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Abstract

Renewable energy resources (RESs) are significantly integrated in distribution networks to promote green

technologies in future power systems. The idea of microgrids (MGs) is developed for the efficient use of

RESs through an appropriate control, monitoring and management system. Control and management of

MGs are challenging tasks along with numerous economic and environmental benefits. The challenges of

MGs operation include tie-line power fluctuations that have an adverse effect on the stability and quality

of distribution networks. Tie-line power control in a residential MG is difficult due to dependency on

RESs as a primary generation unit in MGs. Motivated by these, this thesis investigates the tie-line

power control issues in grid-connected residential MGs and applies several controls and optimisation

methods to achieve a smooth tie-line power satisfying system boundary conditions. First, a dynamic

energy management system (EMS) is designed to reduce the tie-line fluctuation in a grid-connected

MG through an indirect grid power control strategy. A fuzzy logic-based EMS is proposed to control

the battery power due to the variations in generations and loads. The net power demand and battery

state of charge (SoC) of an MG are considered inputs of the fuzzy controller to determine the battery

power by keeping the battery SoC within limits. An offline optimisation method is used to optimise

the membership functions and rules to shape the performance parameters. Thereafter, a golden section

search-based non-linear programming method is applied to design a battery power management system

to minimise the tie-line fluctuation in an MG counting the system constraints and disturbances. Two

other rule-based methods are also demonstrated for comparative analysis of the proposed methods

in terms of predefined performance parameters. Afterward, a dynamic grid power control method is

presented to control the interlink inverters in grid-connected MGs. A grid power controller is designed

based on a complete model of the MG systems to achieve a constant tie-line power on typical days

of the year. The designed controller can effectively smooth tie-line fluctuation in a grid-connected

residential MG. The charging/ discharging of the battery is controlled by a DC-DC converter which is

also responsible to provide a stable DC bus to the input of an interlink inverter. The reference tie-line

power is determined by a MG controller based on statistical power generations, load demand and battery
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SoC. Moreover, an eigenvalue-based stability analysis is performed to show the sensitivity of system

parameters on system stability. Furthermore, the tie-line power control in a networked MG (NMG)

is investigated to obtain a smooth tie-line power in an NMG connected to a common bus. A model

predictive control-based distributed power flow controller is proposed to control the interlink inverters of

the NMG in a distributed manner. Charging/ discharging of battery is controlled by a decentralised

model predictive power controller to provide a stable DC voltage for MGs. Communication between MGs

is performed for sharing the status of the tie-line power along with the scheduled tie-line reference. The

information from the network is used to determine the instantaneous reference grid power of individual

MGs for achieving a smooth tie-line power for the network. Inverter switching actions are performed to

minimise the difference between predictions and references. In addition, a comparative study with a

decentralised operation of MGs is conducted to show the benefits of networked operation.

All the proposed methods are tested through rigorous case studies to validate the performance despite

the variations in input and output system disturbances. Comparative analysis among different methods

is also conducted to demonstrate the performance variations through adopting different methods. For the

simulation experiment set up, MATLAB SIMULINK Simscape Electrical is used to develop a designed

system model of MGs and experimental models of the proposed methods. Experiments are performed

using real weather and residential load information in Queensland, Australia. The results demonstrate

that the proposed methods have achieved the design objectives to solve the tie-line fluctuation problem

of grid-connected residential MGs.
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Chapter 1

Introduction

1.1 Motivation

Smart grid technologies have become the leading element of next-generation electrical power networks

to increase the reliability and efficiency of power systems and provide a secure and cost-effective energy

generation, distribution and consumption for customers. Microgrids (MGs) are one of the leading

features of smart grid technologies that integrate distributed energy resources and energy storage systems

to create a small grid that feeds different loads on a low-/medium-voltage network and operate either

grid-connected or island mode [1, 2]. The concept of MGs is mainly developed to utilise energy from

renewable energy resources (RESs) that are distributively connected to transmission and distribution

networks. The output power of RESs is usually dynamic in nature due to dynamic weather conditions

throughout the day. Thus, the control and optimisation of an MG present a challenge due to dynamic

variations in RESs and load demand in MGs. In addition, the dynamic nature of RESs and load demand

creates a fluctuating tie-line power in grid-connected operation of MGs. The fluctuation of tie-line

power has an impact on stability, quality and reliability of customer service. Moreover, integrating a

number of MGs in a distribution line will increase the tie-line fluctuation significantly. Networked MG

(NMG) is an extended concept of MGs that involves forming a network using multiple neighbouring

MGs. The main idea of the network is to share surplus/shortage power with neighbouring MGs for

local/global cost-effective operation, reducing the impact of RESs on distributed network and reliability

of customer service. However, the adaptation of NMGs in distribution networks brings new challenges

because of multilevel control and optimisation needed to achieve a robust control and energy management

system (EMS) for the network. Furthermore, MGs in a network may have different objectives and
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privacy strategies, which may lead to large variations in tie-line power. The result will further reduce

the quality and stability of distribution networks. Recent studies focused on addressing the tie-line

fluctuation problem in grid-connected MG considering the dramatic behaviours of RESs and load, and

by preserving the system constraints. Meanwhile, additional research is necessary to solve the tie-line

fluctuation problem in a grid-connected residential MG. Moreover, tie-line fluctuation in NMGs needs to

be addressed. Thus, this thesis investigates the tie-line fluctuation problem of grid-connected MGs to

find achievable solutions for the problem.

1.2 Scope of the Thesis

This thesis aims to study the tie-line fluctuation problem of grid-connected MGs and provide feasible

solutions to achieve a smooth tie-line power for grid-connected MGs using different control and optimi-

sation methods. A comprehensive literature review on control and optimisation of MGs is conducted to

find the related research gaps. Then, the thesis systemically presents several control and optimisation

methods to achieve the research objectives. Firstly, several rule-based control methods, including fuzzy

logic control, are applied to a dynamic EMS to reduce tie-line fluctuation in an MG. In addition, a

golden section search-based non-linear programming optimisation method is used to minimise the tie-line

fluctuation in the MG. Afterwards, a grid power controller is designed using the dynamic model of the

MG that effectively smooths the tie-line power fluctuations in a grid-connected MG. In addition, a

distributed model predictive control scheme is proposed for controlling the interlink inverters of MGs to

obtain a smooth scheduled tie-line power in an NMG connected to the same distribution feeder. The

main research objectives of this thesis are summarised as follows:

1. Designing a dynamic EMS to control the battery storage power flow to achieve a minimise tie-

line fluctuations;

2. Developing a dynamic model of an MG and designing a grid power control method to control the

dynamic power flow of the interlink inverter for achieving a smooth tie-line power;

3. Designing a distributed tie-line power controller to achieve a smooth tie-line power in an NMG.
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designed by maintaining the battery SoC within limits. The method minimises the tie-line fluctuation in

a grid-connected MG despite the variations in RESs and load demand. Moreover, a comparison with two

other rule-based control methods is presented in a simulation experiment to validate the performance of

the proposed control and optimisation methods.

• The third contribution, as presented in Chapter 5, is a grid-power controller designed for interlink

inverters of MGs to achieve a constant tie-line power in a grid-connected residential MG on typical days

of the year. The reference tie-line power of an MG is determined by the MG controller based on load

dynamics, average PV generation and battery capacity. In addition, a state-space model is derived from

the dynamic model of the MG for eigenvalue-based stability analysis. Several case studies have been

formulated to demonstrate the performance of the proposed grid power control method by using real

irradiance and typical residential customer load data in Queensland, Australia. Moreover, a comparison

with a dynamic EMS-based method is performed to validate the performance of the proposed control

method.

• The fourth contribution, as delineated in Chapter 6, is a distributed model predictive power controller

proposed for interlink inverters of MGs to achieve a smooth tie-line power in an NMG. A dynamic model

of MGs is used to predict the future value of grid power of individual MGs. In addition, tie-line power

references of MGs are scheduled based on the forecasted generation and load in a network. Information

sharing between MGs is conducted in a distributed manner to revise the instantaneous tie-line power

references of MGs in each time step to obtain a smooth scheduled tie-line power for the network. Several

case studies are illustrated in the simulation experiment to demonstrate the performance of the proposed

distributed controller. Moreover, a comparison with the decentralised operation of MGs is presented to

validate the performance of the distributed controllers in the NMG.

1.4 Thesis Outline

The remaining chapters of the thesis are organised as follows

Chapter 2 illustrates a comprehensive literature review on control and management of MGs.

Chapter 3 proposes a fuzzy logic-based dynamic power flow control method to reduce the tie-line

fluctuation in an MG.

Chapter 4 presents a battery power management system to minimise tie-line fluctuation in an MG

using a non-linear programming method.
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Chapter 5 presents the development of an MG dynamic model and design of a grid power controller

to obtain a constant tie-line power in a grid-connected MG.

Chapter 6 reports a distributed model predictive power control method to control the tie-line power

in an NMG.

Chapter 7 summarises the research results and indicates future potential research directions in the

relevant topic.
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small grid within a smart grid network which embedded various distributed energy resources (DERs)

units, energy storage systems and load. Fig. 2.1 shows the concept of an MG operating in a distribution

network. An MG has its own control and management unit to maintain the stability and optimal

operation of the system. Due to independent operation capability, an MG can operate in grid-connected

or island mode. In grid-connected mode, an MG is considered as an identical system in a distribution

network works as a generating source during over generation period from DERs and as a load demand

during power deficiency. On the other side, the autonomous island mode provides the flexibility and

reliability to customers by providing continuous power supply to the time critical load inside an MG

during fault situations. Thus, different control and management objectives are involved related with

the operating mode of an MG. Bacuase of this, the design and development of electronic devices need

careful consideration during planning stage of an MG. Several research has been done in last decay on

monitoring, control and management of MG resources depend on the structural form. Jackson et al. [3]

demonstrates a review of existing MG test networks around the world. Luida et al. [4] investigates the

feasibility, control and management strategies of AC and DC MGs consists of RESs, ESS and load. The

next section will provide a comprehensive review on control and management of single MGs.

2.1.2 Introduction to Networked Microgrids

In the last decade, distributed energy resources (DERs) have been integrated into transmission and

distribution power networks to reduce the amount of carbon emissions worldwide and to meet the

increasing demands of power systems [5, 6]. A microgrid (MG) is one of the leading features of a smart

grid power network for integrating DERs within a distribution network [3]. An MG can be defined

as a low-voltage (LV)/medium-voltage (MV) power network that integrates DERs and energy storage

systems (ESSs) to create a grid that feeds different loads in the network and can operate in either

grid-connected or island mode [7]. A networked MG (NMG) is an advanced MG concept in which a

network is formed using several adjacent MGs. Fig. 2.2 illustrates a typical NMG in a distribution

network. The goal of such network is to provide mutual power sharing with neighbouring MGs to

increase the reliability of an MG network and to reduce operational costs. The network also enables

restoring service to customers after a fault/deficient power condition occurs, efficient use of renewable

energy resources (RESs) in the network, providing mutual support in island operation and reducing the

burden on the main grid in grid-connected operation. Several similar concepts for defining NMG exist

in the literature. Multi-microgrid (MMG), MG cluster and interconnected MGs are the most frequently
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flow equation of an MG is the power balance equation between supply and demand. Equation (2.1)

represents the EMS equation for a typical MG.

∑
PLoad =

∑
Pgen + PESS + Pgrid ∀t (2.1)

Where PLoad is consist of critical and non-critical load of an MG, Pgen includes renewable and

non-renewable energy resources of an MG, PESS is the energy storages to supply critical load in island or

emergency situation and Pgrid is the amount of grid support needed to balance the supply and demand

in grid-connected operation.

The key objectives of power flow control and EMS in an MG are to define optimal set points for

different controllable units inside an MG, cost optimization by economic aspects of the grid, smoothing

the grid profile and reliability of customer service. Research has been conducted several ways to obtain

the objectives of an MG such as demand side management, control of generation units, control and

management of ESSs or combination of them. Based on the MG structure and requirement, appropriate

control elements has been chosen during control and management of an MG. For example, demand side

management described in [20, 21] to minimize the operating cost of an MG . R. Palma-Behnke et al.

[20] presented the rolling horizon strategy for determining the set points of generation units and signals

for customers based on demand side management. Similarly, in [21], the operating cost of an MG was

minimized by 3.06% by controlling water pump and other electric loads in demand side management.

On the other side, for maximizing the MGs profit, a day ahead optimal planning of generation units was

made in [22] by keeping the system constrains in secure limit. Besides that, to minimize the cost of MG,

receding horizon technique for optimal scheduling of battery was adopted in [23] where wind turbine is

the key support for local load. Similarly, adaptive modified firefly algorithm is used in [24] to reduce the

operating cost of MG considering the stochastic nature of RESs and load demand. In [25], to support

the rapid fluctuation of demand in an MG, a composite ESS was used to allocate steady load to battery

and dynamic load to ultra-capacitor. Y.-K., Chen et al. [26] deploys fuzzy logic in EMS where selling

the electricity to the connected grid was the main priority of the control algorithm along with satisfying

the demand of an MG. In addition, different methods and strategies are chosen for optimal operation of

the MG based on the MG structure & predefined objectives. The following subsections discuss different

power flow control methods of single MGs used in various studies.
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2.2.1 Rule and Fuzzy Logic-based Power Flow Control

A. Rule-based Control

A rule-based power flow control method is a low cost and low complexity method implemented in EMS

of an MG. In a rule-based method, several rules has been set up depending on the structure and control

objectives of an MG. However, rule-based methods can not provide optimal solution for a complex

system and can easily effected by system uncertainties. Several studies use rule-based method to obtain

the operational objective of an MG. A rule-based control method is applied in [27] to monitor and

control the active power flow in a smart MG system. The objectives of the EMS were to maximise the

use of RES and to obtain maximum economic benefits. A rule-based model predictive controller was

designed in [28] to set the binary decision variables using if-else rule. A single level control structure

was employed using different sampling time for optimal operation of an MG. In [29], a rule-based EMS

was proposed that optimized using grass-hopper optimization algorithm to obtain an efficient long-term

capacity planning in an island MG. In [30], a rule-based EMS was applied using electricity price through

out the day to obtain the peak shaving, and a smart ESS was used to provide a cost-benefit to the

customers. Moreover, a rule-based centralised MG control system was implemented in [31] to keep the

battery state of charge (SoC) within a predefined limit. The supply reliability to the customers and

efficient use of RESs were ensured by controlling the tie-line power in grid-connected mode. Seamless

transition control to island mode and reconnection to the main grid were also discussed in this article. In

[32], a rule-based energy management was used to reduce the dependency on the main grid during power

shortage inside an MG. The algorithm was implemented in a laboratory environment using dSPACE

1104 real-time operating system. An offline dynamic programming-based optimisation and a real time

rule-based power flow control method was applied in [33] for energy scheduling of an MG.The proposed

method was implemented in a magnetically coupled hybrid renewable energy system connected to the

load using a multi-winding magnetic link. In [34], a rule-based dispatch algorithm was used in a hybrid

MG by prioritising system buses and components. In [35], a comparative study between a rule-based

and a MPC-based EMS was presented targeting the cost effective-benefit analysis of the methods in

a office building MG. The results demonstrated better performance using the optimising method in

compare with the rule-based method.



2.2 Power Flow Control of Microgrids | 15

B. Fuzzy Logic-based Control

A fuzzy Logic is an extension of multivalued logic whose objective is approximate reasoning rather

than exact solution. A fuzzy logic block consists of three functional blocks such as fuzzification block,

interface engine and defuzzyfication block. The ideal procedure to design a fuzzy logic controller (FLC)

based system is summarized as follows:

1. Design the membership functions (MFs) of inputs and outputs.

2. Set the rules to determine crispy output.

3. Adjust the membership functions and rules to optimize the performance parameters.

A fuzzy logic control is a widely acceptable method for power flow control and management of an MG.

In [26], a fuzzy logic was deployed in EMS of an MG and the main priority of the control algorithm was

to sell the electricity to the main grid along with satisfying the demand of an MG. Besides that, a fuzzy

logic based coordinated control between a dispatch-able distributed generation and a ESS was proposed

in [36] to adjust the active power reference of the battery based on SoC and targeted active power from

battery to minimize the grid power in grid connected mode. In [37] , a fuzzy logic-based EMS was

applied to increase the profit of an investment in a polygeneration MG included the electricity, transport

and water. In [38] , partially management of the battery was presented using FLC and grid power is

determined by filtering the high frequency component from the difference between MG net power and

FLC output. A different strategy was implemented in [39], where the amount of power assigned to the

grid was computed as a sum of two components. First one was the average value of net power demand

calculated by a moving average filter and second one was the modifying term of the grid power calculated

by a FLC to increase, decrease or maintain grid power and to maintain the battery SoC within secure

limit. A FLC-based EMS was developed in [26] to optimize the energy distribution in an MG and to

maintain the battery health. A RS-485/ZigBee network was used to conduct the data collection from

system and then the developed fuzzy control method was implemented in an intelligent management

system. Besides that, a battery management system was developed in [40] using a FLC to decide the

charging/ discharging of battery based on power distribution cost and system loss. A fuzzy interface

system was develop in [41] to reduce the tie-line fluctuations and to increase the life-time of the battery.

To improve an MG economic efficiency, a FLC was designed in [42] to apply in battery management

system. A genetic algorithm (GA) was used in this study to optimize the fuzzy design parameters. A

fuzzy logic expert system was used in [43] for scheduling the battery of an MG based on forecasted
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generation profile. A comparison with heuristic flowchart battery scheduling method was demonstrated

to show the performance of the fuzzy system in term of cost minimisation and reduced emission level.

Furthermore, a fuzzy logic based battery management system was designed in a supervisory control

scheme of an isolated MG to maximise the use of RESs and to keep the battery SoC with in limit

[44]. Several scenarios had been demonstrated to show the effectiveness of the battery management

system. In [45] , a fuzzy based expert system was developed to control the output power of the battery
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Fig. 2.4 Flow chart to solve the optimisation problem using particle swarm optimisation algorithm

to achieve reduced operation cost in an MG. Two GAs were engaged in the system to optimize the

membership functions and fuzzy rules. A fuzzy logic based EMS was employed in [46] and the FLC

was optimised by an artificial bee colony algorithm to increase the system energy saving efficiency and

to reduce the operation cost of an MG. In [47], a fuzzy logic based EMS was presented with a hybrid
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energy storage system to improve the economic performance of an MG. To maximise the duration of

power supply to the customers, a fuzzy logic based approach was implemented in [48] in an island MG

based on availability of RESs and ESS.

2.2.2 Heuristic Algorithm-based Power Flow Control

A. Particle Swarm Optimisation

A particle swarm optimisation (PSO) determines the position and velocity of all particles in a search

space using a mathematical formulation to find the solution of an optimisation problem . Fig. 2.4

shows the routine process for obtaining an optimised solution using PSO algorithm. PSO algorithm is

widely used to solve the optimisation problem in an MG. A modified PSO was used in [49] to solve the

optimal dispatch problem of an MG. The results demonstrated the lower operating cost and less carbon

emission on the application of the proposed method. An efficient PSO approach was presented in [50]

to minimise the total energy and operating cost of an MG. The weibull and normal distributions were

used to model the system uncertainties. After that, the operation and management of the DERs ans

ESSs were done by maintaining the system constrains. A new model of a hybrid MG was presented

in [51], and an canonical differential evolutionary PSO was applied to optimise the energy inside the

MG. In [52], an adaptive EMS was implemented using advanced metering infrastructure to reduce the

system operational cost. A new concept "operation value factor" was introduced to improve the overall

system performance and a PSO algorithm was applied to solve the optimisation problem. A two stage

stochastic management approach was used in [53] to achieve faster computation, smaller conservative

bounds and lower operational costs. The optimal power of the MG was obtained by applying affine

arithmetic and stochastic weight tradeoff PSO algorithm. Besides that, an adpative modified PSO based

on a chaotic local search mechanism and a fuzzy self adaptive structure was employed in [54] to solve

the multi-objectives optimisation problem in an MG. The objectives of the optimising problem were to

minimise the operating cost and net emissions in a renewable energy-based MG. A comparison with

GA and conventional PSO algorithm was performed to show the effectiveness of the proposed structure.

In [55], an improved PSO-exterior point method was used to solve the multi-objectives scheduling

problem in an island MG. The evaluation indexes indicated better performance of the proposed energy

scheduling method compared with a single objective solution. The generations and demand forecasting

errors were counted in [56] and a modification inertia weight of the PSO algorithm was applied to solve

optimal scheduling problem of an MG. An optimal power problem was formulated in [57] to minimise
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the operating cost and emission in an MG. A bird swarm optimising algorithm was used to solve the

optimisation problem and the proposed solution was implemented using a IEEE 30-bus testing system.

A power flow controller was designed in [58] to control the power flow between an MG and main grid

during the load change conditions. A PSO algorithm was applied for real time tuning of the active and

reactive power to share the MG load with main grid. A fuzzy optimisation model was presented in [59]

and solve using binary PSO algorithm to minimise the total cost and network losses in an MG. In [60],

a modified multi-objective PSO algorithm was proposed to minimise the operation cost and emission

using a real-time EMS. A comparison with multi-objectives GA was presented in the article that showed

the faster computation time using PSO algorithm to solve the optimisation problem. Furthermore, a day

ahead optimal scheduling was done in [61] using PSO and GA. In the optimisation problem, a dynamic

pricing scheme was considered to minimise the cost paid by the customers.
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Fig. 2.5 Flow chart to solve the optimisation problem using genetic algorithm
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B. Genetic Algorithm

A GA is a search heuristic algorithm that is motivated from natural evaluation theory. There are five

steps in a GA algorithm such as initial population, fitness function, selection, crossover, and mutation to

search for an optimal solution. Fig. 2.5 shows the routine process for obtaining an optimised solution

using genetic algorithm. Several studies used GA algorithm to solve the power flow optimisation problem

in an MG. An energy and reverse scheduling problem was discussed in [62] under a high performance EMS

to obtain the optimal switching sequence of DERs and responsive load. The uncertainty of generations

and load was considered in the optimisation framework and a GA was used to solve the optimisation

problem. A memory-based GA was applied in [63] to minimise the energy production cost of an MG. A

centralised EMS was used to gather all information and decided the generation set points between a

number of DERs. Moreover, a comparison with conventional GA and PSO was presented to show the

superiority of the proposed method. A optimal dispatch model of MG EMS was presented in [64] to

minimise the operating cost, emission as well as maximise the utilisation of RESs. The optimisation

problem was solved using a GA algorithm under variable load conditions. An energy trading model was

developed in [65] based on the forecasted generation of RESs in an MG and a GA was used to decide

the energy trading with the main grid. A GA-based optimal power flow control was employed in [66]

to minimise an MG set up cost including PV and battery system. In [67], a smart EMS for an MG

was proposed that consists of forecasting and optimisation module. First, a day ahead forecasting was

presented based on different weather variations. After that, a matrix real-coded GA was used to decide

the optimal economic operating point of the MG.

C. Other Heuristic Algorithms

A day-ahead energy scheduling model was formulated in [68] and a hybrid harmony search algorithm

with differential evolution was applied to solve the energy optimisation problem. The proposed model

and algorithm were validated using IEEE 9-bus, IEEE 39-bus and IEEE 57-bus systems MGs. In [69],

the experimental design and validation of a home-based MG operating in island mode was presented

using a central EMS structure. The central EMS was combined with forecasting module and real-time

management system to minimise the cost margin and to provide plug-and-play functionality of the MG.

The EMS problem was solved using multi-period artificial bee colony algorithm. Moreover, a comparison

with mixed-integer non-linear programming was presented to show the effectiveness of the proposed

algorithm. A multiperiod artificial bee colony optimization algorithm was also used in [70] to implement
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the economic dispatch of an MG considering demand response. An artificial neural network combined

with a markov chain method was adopted in this study to forecast the uncertainty of RESs and customer

demand. In [71], an intelligent dynamic EMS was adopted using a action-dependent heuristic dynamic

programming for energy scheduling of a RES dominated MG. A comparison with decision tree approach

based EMS was presented to illustrate the MG operation in different ESS conditions. An optimal

operation of a grid-connected MG was discussed in [72] and a new recurrent neural network was applied

to minimise the grid power over a week horizon. A gravitational search algorithm was used in [73] to

solve the energy optimisation problem in an MG to achieve improved economic dispatch, peak-shaving

and generation cost minimisation. In [74], a modified bacterial foraging optimisation algorithm was

employed under an intelligent EMS to find the optimal set points of DERs in an MG. A multi-layer ant

colony optimization algorithm was used in [75] to figure out the optimal operating point of DERs in an

MG. The results showed that the proposed method had reduced the energy cost of the MG by 5% in

comparison with PSO algorithm. A reinforcement learning algorithm was applied in [76] for scheduling

the battery power though continuous interaction with customer agents for reward optimisation. A

distributed EMS was proposed in [77] to set the optimal power regulation of DERs in an MG. An

alternating Direction Method of the multiplier was used to solve the power management problem.

2.2.3 Model Predictive Control

In [23], a model predictive control (MPC) framework was used in EMS of an MG to utilise the battery

during peak period and to support the local load using RESs. The proposed method was simulated using

real weather and load profile in a test-bed MG. An MPC-based online resource scheduling was done in

[78] for an island MG to improve RESs utilisation, system efficiency and battery life time. A comparative

study had been carried out with fuzzy-based EMS to show the improved result for MPC-based EMS.

A two-stage MPC optimisation strategy was adopted in [79] for a rural area MG consists of diesel

generator, RESs and battery. At the first stage, real time forecasting of the future power profile was

done to calculate the optimal power dispatch. At the second stage, the output power of the diesel

generator was adjusted using a boundary value problem to reduce the forecasting error. In [80], an EMS

problem was solved using an MPC algorithm that ensures faster computational time for a large MG. A

lithium-ion battery was used in the MG to reduce the peak demand during grid-connected mode and

to support deficient power during island mode. A power dispatch optimisation had implemented in

[81] using an MPC to control the each sub-system in an MG. All sub-systems coordinated each other

through a central management system to minimise the cost of the whole system. An MPC-based DC-AC
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inverter was designed in [82] to regulate the grid power flow in an DC MG. Besides that, a hybrid

ESS consists of battery and super-capacitor was used to suppress high and low frequency variation

in the MG for achieving an effective EMS. A lyapunov-based hybrid MPC was used in [83] to deal

with energy management problem in an MG. The results demonstrated the recursive feasibility and

closed-loop stability of the system in more effective manner. A coordination strategy between RESs

and charging/discharging of electric vehicle was implemented in [84] using a robust MPC to provide

economic optimisation in an MG. A number of scenarios had been demonstrated to show the probabilistic

guarantee of EV constrains satisfaction. An MPC-based home EMS was presented in [85] to minimise the

operating cost of an MG. An mixed-integer linear programming (MILP) algorithm was used to solve the

optimisation problem considering the forecasting uncertainty of RESs and load. Several case studies had

been conducted to illustrate the benefit of the proposed method compared with traditional benchmark.

In [86], a three-layer coordinated scheduling system was presented using an MPC framework, and a

GA was combined with an MPC to solve the optimisation problem of an MG. In [87], MPC approach

was employed to solve the energy optimisation problem of a RESs dominant MG. A hybrid ESS was

used to control the power exchange with the main grid considering operational cost, degradation issues,

and associated constraints. An MPC based operation optimisation technique was proposed in [88] to

minimise the cost of energy taken from grid. The performance comparison of the MPC method had

been performed with a rule-based method for a labscale MG and a commertial MG.

2.2.4 Linear/Non-linear Programming

A mathematical model of the EMS problem was formulated in [89] by considering power flow constrains

and system unbalance in an island MG. The EMS problem was decomposed into a mixed-integer linear

programming (MILP) and a non-linear programming to reduce the computational time. The proposed

method is tested using CIGRE medium-voltage benchmark system. A demand-response programming

was used in [90] to obtain peak shaving by using a peak-time rebate scheme. An optimal EMS was used

to control the battery, DER and shifting load so that both MG and man grid can be benefited from the

scheme. In [91], an MILP approach was used to model the EMS problem in an MG and to minimise

operating cost subject to economical and technical constraints. To minimise the operational cost of an

island MG an EMS was proposed in [92] by using the droop characteristics of DERs. An MILP was

used to solve the optimal power flow control problem that ensured maximum utilisation of the system

assets. A mixed mode EMS was presented in [93] for efficient use of ESSs and an MILP method was

used to solve the EMS problem. Besides that, optimal sizing of the ESSs was done using PSO technique
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to minimise the installation and operating cost of an MG. An EMS problem for a real life residential

MG consists of several apartments were addressed in [94]. An MILP method was used to solve the

energy optimisation problem considering several system constrains. The results demonstrated energy

cost saving solution for an MG community. In [95], three different scheduling were employed for an MG

that included customer driven, MG operator driven and MG operator driven with utility constraints. A

gradient-based search method was adopted to solve the optimisation problem. Moreover, a comparative

analysis amongst three scheduling method was also presented in terms of network loss and customer

benefits. An EMS model for a residential MG consists of vehicle to grid system was presented in [96] by

separating the household load into three different profiles. The results demonstrated a reduction of the

energy cost by 10% per day for a typical Spanish house. An optimised EMS was used in [97] to reduce

the fuel cost by effective use of the battery in a remote military base MG. An MILP method was used to

solve the optimisation problem by considered the effect of battery sizing on overall economic benefit of

the MG. Furthermore, an MILP-based EMS was formulated in [98] for a three-phase residential MG to

minimise the operational cost by taking into count system constrains. The results showed that proposed

method method provide accurate solution compared with non-linear formulation of the optimisation

function. A demand response programming was used in [99] for component size optimisation in an MG.

The analysis showed that component sizing will also provide relevant cost saving of the MG system.

2.2.5 Dynamic Power Flow Control of Microgrids

Dynamic control and management of an MG in a crucial issue for real-time operation and control of an

MG. The stability of the whole system also effects on dynamic operation of an MG. P-Q and droop

control have been used in several studies to implement the dynamic operation and control of an MG.

In [100], a smooth transition between different operation modes of an MG was the main focus of the

research. A small signal model of an MG was presented including droop controller, network and load. A

GA algorithm was used to find the optimal settings of the key control parameters in MATLAB simulink

environment to show the enhanced dynamic performance of the MG. A dual-layer control was used

in [101] for autonomous control and optimisation of an DC MG under system disturbances and mode

transition. First, droop gains of DERs updated using an event-driven scheme for simultaneous load

sharing and system optimisation. After that, an adaptive voltage droop scheme had implemented in

primary level for effective load sharing between DERs. The proposed control was implemented through

simulation and lab experiment to show the validity of the control method. In [102], a voltage-frequency

(V − f) and an active and reactive power (P − Q) control method was applied in PV unit of an
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MG to obtain an integrated control with the aid of the battery. In island mode, voltage-frequency

control was used to obtain coordinate control between maximum power tracking control and battery

charging/discharging control. On the other side, P −Q control was used for coordinate operation in

grid-connected mode. In [103], a coordinate control method was also employed in a hybrid MG for

effective transition of MG in various operating mode. A Vdc − Q or P − Q control was adopted for

grid-connected operation of interlink inverter to implement the power exchange between AC and DC

system. Similarly, a V − f control method was adopted in island mode for achieving system wide

stability and power flow control of an MG. A new power sharing method was introduced in [104] by

integrating a superconducting magnetic energy storage with a battery to obtain the primary frequency

control in an island MG. An MG test bed based on Uligam Island of Maldives was developed in PSCAD

and a comparative analysis with a hybrid ESS was presented using a dynamic droop control approach.

A dynamic model and operation strategy for a RESs dominant MG was used in [105] to explore the

system-wide performance during RESs, local AC load and grid power variations . The study used a

multiple input DC-DC converter to integrate RESs into the main DC bus. In [106], a control strategy

was proposed for inverter oriented DERs to improve MGs transient response during fault condition. A

reactive power control method was demonstrated in [107] to maintain the bus voltage near nominal

value for an island MG. An MPC-based scheme was used to predict the future behaviour of the bus

voltage and to compensate the difference between generation and demand of reactive power. Several

case studies had been conducted to validate the system performance using the proposed control method.

In [108], a small signal model of an MG was presented that consists of a RES, a synchronous generatora

and an ESS. Model of each element of the MG was developed individually and combined using a global

reference axil frame. The eigenvalue-based stability analysis of the developed model had been conducted

to see the sensitivity of the model in different operating modes and control strategies. An enhanced

control strategy for a superconducting magnetic energy storage was developed in [109] to improve the

power flow control and the system stability in a wind power oriented MG operating in island mode.

2.3 Control of Power Flow in Networked Microgrids

NMGs control is a challenging issue in regulating the voltage and frequency of the network under different

operating scenarios and system architecture. Optimal power sharing amongst DERs is another challenge

in an NMG. The control of single MGs was discussed in several articles [110–115]. However, control in

NMGs has recently become the focus because of the increasing interest in NMG research. Hierarchical
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Table 2.1 Summary of recent studies on the control of NMGs

Main Research goal Major Remarks References

Voltage and frequency control

• Distributed secondary control • Pinning based PQ and droop control • ESS is not counted [120]
• Hierarchical control • Large signal model • Uncertainty of RES is not considered [117]
• Power exchange control • Model predictive control • Generation uncertainties has ignored [121]
• Distributed control • Adaptive neural network • ESS is not counted [118]
• Distributed control • Droop control • RES and ESS are not considered [122, 123]
• Distributed control • Cluster-oriented control • Double-layer communication network [124]
• Primary frequency control • Reinforcement learning • No experimental validation [125]

Voltage stabilisation and generation cost minimisation • Hierarchical control • Finite-time consensus algorithm • Uncertainty of RES is not considered [126]

System stability margin
• Power exchange control • Adaptive fuzzy droop control • Uncertainty of RES is not considered [127]
• Dynamic assessment • Reachable set computation • No real time simulation [128]
• Genetic Algorithm • Dynamic Droop • No experimental validation [129]

V-I controllability • Design robustness • Probability index • No real time simulation [130]
Steady state error • Primary control • Feed-forward and robust feedback control • Uncertainty of RES is not considered [131]

Active and reactive power control

• Virtual impedance • Genetic Algorithm • ESS is not counted [132]
• Tertiary control • Graph theory • ESS is not counted [133]
• Hierarchical communication graph • Building MG-community • EES is not counted [134]
• Distributed secondary control • MAS • Networked depended control [135]

performance enhancement. Tertiary level control performs market operation with DNO. Each MG

in the network shares its buy/sell information, such as price signal and reserve capacity, with DNO.

On the basis of the information shared by individual MGs, DNO performs optimal market operation

to facilitate network-wide power sharing. In cooperative island mode, MGs in the network can share

information with a dominant MG instead of sharing information with DNO based on the previous

consensus. The dominant MG performs market and system stability operations in island operation

mode. Meanwhile, distributed control structure consists of two levels: distributed primary control and

distributed secondary control. In distributed primary level control, each MG performs voltage, current

and frequency regulation, island detection, grid synchronisation and load power management in an

MG. In secondary level control, MGs share the necessary information for power sharing or maintaining

system-wide control to neighbouring MGs or DNO. On the basis of network information, each MG

determines the necessary actions to achieve the individual/network objectives based on the previous

consensus between MGs and the DNO. Table 1 summarises recent studies on NMG control based on the

primary research objectives. Meanwhile, several methods have been applied to control NMGs under

different operating conditions. The following subsections discuss the main control methods applied in

recent studies.

A. Droop Control

Droop control is a well-established method for load sharing in parallel connected inverters in an MG

[136, 137]. The characteristics of conventional droop control, i.e., P − ω and Q−E, can be represented

using Equations (1-2) and Fig. 2.7.

ωk = ω∗ −mkPk (2.2)
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Ek = E∗ − nkQk (2.3)

Where Pk, Qk, mk, nk, ω and E are the output active power, output reactive power, frequency

coefficient, voltage coefficient, rated frequency and rated voltage of the kth inverter, respectively.

Droop control techniques can be divided into three types:

1. conventional droop control,

2. virtual impedance droop control,

3. adaptive droop control.
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Fig. 2.7 (a) P-ω and (b) Q-E droop

Conventional droop control is useful for maintaining voltage and frequency in parallel connected

inverters by avoiding critical communication links. The major drawback of conventional droop control

is a slow transient response and poor harmonic load sharing amongst inverters under line impedance

mismatch and nonlinear load conditions. Virtual impedance-based droop control overcomes the line

impedance mismatch problem through improved reactive power sharing amongst parallel-connected

inverters. The major drawback of virtual impedance droop control is the degradation of voltage regulation.

However, adaptive droop control is applied to address slow transient response and achieve accurate

power sharing amongst inverters by maintaining system-wide voltage and frequency within an acceptable

limit.

Droop control can also be used to control voltage and frequency in an NMG. A distributed secondary

control was applied in [120] for achieving coordinate operation between droop-controlled and PQ-

controlled DERs in an NMG. Coordination was realised on the basis of pinning control and a group

consensus algorithm. Primary and secondary controls were implemented in [122] using a distributed

control framework. At the primary control level a droop controller was used to facilitate proportional load
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sharing among DERs in the network. And, at the secondary control level voltage deviations due to load

change and adjusting power generation of DERs to facilitate the power exchange among MGs. In [126],

a droop function was modified by adding voltage deviation and average marginal cost in secondary and

tertiary levels in a cluster of DC MGs.The objective of the control was to maintain a stabilised voltage

throughout the network and reduce generation cost. A two-layer power flow model was introduced

in [138] using a hierarchical control structure to regulate the critical bus voltage and frequency after

a disturbance. Coordinate control of RES-dominant MGs was presented in [139] to achieve network

operation in grid-connected and interconnected island modes. Droop control was used to realise network

power sharing in interconnected operation mode. Moreover, an improved droop control strategy was

implemented in [140] to reduce voltage and frequency fluctuations in MMG environment. In addition,

pinning-based control method is highly suitable for MGs with a large number of DERs. A pinning-based

DER cluster-oriented tertiary control was used in [123, 124] to generate a voltage/frequency reference

based on power mismatch amongst MGs in a cluster. A distributed secondary droop control was

implemented on the basis of the generated reference for maintaining the voltage and frequency of

MGs in a cluster along with optimal power sharing. Virtual impedance control is an improved version

of the droop control method that can increase reactive power sharing between parallel inverters by

adding virtual impedance to the control loop. In [132, 141], a virtual impedance controller was designed

to minimise global reactive power sharing between MGs in a network of MGs. An adaptive droop

control-based coordinated control scheme was presented in [140] to achieve power-sharing amongst MGs

and boost frequency and DC voltage stability in a DC/AC NMG.

B. Model Predictive Control

Model Predictive Control (MPC), also known as receding horizon control, is widely recognised as an

optimal control strategy that exhibits high performance [142, 143]. Optimised control is achieved on the

basis of future behaviour predicted by a linear model of the entire system [144]. The general equations

for MPC are presented as Equations (3–4).

∆x(k + 1) = A∆x(k) + B∆y(k) + C∆u(k), (2.4)

0 = D∆x(k) + E∆y(k) + F∆P (k). (2.5)

Where x denotes the dynamic state variables, y denotes the algebraic variables outside each MG, u

denotes the control variables (voltage, frequency or power) and P denotes the uncontrolled variable of
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Fig. 2.8 Procedure for implementing the MPC method in an NMG

the system (DERs/load). (A–F) are the system matrices of the linear system model. The ideal procedure

to implement the MPC methods in an NMG are illustrated in Fig. 2.8.

Step1 : Each MG in the network determines its linear model, measures the local states x(k) and

allows states of neighbouring MGs.

Step2 : Each MG determines the optimal control sequence for generating the first control effort.

Step3 : The control inputs are calculated, and the results are implemented in the local controllers.

Step4 : The sampling time index k = k + 1 is increased, and the preceding steps are repeated.

The major advantage of MPC is predicting system disturbance to perform an upcoming control

action and improve the transient responses of a system. An accurate system model is a prerequisite for

implementing this control method. Moreover, the possible cost of the controller is another downside of

the MPC method. MPC-based control is a prominent method for controlling voltage and frequency in a

networked of MGs. In [128], an MPC method was used to regulate the voltage and frequency of DERs

in an island MG connected to an adjacent grid-connected/fully island mode MG. An MPC method was

also applied in [145] for controlling frequency in an NMG by adjusting the voltage of voltage-sensitive

loads and maintaining voltage constraints. A distributed economic MPC was presented in [146] for

coordinated stochastic power sharing amongst MGs.
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C. Graph Theory-based Control

A graph is a set of nodes that are connected through a set of edges [133]. Graph theory-based distributed

secondary and tertiary controls were mentioned in the research to reduce power mismatch between MGs

and DERs in NMGs. A two-layer hierarchical communication graph was presented in [134] to utilise a

thermostatic control load in a building MG community. The inner and intra building communication

graph ensured that power regulation and dispatch orders are at satisfactory levels. A graph theory-based

tertiary control was proposed in [133] to regulate power sharing in a DC MG cluster. Cooperation

amongst MG agents determined the voltage set point for the proportional sharing of networked load

within the MG cluster. A two-layer distributed control method was implemented in [135] by using

two subgraphs. The first graph ensured demand–supply balance, and the second graph reassigned

controllable DERs for optimal power dispatch.

D. Artificial Intelligence Control

Artificial intelligence (AI) control methods are widely used for controlling single MGs [147, 148]. AI

control methods can be easily applied to solve the control problem in a complex power network, such

as an NMG. Long processing time and excessive memory are the major drawbacks of implementing

AI-based control methods in a real application. Several studies have also applied AI-based methods to

control voltage, frequency and power in NMGs. Adaptive primary and secondary voltage and frequency

controllers were developed in [118] for inverter-based DERs in an island NMG. The controllers were

designed using neural networks and distributed cooperative control theory to reduce the dependency of

the controllers on system dynamics and to achieve PQ power sharing amongst DERs in a network. An

adaptive deep dynamic programming scheme consisting of three deep neural networks was applied in

[149] to achieve integrated frequency control in a network of MGs. This control replaces conventional load

frequency control and generation command dispatch to minimise frequency deviation and generation cost

in an MG network. Meanwhile, an adaptive fuzzy interface system was implemented in [127] to regulate

the droop coefficient in a network of DC MGs, increasing system stability margin and power allocation

precision. In [150], a genetic algorithm-based control method was used to enhance system stability in

photovoltaics (PV) MG clusters by addressing oscillation due to the dynamic nature of PV. The effect of

a large transient due to inverter switching and end-user load on system dynamic stability was analysed

in [125] for a RES-dominant NMG. A reinforcement learning-based trained controller was adopted to

avoid considerable frequency deviation by reducing system voltage set point. Moreover, a reinforcement
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learning-based distributed secondary control was implemented in [151] via reward feedback pinning

for the selected distributed generators in an MMG system. In [131], a robust feedback voltage control

strategy was applied to suppress system disturbance caused by DER output in MMG. An alternating

direction method of multipliers (ADMM)-based tertiary control was implemented in [152] to solve the

optimal power flow problem and provide real and reactive power references for secondary control level in

an NMG.

2.4 Advantages and Challenges of Networked Operation of Mi-

crogrids

The operation of an NMG has several advantages and challenges. This section presents the major

advantages and challenges of NMGs.

2.4.1 Advantages of Networked Microgrids

A. Cost Effectiveness of Networked Microgrids

One of the primary purposes of NMGs is to gain economic benefits via mutual energy sharing amongst

MGs [153, 154]. In this concept, one or more MGs in a network exhibits excess generation or has a

resource that can generate more power. By contrast, one or more MGs in the same network exhibits a

shortage of power generation for a short/long period. In such case, excess power or capacity can be

sold to overcome the power shortage of a network. The additional income resulting from this power

sharing will provide economic benefit for MGs with excess generation. Meanwhile, MGs with a power

shortage may reduce operation cost if the power price of a neighbour MG is less than the power price

of the main grid. The coordinated dispatching of ESSs/DERs can be cost-effective operation for a

RES-dominant NMG [155]. A competitive bidding market amongst MGs is a highly attractive solution

for energy trading amongst MGs to realise a cost-effective operation of individual MGs. A distributed or

hierarchical EMS framework can be used to implement a market bidding facility amongst MGs. However,

the cost-effectiveness of the entire network is occasionally more important than that of individual MGs

in a community-based MG [146, 156]. In such cases, cooperative resource sharing amongst MGs is the

most effective approach for obtaining a cost-effective network.
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B. Utilising Resources in Networked Microgrids

The networked operation of MGs provides the opportunity to utilise the excess generation or capacity of

an MG. MGs with excess generation/capacity can share power with MGs experiencing power shortage

[157]. Such sharing will reduce the grid dependency of MGs. It will also help to utilize green energy from

RESs. RESs in an MG are variable in nature and can generate excess power for a certain period. The

excess generation in an MG is typically sold to the main grid with nearly zero economic benefits. If the

excess generation from RESs in an MG can be sold to other MGs in the network through a cooperative

power exchange amongst MGs, then that MG will gain economic benefits. Moreover, utility-owned

RESs outside an NMG can supply power to an NMG at a competitive price to support the shortage of

power in an NMG. Resource utilisation may be achieved via an NMG controller [158, 159]. Moreover,

the previous consensus between MGs and an NMG controller will require to maximise the utilisation of

resources in a network.

C. Increasing Reliability in Networked Microgrids

Reliability is one of the important issues in NMGs that should be assessed during the planning stage

of NMGs [160]. Networked operation amongst MGs provides an opportunity to increase the supply

reliability of MGs in a network [161, 162]. Cooperative operation amongst MGs can minimise system

restoration time under a fault or power deficiency condition. It also ensures an efficient operation

of demand response. The result increases customer satisfaction through economic benefits. Supply

reliability also depends on the structure of NMGs. The mesh structure NMG is a more reliable network

compared with other structures due to the redundant power link for power exchange amongst MGs.

Besides that, networked operation of MGs in emergency/autonomous island mode can increase power

supply reliability for the critical load of each MG by using DERs or battery storage [163]. The supply

for critical load can be short/long term depending on the requirement and availability of resources in

a network. The reliability of supply can be controlled by the NMG controller/dominant MG in the

network though a common bus or a private power network between MGs. However, a previous agreement

between MGs or a DNO is required to execute the emergency power sharing strategy.
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2.4.2 Challenges of Networked Microgrids

A. Control and Stability Issues

Control and stability issues in an NMG are more complex than those in a single MG. Appropiate power

electronics devices are important for power flow control amongst MGs in different operating modes.

Networked operation in island mode is more challenging when two or more MGs operate in island mode

but intend to resume cooperative mode. Voltage and frequency stability are difficult to achieve in such a

network. Adaptive and robust power electronic devices should be developed to facilitate power exchange

amongst MGs. A master–slave approach can be a suitable solution in which one MG will act as the

master and will be responsible for setting voltage and frequency references. Other MGs in a network

will work as slaves by following the master MG to minimise voltage and frequency deviations. In this

approach, the master MG is responsible for maintaining the stability of the overall system. However,

the privacy of MGs may be required to be sacrifice. Meanwhile, the NMG controller can send voltage,

frequency and power references to individual MGs based on information from the network and each MG.

However, this process may increase computational complexity. Thus, a robust control architecture should

be developed to avoid control and stability issues in networked operation. Further quality research is

anticipated in this area.

B. Dependency on Communication Network

The networked operation of MGs depends on communication amongst MGs in a network of MGs. The

power-sharing decision amongst MGs requires information from neighbouring nodes. Such information

sharing is based on modern communication networks. Therefore, the requirement of a redundant

communication network should be evaluated in the design stage by considering the amount and frequency

of information and future extension [12]. Moreover, maintaining a secure communication network is

a challenging task because of possible cyberattacks in a communication network. Communication

networks based on different information and communication technologies (ICT) may lead to possible

cyberattacks in NMGs. A control structure based on a hierarchical or distributed framework should

share information with neighbouring nodes for the optimal control of a network. Such networks typically

connect to several ICT networks. Thus, a hierarchical or distributed control structure of NMGs is more

vulnerable to possible cyberattacks. By contrast, in a central controller structure, all the nodes in a

network send/receive information from/to the central controller to perform the desired control action.

The central controller in an NMG broadcasts the control command to the all nodes through one-to-one
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communication protocol. Thus, the central control structure is less vulnerable and more resistant to

cyber-attacks. Cybersecurity in NMGs addressed in [164–166] because of the network dependency of the

control structure in an NMG. A cyberattack-adoptive distributed control structure was incorporated

in [167] wherein each node detects and isolates the defected nodes to exhibit optimal operation for

other MGs in the network. Three types of possible attacks, namely, a communication link, a local

controller and an MG controller, were considered to demonstrated the performance of the control strategy.

Additional research is required in the future to avoid possible cyber attacks and communication failures

in an NMG.

C. Protection Complexity

The protection scheme of NMGs differs from that of a single MG due to various possible system structures

in a network [168–170]. The system structure in an NMG changes depending on the operation mode

and optimal flow path in a network. A dynamic change of the system structure will change the current

rating/direction of the breakers. Consequently, false tripping or malfunctioning of the breakers may

occur at a certain point in the network. Accordingly, the setting of protection devices should be modified

to respond to the revised structure of a network to maintain system reliability. An adaptive protection

scheme should be developed to meet the protection requirements for an NMG. Additional contribution

is necessary to develop adaptive protection schemes that can support various protection structures of

NMGs. Moreover, fault analysis within private power networks between MGs should be addressed in

the future.

2.5 Conclusions

This chapter first presents an introduction about MGs and NMGs in distribution networks. After that, it

classifies NMGs into star, ring and mesh structures based on network formation. A comprehensive review

on methods and algorithms for power flow control of MGs is demonstrated. Besides that, a summary of

the control structures and methods for regulating voltage, frequency and power in NMGs under different

operation scenarios is presented. In addition, the advantages and challenges of the networked operation

of MGs are provided in this chapter. The summary of recent studies indicates that compared with

dealing with the power flow optimisation problem; minimal quality research has been conducted on

power flow control in NMGs. The effect of MGs cooperative operation on distribution network stability

and quality should be addressed in the future. Moreover, the effects of communication networks and



34 | Literature Review

protection issues on MGs and NMGs performance should be the focus in future research to utilise the

advantages of NMGs in a distribution network. Furthermore, suitable power electronic devices and

energy trading guidelines should be developed to control power flow though power networks amongst

MGs. In conclusion, this chapter intends to provide an extensive review of MG and NMG research to

direct interested researchers and professionals in developing suitable control and optimisation models of

MGs and NMGs for promoting smart grid technologies in future power system networks.
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3.1 Abstract

Smoothing grid profile plays a crucial role in dynamic operation of microgrids. This chapter focuses on

reducing the grid power fluctuation in a grid connected microgrid due to stochastic nature of renewable

generations and its impact on the stability and quality of a distribution network. To achieve this, the

control strategies are designed to control the charging/discharging of battery storage system based on

the difference between generations of renewable energy resources and load demand as well a battery

state. Fuzzy logic controller is applied in energy management system of a microgrid by considering

dramatic behavior of renewable energy resources while maintaining the battery state within secure limits.

A comparison with time based constant and variable charge/discharge control of battery presents in

simulation experiment to demonstrate the effectiveness of the proposed fuzzy controller in a residential

AC microgrid.

3.2 Introduction

The worldwide commitment to the reduction of fossil fuel drives the power system to incorporate

green/renewable energy resources (RESs) into the grid to meet the future power demand. The adaptation

of these RESs in the distribution network has a reflection in terms of economic benefits from the customer

level to the core system level for future smart grid networks. Microgrid (MG) is one of the leading features

of smart grid which integrates distributed energy resources (DERs) and energy storage system (ESS) to

create a grid that feeds different loads on a low voltage network and can operate either grid-connected

or islanded mode [1, 2]. Luida et al. [3] demonstrates a review of existing MG test networks around the

world. Jackson et al. [4] investigates the feasibility, control and management strategies of AC and DC

MGs consists of RESs, ESS and load. Due to stochastic nature of RESs and load, importance of energy

management system (EMS) in MG is crucial for system stability and its performance. Moreover, EMS

in MG needs fast response compared to conventional power systems [19].

The key objectives of EMS are to define optimal set points for different units of MG, cost optimization

by economic aspects of grid, smoothing the grid profile and reliability of customer service. Based on the

MG structure & predefined objectives, different methods and strategies are chosen for optimal operation

of the MG. For example, demand side management describes in [20, 21] to minimize the operating cost

of MG . R. Palma-Behnke et al. [20] presents the rolling horizon strategy for determining the set points

of generation units and signals for customer based on demand side management. Similarly, in [21],
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the operating cost of MG is minimized by 3.06% by controlling water pump and other electric loads

in demand side management. On the other side, for maximizing the MG profit, a day ahead optimal

planning of generation units is made in [22] by keeping the system constrains in secure limit. In [45],

a day ahead optimal scheduling of MG is determined using genetic algorithm based on load demand,

wing generation and electricity price. The article is also used genetic algorithm for optimal setting of

fuzzy system that are used to control the battery power. Besides that, to minimize the cost of MG,

receding horizon technique for optimal scheduling of battery is adopted in [23] where wind turbine is the

key support for local load. Similarly, adaptive modified firely algorithm is used in [24] to reduce the

operating cost of MG considering the stochastic nature of RESs and load demand. In [25], to support

the rapid fluctuation of demand in a MG, a composite ESS is used to allocate steady load to battery

and dynamic load to ultra-capacitor. Y.-K., Chen et al. [26] deploys fuzzy logic in EMS where selling

the electricity to the connected grid is the main priority of the control algorithm along with satisfying

the demand of a MG.

However, smoothing grid profile is an important objective of EMS in a grid connected MG to reduce

the effect of stochastic nature of RESs and load on grid as well as to maintain the stability and quality of

the distribution network. Researchers proposed different control methods to obtain smooth grid profile

through the EMS of MG. Considering the forecasting of the MG future power, a mixed linear program is

used in [171] to obtain the smooth grid power along with minimising the operation cost of battery and

energy usage. Besides that, forecasting method is used in [172, 173] to reduce the grid fluctuation in a

residential MG operation. Centralized moving average strategy [172] and fuzzy logic [173] based control

has taken into the count to reduce the forecasting error by maintaining the battery state of charge

(SoC). However, without forecasting, a coordinate control between demand response and battery storage

is proposed in [174] to smooth the grid power service. Similarly, EMS with a coordination algorithm

between battery and diesel generation is considered in [175] to reduce the impact of solar variation on

grid. Besides that, a fuzzy logic based coordinated control between dispatch-able distributed generation

and ESS is proposed in [36] to adjust the active power reference of battery based on SoC and targeted

active power from battery to minimize the grid power in grid connected mode. In contrast, the study

concentrates on a residential MG where MG depends on the main grid to maintain service reliability in

any condition and EMS in MG operates without forecasting or controlling of generations and loads. In

[38] , partially management of battery is presented using fuzzy logic controller (FLC) and grid power is

determined by filtering the high frequency component from the difference between MG net power and

FLC output. A different strategy is implemented in [39], where the amount of power assigned to the grid
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is computed as a sum of two components. First one is the average value of net power demand calculated

by a moving average filter and second one is the modifying term of the grid power calculated by a FLC

to increase, decrease or maintain grid power and to maintain the battery SoC within secure limit. Both

articles adopt grid operator control approach to perform the energy management of MG. However, in

this framework, instead of using grid control approach of EMS, the study focuses on management of

battery storage system only to reduce the grid power fluctuation in a residential MG.

Aiming to this, a fuzzy logic controller (FLC) is designed to control the battery storage system

to obtain the reduced grid power fluctuation in a residential MG connected in direct integration to

the grid. The design takes MG net power demand and battery SoC as input of the fuzzy system to

determine the charging/discharging of battery as output by maintaining the reliable supply to the load

and securing the battery constrains in all conditions. The target of the new FLC based design is only to

control the charging/discharging of battery to reduce the grid fluctuation rather than controlling the

grid power in the EMS. Thus, eliminates the necessity of filter used in previous works. Besides that,

lithium-ion battery is used as ESS due to its performance efficiency in grid connected PV application

and longer life cycle compare to other types of battery. Furthermore, battery SoC is maintained in

a limit to reduce capacity failure and maximize the use of battery resource. Moreover, the chapter

designs a residential MG consist of PV panel and battery storage system based on yearly load demand

of a residential building and statistical weather information. Stochastic nature of PV panel is obtained

based on real weather information for several days. Moreover, the dynamic nature of residential load is

illustrated considering the peak and off-peak hours of the day. After illustrating the dynamic behavior

of an MG, a FLC is designed based on membership functions and rules by using two inputs and one

output. The design is optimised for the performance parameters, define as peak grid power and root

mean square value of grid power fluctuation for one day. Finally, a typical AC MG with PV array,

battery storage system and dynamic residential load connected to the grid has considered in building

the system using Simscape Electrical™tool in MATLAB Simulink. To evaluate the performance of the

proposed FLC based control, a comparison with two others EMS without FLC are discussed to obtain

the same objective by maintaining the battery SoC in secure limit.

The rest of the chapter is organized as follows: section 3.3 describes the architecture of study MG,

section 3.4 describes power flow equations and performance parameters, section 3.5 illustrates three

different power flow control strategies to reduce grid fluctuation, section 3.6 simulation result and

comparison among the methods, section 3.7 concludes the chapter.
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Fig. 3.1 Typical structure of grid-connected residential AC MG

3.3 Microgrid Architecture

The study considers a typical grid connected residential AC MG structure with a PV panel as RES,

a battery as an ESS and a residential load. The PV panel and the battery are connected in direct

integration to the grid. The PV panel connects to the grid through an inverter inbound of a maximum

power point tracking (MPPT) controller. The battery storage system interfaces in the MG through

DC-DC bidirectional converter and a bidirectional inverter. Fig. 3.1 depicts the MG for the system under

study. The size of the PV panel and the battery is designed based on the load profile in a residential

building. According to the statical weather information of Brisbane, Australia, 1 KW of PV can generate

approximately 1550 KWh energy per year [176]. Besides that, the average energy demand in the study

MG is assumed as 10000 KWh per year. Considering the power loss inside the MG, the total energy

demand is roughly assumed as 11000 KWh per year. Based on the above information, the capacity

of the solar panel is determined as 7.2 KW. However, the size of the battery for a specific microgrid

depends on the average load demand and the battery backup time[177] . The average load of the study

microgrid during a 24 hours duration is 2.2 KW. Considering the loss in the system, the actual load to

the system is assumed as 2.5 KW. Moreover, to longer the battery life time, the study considers to use

60% of the battery capacity [178, 179]. So, the system assumes a battery size of 350 Ah to support an

average load of 2.5 KW for 12 hours assuming the power from PV panel is unavailable during this time.
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Table 3.1 System Configuration

Parameter Value
PV module 7.2KW(15 series module, 2 parallel module)
Battery Module 350Ah, 120V
Load Demand 11000KWh/per year
DC voltage 400V
AC voltage 240V (rms)
Frequency 50 Hz

Besides that, the system assume a robust communication structure between different units of study MG.

The outline of different parameters of MG is illustrated in Table.3.1.

3.4 Power Flow in Microgrid

3.4.1 Power Flow Equations and Constrains

To drive the power flow equation for the MG architecture under study, positive power direction of each

unit is given in Fig. 3.1. The equation of MG demand power and grid power can be illustrated as,

Pnet = Pload − Ppv (3.1)

Pgrid = Pnet − Pbat = Pload − Ppv − Pbat (3.2)

Where Pnet is the MG demand power, Ppv is the power from PV module, Pbat is the power from

battery module, Pload is the load power and Pgrid is the grid power. The EMS updates the parameters

of the Equations (3.1-3.2) in every minute. Fig. 3.2 shows the stochastic nature of PV module output

power for the variation of temperature and radiation. The temperature and radiation information was

collected from statical weather information of Brisbane, Australia in September 2017 for linear variation

day, small variation day, medium variation day and large variation day. Besides that, dynamic load

variation is illustrated in Fig. 3.3for 24 hours of the day. Moreover, Fig. 3.4 shows the net demand power

of the MG which is the difference between load and PV generation.

However,in the absence of PV generation, battery plays a crucial role to support the main grid

to maintain a reliable power supply to the load. So, to extend the lifetime of lithium-ion, battery

parameters state of charge(SoC) and depth of dischanrge(DoD) need to keep within secure limits.The
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Fig. 3.2 PV power profile for different radiation day of study MG

SoC indicates the available charge of a battery in percentage (0% means battery is empty and 100%

means battery is fully charge). The equation to determine the SoC can be written as,

SoC(t) = Cbat(t)
Ccap

∗ 100% (3.3)

Where Ccap is the total capacity and Cbat is the amount of remaining charge at that time.

Fig. 3.3 Day long residential load profile of study MG

The DoD depends on maximum and minimum value of SoC. the DoD of a battery can be defined

as,
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Fig. 3.4 Demand power profile of study MG

DoD = (SoCmax − SoCmin)
SoCmax

∗ 100% (3.4)

Where S0Cmax and SoCmin is the maximum and minimum SoC respectively.

The high value of DoD leads to reduction in the battery life. On the other hand, low value of DoD

leads to capacity loss of the battery. Apart from this, charging/discharging current has a great impact

on battery lifetime. Battery current is usually expressed as a rate of nominal capacitance. For example.

10Ah battery is charging at a current of 10A means charging at 1C. For lithium-ion battery, with slow

charging rate (≤0.5C) constant/multistage charging method performed better rather than constant

power method in terms of capacity fading [180]. In [181], results shows that charging the battery more

than 1C degrades the battery life time significantly. However, degradation rate has little impact for a

discharging rate up to 1C and DoD 70-100%. Moreover, [179] suggests DoD less than 80% to maintain

the longer battery lifetime. Considering the suggestions, this chapter selects a DoD of almost 70% and

maximum charge rate of ≤ 0.5C to maintain healthy life of battery. Table 3.2 summarizes the battery

parameters and other system parameters for the study MG.

3.4.2 Definition of Performance Parameter

Peak Grid Power: Maximum value of power injected to/from the power grid within 24 hours duration.

PG,max = MAX|Pgrid| (3.5)
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Table 3.2 System Parameter

Symbol Parameter Value
SoCmax Maximum value of SoC 90%
SoCmin Minimum value of SoC 30%
SoCint Initial value value of SoC 40%
DoD Depth of discharge 66.67%
Ts Sample time 60sec.
N Total number of sample per day 1440

Cumulative Root Mean Square: Cumulative root mean square (CRMS) value calculates the grid

power fluctuation over a 24 hours duration and can be determined by the following equation,

CRMS =

√√√√ 1
N

N∑
n=1
∥ {(Pgrid(n))2} ∥ (3.6)

Where Pgrid(n) is the grid power for nth sample of the day and N is the total number of samples

during 24h hours duration. The ideal design is to make the CRMS value to zero within a duration of 24

hours. In this study, samples are taken every minute to determine the fluctuation of grid power.

3.5 Power Flow Control Strategies of Microgrid

This section describes three different power flow control strategies to reduce grid power fluctuation in a

day by controlling the power of the battery storage system. In this study, battery control has achieved

by controlling the DC-DC converter of the battery storage system.

3.5.1 Constant Control Method

The constant control method maintains a constant charging/discharging of battery storage system

depending on the availability of solar power. The EMS takes time of the day, solar power and battery

SoC as input to determine the charging/discharging of battery as output. The battery will charge at

a constant rate of Kp1 ∗ Ccap from 5AM to 5PM if Ppv is greater than 1500W and SoC(t) < SoCmax.

Similarly, battery will discharge at a constant rate of kp2 ∗ Ccap from 5PM to 5AM if Ppv is less than

500W and SoC(t) > SoCmin. On the other case, the power from the battery will be zero. Equation

(3.7-3.8) represent the charging and discharging power of battery for constant control method.The value

of Kp1 and Kp2 are adjustable up to 0.5 ∗ Ccap depending on maximum load demand of MG.

From 5AM to 5PM if Ppv > 1500W and SoC(t) < SoCmax,
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Pbat(n) = −Kp1 ∗ Ccap (3.7)

From 5PM to 5AM if Ppv < 500W and SoC(t) > SoCmin,

Pbat(n) = Kp2 ∗ Ccap (3.8)

Based on the system parameter, the value of Kp1 and Kp2 are set as 0.1 and 0.08 respectively, so that

the battery can charge enough during day time and support the local load at night along with grid

supply.

After determining battery power, grid power is calculated using the following equation.

Pgrid(n) = Pload(n)− Ppv(n)− Pbat(n) (3.9)

3.5.2 Variable Control Method

The variable control method determines the battery power based on net demand power of MG and

battery SoC. In stead of using solar power, the method uses MG net power demand to determine the

charging/discharging of battery. From 5AM to 5PM, the battery will charge only if the value of the net

power demand is negative and SoC(t) < SoCmax. Similarly, From 5PM to 5AM, battery will discharge

if the net power demand is positive and SoC(t) > SoCmin. The equation of battery power is illustrated

in Equation (3.10).

Pbat(n) = Kp ∗ (Pnet(n)) (3.10)

Where Kp is a proportional constant. The value of KP is set to 1.2 for optimising the performance

parameters by maintaining battery constrains. Similar to constant control method, the EMS use the

Equation (3.9) to determine the grid power. The main drawback of the design is the time dependency of

the control.

3.5.3 Fuzzy Control Method

To overcome the time dependency of control and to simplify the design, a fuzzy logic controller(FLC) is

designed by using only two inputs and one output. The advantage of this design is to reduce the number

of inputs to determine the same output. MG net power demand and battery SoC are the inputs of the
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The ideal procedure to design a FLC based system is summarized as follows:

1. Design the membership functions (MFs) of inputs and outputs.

2. Set the rules to determine crispy output.

3. Adjust the membership functions and rules to optimise the performance parameters.
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Fig. 3.6 Membership function of demand power
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The proposed FLC defines the demand power MF using six triangular and one trapezoidal MFs:

VH(negative high), VN (very negative), SN (small negative), N (negative), SP (small positive), P(positive)
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and PH (positive high). Similarly, the SoC MF shapes using three triangular and two trapezoidal: VL

(very low), L (low), M (medium), H (high), and VH (very high). In the same way, the battery power MF

is figured out using five triangular and two trapezoidal: VHC(very high charge), HC (high charge), MC

(medium charge), SC (small charge), NO (no charge/discharge), SD (small discharge), MD (medium

discharge), HD (high discharge). The MFs are designed based the system constrain defined in Equation

(3.11-3.14). The MFs of demand power, battery SoC and battery power are depicted in Fig. 3.6, Fig. 3.7

and Fig. 3.8 respectively.
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Fig. 3.8 Membership function of battery power

After that, rules are defined based on the MG behavior. For example, if the demand function value

is a negative high (Pnet is NH) and the battery SoC is low (SoC is L), then the battery will charge in

high rate (Pbat is VHC). So, the rule can be written as,

IF Pnet is NH and SoC is L THEN Pbat is VHC.

Similarly, when the demand function value is small positive and battery charge is high, then the

battery will discharge in small rate. And the rule can be written as,

IF Pnet is SP and SoC is H THEN Pbat is SD.

The rules and membership functions of the FLC design are optimised using off-line optimised

procedure for the performance parameters. The performance parameters of this design are peak value of

the grid power and cumulative root mean square (CRMS) value of the grid power. The optimised rules

of the FLC are illustrated in Table.3.3.
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Table 3.3 Optimised fuzzy rules

Pbat
SoC

VL L M H VH

Pnet

NH VHC VHC VHC VHC NO
VN HC HC HC HC NO
N MC MC MC MC NO
SN SC SC SC SD SD
SP SD SD SD SD SD
P MD MD MD MD MD
PH MD MD HD HD HD

3.6 Result and Comparison

In this section, a simulation model of the MG is developed in MATLAB SIMULINK using Simscape

Electrical™tool. The system parameters in Table 3.1 & Table 3.2 are used to develop the simulation

model. Simulation is run for 96 hours (4 days) using historical weather data for different radiation

day on September 2017 of Brisbane, Australia. The EMS strategies are implemented to calculate

Fig. 3.9 Grid power profile for constant control

the performance parameters defined in section 3.4.2. To design the fuzzy logic controller based EMS,

MATLAB fuzzy logic designer tool is used to design the membership functions and to set the rules as

described in Fig. 3.6, Fig. 3.7, Fig. 3.8 and Table 3.3 respectively.

Fig. 3.9 shows the grid power profile and Fig. 3.10 shows the CRMS value of grid power fluctuation

for constant control method. The result shows that grid power has a peak of 5.7kW and average value

of CRMS grid power for four consecutive of the simulation is 1557.
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Fig. 3.16 Comparison of battery power

Fig. 3.17 proves the battery SoC remains in secure limits for three different methods as discussed in

section 3.5. Moreover, Fig. 3.18 compares the CRMS grid power for constant control method, variable

Fig. 3.17 Comprison of battery SoC

control method and FLC based method. The result highlights the lowest value of CRMS grid power for

FLC based EMS compare with other two methods.

Furthermore, Fig. 3.15 shows a comparison of grid power profile between three different methods.

The FLC based EMS is showing improved grid profile in terms of peak reduction compare with other

two methods. In addition, Fig. 3.16 shows the battery power of three different methods. The result
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4.1 Abstract

The stochastic nature of renewable resources and loads leads to a large fluctuation of grid power in a

grid-connected microgrid (MG) operation. Integrate battery energy storage system in an MG is popular

way to handle the stochastic nature of renewable resources to feed the stochastic load. In this chapter,

a battery power management system is proposed using golden section search algorithm to minimise

the grid power fluctuation by securing the battery constraints. The algorithm is applied in energy

management system (EMS) of an MG to minimise the grid peak power and grid power variation within

a 24 hours duration by considering the random nature of renewable generations. The proposed battery

power management system is verified through the simulation experiment in a grid-connected residential

MG.

4.2 Introduction

A microgrid (MG) is defined as a cluster of distributed generations, energy storage systems and loads in a

low/medium voltage network that can operate in both grid connected and island mode [1, 2]. An energy

management system (EMS) in a MG plays a key role for reliable and stable operation of MGs. Minimise

the grid power fluctuation is one of the main objectives of MG EMS. Researchers apply different methods

and algorithms to minimise the grid fluctuation through the EMS of MGs.

A mixed linear program is used in [171] with consideration of the forecasting of an MG future power

to manage the smooth operation of power grid and minimise the operational and maintenance cost

of available power generation resources in MG. Besides that, a coordinated control between demand

response and battery storage is proposed in [174] without the forecasting of generations and loads to

smooth the grid power service. Similarly, EMS with a coordination algorithm between battery and diesel

generation is included in [175] to handle the stochastic nature of solar power in an MG. In this context,

some researchers considers a residential MG where the MG solely depends on the main grid for service

reliability, and the battery storage system is the only controlling unit of an MG to minimise the grid

power fluctuation.

A combination of fuzzy logic controller and moving average filter was used in a residential MG by

Arcos-Aviles et. al., to remove the high frequency component from the grid power and transferred it to a

battery to obtain a smooth grid power [38, 39]. In contrast, this chapter focuses on the management of a

battery storage system in a residential MG without controlling the grid power in the EMS. Moreover, the
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nonlinear nature of renewable generations and loads suggest the nonlinear control approach of battery

storage system because the rule-based EMS such as fuzzy system is unable to provide optimal solution

for non-linear control. In addition, a fuzzy logic controller take high computational time.

In this chapter, a battery management strategy is designed using a non-linear optimising algorithm

to minimise the grid power fluctuation in a grid-connected residential MG. The decision of battery

charging, and discharging are taken based on the MG net power demand and battery state. Golden

section search algorithm is applied to control the battery power to minimise the grid power considering

the dynamic nature of a PV panel based on real weather information over several days. Moreover,

battery constraints are kept in secure limit for extending battery lifetime.

Finally, a typical AC MG consists of a PV panel, battery storage system, residential load and main

grid which is considered for building the system using Simscape Electrical™tool in MATLAB Simulink.

The performance of the proposed method is evaluated in simulation to verify the effectiveness of proposed

approach.

The rest of the chapter is organized as follows: section 4.3 describes the details architecture and

power flow of the study MG, section 4.4 presents the power flow control techniques, section 4.5 illustrates

the simulation results and discussion and finally section 4.6 draws the conclusion.

4.3 Architecture and Power Flow of Microgrid

4.3.1 Architecture of a Residential Microgrid

The residential MG system in this study illustrates in Fig. 4.1 consists of a PV panel, a battery storage

system and a residential load tied to the main grid through an isolation transformer. The MG depends

on the main grid to maintain a reliable supply to the load. The PV panel connects to the grid through

an inverter inbound of a maximum power point tracking (MPPT) controller. The battery storage system

interfaces in the MG through DC-DC bidirectional converter and a bidirectional inverter. The PV panel

is designed for a residential area having an average energy demand of 11000 KWh in a year. From the

statistics of Brisbane, Australia, 1 KW of PV can generate approximately 1550 KWh energy in a year

[176]. So, a capacity of 7.2 KW PV panel is needed to build the system. Moreover, the system designs a

battery size of 42 KWh to support an average load of 2.5 KW for 12 hours. Besides that, the system

assumes a robust communication structure for a reliable operation of MG EMS.



60 | Power Flow Fluctuation Control using Non-linear Programming Optimisation Method

DC

AC

DC

AC

DC

DC

PV Panel Battery Residential Load

Power Grid

MG 
Controller

Power line

Communication line

Ppv
Pbat Pload

Pgrid

Fig. 4.1 Typical structure of a grid-connected residential MG

4.3.2 Power Flow of Microgrid

The power flow equation is the power balance equation between MG units. The power flow equations

of the MG are described in Chapter 3 Equations (3.1-3.2). The EMS updates the parameters of the

equations to determine the grid-power in every minute.

However, a battery plays a crucial role to support the load to minimise the grid power. So, the

battery parameters like state of charge (SoC), depth of discharge (DoD) and charging/discharging

current need to keep within secure limits to extend the battery lifetime . The high value of DoD leads

to reduction in the battery life and low value of DoD leads to capacity loss of the battery [179]. Apart

from this, the charging/discharging current has a great impact on battery lifetime [180][181]. So, this

chapter chooses a DoD of 70% and maximum charge rate of ≤ 0.5C to maintain a healthy life of the

battery.

4.3.3 Definition of Performance Parameters

Peak Grid Power: Maximum value of power injected to/from the power grid within 24 hours duration.

PG,max = MAX|Pgrid| (4.1)

Cumulative Root Mean Square: Cumulative root mean square (CRMS) value calculates the grid

power fluctuation over a 24 hours duration that can be determined by the following equation,
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CRMS =

√√√√ 1
N

N∑
n=1
∥ {(Pgrid(n))2} ∥ (4.2)

Where Pgrid(n) is the grid power for nth sample of the day and N is the total number of samples

during a 24h hours duration. The ideal design is to make the CRMS value to zero within a duration of

24 hours. In this study, samples are taken every minute to determine the CRMS value of the grid power.

4.4 Power Flow Control Techniques Analysis and Design

This section analyses the three different power flow control techniques to reduce the fluctuation of

grid power in one day period by regulating the battery power. In this analysis, the battery power has

accomplished by controlling the DC-DC converter of battery energy storage.

4.4.1 Power Flow using Constant Control Method

Depending on the availability of solar power, the constant control approach ensures a constant charge

and discharge of the battery storage system. To decide the charging and discharging of battery as

output, the EMS uses solar power, time of the day, and battery SoC as input. When the Ppv is greater

than 1500 W and SoC(t) < SoCmax, the battery will charge at a constant rate of Kp1 × Ccap from 5

AM to 5 PM. On the other hand, when the Ppv is less than 500 W and SoC(t) > SoCmin, the battery

will discharge at a constant rate of Kp1 × Ccap from 5 PM to 5 AM. Other than these conditions, the

battery power will be zero.

From 5 AM to 5 PM, when the Ppv is greater than 1500 W and SoC(t) < SoCmax:

Pbat(n) = Kp1 × Ccap (4.3)

From 5 PM to 5 AM, when the Ppv is less than 500 W and SoC(t) > SoCmin:

Pbat(n) = Kp1 × Ccap (4.4)

The value of Kp1 and Kp2 are set as 0.1 and 0.8 based on system parameters to maintain the enough

charging of battery during day time so it can meet the load demand during night time along with grid

supply. After calculating the battery power, the grid power will be calculated by using the following
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equation:

Pgrid(n) = Pload(n)− Ppv(n)− Pbat(n) (4.5)

4.4.2 Power Flow using Variable Control Method

The variable control approach calculates the battery power depend on net power demand of MG and

SoC of battery. This control method utilizes the net power demand of MG to calculate the charging

and discharging of battery. When the value of demand for net power is negative and SoC(t) < SoCmax

than the battery will charge from 5 AM to 5 PM. Similarly, if the net power demand is positive and

SoC(t) > SoCmin than from 5 PM to 5 AM the battery will discharge. The power of battery can be

calculate as follows:

Pbat(n) = Kp × Pnet(n) (4.6)

Here, Kp is proportional constant which is set be 1.2 to achieve the optimal performance parameters

with consideration of battery constraints.

4.4.3 Power Flow using Golden Section Search Optimisation Method

The golden section search method is a non-linear programming (NLP) method to solve the single variable

optimization problem with non-linear relationship [182]. The mathematical formulation of the algorithm

is illustrated as,

min
x

f(x) subject to xl < x < xu (4.7)

Where x is the decision variable, xl is the lower limit of x, xu is the upper limit of x and f(x) is a

non-linear function.

In golden search method, iteratively consider the function value at four carefully spaced points:

1) Assume a unimodal function

2) Leftmost xl is always a lower bound on the optimal value x∗

3) Rightmost xu is always an upper bound on the optimal value x∗

4) Points x1 and x2 fall in between. The points x1 and x2 are taken as:

x1 ≡ xu − γ[xu − xl]

x2 ≡ xu − γ[xu − xl]

Where γ= 0.618 a fraction known as golden ratio.

For choosing the interactive point, Case 1:f(x1) < f(x2), Case 2: f(x1) > f(x2)
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in Equation (4.10) is represented as a single control variable optimizing problem. The target of the

optimization is to set an optimal value of the battery power to minimise the grid power at any instance

of time by maintaining the battery constrains. But, the decision variable (battery power) depends on

another independent variable of the optimizing function defined as net power demand (Pnet)) of MG

which is highly stochastic in nature. Thus makes the problem non-linear in nature. So to apply the

algorithm in the EMS, the boundary conditions (upper and lower limit) of the battery power is set

as a function of net demand power of the MG. The boundary condition need to update every minute

to apply the algorithm to the system. So, the optimising algorithm will operate every minute to take

the decision of the battery power for a specific value of the net demand power. Considering the above

requirements, the objective function and boundary conditions are described in Equations (4.10-4.13) to

apply the algorithm in the study system.

min(Pgrid(n)) = min(f(Pbat(n))) = Pnet(n)− Pbat(n) ∀t (4.8)

subject to

Pbat(l) ≤ Pbat(n) ≤ Pbat(u) ∀t (4.9)

Fig. 4.3 PV power profile for different radiation days
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Table 4.1 System Design Parameters

Symbol Parameter Value
Ppv Capacity of PV module 7.2KW
Cbat Capacity of battery module 42 KWh
Pload(rated) Rated load power 3.2 KW
SoCint Initial value of SoC 40%
DoD Depth of discharge 70%
Ts Sample duration 1 min
N Total number of sample per day 1440
γ Charing/discharging decision constant 20%
k Battery power limit constant 0.001

The value of Pbat(l) and Pbat(u) in each sample are determined as,

Pbat(l) = (Pnet(n) + k ∗ |Pnet(n)|) ∀t (4.10)

Pbat(u) = (Pnet(n)− k ∗ |Pnet(n)|) ∀t (4.11)

Where Pbat(l) is the lower bound of the battery power and Pbat(u) is the upper bound of battery power

for each combination of Pnet. k is a constant to determine the maximum and minimum value of Pbat for

each value of Pnet. The value of k has to set to a optimal value to minimise the performance parameters

defined in section 4.3.

Fig. 4.4 Summer day residential load profile of study MG
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4.5 Simulation Result

In this section, a model of the residential MG is developed in MATLAB SIMULINK by using Simscape

Electrical™tool. The system design parameters in Table 4.1 are used to develop the simulation model.

The simulation is run for 48 hours (2 days) using the statistical data of different radiation days of

Fig. 4.5 Winter day residential load profile of study MG

Fig. 4.6 Grid power for simulation period during summer days

Brisbane, Australia. The value of the statical weather is taken in one minute duration. Fig. 4.3 illustrates

the stochastic nature of the PV power for the variation of temperature and radiation on September 2017
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for linear variation day and large variation day. Furthermore, summer and winter load variation in a

residential area for a 24 hours of the day illustrate in Fig. 4.4 and Fig. 4.5 respectively.

Fig. 4.7 CRMS value of grid power for simulation period during summer days

Fig. 4.8 Battery power for simulation period during summer days

The proposed power flow strategies in section 4.4 are applied in an EMS to minimise the grid

power fluctuation. Matlab optimization tool box is used to apply the golden section search method to

determine the optimal value of the battery power. The simulation runs each algorithms in every minute

to determine the battery power for minimising the grid performance parameters. Fig. 4.6 shows the

grid power for the simulation period during summer season using constant, variable and golden search

method. On other hand, Fig. 4.7 shows the CRMS value of the grid power with three strategies for
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Fig. 4.9 Battery SoC for simulation period during summer days

summer season. The figures show the maximum value of grid power to/from the grid is 2.2 KW and an

Fig. 4.10 Grid power for simulation period during winter days

average value of CRMS is 89 for the simulation period with the golden search method. However, the

peak value of imported/exported power from the grid for constant and variable method is 5.4 KW and

3.2 KW in the same period while CRMS average value for both methods are 1452 and 581, respectively.

Besides that, Fig. 4.8 shows a large fluctuation of the battery power as an effect of minimisation of

the grid power fluctuation and Fig. 4.9 proofs that the battery SoC is within the predefined limits

during the simulation period for presented three strategies. For winter season, the grid power profile

is showing in Fig. 4.10 using constant, variable, and golden search method which indicate that peak
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Fig. 4.11 CRMS value of grid power for simulation period during winter days

value of imported/exported power from the grid is 5.8 KW, 4.05 KW and 4.05 KW, respectively. The

CRMS average vale for three approaches are 1247, 1535, and 618, respectively are presented in Fig. 4.11.

The Fig. 4.12 demonstrates the charge and discharge power of the battery during 48-hours of winter

season while the SoC of battery for same period is shown in Fig. 4.13. The outcomes indicate that the

Fig. 4.12 Battery power for simulation period during winter days

fluctuation of battery power has increased due to the effect of reducing grid fluctuation. Compared to

the other two methods, the result is showed a major improvement in performance parameters for golden

search algorithm-based EMS for winter season which can be seen from Fig. 4.9-4.12. As mentioned in
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Section 4.4, Fig. 4.9 and Fig. 4.13 show that the battery SoC remains within secure limits for three

different strategies.

Fig. 4.13 Battery SoC for simulation period during winter days

4.6 Conclusions

This chapter designs a power flow control strategy through the EMS of a grid-connected residential MG

for minimising the grid power fluctuation in a residential MG. The golden section search optimisation

method is applied to control the battery power as a function of MG net power demand. The design

parameters are optimised to minimise the predefined performance parameters of the grid power. Moreover,

the battery parameters are kept within secure limits to increase the battery lifetime. The results show

that the proposed power flow control method is able to minimise the grid power fluctuation and controls

the power flow to/from the main grid as compared to constant and variable method.
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5.1 Abstract

This chapter presents an interlink inverter control method for providing a constant tie-line smoothing

service in a grid-connected residential microgrid (MG) to mitigate the fluctuating nature of renewable

power generation and load demand. A grid power controller is designed for an MG to keep a constant

grid power on typical days of the year by maintaining the charging/discharging of the battery. To

achieve this objective, the MG controller sends the reference to the interlink inverter controller based on

load dynamics, average PV generation and battery capacity. Moreover, a state-space model is developed

from the dynamic model of the MG system, and an eigenvalue-based stability analysis is performed for

different system parameters. The proposed control method is verified through extensive case studies by

using real irradiance and typical residential customer load data in Queensland, Australia. In addition, a

comparison with a dynamic energy management-based method that aims to achieve the same objective

is presented to demonstrate the performance of the proposed control method. Results show that the

proposed method provides a constant tie-line power for a grid-connected residential MG for typical days

of the year.

5.2 Introduction

In the last decades, the integration of renewable energy resources (RESs) into distribution networks

has promoted the use of microgrids (MGs) as an attractive and feasible solution for reducing the

consumption of fossil fuels in power generation [183]. An MG combines distributed generation (DG) with

an energy storage system (ESS) to form a small grid that feeds different loads on a low-/medium-voltage

network. An MG can operate in either grid-connected or island mode. Given its economic benefits, an

MG has become an attractive solution for customers in recent years. Considerable attention has been

given to island MG control [184–188] that focuses on voltage and frequency variation in an island MG.

However, tie-line fluctuation is one of the key bottlenecks in a grid-connected MG due to the variations

in power from RESs and load demand. Tie-line fluctuation in grid-connected MGs can cause severe

stability and quality issues in a distribution network. Previous research has addressed this problem

by controlling the power of MG resources, such as non-renewable generation control, demand side

control, ESS control or coordinate control through an energy management system (EMS) of the MG

[189, 90, 190, 174, 191–193, 175, 194, 195].
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Demand side control is one of the approaches for mitigating tie-line fluctuations through direct or

indirect (load scheduling, power pricing) control of load demand [189, 90]. A demand side control was

presented in [189] by directly and continuously modulating load power consumption in an industrial

MG. In [190], a large number of controllable loads were described as virtual energy storage in parallel

with battery storage and a fuzzy logic controller was applied to revise the range of the virtual energy

storage. Coordinated control between a heat pump and battery storage was proposed in [174] to smooth

the tie-line power fluctuations in a group of residential MGs. Similarly, a hybrid electrothermal storage

system that uses a battery and a hot water tank was developed in [191] to optimise power exchange

with the grid in an electrothermal residential MG. In [192] and [90], a peak power pricing mechanism

was used with the short-term forecasting of renewable generation to smooth power exchange with the

grid. In the aforementioned studies, a mixed-integer linear programming problem was integrated into

a model predictive control framework to reduce forecasting errors. In addition, tie-line smoothing

can be achieved through coordinated control among controllable loads, the battery and non-renewable

generation. A scheduling method among a diesel generator, battery storage and different controllable

loads was performed in [193] through the EMS of an MG to reduce tie-line fluctuations. Coordinate

control is also possible between a diesel generator and battery storage wherein demand side control

is not allowed. In [175], a power management system was proposed to share the local load with the

main grid by controlling the diesel generator with a droop reference estimator and the battery with a

current controller. However, demand side control is not possible for most real residential MGs due to

service reliability. Moreover, most residential MGs do not have a diesel generator and mostly depend

on RESs as their primary resource. Therefore, the tie-line smoothing objective is more challenging

for grid-connected residential MGs wherein battery storage is the only controllable unit and ensuring

reliability for customers is more important than demand side control. Thus, the aforementioned methods

may not be applicable for obtaining a smooth tie-line service in residential MGs.

Previous research has applied different control methods for dealing with the tie-line fluctuation

problem in residential MGs based on forecasting or historical weather information. Considering the

prediction of MG future power, a mixed-integer linear program was used in [171] to reduce tie-line

power fluctuation and minimise the operation cost of the battery and energy usage. A fuzzy logic-based

supervisory control was implemented in [196] to minimise the forecast utility power reference by adjusting

the set points of DG. A forecasting method was also used in [172] and [173] to smooth tie-line power

in a residential MG operation. A centralised moving average strategy [172] and a fuzzy logic-based

control [173] were proposed in an EMS of MG to reduce forecasting errors by maintaining battery state
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of charge (SoC). In [39], a fuzzy logic-based tie-line smoothing controller was designed for a residential

MG without any forecasting by using energy rate of change and battery SoC as inputs to modify the

required adjustment of grid power. After the adjustment, the necessary control of the battery was

determined using the power balance equation of MG. A hierarchical power scheduling control strategy

was proposed in [197] to ensure a flat grid power in a multi-microgrid network consisting of a large

number of distributed energy resources (DERs). All the previous studies considers a specific duration,

such as 10 min to 1 h to schedule tie-line power. Thus, these methods are difficult to apply in resolving

short-term fluctuation problems, i.e. 5 min or less, caused by RESs and load.

A short-term tie-line fluctuation was analyzed in [7], and a fuzzy logic controller was designed in a

dynamic EMS to control the battery in a grid-connected residential MG. However, the result showed that

the method reduces tie-line fluctuation but is unable to maintain constant tie-line control. Moreover,

this previous work did not mention the detailed control architecture nor any dynamic model of the

MG. Consequently, it is difficult to design any dynamic controller for mitigating the dynamic behaviour

of renewable generation or loads. To the authors’ knowledge, the tie-line fluctuation problem in a

grid-connected residential MG was not addressed in the previous study by using the dynamic analysis

of the system. Therefore, designing a dynamic controller is appealing for resolving this issue. This

chapter proposes a grid power control method for the interlink inverter of an MG to maintain constant

tie-line power on typical days of the year. The controller is combined with an outer loop droop-based

power controller and an inner loop grid current controller. The reference grid power is provided by the

MG controller and determined during the design stage based on load dynamics, PV generation and

battery capacity. The reference current of the grid current controller is calculated using the reference

grid power from the droop controller and grid voltage. The proposed constant power control method

can also achieve other tie-line objectives like power smoothing, flat tie-line power, peak shaving and

power ramp limitation. The battery module in the MG connects with the PV converter in a hybrid

configuration to reduce the number of conversions. The DC/DC converter in the battery module is

responsible for maintaining the DC link voltage of the MG through the charging/ discharging operation

of the battery in coordination with the proposed current controller. Furthermore, a dynamic model of the

MG is developed from the time-average model of a typical grid-connected residential MG. A closed-loop

state-space model of the MG system is derived from the dynamic model of the MG, and eigenvalue-based

stability analysis is performed for different system parameters. The proposed controller is verified

through extensive case studies by using real irradiance and typical residential customer load data in

Queensland, Australia. The results show that the proposed controller maintains a constant tie-line
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power set by the MG controller through the secure charging/discharging of the battery. Moreover, a

comparison with a dynamic-EMS based method to achieve the same objective is presented in a MATLAB

simulation. The major contributions of this chapter are as follows.

(1) A constant grid power control method is proposed for the interlink inverter of a grid-connected

residential MG to obtain a smooth tie-line service despite the variations in RESs and load demand.

(2) A state-space model is derived from the dynamic model of the MG to analyse the dynamic response

of the controller in different case studies.

(3) A comparison with a dynamic EMS method is presented to demonstrate the performance of the

proposed control method.

The remainder of this chapter is organised as follows. Section 5.3 describes the system configuration

and Modelling . Section 5.4 illustrates control strategies. section 5.5 demonstrates stability analysis of

the study MG. Section 5.6 presents the simulation results and the comparisons of different case studies.

and Section 5.7 concludes the chapter.

5.3 System Configuration and Modelling

5.3.1 System Configuration

The study considers a typical grid-connected residential AC MG structure with a PV panel as RES,

a battery as ESS and a residential load. The PV panel and the battery are connected to the grid in

hybrid configuration. A rated capacity of 2.5 kW solar panel and a battery of 17 kWh are installed

for supply in a typical single residential house of Queensland, Australia with an average demand of 15

kWh per day. Fig. 5.1 depicts the MG test setup in Griffith for the system under study. Moreover, the

system assumes a robust communication structure among different units of the study MG. The system

has three converters for fulfilling the control requirements. The boost converter in the PV unit is used

to track the maximum power from the PV panel. The buck-boost converter is connected to the battery

storage system with the DC link. The converter is designed to maintain the DC link voltage within

the reference by charging/discharging the battery. The DC link is connected to the AC bus through an

interlink inverter. The interlink inverter control is designed to control the grid power drawn by the MG.
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Lf
difq

dt
= viq −Rf ifq − ωLf ifq − voq (5.5)

Grid loop Equations,

Lg
digd

dt
= −Rgigd + ωLgigq + vod − vgd (5.6)

Lg
digq

dt
= −Rgigq − ωLgigd + voq − vgq (5.7)

Equations of filter capacitor,

Cf
vod

dt
= ifd − igd − iLd + ωCf voq (5.8)

Cf
voq

dt
= ifq − igq − iLq − ωCf vod (5.9)

5.3.3 Phase Locked Loop (PLL) Control

PLL is necessary to track the actual frequency of the system. The input of PLL is the d-axis component

of the voltage across the filter capacitor. Thus, the phase is locked at vod = 0 [198]. The Equations

(5.10-5.12) illustrate the states associated with PLL.

dvodf

dt
= ωcP LLvod − ωcP LLvodf (5.10)

dϕP LL

dt
= −vodf (5.11)

dθ

dt
= ωg − kpP LLvodf + kiP LLϕP LL (5.12)

5.4 Control Strategies

In this chapter, a constant grid power control method is proposed to maintain a constant tie-line power

on typical days of the year. The detailed control strategies are described in the following subsections.

5.4.1 Maximum Power Point Tracking (MPPT) Control

The boost converter connected to the PV panel is considered as an ideal MPPT controller by using the

perturb and observe (P & O) method to track the maximum power from the PV unit [199].



5.4 Control Strategies | 79

5.4.2 DC Link Voltage Control

The bidirectional buck-boost converter connected to the battery storage is responsible for maintaining

the DC link voltage. The idea of using the charge/discharge power of the battery banks to regulate DC

voltage (by using a proportional–integral (PI) controller) was introduced in [187, 200]. If the measured

DC link voltage is higher than the reference voltage, then the battery will run in buck mode to charge

the battery. If the measured DC link voltage is lower than the reference voltage, then the battery will

run in boost mode to discharge the battery. Otherwise, the battery will be in rest mode without any

buck-boost operation. However, to limit overcharging/overdischarging of the battery, a SoC-based EMS

is applied to the system as discussed in Section (2.C). Fig. 5.2 shows the flowchart to decide between

buck or boost operation of the converter. Fig. 5.3 presents the block diagram of the DC link voltage

controller. The equations of the controller are expressed as Equations (5.13-5.14).

d2 = Kp1(v∗
dc − vdc) + Ki1γ (5.13)

Where

γ =
∫

(v∗
dc − vdc)dt (5.14)

Start

Vdc>Vdc(ref)

Measured	Vdc

Vdc<Vdc(ref)

Buck	mode Boost	mode Rest	mode

Yes

No

Yes

No

Fig. 5.2 Flow chart of the DC link voltage controller for regulating battery charging/discharging

5.4.3 Proposed Grid Power Control

A DC/AC bidirectional inverter control method is proposed to control the grid power drawn by the MG

and obtain a constant tie-line of a grid-connected MG despite the fluctuating nature of RESs and load
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Fig. 5.3 DC link voltage controller

demand. The proposed method follows a three-step hierarchical approach for controlling grid power. In

the first step, a process for determining the grid power reference is described to obtain a constant tie-line

on typical days of the year. The day-to-day variations in the renewable generation and load demand will

change the average daily power drawn by the MG. Commercial software, such as HomerPro, typically

uses the statistical data of power generations and demands to calculate the average power shortage of

an MG throughout the year. The power shortage should be supplied by the utility grid to balance the

power in the MG. On the basis of the system configuration and statistical data of the MG, the software

algorithm determines the percentage of the average load needed to be supplied by the utility grid on

typical days of the year. The result may vary depending on the available generation capacity, generation

type, load dynamics and geographical location of the MG. Thereafter, reference grid power is fed to the

MG controller to provide the control reference to the interlink inverter of the MG. In general, an MG

controller is responsible for performing different types of activities, such as power flow control, secondary

voltage and frequency regulation and economical operation, based on the control requirements of an MG.

However, this chapter only focuses on the power flow control of the MG to obtain a constant tie-line

power in a grid-connected residential MG. A battery SoC-based EMS is applied to control the grid

power and limit the overcharging/overdischarging of the battery. When the battery SoC is within the

predefined limit, the MG controller provides a constant reference power determined by the algorithm.

If the battery SoC is over SoCmax due to overgeneration from the PV panel, then the reference grid

power is set to be equal to Ppv − Pload to transfer excess generation to the grid. If the battery SoC is

under SoCmin, then the MG controller sets the grid reference power to maintain a reliable power supply

to meet the load demand in the MG. In both cases, the grid reference power is set to a value such that

the battery will not overcharge/overdischarge to maintain a healthy life of the battery storage system.

Fig. 5.4 shows the process for determining the reference gird power to supply to the interlink inverter.

In the second step, a combination of droop control and the current calculation method is introduced

to determine the reference grid current from the reference grid power set by the MG controller. A
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droop control method is used to control the real and reactive power references in accordance with grid

frequency and voltage. The droop control feature also enables the interlink inverter for coordinated

operation with other inverters in a multi-microgrid based distribution network. This chapter adopts the

conventional droop control method between P-ω and Q-V is illustrated in Equation 5.15.

ω = ω∗ −m(P − P ∗)

V = V ∗ − n(Q−Q∗) (5.15)

The droop co-efficient can be calculated using the equation 5.16,

m = 2π(fmax − fmin)
Pmax

n = (Vmax − Vmin)
Qmax

(5.16)

Given that the reactive power reference of the inverter is typically set to Q∗ = 0 in grid-connected

operation, only P-ω droop is implemented in this chapter. fmax,fmin are selected in accordance with the

Australian power system standard, and Pmax is the rated power of the inverter. The power determined

by the droop controller is used to calculate the reference current of the grid current controller.

The real and reactive power equations for a single-phase system in the d-q reference frame can be

written as

Pg = 1
2(vgdigd + vgqigq)

Qg = 1
2(vgqigd + vgdigq) (5.17)

Equation (5.17) is used to calculate the reference current of the inverter as expressed in Equation

(5.18).

i∗
gd =

2P ∗
g vogd + 2Q∗

gvogq

vogd(v2
ogd + v2

ogq)

i∗
gq =

2P ∗
g vogdvogq − 2Q∗

gv2
ogd

(v2
ogd + v2

ogq) (5.18)

In the third step, a grid current controller is designed to control the interlink inverter of the grid-

connected MG to track the grid current to the reference determined using the second step of the control
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5.5 Stability Analysis of Microgrid

5.5.1 Small-Signal Model

To derive the small-signal model of the MG and to simplify the analysis, the boost converter and the

PV panel are replaced with an ideal variable current source. Accordingly, the DC link voltage equation

can be simplified as,

Cdc
dvdc

dt
= i1 − (1− d2)i2 − ddid − dqiq (5.23)

Differential Equations in (5.1-5.14) and (5.19-5.23) are used to derive the closed-loop nonlinear

system model of the study MG. The nonlinear system model should be linearised near a steady-state

point for the stability analysis of the system. The steady-state operating point of the system can be

derived by solving this nonlinear system model with the derivatives terms set to zero. The linearised

small-signal model of the MG is represented using the standard state-space equations as,

∆ẋ = A∆x + B∆u

y = C

∆igd

∆igq

 + D∆u (5.24)

Where the state variables ∆x and system inputs ∆u are represented in Equations (5.25-5.26) and

the system coefficients are expressed as Equations (5.27-5.35).

∆x = [∆i2 ∆vdc ∆γ ∆ifd ∆ifq ∆βid ∆βiq ∆igd ∆igq ∆vod ∆voq ∆vodf ϕP LL θ] (5.25)

∆u =
[
∆i1 ∆v∗

dc ∆vbat ∆i∗
gd ∆i∗

gq ∆vgd ∆vgq ∆iLd ∆iLq

]
(5.26)
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A12 =
(Ki1γ + Kp1(V ∗

dc − 2Vdc) − 1)
L2

(5.28)

(A21 =
−(Ki1γ + Kp1(V ∗

dc − 2Vdc) − 1)
Cdc

(5.29)

A22 =
(Kp1I2 +

(Ifd(Vod+Ki2βid+Rf Ifd+Kp2(I∗
gd

−Igd)−Lf Ifqω))
V 2

dc

+
(ifq(Voq+Ki2βiq+Rf Ifq+Kp2(I∗

gq−Igq)+Lf Ifdω))
V 2

dc

Cdc
(5.30)

5.5.2 Eigenvalue based Stability Analysis

The linearised system model represented by the state-space equation reflects an accurate model of the

system. The linearised system model developed in the previous subsection can be used to investigate the

eigenvalue-based stability analysis of the system. The system coefficient matrix A is used to determine

the states of eigenvalues in all modes of the system. The parameters of the system are listed in Table

5.1. The current controller is tuned on the basis of the symmetrical optimum tuning criteria with a

phase margin of 2.59◦ at crossover frequency of 56.7 rad/s. The eigenvalues of the MG are calculated

analytically, and the results are presented in Table 5.2.

The system eigenvalues in Table 5.2 have two poles meeting in the origin and several poles close

to the real axis with small damping and low oscillation frequency. Two pairs of complex conjugate

poles exist with high oscillation frequency related to the inverter parameters. The system is stable for

the parameter in Table 5.1; thus a full range of investigation has been conducted to change the power

reference from −Prated to Prated. All other parameters in Table 5.1 are assumed constant except for the

steady-state value of the grid power to find the result in Fig. 5.6. The result shows that none of the

system poles is moving due to a change in steady-state grid power.

A similar investigation has been performed for the change in PV power within the entire range of

operating points from 0 to Ppv,max considering that other parameters in Table 5.1 are constant. Fig. 5.7

shows that the poles are nearly constant despite the change in PV operating conditions. A similar

analysis can be conducted for other system parameters to determine the sensitivity of the parameters to

system pole movement. However, the sensitivity of the controller gain is an essential part of eigenvalue

analysis. The sensitivity range of the controller gain exerts a direct impact on system stability. To

investigate the sensitivity of eigenvalues to variations in the current controller’s proportional gain Kp2,

the value of Kp2 is increased from 0.1 to 3. Fig. 5.8 shows the trajectory of the poles with an increase
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A24 =
−(vod + Ki2βid + Rf ∗ Ifd + Kp2(I∗

gd − Igd) − Lf Ifqω + Rf Ifd + Lf Ifqω)
VdcCdc

(5.31)

A25 =
−(Voq + Ki2βiq + Rf Ifq + Kp2(I∗

gq − Igq) + Lf Ifdω + Rf Ifq − Lf Ifdω

VdcCdc
(5.32)

in Kp2 from 0.1 to 3. The result shows that poles with a high imaginary part move to the right half

of the axis for a controller gain of more than 2. Thus, controller gain can vary within a wider range,

and the system will be unstable for a large controller gain. A similar sensitivity analysis of the system

eigenvalues has been performed for the change in DC/DC converter gain. Fig. 5.9 shows the trajectory

of the poles with an increase in kp1 from 1 to 2.5. The result shows that the poles related to DC/DC

converter gain kp1 has moved to the right half-plane with an increase in the controller gain of nearly 2

whilst other parameters of the system are fixed. Further investigation of the sensitivity analysis of the

eigenvalues can be conducted for other system parameters as long as few parameters are responsible for

the stability problem in a specific system configuration. Such investigation is an essential part of the

stability analysis of an MG with different parameters, size and number of generations in the system.

5.6 Simulation Results and Comparisons

5.6.1 Simulation Results

The performance of the proposed inverter control method is analysed in the context of Queensland,

Australia through the simulation of real residential house load, solar radiation and temperature data. A

test MG is designed using available resources in Griffith University, Australia. Fig. 5.1 shows the MG

setup in building N44,Griffith University. A SunPower E20 series model PV unit with a peak capacity

of 2.5 kW is installed in N44 and used in the simulation. The sun radiation and temperature data of

B =



0 (Kp1Vdc)
L2

1
L2

0 0 0 0 0 0
1

Cdc

−(Kp1I2)
Cdc

0 −(Kp2Ifd)
CdcVdc

−(Kp2Ifq)
CdcVdc

0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 Kp2

Lf
0 0 0 0 0

0 0 0 0 Kp2
Lf

0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1

Lg
0 0 0

0 0 0 0 0 0 −1
Lg

0 0
0 0 0 0 0 0 0 −1

Cf
0

0 0 0 0 0 0 0 0 −1
Cf

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



(5.33)



5.6 Simulation Results and Comparisons | 87

C =
[

0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0

]
(5.34)

D = 0 (5.35)

Table 5.1 System Parameters for Study MG

Symbol Parameter Value
L2 Inductor value of the buck-boost converter 9mH
R2 Resistor value of the buck-boost converter 0.25Ω
Cdc Dc link capacitance 300mF
Lf Filter inductor 3.2mH
Rf Filter resistor 0.008Ω
Cf Filter capacitance 9.67µF
Lg Grid inductor 0.064 mH
Rg Grid resistor 0.008Ω
ωcP LL PLL filter cut-off frequency 25Hz
ω Rated frequency 50Hz
P(rated) Rated power of inverter 2.5KW
Vrated Rated voltage 240 V
kp1, ki1 DC link controller gain 1.2, 3
kp2, ki2 Interlink inverter controller gain 0.3, 10

Table 5.2 System eigenvalues of the corresponding states

System states Eigenvalue (λi = σi ± jωi)
λ1 0+j0
λ2 0+j0
λ3 -157+j0
λ4,5 -265 ± j88825
λ6,7 -265 ± j88197
λ8,9 -19 ± j843
λ10 -20+j0
λ11,12 -47±j30
λ13,14 -47±j30

Fig. 5.6 Trajectory of eigenvalues when power P ∗
g is changed through the operating range of the inverter
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(a)

(b)

Fig. 5.13 PV generation, residential load, battery power, grid power and grid power reference on a
typical summer day (a) 24 h duration and (b) 6 min duration from 10:21 am to 10:27 am
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(a)

(b)

Fig. 5.15 PV generation, residential load, battery power, grid power and grid power reference on a
typical winter day (a) 24 h duration and (b) 9 min duration from 20:54 pm to 21:03 pm
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Fig. 5.16 Comparison of grid power on typical winter days

Case I: Effect of Sudden Cloudy Appearance

Weather variations have a direct effect on the power generation of the PV panel. To observe the effect

of sudden weather variations on controller performance, Case I illustrates an event of sudden cloud

appearance for a short period. During this period, system load is considered almost constant. A typical

scenario is illustrated in Fig. 5.10 to show the dynamic response of the proposed grid power controller

due to sudden cloud appearance. The figure shows abrupt changes in PV power for 5 min due to the

sudden cloudy weather. The figure also shows the grid power, reference grid power and load variation

during this period. The result indicates that the measured grid power is following the reference grid

power smoothly despite the variations in PV power for a short period. Thus, the robustness of the

controller is demonstrated.

Case II: Effect of Abrupt Load Change

Load variation exerts a significant effect on the dynamic performance of the system. In Case II, an

abrupt load variation is considered for a short period to observe the effect of load variation on controller

performance. During this period, the output power of the PV panel is kept nearly constant. A typical

scenario is illustrated in Fig. 5.11 to show the dynamic response of the proposed grid power controller

due to abrupt load change (output disturbance). In this scenario, load power suddenly drops for 5 min

due to an abrupt load change for a short duration. The dynamic performance of the controller on the
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event of abrupt load change is illustrated in the figure. The result shows that the measured grid power

is following the reference power with small fluctuations.

Case III: Controller Performance on a Typical Summer Day

To evaluate controller performance for a 24 h duration using summer weather, weather information

on a typical summer day (25 January 2017) is selected as the input of the PV panel. Solar radiation

and temperature on a typical summer day are illustrated in Fig. 5.12 and used to generate PV power

on a typical summer day. In addition, the residential load profile illustrated in Fig. 5.13a is used to

represent load dynamics on a typical summer day. Moreover, Fig. 5.13a shows that battery power and

grid power on typical summer day follow the power balance equation of the MG. Fig. 5.13b indicates

the dynamic response of the controller in minutes to observe the effect of short-term power fluctuations

due to renewable generations and load. The results demonstrate that the proposed grid power control

method achieves a constant tie-line on a typical summer day despite the variation in PV power and load

power. However, battery power fluctuation is increased significantly to realise the objective.

Case IV: Controller Performance on a Typical Winter Day

To verify the performance of the controller for 24 h on winter weather and load variations, a typical

winter day (4 June 2017) with variations in temperature and radiation is selected to generate PV

output under winter condition. Solar radiation and temperature on a typical winter day are shown in

Fig. 5.14. Moreover, PV generation and residential load profile for a typical winter day are presented

in Fig. 5.15a. In addition, Fig. 5.15a shows battery power and grid power on a typical winter day.

Fig. 5.15b illustrates the dynamic curve and control effort in minutes to observe controller performance

during short-term changes of input and output system disturbances. The result indicates that grid

power follows the reference for simulation time, and the power balance of the MG is achieved through

the required charging/discharging of the battery. The results prove that the MG has drawn a constant

power from the grid to obtain a constant tie-line power on a typical winter day of the year.

5.6.2 Comparison

A comparison of the grid power of the proposed inverter control method and a dynamic EMS-based

power flow control method [7] is presented in MATLAB to compare the performance of the two control

methods. In [7], a fuzzy logic-based dynamic EMS was designed to control the buck-boost current

controller of the battery storage system to reduce the tie-line power fluctuation in a residential MG. Fig.
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5.16 shows the comparison of the grid power by using the two methods on a typical winter day. The

result demonstrates that the proposed inverter control achieves constant grid power on a typical day. By

contrast, whereas the dynamic EMS-based method exhibits many fluctuations. That is, the proposed

controller achieves robust control to obtain smooth tie-line compared with the dynamic EMS-based

control method.

5.7 Conclusions

In this chapter, a constant tie-line power method is proposed to overcome tie-line power fluctuations in

a grid-connected residential MG due to RES and load variations. A grid current controller combined

with a droop power controller is designed to maintain constant grid power drawn by the MG. The

grid power reference is determined during the design stage based on system dynamics. The power flow

inside the MG is balanced through the controlled charging/discharging of the battery. In addition, a

state-space model of the MG system is derived for a stability analysis of the system with variations in

system parameters. Furthermore, a simulation model is developed using the state-space model of the

MG to verify the performance of the controller in different case studies. A comparison with a previously

developed dynamic EMS approach is presented in the simulation. The results show that with the

application of the proposed control method, constant tie-line power can be achieved despite short-term

system fluctuations and on typical days of the year by maintaining battery charging/discharging within

a limit.
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6.1 Abstract

An increasing number of microgrids (MGs) in transmission and distribution networks creates an

opportunity to work as a network to increase the stability, quality and reliability of power systems.

Tie-line control in such a network of parallel connected residential MGs are very challenging due to

fluctuating nature of renewable generations and time-varying loads. This chapter proposed a distributed

model predictive power controller for tie-line inverters of a network of grid-connected residential MGs

that operates in coordination with a DC-DC converter to maintain a scheduled tie-line power for the

network by keeping the system constrains. MGs communicate with one another for calculating a

day ahead tie-line power reference of a network and for real time adjustment of the reference power

of tie-line converters based on the information of instantaneous power drawn by other MGs in the

network. The proposed controller is verified in several case studies to demonstrate the performance of the

controllers during dynamic changes of system disturbances and tie-line reference of MGs. Furthermore,

a comparison with a decentralised operation of MGs exhibits in result to show the effectiveness of the

proposed distributed operation of MGs.

6.2 Introduction

Renewable energy resources (RESs) are remarkably integrated in last decades to transmission and

distribution networks for promoting green technologies in future power systems. Adaptation of RESs

brings new challenges in control, operation and management of power networks. The concept of

microgrids (MGs) are implemented in last decay for efficient use of RESs and to provide a reliable

supply to the loads in a small power network. An MG can be defined as a small power network that

consists of distributed energy resources (DERs) and energy storage systems (ESSs) to feed local loads

on a low/ medium voltage power network [201, 7]. The main advantage of MGs is to operate in either

grid-connected or island mode. In grid-connected mode, deficient/ surplus power in an MG is transferred

to the main grid to maintain the power balance in an MG. Meanwhile, during a fault condition, an MG

can operate in island mode to maintain a reliable supply to critical loads. The challenges to control and

management of MGs has increased when a number of MGs are connected to a network. A networked

MG (NMG) can be defined as a clusters of MGs connected through an electrical power network for

efficient utilisation of RESs, to increase supply reliability, to reduce the operation cost and to reduce

grid burden on grid-connected operation. The potential benefits and challenges of networked operation



100 | Model Predictive Power Flow Control in Networked Microgrids

of MGs were discussed in [10–12] by focusing on operation feasibility of NMGs. Fig. 6.1 shows a typical

structure of an NMG connected in a distribution network.

Power flow control in an NMG is one of the challenging issue for networked operation of MGs. Power

flow control in an NMG has been addressed by several studies. A pinning-based distributed secondary

control was implemented in [120] for a cluster of distributed generations (DGs) in an NMG operating

in P-Q and droop control mode. The steady state deviations caused by the primary level control was

reduced using the proposed control method. The global reactive power sharing error in an NMG was

minimised in [132] using a virtual impedance control method and a genetic algorithm was used to

optimised the virtual impedance controllers. Besides that, a model predictive control method was used

in [202] for scheduling the power flow amongst MGs and charging/ discharging of local ESSs under

a centralised management framework. A comparison with single operation of MGs was presented to

show the advantages and benefits of networked operation. A distributed control approach was employed

in [203] to keep the ESS in an MG around a reference value though optimal power sharing between

MGs. Meanwhile, tie-line power flow control in an NMG has recently focused in research. A distributed

tie-line power flow control between two DC MGs is adopted in [204] using pinning consensus protocol to

minimise the operating cost of distributed generators (DGs) in an MG. A distributed secondary control

was proposed in [122] to control the tie-line power amongst MGs in an NMG operating in island mode.

The main target of this studies was to avoid overloading of DGs due to variations of loads. Furthermore,

a two-layers control structure is presented in [117] where the outer layer in responsible to control the

power flow in an NMG using a modified droop control method. Power flow amongst MGs though

tie-line converters was considered during networked operation to minimise the power drawn from the

main grid. In [205], a multiagent-based distributed tie-line power flow control of an NMG is presented

where several AC MGs are connected with one another in a ring structure. The study concentrated

on optimisation of real time energy scheduling amongst MGs in grid-connected operation despite the

variation of generations and loads. All the above studies concentrates on a tie-line power flow control

where MGs are connected through a separate electrical connections amongst them. Moreover, none of

the above studies consider the on grid tie-line power fluctuations in an NMG.

Tie-line power fluctuations control is an active research field of MGs to reduce dynamic natures of

RESs and loads on the main grid and to maintain the stability and quality of distribution networks .

Tie-line smoothing in a single MG had been studies in [39, 197, 171, 193] using demand-side management,

generation control, ESS control and coordinate control method. Tie-line fluctuations in an NMG is

more problematic than a single MG because of number of RESs and loads are connected in a network.
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In this chapter, a distributed model predictive power controller (DMPPC) is proposed to control

the tie-line power in an NMG connected with the main grid through interlink inverters. A number of

residential MGs are connected to a common bus to form a network. A dynamic model of an NMG is

obtained by combining the dynamic model of individual MGs. After that, a distributed model predictive

power controller (DMMPC) was proposed to obtain a scheduled tie-line power in a grid-connected NMG

despite the variations of RESs and load demand. A decentralised model predictive power controller is

used to maintain a stable DC bus of individual MGs without any communication with neighbouring pairs

and is responsible to control the charging/ discharging of batteries. However, interlink inverters in an

NMG communicate among them through distributed communication links. A dynamic system model of

interlink inverters of individual MGs is used to predict the tie-line power for next time steps. A scheduled

tie-line power is determined by individual MGs based on the forecasted generation, load demand and

battery State of charge (SoC). Moreover, instantaneous tie-line power information of other MGs and

reference tie-line are collected from the network to determine the instantaneous tie-line power reference

of individual MGs in distributed manner. Finally, a cost function is implement to achieve a smooth

tie-line power of a grid-connected NMG. The performance of the proposed DMPPC is demonstrated

in simulation experiment for the variations of input and output disturbances as well as a change in

reference grid powers of MGs. In addition, the performance of the proposed DMPPC is validated using

real weather and residential customer load data in Queensland, Australia to achieved a smooth tie-line

power in a network of grid-connected residential MGs. Furthermore, a comparison with decentralised

operation of MGs is presented in results to show effectiveness of the proposed control method.

The rest of the chapter is organised as follows. Section 6.3 describes the modelling of NMGs. Section

6.4 presents a DMPPC for interlink inverters in an NMG. Section 6.4 illustrates simulation results. And

section 6.6 concludes the chapter.

6.3 Modelling of Networked Microgrids

A typical structure of a grid-connected NMG that consists of n number of MGs in shown in Fig. 6.2. MGs

in the network are connected with the main grid using interlink inverters, LC filters and line impedances.

The DC bus of each MG is connected to the interlink inverter is represented as an ideal DC source in

Fig. 6.2. Interlink inverters in the network are responsible to control the power drawn/transfer to the

main grid in order to provide a reliable supply to the loads. Each MG in the networked consists of a PV,

a battery and an AC load. Fig. 6.3 shows the schematic diagram of the ith MG in the network used in
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Fig. 6.5 Equivalent circuit diagram of buck-boost operation for the battery module i

6.3.2 Modelling of Interlink Inverters

Fig. 6.6 shows the equivalent circuit diagram in ac side of the MG i. It is assumed that a single phase

two-legs inverter is connected between DC bus i and AC bus i through an LC filter. Each leg of the

inverter consists of two switches. There are four possible switching combinations to obtain three possible

voltage vectors of a single phase inverter and can be written as,

vin = + Vdc, (S1, S4 = 1; S2 = S3 = 0)

− Vdc, (S1, S4 = 0; S2 = S3 = 1)

0, (S1toS4 = 1/0)

(6.3)

Now, by applying KVL and KCL to the inverter model i, the following differential equations can be

obtained.

Lfi
difi

dt
= −Rfiifi + vini − v0i (6.4)

Cfi
dv0i

dt
= ifi + igi − iloadi (6.5)
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Fig. 6.6 Equivalent circuit of ac side of the MG i

Where Rfi, Lfi and Cfi are the filter resistance, inductance and capacitance of the inverter i respectively.

ifi is filter current, igi is grid current , iloadi is load current and v0i is voltage in AC bus of the ith MG.

The dynamic model of the inverter i can be represent as state-space equation,

ẋi = Aixi + Biui + Fiwi (6.6)

Where, xi is the system states, ui is the system input and wi is the system disturbance. To fulfil the

requirement of the model, grid current and load current are represented as a disturbance of the system.

In practice, they are assumed as an external input of the system.

xi =

ifi

v0i

 , ui = [vini], wi =

iloadi

igi


The system coefficients are expressed as,

Ai =

−Rfi

Lfi
− 1

Lfi

1
Cfi

0

 , Bi =
[

1
Lfi

]
, Fi =

 0 0
1

Cfi
− 1

Cfi


The state space model in Equation (6.6) can be transformed intro discrete form for a sampling time

Ts by using Euler difference method,

xi(k + 1) = Cixi(k) + Diui(k) + Eiwi(k) (6.7)

Where
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Ci = eTsAi , Di = A−1
i (eTsAi − 1)Bi, Ei = A−1

i (eTsAi − I2×2)Fi

6.3.3 Modelling of an NMG

The dynamic model of an NMG can be obtained by aggregating ac side dynamic equations of each

individual MG in the network,



x1(k + 1)

x2(k + 1)
...

xi(k + 1)
...

xn(k + 1)


= C



x1(k)

x2(k)
...

xi(k)
...

xn(k)


+ D



u1(k)

u2(k)
...

ui(k)
...

un(k)


+ E



w1(k)

w2(k)
...

wi(k)
...

wn(k)


(6.8)

Where C, D and E are the NMG coefficient. All elements of the coefficient matrices are zero except

the diagonal element.

C =



C11 · · · C1n

...
. . .

...

Ci1 · · · Cin

...
. . .

...

C1n · · · Cnn


, D =



D11 · · · D1n

...
. . .

...

Di1 · · · Din

...
. . .

...

D1n · · · Dnn


, E =



E11 · · · E1n

...
. . .

...

Ei1 · · · Ein

...
. . .

...

E1n · · · Enn


The integrated model of an NMG can be represented as,

x(k + 1) = Cx(k) + Du(k) + Ew(k) (6.9)

6.4 Distributed Model Predictive Power Control for Tie-line

Inverters in a Networked Microgrid

The flexible power flow control in a MG can be obtained by controlling the filter current of the interlink

inverter. An interlink inverter of an MG usually connect with rest of the system using an L/LC/LCL
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filter. The inverter current can be controlled by regulating the switching behavior based on the dynamic

equation of the filter loop. A regulated inverter power can be achieved through controlling the inverter

current. Meanwhile, the grid power control in an MG is more challenging than the inverter power

control because of the absence of direct relation with the inverter input voltage. Besides that, due to

high penetration of RESs in low/medium distribution networks, the grid power control is essential for

efficient use of RESs and obtaining a smooth/flat tie-line power in grid-connected operation of an MG.

The consequence of grid power control in an NMG is more complex than a single MG operating in

grid-connected mode. Communication in the network is important for efficient control and operation of

such networks. A centralised controller can be dedicated to aggregate information from the network

and to predict the future value of grid power in the network . A complete model of the whole network

should be used by the central controller to predict the future value of the grid power. At the same time,

aggregated information from the network is used to determine the optimal power reference for each MG.

To implement a central control approach, a dedicated, reliable and high band communication network is

necessary. In addition, a central control approach requires more installation, operation and maintenance

cost compare with decentralised and distributed control approach. To overcome the necessity of a central

controller, a distributed model predictive power control has been proposed in this chapter to control

the tie-line power in an NMG. Interlink inverter of individual MG will communicate with each other

is distributed fashion to maintain the tie-line power of an NMG near to the reference. Each inverter

will predict the grid power for (k+1) time step. Moreover, reference grid power of each MG for (k+1)

time step will be determined based on the grid power information from all MGs in a network operating

is distributed control mode, gird power reference of individual MGs and grid power reference of the

network.

Now, the prediction of grid current for (k+1) time step can be obtained by applying KCL in AC bus

of ith MG and can be expressed as,

igi(k + 1) = iloadi(k + 1)− ifi(k + 1) + Ts

Cfi
(v0i(k + 1)− v0i(k)) (6.10)

For a small time step, load current for two consecutive time step is assumed as iloadi(k+1) ≃ iloadi(k).

The filter current ifi(k + 1) and capacitor voltage v0(k + 1) can be predicted using the discrete time

state space model in equation (7) and can be written as,

ifi(k + 1) = Ts

Lfi
(vin(k)− v0(k)−Rfiifi(k)) + ifi(k) (6.11)
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v0i(k + 1) = Ts

Cfi
(ifi(k) + igi(k)− iloadi(k)) + v0i(k) (6.12)

Now, by applying instantaneous power theory [217, 218], the instantaneous active and reactive power

equation for a single phase system in α− β coordinate can be written as,

P = 1
2Re(V I∗) = 1

2(vαiα + vβiβ),

Q = 1
2Im(V I∗) = 1

2(vβiα − vαiβ) (6.13)

Where * is represented as complex conjugate. Re and Im are represented as real and imaginary

components.

Using Equation (6.13), the instantaneous active and reactive grid power of the ith MG for (k+1)

time step can be predicted as,

Pg,i(k + 1) = 1
2(vgα(k + 1)igα,i(k + 1) + vgβ(k + 1)igβ,i(k + 1)),

Qg,i(k + 1) = 1
2(vgβ(k + 1)igα,i(k + 1)− vgα(k + 1)igβ,i(k + 1)) (6.14)

As the sampling frequency is very small compare with the grid fundamental frequency, the grid

voltage is assumed to be constant for two consecutive sampling period. Thus, vgα(k + 1) = vgα(k) and

vgβ(k + 1) = vgβ(k).

Now, if the MGs in a network will operate in decentralised manner, then each interlink inverter will

control the grid power of the corresponding MG without any communication with other MGs. The cost

function to regulate the grid power of ith MG in decentralised manner can be written as,

JP gi = (P ref
gi (k + 1)− Pgi(k + 1))2 + (Qref

gi (k + 1)−Qgi(k + 1))2,

s.t. If,i ≤ Iinv(rated),i (6.15)

In the cost function, the reference active and reactive power needs to design carefully to obtain

a regulated grid power considering the system constrains. For residential applications, the reactive
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power supplied by the grid is usually set to Qref
gi =0 to maintain an unity power factor. The active

power reference P ref
gi is usually determined by the energy management system (EMS) of individual

MG. In this study, a day ahead tie-line power scheduling is done based on forecasted generation and

load from the distributed network operator (DNO) and the battery SoC at the end of each day. Due

to development of technologies, it is assumed that forecasting of generations and loads can be done

accurately. The application of day ahead forecasting is discussed in several studies [219]. Thus, the

forecasting of generations and loads is out of scope of this chapter. Fig. 6.7 shows the flow chart to

determine the tie-line power power scheduling of MG i. Finally, the scheduled active power reference has

sent to the corresponding interlink inverters based on the battery SoC to avoid over charging/discharging

of batteries.

Meanwhile, to implement the DMPPC, the reference grid power of interlink inverter of the ith MG

in the network should be revised based on the networked tie-line reference power and information of grid

power drawn from other MGs in the network. The reference active grid power PgT and reactive grid

power QgT for (k+1) time step from the day ahead energy scheduling of the network. Meanwhile, the

instantaneous grid power of the other MGs in the networked can be obtained through a communication

between MGs. Then, the grid power oscillation in the network can be obtained which will share by the

MGs in a network to achieve a smooth tie-line power in an NMG. Finally, the grid power reference of

each individual MG can be adjusted by adding the oscillating grid power in a network with the reference

grid power of individual MG in decentralised operation. Equation (6.16) shows the active and reactive

grid power reference of the ith MG for distributed operation of interlink inverters in an NMG. Fig. 6.8

shows the block diagram of a DMPPC to control the interlink inverter of MG i.

P̃ ref
gi (k + 1) = P ref

gi (k + 1) + gp(P ref
gT (k + 1)−

n∑
j=1

ζiPgj(k))

Q̃ref
gi (k + 1) = Qref

gi (k + 1) + gq(Qref
gT (k + 1)−

n∑
j=1

ζiQgj(k)) (6.16)

Where ζi is a binary value that represents the concern of the individual MG to continue distributed

coordinated operation. gp, gq are the active and reactive power sharing ratio during distributed

coordinated operation of MGs. In this proposed network, it is assumed that each MG will equally share

the oscillatory tie-line power. Thus, the value of the gp and gq can be written as 1
n .
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Fig. 6.7 Flow chart to determine the reference tie-line power of MG i
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Fig. 6.8 Block diagram for DMPPC of the MG i

Table 6.1 System Configuration of MGs

Parameter Value
PV 3 kWp
Battery module 10 kWh
Load demand/day of MG 1 22.5 kWh
Load demand/day of MG 2 17 kWh
DC voltage 400 V
Grid voltage 240 V(rms)
Grid frequency 50 Hz
DC-link capacitance 50 mF
Battery filter inductance 5.5 mH
Filter inductance 15 mH
Filter capacitance 2.5 µF
Line resistance 0.75 Ω
Line inductance 8 µH
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Finally, the revised cost function for gird power control of the ith MG to obtain a smooth tie-line

power in an NMG can be written as,

JP gi,smooth = (P̃ ∗
gi(k + 1)− Pgi(k + 1))2 + (Q̃∗

gi(k + 1)−Qgi(k + 1))2

s.t. Ppv,i + Pbat,i + Pg,i = Pload,i; If,i ≤ Iinv(rated),i. (6.17)

To implement the cost function, three different predicted grid powers will be calculated using the

Equations (6.10),(6.11) and (6.14) for three different values of the inverter voltage. The set of the

inverter voltage for possible switching sequences in a single phase inverter has presented in Equation

(6.3). The switching sequence that will minimise the cost function in Equation (6.17) will be applied as

an input of the interlink inverter of the ith MG to achieve a smooth tie-line power in a grid-connected

NMG.

Lb,i

Cdc,i

Cp,i+
Vbat,i

_

Si2

Si1 +
Vdc,i

_

Ibat,i

Ires,i Iac,i

ICdc,i
IBAT,i

Power prediction
from battery side

Cost Function Jvdc,i Power prediction
from DC link side

P*
BAT (k+1)

Pbat (k+1)

Si2 Si1
V*

dc,i

Iac,i

Ires,i

Fig. 6.9 Block diagram to control DC-DC buck-boost converter using model predictive power control

DMPPC in Beckhoff
panel PC NMG in designer PC

Communication
between system
and controller

Fig. 6.10 Experimental set up for NMG
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6.5 Experimental Results

To evaluate the performance of the proposed DMPPC, a experiment has been conducted for an NMG

using MATLAB simulink. The study NMG consists of two MGs connected to the main grid through

a line impedance. A 3 KWp PV and a 10 KWh battery has been installed in each MG to supply two

different load demand. The average 24 hours load of MG 1 and MG 2 is considered as 22.5 KWh and 17

KWh respectively. The system parameters in Table 5.1 are used to develop the NMG model. The battery

Fig. 6.11 PV power, load power and grid power of MG 1 and MG 2, and tie-line power

module in a hybrid MG is usually responsible to control the charging/ discharging power of the battery

in grid-connected mode by keeping battery constrains. The reference of charging/ discharging power is

determined by the e EMS of an MG to achieve predefined objectives. However, to take the opportunity

of grid power control by controlling the interlink inverter of a hybrid MG, the responsibility of controlling

the DC bus voltage is shifted to the battery. A decentralised DC bus voltage control is adopted in this

chapter from [214] to control the buck-boost converter of the individual MGs in a network. All the

battery modules in a network will operate in decentralised manner without any communication amongst
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Fig. 6.13 Grid current of MG 1 and MG 2

6.5.1 Case-I: Dynamic Performance of DMPPCs during System Distur-

bances

In case I, dynamic performance of the proposed control method is demonstrated by considering the

dramatic change of PV power, load power and reference grid power of MGs in the network. The PV

outputs and load demands are the uncontrollable units in the proposed NMG structure. So, the PV

powers and load powers are considered as input and output system disturbance respectively and the

target of a controller is to mitigate the fluctuating nature of PV and Load demand through charging/

discharging of the battery. Moreover, the grid power reference of MGs needs to adjust to maintain the

reliability of supply and to keep the battery SoC within limits. Thus, response of controllers during the

change in reference power is included in the performance evaluation of the proposed DMPPCs. The

Fig. 6.11 presents a simulation scenario for 7 sec. that demonstrates controllers performance during

system disturbances and changes to reference powers. Random values of the PV power is generated in

Fig. 6.11(a) to illustrates the dynamic nature of the PV modules for the simulation time. The Fig. 6.11(b)

shows the changes of load powers in the network. At 2.5 sec., load power of the MG 1 is increased

from 1.5 KW to 2.2 KW and is decreased to 1.8 KW at 3.5s. The load power of the MG2 is increased
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at 3.5 sec. from 0.3 KW to 1.2 KW. The Fig. 6.11(c) shows that the grid powers of MG1 and MG2

are following the given references despite the variations of loads and PV generations in the network.

Moreover, the reference grid power of the MG 1 and MG 2 have changed at 2 sec., 4 sec. and 6 sec. The

reference grid power of MG 2 has increased at 2 sec. from 0.5 KW to 1 KW and is decreased to 0.3 KW

at 6 sec. The Fig. 6.11 (c) shows that the grid power of MG 2 has moved to the new reference point

within a very short time. Similarly, the reference grid power of the MG 1 is increased at 4s from 0.4 KW

to 0.9 KW and is decreased to 0.3 KW at 6 sec. The result shows that the grid of MG1 is following the

reference without a large fluctuation. To demonstrate the response of the power controllers an extended

view of Fig. 6.11 (c) is presented in Fig. 6.12. Fig. 6.12 (a) shows the extended view of Fig. 6.11 (c)

from 1.8 sec. to 2.2 sec. The result shows that the reference tie-line power is achieved within 0.02 sec.

after changing the reference power. The Fig. 6.12(b) shows the extended view of Fig. 6.11 (c) from 3.3

Fig. 6.14 Battery power and DC link voltage of MG1 and MG2 with respect to reference

sec. to 3.5 sec. The results show that tie-line powers are following the reference powers with a very

little fluctuations despite a large change in load power of MG 2. Fig. 6.12(c) shows the response of

the controller during changing the reference power of MG 1 and MG 2 at 5sec. The results show that
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Besides that, grid power information from the other MGs in a network is also collected to determine the

reference grid power of a DMPPC. The Fig. 6.17(a) and Fig. 6.17(b) show the real and reactive power

Fig. 6.17 Comparison of active and reactive grid power of MG 1, MG 2 and the network

drawn by the MG 1 and MG 2 respectively. The results shows that the real and reactive power of MGs

are following the reference with a little fluctuations. The Fig. 6.17(c) shows the tie-line power in an

NMG. The result demonstrates a smooth lie line power in an NMG for a typical day of the year. The

Fig. 6.18(a) and Fig. 6.18(b) show the battery power and battery SoC of MG 1 and MG 2. The results

show that batteries are charging and discharging in a limit to maintain a healthy life of the batteries.

Fig. 6.18(c) shows that decentralised operation of batteries are also maintained DC bus voltages of MGs

near to the reference.





122 | Model Predictive Power Flow Control in Networked Microgrids

6.5.3 Case-III: Performance Comparison of the DMPPC with Decentralised

Operation

In case III, the performance of the proposed DMPPC is compared with the decentralised operation mode

of MG. In decentralised operation, there is no information sharing in the network nd each MG is only

responsible to maintain the tie-line power of individual MGs. The Fig. 6.19 shows the comparison of

real powers of an NMG during distributed and decentralised operation. The result shows that proposed

DMMPC is reduced the tie-line fluctuation in an NMG in compared with decentralised operation of

MGs.

6.6 Conclusions

In this chapter, a DMPPC is deigned for controlling the tie-line power in a networked of grid-connected

residential MGs using a finite set MPC. A decentralised MPC is utilised for DC-DC converters of batteries

that works in coordination with a DMPPC of tie-line inverters to overcome the tie-line fluctuations in

an NMG. The main responsibility of DMMPCs is to achieve a scheduled tie-line power for an NMG

through dynamic control of tie-line inverters despite the variations of PV and load powers in the network.

Communication between MGs is established to determine the reference power for DMPPCs in distributed

manner. Furthermore, a simulation model of an NMG consists of two grid-connected residential MGs

are developed to perform simulation experiments in different case studies. A comparative study with a

decentralised operation of MGs is presented in simulation. The results show that the proposed control

method provides a smooth tie-line power for a network of residential MGs despite a dramatic system

disturbances in the network.



Chapter 7

Conclusions and Future Works

This chapter presents a summary of outcomes of this thesis and provides some future research directions

in the relevant field.

7.1 Concluding Remarks

This thesis focused on tie-line fluctuation problem of grid-connected MGs and presented several control

and optimisation methods to achieve a smooth tie-line power in grid-connected MGs. The four research

outcomes are summarised as follows:

1. A fuzzy logic-based power flow control method has been proposed in Chapter 3 to reduce the

tie-line fluctuations in a grid-connected residential MG. The output of the fuzzy logic is the control

reference of the battery power. Membership functions and rules of the fuzzy logic were optimised using

an offline optimisation method based on the system constraints. The proposed fuzzy logic controller

was implemented in MATLAB SIMULINK fuzzy interface system by following the designed constraints.

A simulation experiment was used for four different radiation days to show the performance of the

proposed controller for predefined performance parameters. Two other rule-based methods have been

compared with the fuzzy control method to demonstrate the effectiveness of the proposed controller.

The present results reduced tie-line fluctuations in a grid-connected residential MG despite the variations

in generations and load demand.

2. A non-linear programming-based battery power control strategy has been presented in Chapter 4 to
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minimise the tie-line fluctuations in a grid-connected residential MG. A golden section search method

was applied in the EMS of the MG by maintaining the system constraints. A residential MG model

was developed in MATLAB SIMULINK Simscape Electrical™tool, and the proposed power flow control

method was implemented in a dynamic EMS to control the MG battery. The simulation experiment

was conducted for several days based on the statistical weather and load information in Queensland,

Australia to show the performance of the proposed power flow control method. A comparison with other

two rule-based methods have been presented in the results to validate the efficacy of the proposed power

flow control method.

3. A grid power control method for the interlink inverter of an MG has been proposed in Chap-

ter 5 to achieve a constant tie-line power for typical days of the year. Firstly, a dynamic model of the

entire MG was developed. Next, a grid power controller was designed to control the tie-line power

of the MG. Finally, a reference grid power was calculated by using the MG controller based on the

battery capacity, statistical weather and load data in Queensland, Australia. Moreover, a small signal

model of the MG was obtained by linearising the dynamic model near a steady-state point, and an

eigenvalue-based stability analysis was conducted for the variations in system parameters. The perfor-

mance of the proposed tie-line control method was presented through different case studies for short

term system disturbances, such as a sudden cloud appearance or a dramatic change in load demand. A

simulation experiment was also conducted for real weather and load data in Queensland, Australia to

show the performance of the controller on typical days of the year. Moreover, a comparison with the

fuzzy logic-based dynamic EMS was presented in the results. The results have shown that the proposed

grid power control method achieved a smooth tie-line power in a grid-connected residential MG by

keeping the battery states within a predefined limit.

4. A distributed model predictive tie-line power control method was proposed in Chapter 6 to achieve a

smooth tie-line power in NMGs. A decentralised model predictive power controller was employed to

control the DC bus of individual MGs that have been working in cooperation with a DMPPC using

to control the interlink inverter of an MG. The interlink inverters of the NMG were operated in a

distributed manner to control the tie-line power of the grid-connected NMG. The amount of gird power

drawn by the MGs were shared with each other through a communication link to calculate the grid power

reference of individual MGs to achieve a scheduled tie-line power by maintaining system constraints of

individual MGs. The proposed DMPPC method was verified in simulation experiment though several
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case studies to show the performance of the distributed grid power controller for the variation in system

disturbances and the reference power. A comparative analysis of the proposed method was conducted

with respect to decentralised operation of MGs presented in the results to show the effectiveness of the

proposed control method. The results showed that a smooth tie-line power can be obtained in an NMG

for typical days of the year despite the variations in generations and load demand.

7.2 Future Work

1. Real-time experimental validation is an important consideration for any method. The proposed

methods can be verified in hardware experiments to validate the practical implementation of the pro-

posed methods. In Chapter 6, the NMG system was modelled in MATLAB SIMULINK in a designer

PC. Meanwhile, implementing a controller in an embedded system will provide a faster response than

PC-based implementation. The proposed DMMPC method should be verified in an actual hardware

set up to compare the performance of the controller with the simulation experimental results. The real

MG set up in Griffith University, Nathan campus, Brisbane, Australia can be used as a test system to

perform the real-time hardware experiment. In the future, the industrial panel PC can be connected to

real hardware to implement the proposed control method.

2. An efficient EMS is prerequisite for determining the reference power in any control method. Weather

and load forecasting are one of the popular ways to schedule power in an EMS. Forecasting- based power

flow control was excluded in this thesis. Thus, additional studies can be anticipated for an efficient tie-line

power flow in an MG based on forecasted generations and load demand by securing the system constraints.

3. Tie-line power flow control in an NMG during mutual power sharing amongst MGs is another

challenge. Power sharing between MGs during surplus/shortage generations was excluded in this study.

Thus, adaptive control methods should be developed to control the tie-line power in an NMG to attain

the benefits of mutual power sharing amongst MGs.

4. A reliable communication network is assumed for power flow control in NMGs. Meanwhile, the effect

of communication link failure on the NMG operation should be addressed in the future. Moreover, cyber

security is a major concern in NMGs given that different types of communication networks can be used
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by MGs in a network. Thus, adaptive control methods that deal with possible cyber security issues for

NMGs should be developed to achieve their secure power transfer.
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