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Abstract 

Monitoring and understanding the dissolved organic matter (DOM) cycle in a drinking water 

reservoir is crucial to water authorities, since most water treatment practices aim to remove 

DOM to prevent the formation of potentially harmful disinfection by-products. A vertical 

profiling system (VPS) installed in reservoirs can continuously detect the fluorescent DOM 

(fDOM) and determine the fDOM transport process. Although the VPS can interprete fDOM 

concentrations, water treatment operators still collect and rely upon DOM datasets that are 

manually sampled throughout the year. A long-term historical database provides an 

opportunity to develop a three-dimensional fDOM prediction model. In the present study, 

we collected and analysed VPS and sampling data and developed and assessed an 

innovative coupled data-driven and process-based model. These models were able to 

forecast future fDOM in both temperate and extreme weather conditions. Modelling 

scenario analysis concluded that deeper layers of the reservoir as well as areas close to 

the riverine zone had higher fDOM concentrations than any other zones during storm 

events. Simulated fDOM can be a proxy for dissolved organic carbon concentration. The 

model also determined that inflow creeks were predominant fDOM sources during storm 

events and continuing winds transported the fDOM from bottom to surface water layers. 

This study has implications for reservoir and water treatment plant operators seeking to 

gain a better understanding of the DOM cycle in a reservoir and to more efficiently manage 

DOM removal. 
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1. Introduction 

Dissolved organic matter (DOM) is an important component of source water worldwide. 

With variables in biogeochemical environments and water resources (e.g., temperature, pH, 

biological process and organic matter source), the composition of aquatic DOM varies 

considerably in molecular size, molecular weight (from hundreds to millions of daltons), 

solubility, lability and structure (Fabris, Chow, Drikas, & Eikebrokk, 2008; Gjessing, 1976; 

Leenheer & Croué, 2003). DOM comprises soluble organic materials, such as organic forms 

of carbon, nitrogen, sulfur and phosphorus, released by the degradation of plants, animals 

and microorganisms (Zhang et al., 2012). In lakes and reservoirs, three major sources of 

DOM are autochthonous (aquatic), allochthonous (terrestrial) and synthetic (industrial or 

manmade), with seasonally variable compositions (Mostofa, 2013). Researchers have found 

that DOM imparts colour, taste and odour (Lambert & Graham, 1995; Worrall & Burt, 2010), 

pollutes and blocks the membranes and filters of water treatment plants (Huber, 1998), 

decreases the light penetration of water and influences biological growth in aquatic systems 

(Ask et al., 2009; Moran & Zepp, 1997). Furthermore, in the process of treating drinking 

water, if hydrophilic DOM in raw water bypasses the treatment processes, by reacting with 

chlorine in the distribution system it can result in the formation of potentially dangerous 

disinfection by-products, the most common being the trihalomethanes (Pagano, Bida, & 

Kenny, 2014), which are also considered carcinogenic (Palmstrom, Carlson, & Cooke, 1988). 

Hence, a high DOM concentration in a water system used for drinking water is a significant 

concern. 

A more thorough understanding of the DOM distribution and the variables affecting it 

would allow water authorities to more efficiently manage DOM treatment. Fluorescence 

spectroscopy is a proven technique to characterise the composition of aquatic DOM 

composition. Lee et al. (2015), Mast, Murphy, Clow, Penn, and Sexstone (2016) and Khamis 

et al. (2017) found that the relationship between dissolved organic matter (DOC) and peak 

C (in the blue and green fluorescence regions, the excitation is 300-350 nm and the emission 

is 400-500 nm) is strong. Cyr et al. (2017) suggested that primary production is complex in 

water related system and proved that fDOM is a good proxy for processes influencing the 

DOM pool. Researchers agree that fluorescence measurements are proxies for chemical 

and biological DOM (Carstea, Popa, Baker, & Bridgeman, 2019). Probes measuring the 

fluorescent signal of DOM have recently been developed and installed in several Australian 

reservoirs, providing high-frequency estimations of fluorescent DOM (fDOM) in lakes. These 

probes take in-situ optical measurements using long-term and field-deployable fluorometers, 

which enable researchers to collect high-resolution temporal data (Ruhala & Zarnetske, 

2017). In-situ submersible fDOM fluorometers have been widely used in published field 

studies to date (De Oliveira et al., 2018; Pellerin et al., 2012; Saraceno et al., 2009; Wang, 
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Zhang, Bertone, Stewart, & O’Halloran, 2019). While wavelength scanning fluorometers 

measure emission signals over a range of wavelengths and are more reliable, fDOM 

fluorometers use a light-emitting diode as a light source and have a single fixed excitation-

emission wavelength pair (Lee et al., 2015; Saraceno et al., 2009). Fluorescence sensors 

allow high-resolution measurements of fDOM in rivers and reservoirs during storm events 

(Carstea et al., 2019). However, when monitoring fDOM concentrations using a fluorometer, 

the optical signal of the fDOM probe is interfered and distorted by temperature, turbidity, pH, 

salinity and inner filter effects. Turbidity is an inherent issue for fDOM sensors as it 

fundamentally interferes with light passage and detection (Ruhala & Zarnetske, 2017). The 

type of turbidity is also important, where the magnitude of fDOM signals bias is related to 

the shape and size of suspended particles (De Oliveira et al., 2018; Saraceno, Shanley, 

Downing, & Pellerin, 2017). An increase of turbidity leads to an increased amount of 

scattering of the excitation light emitted by the fDOM sensor, which causes the decline of 

the light available in the sampling volume to excite fDOM (Downing, Pellerin, Bergamaschi, 

Saraceno, & Kraus, 2012). Apart from turbidity, the present of fDOM in the particulate 

organic matter (POM) fraction, especially the protein-like fDOM, also distort the fDOM signal. 

Researchers found that the florescence of POM increases the fDOM (Korak, Wert, & 

Rosario-Ortiz, 2015; Stedmon et al., 2007). On the other hand, the higher temperatures 

increase the probability of an excited electron to return to its ground state by radiationless 

decay, which decreases fluorescence intensity (Henderson et al., 2009). Hence, it is 

necessary to quantify turbidity and temperature interferences to achieve more reliable fDOM 

readings. Though still affecting the readings, previous work showed that pH and salinity have 

a more minor effect in a fDOM sensor accuracy, and inner filtering effect becomes relevant 

when the absorption coefficient of CDOM is high (> 10 m-1) (De Oliveira et al., 2018).  

In lakes and reservoirs, a fDOM probe can be installed in vertical profiling system (VPS), 

and moves up and down the water column, collecting one-dimensional vertical 

measurements of fDOM, at every 1-3m depth, usually once a hour depending on reservoir 

depth. Although probes measuring fDOM have been widely used in lakes, they are unable 

to describe the DOM distribution in three dimensions. 

In terms of drinking water management, modelling can be used prior to field observation 

to provide information on the contribution of different sources of DOM concentration in the 

raw water intake of a water treatment plant. Water operators are required to establish 

efficient, reliable and safe models to predict and reduce high DOM concentrations in water 

before it can be distributed as a potable supply to consumers. Numerical models are suitable 

methods for water quality prediction, and many numerical models for aquatic systems have 

been used to simulate organic matter concentrations. Sato et al. (2007) established 

numerical marine ecosystem models and simulated the organic matter concentrations in 



 

5 

 

Lake Saroma, Japan. In their study, particulate and dissolved organic matter were simulated, 

and each type was modelled as two degradable fractions (labile and refractory) with various 

mineralisation rates to illustrate the decrease in reactivity over time (Sato et al., 2007). This 

ecosystem model considered the loading of organic matter from rivers and the exudation of 

phytoplankton (Sato et al., 2007). Sato et al. (2007) found that storm events supplied organic 

matter and nutrients into the lake, and typhoons influenced the organic matter settling to the 

bottom of the lake. Furthermore, Druon et al. (2010) modelled the dynamics and export of 

DOM on the U.S. continental shelf. The DOC concentrations in this study were based on 

phytoplankton exudation, solubilisation of small and large carbon detritus and 

remineralisation of the semi-labile DOC (Druon et al., 2010). These researchers concluded 

that the DOM was closely linked to the residence time of water masses of its distribution and 

export water masses (Druon et al., 2010). Another model was developed by Liungman and 

Moreno-Arancibia (2010) for the Himmerfjärden Estuary, Sweden. The study indicated that 

sediment processes can impact the phytoplankton and detritus that settle and reach the 

bottom of a body of water, and this influences the inorganic matter which is released from 

sediments. Previous DOM models are complex and most of them only consider the 

biochemical process of DOM, such as phytoplankton exudation and remineralisation of labile 

DOM. They are calibrated and verified based on low-frequency water sampling data. 

Previous DOM models are limited to the simulation of horizontal DOM variation and do not 

fully consider the hydrodynamic and sediment transport process effects on DOM transport 

processes.  

To date, according to the Authors’ knowledge, there has been no attempt to build a 

three-dimensional (3D) coupled data-driven and process-based model through high-

frequency and in-situ optical DOM measurements in the lake systems. Therefore, for this 

study, after extensive data collection from several sources and over several years, we 

established a coupled data-driven and process-based model for fDOM prediction for the 

Tingalpa Reservoir, Australia. The developed fDOM prediction model considers the effects 

of hydrodynamic and sediment transport processes. Model performance and accuracy could 

be calibrated and verified using available high-frequency monitoring data from the VPS. 

Moreover, the fDOM prediction model can be used to analyse the fDOM distribution in both 

horizontal and vertical directions and predict the timing and peak DOM concentration, 

especially during extreme events. This innovative model is a general method of 

understanding and predicting 3D fDOM distributions in any reservoir or lake with high 

frequency fDOM monitoring instrumentation in place. 

 

2. Study site and monitoring data 
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To demonstrate the feasibility of the developed comprehensive model, a shallow, 

subtropical reservoir, i.e. the Tingalpa Reservoir was selected as the study site. The 

Tingalpa Reservoir is located in South East Queensland (SEQ), Australia (153.18°E, 

27.53°S). It provides approximately 20% of the water to Redland City. The Leslie Harrison 

Dam is located on the north eastern side of the reservoir. The surface area covers 

approximately 470 hectares, and the catchment area is 87.5 km2. There are two main inflows: 

the Tingalpa Creek from the south east, and the Stockyard Creek from the south west. 

Seqwater, the bulk water supply authority for SEQ, manages the reservoir treatment 

operations. To achieve higher risk mitigation for dam safety, Seqwater reduced the reservoir 

water storage to 13,206 ML on 1 August 2014. Previous studies have shown that when 

rewetting occurs after a long dry period, the organic matter contents in the reservoir 

increased and affected the water quality; higher organic matter concentrations resulted from 

decaying macrophytes in the sediment soils that are transported to the water (Lu, Faggotter, 

Bunn, & Burford, 2017). 

 

Figure 1. Monitoring sites in the Tingalpa Reservoir and the reservoir’s bathymetry [m AHD]. 

Water quality in the Tingalpa Reservoir is monitored mainly through laboratory analysis 

of monthly manually collected water samples. In 2013, a VPS was installed 500 m from the 

Leslie Harrison Dam, as shown in Figure 1. A set of water quality probes in the VPS 

automatically winches up and down in the water column and measures water quality 

variables, including water temperature, pH, dissolved oxygen (DO), conductivity, turbidity 

and fDOM. The fDOM was measured using an EXO fDOM Smart Sensor (YSI, Yellow 

Springs, OH, USA) which has 365±5nm excitation and 480±40nm emission wavelength to 
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estimate the quantity of fluorescent, humic-like DOM (peak C), and it is reported as relative 

fluorescence units (RFU) or quinine sulphate units (QSU) (Xylem, 2019). 

Seqwater has provided physical and chemical data for the Tingalpa Reservoir, collected 

both through water samplings and by the VPS. Manual water samplings at the raw water 

inlet are taken weekly, while the water samplings at monitoring stations are taken monthly 

on the lake. The water sampling points are shown in Figure 1. Moreover, previous studies 

conducted by our reseach group (De Oliveira et al., 2018) conducted water sampling to 

measure the fDOM and DOC concentration from May 2017 to September 2017 in the 

Tingalpa Reservoir. Data from the VPS have been available since the VPS was installed (i.e. 

2013), and several types of manual sampling data have been available since 2010. Other 

parameters were collected from the Australian Bureau of Meteorology and the 

Commonwealth Scientific and Industrial Research Organization (CSIRO). This organization 

provided the inflow parameters for Tingalpa Creek. Table 1 provides a list of the available 

data. 

Table 1. Sources and features of the available data. 

Variable Source Method Frequency Period 

DOC 

Seqwater 
Water sampling in 

raw water inlet 

Weekly 2010-2019 

SUVA Weekly 2013-2019 

UV
254

 Weekly 2010-2019 

TOC Weekly 2010-2019 

Suspended Solids Monthly 2017-2019 

Temperature Weekly 2011-2019 

Turbidity Monthly 2010-2019 

pH Weekly 2010-2019 

Conductivity Weekly 2010-2019 

DOC 

Seqwater 
Water sampling at 

monitoring station 

Monthly 2010-2019 

TOC Monthly 2010-2019 

Suspended Solid Monthly 2010-2019 

Total Dissolved 

Phosphorus 
Monthly 2010-2019 

Total Dissolved Nitrogen Monthly 2010-2019 

DO 

Seqwater 

and VPS
a
 

Water sampling at 

monitoring station, 

VPS 

Monthly, Hourly 2010-2019, 2013-2019  

Temperature Monthly, Hourly 2010-2019, 2013-2019  

Turbidity Monthly, Hourly 2010-2019, 2013-2019  

pH Monthly, Hourly 2010-2019, 2013-2019  
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Conductivity Monthly, Hourly 2010-2019, 2013-2019  

fDOM VPS VPS Hourly 2013-2018 

Air Temperature 

BoM
b
 Data with fee 

Hourly 2013-2019 

Wind Speed and 

Direction 
Hourly 2013-2019 

Rainfall Hourly 2013-2019 

Solar Radiation Hourly 2013-2019 

Relative Humidity Hourly 2013-2019 

Outflow Seqwater  Daily 2013-2017 

Inflow 

Seqwater  

Hourly 2015-2017 

Inflow Temperature Hourly 2015-2017 

Inflow Turbidity Hourly 2015-2017 

Inflow pH Hourly 2015-2017 

Inflow DO Hourly 2015-2017 

 

a Vertical Profiling System, Tingalpa Reservoir. 
b Australian Bureau of Meteorology. 
c Commonwealth Scientific and Industrial Research Organization. 

3. Dissolved organic matter cycle in freshwater reservoirs  

Reservoirs are complex biogeochemical systems in which production, transformation 

and loss of organic matter occur simultaneously (Kraus et al., 2011). The net effects of these 

processes are determined by certain factors, including algal and bacterial activity, inflow 

DOM quantity and composition, nutrient availability, storm events, temperature, solar 

radiation and pH (Holland, Stauber, Wood, Trenfield, & Jolley, 2018; Kraus et al., 2011; 

Mash, Westerhoff, Baker, Nieman, & Nguyen, 2004; Zepp, Erickson Iii, Paul, & Sulzberger, 

2007). Chromophoric DOM is the optically measurable component of DOM, and fDOM refers 

to the chromophoric DOM that fluoresces. The common fluorescence type are peak T (in 

the ultraviolet absorbance fluorescence region, the excitation wavelength is ~230 and ~275 

nm and the emission wavelength is ~340 nm) and peak C (Coble, 1996; Hudson, Baker, & 

Reynolds, 2007). Peak T refers to the tryptophan-like DOM, and peak C refers to the humic-

like DOM. In the literature, peak C is a proxy for the broader DOC and relates to the 

substances with highly aromatic and mainly high molecular weight components (Jiang et al., 

2017; Ruhala & Zarnetske, 2017). 

The key processes involved in a lake’s DOM cycle are summarised in Figure 2. There 

are evident differences in the DOM distribution between the surface and bottom layers of a 

water column. In the surface water, radiation promotes photosynthesis and causes a high 

level of DO (Tundisi & Tundisi, 2012). The presence of algae means a high pH because the 
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algae removes acidic CO2 forms such as HCO3
- (Dubinsky & Rotem, 1974). Algal production 

in surface waters contributes to the amount of DOM present, especially DOM with a low 

molecular weight (Kraus et al., 2011). In the colder bottom water, light cannot penetrate, nor 

can algae develop or produce oxygen through photosynthesis, and the water is typically 

acidic and contains little or no DO for bacteria respiration (Tundisi & Tundisi, 2012). Holland 

et al. (2018) found acidic waters are dominated by DOM that is aromatic and humic-like with 

a high molecular weight. Under stratified conditions, the DOM quantity and composition vary 

in vertical distribution between the surface and bottom waters. The stratification of DOM 

depends on the depth of the reservoir/lake. If the lake is shallow, the stratification of DOM 

quantity and composition in the vertical direction is not obvious. 

The water dynamics of the lake also alters the DOM cycle. Lower water residence times 

where respiration exceeds photosynthesis, provide an opportunity for the environmental 

consumption process of DOM (Jack, Sellers, & Bukaveckas, 2002; Kraus et al., 2011). 

Higher water residence times enable the mixing of fluent waters and the stabilisation of the 

DOM’s quality (Awad et al., 2016). Inflow’s influence on the DOM cycle occurs mainly during 

storm events. Rainfall increases the river inflow and the terrestrial DOM inputs into the 

reservoir, leading to high fDOM concentration, and the degree of increase varies according 

to the frequency and quantity of precipitation (Bergamaschi et al., 2012; Bertuzzo, Helton, 

Hall Jr, & Battin, 2017; Carstea, 2012; Mihalevich, Horsburgh, & Melcher, 2017; Tunaley, 

Tetzlaff, Lessels, & Soulsby, 2016). There is a delayed input of high DOM concentrations 

from the surface of the water, from shallow flow paths on the hillslope and from riparian 

sources.  

Many studies have found that fDOM concentration lags behind turbidity and discharge 

and varies from site to site in the river catchment, with a lag ranging from 1 hour (h) to 1 day. 

Pellerin et al. (2012) reported that peak fDOM concentration lagged behind peak streamflow 

by less than 1 h for a 2-day 35 mm rainfall event. Saraceno et al. (2009) study showed that 

during a 4-day 44 mm rainfall event, peak fDOM lagged behind peak discharge by 9 h. In 

addition, Bergamaschi et al. (2012) found that fDOM concentration lagged a full day behind 

peak discharge in 2-day 80 mm rainfall. These studies found that the lag between peak 

discharge and peak fDOM concentration is correlated with the rainfall amount. The lag of 

the fDOM peak relative to the turbidity peak suggests that the relative importance of shallow 

soil drainage remains elevated for several days after an event (Saraceno et al., 2009).  

The DOM present in the reservoir waters during the wet season has a high percentage 

of humic-like and aromatic organic compounds, which makes fDOM readings an accurate 

representation of DOM, since it has been proved that fDOM is related to aromatic and humic-

like DOM components. (Awad et al., 2016; Carstea, 2012; Stutter, Dunn, & Lumsdon, 2012). 

Previous studies have also found that measurements of in-situ fDOM are good proxies for 
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the DOM concentration during storm events (Saraceno et al., 2009). As a consequence, the 

focus of this study was on understanding the DOM dynamics during wet weather events, as 

the available fDOM data can be considered a good proxy of the overall DOM concentrations 

during such critical events for the DOM cycle.  

 

 

Figure 2. Schematisation of the DOM cycle in a reservoir. Green connections: an increase in x increases in y; 
red connections: an increase in x decreases in y; upper box: surface (SURF) water; lower box: bottom (BTTM) 
water; rectangles: variables part of the cycle (green rectangles: high concentrations under stratification; red 
rectangles: low concentrations under stratification); ovals: external inputs; curved arrow: the vertical water 
mixing; Twater: water temperature. 

4. Method  

4.1 Coupled data-driven and process-based model 

Three-dimensional hydrodynamic, sediment-transport and data-driven models were 

developed to achieve the 3D fDOM prediction. The inputs to the 3D hydrodynamic and 

sediment transport model were the inflow conditions, weather conditions and bathymetry of 

the Tingalpa Reservoir. The model performed well in simulating the thermal structure and 

sediment-transport processes (Wang, Zhang, Bertone, Stewart, & O’Halloran, 2020). The 

outputs from the hydrodynamic and sediment-transport models were the inputs to the data-

driven model. The data-driven model includes a turbidity-fDOM compensation model and a 

model further compensating fDOM for water temperature variations. The data-driven model 

can detect the change in dryness and wetness in the atmosphere and relate it to the current 

rainfall conditions, using the relevant equation. The following sections provide detailed 

information on the model. The structure of the coupled data-driven and process-based 
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model is shown in Figure 3. As shown in Figure 3, the models include a 3D hydrodynamic 

and sediment transport model and a data-driven model. Section 3.3 gives detailed 

information about the data-driven model and Section 3.4 introduces the modelling process 

of the process-based model. 

 

 

 
 

Figure 3. Coupled data-driven and process-based model structure. 

4.2 Process-based model 

The process-based model comprises a 3D time-dependent hydrodynamic model and a 

coupled sediment model. The numerical model, MIKE 3 FM (DHI, 2017), was applied to 

investigate the thermal structure and sediment transport process in the Tingalpa Reservoir. 

Wang et al. (2020) introduced the modelling process in detail and found that the process-

based model simulates accurate water temperature and suspended sediment 

concentrations in three dimensions of the Tingalpa Reservoir. The output of the sediment 

model, the suspended sediment concentration, is the predictor for the turbidity concentration. 

The relationship between sediment concentration and turbidity varies at the different water 

depths at the VPS station. At a depth of 10 m, the relationship between sediment 

concentration and turbidity is divided into two cases: calm conditions and storm events. 

According to the data analysis, the minimum and maximum turbidity occurred at the depth 
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1 m and 10 m, especially during storms, and the turbidity shows a linear growth from the 

surface to bottom layers. So, these relationships between turbidity and sediment 

concentration were developed specifically at the depth of 1 m and 10 m. Eq. (1) gives the 

relationship between suspended sediment concentration and turbidity at a depth of 1 m 

during calm and storm conditions. Eq. (2) and Eq. (3) show the relationship between 

suspended sediment concentration and turbidity at a depth of 10 m during calm and storm 

conditions, respectively. 

 
𝐶𝑡,1 = 𝑎7𝑒𝑏7𝐶𝑠,1 

(1) 

 
𝐶𝑡,10 = 𝑎8𝑒𝑏8𝐶𝑠,10 + 𝑐8 

(2) 

 
𝐶𝑡,10 = 𝑎8𝑒𝑏8𝐶𝑠,10 + 𝑐8 + ∆𝐶𝑡 

(3) 

 

where 𝐶𝑡,1  is the turbidity concentration at a depth of 1 m [NTU],  𝐶𝑡,10  is the turbidity 

concentration at a depth of 10 m [NTU], 𝐶𝑠,1 is the suspended sediment concentration at a 

depth of 1 m [mg/L], 𝐶𝑠,10 is the suspended sediment concentration at a depth of 10 m [mg/L] 

and ∆𝐶𝑡 is the additional turbidity, which changes over time during storm events. We found 

factors a7 = 1.18, b7 = 3.90×10-1, a8 = 4.37, b8 = 2.56×10-1 and c8 = 9.00. Eq. (2) is for the 

calm conditions and Eq. (3) is for the storm events. Figure 4 shows the time series ∆𝐶𝑡 

during storm events. 

 

 

Figure 4. Time series of delta turbidity (NTU) during storm events at the depth of 10 m. 

4.3 Data-driven model 

Visually inspection was performed for the time-series graphs of all the related variables 

to determine whether the relationships described in the literature are confirmed in the real 

data from the Tingalpa Reservoir. When a relationship was identified, we performed a 

statistical analysis to quantify the correlation between variables.  

The reading of fDOM is affected and distorted by turbidity, temperature, pH, salinity and 

inner filter effects. The type of turbidity, water temperature and the size of suspended 

particles are the decisive factors in the fDOM signal bias (Saraceno et al., 2017). Raw fDOM 
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probe measurements were validated as being more reliable if they were systematically 

compensated using the proposed procedure. The developed fDOM compensation 

procedure must consider the instrument features (i.e., wavelength broadband and 

responsiveness) and site-specific conditions (i.e., DOM characteristics and suspended 

particles).  De Oliveira et al. (2018) developed a compensation model to investigate the 

turbidity and water temperature interferences in fDOM readings at the Tingalpa Reservoir. 

We applied such compensation model to obtain more reliable fDOM concentration under the 

influence of turbidity and the water temperature.  

The compensated fDOM data at the VPS location confirmed that storm events could 

have led to peaks of compensated fDOM during the study period from June 2014 to March 

2018. To investigate the compensated fDOM variance during storm events, we analysed 

each storm individually for the study period. There was a sharp increase in compensated 

fDOM from the original state, to a peak value, followed by continuous fluctuation and a final 

decrease to a compensated fDOM value that was higher than the value in the original state. 

Figure 5 shows the variance in compensated fDOM during one storm event and identifies 

several points. One storm event includes the compensated fDOM’s growth period (T1) from 

the starting point to the critical point, a stable period (T2) from the critical point to the 

decrease starting point and the decline period (T3) from the decreasing starting point to an 

ending point. 

 

Figure 5. The time series of compensated fDOM (RFU) during a storm event. SP: starting point, CP: critical 
point, DSP: decrease starting point and EP: ending point. T1 is the compensated fDOM’s growth period; T2 is 
the compensated fDOM’s stable period; T3 is the compensated fDOM’s decline period. 

The moving average method was used to smooth the short-term fluctuation of 

compensated fDOM data, and a 10-h period was set to reduce lag by applying the weight to 
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recent compensated fDOM. In addition, the gradients of compensated fDOM during T1, T2 

and T3 were calculated for 1 h. According to this analysis, the compensated fDOM’s 

gradients were from 1.49 RFU/h to 11.51 RFU/h in the growth period at the depth of 10m, 

from 0 RFU/h to 1.26 RFU/h during the stable period and from 0.08 RFU/h to 4.52 RFU/h in 

the decline period. There is a specific search criterion to define heavy rainfall events. 

Identifying as heavy rainfall events any time there is the total rainfall over 50 mm in less than 

2 days. Based on the available reliable data, there were five heavy rainfall events during the 

study period, and the time series of daily rainfall, turbidity and compensated fDOM for these 

five heavy rainfall events are shown in Figure 6. 

 

Figure 6. The time series of daily rainfall (mm), compensated fDOM (RFU) and turbidity (NTU) at a depth of 10 
m at VPS station during Event 1 (a-c), Event 2 (d-f), Event 3 (g-i), Event 4 (j-l) and Event 5 (m-o). 

Heavy rainfall increases the loading of sediments into the reservoir and accelerates the 

increase of sediment and turbidity. The high growth rate of turbidity results in a long lag 

between peak turbidity and peak fDOM concentration. In the Tingalpa Reservoir, the lag 

between peak turbidity and peak compensated fDOM was correlated with total rainfall during 

the storms, as shown in Figure 6a. Saraceno et al. (2009) found the lag time between peak 

turbidity and peak fDOM was 14 h at the mouth Willow Slough Watershed in Californa with 

a catchment area of 415 km2, which is 4.7 times more than the catchment area of the 

Tingalpa Reservoir. The lag time and rainfall data in the study of Saraceno et al. (2009) are 
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shown as a reference in Figure 6a and these data agree with the correlation between total 

rainfall and lag time between peak turbidity and peak fDOM in the Tingalpa Reservoir. An 

analysis of the rainfall data and compensated fDOM data in Figure 6 found that the peak of 

compensated fDOM occurred during the period of intense rainfall during each storm event. 

For example, the intensive rainfall in Storm Event 2 occurred from 20 February to 23 

February 2015, and the peak of fDOM occurred from 22 to 23 February 2015. Figure 7b 

shows the intensive rainfall during the prolonged peak period (T2) of compensated fDOM 

and the correlation between T2 and rainfall intensity. For the storm events with the same 

volume of rain, a high intensity means a short duration of rainfall. A short duration of rainfall 

also shortens the period of the fDOM’s variance during the storm (T1 + T2 + T3). Their 

relationship between mean rainfall intensity and T1 + T2 + T3 is shown in Figure 7c. A high 

intensity of rainfall can accelerate the end of a storm and the decline period of fDOM (T3). 

A shortened T3 leads to a higher decrease in the gradients of compensated fDOM during 

T3. The correlation between this decrease in gradients and rainfall intensity is shown in 

Figure 7d. Figure 6 shows the relationships between parameters related to rainfall and those 

related to the changes in compensated fDOM at a depth of 10m at the VPS station during 

five storm events. 
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Figure 7. Scatter plot and regression between parameters related to rainfall and parameters related to the 
changes of compensated fDOM at a depth of 10 m during five major storm events. (a)  relationship between 
total rainfall and lag from peak turbidity to peak compensated fDOM and the reference data from Saraceno et 
al. (2009); (b) relationship between mean rainfall intensity and the duration of the stable period of compensated 
fDOM (T2); (c) relationship between mean rainfall intensity and T1 + T2 + T3 and (d) relationship between mean 
rainfall intensity and compensated fDOM decreasing gradient. 

Plotting the compensated fDOM values against all possible predictors showed which 

type of nonlinearity links the variables. The most relevant results to our study are shown in 

Figure 8, representing a clear parabolic correlation between turbidity and compensated 

fDOM data from the growth periods and stable periods of fDOM variances during the storm 

events. We expected these results because of the delayed fluorescence response of fDOM 

during storms compared to the turbidity found in the literature and confirmed in the Tingalpa 

Reservoir. Figure 8a shows that the fDOM difference (the difference value of compensated 

fDOM, when turbidity equals zero) high for the second and third storm events and resulted 

from intense rainfall during these storms. The lower part of the parabolic correlation 

represents the compensated fDOM’s during its increasing pattern during the period when 

the turbidity increases, whilst the upper part, above the vertex, is representative of the 

compensated fDOM’s increasing part during the lag time between peak turbidity and peak 

fDOM. The vertex of the parabolic correlation represents the compensated fDOM when the 

turbidity reaches the peak value. 

 

 

Figure 8. Scatter plot of compensated fDOM (RFU) and turbidity (NTU) at a depth of 10 m for (a) Storm Event 

1 (∆fDOM represents the fDOM difference in the regression between turbidity and compensated fDOM), (b) 
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Storm Event 2, (c) Storm Event 3, (d) Storm Event 4 and (e) Storm Event 5, the lower part of the parabolic 
correlation represents the part of the storm event in the increasing period of turbidity (Ttg) and the upper part of 
the parabolic correlation represents the part of the storm event during the lag time between peak turbidity and 

peak compensated fDOM (∆𝑻). 

When the statistical analysis was complete and the features and correlations of the data 

were identified, it was possible to derive the most appropriate model and its key input 

parameters, shown in Figure 9. The data-driven model consisted of two parts to ensure 

accurate and reliable compensated fDOM prediction. The second model part needed to be 

further divided into two parts. 

The three model parts are as follows: 

• Model Part 1: This part includes a determination of whether the heavy rainfall 

leads to the compensated fDOM increase and the prediction of one storm period 

(T1 + T2 + T3). To determine whether the heavy rainfall caused the increase of 

compensated fDOM, two requirements need to be satisfied: 1.the total rainfall in 

two days is more than 50 mm and 2. gradients of the simulated turbidity from the 

process-based model in these two days are more than 0.80 NTU/h. One storm 

event period for compensated fDOM includes T1, T2 and T3. T1, T2 and T3 are 

predicted based on Eq. (4), Eq. (5), Eq. (5) and Eq. (9). If the studied period is 

not in the storm event period, it belongs to the calm conditions. 

• Model Part 2.1: This part takes the turbidity outputs in the calm category. Using 

the consistent decreasing rate, it yields a prediction of the fDOM in calm 

conditions. 

• Model Part 2.2: This part takes the turbidity outputs from Part 1 in the storming 

category. Using the parabolic correlation between turbidity and compensated 

fDOM, the compensated fDOM under turbidity’s effect predicted in Ttg and ∆T 

during storm events, shown in Figure 8. The prediction of compensated fDOM 

in T1, T2 and T3 based on the Eq. (6), Eq. (7) and Eq. (10). 

All models must be validated. In most time-series forecasting studies, this is usually 

achieved by dividing the dataset into a training set and a testing set, where the model is built, 

and the performance of the model is assessed. During this study, the Tingalpa Reservoir 

experienced five storm events during the monitoring period. Therefore, the training set 

contains the first to the fourth storm events from Model Part 2.2. The fifth storm belongs to 

the testing set to validate the model’s accuracy. 
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Figure 9. Integrated data-driven model structure. 

Model part 2.2 can simulate the compensated fDOM’s periods of growth, stability and 

decline. The model was calibrated using the training set of data (i.e., Storm Events 1 - 4) 

and performance was tested on the testing set (i.e., Storm Event 5) for Model Part 2.2. The 

compensated fDOM’s growth period is regarded as the total period of the turbidity’s growth 

and the lag between peak turbidity and peak compensated fDOM, given by Eq. (4). The lag 

between peak turbidity and peak fDOM relates to the rainfall, following Eq. (5): 

 

 
𝑇1 = 𝑇𝑡𝑔 + ∆𝑇 

(4) 

 
∆𝑇 = 𝑎1 𝑙𝑛(𝑅) + 𝑏1 

(5) 

 

where 𝑇1 is the compensated fDOM’s growth period [hour], 𝑇𝑡𝑔 is the turbidity’s growth 

period [hour] and ∆𝑇  is the lag between peak turbidity and peak compensated fDOM 

[hour], 𝑅 represents the rainfall amount [mm] during this storm event. It was found that the 

best logarithmic regression is based on factors a1 = 8.40 and b1 = -1.85×101 with a correlation 

coefficient for the test set of 0.85. 

During the compensated fDOM’s growth period, the parabolic regression between 

compensated fDOM and turbidity was accounted for. Eq. (6) describes the relationship 

between turbidity and compensated fDOM: 

 

 

𝑓 =
±√𝑏2

2 − 4𝑎2𝑐2 + 4𝑎2𝐶𝑡 − 𝑏2

2𝑎2
 (6) 

 

where f is the compensated fDOM concentration [RFU] and 𝐶𝑡  is the turbidity 

concentrations [NTU]. During the period 𝑇𝑡𝑔 , the “-” solution is calculated to get the 
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compensated fDOM concentration and the “+” solution is used during the period ∆𝑇. The 

coefficients a2, b2 and c2 determine the fDOM difference [RFU], shown in Figure 8a. The 

fDOM difference varied by storm and water depth. The relation between the fDOM difference 

for the different water depths and storm events was found using Eq. (7). 

  

∆𝑓𝐷𝑂𝑀 = (𝑎3

𝑅

𝑇𝑅
+ 𝑏3)𝑧 + 𝑐3𝑅 + 𝑑3 (7) 

 

where ∆𝑓𝐷𝑂𝑀 represents the fDOM difference in the regression between the turbidity and 

compensated fDOM, 𝑇𝑅 is the rainfall duration [hour] for one storm event and z being the 

water depth [m]. We found factors a3 = 6.57, b3 = 1.83×101, c3 = -2.34×10-1, d3 = 1.52×102, 

and the coefficient determination (R2) = 0.79 for the test set. According to the data analysis, 

a logarithmic regression was found between rainfall duration and stable period, using Eq. 

(8). During the stable period, fDOM remained at the fDOM peak level. 

 
𝑇2 = 𝑎4𝑙𝑛 (

𝑅

𝑇𝑅
) + 𝑏4 (8) 

 

where 𝑇2 is the duration of the compensated fDOM’s stable period [hour]. We found factors 

a4 = 1.16×101 and b4 = 2.07×101, and R2 = 0.91 for the test set. 

We found a correlation between the duration of compensated fDOM period and rainfall 

intensity. We tested the linear regression model between rainfall intensity and total fDOM 

period. We found factors a5 = -1.92×101, b5 = 2.16×102 and R2= 0.68 for the test set, using 

Eq. (9). During the compensated fDOM’s decline period, we found a stable decline rate. 

Using Eq. (10), we calculated the linear regression between rainfall intensity and the 

compensated fDOM’s mean decrease rate. Eq. (10) was applied to predict the compensated 

fDOM concentration gradient during the fDOM’s decline period.  

 

 
𝑇1 + 𝑇2 + 𝑇3 = 𝑎5

𝑅

𝑇𝑅
+ 𝑏5 (9) 

 
𝑔𝑑 = 𝑎6

𝑅

𝑇𝑅
+ 𝑏6 (10) 

 

where 𝑇2 is the compensated fDOM’s stable period [hour], 𝑇3 is the compensated fDOM’s 

decline period [hour] and 𝑔𝑑 is the compensated fDOM’s mean gradient during the decline 

period. Using Eq. (10), we found a6 = 1.62×10-1, b6 = 3.14×10-1 and R2 = 0.80 for the test set. 

4.4 Model validation 
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Figure 10 shows the time series of turbidity from measurements and from the process-

based model for the storm events from 30 Apr to 10 May 2015 at the VPS station. The root 

mean square error for the depths of 1 m and 10 m were 3.61 and 3.83 NTU, respectively. 

The coefficients of determination were 0.91 and 0.87 at the depth of 1 m and 10 m during 

this storm as a test set. Figure 10 shows that the main peak was accurately simulated during 

the storms in the model. The simulation of turbidity at the depths of 1 m and 10 m is a robust 

validation of the process-based model. It can be adapted to evolving extreme storm events 

in reservoirs. 

 

Figure 10. A comparison of measurement and simulation of turbidity from May to Jun 2015 at (a) a depth of 1 
m and (b) a depth of 10 m. 

Figure 11 shows the time series of simulated and measured compensated fDOM during 

the storm events from April to June 2015 at the VPS station. The root mean square error for 

the depths of 1 m and 10 m were 2.65 RFU and 2.78 RFU, respectively. The coefficients of 

determination achieved for compensated fDOM were 0.92 and 0.97 at the depths of 1 m and 

10 m, respectively. The simulation was accurate. Overall, the coupled data-driven and 

process-based model can accurately predict the fDOM concentration in the water column 

during a storm. 



 

21 

 

 

Figure 11. A comparison of measurement and simulation of compensated fDOM from May to Jun 2015 at (a) a 
depth of 1 m and (b) a depth of 10 m. 

As part of a recent investigation by our group (De Oliveira et al., 2018), a number of 

samples from Tingalpa were collected in May–September 2017; laboratory work, including 

dilution series, enabled the creation of a dataset where a correlation between compensated 

fDOM and DOC could be established. According to the data analysis of our water sampling, 

the measured data show there is a correlation between compensated fDOM and DOC 

concentration in the Tingalpa Reservoir. The DOC concentration is given by Eq. (11). 

 

 
𝐷𝑂𝐶 = 𝑎9𝑙𝑛 (𝑓𝐷𝑂𝑀) + 𝑏9 

(11) 

 

where DOC is the DOC concentration [mg/L] and fDOM is the compensated fDOM 

concentration [RFU]. We found factors a9 = 6.30 and b9 = -1.10×101, and R2 = 0.89 for the 

test set. The correlation was applied to validate the modelled fDOM, and the DOC 

concentration was simulated at an hourly interval. Comparisons between measured and 

simulated DOC concentrations are shown in Figure 12 at SP001, SP002, SP004, SP010 

and SP015. Compared to the measured DOC, the simulated data at each respective time 
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point had the same range as the measured data from 0 to 20 mg/L. The simulated DOC 

concentration over 20 mg/L occurred during storms at the bottom layer of the reservoir. 

Because the DOC data was monitored before the storm event, the concentration lower than 

20 mg/L. Overall, the coupled data-driven and process-based model can accurately predict 

the fDOM concentration in a water column during a storm. 

 

Figure 12. Simulated and measured DOC concentrations at the surface and bottom layers of the reservoir at 
(a) SP001, (b) SP002, (c) SP004, (d) SP010 and (e) SP015. 

5. Results and discussion 

To establish the effects of storms on the reservoir, the simulated fDOM and measured 

DOC concentrations were plotted from January 2015 to July 2015. Figure 13 shows the 

simulation of fDOM and measurement of DOC at SP001, SP002, SP004, SP010 and SP015. 

SP001, SP002 and SP004 are in the north west, west and east of the reservoir, respectively, 

shown in Figure 1. Figure 13 shows that the water depths at SP001, SP002 and SP004 are 

3 m, 10 m and 5 m, respectively. SP010 and SP015 belong to the riverine zone, and these 

stations are close to the inflow creeks. Due to the shallow water depth at the riverine zone, 

the DOC concentration was measured only at the surface layer of the water. Due to the 
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monthly monitoring interval for the DOC concentration, only the rough variance of DOC could 

be analysed. The DOC concentration at the surface had the same variance in the first half 

of 2015. It increased from January, reached its peak value in May and then decreased. The 

simulated fDOM at the top layer of the reservoir at five monitored stations also had the same 

variance as the surface DOC concentration. The simulated fDOM at the surface increased 

from January, reached its highest level in April and May and then declined. Compared to the 

lacustrine zone, the riverine zone’s surface DOC at SP010 and SP015 had a sharper 

increase during the storm in February 2015. This increase resulted from inflow creeks with 

high turbidity during the storm event. Simulated bottom fDOM at three stations clearly 

fluctuated, especially during storms. Due to the deepest point at SP002 station, the peak 

values of bottom fDOM at SP002 during storms were the highest than other stations. Overall, 

the simulated surface and bottom fDOM from the coupled data-driven and process-based 

model showed the temporal and spatial variances in the Tingalpa reservoir. The fDOM 

variances can be a proxy for DOC concentration changes during wet weather events. 

 

 

Figure 13. Time series of simulated fDOM and measured DOC at top and bottom layers of the Tingalpa 
Reservoir at the (a) SP001, (b) SP002, (c) SP004, (d) SP010 and (e) SP015, January to July 2015, Lake 
Tingalpa. 
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To analyse the influence of the storms on the fDOM transport, the compensated fDOM 

at the surface layer of the reservoir was predicted before, during and after the February 

storm with high rainfall intensity in 2015. As displayed in Figure 14a, the overall horizontal 

fDOM was below 110 RFU before the storm. Figure 14b indicates that the inflow water with 

high fDOM led to an increase of DOM, especially in the area close to the inflow creeks. The 

plume contained a high concentration of fDOM spread to the centre of the lake during the 

storm and because of dilution, the water with fDOM higher than 150 RFU did not transport 

to a long distance. Figure 14d reveals that there was an obvious increase of fDOM in the 

east and west branches of the lake after the storm. Therefore, as illustrated in Figure 14, the 

variation of surface fDOM distribution mainly depends on the high concentration of fDOM in 

the inflow plume. 

 

Figure 14. The simulated horizontal distribution of the surface compensated fDOM during Cyclone Marcia in 
the Tingalpa Reservoir on (a) 18th, (b) 21st, (c) 22nd and (d) 24th of February 2015; the color legend represents 
the compensated fDOM (RFU). 

The time series of the rainfall amount, water level and simulated compensated fDOM at 

the depth of 3 m in the riverine, transition and lacustrine zones are displayed in Figure 15. 

The meteorological characteristics and simulated results during the main storm events are 
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shown in Table 2. As depicted in Figure 15, the heavy rainfall led to an increase in both 

water level and simulated fDOM. Figure 15b demonstrates that the fDOM at the depth of 3m 

in riverine firstly reached the peak during the storm. As shown in Table 2, these five storms 

were primarily caused by heavy rainfall and when the rainfall intensity was higher than 2.3 

mm/h, the peak fDOM in the lacustrine zone was greater than 161.6 RFU. Moreover, the lag 

time between the start of the rainfall and peak fDOM was longer in the first storm event. The 

observation can be explained by lower rainfall intensity and no storm event occurred before 

the storm event 1, so there was a long time for fDOM to react to the heavy rainfall. Figure 

15 shows the lag time that existed between peak fDOM in the riverine zone and lacustrine 

zone. The lag time between peak fDOM in the riverine zone and lacustrine zone were from 

16 h to 90 h during these events. The lag time between peak fDOM in the riverine zone and 

the lacustrine zone is the shortest in Event 4, this can be explained by the short interval from 

Event 3 to Event 4, which also led to a lowest concentration of peak fDOM. Except the Event 

4, the peak of fDOM in the lacustrine zone was higher than 100 RFU. The higher 

concentration of fDOM indicates that the storm event led to the DOM’s increase, which 

needs more attention to remove extra DOM in water treatment. The simulation results 

implicate that the water treatment needs to have 34 h to respond once a peak of fDOM is 

recorded in the riverine zone. 

 

Figure 15. The time series of (a) surface elevation (m) and rainfall (mm) and (b) simulated compensated fDOM 
(RFU) at the riverine, transition and lacustrine zones at the depth of 3 m January - July 2015.  
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Table 2. The meteorological characteristics of the storm events and the relevant simulated results during 

study period.  

Parameter Event 1 Event 2 Event 3 Event 4 Event 5 

Time period 19/01/2015-

29/01/2015 
20/02/2015-

26/02/2015 
22/03/2015-

27/03/2015 
02/04/2015-

08/04/2015 
30/04/2015-

03/05/2015 

Rainfall magnitude (mm) 66.6 288.8 74.4 89.0 223.4 

Storm duration (h) 216 120 96 168 94 

Rainfall intensity (mm/h) 0.31 2.41 0.78 0.53 2.38 

Peak fDOM in the 

lacustrine zone (RFU) 119.4 151.7 145.2 76.0 161.6 

Lag time from the start 

time of rainfall to the peak 

fDOM in the lacustrine 

zone (hr) 

134 79 26 11 56 

Lag time between peak 

fDOM in riverine zone and 

peak fDOM in the 

lacustrine zone (hr) 

90 34 41 16 49 

                                             

To indicate the fDOM variation under wind conditions, the simulated horizontal and 

vertical distributions of compensated fDOM under west wind were analysed. The continuous 

west wind blew from 10 a.m. to 2 p.m. on 22 May 2015 with the wind speed varying from 1 

m/s to 6.6 m/s. The simulated lake-wide circulation pattern at the top and bottom layers of 

the water column is shown in Figure 16. It is found the currents at the surface centre of the 

lake flowed to the east, same as the wind direction and the currents at the bottom of the 

centre lake flowed to the west. The flow directions at the surface and bottom layers of the 

lake were opposite, which suggests there was a transport cycle present in the vertical 

direction of the lake. The simulated results show that the fDOM at the surface was lower 

than the bottom of the lake. The water cycle in the vertical direction under continuing west 

winds is the main factor that caused the higher fDOM concentration in west areas of the lake 

than east areas at the deep layer of the lake. 

Figure 17 presents the vertical distribution of the simulated fDOM from IP1 to IP2 on 22 

May 2015. For the flow direction, the currents at the surface water to the depth of 2 m had 

the same direction as the wind, and the water below the depth of 2 m flowed in the reverse 

direction. It is found that the water column near IP1 flowed up and the water near IP2 flowed 

down. Moreover, the water column at the middle between IP1 and IP2 flowed to the surface 



 

27 

 

layers of the lake, due to the terrain of the reservoir; in other words, when water flows to the 

shallow area, it will lead to the upward or downward water flow. It is obvious that the fDOM 

near IP1 was higher than that near IP2 at the depth of 5 m and 6 m, this phenomenon 

indicates that the water cycle in the vertical direction transported the fDOM from bottom 

layers to the top layers of the lake.    

 

Figure 16. (a) Simulated top cell-averaged velocity and simulated compensated fDOM (10 a.m. to 2 p.m.) on 
22 May 2015 and (b) the simulated bottom cell-average velocity and simulated compensated fDOM (10 a.m. to 
2 p.m.) on 22 May 2015; the vectors represent the flow velocity. 

 

Figure 17. (a) The simulated vertical distribution of compensated fDOM at 10 a.m. on 22 May 2015 and (b) the 
simulated vertical distribution of compensated fDOM at 2 p.m. on 22 May 2015; the color legend represents the 
compensated fDOM (RFU). 
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6. Conclusion 

This study has investigated the cycle of fDOM in lakes and reservoirs and explored the 

relationships between fDOM and relevant parameters, including turbidity, rainfall and water 

temperature. A coupled data-driven and process-based model was developed and validated 

using collected data during storm events and calm conditions. The model showed accuracy 

in replicating the observed variations of fDOM and reproduced the magnitude and 

distribution of turbidity. The simulated results indicate that deeper layers of the reservoir had 

higher fDOM concentrations during storms, and the area close to the riverine zone had a 

sharper increase during storm events. The simulated fDOM can be a proxy of DOC 

concentration. The simulation results indicate that the increase of fDOM during the storm at 

the surface of the lake was mainly caused by the inflow plume, in other words, fDOM sources 

were from inflow creeks. The model results show the lag times between peak fDOM in the 

riverine zone and lacustrine zone are from 16 h to 90 h during the studied period. To remove 

the DOM efficiently, the water treatment needs to have 34 h to respond once a peak of fDOM 

is recorded in the riverine zone. The analysis of wind influence on fDOM transport was also 

conducted. It was found that the continuing wind caused the water cycle in the vertical 

direction and led to the transport of fDOM from the bottom layers to the surface layer of the 

reservoir. The fDOM prediction model developed in this study provides an innovative method 

to simulate the three-dimensional fDOM dynamics in reservoirs. This innovative model will 

help water treatment operators to manage and improve the quality of the water sources, 

especially to remove DOM.  
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