. Given a set of BCQs Q, a cover of Q, denoted cover(Q), is a minimal subset

Q′ of Q such that each BCQ q in Q is contained in some BCQ q′ in Q′. We say Q is

minimal if there does not exists q, q′ ∈ Q s.t q �h q′. Apparently, a cover of Q is a

minimal set of BCQs.

Obtaining minimality is one major concern in first-order rewriting [Venetis et al., 2016],

because it may greatly reduce the size of a rewriting, thus affecting the efficiency of

query answering. There even exist cases where a rewriting result of infinite size has a

finite cover. However, the cost of computing a cover for a set of BCQs can be very

expensive when the set is large. Note that deciding the �h relation for two BCQs is

an NP-complete problem, and to compute a cover of Q, such checking may need to be

done up to quadratic times w.r.t the size of Q.

With the above knowledge, a general first-order rewriting process for existential rules

can be obtained, as described with Algorithm 1.

Algorithm 1: [König et al., 2015b]

Input : A set of existential rules Π, a BCQ q

Output: A minimal rewriting set of q with Π

1 begin

2 F ← {q}; // result set

3 E ← {q}; // explore set

4 while E 6= ∅ do

5 R← FORew1(E,Π); // One-step rewriting

6 C ← cover(R ∪ F); // Compute the cover set

7 E ← C \ F ; // next exploration set

8 F ← C;

9 return F

Theorem 2.2 ([König et al., 2015b]). Given a set of existential rules Π and a BCQ

q, Algorithm 1 returns a minimal UCQ rewriting of q w.r.t Π and it terminates if Π is

first-order rewritable.

Ontology-based Data Access 30

Note that as query answering in general existential rules is undecidable, algorithm 1

may not terminate and generates an infinite rewriting.

2.3.3 Decidable classes for Existential Rules

As we have discussed above, query answering in general existential rules are undecidable;

to achieve decidability, restrictions to the rules need to be made. In this section, we will

introduce decidable classes of existential rules. Here we only cover several important

classes that are discussed in this thesis. For a more complete picture of decidable classes

proposed, we refer interested readers to [Baget et al., 2011].

For a set of existential rules, we assume every rule in it has a distinct set of variables.

We first introduce a fundamental class called guarded existential rules [Cal̀ı et al., 2012].

Definition 2.17 (Guarded). An existential rule r is guarded if there is a body atom α

of r satisfies that any variable v occurs in the body of r also occurs in α. α is said to be

the guard of r. A set of existential rules is guarded if all its rules are guarded.

The idea behind the class of guarded rules is that if there is a guard for every rule, then

the structure of the chasing model will be restricted to have bounded treewidth, which

is a notion that describes how close is a graph to a tree. Notably, guarded existential

rules are datalog rewritable [Gottlob et al., 2014e].

Next we introduce two abstract decidable classes of existential rules, which capture

decidability through the process of forward chaining and backward chaining respectively.

Definition 2.18 (Finite Expansion Set [Baget et al., 2011]). Given a set of existential

rules Π, we say Π is a finite expansion set (fes), if for any database D, there exists a

certain k such that for any BCQ q, chasek(D,Π) |= q if and only if Π ∪ D |= q.

Definition 2.19 (Finite Unification Set [Baget et al., 2011]). Given a set of existential

rules Π, we say Π is a finite unification set (fus), if for any BCQ q, there exists a finite

first-order rewriting of q w.r.t Π.

Note that these two abstract classes of existential rules are not recognizable [Baget et al.,

2015]. However, many concrete classes of existential rules belong to these abstract classes

have been presented in the literature.

Ontology-based Data Access 31

For a set of existential rules to have a finite expansion over any database, an essential

requirement is that it can guarantee that fresh constants are not infinitely generated in

the chasing process. Existential rules enjoying such a property can usually be captured

by acyclicity. Next we present two typical classes defined through acyclicity conditions

in two different graphs specially constructed from the rules.

A predicate position is a pair of form P[i], where P is an n-ary predicate and 1 ≤ i ≤ n.

We say a variable v occurs at position P[i] if there is an atom P(t1, . . . , tn) with ti = v.

Given a set of existential rules Π, the predicate position graph of Π, denoted Gp(Π), is

a labelled directed graph whose vertices are the set of predicate positions of Π. The

edges of Gp(Π) are built as follows: for each rule r ∈ Π and each frontier variable v of r,

there is an edge from position P[i] in body(r) where v occurs at position P′[j] in head(r)

where v occurs; and there is a special edge from position P[i] in body(r) where v occurs

to positions in head(r) where existential variables occurs.

Definition 2.20 (Weakly-acyclic). A set of existential rules is weakly-acyclic if its pred-

icate position graph satisfies any special edge of the graph is not in a cycle.

If a set of existential rules is weakly-acyclic, it might be recursive, but it guarantees

that the generation of any fresh constant is not depended on a previously obtained

fresh constant, thus the chasing process will eventually stop. While predicate position

graphs are defined based on predicates, the following graph tries to precisely represent

the dependency relation between rules.

Definition 2.21. Given two existential rules r, r′, we say r′ depends on r, if there exists

a database D satisfying,

1. there is a homomorphism σ from body(r) to D,

2. there is a homomorphism σ′ from body(r′) to rσ(D),

3. body(r)σ′ 6⊆ D and head(r)σ′ 6⊆ rσ(D).

Given a set of existential rules Π, the graph of rule dependency for Π, is a directed graph

whose nodes are the rules in Π, and where there is an edge from r to r′ if r′ depends on r.

With this graph, we can immediately define a class where a rule will not be repeatedly

applied in chasing.

Ontology-based Data Access 32

Definition 2.22 (Acyclic Graph of Rule Dependency (aGRD)). A set of existential

rules is aGRD if its graph of rule dependency is acyclic.

Existential rules in the following two classes are fus, i.e., they are first-order rewritable.

Definition 2.23 (Linear). An existential rule is linear if its body contains only one

atom. A set of existential rules is linear if all its rules are linear.

Though linear existential rules seem quite simple, they are sufficient to generalize inclu-

sion axioms in DL-lite, and are more expressive. The next class is defined based on a

variable marking process.

Definition 2.24. Given a set of existential rules Π, the backward marking of Π, is

constructed as follows:

1. For every rule r ∈ Π, let v be a variable in body(r), if there exists an atom α in

head(r) such that v 6∈ vars(α), then each occurrence of v in body(r) is marked.

2. Apply exhaustively: for every rule r ∈ Π, if a variable in body(r) occurs at position

π is marked, then for every rule r′ ∈ Π (r′ possibly equals to r), for every variable

v in head(r′) occurs at π, the occurrences of v in body(r′) are marked.

Definition 2.25 (Sticky). For a set of existential rules Π, Π is sticky if in the backward

marking, there is no rule r ∈ Π such that a marked variable occurs in body(r) more than

once.

Linear and sticky classes can be generalized by an abstract property called backward

shyness [Thomazo, 2013], which roughly says that in the backward chaining rewriting

of every rule, every generated variable doesn’t occur in two atoms of a rewriting.

All concrete classes of existential rules we introduce above are tractable, that is, query

answering in these classes is in polynomial time w.r.t data complexity.

2.3.4 Query Abduction

It has been argued that to meet the usability requirements set by users, an intelligent

system should be equipped with the ability to explain its reasoning services [McGuinness

Ontology-based Data Access 33

and Patel-Schneider, 1998]. In the scenario of OBDA, while explaining positive query

answers, that is, finding the minimal causes for querying results, have been studied in

DLs and existential rules [Kalyanpur et al., 2007, Ceylan et al., 2019], it is suggested

that OBDA systems should also explain negative query answers [Borgida et al., 2008].

Negative answers are answers that cannot be entailed but are expected to occur in the

querying result. The idea of explaining negative query answers is formalized by adopting

abductive reasoning.

Definition 2.26 (Query Abduction Problem [Calvanese et al., 2013]). A query abduction

problem (QAP) is of the form Λ = (Π,D, q,Σ), where Π is a set of existential rules, D is

a set of ground facts (i.e., database), q is a boolean conjunctive query (the observation),

and Σ is a set of predicates, called abducibles. An explanation to Λ is a set of facts (whose

terms are constants or labeled nulls) E such that sig(E) ⊆ Σ and Π ∪ D ∪ E |= q.

Unlike in the classical abduction problem, where a finite set of hypotheses (expressed in

ground facts) is provided to search for possible explanations [Gottlob et al., 2007], the

explanations in query abduction are not restricted by single atoms, but by the predicate

symbols. In the above definition, fresh constants (labeled nulls) are allowed in the

atoms of an explanation, which means there may exist infinite number of explanations

to a query abduction problem.

Example 2.4. Consider a QAP Λ = (Π, ∅, q,Σ), where Π consists of a single rule,

hasAncester(x, z)← hasParent(x, y), hasAncestor(y, z).

The above rule says the ancestors of a person’s parent are also his ancestors. Let our

observation q be hasAncestor(John,Ben) and abducibles Σ be {hasAncester, hasParent},

then according to the definition, we have an infinite set of explanations of the form

{hasParent(John, u1), . . . , hasParent(un−1, un), hasAncestor(un, Ben)}, where ui are

fresh constants and n > 1.

Though definition 2.26 presents us with the basic requirements for explanations, some

explanations it admits may be unintuitive or meaningless. Specifically, explanations

satisfying the following restrictions are desired [Elsenbroich et al., 2006].

Definition 2.27. Given a query abduction problem Λ = (Π,D, q,Σ), and an explanation

E to Λ, we say:

Ontology-based Data Access 34

(1) E is consistent if Π ∪ D ∪ E 6|= ⊥.

(2) E is relevant if E 6|= q.

(3) E is explanatory if Π ∪ D 6|= q.

Intuition regarding these restrictions on explanations is obvious: an explanation should

be consistent with the current knowledge, because an inconsistent theory logically entails

everything. For any observation, a trivial explanation is the observation itself; never-

theless such an explanation does not help to explain the situation. If the observation is

already entailed by the current knowledge, any set of facts can be an explanation to the

abduction problem.

Apart from the above considerations, one of the most concerning issues in computing

explanations is compactness. We hope an explanation will be as simple as possible, as we

do not want excess hypothesizing. Several studies have discussed about how explanations

should be evaluated and compared [Du et al., 2011, Du et al., 2014, Soler-Toscano, 2019].

Because an explanation is allowed to have non-ground facts, the minimality of expla-

nations should not be defined by the simple subset inclusion relation. Consider two

explanations E1 = {A(a, u)} and E2 = {A(a, u′),B(a)}, where u, u′ are fresh constants,

E1 is not a subset of E2, however, E1 is intuitively smaller than E2, as u and u′ are

essentially equivalent.

When labeled nulls are considered in atoms, we extend substitutions to include mappings

of labeled nulls, that is, a substitution is a mapping function σ : NV ∪NN → NV ∪NI ∪

NN . . A renaming is a substitution ρ that substitutes a variable (resp. labeled null) to

another variable (resp. labeled null) such that for each pair t, t′, if t 6= t′, then tρ 6= t′ρ.

For two sets of facts A,A′, we denote A �m A′ if there exists a renaming ρ such that

A′ρ ⊆ A. And A ≺m A′ if A′ρ ⊂ A. An explanation E to a QAP Λ is minimal if

E ′ �m E implies E �m E ′ for all explanations E ′ to Λ. The set of all minimal and

consistent explanations to Λ up to renaming is denoted by expl(Λ).

Only requiring explanations to be minimal is not sufficient to have a compact result for

query abduction. As in the following examples, minimal explanations can be redundant.

Ontology-based Data Access 35

Example 2.5. Consider a QAP Λ = (Π,D, q,Σ), where Π consists of rules,

∃y.memberOf(x, y),Department(y)← Employee(x).

Employee(x)← worksFor(x, y).

Let D = {Department(dev),Person(John),Person(Tom)}, Σ = {worksFor} and q =

{∃x.memberOf(John, x)}. Then there are four minimal explanations to Λ, E1 = {

worksFor(John, John)}, E2 = {worksFor(John, Tom)}, E3 = {worksFor(John, dev)}, and

E4 = {worksFor(John, u)}, where u is a fresh constant. Among the four explanations, E3

is abnormal, because John should work for a person other than a department. With E1

and E2, we are uncertain about who John is actually working for. In fact, the uncertainty

reflected by E1 and E2 can be expressed by E4.

If we assume a large database for the above example, a great number of explanations will

be computed by combination of constants occurring in the database, while most such

explanations can be covered by a general explanation. Therefore, explanations should

be compared semantically. To address the issue, the author in [Du et al., 2014] proposed

to compute a particular set of explanations, called representative explanation. Similar

to the containment relation between two BCQs, given two explanations E and E ′, E ′ is

said to be subsumed by E if E �h E ′.

Definition 2.28 (Representative explanations[Du et al., 2014]). Given a QAP Λ, a

representative explanation to Λ is a minimal explanation E to Λ such that for all minimal

explanation E ′ to Λ , if E ′ �h E then E �h E ′.

In example 2.5, there is only one representative explanation to the abduction problem,

which is E4, all other explanations are subsumed by E4.

It should be noted that the set of all representative explanations to a QAP may still be in-

finite. As we can see in Example 2.4, every explanation of the form {hasParent(John, u1),

. . . , hasParent(un−1, un), hasAncestor(un, Ben)} is a representative explanation.

2.3.5 Inconsistency-Tolerant Query Answering

Previous discussion on query answering is based on one important assumption that

the considered ontology is consistent. However, if an ontology is not consistent, query

Ontology-based Data Access 36

answering over it is trivial, because according to the semantics of first-order logic, an

unsatisfiable theory can entail everything. So novel approaches different from classical

query answering need to be proposed.

In the database research field, a database is inconsistent if it violates certain integrity

constraints predefined for the database, which is common in the applications that rely

on multiple sources of data. To handle inconsistencies, one trivial approach is to fix

the database so that constraints can be satisfied. However, such an approach requires

modification of data, which may not be encouraged in some scenarios. Furthermore, it

is usually difficult to decide the optimal way to fix the database. For these reasons, a

concept called consistent query answering (CQA) [Chomicki, 2007] is proposed, that is,

querying database with the existence of inconsistencies.

One fundamental notion in CQA is repair, which is a possible result that are close to the

original inconsistent database after fixing inconsistencies. A query answer is a consistent

answer to a query over an inconsistent database if the answer is a query answer to the

query over all repairs of the database.

The idea of CQA is exploited in the query answering of inconsistent ontologies [Lembo

et al., 2010], which gives rise to so called inconsistency-tolerant query answering. Repairs

of ontologies are more complicated than repairs of databases as ontologies contains not

only data (ABox assertions), but also rules (TBox axioms) representing background

knowledge. To simplify the problem, data (ABox) repairs are adopted for inconsistency-

tolerant query answering, that is, repairs are obtained by changing only the data (ABox)

component of the ontology. Such repairs make sense, because background knowledge is

usually considered reliable, while data is collected from various source with different

means, thus are more likely to contain errors.

We focus on data (ABox) repairs for ontologies, the formal definition of which is given

below. D is said to be Π-consistent if Π ∪ D is consistent.

Definition 2.29. Given an ontology O = (Π,D), a subset D′ of D is a repair of O if

(Π,D′) is consistent and there does not exist another D′′ such that D′ ⊂ D′′ ⊆ D and

D′′ is Π-consistent.

Ontology-based Data Access 37

Let O = (Π,D), we use repairΠ(D) to denote the set of all repairs of O. With the

definition of repair, we are now able to introduce inconsistent-tolerant semantics for

ontologies.

Definition 2.30 (AR semantics). Given an ontology O = (Π,D), a BCQ q, q is entailed

by O under the AR semantics if for every repair B of O, we have Π ∪ B |= q.

As we can see, AR semantics is analogous to CQA, a query is considered entailed only

when it can be obtained from each repair. The following semantics follows a more

cautious principle: only assertions that occur in every repair are considered for query

answering.

Definition 2.31 (IAR semantics). Given an ontology O = (Π,D), a BCQ q, q is entailed

by O under the IAR semantics if Π ∪ BI |= q, where BI is the intersection of all repairs

of O.

In AR and IAR semantics, some entailed assertions are ignored in query answering be-

cause their causes do not occur in all repairs, however, these consequences may not

violate the constraints in the ontology and could be useful information in some sce-

narios. Given this consideration, it is necessary to introduce more relaxed semantics.

Given an ontology O = (Π,D), the closed logical consequence of O is defined as the set

clcΠ(D) = {α ∈ HB(O) | D′ is Π-consistent,D′ ⊆ D,Π ∪ D′ |= α}.

Definition 2.32 (CAR semantics). Given an ontology O = (Π,D), a BCQ q, q is

entailed by O under the CAR semantics if q is entailed by O′ = (Π, clcΠ(D)) under the

AR semantics.

Analogously, we can obtain a variant from IAR semantics.

Definition 2.33 (ICAR semantics). Given an ontology O = (Π,D), a BCQ q, q is

entailed by O under the ICAR semantics if q is entailed by O′ = (Π, clcΠ(D)) under the

IAR semantics.

For notation, given an inconsistency-tolerant semantics γ, we use O |=γ q to denote that

q is entailed by O under γ.

Ontology-based Data Access 38

CAR

AR

IAR

ICAR

Figure 2.1: Partical order over inconsistency-tolerant semantics

Example 2.6. Consider the DL ontology O = (T ,A) where

T = {A v D,∃R v B,A v C,B v C,A v ¬B}

A = {A(a),R(a, c),A(b)}

Let q = {C(a)} be a BCQ. There are two repairs of O, B1 = {A(a),A(b)} and B2 =

{R(a, c),A(b)}. It can be checked that both repairs entail q1, thus we have O |=AR q1, while

O 6|=IAR q1 because A(b) is the only assertion occurs in both repairs. Let q′ = {D(a)}, as

clcT (A) = {A(a),R(a, c),B(a),D(a),A(b),D(b),C(a),C(b)}, according to the definitions,

we have O 6|=AR q
′ but O |=CAR q

′.

According to the definitions, it is not hard to see that these four semantics are compa-

rable (not pairwise), they actually form a ‘lattice shape’ partial order, where IAR is the

lower bound and CAR is the upper bound.

Theorem 2.3 ([Lembo et al., 2010]). Given an ontology O, for any BCQ q, we have

• O |=IAR implies O |=AR and O |=ICAR.

• O |=AR implies O |=CAR.

• O |=ICAR implies O |=CAR.

Besides the above four semantics, a number of novel semantics have been proposed.

For example, [Bienvenu et al., 2014a] introduces preferences over repairs so that only

preferred repairs are considered in query answering. For more details about these vari-

ants, interested readers are referred to the survey in [Bienvenu and Bourgaux, 2016].

Ontology-based Data Access 39

Particularly, a general modifier-based framework is proposed to generalize all these se-

mantics [Baget et al., 2016], in which every inconsistency-tolerant semantics can be con-

structed by different modifiers and inference strategies, corresponding to the processes

of selecting repairs and answering queries over repairs with different cautiousness.

Regarding the computation of query answers under inconsistency-tolerant semantics,

several approaches have been proposed for simple DLs, such as rewriting-based ap-

proaches [Lembo et al., 2015, Tsalapati et al., 2016]. Intuitively, rewriting-based ap-

proaches further rewrite the result of basic rewriting so that wrong answers violating

the constraints are filtered. These approaches can be naturally adapted into the frame-

work of ODBA, thus making it efficient and feasible; however they are only applicable

to IAR or ICAR. Due to the high complexity of AR semantic (even for DL-litecore, query

answering under AR is CoNP-complete with respect to data complexity), there is still no

efficient algorithm for querying answering under AR semantics; [Bienvenu et al., 2014b]

presented an approach that encodes the problem into an SAT program (propositional

formulas), which is then solved by SAT solvers.

2.3.6 Forgetting

Forgetting is a particular form of reasoning that eliminates or hides certain symbols

from a set of logical formulas, while the result still reserves a certain kind of equivalence

with the original formulas. Forgetting is firstly introduced in classical logic [Lin and

Reiter, 1994, Lang et al., 2003a] as a technique to eliminate variables from a set of

propositional formulas. In recent years, a variety of potential applications of forgetting

in ontology maintenance were found, which lead to the extensive study of forgetting in

different DLs [Wang et al., 2008, Konev et al., 2009, Koopmann and Schmidt, 2015]

and existential rules [Wang et al., 2018]. In the following, we will introduce two basic

definitions of forgetting for ontologies.

The first one is model-based forgetting, it requires the strongest equivalence between

forgetting results and the original ontology. Informally, model-based forgetting produces

a weaker ontology that the projections of its models and models of the original ontology

on certain symbols are the same.

Ontology-based Data Access 40

Given two interpretations I and I ′, we say I and I ′ agree on all predicate symbols

except those in Σ, denotes I ∼Σ I ′, if it satisfies that

(1) I and I ′ have the same domain universe,

(2) for every predicate P 6∈ Σ, P I = P I
′
.

For two set of interpretations I and I′, we say I and I′ are equivalent over Σ, denoted

I ≡Σ I′, if it satisfies that there is an interpretation I in I if and only if there is an

interpretation I ′ in I′ such that I ∼Σ I ′.

Definition 2.34. Given a consistent ontology O, a signature Σ, an ontology O′ is a

result of model-based forgetting of O about Σ, if it satisfies that

(1) O |= O′,

(2) sig(O′) ⊆ sig(O) \ Σ,

(3) Mod(O) ≡Σ Mod(O′).

The second condition in the definition is the purpose of forgetting and the third states

the equivalence result based on models. Note that the first condition is necessary, as it

forces the forgetting result to be strictly weaker than the original ontology, otherwise,

any information outside sig(O) \ Σ can be added to the result.

Example 2.7. Consider O = {Π, ∅}, where Π consists of rules

∃y.B(x, y) ∧ C(x, y)← A(x), ∃z.E(y, z)← C(x, y) ∧ D(x),

∃z.E(y, z)← E(x, y), A(x)← E(x, y), D(x)← F(x).

Then a result of model-based forgetting of O about {B,D} is (Π′, ∅), where Π′ has rules,

∃y.C(x, y)← A(x), ∃z.E(y, z)← C(x, y) ∧ F(x).

∃z.E(y, z)← E(x, y), A(x)← E(x, y).

Because of the strong conditions, it is not hard to see that the model-based forgetting

results of an ontology are all equivalent; in other words, a result of model-based forgetting

is always unique up to equivalence.

Ontology-based Data Access 41

Though preserving model equivalence guarantees the close relation between the ontology

and the forgetting results, a result of model-based forgetting is often inexpressible in

first-order logic [Wang et al., 2018].

Example 2.8. Consider O = (Π,D) where Π is from the above example, and A =

{A(a),C(a, b)}, then it is impossible to express a result of model-based forgetting of O

about {E} in first-order logic. The rule ∃z.E(y, z) ← E(x, y) induces an infinite chain

for the interpretations of O. Because A inherits this structure from E with the rule

A(x) ← E(x, y), if E is forgotten from the ontology, this chain cannot be reproduced for

A using only first-order formulas.

A

u1 u2

A

u3 u4

A

u5

.
E E E E

While model-based forgetting is unnecessarily strong for OBDA, another definition of

forgetting based on query answering is more suitable for scenarios in OBDA. The def-

inition of query-based forgetting can be obtained by changing the third requirement of

definition 2.34.

Definition 2.35. Given a consistent ontology O, a signature Σ, an ontology O′ is a

result of query-based forgetting of O about Σ, if it satisfies that

1. sig(O′) ⊆ sig(O) \ Σ,

2. for any BCQ q not containing predicates in Σ, O |= q if and only if O′ |= q.

It should be noted that the above definitions consider forgetting for a whole ontology

containing a database (i.e., a knowledge base), while in the cases where forgetting is

defined for only rules (or TBox), the query-based definition is a bit different. Specifically,

for a set of existential rules Π, Π′ over sig(O) \Σ is a forgetting of Π about Σ, if for any

q and D over sig(O) \ Σ, Π ∪ D |= q iff Π′ ∪ D |= q.

According to the definition 2.35, there exists a result of query-based forgetting for the

case in example 2.8, because there is no fact related E in the database D and no fact

about E can be entailed from the ontology, which means the infinite chain will not occur

in the canonical model of O, then to obtain a result of query-based forgetting, it is would

be sufficient to just eliminate all the rules where E occurs.

Ontology-based Data Access 42

Next we briefly discuss about the computation of forgetting. When considering ontolo-

gies with databases, to express the forgetting results, the syntax of database need to

be extended to allow label nulls. For example, let O = ({A v ∃R}, {A(a)}), say we

want to forget A from O, then to capture the entailment O |= ∃x.R(a, x), an extended

ABox where labeled nulls are allowed must be introduced, in this example, an suitable

forgetting result would be (∅, {R(a, u)}).

The general idea to compute forgetting results for an ontology is to first unfold the

formulas in the ontology, that is, exhaustively compute all the logical consequence of

the ontology, then delete those formulas that are relevant to the forgotten symbols. In

DLs, the unfolding process is usually achieved by resolution [Bachmair et al., 2001], a

well-known technique developed in theorem proving, used to saturate a set of logical

formulas by a set of predefined resolution calculus. While for existential rules, the

authors in [Wang et al., 2018] proposed an unfolding process based on piece-unification.

However, these unfolding processes do not necessarily terminate if forgetting results of

the ontology are not guaranteed to exist. It is shown that for an ontology in DL-litecore,

a result of query-based forgetting always exists if only concepts are forgotten from the

ontology, which can be computed by the following syntax-based procedure.

Theorem 2.4 ([Wang et al., 2008]). Let O′ = (T ′,A′) be the ontology returned by

Algorithm 2, then O′ is a result of query-based forgetting of O about Σ, furthermore, T ′

is a result of model-based forgetting of T about Σ.

Ontology-based Data Access 43

Algorithm 2: [Wang et al., 2008]

Input : A consistent ontology O = (T ,A) in DL-litecore, a set of concept names Σ

Output: A query-based forgetting of O about Σ

1 begin

2 for A in Σ do

3 If A v A ∈ T , then delete {A v A} from T ;

4 If A v ¬A ∈ T , then delete axioms of form A v C and B ⊆ ¬A from T , and

replace each axiom of B v A in T by B v ¬B;

5 Replace each axiom B v ¬A in T with A v ¬B;

6 For each axiom Bi v A(1 ≤ i ≤ m) in T and each axiom A v Cj(1 ≤ j ≤ n) in

T , where Bi is a concept name and Ci is a general concept, if Bi v Ci is not in

T , then add it to T ;

7 for A(a) ∈ A do

8 If A v B ∈ T , where B is a concept name, then add B(a) to A;

9 If A v ∃P− ∈ T , then add P (uP− , a) to A;

10 If A v ∃P ∈ T , then add P (a, uP) to A;

11 Delete all axioms where A occurs from O;

12 return O

Chapter 3

Efficient Datalog Rewriting for

Existential Rules

Rewriting approaches are particularly promising for ontology-mediated query answering

as they allow the task to be implemented on top of existing highly-optimised database

querying engines. While many algorithms and systems have been developed for various

description logics [Pérez-Urbina et al., 2010, Eiter et al., 2012, Zhou et al., 2015, Venetis

et al., 2016], particularly for DL-Lite and EL [Kontchakov et al., 2010, Stefanoni et al.,

2013, Trivela et al., 2015, Hansen et al., 2015, Bienvenu et al., 2017], it is challenging to

extend them to more general existential rules, which allow predicates of arbitrary arities

(instead of only unary and binary predicates) and variable permutations in the rules.

Existing query rewriting systems for existential rules are typically based on first-order

rewriting. A limitation of such an approach is that it can only handle ontologies and

queries that are first-order rewritable. Well-accepted first-order rewritable classes in

existential rules are the linear and sticky classes. Yet many practical ontologies do not

necessarily fall into these classes, such as some ontologies formulated in EL.

Even for ontologies and queries that are first-order rewritable, the results of rewriting

can suffer from a significant blow up due to the scale and complexity of ontologies and

the lengths of queries. It has been shown by experiments that handling large UCQs

(what first-order rewritings are) is very difficult and inefficient in DBMSs [Rosati and

Almatelli, 2010, Bienvenu et al., 2017].

44

Datalog Rewriting for Existential Rules 45

Let us consider the following example where the result of first-order rewriting is signifi-

cantly large.

Example 3.1. Consider the following existential rules Π, where n ≥ 0,

ra0 : ∃z.A0(x, z)← A1(x, y), . . . , ran : ∃z.An(x, z)← An+1(x, y),

rb0 : ∃z.B0(x, z)← B1(x, y), . . . , rbn : ∃z.Bn(x, z)← Bn+1(x, y).

Let q = {A0(x, y),B0(x, z)} be a BCQ, then a first-order rewriting Q of q w.r.t Π is a

set of BCQs (UCQ) of form {Ai(x, y),Bj(x, z)}, where 0 ≤ i, j ≤ n + 1. Q is minimal

and the size of Q is (n+ 1)2.

It is often the case that in first-order rewriting, to achieve completeness, one has to list

all combinations of possible replacements of atoms in the query, which unavoidably leads

to rewritings of huge sizes. However, if we consider taking datalog as the target query

language, the result of rewriting will be more compact. In the above example, a possible

datalog rewriting of q w.r.t Π contains only 4n+ 3 rules,

Q← A0(x, y) ∧ B0(x, z),

Q← Pra0(x) ∧ B0(x, z), Q← A0(x, y) ∧ Prb0 (x),

Prai(x)← Ai+1(x, y), Prai(x)← Pra(i+1)
(x, y), (0 ≤ i ≤ n)

Prbi(x)← Bi+1(x, y), Prbi(x)← Prb(i+1)
(x, y), (0 ≤ i ≤ n)

It is shown for description logics that executing (non-recursive) datalog rewritings is

much more feasible for DBMSs than equivalent first-order rewritings [Hansen et al.,

2015]. All ontologies and queries that are first-order rewritable are trivially datalog

rewritable, and more datalog rewritable classes are known, such as the guarded exis-

tential rules [Gottlob et al., 2014d]. However, existing research on datalog rewriting of

existential rules are mostly theoretical [Gottlob and Schwentick, 2012, Bienvenu et al.,

2014c] (refer to [Ahmetaj et al., 2018] for a detailed discussion).

Though several algorithms and systems have been developed for datalog rewriting for

various description logics [Eiter et al., 2012, Trivela et al., 2015, Hansen et al., 2015],

very few systems have been developed for datalog rewriting over more general existential

Datalog Rewriting for Existential Rules 46

rules. A notable exception is ChaseGoal [Benedikt et al., 2018], which however, relies

on the termination of the chase procedure.

In this chapter, we fill the gap by presenting both a practical approach and a prototype

system for datalog rewriting and query answering over a wide range of ontologies ex-

pressed in existential rules. Our algorithm is based on the notion of unfolding [Wang

et al., 2018] and to achieve compactness of rewriting, we separate the results of unfolding

into short rules by introducing the so-called separating predicates and reusing such pred-

icates when possible. While such a rewriting process may not terminate, we move on to

identify classes of ontologies where the rewriting process terminates, introducing a class

by combining existing well-accepted classes. And we introduce an efficient algorithm for

computing the datalog rewritings. Finally, we implemented a prototype system, Drewer,

and experiments show that it is able to handle a wide range of benchmarks in the litera-

ture. Moreover, Drewer shows superior or comparable performance over state-of-the-art

systems on both the compactness of rewriting and the efficiency of query answering.

3.1 Compact Datalog Rewriting

In this section, we introduce a compact datalog rewriting approach. Before we present

our approach, we redefine some notions for datalog rewriting in existential rules.

It is known that a set of existential rules Π can be transformed into a set of rules Π′

whose heads are singletons in a way that preserves query answering [Gottlob et al.,

2014c]. Hence, in the following discussions, we assume all existential rules have atomic

heads.

For two set of rules Π, Π′, we say Π and Π′ are fact-equivalent over a set of predicates

Σ, denoted Π ≡FΣ Π′, if for any fact α over Σ, Π |= α iff Π′ |= α,

Definition 3.1 (Fact-preserving datalog rewriting). A fact-preserving datalog rewriting

(FPDR) of a set of existential rules Π is a datalog program Πd that preserves fact

derivation, that is, Πd ≡Fsig(Π) Π; and it is a strong FPDR if additionally, Π |= Πd.

Recall that a CQ can be represented by a datalog rule Q(~x) ← φ(~x, ~y). Because exis-

tential rules can fully cover datalog rules, we consider the query and the ontology in an

OMQ as a whole, that is, an OMQ is of the form Q = Π ∪ {q(~x)}, where Π is set of

Datalog Rewriting for Existential Rules 47

existential rules, and q(~x) is a CQ. Datalog rewriting for an OMQ is relaxed to preserve

only the query answers.

Definition 3.2 (Query-preserving datalog rewriting). A query-preserving datalog rewrit-

ing (QPDR) of an OMQ Q = Π∪{q(~x)} is a datalog program ΠQ such that ΠQ ≡F{Q} Π.

Clearly, an FPDR of Π is also a QPDR of Π∪{q(~x)} for any q(~x), but the converse does

not necessarily hold.

Now we are ready to present the approach, which is based on the notion of unfolding in

existential rules [Wang et al., 2018].

Each rule r is assumed to have form ∃~z.ψ(~x, ~z)← φ(~x, ~y), we use ~xr, ~yr and ~zr to denote

~x, ~y, ~z in r respectively. ~xr and ~zr are exactly frontier variables and existential variables

of r. A rule r can be unfolded by a rule r′ if there exists a piece unifier µ = (B, τ) of

body(r) and head(r′), and the result is unfµ(r, r′):

∃~z.[head(r)τ ′ ∧ head(r′)τ]←
∧

(body(r) \B)τ ∧
∧

body(r′)τ ′

where ~z consists of all the variables in the head but not in the body, and τ ′ is a safe

extension of τ by substituting variables ~zr ∪ ~yr′ with fresh variables.

Example 3.2. Let Πex1 = {r1 : ∃y.A(x, y) ← B(x, z), r2 : ∃z.B(y, z) ← A(x, y)} and

qex = Q← A(u, v) ∧ A(v, w).

Then, qex can be unfolded by r1 with a piece unifier µ = ({A(v, w)}, {x 7→ v, y 7→ w}),

and unfµ(qex, r1) = ∃w.[Q ∧ A(v, w)] ← A(u, v) ∧ B(v, z). On the other hand, µ =

({A(u, v)}, {x 7→ u, y 7→ v}) is not a piece unifier, as it does not correctly unify the

existential variable y.

Note that the result of unfolding can be simplified when the unified rule heads of r and

r′ do not share existential variables, i.e., vars(head(r)τ ′) ∩ vars(head(r′)τ) ∩ ~z = ∅. In

this case, the two heads can be separated and result in

∃~z1.head(r)τ ′ ←
∧

(body(r) \B)τ ∧
∧

body(r′)τ ′ (*)

where ~z1 consists of all the variables in the head but not in the body. Note that

∃~z2.head(r′)τ ←
∧

(body(r) \B)τ ∧
∧

body(r′)τ ′ is implied by r′ and thus is redundant.

Datalog Rewriting for Existential Rules 48

For a rule set Π, unfold(Π) is the smallest rule set containing Π such that unfµ(r, r′) ∈

unfold(Π) for each r, r′ ∈ unfold(Π) and each µ (disregarding variable renaming).

Towards a datalog rewriting method, we observe that when a strong datalog rewriting

exists for a rule set, it can be obtained via unfolding.

An unfolding sequence of a set of rules Π is inductively defined as follows: each rule r ∈ Π

is an unfolding sequence corresponding to itself; and if θ is an unfolding sequence (whose

corresponding rule, denoted θ as well) is unfoldable by a rule r ∈ Π with piece unification

µ, then θµr is an unfolding sequence, and the result of the sequence is unfµ(θ, r). From

Proposition 5 in [Wang et al., 2018], each rule r ∈ unfold(Π) is a result of some unfolding

sequence of Π. The unfold chaining on a set of rules Π is a sequence of rule sets Πi
unf

(i ≥ 0), where Π0
unf = Π and Πi+1

unf = Πi
unf ∪ { unfµ(r, r′) | r ∈ Πi

unf and r′ ∈ Π }. Then,

unfold(Π) =
⋃∞
i=0 Πi

unf .

Lemma 3.1. For a set of rules Π, the following conditions hold:

(1) Π |= r for each r ∈ unfold(Π).

(2) for each dataset D and each fact α, Π ∪ D |= α iff there exist n ≥ 0 and a rule

r ∈ Πn
unf s.t. {r} ∪ D |= α.

(3) for each datalog rule r, Π |= r iff there exist n ≥ 0 and a rule r′ ∈ Πn
unf s.t. r′ |= r.

The above lemma can be directly obtained from Proposition 2 of [Wang et al., 2018].

Note that the requirement of rule aggregation in the Proposition is unnecessary when

we consider the entailment of facts (instead of CQs), or that of datalog rules (with single

head atoms).

Proposition 3.1. For a set of rules Π, a strong FPDR of Π exists iff a finite subset of

unfold(Π) is an FPDR of Π.

Proof. The “if” direction is clear and we only need to show the “only if” direction.

Suppose a strong FPDR of Π exists, denoted Πd. Then, for each rule r ∈ Πd, by the

definition of strong FPDR, Πd |= r. From Lemma 3.1 (3), there is a rule r′ ∈ unfold(Π)

such that r′ |= r. That is, there exist a homomorphism σ from body(r′) to body(r) and

its safe extension σ′ satisfying head(r) ⊆ head(r′)σ′. From the fact that r is a datalog

rule and σ′ is a safe extension, head(r) does not share any existential variable with

Datalog Rewriting for Existential Rules 49

head(r′)σ′ \ head(r) in r′σ′. That is, r′ must be a datalog rule, as otherwise the head

atoms in r′ could be separated. Let Π′ be the collection of all such r′ for all r ∈ Π. We

want to show that Π′ is a strong FPDR. From Lemma 3.1 (1), Π |= Π′. Also, for each

dataset D and each fact α, Πd ∪ D |= α implies that Π ∪ D |= α, which in turn implies

that Π′ ∪ D |= α.

Clearly, a naive method to compute a datalog rewriting using the above unfolding is

impractical, as the datalog rules obtained from unfolding can be very large (indeed,

are often of unbounded sizes). In what follows, we introduce a practical approach for

datalog rewriting by splitting long datalog rules generated via unfolding into compact

ones. As a first step, we present an alternative operator, which we simply call rewriting,

between two existential rules.

Definition 3.3. For two rules r, r′ and a piece unifier µ = (B, τ) of body(r) and head(r′),

the result of rewriting r by r′ with µ, denoted rewµ(r, r′), consists of rule (*) and the

following two rules

P(~x)←
∧

body(r′)τ ′, (3.1)

∃~z1.head(r)τ ′ ←
∧

(body(r) \B)τ ∧ P(~x), (3.2)

where ~x = ~xrτ ∪ vars(body(r) \B)τ ∩ ~xr′τ , P is a fresh predicate with arity |~x|, called a

separating predicate, and ~z1, τ and τ ′ are as in (*).

Intuitively, P separates the body resulted from unfolding for the compactness of indi-

vidual rules, and the head is always separated for datalog rewriting. Note that rule (*)

can be obtained by unfolding (3.2) by (3.1), yet it is generated for the correctness of

rewriting as we show later. We call rules of the form (*) auxiliary rules which will be

deleted after the whole rewriting process is completed.

Example 3.3. For Πex1 and qex in Example 3.2, rewµ(qex, r1) consists of the following

rules:

r3 : P(v)← B(v, z), r4 : Q← A(u, v) ∧ P(v),

r5 : Q← A(u, v) ∧ B(v, z).

Datalog Rewriting for Existential Rules 50

Replacing unfµ(r, r′) with rewµ(r, r′) for unfolding leads to a set of rules that are equiv-

alent to unfold(Π) w.r.t. fact derivation (over original predicates) and query answering.

Yet allowing the unfolding of separating predicates (i.e., including them in piece uni-

fiers) clearly forfeits their purpose, as they were introduced to split long rules and their

unfolding simply reverses the split. Hence, the unfolding of separating predicates must

not be allowed.

Furthermore, it is possible to reuse separating predicates. This is achieved through a

labelling function λ(·) such that λ(P) = head(r′)τ . Intuitively, the label records how P

is introduced (e.g., the head atom involved in the piece unification). When introducing

a new separating predicate P′ with the same arity and if λ(P) is equivalent to λ(P′) up

to variable renaming, we reuse P to replace P′.

We are ready to define our datalog rewriting.

Definition 3.4. The rewrite chaining on a rule set Π is a sequence of rule sets Πi
rew

(i ≥ 0), where Π0
rew = Π, and Πi+1

rew = Πi
rew ∪ { rewµ(r, r′) | r ∈ Πi

rew, r
′ ∈ Π } for i ≥ 0

satisfying the following two conditions: (i) separating predicates are reused whenever

possible, and (ii) any rule that is implied by another rule is eliminated.

The rewriting of Π, rewrite(Π), is obtained from Π∞rew by deleting all auxiliary and non-

datalog rules.

Example 3.4. For Πex1 and qex in Examples 3.2 and 3.3, the rewriting of qex by r1

and r2 include additionally the following (non-exhaustive list of) rules:

r6 : P′(v)← A(x, v), r7 : Q← A(u, v) ∧ P′(v),

r8 : Q← A(u, v) ∧ A(x, v), r9 : P′′ ← B(u, z),

r10 : Q← P′′, r11 : Q← B(u, z).

Note that rules r9 and r10 cannot be obtained without keeping auxiliary rules r5 and r8

during the rewriting.

We establish the correctness of our rewriting approach. We use rewriteq to denote the

variant of rewrite where only rules with query or separating predicates in their heads are

rewritten (i.e., in Definition 3.3, head(r) = Q or head(r) = P′(~x) for some separating

predicate P′).

Datalog Rewriting for Existential Rules 51

The following corollary can be obtained from Lemma 3.1 (2) and the connection between

unfolding and rewriting, i.e., unfolded rules of the form (*) are included in the rewrite

chaining.

Corollary 3.1. For a set of rules Π and a pair of dataset D and fact α over sig(Π),

Π ∪ D |= α iff there exist n ≥ 0 and a datalog rule r ∈ Πn
rew s.t. {r} ∪ D |= α.

Recall that a rule r is applicable to a dataset D if there is a homomorphism σ from

body(r) to D, and the result of applying r to D with σ is D ∪ head(r)σ′, where σ′ is an

extension of σ by substituting each existential variable with a distinct fresh labelled-null.

We call an atom (or a fact) with a separating predicate a separating atom (or separating

fact).

Proposition 3.2. For a rule set Π, a BCQ q, and the OMQ Q = (Π, q), rewrite(Π)

(or rewriteq(Q)) is an FPDR (resp., QPDR) of Π (resp., Q) whenever rewrite(Π) (resp.,

rewriteq(Q)) is equivalent to a finite set of rules.

To prove Proposition 3.2, we first show a lemma.

Lemma 3.2. For each i ≥ 0, each pair of dataset D and fact α over sig(Π), if Πi
rew∪D |=

α then Π ∪ D |= α.

Proof. We show the statement in the lemma by an induction on i. For i = 0, the

statement trivially holds. Assume the statement holds for i ≥ 0, and we want to show

it holds for i + 1. That is, suppose Πi+1
rew ∪ D |= α, we want to show that Π ∪ D |= α.

Consider w.l.o.g. the three rules r0, r1, r2 in Πi+1
rew \ Πi

rew (while in some cases there are

fewer rules due to condition (iii) of Definition 3.4) of the forms respectively (*), (3.1),

and (3.2) as in Definition 3.3 that are the result of rewriting r by r′ for some r ∈ Πi
rew and

r′ ∈ Π. In what follows, we consider three cases to show that each non-separating fact

derivable from r0, r1, r2 is derivable from Πi
rew, which based on the inductive assumption

implies Π ∪ D |= α.

Suppose r0 contributes to the derivation of α. From Lemma 3.1 (1), Πi
rew |= r0 and thus

α is derivable from Πi
rew.

Suppose r1 contributes to the derivation of α. If the predicate P in head(r1) is a fresh

separating predicate, then r1 can only be applied together with r2 and it is captured by

Datalog Rewriting for Existential Rules 52

r0 as above. Otherwise, P is reused to replace some separating predicate P′ introduced

during rewriting. From the conditions of reuse, there is a variable renaming π1 between

λ(P′) and λ(P), where λ(P′) = head(r′)τ and λ(P) = A(~u) for some atom A(~u). That is,

head(r′)τπ1 = A(~u). Suppose r1 is applied with substitution σ, resulting a fact about P,

and there is another rule r′2 : H ← B∧P(~w) of the form (3.2) in Πi
rew that can be applied

with substitution σ′ to derive Hσ′. We want to show that Πi
rew ∪D |= Hσ′. Note that P

in body(r′2) may also be a reused predicate by replacing some P′′, and in this case, there

is a variable renaming π2 between λ(P′′) and λ(P). By Definition 3.4 and the condition

of reuse, r′2 must be obtained by the rewriting of a rule r′′ : H ← B∧A(~w) (up to variable

renaming) in Πi
rew, and λ(P′′) = A(~w) = λ(P)π−2 . Since, λ(P′′) = λ(P)π−2 = λ(P′)π1π

−
2 ,

that is, A(~w) = head(r′)τπ1π
−
2 , by applying r′ with substitution τσ and then applying

r′′ with substitution σ′, fact Hσ′ can be derived. That is, α is derivable from Πi
rew.

Suppose r2 contributes to the derivation of α. If the predicate P in body(r2) is a fresh

separating predicate, then r2 can only be applied together with r1, and it is captured by

r0; otherwise, r2 can only be applied together with a rule r′1 of the form (3.1) in Πi
rew.

In the latter case, with a similar argument for r1 and r′2 above, we can show that α is

derivable from Πi
rew.

Proof of Proposition 3.2. Let Πd = rewrite(Π). From the definition of rewriting, it is

clear that Πd is a datalog program; we want to show for each dataset D and each fact

α involving only predicates in Π, Π ∪ D |= α iff Πd ∪ D |= α. The “if” direction follows

from Lemma 3.2, since Πd being finite implies Πd ⊆ Πi
rew for some i ≥ 0. For the “only

if” direction, from Corollary 3.1, we only need to show that for each i ≥ 0 and each

datalog rule r ∈ Πi
rew, Πd |= r. W.l.o.g., assume r is not implied by any other rule in

Πi
rew as otherwise, we can replace r with the rule containing it for our discussion. If r

is a non-auxiliary rule, by the definition of rewriting (Definition 3.4) r ∈ Πd. Otherwise

if r = r0 is an auxiliary rule of the form (*) generated from rewriting r by r′ with piece

unifier µ as in Definition 3.3, there are two rules r1 and r2 of the forms (3.1) and (3.2)

respectively, and clearly {r1, r2} |= r. r1 is a datalog rule and r1 ∈ Πd. To show r2

is also a datalog rule, towards a contradiction, suppose there is z ∈ vars(head(r))τ ′,

z ∈ body(r′)τ ′, but z 6∈ ~x. Then, z ∈ ~xrτ and hence z ∈ ~xrτ ∩ ~xr′τ , which by the

definition of ~x implies z ∈ ~x and contradicts z 6∈ ~x. Hence, r2 ∈ Πd and Πd |= r.

Datalog Rewriting for Existential Rules 53

3.2 Datalog Rewritable Classes

The rewriting method in the previous section does not necessarily terminate; for exam-

ple, it does not terminate on a simple rule set:

Πex2 = {C(x, y)← C(x, z) ∧ C(z, y)}

Yet it terminates on the class of finite unification sets (fus), for which several concrete

classes have been identified, such as the class of linear rules (lin), the class of sticky

rules (stky), and the class of aGRD rules (agrd). For details of these classes, readers can

go back to section 2.3.3.

Proposition 3.3. For a set of rules Π in fus, rewrite(Π) is finite; and for any BCQ q,

rewrite(Π ∪ {q}) is finite.

Proof. We first show that the sizes of generated auxiliary rules of the form (*) are

bounded. For each r ∈ Π, Π∪ {head(r)} is UCQ rewritable. Let m be maximum size of

such a UCQ rewriting for all r ∈ Π. Then, each auxiliary rule generated during rewriting

has at most m body atoms. Suppose an auxiliary rule r0 with body size greater than m

is generated, then from the definition of unfolding, body(r0) can be obtained during

UCQ rewriting. For it to be excluded as a UCQ rewriting, there must be another UCQ

rewriting B that can be homomorphically mapped to body(r0). Then, r′0 = head(r)← B

can be generated during our rewriting and clearly r′0 |= r0. Hence, r0 is eliminated.

However, Πex2 is not fus. It is not hard to see that the termination issue is caused by

the generation of infinitely many auxiliary rules. We use rewritea() to denote the variant

of rewrite() where auxiliary rules (of the form (*)) are not generated during rewriting.

Lemma 3.3. For a set of rules Π, rewritea(Π) is finite.

Proof of Lemma 3.3. Suppose each rule in Π contains at most m body atoms and the

maximum arity of predicates is l. We show that there are a bounded number of rules

of the forms (3.1) and (3.2) in rewritea(Π). First, each rule has a single head atom and

its body has at most m atoms. In particular, for rules of the form (3.2), note that B

contains at least one atom, and thus the rule body is at most the size of body(r). That is,

rewriting does not increase the number of body atoms. Also, only a bounded number of

Datalog Rewriting for Existential Rules 54

separating predicates are generated due to predicate reuse and their arities are bounded

by l. For each separating predicate P, λ(P) always consists of a single atom and the

arity of P is bound by l.

A rule set Π is separable if rewritea(Π) ≡Fsig(Π) Π. Intuitively, the condition requires

the rule bodies (in particular, the bodies of auxiliary rules) can be separated during

rewriting. The class of separable rule sets is denoted sep. Clearly, a separable rule set

always admits a (finite) datalog rewriting, yet the definition does not suggest how to

effectively identify such a rule set. Thus, we first show that the existing shy class [Leone

et al., 2019] is a subclass of sep and then extend it to cover more practical rule sets.

A position is of the form A[i] with A being an n-ary predicate and 1 ≤ i ≤ n, and a

variable v occurs at position A[i] if there is an atom A(t1, . . . , tn) with ti = v. For a set

of rules Π and an existential variable z in Π, a position A[i] is invaded by z if there is a

rule r ∈ Π such that head(r) = A(t1, . . . , tn) and either ti = z or ti is a frontier variable

that occurs in body(r) only at positions that are invaded by z. Recall that we assume

each rule has a distinct set of variables. Then, a variable x in Π is attacked by z if x

only occurs in positions invaded by z. Two atoms in the same rule body are chained if

(1) they share a variable that is attacked, or (2) they each contains a frontier variable

and these two variables are both attacked by the same variable. Finally, Π is shy if it

does not contain two chained atoms, and we denote the class of shy rule sets as shy. It

can be seen that Πex2 is shy, and every shy rule set is also separable.

Theorem 3.1. shy ⊂ sep.

To prove Theorem 3.1, we need some preparation. Similar as unfolding sequences, we

define a rewriting sequence of a set of rules Π inductively as follows: each rule r ∈ Π

is a rewriting sequence; and if θ is an rewriting sequence which can be rewritten by

a rule r ∈ Π with piece unification µ, then θµr(∗), θµr(1), θµr(2) are three rewriting

sequences corresponding to the three rules in rewµ(θ, r) of the forms respectively (*),

(3.1), and (3.2) as in Definition 3.3. We have the following observation: For a rewriting

sequence θ, two rules r1, r2, two piece unifiers µ1, µ2, and some ε1, ε2 ∈ {(∗), (1), (2)},

if θµ1r
ε1
1 µ2r

ε2
2 is a rewriting sequence, then θµ1r

(∗)
1 µ2r

ε2
2 is also a rewriting sequence.

It can be seen from the fact that body(θµ1r
(∗)
1) contain all the non-separating atoms

in body(θµ1r
ε1
1). For a rewriting sequence θ = r0µ1r

ε1
1 . . . µnr

εn
n for some n ≥ 0, θ

Datalog Rewriting for Existential Rules 55

corresponds to an unfolding sequence if ε1, . . . , εn are all (∗), and we will call it an

unfolding sequence for simplicity. θ∗ is obtained from θ by replacing εn, . . . , εn all with

(∗), and let seg(θ) consist of all rewriting sequences of the form

r0τ0τ1 · · · τi1−1µi1r
ε′1
i1
τi1+1 · · · τi2−1µi2r

ε′2
i2
. . . µimr

ε′m
im

where τi is the substitution in µi for 1 ≤ i ≤ n, m ≤ n, 1 ≤ ij < ik ≤ n for 1 ≤ j < k ≤

m, and ε′j ∈ {(1), (2)} for 1 ≤ j ≤ m.

Lemma 3.4. For a rewriting sequence θ, if θ∗ is datalog then θ is datalog and all

rewriting sequence in seg(θ∗) are datalog.

Proof. To show the first half of the lemma, suppose θ = r0µ1r
ε1
1 . . . µnr

εn
n with mui =

(B1, τi) for all 1 ≤ k ≤ n and let θk = r0µ0r
ε1
1 . . . µkr

εk
k for 1 ≤ k ≤ n. Let ext(θk)

be the set of existential variables in θk. We want to show by induction on k ≥ 1 that

(i) ext(θ∗k) = vars(head(r0))τ1 · · · τk ∩ (ext(r1)τ1 · · · τk ∪ ext(r2)τ2 · · · τk ∪ . . .∪ ext(rk)τk),

and (ii) ext(θk) ⊆ ext(θ∗k).

When k = 1, (i) is clear from Definition 3.3, and for (ii), r0µ1r
(1)
1 is datalog, and

ext(r0µ1r
(2)
1) = ext(r0µ1r

(∗)
1) as shown in the proof of Proposition 3.2.

Suppose (i) and (ii) hold for k − 1 with k ≥ 2, we show the case for k. Again, (i) is not

hard to see from Definition 3.3, noting that extrkτk cannot occur in body(θ∗k−1) \ Bk−1

due to the definition of piece unifier. For (ii), again θk−1µkr
(1)
k is datalog. Consider

θk−1µkr
(2)
k and take l to be the largest number satisfying 1 ≤ l < k and εl = (1).

Then, with a similar argument as for (i), ext(θk−1µkr
(2)
k) = vars(head(θl))τl · · · τk ∩

(ext(rl+1)τl+1 · · · τk ∪ ext(rl+2)τl+2 · · · τk ∪ . . . ∪ ext(rk)τk). Now we only need to show

that vars(head(θl))τl · · · τk ∩ (ext(rl+1)τl+1 · · · τk ∪ ext(rl+2)τl+2 · · · τk ∪ . . .∪ ext(rk)τk) ⊆

vars(head(r0))τ1 · · · τk ∩ (ext(r1)τ1 · · · τk ∪ ext(r2)τ2 · · · τk ∪ . . . ∪ ext(rk)τk). Towards a

contradiction, suppose there is x ∈ vars(head(θl))τl · · · τk and x ∈ ext(rj)τj · · · τk for

some l ≤ j ≤ k but x 6∈ vars(head(r0))τ1 · · · τk. As x 6∈ vars(head(r0))τ1 · · · τk, x 6∈

vars(head(θl−1))τl−1 · · · τk, also since x ∈ ext(rj)τj · · · τk, x unifies with an existential

variable and x 6∈ vars(body(θl−1) \Bl)τl−1 · · · τk due to the requirement of piece unifiers.

From the definition of ~x in Definition 3.3, x 6∈ vars(head(θl))τl · · · τk, which contradicts

the assumption x ∈ vars(head(θl))τl · · · τk. We have shown the first half of the lemma.

Datalog Rewriting for Existential Rules 56

For the second half of the lemma, note that for each θi ∈ seg(θ∗), θ∗i also is a rewriting

sequence. The fact that both θ∗i and θ∗ are rewriting sequences indicates that the

datalog rule corresponding to θ∗ can be obtained by further unfolding θ∗i , that is, θ∗i

is the prefix of some unfolding sequence θ′ that is datalog. Since unfolding cannot

eliminate existential variables, θ∗i is datalog, and by the first half of the lemma, θi is also

datalog.

Proof of Theorem 3.1. Clearly, rewritea(Π) ⊆ rewrite(Π). From Corollary 3.1, we want

to show that for each i ≥ 0 and each datalog rule r ∈ Πi
rew over sig(Π), rewritea(Π) |= r,

and we show this claim by an induction on rewriting sequences. Note that r must

correspond to an unfolding sequence θ = r0µ1r
(∗)
1 . . . µkr

(∗)
k , whereas rewritea(Π) consists

of datalog rules with superscripts in {(1), (2)}. We want to show for all k ≥ 0, r can

be obtained by unfolding datalog rules in seg(θ). Since datalog rules in seg(θ) are in

rewritea(Π), unless eliminated due to being implied by another datalog rule, it implies

rewritea(Π) |= r.

The case of k = 0 trivially holds. For k = 1, if r0µ1r
(∗)
1 is a datalog rule, then

both r0µ1r
(1)
1 and r0µ1r

(2)
1 are datalog rules, and r0µ1r

(∗)
1 can be obtained by unfolding

r0µ1r
(2)
1 by r0µ1r

(1)
1 .

Assume the statement holds for k ≥ 1, we want to show it holds for k + 1. By the

induction assumption, θ can be obtained by unfolding datalog rules corresponding to

θ1, . . . , θn ∈ seg(θ) for all 1 ≤ i ≤ n. That is, θ corresponds to some unfolding sequence

θ1µ
′
1 . . . µ

′
n−1θn. Suppose θ can be rewritten by r ∈ Π with piece unifier µ = (B, τ) of

body(θ) and head(r) with B = {α1, . . . , αm}. As θ corresponds to θ1µ
′
1 . . . µ

′
nθn, each αj

(1 ≤ j ≤ m) must occur in some body(θij)τ
′
ij
· · · τ ′n with 1 ≤ ij ≤ n (where each τ ′i is the

substitution in the piece unifier µ′i). Since Π is shy, the existential variables in r cannot

be unified with a variable shared by two body atoms in θ. Hence, each θij (1 ≤ j ≤ m)

can be rewritten by r with a piece unifier µ′′j = ({αj}, τ ′ij · · · τ
′
nτ).

We want to show that if θµr(∗) is datalog then it can be obtained by unfolding datalog

rules in seg(θµr(∗)). Note that θµr(∗) is of the form ∃~z1.head(θ)τ ′ ←
∧

(body(θ) \

B)τ ∧
∧

body(r)τ ′ and it corresponds to the unfolding sequence θ1µ
′
1 . . . µ

′
n−1θnµr. For

each 1 ≤ j ≤ m, there are two rewriting sequences θijµ
′′
j r

(1), which corresponds to

a rule of the form r
(1)
j = Pj(~xj) ←

∧
body(r)τ ′, and θijµ

′′
j r

(2), which corresponds to

Datalog Rewriting for Existential Rules 57

r
(2)
j = head(θij)τ ←

∧
(body(θij) \ {αj}τ ′ij · · · τ

′
nτ ∧ Pj(~xj). Clearly, r

(2)
j can by unfolded

by r
(1)
j with µ∗j = ({Pj(~xj)}, ∅) for all 1 ≤ j ≤ m. Also, θijµ

′′
j r

(1) and θijµ
′′
j r

(2) are both

in seg(θµr(∗)). By Lemma 3.4, θµr(∗) being datalog implies r
(1)
j and r

(2)
j both to be

datalog. Moreover, θµr(∗) can be obtained from the following unfolding sequence

θ1 µ
′
1τ
′
2 · · · τ ′n θ2 µ

′
2τ
′
3 · · · τ ′n . . .

θi1−1 µ
′
i1−1τ

′
i1 · · · τ

′
n r

(2)
1 µ∗1 r

(1)
1 µ′i1 θi1+1 µ

′
i1+1τ

′
i1+2 · · · τ ′n . . .

θi2−1 µ
′
i2−1τ

′
i2 · · · τ

′
n r

(2)
2 µ∗2 r

(1)
2 µ′i2 θi2+1 µ

′
i2+1τ

′
i2+2 · · · τ ′n . . .

. . .

µ′n−1 θn

We have shown that if θµr(∗) is datalog then it can be obtained by unfolding datalog

rules in seg(θµr(∗)), and that is, the statement holds for k + 1.

To show the strictness of the set containment, the rule set Π = {r1 = A(x, y) ←

B(x), r2 = C(x, y, z)← A(x, y)∧A(x, z), r3 = D(x)← C(x, y, z)} belongs to sep but not

in shy. It is not shy because frontier variables y and z in r2 are both attacked by the

existential variable y in r1, which makes the two body atoms in r2 chained. Yet it is

separable, as any datalog rule in rewrite(Π) over sig(Π), e.g., D(x)← B(x), is derivable

from rewritea(Π).

An example of separable but not shy rule set is Πex3 = {r1 = A(x, y) ← B(x), r2 =

C(x, y, z) ← A(x, y) ∧ A(x, z), r3 = D(x) ← C(x, y, z)}. It is not shy because frontier

variables y and z in r2 are both attacked by the existential variable y in r1, which makes

the two body atoms in r2 chained. Yet it is separable, as any datalog rule in rewrite(Π)

over sig(Π), e.g., D(x)← B(x), is derivable from rewritea(Π).

The class of separable rule set can be expanded to cover more datalog rewritable cases.

Note that OMQ Πex1 ∪{qex} from Example 3.2 is not separable, yet a datalog rewriting

does exist. We call a rule set Π weakly-separable if it can be transformed into a finite

set of rules Π′ such that rewritea(Π
′) ≡Fsig(Π) Π, and the extended class is denoted as

wsep. From the definition, a weakly-separable rule set always admits a (finite) datalog

rewriting. Indeed, the wsep class consists of all datalog rewritable rule sets Π, as one

can take Π′ as the FPDR of Π, which is finite and separable. Next, we want to extend

Datalog Rewriting for Existential Rules 58

the shy class (i) to allow blocks of, instead of individual, body atoms to be separable,

and (ii) to combine it with concrete subclasses of fus.

A block B ⊆ body(r) for some rule r is a smallest non-empty set such that if α ∈ B then

for each atom β chained to α, β ∈ B. We say a block B depends on a rule r if head(r)

share the same predicate with an atom in B. For a set of rules Π, the dependent rule

set of a block B, dep(B), is the smallest set of rules r ∈ Π such that B depends on r or

some rule in dep(B) contains a block that depends on r.

Definition 3.5. Let fus-shy consist of rule sets Π satisfying for each block B in Π with

|B| ≥ 2, dep(B) ∈ lin ∪ stky ∪ agrd.

The OMQ Πex1∪Πex2∪{qex} belongs to fus-shy, as the only block with size greater than

1 is B = {A(u, v),A(v, w)} in qex and dep(B) = Πex1 which is fus; yet it is neither shy

nor fus. We can show that each rule set that belongs to fus-shy is weakly separable, and

thus is datalog rewritable. Intuitively, we can transform the rule set by fully unfolding

the blocks B of sizes greater than 1 by dep(B), resulting an equivalent and separable

rule set.

Theorem 3.2. lin ∪ stky ∪ agrd ∪ shy ⊂ fus-shy ⊂ wsep.

We associate each block B in a set of rules with a fresh predicate RB, called a block

predicate. To avoid generating trivial block predicates, we require a block not to contain

block or separating predicates. For a rule r, its block separation, denoted bsep(r), consists

of the following rules

RB(~xB)←
∧
B for each block B in body(r), (3.3)

∃~z1.head(r)←
∧

B in body(r)

RB(~xB), (3.4)

where ~xB = ~xr ∪ vars(body(r) \B) ∩ vars(B). Also, we reuse the block predicates in the

same way as for separating predicates, by assigning λ(RB) = B. For a set of rules Π, let

bsep(Π) =
⋃
r∈Π bsep(r). The block-rewrite chaining on a rule set Π is a sequence of rule

sets Πi
b (i ≥ 0), where Π0

b = Π, and Πi+1
b = Πi

b ∪ { rewµ(r, r′) | r ∈ bsep(Πi
b), r′ ∈ Π }

for i ≥ 0 satisfying the two conditions in Definition 3.4 plus (iii) block predicates are

reused whenever possible. The block-rewriting of Π, rewriteb(Π), is obtained from Π∞b

Datalog Rewriting for Existential Rules 59

by deleting all auxiliary and non-datalog rules, and rewriteba(Π) is the variant where

auxiliary rules are not generated.

To prove Theorem 3.2 and Proposition 3.4, we first establish the following lemmas.

Lemma 3.5. For a set of rules Π, rewriteb(Π) ≡Fsig(Π) Π and rewriteba(Π) ≡Fsig(Π) rewritea(Π).

Proof. For each pair of datasetD and fact α over sig(Π), we first show if rewriteb(Π)∪D |=

α then Π∪D |= α. And we can show this by an induction on block-rewrite chaining Πi
b

in a similar way as in the proof of Lemma 3.2. In particular, the reuse of block predicate

does not cause the derivation of any new facts over sig(Π), as clearly if RB is reused to

replace R′B then λ(RB) is equivalent to λ(R′B) up to variable renaming and the blocks

they respectively represent would have the same instantiation. The same proof applies

to show if rewriteba(Π) ∪ D |= α then rewritea(Π) ∪ D |= α.

Next, we show if Π ∪ D |= α then rewriteb(Π) ∪ D |= α, and by Corollary 3.1, we want

to show that for each i ≥ 0 and each datalog rule r ∈ Πi
rew over sig(Π), rewriteb(Π) |= r.

Similar as in the proof of Theorem 3.1, suppose r corresponds to an unfolding sequence θ,

we show by an induction on the length of θ that r can be obtained by unfolding datalog

rules r1, . . . , rn in rewriteb(Π), which implies rewritea(Π) |= r. In particular, from the

definition of bsep(r), when θ is rewritten by a rule r′ with piece unifier µ = (B, τ), B

can always be mapped to some body of ri (1 ≤ i ≤ n). Hence, θµr′(∗) can be obtained

from unfolding datalog rules in rewriteb(Π).

Finally, to show if rewritea(Π) ∪ D |= α then rewriteba(Π) ∪ D |= α, we combine the

argument above and the proof of Theorem 3.1, as from Lemma 3.1 (2), rewritea(Π)∪D |=

α implies that there is a datalog rule r over sig(Π) corresponding to a unfolding sequence

consisting of the rules rewritea(Π) such that {r} ∪ D |= α, and we show that for each of

such r, it can be obtained from unfolding datalog rules in rewriteba(Π).

Lemma 3.6. For a set of rules Π, if all blocks in unfold(Π) of sizes greater than 1 occur

in Π (up to variable renaming), then rewriteba(Π) ≡Fsig(Π) rewriteb(Π).

Proof. The proof again resembles that of Theorem 3.1, and we want to show (from

Lemma 3.1 (2)) for each pair of dataset D and fact α over sig(Π), and each datalog rule

r over sig(Π) corresponding to a unfolding sequence consisting of the rules rewriteb(Π)

such that {r}∪D |= α, rewriteba(Π) |= r. Suppose r corresponds to an unfolding sequence

Datalog Rewriting for Existential Rules 60

θ, we show by an induction on the length of θ that r can be obtained by unfolding datalog

rules r1, . . . , rn in rewriteb(Π), which implies rewriteb(Π) |= r. As all blocks in unfold(Π)

of sizes greater than 1 occur in Π, after the first step of rewriting, each potential block

occurs as the body of a distinct rule due to bsep(Π). Note that rewriting does not

generate new blocks that do not occur in unfold(Π). Hence, when θ is rewritten by

a rule r′ with piece unifier µ = (B, τ), B can always be mapped to some body of ri

(1 ≤ i ≤ n).

Proof of Theorem 3.2. For the first set containment, suppose Π is in lin ∪ stky ∪ agrd,

then clearly for each block B in Π, dep(B) ⊆ Π ∈ lin ∪ stky ∪ agrd, and hence Π ∈ fus-

shy. Suppose Π ∈ shy, then clearly Π does not contain any block B with |B| ≥ 2,

and also Π ∈ fus-shy. For the strictness of the set containment, consider the OMQ

Πex1 ∪Πex2 ∪ {qex}, which belongs to fus-shy but is nether fus nor shy.

For the second set containment, suppose Π ∈ fus-shy, and we want to show that Π ∈

wsep. After the first step of the block-rewrite chaining of Π, namely Πi
b for i ≥ 0, each

block B in Π with |B| ≥ 2 is separated into the body of a distinct rule of the form

RB(~xB)←
∧
B and gets rewritten separately. As dep(B) ∈ lin∪stky∪agrd, B cannot be

infinitely unfolded. Also, as a block does not contain block or separating predicates, it is

not hard to see that Πi
b cannot introduce new blocks that are not in unfold(Π). Thus, for

block B in Π with |B| ≥ 2, there is an kB ≥ 0 such that ΠkB
b contains all the blocks (with

sizes greater than 1) that can be obtained from unfolding B with the rules in dep(B).

Take k be the maximum of all such kB and Π′ = Πk
b. Note that all blocks in unfold(Π′)

of sizes greater than 1 occur in Π′ (up to variable renaming), and thus by Lemmas 3.5

and 3.6, rewritea(Π
′) ≡Fsig(Π) rewrite(Π′). Moreover, we can show Π′ ≡Fsig(Π) Π by an

induction on block-rewrite chaining Πi
b in a similar way as in the proof of Lemma 3.5.

By Proposition 3.2, rewrite(Π′) ≡Fsig(Π) Π, and thus rewritea(Π
′) ≡Fsig(Π) Π.

To show the strictness of the second set containment, the rule set Π = {r1 = A(x, y)←

B(x), r2 = C(x, y, z) ← A(x, y) ∧ A(x, z), r3 = D(x) ← C(x, y, z), r4 = A(x, y) ←

A(x, z)∧A(z, y)} belongs to wsep but not in fus-shy. It is not in fus-shy because there is

a block B = {A(x, y) ∧ A(x, z)} in r2 and dep(B) = {r1, r4} is not fus. Yet Π is datalog

rewritable, and a datalog rewriting is {r2, r3, r4}∪ {D(x)← B(x)}. Hence, Π belongs to

wsep.

Datalog Rewriting for Existential Rules 61

Moreover, a rule set in fus-shy coupled with any BCQ is also datalog rewritable.

Proposition 3.4. For a rule set Π that belongs to fus-shy and any BCQ q, the OMQ

Π ∪ {q} belongs to wsep.

Proof. Let Q = Π ∪ {q} and we first show unfold(Q) contains a finite number of blocks

up to variable renaming. Let Π′ = Πk
b with k ≥ 0 that contains all blocks in unfold(Π)

(of sizes greater 1) as in the proof of Theorem 3.2, where we establish the existence

of such a k. Since only a finite number of blocks can be generated in Πk
b, suppose set

Ξ consists of all such blocks. Since Π ⊆ Π′, each block in unfold(Q) would occur in

unfold(Π′ ∪ {q}). We will examine the new blocks generated in unfold(Π′ ∪ {q}).

First, each new block must be of the form Aσ ∪
⋃n
i=1Biσi with A ⊆ body(q), Bi ∈ Ξ for

1 ≤ i ≤ n, and σ, σi being substitutions; that is, each new block must be a combination

of atoms in the query body and existing blocks in Ξ. This can be shown by an induction

on the unfolding sequences. The case of qµr is straightforward, for some r ∈ Π′ and

some piece unifier µ. Suppose θ is a unfolding sequence starting with q and the blocks in

θ satisfies the above condition. Consider θµr with r ∈ Π′ and µ = (A′, τ) a piece unifier,

and suppose A′ = A1 ∪ A2 with A1 consists of atoms from q (with variable substation)

and A2 consists of atoms from rules in Π′ (with variable substation). Consider the

unfolding sequence θ′ obtained from θ by removing q from the front and any rules that

unfold atoms only from q, then θ′ is rewritable by r with a piece unifier (disregarding

the substitution details) (A2, τ). Hence, the above condition also holds for θµr.

Second, for each new block of the form Aσ ∪
⋃n
i=1Biσi, each Bi must come from some

r ∈ Π′. By the definition of a block, for two blocks Bi and Bj to be chained, there

needs to be a variable u in Bi and a variable v in Bj that are both attacked by the same

existential variable in Π′. For Bi and Bj (and other atoms) to form a new block that

does not exist in Π′, the two blocks need to be chained through q; that is, there exists

a variable in q that are unified with both u and v (through the sequence of unfolding).

Suppose there are m variables in q, x1, . . . , xm. We can also define positions in each

block B, denoted B[j, k] for the j-th position of the k-th predicate in B. Note that

a block B is chained to another block through a xi (1 ≤ i ≤ m) in q if xi and the

variable at some position B[j, k] are both attacked by the same existential variable in

Π′. For each xi, there are bounded number of blocks B from Ξ and positions of B that

Datalog Rewriting for Existential Rules 62

can be chained via xi. Hence, there is a finite number of new blocks can be formed in

unfold(Π′ ∪ {q}).

Finally, let Π′′ = Π′ ∪ {q}; as there are finitely many blocks that can be formed in

unfold(Π′′), we can find a l ≥ 0 such that Π′′lunf contains all the blocks in unfold(Π′′) (up

to variable renaming) of sizes greater than 1. Take Q′ = Π′′lunf . By Lemmas 3.5 and 3.6,

rewritea(Q
′) ≡Fsig(Π) rewrite(Q′). Moreover, we can show Q′ ≡{Q} Q. By Proposition 3.2,

rewrite(Π′) ≡Fsig(Π) Π, and thus rewritea(Π
′) ≡Fsig(Π) Π.

3.3 Efficient Rewriting Algorithms

In this section, we introduce an efficient method for computing datalog rewritings of the

form rewritea(Π) whenever they exist, and discuss how it can be adapted to compute

rewrite(Π). Inspired by [Hansen et al., 2015], we compute a decomposed representation

of the heads and bodies of the resulting rules generated during the rewriting, such that

the representation is compact due to structure sharing and the datalog rewriting can be

conveniently extracted from such a representation. For the ease of presentation, we first

present a variant of the representation and then further simplify it.

For a set of rules Π, its rewriting forest FΠ has nodes of the form (P(~x), H,B1, B2),

where P is a fresh predicate not occurring in Π, ~x is a vector of variables, H is an atom,

and B1, B2 are sets of atoms; and edges are labelled with piece unifiers. The roots of

FΠ correspond to the rules in Π, i.e., are of the form (>, head(r), ∅, body(r)) for all rules

r ∈ Π, where > represents true. Intuitively, each node ((P(~x), H,B1, B2) represents two

rules as follows:

P(~x)←
∧
B1, (1*)

∃~z.H ←
∧
B2, (2*)

where ~z consists of all the variables in the head but not in the body. Rules (1*) and (2*)

correspond to the rules (3.1) and (3.2) generated during rewriting. Hence, P can be

reused in the same way as separating predicates through the labelling function λ(·).

Moreover, a node n is blocked by another node n′ if its corresponds rules are both

implied by those of n′.

Datalog Rewriting for Existential Rules 63

Formally, FΠ has the smallest number of nodes and edges satisfying the following con-

ditions: For each node n = (P(~x), H,B1, B2) and each root node n′ = (>, H ′, ∅, B′2), let

~x′ = vars(H ′) ∩ vars(B′2); and

1. for each piece unifier µ = (B, τ) ofB2 andH ′, n has a child n′′ = (P′′(~x′′), H ′′, B′′1 , B
′′
2)

whenever n′′ is not blocked s.t.

• ~x′′ = vars(H)τ ∪ vars(B2 \B)τ ∩ ~x′τ , λ(P′′) = H ′τ ,

• H ′′ = Hτ ′, where τ ′ is as in (*), B′′1 = B′2τ
′ and B′′2 = (B2 \B)τ ∪ {P′′(~x′′)};

2. if n is not a root, for each piece unifier µ of B1 and H ′, n has a child n′′ whenever

n′′ is not blocked s.t.

• ~x′′ = ~xτ ∪ vars(B1 \B)τ ∩ ~x′τ ,

• H ′′ = P(~x)τ ′ and B′′2 = (B1 \B)τ ∪ {P′′(~x′′)},

• B′′1 and λ(P′′) are as in Condition 1;

Our algorithm starts with the nodes corresponding to the rules in Π and expands the

rewriting forest based on the above conditions. The expansion terminates due to the

blocking condition, and the number of nodes are bounded based on the same argument

as for Lemma 3.3. Let datalog(FΠ) be the set of datalog rules obtained as above from

the nodes of FΠ.

Theorem 3.3. For a set of rules Π, FΠ is always finite and datalog(FΠ) ≡Fsig(Π) rewritea(Π).

Proof. We first show the finiteness of FΠ. Suppose each rule in Π contains at most m

body atoms and the maximum arity of predicates is l. From the definition of FΠ, for each

node n = (P(~x), H,B1, B2) in FΠ, B1, B2 each consists of at most m atoms. Also, for

each fresh predicate P, λ(P) always consists of a single atom and clearly |~x| ≤ l. By the

predicate reuse condition, only a bounded number of new predicates can be introduced.

Next, we want to show datalog(FΠ) ≡Fsig(Π) rewritea(Π). For each node n = (P(~x), H,B1, B2),

we show by induction that it corresponds to rules in Π or rules of the form (3.1) and (3.2)

generated during the rewriting (†). This is clear for root nodes from the definition of

FΠ. Then, suppose node n′′ is generated from n and n′, and n, n′ both satisfy (†).

Case (A): If n′′ is generated under Condition 1, then by our assumption n corresponds to

either (a) a rule r ∈ Π or (b) two rules of the form (3.1) and (3.2) generated during the

Datalog Rewriting for Existential Rules 64

rewriting. And n′ corresponds to r′ ∈ Π. In case (a), H = head(r) and B2 = body(r).

By the definition, rewriting results in the following rules

P′′(~v)τ ←
∧

body(r′)τ ′,

∃~z.head(r)τ ′ ←
∧

(body(r) \B)τ ∧ P′′(~v)τ,

where ~v = ~xrτ ∪ vars(body(r) \ B)τ ∩ ~xr′τ , and P′′ is a separating predicates with

λ(P′′) = head(r′)τ . Since variables in head(r) that are not in ~xr are existential variables

and cannot occur in ~xr′τ , ~v = vars(head(r))τ ∪ vars(body(r) \ B)τ ∩ ~xr′τ . Comparing

with rules (1*) and (2*), one can verify that n′′ corresponds to the above rules obtained

from rewriting.

In case (b), one of the rules n corresponds to is of the form ∃~z.H ←
∧
B2, and by the

definition, rewriting results in the following rules

P′′(~v)τ ←
∧

body(r′)τ ′,

∃~z.H ←
∧

(B2 \B)τ ∧ P′′(~v)τ,

where ~v = (vars(H) ∩ vars(B2))τ ∪ vars(B2 \ B)τ ∩ ~xr′τ , and λ(P′′) = head(r′)τ . Since

variables in H that are not in B2 are existential variables and cannot occur in ~xr′τ ,

~v = vars(H)τ ∪ vars(B2 \ B)τ ∩ ~xr′τ . By comparing with rules (1*) and (2*), one can

verify that n′′ corresponds to the above rules obtained from rewriting.

Case (B): If n′′ is generated under Condition 2, then one of the rules n corresponds to is

of the form P(~x)←
∧
B1, and by the definition, rewriting results in the following rules

P′′(~v)τ ←
∧

body(r′)τ ′,

∃~z.P(~x)←
∧

(B1 \B)τ ∧ P′′(~v)τ,

where ~v = ~xτ∪vars(B1\B)τ∩~xr′τ and λ(P′′) = head(r′)τ . By comparing with rules (1*)

and (2*), one can verify that n′′ corresponds to the above rules obtained from rewriting.

For the other direction, we show for each rule r generated during the rewriting (i.e., one

of the forms (3.1) and (3.2)), there is a node n in FΠ that corresponds to r (‡). This

can be shown through induction in a similar way as above. In particular, suppose r is

obtained from rewriting r1 by r2, and both r1, r2 satisfy (‡). Since a piece unifier cannot

Datalog Rewriting for Existential Rules 65

contain a separating predicate, r1 is either an original rule (i.e., r1 ∈ Π) or of one of the

forms (3.1) and (3.2).

If r1, r2 ∈ Π then the proof is as in Case (A) (a), there is a child n of the root corre-

sponding to r1 that corresponds to the rules resulted from rewriting r1 by r2, including

r. If r1 is of the form (3.1) and r2 ∈ Π then the proof is as in Case (B). If r1 is of the

form (3.2) and r2 ∈ Π then the proof is as in Case (A) (b). The above cases cover all the

possibilities, and in each of the case, n can be found as a child of the node corresponding

to r1.

To further simplify the representation, note that H and B2 in each non-root node can

be computed on the fly. In particular, for the computation of H ′′ and B′′2 under Con-

ditions 2, it only needs the current node n′′ and its parent node n; whereas under

Condition 1, B′′2 refers to B2 in the parent node n, which can be computed through

back-tracking till a root.

To adapt rewriting forests for the computation of rewrite(Π), we can expand each node

with a fourth component B3, which is a set of atoms. Intuitively, it is used to capture

rules ∃~z.H ←
∧
B3, that corresponds to the rules of the form (*) generated during the

rewriting. In particular, B′′3 = (B2\B)τ∪B′2τ ′ in Conditions 1, and B′′3 = (B1\B)τ∪B′2τ ′

in Condition 2. Furthermore, there is a third condition: if n is not a root, for each

piece unifier µ of B3 and H ′, n has a child n′′ whenever n′′ is not blocked such that

~x′′ = vars(H)τ ∪ vars(B3 \ B)τ ∩ ~x′τ , B′′3 = (B3 \ B)τ ∪ B′2τ ′, and everything else is

defined as in Condition 1. Again, B3 in each node can be computed on the fly via

back-tracking. The difference from B1 and B2 is that the sizes of B3 are not necessary

bounded, unless rewrite(Π) is finite.

3.4 Systems and Benchmarks

In this section we introduce several state-of-the-art query rewriting and query answer-

ing systems, which will be evaluated in our experiments. Some of them are based on

rewriting techniques, while some are not. Besides, a wide range of benchmarks covering

light-weight DLs and existential rules will be considered in our evaluations, we provide

a brief introduction to them as well.

Datalog Rewriting for Existential Rules 66

Graal 1 is a query answering system dedicated for existential rules based on first-order

rewriting [König et al., 2015a]. To avoid the blow up issue in first-order rewriting,

instead of considering all rules in the ontology in the process of rewriting, Graal

computes entailment relations over atoms, specifically called compiled preorders,

to replace the reasoning of some simple rules in the ontology. For example, the

datalog rule B(~x) ← A(~x) can be compiled into a preorder A � B. Then when

answering or rewriting B(~x), one can ignore the rule and directly search facts with

A in the database or unify the query with rules whose heads contain A. However,

the approach has several limitations, only rules of particular form (linear datalog

rules) can be replaced by preorders; the resulting rewriting is not a standard first-

order rewriting, the evaluation of it needs to consider the preorders, which means

it can only be handled by specially configured querying engines.

Rapid 2 is an efficient rewriting solver dedicated for DL-lite, using an optimized resolution-

based rewriting approach [Trivela et al., 2015]. The general process of the approach

is as follows: the ontology is first saturated using resolution, then redundant rules

are cleaned from the saturation set, the result of which is a datalog rewriting;

finally, the first-order rewriting is computed by unfolding the saturation set. Be-

cause of the feature of above approach, the solver can be configured to output

either datalog rewriting or first-order rewriting.

Iqaros 3 is a query answering system for first-order rewritable DLs [Venetis et al., 2016].

It features on various optimization techniques to minimize the result of first-order

rewriting, which can effectively speed up the evaluations. First, the system will

try to simplify the query by detecting atoms that don’t have any instances in

the database. Because the system adopts a combined approach to perform query

answering, it will saturate the database using datalog rules in the ontology. then

queries in the rewriting result rewritten by datalog rules are unnecessary, thus

removed from the result. Finally, similar to most rewriting systems, Iqaros will

check query subsumption for the rewriting.

Pagoda 4 is a query answering system for OWL2 ontologies using a hybrid approach

that combines a datalog engine with a fully-fledged OWL2 reasoner [Zhou et al.,

1http://graphik-team.github.io/graal/
2www.image.ece.ntua.gr/~gstam/
3code.google.com/p/iqaros/
4https://www.cs.ox.ac.uk/isg/tools/PAGOdA/

Datalog Rewriting for Existential Rules 67

2015]. The system provides ‘pay as you go’ performance. For each ontology, it will

compute two datalog approximations, which can guarantee the upper bound and

lower bound query answers respectively. For the task of query answering, the sys-

tem first compute query answers using a datalog engine for both approximations,

if the upper bound answers exactly coincide with the lower bound answers, then

these answers are certain answers for the query; otherwise, the task will be left to

the OWL2 reasoner to solve.

DLV∃ 5 is an extension of the well known DLV system for answering (unrestricted) con-

junctive queries in existential rules [Leone et al., 2019]. It handles a special class

of existential rules called parsimonious programs. While parsimonious programs

are unrecognizable, existential rules in the shy class are parsimonious. The sys-

tem performs a special chase procedure, called parsimonious chase, which is more

efficient than standard chase, and can terminate and produce sound and complete

chase result for query answering over parsimonious programs.

ChaseGoal is a goal-driven chase system that can handle existential rules with equality

dependencies [Benedikt et al., 2018]. Instead of performing chase directly, it takes

the target query into account and produce a final datalog program for chasing.

In fact, the final program can be regarded as a datalog rewriting, however, the

transforming process can only work for ontologies where the chase terminates.

Grind 6 is a tool to check the first-order rewritability of particular concepts and con-

junctive queries in EL ontologies [Hansen et al., 2015] and to produce non-recursive

datalog rewritings, if which exist.

Next we introduce the benchmarks considered in our evaluations, a summary of which

is presented in table 3.1

Adolena and LUBM are selected from a widely used benchmark, which is introduced

with the rewriting system, requiem7. In particular, LUBM is a manually created

ontology, describing domain knowledge about universities. Its datasets can be

synthetically generated according to a parameter n (the number of universities) for

5https://www.mat.unical.it/dlve/
6http://www.informatik.uni-bremen.de/tdki/hansen/doku.php?id=grind
7www.cs.ox.ac.uk/projects/requiem

Datalog Rewriting for Existential Rules 68

different sizes, thus it is often used in large scale evaluations. In many researches,

LUBM is trimmed or modified into different versions for differnt purposes.

OpenGALEN2 and OBOprotein are ontologies providing clinical and biomedical

information. They contain a large number of axioms (up to 35k). We use the DL-

lite versions of them, which are from a test suite proposed with the Rapid system.

Particularly, OBOprotein is recognized as a very challenging benchmark. Recent

evaluations have shown it cannot be handled by most rewriting systems [König

et al., 2013, König et al., 2015b].

Reactome and Uniprot are realistic ontologies publicly available through the Euro-

pean Bioinformatics Institute (EBI) linked data platform8. They are are in OWL2,

rich of existentially quantified and disjunctive rules. We remove axioms that are

not expressible in existential rules from the ontologies for evaluations. The result-

ing ontologies are still not first-order rewritable.

RS is a hand crafted benchmark from [Bienvenu et al., 2017]. It contains an ontology

in DL-lite, which has only 6 rules,

S(x, y)← P(x, y), R(y, x)← P(x, y),

∃y.P(x, y)← AP(x), AP(x)← P(x, y),

∃y.P(y, x)↔ AP−(x), AP−(x)← P(y, x).

Along with the ontology, it provides specially constructed queries, which are chains

of atoms with the predicates of R and S. An example query for them can be

depicted as follows,

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

where x0 and x7 are answer variables. Though the ontology is simple, the rewrit-

ings of these queries turn out to be very complicated, especially when the lengths

of queries are long. Following the chain structure, one can customize queries with

any lengths by arranging R and S. And it is worth noting that the order of R and

S in the chain can greatly affect the results of rewriting.

8http://www.ebi.ac.uk/rdf/platform

Datalog Rewriting for Existential Rules 69

ChaseBench is a suite of benchmarks offering various scenarios for chase-based reason-

ing systems [Benedikt et al., 2017]. Ontologies in ChaseBench are all weakly-acyclic

existential rules, which means termination of chase over these ontologies can be

guaranteed. STB-128 and ONT-256 are generated by the tool iBench [Arocena

et al., 2015], equipped with large datasets. While DEEP200/300 are designed for

“pure stress” test, whose databases are small, for each extensional predicate (predi-

cate used in facts and does not occur in rule heads), there is only one fact, however,

the TGDs in these ontologies are so complex that they can produce up to 500M

facts for the case of DEEP300. Above ontologies all contain existential rules with

predicates of arities more than two.

Table 3.1: Summary of the datasets

Ontology Exp #R #F

RS DL-Lite 6 -
Adolena DL-Lite 72 -
OpenGALEN2 DL-Lite 27K -
OBOprotein DL-Lite 35K -

LUBM-100 DL-Lite 136 12M
Reactome OWL2 292 2.5M
Uniprot OWL2 390 1.2M
STB-128 Ex. Rules 199 1M
ONT-256 Ex. Rules 529 2M
DEEP200 Ex. Rules 1.2K 1K
DEEP300 Ex. Rules 1.3K 1K

3.5 Evaluation

We have implemented a prototype system, Drewer (Datalog REWriting for Existential

Rules) 9, with our piece unification module adapted from the first-order rewriting system

Graal, and we deployed VLog10 as our datalog engine. VLog is a high-performance

Datalog engine using column-based data structures [Urbani et al., 2016]. It is highly

memory efficient and can process large programs with thousands of rules.

All our experiments were performed on a laptop with a processor at 2.2 GHz and 8GB

of RAM. The system and experiments can be found at https://www.ict.griffith.

edu.au/aist/Drewer.

9The system is currently a prototype and is completed by Peng Xiao with the help of his supervisors,
no other team members are involved.

10https://github.com/knowsys/vlog4j

Datalog Rewriting for Existential Rules 70

We evaluated ontologies including the DL-Lite versions of LUBM, Adolena, Open-

GALEN2, OBOprotein and RS. We used the existential rule fragments of Reactome

and Uniprot, which are more expressive than DL-Lite. And to evaluate our system’s

ability over ‘true’ existential rules (i.e., rules can not be expressed in DLs), we choose

DEEP200/300, STB-128, and ONT-256 from ChaseBench. All the tested ontologies are

found to be in fus-shy and thus can be handled by Drewer, whereas none of the compared

rewriting system could successfully handle all of them.

We conducted two sets of experiments to evaluate the performance of our system. In the

first set of experiments, we compared our system with state-of-the-art query rewriting

systems regarding the compactness and efficiency of query rewriting. We used original

queries that come with the datasets and evaluated 5 queries per ontology, except for RS

which has only 3 long queries with length of 15.

Table 3.2 records the sizes and times for query rewriting, where sizes are measured by

the numbers of atoms and the times are in milliseconds. We set a 5 minutes time limit

per query, ran each query 3 times, and reported the average. Rapid(DD) and Rapid(DU)

denote respectively the datalog and UCQ rewritings from Rapid, and TO denotes time

out whereas a “-” means the system could not handle the OMQ. In particular, Grind

failed to handle most of the queries for OBOprotein and all of the queries for Reatome

and Uniprot.

It can be seen from Table 3.2, except for LUBM and Uniprot, the sizes of datalog

rewritings are often comparable to or much smaller than those of UCQ rewritings. The

reason for the two exceptional cases is that the tested queries can be entailed by their

subsets with the ontologies, for example, in the LUBM benchmark, we have the following

query and rules,

q2 : Q(x, y)← Person(x) ∧ teacherOf(x, y) ∧ Course(y).

r1 : Person(x)← teacherOf(x, y).

r2 : Course(y)← teacherOf(x, y).

Clearly, q2 can be entailed by an atomic query Q(x, y) ← teacherOf(x, y) with r1 and

r2. In such case, most of the generated queries in the rewriting will become redundant,

which are removed by rewriting systems that perform rewriting minimization.

Datalog Rewriting for Existential Rules 71

Table 3.2: Full comparison on query rewriting

Ontology Query
Datalog Rewriting UCQ Rewriting

Drewer Rapid(DD) Grind Graal Rapid(DU) Iqaros
size time size time size time size(*) time size time size time

Adolena

q1 43 9 43 18 27 386 2+29 29 27 20 27 28
q2 32 2 31 10 28 120 2+29 30 50 28 50 33
q3 34 2 32 10 27 145 1+31 38 104 34 104 94
q4 40 20 39 10 33 116 2+34 47 224 50 224 97
q5 38 203 37 12 32 87 1+36 34 624 75 624 565

LUBM

q1 3 2 3 5 2 302 1+1 19 2 8 2 17
q2 51 3 46 15 38 123 1+0 12 1 9 1 17
q3 21 0 20 12 20 73 1+47 60 4 8 4 40
q4 70 2 63 21 55 72 1+1 25 2 15 2 32
q5 56 1 52 15 42 64 1+6 44 10 16 10 65

OpenGALEN2

q1 3 0 3 5 2 99469 1+2 117 2 4 2 49
q2 1296 56 1276 82 1152 99352 1+1275 175 1152 56 1152 7525
q3 93 1372 92 39 26 109664 5+87 208 488 44 488 11963
q4 162 1 155 15 147 113195 1+154 108 147 11 147 951
q5 82 1773 81 25 37 111972 19+62 211 324 40 324 8698

OBOprotein

q1 30 48 29 19 29 12953 20+7 259 27 16 27 6732
q2 1357 868 1356 720 - - 1264+92 6866 1356 963 1356 25062
q3 34580 99 33919 128341 - - 1+33918 338 33887 699 33887 56202
q4 34880 2906 34879 127786 - - 682+34085 3239 34733 12832 34733 72424
q5 1386 1144 27907 TO - - TO TO 36612 TO 36612 TO

RS
q1 14 153 TO TO TO TO 14+4 904 TO TO TO TO
q2 22 849 TO TO TO TO 100+4 13554 TO TO TO TO
q3 25 8976 TO TO TO TO 143+4 40875 TO TO TO TO

Reactome

q1 3 0 3 9 - - 1+2 34 3 11 3 12
q2 18 1 13 9 - - TO TO 32 16 32 27
q3 18 0 13 10 - - TO TO 32 18 32 28
q4 21 0 15 8 - - TO TO 32 24 32 52
q5 21 0 15 7 - - TO TO 32 15 32 50

Uniprot

q1 1 0 1 5 - - 1+0 15 1 9 1 8
q2 1 0 1 6 - - 1+0 16 1 4 1 8
q3 15 0 12 6 - - 1+0 19 1 5 1 12
q4 15 0 12 6 - - 1+0 34 1 6 1 13
q5 15 0 11 7 - - 1+0 34 1 7 1 16

DEEP300

q1 245 286 - - - - 117+2 927 - - - -
q2 27 4 - - - - 528+3 12417 - - - -
q3 81 16 - - - - 624+2 17196 - - - -
q4 90 31 - - - - TO TO - - - -
q5 249 187 - - - - TO TO - - - -

STB-128

q1 7 7 - - - - 4+2 97 - - - -
q2 14 4 - - - - 4+2 56 - - - -
q3 6 2 - - - - 8+0 81 - - - -
q4 8 0 - - - - 16+5 259 - - - -
q5 10 2 - - - - 8+5 121 - - - -

ONT-256

q1 4 11 - - - - 8+2 94 - - - -
q2 15 6 - - - - 4+6 127 - - - -
q3 7 1 - - - - 8+6 139 - - - -
q4 11 4 - - - - 12+5 176 - - - -
q5 13 3 - - - - 48+1 2378 - - - -

Datalog Rewriting for Existential Rules 72

Note that to achieve efficiency as well as compactness in rewriting, Graal makes use of

the so-called compiled preorders, hence, the UCQ rewritings produced by Graal need to

be coupled with the compiled preorders for query answering. For a fair comparison, we

report the rewriting sizes for Graal in the form of x+ y, where x is the size of the UCQ

rewriting and y is that of the datalog rules corresponding to the compiled pre-orders.

Since not all preorders are used for specific queries, we tracked for each query those

pre-orders actually used for query answering (following Graal’s native query answering

process) and y is the number of only those used preorders. Though for Graal less rules

are considered in rewriting, which produces a much smaller rewriting as we have seen,

we show later that the smaller rewriting sizes for Graal do not necessary mean faster

query answering (compared to Drewer) due to the overhead of processing the complied

pre-orders. On the other hand, this optimization only works well for less expressive

ontologies like LUBM, it is not as effective as in expressive ontologies such as DEEP300

and ONT-256.

Regarding the time efficiency of rewriting, Drewer again is superior or comparable to

other systems in almost all cases. Especially for OBOprotein, RS, the three ontologies

from the ChaseBench, which are challenging ontologies for rewriting, our system showed

outstanding performance. In particular, all other systems time out on q5 for OBOpro-

tein, whereas Drewer took only around 1 second to complete the rewriting. And all other

systems except for Graal failed to complete their rewriting on the three long queries for

RS, due to the large sizes of generated UCQ rewritings. Besides, the reason for Graal’s

timeouts in Reactome could be that its algorithm does not terminate on those queries,

as it is reported by Graal’s checker that Reactome does not fall in the existing concrete

classes in fus. And though Rapid and Iqaros can successfully handle Reactome, but they

are dedicated to DL-lite, that means they may filter out non-linear axioms when parsing

the ontologies.

To evaluate the overall performance of Drewer in query answering, we conducted a second

set of experiments comparing it with other query answering systems. Note that for fair

comparisons, all systems we evaluated (including Drewer) are in-memory systems, that

is, when the systems perform query anwering, all data is loaded into the memory from

the disk. Besides Graal and Iqaros, we compare Drewer with chased-based systems

VLog and DLV∃ [Leone et al., 2019], both of which show state-of-the-art performance,

and the hybrid query answering system for OWL2, Pagoda. To compare with Graal on

Datalog Rewriting for Existential Rules 73

the quality of different rewritings, we used a datalog translation for both of its UCQ

rewritings and the used pre-orders, and deployed the same datalog engine VLog for

query answering.

Table 3.3: Comparison on query answering

Ontology Query
Drewer VLog DLV∃ Graal(VLog) Iqaros Pagoda

Total QA Total QA Total Total QA Total QA Total

LUBM-100

q1 20288 14 21111 1313 TO 21320 65 21549 2504 129664
q2 22570 2284 22394 2714 70631 21266 332 22372 2637 130523
q3 20835 764 22179 2459 74358 21667 785 22332 2622 130642
q4 21879 1595 21660 1958 69886 20932 164 23732 2524 130058
q5 21122 913 21138 1315 TO 21037 157 23272 2732 130317

Reactome

q1 2865 46 3347 387 20049 2946 22 7000 1491 10194
q2 2824 50 3287 360 20073 TO TO 6256 1399 10188
q3 2900 76 3300 390 20063 TO TO 6787 1411 10183
q4 2911 76 3312 380 20254 TO TO 6496 1451 10184
q5 2880 56 3252 360 20023 TO TO 6606 1522 10184

Uniprot

q1 1862 110 TO TO 10239 2030 99 3388 748 33048
q2 2559 819 TO TO 10658 2104 226 3079 809 33320
q3 1777 16 TO TO - 1957 84 2999 743 33008
q4 1763 16 TO TO - 1991 87 2772 734 33005
q5 1760 16 TO TO - 1969 80 2719 742 33005

DEEP200

q1 789 193 3875 2452 454 962 287 - - -
q2 647 175 3668 2460 448 5330 4715 - - -
q3 675 185 3635 2456 457 5185 4565 - - -
q4 698 197 3660 2460 461 TO TO - - -
q5 696 193 3661 2451 443 TO TO - - -

DEEP300

q1 896 279 TO TO 553 1489 752 - - -
q2 849 322 TO TO 567 11013 10371 - - -
q3 792 292 TO TO 575 14735 14089 - - -
q4 933 388 TO TO 568 TO TO - - -
q5 730 238 TO TO 548 TO TO - - -

STB-128

q1 8942 426 39947 9302 21856 10042 215 - - -
q2 8460 23 39783 9118 21721 9827 83 - - -
q3 8655 28 40012 9376 21458 10703 102 - - -
q4 9052 47 40284 9632 21879 10819 269 - - -
q5 8169 36 39790 9162 24279 10574 139 - - -

ONT-256

q1 25687 47 28356 2065 63558 31102 152 - - -
q2 27535 86 28272 2068 TO 31223 168 - - -
q3 28411 81 28194 2061 66547 29747 204 - - -
q4 29030 71 28231 2066 TO 29626 211 - - -
q5 28956 52 28323 2089 TO 31897 2151 - - -

Table 3.3 presents the average times (in milliseconds) for answering the 5 queries over

each ontology, where we ran each query separately (which may involve running the

chase procedure separately for each query). A TO (Timeout) shows the system failed to

answer the query in 5 minutes. We separate the query answering times (QA, including

Datalog Rewriting for Existential Rules 74

rewriting, chase computation, and query evaluation times whenever applicable) out of

the total times, except for DLV∃ and Pagoda as it was difficult to make the separation.

Overall, our (datalog) rewritings demonstrate higher efficiency in query answering com-

pared to UCQ rewritings (by Graal and Iqaros) on Reactome and ChaseBench ontologies.

While Drewer could successfully handle all queries, Graal was time out on 4 queries for

Reactome and 2 queries for DEEP200 and DEEP300, which is due to its inefficiency of

rewriting over these expressive ontologies. Compared to chase-based systems, our system

demonstrates superior time efficiency than VLog on all tested cases, and outperforms

(sometimes by magnitudes) or is comparable to DLV∃ on most of the cases. In par-

ticular, VLog failed on Uniprot and DEEP300, and DLV∃ struggled (for some queries)

on LUBM-100 and ONT-256. This is because VLog (or DLV∃) computes the standard

full (resp., parsimonious) chase whereas the queries are often related to only a small

portion of it. Similarly, the Pagoda system is inefficient in all the three DL scenarios,

which is because the cost for materializing the two datalog approximations over large

scale datasets is too high. However, chase-based systems still have the advantage that

when answering multiple queries over the same dataset, they only need to compute the

materialization once, while Drewer need to compute the chase on the datalog rewriting

of each query. Yet in cases where computing the full chase is challenging, e.g., DEEP300

for VLog, our datalog rewriting becomes a critical factor for successful handling of the

OMQs.

Chapter 4

Practical Abduction for

Existential Rules

While query answering is the essential reasoning task in OBDA, in order to provide solid

reasoning services, OBDA systems should be equipped with the ability to explain query

answers. Particularly, explaining negative answers can be formalized by the the problem

of query abduction: (1) a negative query answer is an observation in the problem; (2)

the abduction results are exactly what the database needs to entail the negative answer.

Compared to query answering, query abduction for expressive ontology languages is

far from well-studied, which is due to the complex nature of the problem. There are

several works on query abduction [Borgida et al., 2008, Calvanese et al., 2013, Du et al.,

2014, Wang et al., 2015], but they are either based on a light-weight ontology language

(and cannot be extended to existential rules) or not scalable over large datasets (even

for representative explanations, which try to compactly represent explanations, we will

discuss about it in details later).

Existing research efforts showed that query abduction is challenging, as the computa-

tional complexity of query abduction is indeed higher than query answering [Calvanese

et al., 2013]. Also, different from traditional abduction, query abduction allows new

constants in explanations, which makes it difficult (if not impossible) to compute all

explanations even in some light-weight ontology languages such as EL and DL-Lite.

Though representative explanations are proposed to compactly represent the (possibly

75

Practical Abduction for Existential Rules 76

infinite many) new constants using substitutable null values, the approach does not dis-

tinguish the different roles of explanations with and without null values. We illustrate

the problem using an example on disease tracking.

Example 4.1. When we trace the spread of an infectious disease with hereditary vul-

nerability, the following ontology Π could be useful:

high risk(x)← contact(x, y), high risk(y).

high risk(x)← has parent(x, y), diagnosed(y).

Here, contact(x, y) means that x has close contact with y and diagnosed(y) means that y

is diagnosed with the disease. Suppose we have the dataset D = {contact(John,Alice),

diagnosed(Bob)}.

Now, if we have an observation that John is high-risk for the disease, that is, q :

{high risk(John)}, yet we cannot derive this from existing knowledge Π and D. Then

this scenario can be captured by a query abduction problem Λ = (Π, q,D,Σ), where

Σ = {high risk, contact, has parent}. For the QAP, we have the following two obvious

explanations among others:

E1 = {high risk(Alice)} and E2 = {has parent(John,Bob)}.

And by allowing anonymous constants in explanations, we also have the following expla-

nation:

E3 = {has parent(John, n), diagnosed(n)},

where n is a labelled null that does not appear in Π or q.

As we have introduced before, allowing null values in the explanations introduces issues.

First, the number of potential explanations may be infinite, even for representative ex-

planations. Note that according to definition 2.28, it can be checked that explanations of

the form E(k)
4 = {contact(John, n1), contact(n1, n2), . . . , contact(nk−1, nk), high risk(nk)}

are legitimately representative explanations for any k ≥ 1. Also, we note that E3 is dif-

ferent from E1 and E2 in the sense the former essentially represents a pattern of (or

abstract) explanations up to the instantiation of null values, while E1 and E2 are specific

ones referring to concrete cases. It is hard to tell in general which kind of explanations

Practical Abduction for Existential Rules 77

would be better. In some cases, a user may prefer specific explanations to abstract ones;

for instance, to trace high risk individuals like in E1. In other cases, the user may have

the opposite preference; for instance, to know John is high-risk due to hereditary reasons

expressed as E3 rather than hypothesizing (for each diagnosed case) the parent of John

like in E2. Thus, it would be interesting to introduce a new definition of query abduction

so that preferences over types of explanations can be represented.

In this chapter, we propose a novel notion of selective explanations, which generalises

the existing representative explanations and allows users to distinguish high-level pat-

tern explanations from low-level concrete explanations. For the computation of selective

explanations, we present an algorithm based on an efficient query rewriting method for

existential rules. We also introduce a compact representation for selective explanations

which can significantly reduce the number of generated explanations and can be com-

puted efficiently. Finally, we implement a prototype system that computes selective

explanations, and our experimental evaluation shows our system can scale over very

large datasets.

4.1 Selective Explanations

In our previous discussions, a query abduction problem with an ontology allows the

introduction of labeled null values that do not appear in the given ontology or the ob-

servation and thus, the set of all explanations for a query abduction can be very large or

even infinite. As a result, various criteria are employed to select preferred explanations.

A common approach is to pick only subset-minimal explanations (up to renaming). Yet

such minimal explanations are still in large numbers, and often have repetative pat-

terns with only some constants varying. For this reason, the notion of representative

explanations is proposed to capture explanations of the same pattern using a single rep-

resentative. However, the set of representative explanations can still be infinite for some

ontologies. Also, the notion of representative explanations cannot distinguish between

the representatives (demonstrating a high-level pattern) and the concrete cases. Thus,

in this section, we introduce a flexible framework for the notion of selective explana-

tions. In the discussion of this chapter, we consider existential rules without constraints

for all query abduction problems, which means our obtained explanations are always

consistent.

Practical Abduction for Existential Rules 78

We first recall precise definitions of some concepts about explanations of query abduc-

tion. In the definition of the query abduction problem, an explanation is allowed to be

a set of (not necessarily ground) facts, thus an explanation may contain labelled nulls

that can be substituted by constants. Hence, the notion of minimal explanations need

to take renaming into consideration. For two sets of facts A,A′, A �m A′ if there exists

a renaming ρ such that A′ρ ⊆ A. And A ≺m A′ if A′ρ ⊂ A. An explanation E to a

QAP Λ is minimal if E ′ �m E implies E �m E ′ for all explanations E ′ to Λ.

And the notion of representative explanations is based on the homomorphism relations

on the set of all minimal explanations, thus when a constant in a minimal explanation

can be replaced by a labeled null, then the explanation is represented by a more general

explanation. A representative explanation to a QAP Λ is a minimal explanation E to Λ

such that for all minimal explanation E ′ to Λ, if E ′ �h E , then E �h E ′. The set of all

representative explanations is denoted as rexpl(Λ).

In Example 4.1, the explanations E1, E2, E3 are all representative explanations. Note that

the minimality condition in the definition of representative explanations is necessary, as

otherwise an explanation E = E3∪{has parent(John, n′), diagnosed(n′)} would be equally

preferred as E3 w.r.t. �h.

As we have shown, there are an infinite number of representative explanations for the

QAP in Example 4.1 with the above abducibles, due to the continuing introduction of

new labelled nulls. Also, the set of representative explanations include both specific

explanations referring to concrete constants, like E1 and E2, and abstract explanations

showing patterns with substitutable null values, like E3. We argue that in actual appli-

cation scenarios, these two types of explanations satisfy different requirements of users

with different goals, and should be divided.

In what follows, we present a novel notion of selective explanations based on a fine-

grained partition of abducibles and a preference on (concrete) constants or (substi-

tutable) nulls in each of the parts.

For a QAP with abducibles Σ, a selection criteria is a tripartition S = (ΣC ,ΣP ,ΣN) of

Σ, where ΣC , ΣP and ΣN are called case, pattern and normal abducibles, respectively.

Intuitively, S specifies that for (parts of) explanations on predicates in ΣC , concrete

constants are preferred than nulls in the explanations (showing specific cases); whereas

Practical Abduction for Existential Rules 79

for those on predicates in ΣP , it is the other way round, i.e., substitutable nulls are

preferred than constants (showing patterns). A selection criteria is usually decided by

a user in a particular scenario.

Given a set of formulas Φ and a signature Σ, we use Φ|Σ to denote the set of formulas

in Φ that are over Σ.

Definition 4.1 (Selective Explanation). Given a QAP Λ = (Π,D, q,Σ) and a selection

criteria S = (ΣC ,ΣP ,ΣN), for two explanations E and E ′ to Λ, E �S E ′ if there exists a

substitution σ such that (1) E|ΣC ⊆ E ′σ|ΣC , (2) Eσ|ΣP ⊆ E ′|ΣP ∪ D, and (3) Eσ|ΣN ⊆

E ′|ΣN . And E ≺S E ′ if E �S E ′ and E ′ 6�S E .

A selective explanation E to Λ w.r.t. S is a representative explanation to Λ such that for

all representative explanations E ′ to Λ, if E ′ �S E , then E �S E ′. The set of all selective

explanations to Λ w.r.t. S (up to renaming) is denoted as rexplS(Λ).

Intuitively, condition (1) says that E is not less preferred over E ′ on ΣC if E does not

contain more atoms or nulls than E ′ has. Similarly, condition (2) says that it holds on

ΣP if E does not contain more atoms or constants than those in E ′ together with those

in D closely associated. The reason why the condition requires a union with D can be

see in the example below. Finally, condition (3) says that the preference coincides with

�h on ΣN .

Example 4.2. Consider the QAP Λ in Example 4.1. Let S = ({high risk, contact},

{has parent, diagnosed}, ∅), which means (representative) explanations revealing more

concrete cases on high risk, contact and high-level patterns on has parent, diagnosed are

preferred.

For explanations E2 = {has parent(John,Bob)} and E3 = {has parent(John, n),

diagnosed(n)}. There exists a substitution σ = {n 7→ Bob} satisfying E3σ|ΣP ⊆ E2|ΣP∪D.

That is, Conditions (1) – (3) in Definition 4.1 hold for E3 �S E2. The converse does

not hold and hence E3 ≺S E2. Intuitively, E3 is preferred as it shows a pattern, whereas

E2 can be obtained from E3 by substituting n with Bob (and eliminating diagnosed(Bob)

as it is in D). Assume in the database we have a list of persons diagnosed with the

disease, then each person will correspond to an explanation, while these explanations

can be ignored as they are all less preferred than E3.

Practical Abduction for Existential Rules 80

E(k)
4

contact(John, n1)

contact(n1, n2)

· · ·

contact(nk−1, nk)

high risk(n1)

high risk(n2)

high risk(nk)

high risk(Alice), contact(John, Alice)

E1 D

has parent(John,Bob),

has parent(John,Tim),

· · ·

has parent(John,Frank),

diagnosed(Bob)

diagnosed(Tim)

diagnosed(Frank)

D

has parent(John,n), diagnosed(n)

E3

Figure 4.1: Preference relations for explanations in example 4.2

For another two explanations E1 = {high risk(Alice)} and E ′1 = {contact(John, n′),

high risk(n′)}. There exists a substitution σ = {n′ 7→ Alice} satisfying Conditions (1) –

(3) for E1 �S E ′1, and one can further verify that E1 ≺S E ′1. Intuitively, E1 is preferred as

it reveals a concrete case, Alice, being a high risk person. Indeed, for any explanation of

the form E(k)
4 = {contact(John, n1), contact(n1, n2), . . . , contact(nk−1, nk), high risk(nk)}

(k ≥ 1), there is a substitution σ = {ni 7→ Alice | 1 ≤ i ≤ k} satisfying Conditions (1) –

(3) for E1 �S E4, and one can verify that E1 ≺S E4.

Note that the preference �S is over representative explanations, as otherwise a non-

representative explanation E ′′1 = {contact(John,Bob), high risk(Bob)} would be preferred

Practical Abduction for Existential Rules 81

than the representative explanation E ′1 w.r.t. �S, contradicting the intuition of represen-

tative explanations.

We next discuss some properties of the preference relation �S , and the determination

of the preference and the computation of selective explanations in some special cases.

These properties are useful for understanding the definition and developing algorithms.

First of all, the preference relation �S is reflexive and transitive.

Lemma 4.1. For a QAP Λ and a selection criteria S, the relation �S on explanations

to Λ is a preorder.

Proof. For any explanation E toA, let σ be an empty substitution, then we have Eσ|ΣP ⊆

(E ∪ D)|ΣP , Eσ|ΣN ⊆ (E ∪ D)|ΣN and because E is an explanation, E ∩ D = ∅, then

Eσ \ D = E , thus E|ΣC = (Eσ \ D)|ΣC , we have E �R E , reflexivity is obtained. For

transitivity, we assume E �S E ′, E ′ �S E ′′, then with condition (1), there exist σ, σ′ such

that E|ΣC ⊆ E ′σ|ΣC , and E ′|ΣC ⊆ E ′′σ′|ΣC . Substituting both sides of the latter equation

with σ, we have E ′σ|ΣC ⊆ E ′′σ′σ|ΣC , thus E|ΣC ⊆ E ′′σ′σ|ΣC . Similarly, we have E|ΣN ⊆

E ′′σ′σ|ΣN With condition (2), we have Eσ|ΣP ⊆ (E ′ ∪D)|ΣP and E ′σ′|ΣP ⊆ (E ′′ ∪D)|ΣP ,

substituting both sides of the former equation with σ′, we have Eσσ′|P ⊆ (E ′∪D)σ′|P =

(E ′σ′ ∪D)|P , thus Eσσ′ ⊆ (E ′′ ∪D)|P , which suffice that E ≺S E ′′

Next, the determination of the preference relation between two explanations is NP, which

can be proved by a straightforward reduction from the homomorphism problem.

Lemma 4.2. For two explanations E , E ′ and a selection criteria S, deciding whether

E �S E ′ is NP-complete.

Proof. (Membermship) Nondeterministically guess a substitution σ, condition (1), (2)

and (3) can be checked in polynomial time.

(Hardness) For two sets of atoms A and A′, we construct a QAP Λ = (Π,D, q,Σ), where

Π contains two rules Q← A and Q← A′, D = ∅, q = Q and Σ = sig(Π), then A and A′

are explanations to Λ. Assume a selection criteria S = (∅,Σ, ∅), according to definition

4.1, we have that there is a homomorphism from A to A′ iff A ≺S A”, the former is a

NP-complete problem.

Practical Abduction for Existential Rules 82

While determining the preference relation between each pair of explanation is compu-

tationally expensive, we present next properties that will be useful for optimising the

computation in some special cases. Given two sets of atoms A,A′, a dataset D, and a

most general substitution σ such that A′ = Aσ \ D with σ satisfying (A \D)σ ∩D 6= ∅,

then A is (strictly) more abstract than A′ and A′ is (strictly) more specific than A w.r.t.

D.

Proposition 4.1. For a QAP Λ and a selection criteria S = (ΣC ,ΣP ,ΣN), given two

representative explanations E , E ′ to Λ, suppose E is more abstract than E ′ w.r.t. D, then

• E �S E ′ iff sig(E) \ sig(E ′) ⊆ ΣP and there is a renaming σ s.t. Eσ|ΣC ⊆ E ′|ΣC

• E ′ �S E iff there is a renaming σ s.t. E ′σ|ΣP∪ΣN ⊆ E|ΣP∪ΣN

Proof. (1) E �S E ′ iff sig(E)\ sig(E ′) ⊆ ΣP and there is a renaming σ s.t. Eσ|ΣC ⊆ E ′|ΣC .

(⇒) Let P = sig(E) \ sig(E), as E is more abstract than E ′, we have P 6= ∅, if there is a

P ∈ P such that P 6∈ ΣP , then condition (1) and (3) for E �S E ′ will not be satisfied, a

contradiction. Because E is more abstract than E ′, we have a most general substitution

σ s.t. E ′ = Eσ′′ \ D, and as condition (1) is satisfied, then σ′′ must not substitute terms

in E|ΣC to constants or to the same null, so σ′′ is a renaming on ΣC , thus we have

Eσ|ΣC ⊆ E ′|ΣC , where σ is a renaming.

(⇐) As E is more abstract than E ′ w.r.t D, we have a substitution σ′ such Eσ′ \D = E ′,

then Eσ′ = E ′∪D, because sig(E)\sig(E ′) ⊆ ΣP , we have Eσ′|ΣN ⊆ E ′|ΣN . Let σ′′ = σ′∪σ,

then σ′′ satisfies condition (1), (2) and (3).

(2) E ′ �S E iff there is a renaming σ s.t. E ′σ|ΣP∪ΣN ⊆ E|ΣP∪ΣN .

(⇒) Assume no renaming σ exists s.t. E ′σ|ΣP∪ΣN ⊆ E|ΣP∪ΣN , because E is more abstract

than E , there exists a substitution σ′ such that E ′ ⊆ Eσ′ \ D, then impossible to find

a substitution σ′′ such that σ′′ is not a renaming and it satisfies condition (2) and (3),

which is contradiction.

(⇐) Similar to (⇐) of (1)

Given a set of explanations E and a preorder � on E, we use min�(E) to denote the set

of explanations E in E such that for all E ′ in E, if E ′ � E , then E � E ′. The following

Practical Abduction for Existential Rules 83

results are regarding the special cases where all abducibles are case, pattern, or normal

abducibles.

Proposition 4.2. For a QAP Λ = (Π,D, q,Σ) and a selection criteria S = (Σ, ∅, ∅), let

E consists of all the most specific explanations in rexpl(Λ) over Σ. Then, rexplS(Λ) ≡r

min�S (min�h(min�m(E))), which is always finite up to renaming.

Proof. For equivalence, we only need to show every selective explanation E w.r.t S =

(Σ, ∅, ∅) must be a most specific explanations w.r.t D. Assume E is not a most strict

explanation, then there exists E ′ s.t. E ′ is more specific than E , when all predicates

are case abducibles, it satisfies that there exists σ s.t. E ′|ΣC = Eσ|ΣC \ D ⊆ Eσ|ΣC ,

then E ′ �S E . And σ must be a renaming on nulls and substitute at least a null with

constant, it is impossible to have E �S E ′.

Next we show the set of selective explanations w.r.t S is always finite. Let T = const(D)∪

{∗}, where ∗ is a null, and w be the maximum arity of a predicate in Σ. We consider a

set explanations E∗ which is constructed with predicates in Σ and terms in T , then the

size of E∗ is bounded by 2|Σ|·|T |
w

. Let σ be a substitution that for t ∈ N, tσ = ∗, then

for any explanation E , there must exists an E ′ ∈ E∗ such that Eσ = E ′, according to

definition 4.1, we have either E ′ ≺S E , or E and E ′ are equivalent up to renaming, thus

the set of selective explanations w.r.t S up to renaming is also bounded by 2|Σ|·|T |
w

.

The above proposition shows that when all abducibles are case abducibles, all selective

explanations are the most specific representative explanations. Furthermore, we can

guarantee that the set of selective explanations up to renaming is always finite.

Proposition 4.3. For a QAP Λ = (Π,D, q,Σ) and a selection criteria S = (∅,Σ, ∅), let

E consists of all the most abstract explanations in rexpl(Λ) over Σ. Then, rexplS(Λ) ≡r

min�h(min�m(E)).

Proof. We only need to show that every selective explanation E w.r.t S = (∅,Σ, ∅) is a

most abstract explanation w.r.t D. Assume there exists E ′ that is more abstract than E

w.r.tD, then there exists a substitution σ s.t. E = E ′σ\D, then E ′σ ⊆ E∪D. And because

σ substitutes at least one null with a constant, and |E| > |E ′|, it is impossible to have a

substitution σ′ s.t. E ⊆ E ′σ′ ∪D, thus we have E ′ ≺S E , which is a contradiction.

Practical Abduction for Existential Rules 84

This proposition shows that when all abducibles are pattern abducibles, the selective

explanations are all the most abstract representative explanations. While the following

result shows selective explanations indeed generalize representative explanations.

Proposition 4.4. For a QAP Λ = (Π,D, q,Σ) and a selection criteria S = (∅, ∅,Σ),

rexplS(Λ) ≡r rexpl(Λ).

A proof for the above proposition is straightforward. If there are no case and pattern

abducibles, when comparing two explanations E and E ′, Condition (1) and (2) in defini-

tion 4.1 are trivially satisfied, and Condition (3) is exactly deciding the relation E �h E ′,

thus all representative explanations to Λ are in rexplS(Λ).

4.2 Computing Explanations

In this section, we introduce algorithms for computing selective explanations (and repre-

sentative explanations) for existential rules. The algorithms are based on query rewrit-

ing, thus only work for first-order rewritable existential rules, more specifically, the algo-

rithms terminates when the input ontologies are first-order rewritable. Our algorithms

consist of three major steps: (1) To obtain the first-order rewriting of the given obser-

vation; (2) To instantiate the BCQs in the rewriting using constants from the dataset

and removing those facts in the instantiations that are in the dataset, and (3) To filter

out less preferred explanations.

We use FORew(Π, q) to denote the set of minimal first-order (UCQ) rewriting of q w.r.t

Π, computed through the backward chaining rewriting procedure in Algorithm 1.

For convenience, when it is necessary, we assume there is a fixed bijective mapping

between variables and labeled nulls, thus a BCQ can be regarded as an explanation (by

substituting variables with distinct nulls).

Given a set of rules Π and a dataset D, we use Π∪D to denote the set of rules Π∪{p←

| p ∈ D}. According to the definition, the complete set of (selective or) representative

explanations can contain multiple equivalent explanations, however for computation,

there is no need to return all these explanations, it is more practical to return just one

of them. The following lemma shows that the computation can be simplified if we just

Practical Abduction for Existential Rules 85

require the result to be an equivalent set of explanations. Recall that cover(E) is a

minimal subset E′ of E satisfying that for every E ∈ E, there exist E ′ ∈ E′ s.t E ′ �h E .

Lemma 4.3. Given a set of explanations E, cover(E) ≡ min�h(min�m(E)).

Proof. If E ∈ cover(E), then for any E ′ ∈ min�h(min�m(E)), E �h E ′. According to

the definition of min�m and min�h , there exists E ′′ s.t. E ′ �h E ′′ �m E , because �h is

more general than �m and transitive, we have E ′ �h E . The other direction is proved

similarly.

Proposition 4.5. For a QAP Λ = (Π,D, q,Σ), rexpl(Λ) ≡ FORew(q,Π ∪ D)|Σ.

Proof. Without loss of generality, we assume Σ = sig(Π) ∪ sig(q).

(⇒) We show that if E is a representative explanation, then there exists a q′ in FORew(q,Π∪

D) s.t. E is equivalent to q′, i.e., E �h q′ and q′ �h E . According to the definition of

first-order rewriting, we have for any database D′, Π ∪ D ∪ D′ |= q iff there exists a

q′ ∈ FORew(q,Π∪D) s.t D′ |= q′. Let D′ = E , because E is an explanation to Λ, we have

Π ∪ D ∪ E |= q, thus we obtain E |= q′, i.e. q′ �h E . Let δ be a bijective substitution

from variables to nulls, we have q′δ |= q, thus Π∪D∪ (q′δ) |= q, q′δ is an explanation to

Λ. Because q′ �h E and δ is bijective, we also have q′δ �h E . And as E is representative,

there does not exists an explanation E ′ such that E ′ �h E and E 6�h E ′, then we can

guarantee that E �h q′δ, thus E �h q′.

(⇐) For a q′ ∈ FORew(q,Π ∪ D), we have Π ∪ D ∪ q′δ |= q, thus q′δ is an explanation

to Λ. Assume there isn’t a representative explanation E s.t. E �h q′ and q′ �h E ,

then there must exist a representative explanation E ′ such that E ′ �h q′ and q′ 6� E ′.

According to the above result, there is a q′′ ∈ FORew(q,Π ∪D) that is equivalent to E ′,

thus we have q′′ �h q′, however, FORew(q,Π ∪D) is a minimal rewriting set, which is a

contradiction.

Proposition 4.5 shows that to collect the representative explanations, we only need to

compute the minimal rewriting set of the observation.

This result can be extended to compute selective explanations. According to the defini-

tion of selective explanations, one straightforward approach is to first obtain the set of

representative explanations, and then remove those explanations that are less preferred

Practical Abduction for Existential Rules 86

under the selection criteria. For a selection criteria S and a set of BCQs Q, cover�S (Q)

is a minimal subset Q′ of Q satisfying for all q ∈ Q, there exists a q′ ∈ Q′ s.t. q′ �S q.

Proposition 4.6. For a QAP Λ = (Π,D, q,Σ) and a selection criteria S,

rexplS(Λ) ≡ cover�S (FORew(q,Π ∪ D)|Σ).

Proof. For this proposition, we only need to prove for two explanations E , E ′, if E �S E ′

and E ′ �S E , then E ≡ E ′, i.e, E �h E ′ and E ′ �h E . According to definition 4.1,

with condition (1), we have substitutions σ, σ′ s.t. E ′|ΣC ⊆ Eσ|ΣC and E|ΣC ⊆ E ′σ′|ΣC ,

then σ and σ′ must be a bijection from nulls to nulls, thus we have E|ΣC �h E ′|ΣC and

E ′|ΣC �h E|ΣC . Similarly, we can obtain the relation on ΣP and ΣN .

The computation of selective explanations using a naive method can be very expensive,

due to the large number of preference checking between explanations and the checking

itself is NP-hard. Thus it is important to optimise the checking during the rewriting

process. The following lemma connects Proposition 4.1 with the rewriting procedure.

Lemma 4.4. For two BCQs q, q′ and a dataset D, if q′ ∈ FORew(q,D) then q is more

abstract than q′.

This allows us to simplify the preference checking as our method rewrites (or more

specifically substitutes the queries in the rewriting set of) the observation.

Next, we consider two special cases of the selection criteria and show the computation

can be significantly simplified in these cases. That is, when all abducibles are case or

pattern abducibles.

When all the abducibles are pattern ones, if an explanation is more specific than another

explanation, then it is not a selective explanation, and if an explanation is rewritten with

a fact, the result is always more specific. Therefore in the computation of this case, we

don’t need to involve the dataset as rewriting rules. The following proposition shows a

simplified algorithm.

Proposition 4.7. For a non-trivial QAP Λ = (Π,D, q,Σ) and S = (∅,Σ, ∅), rexplS(Λ) ≡

FORew(q \ D,Π)|Σ.

Practical Abduction for Existential Rules 87

Proof. It’s easy to check that if Λ is non-trivial, then FORew(q\D,Π) ⊆ FORew(q,Π∪D)

and FORew(q\D,Π) contains all the most abstract explanations in FORew(q,Π∪D). Let

E be the set of all most abstract explanations to Λ, we have FORew(q\D,Π) ≡ cover(E),

then with proposition 4.3 and lemma 4.3, the conclusion is proved.

The sizes of the datasets are often significantly larger than the sizes of the first-order

rewritings, and a leap in the numbers of (representative) explanations occur when the

rewritings are instantiated. In cases where it is important to extract explanations from

an abstract level, i.e., patterns of potential explanations, by specifying all the abducibles

to be pattern ones, the number of explanations can be greatly reduced. Also, this can

be a first step of generating explanations based on other selection criteria, as by proposi-

tions 4.5 and 4.6, the selective explanations for any selection criteria S can be obtained

from FORew(q,Π)|Σ by first rewriting w.r.t. D and then filtering out less preferred ones

via cover�S .

Another special case is when all abducibles are case ones. To compute such explanations,

for each query in the rewriting set of the observation, the method tries to instantiate

it w.r.t. the dataset as much as possible. For a BCQ q and a dataset D, we define

FORew∗(q,D) as the set consists of all the BCQs q′ in FORew(q,D) such that q′ cannot

be rewritten by any rule (corresponding to a fact) in D, that is, FORew∗(q,D) is the set

of queries obtained by exhaustively rewriting q with D. For example, consider a BCQ

q = {A(x, y),B(y, z),C(z)} and a dataset D = {A(a, b),B(b, c)}. Then FORew∗(q,D)

consists of only q1 = {C(c)}, whereas neither q2 = {B(b, z),C(z)} nor q3 = {A(x, b),C(c)}

is in FORew∗(q,D). For a set of existential rules Π, FORew∗(q,Π ∪ D) is obtained

from FORew(q,Π) by replacing each BCQ q′ in FORew(q,Π) with FORew∗(q′,D). The

following proposition shows that to compute selective explanations in this special case,

the algorithm can apply rules in D with higher priority than rules in Π.

Proposition 4.8. For a QAP Λ = (Π,D, q,Σ) and S = (Σ, ∅, ∅), rexplS(Λ) ≡ cover�S (

FORew∗(q,Π ∪ D)|Σ).

Proof. First, it can be checked that the following lemma holds.

Lemma 4.5. For a BCQ q, a database D and S = (Σ, ∅, ∅), FORew∗(q,D) = min�S (

FORew(q,D)).

Practical Abduction for Existential Rules 88

Then we show that FORew(q,Π∪D) = FORew(FORew(q,Π),D), the proof is established

by the following statement: for any query q′ in FORew(q,Π∪D), if q′ is obtained from a

rewriting sequence qr1 . . . rn, where ri is the rule used for rewriting in the i’th iteration,

then q′ can always be obtained from a rewriting sequence qrc1 . . . rcm . . . rcn where rci are

rules from {r1, . . . , rn}, and for i ≤ m, rci are rules with non-empty bodies, otherwise

facts. Consider a query q∗ obtained from a rewriting sequence qr1 . . . ri−1diri+1 . . . rn,

where di is a fact. Let q1, q2, q3 be the result of qr1 . . . ri−1, qr1 . . . ri−1di and qr1 . . . ri−1di

ri+1 respectively. Assume q1 = B ∪ {P(~v)}, where B is a set of atoms and P is the

predicate of di. Let P(~v)σ = di, then q2 = Bσ, let µ = (B′σ, τ) be the unifier used for

rewriting q2 to q3, then q3 = B−στ ∪ body(r2)τ , where B− = B \ B′. We construct a

substitution τ ′ s.t τ ′ agrees τ on variables not occurring in ~v and τ ′σ = τ , as µ is a piece

unifier between q1 and r(i+1), we haveB−στ = H−τ , whereH ′ is the piece in head(ri+1),

then B−στ ′σ = H−τ ′σ ⇒ B−τ ′σ = H−τ ′σ ⇒ B−τ ′ = H−τ ′, thus µ′ = (B−, τ ′) is a

piece unifier µ′ = (B′, τ ′) between q1 and ri+1, the result of which is q′2 = B−τ ′ ∪

body(ri+1)τ ′∪{P (~v)τ ′}, let σ′ be the substitution such that P(~v)τ ′σ′ = di, then the result

of rewriting q′2 with di is q′3 = B−τ ′σ′ ∪ body(ri+1)τ ′σ′. For v ∈ vars(B−) \ ~v, we have

vτ ′σ′ = vτ ′ = vτ ′σ = vστ = vστ , and for v ∈ ~v, we have vτ ′σ′ = vσ = vστ , therefore

B−τ ′σ′ = B−στ . Similarly, we have body(ri+1)τ ′σ′ = body(ri+1)τ , thus q′3 = q3, which

means q∗ can also be obtained from sequence qr1 . . . ri−1ri+1di . . . rn. Then the statement

is proved.

According to the definition, FORew∗(q,Π∪D) = {q′′ ∈ FORew∗(q′,D) | q′ ∈ FORew(q,Π)}

= {q′′ ∈ min�S (FORew(q′,D)) | q′ ∈ FORew(q,Π)}, and because FORew(q,Π ∪ D) =

FORew(FORew(q,Π),D) = {q′′ ∈ FORew(q′,D) | q′ ∈ FORew(q,Π)}, then we can con-

clude that for any q′ 6∈ FORew∗(q,Π∪D), q′ is not a selective explanation w.r.t S, which

suffice the proof.

With the above results, we can produce a procedure for computing selective explanations

as presented in Algorithm 3, which is adapted from the classical backward chaining

rewriting algorithm. Particularly, Algorithm 3 distinguishes the two special cases from

the general case for optimization. ALL PATTERN denotes that all abducibles are

pattern abducibles and All CASE denotes that all abducibles are case abducibles. The

following proposition can be directly proved with the results of proposition 4.6, 4.7, 4.8.

Practical Abduction for Existential Rules 89

Algorithm 3: abdu(Λ, S)

Input : A non-trivial QAP Λ = (Π,D, q,Σ), a selective criteria S
1 begin
2 q ← (q \ D)|Σ;
3 F ← {q}; // result set
4 E ← {q}; // explore set
5 while E 6= ∅ do
6 R← FORew1(E,Π); // one-step rewriting
7 if not ALL PATTERN then
8 if All CASE then
9 R← R ∪ FORew∗(E,D);

10 else
11 R← R ∪ FORew(E,D);

12 R← cover�h(R ∪ F); // compute cover
13 R← R|Σ; // remove explanations that are not over Σ
14 E ← R \ F ; // next exploration set
15 F ← R;

16 if not ALL PATTERN then
17 F ← cover�S (F);

18 return F

Proposition 4.9. Given a non-trivial QAP Λ = (Π,D, q,Σ), and a selective criteria

S, abdu(Λ, S) returns the set of all selective explanations to Λ w.r.t S. abdu(Λ, S)

terminates if Π is first-order rewritable,

4.3 Compact Explanations

In Example 4.1, E1 = {high risk(Alice)} is a (representative) explanation, which is based

on the fact contact(John,Alice) in the database D. Now, suppose one adds to D facts

of a similar form contact(John,Adam), contact(John,Alex), . . ., there will be (represen-

tative) explanations E ′1 = {high risk(Adam)}, E ′′1 = {high risk(Alex)}, . . ., all following

a similar pattern. From Proposition 4.5, these explanations can be obtained from a

same query in a rewriting set of the observation, i.e., q′ ∈ FORew(q,Π) of the form

∃x.contact(John, x) ∧ high risk(x). And if an instance of the form contact(John, xσ) is

found in D then {high risk(xσ)} is a (representative) explanation. Such a pattern can

be captured by a rule r : high risk(x) ← contact(John, x), and the above explanations

can be derived by applying r to D. Hence, rule r can be seen as a compact represen-

tation of the explanations E1, E ′1, E ′′1 , . . . w.r.t. D. Such a compact representation can

Practical Abduction for Existential Rules 90

be constructed directly from the rewriting set before all the concrete explanations are

generated.

Note that the compact representations as rules are different from the rules in the on-

tology. First, a compact representation high risk(x) ← contact(John, x) may not hold

in general (as ontological rules), but is specific to a QAP, i.e., if contact(John, a) is

found in the given dataset for some constant a then {high risk(a)} is an explanation to

the given observation. Also, each rule (as a compact representation) should not be used

together with other rules nor applied recursively; for example, if {high risk(a)} is derived

as an explanation then it does not make sense to applied other rules to it. Moreover,

our experiments show the numbers of compact representations are much smaller than

the total numbers of rules in the ontologies.

In this section, we propose a compact form for (representative and selective) explana-

tions, which provides a simple and intuitive way for representing the explanations using

rules. To achieve this, we need to extend rules with negations in the bodies, that is, we

consider rules r of the form

∀~x.∀~y.[ϕ(~x, ~n)← ψ(~x, ~y) ∧ ¬ψ1(~x, ~y, ~z1) ∧ · · · ∧ ¬ψn(~x, ~y, ~zn)],

where ~x, ~y and ~zi (1 ≤ i ≤ n) are pairwise disjoint vectors of variables, ~n is a vector

of labelled nulls, and ϕ(~x, ~n), ψ(~x, ~y), and ψi(~x, ~y, ~zi) (1 ≤ i ≤ n) are conjunctions of

atoms. Particularly, we use bodyF (r) to denote the formula of extended body. Given a

dataset D, an instantiation σ from vars(r) to const(D) is a valid instantiation for r and

D if D |= bodyF (r), Let r(D, σ) = head(r)σ′, we say r(D, σ) is an instance of r with D

if σ is a valid instantiation. r(D) denotes the set of all instances of r with D, and for a

set of rules R, R(D) =
⋃
r∈R r(D).

To generate a compact representation of explanations expressed as rules from the first-

order rewritings of observations, we consider bipartitions of BCQs q of the form λ =

(qD, qE); intuitively, qD is the part of q that can be homomorphically mapped to the

dataset with some substitution σ, and qE is the part of q that cannot be mapped to

D under σ but can form an explanation. Note that qD or qE can be empty. For

the BCQ q′ = {contact(John, x), high risk(x)} in the example above, a bipartition is

q′D = {contact(John, x)} and q′E = {high risk(x)}. Not all bipartitions will lead to

explanations. For a QAP Λ = (Π,D, q,Σ) and a BCQ q′ ∈ FORew(q,Π), a bipartition

Practical Abduction for Existential Rules 91

λ = (q′D, q
′
E) of q′ is solution-forming to Λ if there exists a substitution σ satisfying

sig(q′E) ⊆ Σ, q′Dσ ⊆ D, and q′Eσ ∩ D = ∅.

We want to compute compact representations through (solution-forming) bipartitions.

Given a solution-forming bipartition λ = (qD, qE) to a QAP Λ, a rule can be obtained

from λ, that is, rλ : ∧q′E ← ∧qD where q′E is obtained from qE by substituting each

variable in vars(qE) \ vars(qD) with a distinct labelled null.

An instantiation is a substitution from NV to NC .

Proposition 4.10. Given a QAP Λ = (Π,D, q,Σ) and a solution-forming bipartition

λ = (q′D, q
′
E) to Λ, for each instantiation π from q′D to D, rλ(D, π) is an explanation to

Λ.

Proof. The proof is straightforward. From the above discussion, we know for any q′ ∈

FORew(q,Π), q′ is an explanation to Λ. Let σ be a homomorphism from q′D to D,

clearly q′σ is also an explanation to Λ, as q′σ = q′Dσ ∪ q′Eσ and q′Eσ ⊆ D, then we have

Π ∪ q′Dσ ∪ D |= q, so q′Dσ is an explanation to Λ.

Yet not all explanations represented by the rules are minimal or representative. Even

for a single rule rλ, it is possible that there exist two homomorphisms σ and σ′ such

that rλ(D, σ) is a minimal (or representative) explanation but rλ(D, σ′) is not.

Example 4.3. Consider Λ = (Π,D, q,Σ) with D = {A(a),B(a, a),B(a, b)} and Σ =

{C,D}. Suppose two BCQs in a rewriting set of q by Π are {A(x),C(x, x, y)} and

{B(x′, y′),C(x′, y′, z′),D(z′)}. There are two solution-forming bipartitions to Λ, λ1 =

({A(x)}, {C(x, x, y)}) and λ2 = ({B(x′, y′)}, {C(x′, y′, z′),D(z′)}). The following rules

can be constructed,

rλ1 : C(x, x, u)← A(x). rλ2 : C(x′, y′, v) ∧ D(v)← B(x′, y′).

Here u, v are labelled nulls.

Then, rλ1(D) = {E1} with E1 = {C(a, a, u)}, and rλ2(D) = {E2, E3} with E2 = {C(a, a, v),

D(v)} and E3 = {C(a, b, v),D(v)}. E1, E2 and E3 are all explanations, but E2 is not a

representative explanation, as there exists σ = {u 7→ v} s.t. E1σ ⊂ E2. To capture only

Practical Abduction for Existential Rules 92

the representative explanations, i.e., E3 but not E2, intuitively, rλ2 need to be refined

w.r.t rλ1 as follows

r′λ2
: C(x′, y′, v) ∧ D(v)← B(x′, y′) ∧ ¬

(
x′ = y′ ∧ A(x′)

)
.

First, we demonstrate when a rule should be refined by another rule, so that the result

of refinement can capture the minimal, representative, and selective explanations.

Definition 4.2. For a relation on explanations ≺∈ {≺m,≺h,≺S}, a dataset D, and

two rules r and r′ obtained from solution-forming bipartitions, a substitution ρ from

vars(head(r)∪ head(r′)) to vars(head(r′)) is a ≺-association from r to r′ w.r.t. D if there

exists an instantiation π such that (i) (body(r) ∪ body(r′))ρπ ⊆ D and (ii) head(r)ρπ ≺

head(r′)ρπ.

In Example 4.3, ρ = {x′ 7→ x, y′ 7→ x} is a ≺h-association from rλ1 to rλ2 w.r.t. D, as

there exists a distinctive instantiation π = {x 7→ a} satisfying the conditions (i) and (ii)

in Definition 4.2.

The following lemma shows that ≺-association can fully capture the relations between

explanations instantiated from solution-forming rules. Note that each substitution σ

defines an equivalence relation ∼σ over terms such that for two terms t1, t2, t1 ∼σ t2 iff

t1σ = t2σ. For a term t, [t]σ is the equivalent class for t under∼σ, i.e., [t]σ = {t′ | t ∼σ t′}.

Lemma 4.6. For a relation ≺, a dataset D and two solution-forming rules r, r′, there

exist E ∈ r(D) and E ′ ∈ r′(D) s.t. E ≺ E ′ if and only if there exists a ≺-association from

r to r′ w.r.t D.

Proof. (⇐) The left direction is straightforward. Let ρ be a ≺-association from r to

r′ w.r.t D, and π a instantiation satisfying condition (i) and (ii) in definition 4.2. Let

E = head(r)ρπ and E ′ = head((r))ρπ, clearly E ∈ r(D) and E ′ ∈ r′(D), and according to

proposition 4.10, they are explanations. With condition (ii), we have E ≺ E ′.

(⇒) Let E ∈ r(D), E ′ ∈ r′(D) and E ≺ E ′, then there are instantiations π and π′

s.t. E = head(r)π and E ′ = head(r′)π′. Particularly, we assume σ is the substitution

that witnesses E ≺ E ′. Now we construct a substitution ρ from vars(head(r) ∪ head(r′))

to vars(head(r′)) as follows: for v ∈ vars(head(r′)), let v∗ be a representative of the

Practical Abduction for Existential Rules 93

equivalent class [v]σ, for v′ ∈ [v]σ, we add {v′ 7→ v∗} to ρ; for v ∈ vars(head(r)),

v′ ∈ vars(head(r′)) that satisfy vπ = v′π′, let v∗ be a representative of [v′]σ, we add

{v 7→ v∗} to ρ. Then there exists an instantiation π′′ s.t for v ∈ head(r), vρπ′′ = vπ

and for v′ ∈ head(r′), v′ρπ′′ = v′π′. It can be verified that ρ and π′′ are substitutions

satisfying condition (i) and (ii), thus ρ is a ≺-association from r to r′ w.r.t D.

For a dataset D and two rules r, r′, let ∆D(r, r′,≺) be the set of most general ≺-

associations from r′ to r w.r.t. D, which is finite up to renaming.

For a ≺-association ρ from r to r′ w.r.t D, ρ is most general, if there does not exist

another ≺-association ρ′ from r to r′ w.r.t D and a substitution σ s.t. ρ′σ = ρ. In the

above example, it can be verified that ρ is a most general ≺h-association from rλ1 to rλ2

w.r.t. D.

Next we present the refined rule using ≺-associations. For a set of terms T = {ti | 1 ≤

i ≤ n}, let ϕ≈(T) =
∧n−1
i=1 ti = ti+1.

Definition 4.3. For a rule r, a set of rules R, a database D, and a preoroder ≺, let

∆r′,r be the set of all most general ≺-associations from r′ to r w.r.t D, the refinement

of r with R and D under ≺, denoted ref≺(r,R,D), is the following rule

∧
head(r)←

∧
body(r) ∧

∧
r′∈R,r′ 6=r

(∧
σ∈∆r,r′

φ¬r′,σ
)
.

φ¬r′,σ = ¬
(∧
t∈vars(r′)

ϕ≈
(
[t]σ ∩ vars(r)

)
∧ body(r′)σ

)

In Example 4.3, consider σ = {x′ 7→ x, y′ 7→ x} and x, x′, y′ all belong to the same

equivalent class. Taking x′ as the representative for this equivalent class, let ρσvars(rλ2
) =

{x 7→ x′, y′ 7→ x′}. Also, ϕ≈
(
[x]σ ∩ vars(rλ2)

)
is x′ = y′. Hence, rλ2 is refined by rλ1

w.r.t. σ to obtain r′λ2
: C(x′, y′, v) ∧ D(v)← B(x′, y′) ∧ ¬

(
x′ = y′ ∧ A(x′)

)
.

Given a set of rules R, let ref≺(R,D) = {ref≺(r,R,D) | r ∈ R}.

Proposition 4.11. For a QAP Λ = (Π,D, q,Σ) and a selection criteria S, let R consists

of all the rules of the form rλ with λ being a solution-form bipartition to Λ. Then, take

Rr = ref≺h
(
ref≺m(R)

)
and Rs = ref≺S (Rr), we have

(1) rexpl(Λ) ≡ Rr(D).

Practical Abduction for Existential Rules 94

(2) rexplS(Λ) ≡ Rs(D).

Proof. We show that (ref≺h(R))(D) ≡ min�h(R(D)), conclusions for other relation can

be similarly proved, thus the result of the proposition follow.

We first show if E 6∈ (ref≺h(R))(D), then there exists E ′ ∈ R(D) s.t. E ′ ≺h E . Let

E be an instance of r ∈ R with instantiation σ, and r∗ = ref≺h(r,R,D). Because

E 6∈ (ref≺h(R))(D), any instantiation agreeing σ is not a valid instantiation for r∗ and

D, which means there exists a conjunct φ¬r′,ρ of r∗ s.t. D 6|= φ¬r′,ρσ. Because ρ is a ≺h-

association from r′ to r w.r.t D, any instantiation π agreeing ρ satisfies head(r′)ρπ ≺h
head(r)ρπ. As D 6|= φ¬r′,ρ, then σ must agrees ρ and D |= body(r′)σ, so E ′ = head(r′)σ is

an instance of r′. And because σ agrees ρ, we have head(r′)σ ≺h head(r)σ, thus E ′ ≺h E .

Next we show if E 6∈ min�h(R(D)), then E 6∈ (ref≺h(R))(D). Let E is an instance of

r ∈ R with instantination σ, i.e., E = head(r)σ. As E 6∈ min�h(R(D)), there exists

E ′ ∈ R(D) s.t. E ′ ≺h E . Let r′ ∈ R be the rule that produces E ′ with instantiation

σ, then E ′ = head(r′)σ′ and D |= bodyF (r)σ′. Because E ′ ≺h E , similar to the proof of

lemma 4.6, we can construct a ≺h-association ρ from r′ to r w.r.t D s.t. ρπ = σ on r and

ρπ = σ′ on r′, where π is an instantiation. It can seen that
∧
t∈vars(r′) ϕ≈

(
[t]ρ∩vars(r)

)
is

always satisfied if we substitutes variables in r with σ, which is less general than ρ. And

as ρπ = σ′ on r′ and body(r)σ′ ⊆ D, we have body(r′)ρσπ = body(r′)ρπ = body(r′)σ′ ⊆

D. Hence, φ¬r′,ρσ can not be satisfied by D. Then σ is not a valid instance of r after

refinement, thus E 6∈ (ref≺h(R))(D).

Example 4.4. Continue with Example 4.3, and consider a selection criteria S =

({C,D}, ∅, ∅). Suppose there is another BCQ in the rewriting set of q by Π being

{A(x),D(x)}, and a corresponding solution-forming bipartition is λ3 = ({A(x)}, {D(x)}).

It leads to a rule rλ3 : D(x′′) ← A(x′′). Then, σ = ∅ is a ≺S-association from rλ3 to

rλ2. Hence, [x′′] = {x} and [x′′]σ ∩ vars(rλ2) = ∅. Also, ρσvars(λ2) = ∅. Hence, r′λ2
will be

further refined by rλ3 to

r′′λ2
: C(x′, y′, v) ∧ D(v)← B(x′, y′) ∧ ¬

(
x′ = y′ ∧ A(x′)

)
∧ ¬A(x′′).

Practical Abduction for Existential Rules 95

Table 4.1: Comparison between representative and selective explanations

Ontology Query
Representative Selective-Pattern Selective-Case

#Rules #FSets Time #FSets Time #Rules #FSets Time

LUBM

q1 4 557 323 2 9 2 555 368
q2 5 13597 699 1 51 2 2167 155
q3 12 18871 190 4 0 7 17093 240
q4 10 40158 664 2 963 2 555 712
q5 50 57546 6537 10 36 10 15086 322

Semintec

q1 4 1786 252 2 3 2 1784 108
q2 6 2730 77 2 10 4 2728 51
q3 6 3570 44 2 3 4 3568 46
q4 6 18002 199 2 5 4 18000 202
q5 6 3570 537 2 22 6 1788 87

Vicodi

q1 5 1259 322 3 3 3 1257 91
q2 3 1257 42 1 11 2 1256 10
q3 1 1 0 1 0 1 1 0
q4 189 556596 4478 84 29 116 556060 5216
q5 247 866896 7624 118 95 150 866336 5743

STB-128

q1 9 50306 794 4 3 6 39931 1001
q2 3 9998 66 2 1 2 9997 127
q3 3 10001 114 2 0 2 10000 131
q4 15 80457 725 6 4 10 69963 1056
q5 15 69773 644 6 1 10 69484 731

ONT-256

q1 9 39401 488 4 5 6 39284 779
q2 9 39696 354 4 1 6 39502 613
q3 9 49661 473 4 1 4 29680 409
q4 11 39759 386 4 2 6 39336 582
q5 9 39606 317 4 1 6 39264 462

4.4 Evaluation

We implemented a prototype system for the computation of both representative expla-

nations and selective explanations on top of Drewer. Since the system in [Du et al.,

2014] cannot handle several of the ontologies we evaluated, we use the representation

explanations generated in our system as a baseline for comparison. All experiments were

performed on a laptop with a processor at 2.20GHz CPU and 16GB of RAM.

LUBM, STB-128, ONT-256 and two new DL ontologies, Semintec and Vicodi are consid-

ered for evaluation. Semintec is about financial services and Vicodi is about European

history. The numbers of rules in these ontologies range from 88 to 529, and the numbers

of facts in their companying datasets range from 100k to 2M.

For each ontology, we used 5 BCQs as observations. Each of the BCQs is obtained

from a CQ provided in existing benchmarks (benchmarks used in Chapter 3) by adding

Practical Abduction for Existential Rules 96

an atom with a fresh predicate (not occurring in the ontology). It guarantees that

none of the BCQs is entailed by the ontologies (together with their datasets), otherwise

the abduction problem is trivial and there will be no difference between the results

of different explanations. The difficulty of a QAP largely depends on the number of

variables in the observation. Unlike many evaluations using observations with at most

one variable, we challenge our systems with observations with 2-3 variables each. It

should be noted that the obtained BCQs are essentially equivalent to the original CQs

and the resulting explanations still make sense if the fresh predicate is ignored.

For each ontology and each BCQ observation, all the predicates in the ontology together

with the fresh predicate introduced in the BCQ are specified as the abducibles.

For each QAP evaluated, we compare the numbers of representative explanations (Rep-

resentative) and selective explanations, as well as the times (in milliseconds) used for

generating them. In particular, for selective explanations, we consider the two special

cases where all abducibles are pattern ones (Pattern) and all of them are case ones (Case).

For the numbers of explanations, we report both the numbers of fact sets (#FSets), and

the numbers of rules (#Rules) as the corresponding compact representations. For Pat-

tern, as Proposition 4.7 shows that the selective explanations are all non-instantiated,

their compact representations are rules with empty bodies and the numbers of rules

coincide with the numbers of fact sets, hence we only report the numbers once. The

results are shown in Table 4.1.

We can see that for Representative and Selective-Case, the numbers of explanations

expressed as fact sets are often several magnitudes larger than those in the form of rules

needed to represent them, which indicates most explanations share similar patterns.

Also, the numbers of explanations for Pattern are significantly smaller than Represen-

tative and Case, due to the fact that such explanations are non-instantiated. Compared

to Pattern, the numbers of explanations (as fact sets) for Case are much larger due to

instantiations, but can still be significantly smaller than Representative (e.g., q2, q4, and

q5 for LUBM, q5 for Semintec, q1 and q4 for STB-128, and q3 for ONT-256). While

computing explanations for Case may take more time than for Representative due to

more complex preference checking, for some cases (e.g., q2 and q5 for LUBM, q1 and q5

for Semintec, and q1 and q2 for Vicodi), the computation for Case is more efficient due

to our optimisations for this special case.

Chapter 5

Inconsistency-tolerant Forgetting

for Ontologies

Query answering can become rather inefficient when an ontology is large even for

tractable languages. To attain efficient performance in real-world applications, it is

necessary to control the sizes of ontologies by proper modularization and manipula-

tions. Forgetting is an important technique to eliminate unwanted (non-logical) sym-

bols from an ontology, while preserving the meaning of the remaining symbols. Similar

notions have been widely studied under various names, such as forgetting [Lin and Re-

iter, 1994] in AI, uniform interpolation [Visser, 1996] in mathematical logic, variable

elimination [Lang et al., 2003b] in propositional logic, and second-order quantifier elim-

ination [Gabbay and Ohlbach, 1992] in second-order logic. In particular, due to its

potentials in ontology applications, forgetting has been intensively studied for various

description logics [Konev et al., 2009, Wang et al., 2010, Lutz and Wolter, 2011, Lutz

et al., 2012, Nikitina and Rudolph, 2014, Ludwig and Konev, 2014, Koopmann and

Schmidt, 2014, Zhao and Schmidt, 2016]. However, the approaches in these studies are

no longer applicable if the considered logical theory is inconsistent. To the best of our

knowledge, there is still no discussions about forgetting for inconsistent ontologies. It is

a challenging and interesting topic, because it is difficult to tell what kind of informa-

tion in an inconsistent ontology should be kept after forgetting and how to rebuild these

information in the forgetting result is much more complex than cases where ontologies

are consistent.

97

Inconsistency-Tolerant Forgetting 98

In this chapter, we present the first study about forgetting in inconsistent ontologies. We

start by discussing possible properties that might be desired in inconsistency-tolerant for-

getting, then we proposed three different definitions of inconsistency-tolerant forgetting

for general ontologies, based on inconsistency-tolerant query answering. Considering the

difficulty of this problem, instead of general existential rules, we study the existence of

forgetting results using these definitions and propose algorithms for their computation

in a light-weight language, DL-litecore. Finally, we show through experiments that our

proposed forgetting can be effectively computed for large inconsistent KBs.

5.1 Inconsistency-tolerant Forgetting Definitions

In this section, we will first discuss desired properties that need to be considered in

inconsistency-tolerant forgetting, and then explore possible solutions for its definitions.

In our discussions, we also adopt the same setting as in inconsistency-tolerant query

answering, given an ontology O = (Π,D), we assume the background knowledge Π of O

is always consistent and errors come from D.

We recall the essential properties in traditional forgetting for consistent ontologies. To

forget a set of symbols Σ from an ontology O, a result should be a new ontology O′

satisfying the following properties:

(P1) O′ is expressed using the symbols in O but not in Σ.

(P2) O′ is equivalent to (or inseparable from) O over the remaining symbols.

Property (P1) guarantees the symbols from Σ are successfully eliminated while no

additional symbols are added (otherwise a renaming would suffice), and is defined in

a standard way. On the other hand, various notions of equivalence (or inseparability)

have been proposed for (P2) in the literature [Konev et al., 2009, Wang et al., 2010].

Equivalence between ontologies are typically defined in terms of their models or logical

consequences. However, if the original ontology is logically inconsistent, it has no models

and trivially entails everything. Thus, the existing definitions of forgetting are not

suitable for inconsistent ontologies.

To keep the information that lead to inconsistencies in an ontology and in the mean

time, avoid the trivialization of inference, a straightforward approach is to introduce

Inconsistency-Tolerant Forgetting 99

non-classical semantics or non-standard inference. Those logics applying non-classical

semantics are also called paraconsistent logics, most of which adopt multi-valued se-

mantics, such as Belnap’s four-valued logics [Belnap, 1977], Kleene’s three-valued se-

mantics [Nguyen and Szalas, 2010]. Here-And-There(HT) logic can be regarded as a

three-valued logic, which can be used to examine strong-equivalence between ASP pro-

grams [Lifschitz et al., 2001]. Intuitively, the tolerance of inconsistencies in multi-valued

semantics is obtained by expanding the space of model candidates, such that even con-

tradict formulas can match a generalized model. But these semantics sacrifice a lot of

inference power, some important properties that coincide with human common senses,

such as disjunctive syllogism, resolution and intuitive equivalence are no longer valid in

these semantics. Though there are some studies trying to balance between inconsistent-

tolerance and inference power, such as quasi-classical logic (QC logic) [Hunter, 2000],

which is also extended for DL [Zhang et al., 2014], they are still not feasible for practical

reasoning.

For application, it is important to retain the full inference power of ontologies. To satisfy

this requirement, we can borrow the idea from inconsistency-tolerant query answering,

that is, we can define equivalence over the repairs of ontologies. Recall that a repair of

an ontology is a maximal consistent component of the ontology. The set of all repairs

of (Π,D) is denoted by repairΠ(D). As repairs are consistent subsets of ontologies, a

model-based definition for inconsistency-tolerant forgetting can be immediately obtained

by combing the models of repairs.

Definition 5.1 (Model-based Forgetting). Given an ontology O = (Π,D), a signature

Σ ⊆ sig(O), an ontology O′ = (Π′,D′) is a model-based forgetting (or m-forgetting) of O

about Σ, if

(1) sig(O′) ⊆ sig(O) \ Σ;

(2)
⋃
B′i∈repairΠ′ (D′)

Mod((Π′,B′i)) ≡Σ
⋃
Bi∈repairΠ(D) Mod((Π,Bi)).

In the above definition, the first condition is standard in forgetting, which corresponds

to (P1). While the second condition builds a model equivalence relation based on

repairs. There can be different ways to composite the sets of models of repairs, taking

the union of them is straightforward and rational: the ontology corresponding to the

resulting set of models is strictly weaker than O. It shall be noted that the results of

Inconsistency-Tolerant Forgetting 100

the above forgetting can be either consistent or inconsistent, which leads us to consider

the following restriction.

(P3) O′ is consistent after forgetting.

Restricting the forgetting results to be consistent can be controversial, as one may argue

that why should forgetting a set of symbols Σ resolve inconsistencies that only con-

cern symbols outside of Σ. If the symbols in Σ are totally unrelated to the causes of

inconsistencies, then the forgetting results should be naturally inconsistent. However,

considering that most existing OBDA systems are not capable to tolerate inconsistencies,

when a consistent forgetting result exists, it is always better to produce a consistent for-

getting result for efficient ontological reasoning. In such cases, forgetting can be regarded

as a special repairing process for ontologies.

If we consider (P3) in the definition, we can obtain a stronger version of m-forgetting.

Definition 5.2 (Consistent Models-based Forgetting). Given an ontology O = (Π,D),

a signature Σ ⊆ sig(O), an ontology O′ is a consistent model-based forgetting (or cm-

forgetting) of O about Σ, if

(1) sig(O′) ⊆ sig(O) \ Σ;

(2) Mod(O′) ≡Σ
⋃
Bi∈repairΠ(D) Mod((Π,Bi)).

As every repair Bi is Π-consistent, Mod(Π,Bi) is not empty, then Mod(O′) must not be

empty, thus O′ is consistent.

Example 5.1. Consider the ontology O = (Π,D), where D = {A(a),R(b, a)} and Π

consists of the following rules,

B(x)← A(x). D(x)← A(x). E(x)← A(x).

D(x)← R(y, x). ⊥ ← R(y, x) ∧ B(x).

O is inconsistent because the constraint cannot be satisfied, and there are two repairs

of O, B1 = {A(a)} and B2 = {R(b, a)}. Let Σ1 = {B}, according to definition 5.1,

O′ = (Π′,D), where Π′ = {D(x) ← A(x). E(x) ← A(x). D(x) ← R(y, x). ⊥ ← R(y, x) ∧

Inconsistency-Tolerant Forgetting 101

A(x).}, is an m-forgetting of O about Σ1. O′ is still inconsistent and it seems a rational

result. If we consider Σ2 = {A}, an m-forgetting of O about Σ2 is, O′′ = (Π′′,D′),

where Π′′ = {D(x) ← R(y, x). ⊥ ← R(y, x) ∧ B(x). ⊥ ← R(b, a) ∧ E(a).} and D′ =

{D(a),R(b, a),B(a),E(a)}.

In the above example, if we want to produce a cm-forgetting of the ontology, we have

to introduce disjunctions to represent the database, which is illegal in most ontologies.

Besides, the rule ⊥ ← R(b, a),E(a) in Π′′ is bit awkward, it is only constructed to create

conflict between R(b, a) and E(a), and it cannot be expressed in most DL ontologies.

Though the above definitions nicely define the equivalence relation for (P2), model-

based forgetting are unnecessarily too strong, their results are often inexpressible in

less expressive ontology languages. For the scenarios of OBDA, where query answer-

ing is the main reasoning task, defining forgetting based on query answering seems

more suitable. With the profound studies of inconsistency-tolerant query answering,

inconsistency-tolerant forgetting can be straightforwardly defined taking advantage of

inconsistency-tolerant semantics.

To demonstrate forgetting under inconsistency-tolerant semantics, we consider the fol-

lowing running example.

Example 5.2. Consider a DL ontology Oe with the following TBox Te:

Cat v Mammal,Parrot v Bird,Mammal v ¬Bird,

Cat v Pet,Parrot v Pet,Cat v Fluffy

and the following ABox Ae: Cat(a),Parrot(a),Parrot(b).

The ontology Oe is inconsistent, as individual a cannot be a mammal and a bird at the

same time. If using different inconsistency-tolerant semantics, the ontology can have

different reasoning results, for example, (1) using the CAR or ICAR semantics to explore

potential candidates for a pet, both Pet(a) and Fluffy(a) can be concluded; (2) using

the more cautious AR semantics, only Pet(a) can be concluded; and (3) using the most

sceptical IAR semantics, nothing about a can be concluded.

While it is promising to define forgetting based on inconsistency-tolerant semantics,

given the fact that there exist different semantics producing different querying answers,

Inconsistency-Tolerant Forgetting 102

it would be desirable for the definition of forgetting to be independent from each specific

semantics.

(P4) The definition of forgetting is independent from a specific inconsistency-tolerant

semantics.

The above property is appealing, however, because there is not a particular criteria for

defining inconsistency-tolerant semantics, it is impossible to obtain a forgetting result

that behaves the same as the original ontology under arbitrary semantics, therefore, it

is necessary to specify the scope of inconsistency-tolerant semantics. In the following

definition, we introduce a set of semantics as one of the inputs of forgetting.

Definition 5.3. For an ontology O, a signature Σ and a set of inconsistency-tolerant

semantics Γ, an ontology O′ is a result of semantics-independent forgetting (or si-

forgetting) of O about Σ and Γ if

(1) sig(O′) ⊆ (sig(O) \ Σ);

(2) O′ |=γ q iff O |=γ q for each BCQ q over sig(O) \ Σ and each γ ∈ Γ.

The definition performs forgetting independently from the specific semantics, in this way,

the features of each semantics is preserved after forgetting. As for a concrete set of the

input semantics, in general cases, we advocate to consider only the four basic semantics,

{AR, IAR,CAR, ICAR}. We choose only these four semantics out of several reasons: (1)

they have close relations between each other, which is essential for the satisfaction of

Condition 2; (2) they don’t need any other extra information or arguments to guide

the entailment; (3) many other semantics stem from them, that means if Condition 2

is satisfied under these four semantics, it is of high chance to be satisfied under other

semantics. We define Γbasic = {AR, IAR,CAR, ICAR}.

Example 5.3. Consider Oe from the running exmaple, Example 5.2, let T ′ = {Cat v

Pet,Parrot v Pet,Cat v Fluffy,Cat v ¬Parrot}. Then (T ′,Ae) is a result of si-forgetting

about {Mammal,Bird} and Γbasic in Oe.

There are cases where a result of si-forgetting does not exist.

Inconsistency-Tolerant Forgetting 103

Example 5.4. Consider again the running example, assume we try to construct a si-

forgetting about {Cat} from Oe. The TBox after forgetting consists of inclusion axioms

Parrot v Bird,Parrot v Pet,Mammal v ¬Bird. To construct the ABox after forgetting,

because O |=AR Pet(a) and O 6|=IAR Pet(a), a result of forgetting should also have the

same entailment. One can easily verify (by checking all possible results) that this cannot

be achieved.

We can also obtain a stronger version of si-forgetting by considering (P3).

Definition 5.4. For an ontology O, a signature Σ and a set of inconsistency-tolerant

semantics Γ, an ontology O′ is a result of strong forgetting (or st-forgetting) of O about

Σ and Γ if

1. sig(O′) ⊆ (sig(O) \ Σ);

2. O′ |= q iff O |=γ q for each BCQ q over sig(O) \ Σ and each γ ∈ Γ.

The definition is adapted from Definition 5.3 by replacing |=γ with |= in Condition 2.

Note that since O 6|=γ ⊥, O 6|= ⊥, and O′ is consistent, thus the definition satisfies (P3).

Example 5.5. Consider Oe from Example 5.2, let T ′ = {Cat v Mammal,Parrot v

Bird,Mammal v ¬Bird}, then (T ′, {Parrot(b)}) is a st-forgetting of Oe about {Pet,Fluffy}

and Γbasic.

A result of st-forgetting is also a result of si-forgetting, which implies that a result of

si-forgetting exists whenever it exists for st-forgetting. Nevertheless, as the following

example shows, a result of si-forgetting may exist when st-forgetting does not.

Example 5.6. In example 5.3, (T ′,Ae) is result of si-forgetting of Oe about {Mammal,Bird}

and Γbasic. However, there does not exist a result of st-forgetting about {Mammal,Bird}

and Γbasic of Oe.

The forgetting results of st-forgetting seem ideally perfect, however, it is quite unrealistic

to compute them in most inconsistent ontologies. As one can see, Condition 2 actually

requires that the ontology produces the same answers under all given semantics, which

can be barely achieved. In fact, if we consider Γbasic as input, condition 2 can be satisfied

only when it holds that O gives the same answers under IAR and CAR for any queries.

Inconsistency-Tolerant Forgetting 104

Lemma 5.1. Given an ontology O and a signature Σ, a st-forgetting about of O about Σ

exists only when the following condition holds: for any BCQ q over sig(O)\Σ, O |=IAR q

if O |=CAR q.

Proof. The proof is straightforward. If there exists q over sig(O)\Σ such that O 6|=IAR q

and O |=CAR q, to obtain an ontology O′ satisfying O′ 6|=IAR q and O′ |=CAR q, O′ has

to be inconsistent, then there is no way to obtain a st-forgetting about Σ and Γbasic in

O.

Though (P4) can guarantee that the forgetting results are highly close to the origin

ontology over inconsistency-tolerant query answering, it is arguable that having a single

notion of forgetting that fits various inconsistency-tolerant semantics could be unneces-

sary. Because in some application scenarios, users may only focus on only one particular

semantics, then there is no need to acquire query answering equivalence for other seman-

tics. Hence we look into notions of forgetting that are specific with different semantics.

Dropping (P4), we have the following definition of forgetting that takes a single seman-

tics γ as a parameter.

Definition 5.5. For an ontologyO, a signature Σ and a inconsistency-tolerant semantics

γ, an ontology O′ is a result of γ-forgetting about Σ in O if

(1) sig(O′) ⊆ (sig(O) \ Σ);

(2) O′ |= q iff O |=γ q for each BCQ q over sig(O) \ Σ.

Example 5.7. For a result of γ-forgetting about {Cat,Parrot} in Oe with γ ∈ Γbasic, the

TBox is {Mammal v ¬Bird}. The ABox is as follows:

• IAR-forgetting: {Pet(b),Bird(b)}

• ICAR-forgetting: {Pet(b),Bird(b),Pet(a),Fluffy(a)}

• AR-forgetting: {Pet(b),Bird(b),Pet(a)}

• CAR-forgetting: {Pet(b),Bird(b),Pet(a),Fluffy(a)}

Inconsistency-Tolerant Forgetting 105

5.2 Inconsistency-tolerant forgetting for DL-lite

In this section, the computation of st-forgetting, si-forgetting and γ-forgetting will be

studied. Because this work is the first attempt to consider forgetting for inconsistent

ontologies, we choose a simple language for which both forgetting and inconsistency-

tolerant query answering have been sufficiently discussed as a start point. We will have

our focus on the light-weight DL language, DL-litecore.

One common issue in query-based forgetting definitions is that they render no constraint

on the shape of the resulting TBox. For instance, considering an ontology (Te, ∅) where

Te is as in Example 5.2, to forget Mammal and Bird, both ontologys (∅, ∅) and ({Cat v

Parrot}, ∅) would entail the same BCQs as the initial ontology. Yet the first result

eliminates everything from the initial TBox and the second one even introduces an

erroneous inclusion Cat v Parrot.

Therefore, we slightly strengthen our definitions for DL-lite ontologies. First, we define

a language extended from DL-litecore that is sufficient to capture the logical relationship

specified by both TBoxes and ABoxes. The extended language, denoted DL-Liten, allows

ABox assertions of the forms A(t) or P (t, t′) with t, t′ being labeled nulls from NI or

variables from NV . We assume that when DL-liten is used as a query language, variables

in an assertion are considered existentially quantified; and when DL-liten assertions are

used to represented an ABox, they contains only constants and labeled nulls.

We state that the new language is sufficient to capture equivalence over DL-Litecore CQ

answering.

Remark 1. For two DL-Litecore ontologies O1,O2, a signature Σ, and an inconsistency-

tolerant semantics γ, suppose O1 |=γ Q iff O2 |=γ Q for each set of DL-Liten axioms Q

over Σ, then O1 |=γ q iff O2 |=γ q for each BCQ q over Σ.

Then the definitions of st-forgeting, is-forgetting and γ-forgetting for DL-litecore ontolo-

gies are strengthened by revising Condition 2: each occurrence of “BCQ q” is replaced

by “set of DL-liten axioms Q”; and requiring the forgetting result O′ to be expressed in

DL-liten.

With the strengthened definition, it can be shown that a result of st-forgetting, once

exists, is unique up to logical equivalence.

Inconsistency-Tolerant Forgetting 106

Proposition 5.1. If O1 and O2 are both results of st-forgetting about a signature Σ and

Γ of a DL-litecore ontology O, then O1 ≡ O2.

Proof. According to the definition, for each γ ∈ Γ, any set of DL-liten axioms Q over

sig(O) \ Σ, we have O1 |= Q ⇔ O |=γ Q ⇔ O2 |= Q. Since sig(O2) ⊆ (sig(O) \ Σ), then

every axiom in O2 can be entailed by O1, that means, O1 |= O2. Similarly, we also have

O2 |= O1.

Because γ-forgetting is actually a special case of st-forgetting (if we restrict Γ to contain

only one semantics), γ-forgetting also satisfies uniqueness. While the following example

shows that a result of si-forgetting is not necessarily unique.

Example 5.8 (Example 5.2 cont’d). (T ′, {Parrot(b)}) and (T ′,Ae) are both si-forgetting

about {Pet,Fluffy} and Γbasic in Oe.

Though there may be several results of si-forgetting, they share the same conflict-free

part. A conflict in an ontology is a minimal component of data that leads to inconsis-

tencies of the ontology.

Definition 5.6 (Conflict). Given an ontology O = (T ,A), a conflict in O is a minimal

subset of A such that T ∪ A′ is inconsistent.

We use confs(O) to denote the union of all conflicts in O. The following lemma shows

that the results of si-forgetting only differ in how conflicts are introduced.

Lemma 5.2. If O1 and O2 are both results of si-forgetting about a signature Σ from an

ontology O, then O1 \ confs(O1) ≡ O2 \ confs(O2).

Proof. For any set DL-liten axioms Q, O1 \ confs(O1) |= Q ⇔ O1 \ confs(O1) |=IAR Q ⇔

O |=IAR Q ⇔ O2 \ confs(O2) |=IAR Q ⇔ O2 \ confs(O2) |= Q, thus O1 \ confs(O1) ≡

O2 \ confs(O2).

For the computation of st-forgetting, we show that it can be reduced to forgetting in con-

sistent ontologies if only the semantics in Γbasic are considered. As we have mentioned,

even for query-based forgetting in consistent ontologies, the result is not guaranteed to

exist in first-order logic if it is allowed to forget arbitrary symbols from the ontologies.

Inconsistency-Tolerant Forgetting 107

While it has been shown that a result of forgetting only concept names from DL-litecore

ontologies always exists in DL-Liten, moreover, the result is unique (up to equivalence).

Hence, in following discussion, we restrict ourselves to consider only forgetting of con-

cepts. Note that, according to the previous discussions, even only concepts are forgotten,

results of st-forgetting and si-forgetting are still not guaranteed to exist. Given a DL-

litecore ontology and a set of concept names, we use forget(O,Σ) to denote the result

returned by Algorithm 2.

Proposition 5.2. For an ontology O = (T ,A) in DL-litecore and a set of concept names

Σ, if O′ is a result of st-forgetting about Σ and Γbasic in O, then O′ ≡ forget((T ,A \

confs(O)),Σ).

Proof. Let Of = forget((T ,A \ confs(O)),Σ). According to lemma 5.1, if O′ is a result

of st-forgetting about Σ in O, then we have for any Q over sig(O) \ Σ, if O |=CAR q,

then O |=IAR q, so to compute st-forgetting, we only need to check IAR equivalence. As

O |=IAR Q is equivalent to (T ,A \ confs(O)) |= Q, and by the definition of forget, we

also have (T ,A\ confs(O)) |= Q iff Of |= Q, so Of is a st-forgetting about Σ in O. Then

together with proposition 5.1, we have O′ ≡ Of .

The above proposition tells that if there exists a st-forgetting of the ontology, then we

can compute it in two steps: (1) first remove all conflicts from the ontology; (2) then

perform consistent forgetting to the resulting consistent ontology. The process is quite

similar to the computation of query answering under IAR semantics. In fact, when the

result of st-forgetting exists, we can immediately regard it as a result of γ-forgetting. It

is not difficult to see that forget((T ,A \ confs(O)),Σ) is actually an IAR-forgetting of O

about Σ.

While for si-forgetting, its computation is much more complicated. Given an ontology

O in DL-litecore, to compute its si-forgetting results about concepts, a straightforward

approach is to guess a result O′, then check whether O′ satisfies Conditions 1 and 2

in Definition 5.3, which involves checking equivalence under each inconsistency-tolerant

semantics γ ∈ Γbasic. Since checking AR and CAR entailment is already CoNP-complete

w.r.t. data complexity [Lembo et al., 2010], the above process is highly intractable.

In what follows, we propose a sound (but not necessarily complete) PTime algorithm

to compute si-forgetting. The algorithm attempts to find “substitutes” to replace the

Inconsistency-Tolerant Forgetting 108

conflicts that will be omitted during forgetting in a way that preserves equivalence under

all concerned inconsistency-tolerant semantics. Given an ABox assertion α in DL-Liten

and a set of concept names Σ, a substitute of α should inherit all entailment from α

(outside Σ). Recall that HB(O) the herbrand base of O is the set of all assertions that

can be formed over sig(O) and const(O), which we slightly extend here to denote all such

assertions in DL-Liten. Let O = (T ,A), we define clcΣ
T (α) = { β ∈ HB(O) | sig(β)∩Σ =

∅, (T , {α}) |= β } as the set of logical consequences of α outside of Σ under T , and

confT (α) = {β ∈ assert(O) | T ∪ {α, β} |= ⊥} be the set of all assertions that are in

conflict with α under T . A membership assertion β ∈ HB(O) is a valid substitute of α

w.r.t. Σ, if clcΣ
T (β) ≡ clcΣ

T (α) and confT (β) ≡ confT (α).

Example 5.9. Let O = (T ,A), where T = {A v D,B v ∃R, ∃R v D,A v ¬∃R}, A =

{A(a),B(a)}. Apparently, O is inconsistent as A itself is a conflict of O. If we consider

forgetting {B} from the ontology, because clcΣ
T (B(a)) = {R(a, u)} = clcΣ

T (R(a, u)) and

confT (B(a)) = {A(a)} = confΣ
T (R(a, u)), where u is a labeled null, we have R(a, u) is a

valid substitute of B(a) w.r.t {B},

Lemma 5.3. For an ontology O = (T ,A) in DL-litecore and a signature Σ, if O′ is

obtained from O by replacing a subset of A with their valid substitutes w.r.t. Σ, then

for each set of DL-Liten axioms Q that sig(Q) ∩ Σ = ∅, O |=γ Q iff O′ |=γ Q for each

γ ∈ Γbasic.

Proof. Let vs be the function that maps O to O′. We first prove that B is a repair of O

if and only if vs(B) is a repair of O′. Let B′ = vs(B). If B is a repair of O, then for any

other ABox assertion β ∈ O′ that β 6∈ B′, β must be in conflict with a certain β′ ∈ B′,

otherwise, let vs(α) = β, then α 6∈ B, because confT (β) = confT (α), α is not in conflict

with any α′ ∈ B, which contradicts the fact that B is a maximal consistent component

of O. Thus B′ is a maximal consistent component of O, i.e., a repair of O. The other

direction can be similarly proved.

We claim that for each BCQ q outside of Σ, each A′ ⊆ A, (T ,A′) |= q iff (T , vs(A′)) |= q.

Let q be a connected BCQ outside of Σ, if (T ,A′) |= q, then there exists a homomorphism

h such that h(q) ⊆ I(T ,A′), if the domain of h(q) contains individuals, because clcΣ
T (A′) ≡

clcΣ
T (vs(A′)), then h(q) ∈ I(T ,vs(A′)), so (T , vs(A′)) |= q; if the domain of h(q) does not

contain individuals, there exists a cause atom c ∈ q such that T ∪A′ |= c and T ∪ c |= q,

Inconsistency-Tolerant Forgetting 109

because we also have T ∪ vs(A′) |= c, so T ∪ vs(A′) |= q. The other direction can be

similarly proved.

Finally, we show for each BCQ q that sig(Q) ∩ Σ = ∅, O |=γ q iff O′ |=γ q for each

γ ∈ {AR, IAR,CAR, ICAR}. Let q be any BCQ outside of Σ,

1. AR: For any repair B of O, we have vs(B) as a repair O′, and because (T ,B) |= q

iff (T , vs(B)) |= q, it follows that O |=AR q iff O |=AR q.

2. IAR: Let B0 =
⋂
B∈rep(O), because B ∈ rep(O) iff vs(B) ∈ rep(O), we have vs(B0) =⋂

B∈rep(O′). Then (T ,B0) |= q iff (T , vs(B0)) |= q, it follows that O |=IAR q iff

O |=IAR q.

3. CAR: There is a little difference in proving the CAR case, let OC and O′C denote

the ontologies extended from O, O′ by adding consistent logical consequences. we

show that B is a repair of OC if and only if there is a repair B′ of O′C such that

B ∼Σ B′, where ∼Σ denotes that two sets agree on all atoms outside of Σ. Let

B be a repair of OC , we construct B′ by deleting all α ∈ B that α 6∈ clcT (vs(A))

(notice that such α must be inside of Σ), adding all β ∈ clcT (vs(A)) that β is not

in conflict with B under T (Possible β is also inside of Σ). So we have B ∼Σ B′,

R′ is a repiar of O′C . Similar to the preceding discussion, with R ∼Σ R′, we can

conclude for any q outside of Σ, (T , R) |= q iff (T , R′) |= q, thus O |=CAR q iff

O |=CAR q.

4. ICAR: With the discussion in CAR case, we can easily have B0 ∼Σ B′0, where

B0 and B′0 are the intersections of all CAR-repair of O and O′, so O |=ICAR q iff

O′ |=ICAR q.

Algorithm 4 first performs consistent ontology forgetting over the conflict-free portion

of the ontology (Line 1), which generates the complete resulting TBox (of forgetting)

and a conflict-free subset of the resulting ABox. It then examines each initial ABox

assertion that involved in a conflict (Line 2): If the assertion does not contain concepts

to be forgotten, it is added to the result (Lines 3 – 4); or if a valid substitution is

found on the remaining signature, add it to the result (Line 6 – 7); otherwise if a valid

Inconsistency-Tolerant Forgetting 110

Algorithm 4: Compute si-forgetting

Input : an ontology O in DL-litecore and a set of concept names Σ
Output: a result of is-forgetting O′ or Failure

1 begin
2 O′ := forget(O \ confs(O),Σ);
3 for α ∈ confs(O) do
4 if sig(α) ∩ Σ = ∅ then
5 O′ := O′ ∪ {α}
6 else
7 if a valid substitute β of α exists w.r.t Σ s.t. sig(β) ∩ Σ = ∅ then
8 O′ := O′ ∪ {β};
9 else

10 return Failure;

11 return O′;

substitution cannot be found, return Failure (Line 9). The algorithm runs in polynomial

time w.r.t. data complexity, note that confs(O) can be computed using query rewriting

[Bienvenu et al., 2014b] and whether a valid substitute of α exists can be checked in

polynomial time. The algorithm is not necessarily complete, that is, returning Failure

does not necessarily means no si-forgetting result exists. The soundness of the algorithm

is stated as follows.

Theorem 5.1. For an ontology O in DL-litecore and a set of concept names Σ, an

ontology O′ returned by Algorithm 4 is a result of si-forgetting about Σ and Γbasic of O.

Proof. If an ontology O′ is returned, then for each α ∈ confs(O), there exists a valid

substitute of α about Σ, let A′⊥ denote the set of assertions substituting confs(O), and let

A> = A\confs(O), (T ′,A′>) = forget(O\confs(O),Σ). We next prove that for any BCQ

q over sig(O) \ Σ, (T ,A′⊥ ∪ A′>) |=γ q ⇔ O |=γ q, which is achieved by modifying the

proof for lemma 5.3. Notice that elements in A′> are not necessarily valid substitutes of

elements in A>, but with the computation of forget, we have clcΣ
T (A′>) ≡ clcΣ

T (A>), and

moreover, becauseA> is not in conflict with any other elements inA, then so isA′>, along

with A′⊥ being the valid substitution of A⊥, we can obtain all the statements in lemma

5.3 using similar ideas. According to [Wang et al., 2008], T ′ is a model-based forgetting

of T , that is Mod(T ′) ∼Σ Mod(T), then the equivalence (T ,A′⊥ ∪ A′>) |=γ q ⇔ O |=γ q

can be naturally reserved if we replace T with T ′, thus the return ontology O′ is a

si-forgetting about Σ in O.

Inconsistency-Tolerant Forgetting 111

Though neither st-forgetting nor si-forgetting is guaranteed to exist in DL-Liten, in what

follows, we show that a result of γ-forgetting about concepts always exists.

Theorem 5.2. For a DL-Litecore ontology O and a set of concept names Σ, a result of

γ-forgetting about Σ of O always exists in DL-Liten for each γ ∈ Γbasic.

To show the above result, we first note that the TBox for a result of γ-forgetting is

always the same (up to logical equivalence) regardless the semantics γ.

Proposition 5.3. For an ontology O = (T ,A) in DL-litecore, a set of concept names

Σ and a semantics γ, if (T ′,A′) is a result of γ-forgetting about Σ of O then T ′ ≡

forget(T ,Σ).

Proof. According to the definition of inconsistency-tolerant query answering, for any set

of inclusion axioms (i.e., TBox axioms) Q, O |=γ Q ⇔ O |= Q. Therefore, (T ′,A′) |=

Q ⇔ O |= Q ⇔ forget(T ,Σ) |= Q, thus T ′ ≡ forget(T ,Σ).

We have discussed that st-forgetting can be performed in two steps and the result of

which is actually an IAR-forgetting. And particularly, A \ confs(O) is the IAR repair of

O defined in [Lembo et al., 2010].

Proposition 5.4. For a DL-litecore ontology O = (T ,A) and a set of concept names

Σ, forget((T ,A \ confs(O),Σ) is a result of IAR-forgetting about Σ of O.

To compute the ABox of a result of ICAR-forgetting, one can simply replace A with

clcT (A) before computing the IAR-repair (which computes the ICAR-repair) and per-

forming consistent ontology forgetting.

The cases for AR-forgetting and CAR-forgetting are much more complicated, as there

no longer exists a single trivial AR- or CAR-repair that one can perform consistent KB

forgetting on. Instead, we need to consider different repairs of the ontology and all the

possible sets of DL-Liten assertions (BCQs) that are entailed by all repairs, which is

indeed a very challenging task.

Inconsistency-Tolerant Forgetting 112

Example 5.10. Let O = (T ,A), where

T = {A v ∃P, ∃P− v T, T v P

B v ∃R, ∃R− v ∃P, A v ¬B}

A = {A(a),B(a)}

O is inconsistent and there are two repairs of O, B1 = {A(a)} and B2 = {B(a)}. Let

O1 = (T ,B1) and O2 = (T ,B2), to check the possible entailment of O1 and O2, we

compute their canonical models, which are represented as sets of atoms,

IO1 ={A(a),P(a, u1),T(u1, u2),P(u2, u3), . . . },

IO2 ={B(a),R(a, u1),P(u1, u2),T(u2, u3),P(u3, u4), . . . }

here for neat presentation, instead of paths, ui are used to represent the labeled nulls in

canonical models. Both canonical models are infinite, but we can tell that all BCQs of the

form qn = {P(x0, x1),T(x1, x2), . . . ,P(xn, xn+1),T(xn+1, xn+2)} (n ≥ 0) can be entailed

by O under the AR semantics. Then a direct ABox that captures all the AR entailment

of O is an infinite set {P(u0, u1),T(u1, u2),P(u2, u3),T(u3, u4) . . . }. Actually, there is

another simple ABox that can capture all AR entailment, which is {P(u0, u1)}.

In the above example, we can discover that the key to decide AR entailment is to find

the ‘converge points’ of the canonical models IOi : P(x, y) is satisfied in both IO1 and

IO2 . The rest AR entailment can be completed by adding TBox: for any BCQ q, q is

entailed by ({P− v T, T v P}, {P(u0, u1)}) if and only q is entailed by O under the AR

semantics.

However, to find such ‘converge points’, it is unnecessary to compute the whole canonical

model, which is possibly infinite. We propose a finite model for DL-litecore ontologies

called semi-model. The semi-model of an ontology O, denoted JO, is defined in a similar

way as the canonical model IO. The difference is that the domain of JO, denoted ∆JO

is a finite subset of ∆IO . More specifically, ∆JO consists of paths acR1 · · · cRn ∈ ∆IO

such that cRi 6= cRj , for 1 ≤ i 6= j ≤ n. That is , ∆JO consists of paths without any

loop and thus the domain is finite. And the mapping function for JO, ·JO is defined as

follows:

Inconsistency-Tolerant Forgetting 113

aJO = a for a ∈ ind(O), AJO = AIO ∩∆JO ,

PJO = P IO ∩ (∆JO ×∆JO).

Example 5.11. In example 5.10, we have

JO1 ={A(a),P(a, u1),T(u1, u2)},

JO2 ={B(a),R(a, u1),P(u1, u2),T(u2, u3)}

And P(x, y) is satisfied in both JO1 and JO2.

a
A

IO1

acP

acPcT

acPcTcP

acPcTcPcT

P

T

P

T

...

a
B

IO2

acR

acRcP

acRcPcT

acRcPcTcP

R

P

T

P

...

qn

x0

x1

x2

x3

x4

P

T

P

T

...

q′

x

y

P

JO1

JO2

Figure 5.1: AR entailment of example 5.10

Now we show that semi-models are sufficient to capture all AR entailment for DL-litecore

ontologies, the intuitive idea of which is, if there is a ‘converge point’ for the canonical

models of the repaired ontologies, then it must be covered by the semi-models. Define

QO to be the set of all BCQ q satisfying that, for each repair B of O, J(T ,B) |= q.

Proposition 5.5. For an ontology O = (T ,A) in DL-litecore and each BCQ q, we have

O |=AR q iff there exists q′ ∈ QO such that T ∪ q′ |= q.

Inconsistency-Tolerant Forgetting 114

Proof. As any BCQ is equivalent to a set of connected BCQs (i.e., any atom in the query

has shared variable with another atom in the query), it is sufficient for us to discuss only

connected BCQs.

The right direction is straightforward, we show the left direction. Let q be a connected

BCQ, Oi = (T ,Bi), where Bi ∈ rep(O). If O |=AR q, then IOi |= q for every Oi, i.e.,

there exists a homomorphism σi from q to IOi such that qσi ⊆ IOi . Now we obtain a

subset qi of q for each Oi and show T ∪ qi |= q:

1. If qσi ∩ JOi 6= ∅, we make qi be the subset of q that are mapped to JOi with σi,

i.e, qiσi = JOi ∩ qσi, it follows that JOi |= qi. To explain T ∪ qi |= q, we view qi

as a special set of facts and define σ′ as follows, for v ∈ var(qi), vσ
′ = v, and for

v′ ∈ var(q) \ var(qi), if R(v′′, v′) is in q, then v′σ′ = (v′′σi)cR, note that only one

role relation can occur between v and v′′ if v′ is outside of qi. It is easy to find

that qσ′ is a subset of the canonical model of T ∪ qi, so T ∪ qi |= q.

2. If qσi ⊆ (IOi \ JOi), let p = acR1 . . . cRn be the shortest path in the range of σi,

we define pσ′ = acR1 . . . cRn′ , where n′ ≤ n, and for l 6= m, cRl 6= cRm . For any

other path p′ = ppt in the range of σi, we define p′σ′ = (pσ′)pt. It can be checked

that qσ′σi is still a subset of IO, and qσ′σi ∩ JOi 6= ∅. Then we can obtain qi as

the above situation such that JOi |= q and T ∪ qi |= q.

w.l.o.g. we suppose O has two repairs B1, B2. Let q1 and q2 be the subsets of q

obtained for O1 and O2 respectively, we prove that there exists q′ that T ∪ q′ |= q and

JO1 ,JO2 |= q′, i.e., q′ ⊆ QO.

1. If q1 ∩ q2 = ∅, then q1σ2 ⊆ IO2 \ JO2 , according to the preceding discussion, there

exists q′ ⊆ q1 such that T ∪ q′1 |= q1, clearly, q′ is also a subset of q2, so JO2 |= q′.

And because T ∪ q1 |= q, so T ∪ q′ |= q.

2. If q1 ∩ q2 6= ∅, let q′ = q1 ∩ q2, then JO1 ,JO2 both entails q′. Because (q \ q2)σ2 ⊆

IO2 \ JO2 , so (q1 \ q2)σ2 ⊆ IO2 \ JO2 , let q′2σ2 ∈ q2σ2 be the atom adjacent to

(q1\q2)σ2, then similarly, we have T ∪q′2 |= q1\q2. And because any atoms adjacent

to (q1 \ q2)σ2 must be in q1σ2, otherwise q1 ∩ q2 = ∅ or q1 is not connected, so

q′2 ⊆ q1 ∩ q2 = q′, thus T ∪ q′ |= q′ ∪ (q1 \ q2) = q1 ⇒ T ∪ q′ |= q.

Inconsistency-Tolerant Forgetting 115

Our claim immediately follows.

Because JO is always finite, it can be shown that QO can be represented by a finite

subset.

Lemma 5.4. There exists a finite subset Q∗O ⊆ QO such that Q∗O |= QO.

Proof. Let Oi = (T ,Bi), where Bi is a repair of O. We note that each JOi is a finite set

of atoms. For any q that can be homomorphically mapped to subsets of each JOi , we

can always construct a finite q′ whose size is bounded by the max size of JOi such that

q′ is homomorphically mapped to each JOi and q′ |= q. With a bounded size (the max

size of JOi), a bounded number of predicate symbols (the intersection of signatures of

each JOi), a bounded number of constants, the number of q′ that can be constructed

for all q ∈ QO is finite (up to variable renaming). Let Q∗O be the union of all such q′,

then Q∗O is a finite subset of QO, and Q∗O |= QO.

Now we can obtain a set of DL-liten assertions A∗O from Q∗O, by replacing each variable

in Q∗O with distinct labeled nulls. Note that we assume different q in Q∗O uses a different

set of variables. We claim that A∗O is consistent with the TBox.

Lemma 5.5. A∗O is always consistent with T .

Proof. The claim is easy to show. For any BCQs q, if q can be entailed by (T ,A) under

the AR semantics, then q is entailed by (T ,Bi), where Bi is a repair of (T ,A), then q

must be consistent with T , otherwise (T ,Bi) is inconsistent. While replacing variables

with labeled nulls in the BCQs will not create conflicts in them.

Then given a set of concept names Σ, forget((T ,A∗O),Σ) is a result of AR-forgetting

about Σ of O.

Similarly, to compute the ABox of a result of CAR-forgetting, one can simply replace A

with clcT (A) before computing QO. Thus we completes the proof of theorem 5.2.

Inconsistency-Tolerant Forgetting 116

5.3 Graph-based Implementation and Evaluation

From the above discussions, we can see that γ-forgetting possesses favourable properties

w.r.t. computation. In particular, the computation of IAR- and ICAR-forgetting enjoys

polynomial time data complexity. To evaluate its scalability over large ontologies, we

implemented a prototype system for IAR-forgetting in DL-litecore.

5.3.1 Graph-based Implementation

Instead of directly applying the constructive method used in (the proofs of) the previous

section, we adopted a graph-based approach, which allows us to represent and store DL-

lite ontologies in graph databases and perform forgetting using well optimised graph

operations. We are inspired by the graph-based approaches for ontology revision [Qi

et al., 2015, Fu et al., 2016], which were shown to be effective in handling conflicts.

Yet in contract to ontology revision, where the update is small compared to the whole

ontology, forgetting often requires graph operations on a much larger scale. We briefly

introduce our graph-based approach for IAR-forgetting.

Given an ontology O in DL-litecore, we first transform O into a directed binary graph

GO in a similar manner as [Qi et al., 2015], which can be stored in the high-performance

graph database like Neo4j 1. In GO, each node represents either a concept or an indi-

vidual of O. An edge represents either an inclusion axiom between concepts, which we

call an inclusion edge, or a membership assertion between an individual and a concept,

which we call a membership edge. To forget about a set of concepts Σ from O, we

perform the following operations on GO:

1. For each pair of nodes of the form B and ¬B, we search for their shared members

and remove the corresponding membership edges (which represent conflicts in O).

2. For each node of the form A or ¬A with A ∈ Σ, we build edges between its

predecessors and successors and then remove all the edges associated to it.

Then the ontology represented by the resulting GO is an IAR-forgetting about Σ in O.

1https://neo4j.com/

Inconsistency-Tolerant Forgetting 118

ABox original size result size Time (s)

A15e−4
5 500K 659K 21.9

A5e−2
5 508K 664K 22.6

A2e−1
5 532K 678K 21.0

A15e−4
10 931K 1.2M 32.5

A5e−2
10 945K 1.2M 33.6

A2e−1
10 989K 1.3M 34.7

A15e−4
20 2.0M 2.6M 63.4

A5e−2
20 2.0M 2.7M 64.9

A2e−1
20 2.1M 2.7M 67.2

Table 5.1: IAR-forgetting on inconsistent LUBM ontologies

is rather stable across different ration of conflicts, which is contributed by the graph-

based approach that allows the conflicts to be handled quite efficiently. Finally, when

forgetting eliminates concepts and conflicts from an ontology, which corresponds to the

removal of nodes and edges in the graph, it also adds new axioms, which corresponds to

the addition of edges between the predecessors and successors of the eliminated nodes.

Since forgetting certain key concepts (which can be seen as hubs in a network) requires

cross-linking many nodes, the forgetting operation does not necessarily reduce the size

of the initial ontology. Indeed in our experiment, the average sizes of the ontology grew

after forgetting, yet the growth is limited.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The prime aim of this thesis is to promote the application of OBDA, by studying typical

reasoning problems over expressive ontologies and proposing practical approaches for

these problems when they cannot be finely handled in real-world cases. We emphasize

four important capabilities of a practical OBDA systems, which are the capabilities of

efficient query answering over large volumes of data, explaining reasoning services, prop-

erly manipulating ontologies and handling possibly inconsistent knowledge. However,

existing research and techniques are still far from meeting these requirements.

Because first-order rewriting suffers from poor scalability, which become more serious in

expressive languages, a more compact rewriting should be considered for existential rules.

Observing that current studies about datalog rewriting in existential rules are mostly

theoretical, providing no practical algorithms for implementation and very few systems

driven by datalog rewriting have been developed, we propose a practical approach and

deliver a prototype system called Drewer for query answering and data rewriting in

existential rules. Our rewriting approach is based on the notion of unfolding, while

such technique usually generates a lot of redundant rules, we use a sophisticate strategy

to reuse predicates in the construction of final rewriting. For datalog rewritability, we

identify an abstract class called weakly separable rule sets, and show that a number of

novel classes falling in this class can be obtained by combining existing well-accepted

classes. We evaluate our system over a wide range of benchmarks and compare it with

119

Ontology-based Data Access 120

state-of-the-art systems, the result of which shows superior performance of our system

on both the compactness of rewriting and efficiency of query answering.

Regarding the capability of explaining query answering, current research of query ab-

duction is still not sufficient for application as they are focusing on solving the problem,

not providing appropriate strategies to satisfy the needs of different users in different

scenarios. Moreover, most of these studies are discussed in less expressive languages.

To provide suitable explaining services, explanations should be evaluated and selected

in a more delicate way, for which we propose a novel framework for query abduction,

where by further classification of abducibles, users are allowed to distinguish high-level

pattern explanations from low-level concrete explanations. We show that our proposed

explanation can be much more compact than current explanations, such as represen-

tative explanations. For its computation, we develop an algorithm based on backward

chaining rewriting for existential rules. Evaluation result shows our approach can scale

well over large databases.

When existing techniques of forgetting can not apply to complex real-world scenarios

where inconsistencies might occur, we present the first study about forgetting over incon-

sistent ontologies. It is a challenging topic because when an ontology O is inconsistent,

it is difficult to define the equivalence relation between O and its forgetting results.

We propose three general definitions based on inconsistency-tolerant query answering,

their properties and computation are discussed in DL-litecore. We show through exper-

iments that our proposed forgetting can be effectively computed for large inconsistent

ontologies.

6.2 Future Work

We outlook possible future work.

1. As both chase-based and rewriting-based query answering have their pros and cons,

many existing systems consider a combined approach, that is, using both rewriting

and database saturation in the actual evaluations, a notable example of which is

the Graal system. Such a combination can usually improve the performance of the

system and let it handle a lot more ontologies even if they are not rewritable or

Ontology-based Data Access 121

cannot be finitely chased. It also provide a certain kind of flexibility when users

have different attitudes to the managements of data. We are planning to introduce

this feature to Drewer.

2. It shall be noted that current works about explaining positive answers also suffer

similar limitations as query abduction do. Our framework can also be adapted to

explaining positive query answers. In addition, in our framework, we discriminate

between predicates to select desired explanations, it would be interesting to con-

sider a more delicate criteria based on the predicate positions to further filter the

explaining results, which seems rational in real-world cases, as different users may

have different requirements on the terms at different positions.

3. Regarding our proposed inconsistency-tolerant forgettings, we discuss their prop-

erties and computation methods only in DL-litecore, it is necessary to extend our

current work to cover more expressive languages like existential rules. Besides,

though we have shown the existence of results of AR-forgetting in DL-litecore, due

to the complex nature of the problem, it is still very challenging to deliver an effi-

cient algorithm for AR-forgetting. It seems that a promising approach to compute

a result of AR-forgetting is to transform it into existing well-studied problems, such

as answering set programming (ASP) [Gelfond and Lifschitz, 1988], where repairs

can possibly be expressed by stable models.

References

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of

Databases. Addison-Wesley.

[Ahmetaj et al., 2018] Ahmetaj, S., Ortiz, M., and Simkus, M. (2018). Rewriting

guarded existential rules into small datalog programs. In Proceedings of 21st In-

ternational Conference on Database Theory (ICDT 2018), pages 4:1–4:24.

[Arenas et al., 1999] Arenas, M., Bertossi, L. E., and Chomicki, J. (1999). Consis-

tent query answers in inconsistent databases. In Proceedings of the Eighteenth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-

99), pages 68–79.

[Arenas et al., 2016] Arenas, M., Botoeva, E., Calvanese, D., and Ryzhikov, V. (2016).

Knowledge base exchange: The case of OWL 2 QL. Artif. Intell., 238:11–62.

[Arocena et al., 2015] Arocena, P. C., Glavic, B., Ciucanu, R., and Miller, R. J. (2015).

The ibench integration metadata generator. Proc. VLDB Endow., 9(3):108–119.

[Baader et al., 2005] Baader, F., Brandt, S., and Lutz, C. (2005). Pushing the EL

envelope. In Proceedings of the Nineteenth International Joint Conference on Artificial

Intelligence (IJCAI-05), pages 364–369.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and

Patel-Schneider, P. F., editors (2003). The Description Logic Handbook: Theory,

Implementation, and Applications.

[Baader et al., 2008] Baader, F., Lutz, C., and Brandt, S. (2008). Pushing the EL enve-

lope further. In Proceedings of the Fourth OWLED Workshop on OWL: Experiences

and Directions.

122

References 123

[Baader and Suntisrivaraporn, 2008] Baader, F. and Suntisrivaraporn, B. (2008). De-

bugging SNOMED CT using axiom pinpointing in the description logic EL+. In

Proceedings of the Third International Conference on Knowledge Representation, vol-

ume 410 of CEUR Workshop Proceedings.

[Bachmair et al., 2001] Bachmair, L., Ganzinger, H., McAllester, D. A., and Lynch, C.

(2001). Resolution theorem proving. In Robinson, J. A. and Voronkov, A., editors,

Handbook of Automated Reasoning (in 2 volumes), pages 19–99. Elsevier and MIT

Press.

[Baget et al., 2016] Baget, J., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M.,

Papini, O., Rocher, S., and Tabia, K. (2016). A general modifier-based framework for

inconsistency-tolerant query answering. In Principles of Knowledge Representation

and Reasoning: Proceedings of the Fifteenth International Conference (KR-16), pages

513–516.

[Baget et al., 2015] Baget, J., Leclère, M., Mugnier, M., Rocher, S., and Sipieter, C.

(2015). Graal: A toolkit for query answering with existential rules. In Rule Technolo-

gies: Foundations, Tools, and Applications - 9th International Symposium, RuleML

2015, Proceedings, volume 9202 of Lecture Notes in Computer Science, pages 328–344.

[Baget et al., 2011] Baget, J., Leclère, M., Mugnier, M., and Salvat, E. (2011). On rules

with existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–

1654.

[Bard and Rhee, 2004] Bard, J. B. and Rhee, S. Y. (2004). Ontologies in biology: design,

applications and future challenges. Nature Reviews Genetics, 5(3):213–222.

[Beeri and Vardi, 1981] Beeri, C. and Vardi, M. Y. (1981). The implication problem

for data dependencies. In Automata, Languages and Programming, 8th Colloquium,

Proceedings, pages 73–85.

[Bellomarini et al., 2017] Bellomarini, L., Gottlob, G., Pieris, A., and Sallinger, E.

(2017). Swift logic for big data and knowledge graphs. In Proceedings of the Twenty-

Sixth International Joint Conference on Artificial Intelligence, (IJCAI-17), pages 2–

10.

[Belnap, 1977] Belnap, N. D. (1977). A useful four-valued logic. In Modern uses of

multiple-valued logic, pages 5–37. Springer.

References 124

[Benedikt et al., 2017] Benedikt, M., Konstantinidis, G., Mecca, G., Motik, B., Papotti,

P., Santoro, D., and Tsamoura, E. (2017). Benchmarking the chase. In Proceedings

of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems (PODS-17), pages 37–52.

[Benedikt et al., 2018] Benedikt, M., Motik, B., and Tsamoura, E. (2018). Goal-driven

query answering for existential rules with equality. In Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence (AAAI-18), pages 1761–1770.

[Bertaud-Gounot et al., 2012] Bertaud-Gounot, V., Duvauferrier, R., and Burgun, A.

(2012). Ontology and medical diagnosis. Informatics for Health and Social Care,

37(2):51–61.

[Bienvenu and Bourgaux, 2016] Bienvenu, M. and Bourgaux, C. (2016). Inconsistency-

tolerant querying of description logic knowledge bases. In Reasoning Web: Logical

Foundation of Knowledge Graph Construction and Query Answering - 12th Inter-

national Summer School 2016, Tutorial Lectures, volume 9885 of Lecture Notes in

Computer Science, pages 156–202.

[Bienvenu et al., 2014a] Bienvenu, M., Bourgaux, C., and Goasdoué, F. (2014a). Query-

ing inconsistent description logic knowledge bases under preferred repair semantics. In

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-

14), pages 996–1002.

[Bienvenu et al., 2014b] Bienvenu, M., Bourgaux, C., and Goasdoué, F. (2014b). Query-

ing inconsistent description logic knowledge bases under preferred repair semantics. In

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-

14), pages 996–1002.

[Bienvenu et al., 2017] Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V. V.,

Ryzhikov, V., and Zakharyaschev, M. (2017). The complexity of ontology-based

data access with OWL 2 QL and bounded treewidth queries. In Proceedings of the

36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems

(PODS-17), pages 201–216.

[Bienvenu et al., 2014c] Bienvenu, M., ten Cate, B., Lutz, C., and Wolter, F. (2014c).

Ontology-based data access: A study through disjunctive datalog, csp, and MMSNP.

ACM Trans. Database Syst., 39(4):33:1–33:44.

References 125

[Borgida et al., 2008] Borgida, A., Calvanese, D., and Rodriguez-Muro, M. (2008). Ex-

planation in the dl-lite family of description logics. In OTM Confederated Interna-

tional Conferences” On the Move to Meaningful Internet Systems”, pages 1440–1457.

Springer.

[Cal̀ı et al., 2012] Cal̀ı, A., Gottlob, G., and Lukasiewicz, T. (2012). A general datalog-

based framework for tractable query answering over ontologies. J. Web Sem., 14:57–

83.

[Calvanese et al., 2007a] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and

Rosati, R. (2007a). Tractable reasoning and efficient query answering in description

logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429.

[Calvanese et al., 2007b] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and

Rosati, R. (2007b). Tractable reasoning and efficient query answering in description

logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429.

[Calvanese et al., 2011] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M.,

Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., and Savo, D. F. (2011). The

MASTRO system for ontology-based data access. Semantic Web, 2(1):43–53.

[Calvanese et al., 2007c] Calvanese, D., Lembo, D., Lenzerini, M., Poggi, A., and Rosati,

R. (2007c). Ontology-based database access. In Proceedings of the 15th Italian Sym-

posium on Advanced Database Systems (SEBD-07), pages 324–331.

[Calvanese et al., 2013] Calvanese, D., Ortiz, M., Šimkus, M., and Stefanoni, G. (2013).

Reasoning about Explanations for Negative Query Answers in DL-Lite. Journal of

Artificial Intelligence Research, 48:635–669.

[Ceylan et al., 2019] Ceylan, İ. İ., Lukasiewicz, T., Malizia, E., and Vaicenavicius, A.

(2019). Explanations for query answers under existential rules. In Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19),

pages 1639–1646.

[Chomicki, 2007] Chomicki, J. (2007). Consistent query answering: Five easy pieces. In

Proceedings of 11st International Conference on Database Theory (ICDT-07), pages

1–17.

References 126

[Donnelly, 2006] Donnelly, K. (2006). Snomed-ct: The advanced terminology and coding

system for ehealth. Studies in health technology and informatics, 121:279.

[Du et al., 2011] Du, J., Qi, G., Shen, Y., and Pan, J. Z. (2011). Towards practical

abox abduction in large OWL DL ontologies. In Proceedings of the Twenty-Fifth

AAAI Conference on Artificial Intelligence (AAAI-11).

[Du et al., 2014] Du, J., Wang, K., and Shen, Y. (2014). A tractable approach to abox

abduction over description logic ontologies. In Proceedings of the Twenty-Eighth AAAI

Conference on Artificial Intelligence (AAAI-14), pages 1034–1040.

[Du et al., 2015] Du, J., Wang, K., and Shen, Y. (2015). Towards tractable and practical

abox abduction over inconsistent description logic ontologies. In Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), pages 1489–

1495.

[Eiter et al., 2012] Eiter, T., Ortiz, M., Simkus, M., Tran, T., and Xiao, G. (2012).

Query rewriting for horn-shiq plus rules. In Proceedings of the Twenty-Sixth AAAI

Conference on Artificial Intelligence (AAAI-12).

[Elsenbroich et al., 2006] Elsenbroich, C., Kutz, O., and Sattler, U. (2006). A case for

abductive reasoning over ontologies. In Proceedings of the OWLED*06 Workshop on

OWL: Experiences and Directions, volume 216 of CEUR Workshop Proceedings.

[Fagin et al., 2005] Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. (2005). Data

exchange: semantics and query answering. Theor. Comput. Sci., 336(1):89–124.

[Fu et al., 2016] Fu, X., Qi, G., Zhang, Y., and Zhou, Z. (2016). Graph-based approaches

to debugging and revision of terminologies in dl-lite. Knowl.-Based Syst., 100:1–12.

[Gabbay and Ohlbach, 1992] Gabbay, D. M. and Ohlbach, H. J. (1992). Quantifier

elimination in second-order predicate logic. In Proceedings of the 3rd International

Conference on Principles of Knowledge Representation and Reasoning (KR-92), pages

425–435.

[Gelfond and Lifschitz, 1988] Gelfond, M. and Lifschitz, V. (1988). The stable model

semantics for logic programming. In Kowalski, R. A. and Bowen, K. A., editors, Logic

Programming, Proceedings of the Fifth International Conference and Symposium, (2

Volumes), pages 1070–1080.

References 127

[Gottlob et al., 2014a] Gottlob, G., Manna, M., and Pieris, A. (2014a). Polynomial

combined rewritings for existential rules. In Principles of Knowledge Representation

and Reasoning: Proceedings of the Fourteenth International Conference (KR-14).

[Gottlob et al., 2015] Gottlob, G., Manna, M., and Pieris, A. (2015). Polynomial com-

bined rewritings for linear existential rules and dl-lite with n-ary relations. In Pro-

ceedings of the 28th International Workshop on Description Logics.

[Gottlob et al., 2014b] Gottlob, G., Orsi, G., and Pieris, A. (2014b). Query rewriting

and optimization for ontological databases. ACM Trans. Database Syst., 39(3):25:1–

25:46.

[Gottlob et al., 2014c] Gottlob, G., Orsi, G., and Pieris, A. (2014c). Query rewriting

and optimization for ontological databases. ACM Trans. Database Syst., 39(3):25:1–

25:46.

[Gottlob et al., 2007] Gottlob, G., Pichler, R., and Wei, F. (2007). Efficient datalog

abduction through bounded treewidth. In Proceedings of the Twenty-Second AAAI

Conference on Artificial Intelligence (AAAI-07), pages 1626–1631.

[Gottlob et al., 2014d] Gottlob, G., Rudolph, S., and Simkus, M. (2014d). Expressive-

ness of guarded existential rule languages. In Proc. of PODS-14, pages 27–38.

[Gottlob et al., 2014e] Gottlob, G., Rudolph, S., and Simkus, M. (2014e). Expressive-

ness of guarded existential rule languages. In Proceedings of the 33rd ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS-14), pages

27–38.

[Gottlob and Schwentick, 2012] Gottlob, G. and Schwentick, T. (2012). Rewriting onto-

logical queries into small nonrecursive datalog programs. In Principles of Knowledge

Representation and Reasoning: Proceedings of the Thirteenth International Confer-

ence (KR-12).

[Grau et al., 2013] Grau, B. C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D.,

Motik, B., and Wang, Z. (2013). Acyclicity notions for existential rules and their

application to query answering in ontologies. J. Artif. Intell. Res., 47:741–808.

[Guo et al., 2005] Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: A benchmark for

OWL knowledge base systems. J. Web Semant., 3(2-3):158–182.

References 128

[Hansen et al., 2015] Hansen, P., Lutz, C., Seylan, I., and Wolter, F. (2015). Efficient

query rewriting in the description logic EL and beyond. In Proceedings of the Twenty-

Fourth International Joint Conference on Artificial Intelligence (ICJAI-15), pages

3034–3040.

[Hunter, 2000] Hunter, A. (2000). Reasoning with contradictory information using

quasi-classical logic. J. Log. Comput., 10(5):677–703.

[Kalyanpur et al., 2007] Kalyanpur, A., Parsia, B., Horridge, M., and Sirin, E. (2007).

Finding all justifications of OWL DL entailments. In The Semantic Web, 6th Inter-

national Semantic Web Conference, 2nd Asian Semantic Web Conference (ISWC07)

(ASWC07), volume 4825 of Lecture Notes in Computer Science, pages 267–280.

[Konev et al., 2009] Konev, B., Walther, D., and Wolter, F. (2009). Forgetting and

uniform interpolation in large-scale description logic terminologies. In Proceedings of

the 21st International Joint Conference on Artificial Intelligence (IJCAI-09), pages

830–835.

[König et al., 2015a] König, M., Leclère, M., and Mugnier, M. (2015a). Query rewriting

for existential rules with compiled preorder. In Proceedings of the 24th International

Joint Conference on Artificial Intelligence (IJCAI-15), pages 3106–3112.

[König et al., 2013] König, M., Leclère, M., Mugnier, M., and Thomazo, M. (2013).

Sound, complete, and minimal query rewriting for existential rules. In Proceedings of

the 23rd International Joint Conference on Artificial Intelligence (IJCAI-13), pages

3017–3021.

[König et al., 2015b] König, M., Leclère, M., Mugnier, M., and Thomazo, M. (2015b).

Sound, complete and minimal UCQ-rewriting for existential rules. Semantic Web,

6(5):451–475.

[Kontchakov et al., 2010] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Za-

kharyaschev, M. (2010). The combined approach to query answering in dl-lite. In

Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth

International Conference (KR-10).

[Kontchakov et al., 2011] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Za-

kharyaschev, M. (2011). The combined approach to ontology-based data access.

References 129

In Proceedings of the 22nd International Joint Conference on Artificial Intelligence

(IJCAI-11), pages 2656–2661.

[Kontchakov et al., 2008] Kontchakov, R., Wolter, F., and Zakharyaschev, M. (2008).

Can you tell the difference between dl-lite ontologies? In Principles of Knowledge

Representation and Reasoning: Proceedings of the Eleventh International Conference

(KR-08), pages 285–295.

[Koopmann and Schmidt, 2014] Koopmann, P. and Schmidt, R. A. (2014). Count and

forget: Uniform interpolation of SHQ-ontologies. In Proceedings of the 7th Interna-

tional Joint Conference on Automated Reasoning, pages 434–448.

[Koopmann and Schmidt, 2015] Koopmann, P. and Schmidt, R. A. (2015). Uniform

interpolation and forgetting for ALC ontologies with aboxes. In Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), pages 175–181.

[Krötzsch, 2012] Krötzsch, M. (2012). Owl 2 profiles: An introduction to lightweight

ontology languages. In Reasoning Web International Summer School, pages 112–183.

Springer.

[Lang et al., 2003a] Lang, J., Liberatore, P., and Marquis, P. (2003a). Propositional

independence: Formula-variable independence and forgetting. J. Artif. Intell. Res.,

18:391–443.

[Lang et al., 2003b] Lang, J., Liberatore, P., and Marquis, P. (2003b). Propositional

independence: Formula-variable independence and forgetting. J. Artif. Intell. Res.

(JAIR), 18:391–443.

[Lembo et al., 2010] Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., and Savo, D. F.

(2010). Inconsistency-tolerant semantics for description logics. In Web Reasoning

and Rule Systems - Fourth International Conference, RR 2010, Proceedings, pages

103–117.

[Lembo et al., 2015] Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., and Savo, D. F.

(2015). Inconsistency-tolerant query answering in ontology-based data access. J. Web

Sem., 33:3–29.

[Leone et al., 2019] Leone, N., Manna, M., Terracina, G., and Veltri, P. (2019). Fast

query answering over existential rules. ACM Trans. Comput. Log., 20(2):12:1–12:48.

References 130

[Lifschitz et al., 2001] Lifschitz, V., Pearce, D., and Valverde, A. (2001). Strongly equiv-

alent logic programs. ACM Trans. Comput. Log., 2(4):526–541.

[Lin and Reiter, 1994] Lin, F. and Reiter, R. (1994). Forget it. In Proceedings of the

AAAI Fall Symposium on Relevance, pages 154–159.

[Ludwig and Konev, 2014] Ludwig, M. and Konev, B. (2014). Practical uniform in-

terpolation and forgetting for ALC TBoxes with applications to logical difference. In

Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth

International Conference (KR-14).

[Lukasiewicz et al., 2012] Lukasiewicz, T., Martinez, M. V., and Simari, G. I. (2012).

Inconsistency handling in datalog+/- ontologies. In ECAI 2012 - 20th European

Conference on Artificial Intelligence. Including Prestigious Applications of Artificial

Intelligence (PAIS-2012) System Demonstrations Track, pages 558–563.

[Lukasiewicz et al., 2013] Lukasiewicz, T., Martinez, M. V., and Simari, G. I. (2013).

Complexity of inconsistency-tolerant query answering in datalog+/-. In On the Move

to Meaningful Internet Systems: OTM 2013 Conferences - Confederated International

Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Proceedings, pages

488–500.

[Lutz et al., 2012] Lutz, C., Seylan, I., and Wolter, F. (2012). An automata-theoretic

approach to uniform interpolation and approximation in the description logic EL. In

Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth

International Conference (KR-12).

[Lutz and Wolter, 2011] Lutz, C. and Wolter, F. (2011). Foundations for uniform in-

terpolation and forgetting in expressive description logics. In Proceedings of the 22nd

International Joint Conference on Artificial Intelligence (IJCAI-11), pages 989–995.

[McGuinness and Patel-Schneider, 1998] McGuinness, D. L. and Patel-Schneider, P. F.

(1998). Usability issues in knowledge representation systems. In Mostow, J. and Rich,

C., editors, Proceedings of the Fifteenth National Conference on Artificial Intelligence

and Tenth Innovative Applications of Artificial Intelligence Conference, (AAAI-98)

(IAAI-98), pages 608–614.

[McGuinness et al., 2004] McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web

ontology language overview. W3C recommendation, 10(10):2004.

References 131

[Nenov et al., 2015] Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and Banerjee,

J. (2015). Rdfox: A highly-scalable RDF store. In The Semantic Web - ISWC 2015

- 14th International Semantic Web Conference, Proceedings, Part II, volume 9367 of

Lecture Notes in Computer Science, pages 3–20.

[Nguyen and Szalas, 2010] Nguyen, L. A. and Szalas, A. (2010). Three-valued paracon-

sistent reasoning for semantic web agents. In Agent and Multi-Agent Systems: Tech-

nologies and Applications, 4th KES International Symposium, KES-AMSTA 2010,

Proceedings, Part I, pages 152–162.

[Nikitina and Rudolph, 2014] Nikitina, N. and Rudolph, S. (2014). (Non-)Succinctness

of uniform interpolants of general terminologies in the description logic EL. Artif.

Intell., 215:120–140.

[Pérez-Urbina et al., 2010] Pérez-Urbina, H., Motik, B., and Horrocks, I. (2010).

Tractable query answering and rewriting under description logic constraints. J. Ap-

plied Logic, 8(2):186–209.

[Qi et al., 2015] Qi, G., Wang, Z., Wang, K., Fu, X., and Zhuang, Z. (2015). Approx-

imating model-based abox revision in dl-lite: Theory and practice. In Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), pages

254–260.

[Rodriguez-Muro et al., 2013] Rodriguez-Muro, M., Kontchakov, R., and Za-

kharyaschev, M. (2013). Ontology-based data access: Ontop of databases. In

The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference,

Proceedings, Part I, volume 8218 of Lecture Notes in Computer Science, pages

558–573.

[Rosati and Almatelli, 2010] Rosati, R. and Almatelli, A. (2010). Improving query an-

swering over dl-lite ontologies. In Principles of Knowledge Representation and Rea-

soning: Proceedings of the Twelfth International Conference (KR-10).

[Sipser, 1996] Sipser, M. (1996). Introduction to the theory of computation. SIGACT

News, 27(1):27–29.

[Soler-Toscano, 2019] Soler-Toscano, F. (2019). Which is the least complex explanation?

abduction and complexity. CoRR, abs/1902.05479.

References 132

[Stefanoni et al., 2013] Stefanoni, G., Motik, B., and Horrocks, I. (2013). Introducing

nominals to the combined query answering approaches for EL. In Proceedings of the

Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13).

[Suntisrivaraporn et al., 2008] Suntisrivaraporn, B., Qi, G., Ji, Q., and Haase, P. (2008).

A modularization-based approach to finding all justifications for OWL DL entail-

ments. In The Semantic Web, 3rd Asian Semantic Web Conference, ASWC 2008,

Proceedings, volume 5367 of Lecture Notes in Computer Science, pages 1–15.

[Thomazo, 2013] Thomazo, M. (2013). Conjunctive Query Answering Under Existential

Rules - Decidability, Complexity, and Algorithms. PhD thesis, Montpellier 2 Univer-

sity, France.

[Trivela et al., 2015] Trivela, D., Stoilos, G., Chortaras, A., and Stamou, G. B. (2015).

Optimising resolution-based rewriting algorithms for OWL ontologies. J. Web Sem.,

33:30–49.

[Tsalapati et al., 2016] Tsalapati, E., Stoilos, G., Stamou, G. B., and Koletsos, G.

(2016). Efficient query answering over expressive inconsistent description logics. In

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelli-

gence (IJCAI-16), pages 1279–1285.

[Urbani et al., 2016] Urbani, J., Jacobs, C. J. H., and Krötzsch, M. (2016). Column-

oriented datalog materialization for large knowledge graphs. In Schuurmans, D. and

Wellman, M. P., editors, Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence (AAAI-16), pages 258–264.

[Venetis et al., 2014] Venetis, T., Stoilos, G., and Stamou, G. B. (2014). Query exten-

sions and incremental query rewriting for OWL 2 QL ontologies. J. Data Semant.,

3(1):1–23.

[Venetis et al., 2016] Venetis, T., Stoilos, G., and Vassalos, V. (2016). Rewriting min-

imisations for efficient ontology-based query answering. In Proceedings of the Twenty-

Fifth International Joint Conference on Artificial Intelligence (ICJAI-16), pages

1095–1102.

[Visser, 1996] Visser, A. (1996). Uniform interpolation and layered bisimulation, volume

Volume 6 of Lecture Notes in Logic, pages 139–164. Association for Symbolic Logic,

Berlin.

References 133

[Wan et al., 2016] Wan, H., Zhang, H., Xiao, P., Huang, H., and Zhang, Y. (2016).

Query answering with inconsistent existential rules under stable model semantics. In

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16),

pages 1095–1101.

[Wang et al., 2015] Wang, Z., Chitsaz, M., Wang, K., and Du, J. (2015). Towards scal-

able and complete query explanation with OWL 2 EL ontologies. In Proceedings of the

24th ACM International on Conference on Information and Knowledge Management

(CIKM-15), pages 743–752.

[Wang et al., 2008] Wang, Z., Wang, K., Topor, R. W., and Pan, J. Z. (2008). Forgetting

concepts in dl-lite. In The Semantic Web: Research and Applications, 5th European

Semantic Web Conference, ESWC 2008, Proceedings, pages 245–257.

[Wang et al., 2010] Wang, Z., Wang, K., Topor, R. W., and Pan, J. Z. (2010). Forgetting

for knowledge bases in dl-lite. Ann. Math. Artif. Intell., 58(1-2):117–151.

[Wang et al., 2018] Wang, Z., Wang, K., and Zhang, X. (2018). Forgetting and unfold-

ing for existential rules. In Proceedings of the Thirty-Second AAAI Conference on

Artificial Intelligence (AAAI-18), pages 2013–2020.

[Zhang et al., 2014] Zhang, X., Xiao, G., Lin, Z., and den Bussche, J. V. (2014).

Inconsistency-tolerant reasoning with OWL DL. Int. J. Approx. Reasoning, 55(2):557–

584.

[Zhao and Schmidt, 2016] Zhao, Y. and Schmidt, R. A. (2016). Forgetting concept and

role symbols in ALCOIH+
µ (∇,u)-ontologies. In Proceedings of the 25th International

Joint Conference on Artificial Intelligence (IJCAI-16), pages 1345–1353.

[Zhou et al., 2015] Zhou, Y., Grau, B. C., Nenov, Y., Kaminski, M., and Horrocks, I.

(2015). Pagoda: Pay-as-you-go ontology query answering using a datalog reasoner.

J. Artif. Intell. Res., 54:309–367.

